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Abstract 

The outbreak of emerging infectious diseases poses significant challenges to global 
public health. Accurate early forecasting is crucial for effective resource allocation 
and emergency response planning. This study aims to develop a comprehensive 
predictive model for emerging infectious diseases, integrating the blending frame-
work, transfer learning, incremental learning, and the biological feature Rt to increase 
prediction accuracy and practicality. By transferring features from a COVID-19 dataset 
to a monkeypox dataset and introducing dynamically updated incremental learning 
techniques, the model’s predictive capability in data-scarce scenarios was significantly 
improved. The research findings demonstrate that the blending framework performs 
exceptionally well in short-term (7-day) predictions. Furthermore, the combination 
of transfer learning and incremental learning techniques significantly enhanced 
the adaptability and precision, with a 91.41% improvement in the RMSE and an 89.13% 
improvement in the MAE. In particular, the inclusion of the Rt feature enabled 
the model to more accurately reflect the dynamics of disease spread, further improving 
the RMSE by 1.91% and the MAE by 2.17%. This study underscores the significant appli-
cation potential of multimodel fusion and real-time data updates in infectious disease 
prediction, offering new theoretical perspectives and technical support. This research 
not only enriches the theoretical foundation of infectious disease prediction models 
but also provides reliable technical support for public health emergency responses. 
Future research should continue to explore integrating data from multiple sources 
and enhancing model generalization capabilities to further enhance the practicality 
and reliability of predictive tools.

Keywords:  Emerging infectious disease prediction, Transfer learning, Incremental 
learning, Biological feature Rt, Blending framework

Introduction
Emerging infectious diseases present a significant challenge to global public health [30, 
48, 51]. In recent years, accelerated globalization and ecological changes have led to a 
marked increase in the rate and extent of infectious disease transmission [39, 40]. This 
surge not only places immense pressure on health systems but also threatens global 

*Correspondence:   
2008xuderen@gmail.com; 
cwenghowe@utm.my

1 Faculty of Computing, Universiti 
Teknologi Malaysia, Johor 
Bahru 81310, Malaysia
2 UTM Big Data Centre, Ibnu 
Sina Institute For Scientific 
and Industrial Resarch Universiti 
Teknologi, Johor Bahru  81310, 
Malaysia
3 Faculty of Computing, Universiti 
Malaysia Pahang Al-Sultan 
Abdullah, Pekan, Pahang 26600, 
Malaysia

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13040-024-00396-8&domain=pdf


Page 2 of 25Xu et al. BioData Mining           (2024) 17:42 

economic and social stability [23]. Emerging infectious diseases, such as COVID-19 and 
monkeypox, have triggered widespread health crises in a relatively short timeframe, and 
their unpredictability often renders traditional response strategies ineffective [10].

Early prediction is critical for an effective public health response [1]. Timely and accu-
rate outbreak forecasts not only assist decision-makers in allocating resources proac-
tively but also facilitate the implementation of more effective control measures, thereby 
minimizing the social and economic impacts of outbreaks [71, 72]. Specifically, early pre-
diction plays a vital role in supporting vaccination strategies, healthcare resource allo-
cation, and public health interventions. To achieve this, outbreak forecasting must rely 
on quantitative analyses of infectious disease transmission trends and consider complex 
factors such as pathogen biology, modes of transmission, and population movement. 
Consequently, the development of efficient and reliable forecasting tools—particularly 
those that deliver accurate predictions in the early stages of emerging infectious dis-
eases—represents a significant challenge in public health [62].

Despite some progress in predicting early emerging infectious diseases, significant 
limitations persist [55, 71, 72]. Traditional prediction models frequently produce delayed 
results due to the untimeliness of data when addressing rapidly evolving epidemic situ-
ations. Furthermore, fixed-interval time series data struggle to capture the dynamic 
nature of disease transmission accurately [86]. Existing machine learning methods often 
rely on single-point models that overlook the influence of factors such as human mobil-
ity, regional variations, and epidemiological knowledge of disease transmission [42, 44]. 
Furthermore, the underutilization of real-time data and dependence on small-scale data-
sets severely compromise the accuracy of early emerging infectious disease prediction 
models [2]. Although internet and search engine data demonstrate significant potential 
for early prediction, effectively utilizing these unstructured data remains a challenge [28, 
29, 68, 69, 73]. Models such as SIR and SEIR, while useful for early predictions, tend to 
underestimate the resources required owing to data limitations and evolving outbreak 
characteristics. This underscores the necessity of dynamically updating model input data 
[43, 42, 44]. Therefore, the integration of epidemiological knowledge, real-time data, and 
dynamic model updates has become essential for enhancing the accuracy and effective-
ness of early emerging infectious disease prediction.

The primary objective of this study is to increaes the accuracy and utility of early pre-
dictions of emerging infectious diseases by integrating existing multimodal approaches, 
utilizing transfer learning and incremental learning techniques, and introducing bio-
metric Rt. We aim to address the limitations of current models regarding data scarcity 
and predictive generalizability. By performing feature migration from COVID-19 data 
and dynamically updating real-time information, we seek to improve the model’s perfor-
mance in predicting emerging infectious diseases, including monkeypox.

The contributions of this study are primarily in the following areas. First, with the 
acceleration of globalization and ecological changes, the frequency and spread of emerg-
ing infectious diseases are increasing, posing significant challenges to global public 
health [30, 45, 51]. Accurate early prediction can provide critical decision support to 
public health authorities, facilitating the effective allocation of resources and the devel-
opment of emergency response measures, thereby reducing the spread and impact of 
outbreaks [7, 24, 60]. Second, this study explored the potential of multimodel fusion 



Page 3 of 25Xu et al. BioData Mining           (2024) 17:42 	

to provide more stable and reliable predictions by integrating the strengths of multiple 
models [26, 68, 69, 73]. By introducing biometric Rt, the models are not only able to 
capture disease transmission trends, but also able to evaluate the effectiveness of preven-
tion and control measures, thus providing a basis for developing more scientific public 
health strategies. In addition, the application of transfer learning and incremental learn-
ing in the context of sparse and continuously updated data offers unique advantages to 
help address emerging infectious diseases [19, 38]. By drawing on knowledge from previ-
ous outbreaks and updating data in real time, these approaches significantly improve the 
predictive accuracy and adaptability of models, which is crucial for rapid response in the 
early stages of an outbreak, helping to implement timely control measures to slow down 
the spread of the disease.

Related work
Traditional infectious disease prediction models, such as the susceptible-infected-recov-
ered (SIR) and susceptible-exposed-infected-recovered (SEIR) models, have been widely 
utilized for modelling and forecasting the spread of diseases [67]. These models predict 
disease transmission trajectories by delineating various states of the population and rely-
ing on epidemiological parameters. However, models such as SIR and SEIR have signifi-
cant limitations. They depend on rigid assumptions and are unable to effectively account 
for complex social behaviors and population movements [32].

With the advancement of computing technology, the application of machine learning 
in predicting infectious diseases has steadily increased. In recent years, techniques such 
as neural networks, decision trees, and support vector machines have been utilized for 
the early prediction of infectious diseases [70]. However, these methods still face limi-
tations in capturing the complex and dynamic characteristics of diseases [68, 69, 73]. 
Existing machine learning approaches encounter several challenges: First, most models 
rely heavily on historical data, which leads to reduced prediction accuracy when con-
fronted with limited data or emerging diseases [34, 77, 78, 80, 79, 81]. Second, these 
models struggle to operate effectively with real-time data updates and cannot adapt to 
the evolving dynamics of epidemics [47]. This issue is particularly pronounced in the 
prediction of emerging infectious diseases such as COVID-19 and monkeypox.

Internet big data, including social media, search engines, and news data, have become 
important resources for predicting infectious diseases in recent years. The real-time 
nature and extensive coverage of these data provide significant potential for early warn-
ing [77, 78, 80]. For example, by analysing COVID-19-related web search behaviors, 
researchers were able to detect early signals of disease transmission [28, 29]. However, 
extracting effective information from massive amounts of unstructured data remains a 
technical challenge, particularly regarding automatic keyword filtering and data clean-
ing [14]. Additionally, geographical differences and delays in information dissemination 
within internet data limit its applicability on a transnational or global scale [16].

Early prediction of emerging infectious diseases Against the problem of data scarcity, 
migration learning allows the model to learn from similar disease data, thus improv-
ing the generalization of the prediction of emerging diseases [57]. On the other hand, 
incremental learning improves the timeliness of prediction by enabling the model to be 
dynamically updated as new data arrives without the need to retrain the entire model 
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[88]. In addition, multimodel fusion has been an effective method for improving the 
stability and accuracy of prediction models in recent years [77, 78, 80]. By integrating 
the advantages of different models, more robust prediction results can be obtained. The 
introduction of biological features such as the effective reproduction number (Rt) also 
enhances the prediction ability of the model. These techniques show great potential for 
the early prediction of emerging infectious diseases.

Method
Data collection and processing

This study utilized the Mexican COVID-19 dataset and the US Monkeypox dataset pro-
vided by Our World in Data [20]. The COVID-19 dataset covers the period from April 
1, 2020, to March 31, 2023, and includes various key indicators such as daily new cases 
(new_cases), total confirmed cases (total_cases), daily new deaths (new_deaths), total 
deaths (total_deaths), smoothed data, and rates calculated per million people. These 
datasets are widely used in epidemiological research because of their completeness and 
accuracy [36]. The Monkeypox dataset spans from May 10, 2022, to February 27, 2024, 
encompassing key metrics such as daily new cases, 7-day averages, and total cases. Given 
the presence of missing values in the original dataset, a median imputation method was 
used to fill these gaps. Owing to the unique characteristics of infectious disease time-
series data, outliers were retained to preserve the integrity and authenticity of the epide-
miological trends.

Construction of a blending model based on COVID‑19

Covid‑19 feature engineering

Feature engineering constitutes a critical phase in data processing, particularly when 
predicting the spread of diseases. Well-designed features can significantly enhance a 
model’s predictive capabilities [11]. In the present study, a series of feature engineering 
techniques were applied to the Mexican COVID-19 dataset to capture dynamic changes 
and transmission trends of the disease. To comprehend temporal trends in COVID-19 
case numbers, 7-day and 14-day moving averages were computed. These features assist 
the model in recognizing recent trends in the case of increases or decreases.

Lag features, a common technique in time series analysis, enable the model to cap-
ture the autocorrelation inherent in sequential data [5]. Lagged features for new cases 
were generated with 1-day and 7-day intervals. Differential features were also employed 
to capture the rate of change in the series, which is crucial for detecting accelerations or 
decelerations in disease transmission [31]. Additionally, growth rate features were cre-
ated to provide an alternative perspective on the relative changes in case numbers by 
calculating the daily percentage increase in new cases [54].

The time point features, including the year, month, and day of the week, were extracted 
from the data. These features assist the model in identifying potential seasonal pat-
terns or weekly cyclical changes. Owing to the potential generation of missing values 
(NA) from the computation of sliding windows and lag features, rows containing NA 
were removed after completing feature engineering to ensure data integrity for model 
training and testing. Through the implementation of the aforementioned feature engi-
neering processes, a comprehensive and insightful set of features was prepared for the 
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COVID-19 case prediction model. These features not only enhance the data’s expressive-
ness but also improve the predictive model’s accuracy and interpretability.

Feature selection is a critical aspect of constructing effective predictive models, aiming 
to identify features that most significantly impact the target variable—in this case, the 
number of new COVID-19 cases ("new_cases") [58]. This study employs the XGBoost 
regression model for feature selection. XGBoost (extreme gradient boosting) is a widely 
used gradient boosting decision tree (GBDT) algorithm that provides importance scores 
for each feature during the training process. These scores are based on each feature’s 
contribution to the model’s predictive performance, such as reducing errors in the train-
ing data. XGBoost uses regularization techniques during the construction of decision 
trees to prevent overfitting, leading to the selection of fewer but more informative fea-
tures. By efficiently leveraging these features, it helps identify those with the greatest 
predictive power for the target variable [64].

During training, certain features may not be selected for any splits in the trees, indicat-
ing that they do not significantly contribute to the model’s predictive ability. Observing 
these overlooked features allows for their removal to simplify the model (as illustrated 
in Table 1). Features with zero contribution values were excluded. This method precisely 
selects useful features, thereby optimizing the model’s performance [74]. These insights 
can guide future research to more accurately predict and manage the spread of COVID-
19 and similar infectious diseases.

In the data splitting phase, the procedure was conducted in two steps. Initially, 60% 
of the data were allocated for model training to ensure sufficient data for this purpose. 

Table 1  Contribution of features assessed via the XGBoost feature importance assessment feature

Feature name Contribution 
value

new_cases_per_million 0.9995

new_deaths 6.1137

new_cases_lag1 5.2678

day_of_week 4.8319

new_cases_diff 4.6435

new_cases_smoothed 4.5880

new_deaths_smoothed 4.1125

new_cases_14d_avg 3.7031

new_cases_lag7 3.4105

total_cases 3.2471

month 2.6358

new_cases_growth_rate 2.5328

total_deaths 0.0

total_cases_per_million 0.0

new_cases_smoothed_per_million 0.0

total_deaths_per_million 0.0

new_deaths_per_million 0.0

new_deaths_smoothed_per_million 0.0

new_cases_log 0.0

new_cases_7d_avg 0.0

year 0.0
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The remaining 40% of the dataset was then equally divided into validation and test 
sets. To maintain the chronological order inherent in time series data, shuffling was 
disabled by setting `shuffle = False`, thereby preventing random shuffling of the data 
[12].

Model selection

In a previous empirical study, the effectiveness of various machine learning and deep 
learning models in predicting outcomes from the COVID-19 dataset was compared. 
These models demonstrated strong performance in time series prediction. The study 
employed the NSGA-II algorithm to evaluate the models on the basis of prediction 
accuracy, generalization ability, and computational efficiency. Models such as ridge 
regression, decision trees (DT), and XGBoost, which are selected via the multiobjective 
optimization method NSGA-II, exhibit commendable performance in terms of accuracy, 
generalizability, and computational efficiency [76]. Consequently, ridge regression, deci-
sion trees (DT), and XGBoost were chosen as the base models for blending, as they did 
not yield significant differences in prediction results. Linear regression was utilized as 
the metamodel, considering the generalization ability and computational efficiency of 
the models.

Blending ensemble model

This study proposes a blended ensemble model that integrates three distinct base mod-
els: ridge regression, decision tree regressor, and XGBoost regressor. Each of these 
models employs different underlying algorithms, enabling the capture of unique data 
characteristics from multiple perspectives. This diversity in model architecture forms 
the foundation for developing a robust and flexible blending ensemble learning frame-
work (see Fig. 1).

Ridge regression  Ridge regression is a linear regression model that prevents overfitting 
by adding an L2 regularization term to the loss function [27]. The L2 regularization term 
is the sum of the squared parameters. Given that the blending is trained on the COVID-
19 dataset, it is important to note that there are significant differences in the data distri-
butions and ranges between the monkeypox and COVID-19 datasets. FastICA is highly 
sensitive to the data distribution and range [9]. Therefore, the ridge model trained on the 
COVID-19 dataset via FastICA is replaced with principal component analysis (PCA). 
Setting alpha = 0.1 ensures that the model parameters do not become too large, thereby 
enhancing the model’s generalization ability. In epidemiological forecasting, data fea-
tures may exhibit multicollinearity, which ridge regression can effectively handle [35]. 
Furthermore, it can balance the bias and variance of the model by adjusting the regulari-
zation parameter, providing stable and reliable predictive outcomes.

Decision tree regression  The decision tree is a nonparametric supervised learning 
method applicable to regression and classification tasks [66]. It constructs a tree model 
by recursively partitioning the dataset into smaller subsets, where each node represents 
a feature, each branch represents a possible value of that feature, and each leaf node 
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represents a prediction. Decision trees can capture complex nonlinear relationships and 
are easily interpretable [84]. They perform well with high-dimensional data and missing 
values. Owing to their simple structure, they can be trained and predicted quickly, mak-
ing them highly suitable for real-time prediction tasks.

XGBoost  XGBoost (extreme gradient boosting) represents an advanced version of 
boosting trees, enhancing predictive performance by incrementally adding new trees 
[53]. Combining weighted linear models and tree models, it effectively handles nonlinear 
relationships and demonstrates strong generalization capabilities. Renowned for its effi-
cient computation and robust predictive power, XGBoost excels particularly in manag-
ing large-scale data. Because it is capable of automatically addressing missing values and 
conducting feature selection, it is well suited for intricate time series forecasting tasks 
[4].

Linear regression  Linear regression serves as a fundamental regression technique that 
minimizes the error between the predicted and actual values by fitting a linear equation 
[82]. It assumes a linear relationship between the target and input variables, estimat-
ing model parameters through minimizing the mean square error. The choice of linear 
regression as a meta-model is attributed to its simplicity, interpretability, and efficiency 
in fitting and predicting. Within the blending framework, linear regression effectively 
amalgamates predictions from various base models to enhance the overall predictive 

Fig. 1  Blending model structure diagram
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performance. Given that base models capture intricate data relationships, the meta-
model merely requires a linear combination of base model predictions.

In the evaluation of model performance metrics, the hybrid model demonstrates 
strong generalizability and accuracy on the COVID-19 dataset from Iran, Indonesia, and 
Chile. These results underscore the hybrid approach’s capacity to minimize errors and 
enhance stability by integrating predictions from various models (see Table 2).

This blending base model and meta-model are saved as a pickle file for the early pre-
diction of emerging infectious diseases.

Modelling enhancements for the early prediction of emerging infectious diseases

Methodology flowchart of the enhanced blended ensemble model

Monkepox feature engineering

Introducing additional dimensions of features can enhance the model’s understanding of 
disease transmission patterns and improve its predictive ability [41, 85]. Given the time-
dependent nature of infectious disease spread, incorporating lag features and smoothing 
features can capture the dynamic changes in time series data. The specific features are as 
follows:

The extraction of Year, Month, and Day of the Week from dates is typically performed 
via date-time libraries in programming languages such as Python’s datetime module. 
This process aids in capturing the effects of seasonal and periodic variations in models 
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[21, 56]. New_Cases_14d_Avg is calculated as the average number of new cases in the 
past 14 days, achieved through the application of rolling window functions. This feature 
helps smooth daily fluctuations, offering a clearer view of disease transmission trends. 
New_Cases_Cubic represents the cube of the number of new cases, potentially assisting 
models in identifying nonlinear patterns in case growth. New_Cases_Diff indicates the 
daily increment in new cases compared with the previous day, reflecting the immedi-
ate changes in disease transmission speed. The New_Cases_Growth_Rate is calculated 
as the ratio of new cases on a given day to those on the previous day, providing insight 
into the growth rate of new cases. New_Cases_Lag1 and New_Cases_Lag7 denote the 
number of new cases one day and seven days prior, respectively. These lag features help 
models understand the short-term and medium-term dynamics of disease transmission. 
New_Cases_Per_Million represents the number of new cases per million people, stand-
ardizing case numbers for comparison across different regions. New_Cases_Smoothed 
refers to new cases processed by moving averages or other smoothing techniques to 
reduce the impact of daily fluctuations [6]. Week_of_Year indicates the week number 
within a year, aiding models in capturing the periodic effects of weeks.

Dataset splitting

The entire dataset was divided into a training set and a validation set, with the train-
ing set comprising 60% and the validation set comprising 40%. In this step, we set 
shuffle = False to preserve the temporal order of the data, as time series data exhibit 
temporal dependencies, and shuffling the order could disrupt the model’s ability to learn 
these temporal features accurately. The validation set was subsequently further divided 
into a validation set and a test set, each accounting for 20%. Similarly, shuffle = False was 
employed to maintain the temporal sequence, ensuring that the model has an adequate 
amount of data for training.

Transfer learning

This study, employs transfer learning to address the challenge of limited data in the 
early stages of the monkeypox epidemic. Transfer learning leverages existing knowledge 
to address new but related problems, significantly enhancing model performance on 
novel tasks [37]. Specifically, we utilize features from the COVID-19 dataset for feature 
transfer and adapt the model to suit the monkeypox data. Feature transfer, an essential 
method in transfer learning, aligns features from the source domain (COVID-19) with 
the target domain (monkeypox), enabling models trained in the source domain to be 

Table 2  Comparison of blending and its base model performance under different metrics

Model Name Accuracy
(RMSE)

Generalization
(RMSE,lran)

Generalization
(RMSE,Indonesia)

Generalization
(RMSE,Chile)

Model Training
Time

Ridge 11.52 114.85 16.25 23.24 0.03 s

XGBoost 33.07 13.06 13.51 7.98 0.36 s

Decision Tree 24.48 8.14 6.73 4.44 0.07 s

Blending 1.87 1.95 1.67 2.07 0.40 s
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applied to the target domain. The following outlines the specific steps involved in our 
feature transfer process:

Feature alignment

In the COVID-19 dataset, features such as ’new_cases_per_million’, ’new_deaths’, 
’new_cases_lag1’, ’day_of_week’, ’new_cases_diff’, ’new_cases_smoothed’, ’new_deaths_
smoothed’, ’new_cases_14d_avg’, ’new_cases_lag7’, ’total_cases’, ’month’, and ’new_cases_
growth_rate’ have been identified as valuable for training the model as they contribute 
to the target variable. Similarly, in the monkepox dataset, features such as ’new_cases_
cubic’, ’new_cases_diff: 7-Day Average’, ’new_cases_lag1’, ’new_cases_lag7’, ’day_of_week’, 
’total_cases’, ’new_cases_14d_avg’, ’new_cases_growth_rate’, ’week_of_year’, ’month’, and 
’year’ are considered valuable for predicting the target variable. Retaining the relevant 
features from each dataset and aligning them for analysis is crucial. Notably, the COVID-
19 dataset includes unique features such as ’new_cases_per_million’, ’new_deaths’, ’new_
cases_smoothed’, and ’new_deaths_smoothed’. To ensure full alignment of the features 
between the two datasets, it is necessary to create missing features in each dataset. For 
the COVID-19 dataset: new_cases_cubic can be derived by calculating the cube of new_
cases. week_of_year can be derived from the date, and Year can also be derived from 
the date. For the monkepox dataset: new_cases_per_million can be calculated using a 
population of 335.9 million people. Regarding new_deaths, a simple assumption is made 
that deaths constitute a fixed percentage of new cases. In this study, a 2% mortality rate 
is assumed, meaning that for every 100 new cases, there are expected to be 2 deaths. 
This ratio is an estimate, as early stages of novel infectious diseases often lack relevant 
information, typically on the basis of data from similar outbreaks. new_cases_smoothed 
can be created by computing the moving average of new_cases. Similarly, new_deaths_
smoothed is calculated by applying a moving average to new_deaths to smooth daily 
fluctuations and provide a more stable trend of death cases. In this study, a 7-day mov-
ing average is employed. This methodology is commonly used for time series data to 
help reveal long-term trends and reduce the impact of short-term fluctuations. Figure 2. 
depicts the feature after completing feature alignment. Owing to the limited availability 
of early monkeypox data, the feature-aligned datasets for COVID-19 and monkeypox 
were merged into a new dataset.

Feature transfer

The pretrained blending model, which was originally developed using the COVID-19 
dataset, is reloaded and retrained on a newly merged dataset. The retraining process 
employs the same feature set utilized during the initial training of the COVID-19 model. 
By integrating and aligning features from distinct data sources, this approach enables 
the model to leverage the knowledge acquired from the COVID-19 dataset and apply 
it to a new dataset that includes monkeypox-related features. This method facilitates 
knowledge transfer and adaptation, allowing the model to generalize effectively across 
the expanded feature space derived from both the COVID-19 and monkeypox datasets.
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Incremental learning

Incremental learning is a technique that allows models to be gradually updated as data 
continue to change and increase [61]. It enables models to incorporate new data without 
retraining the entire model, thus maintaining real-time adaptability. The ridge regres-
sion, decision tree, XGBoost, and linear regression models used in this study do not sup-
port true incremental learning. To enable models to dynamically adapt to continuously 
changing new data in real time, we have devised a set of dynamic update mechanisms to 
approximate the effects of incremental learning.

Dynamic updating mechanism with sliding time windows

The sliding time window is a commonly used dynamic updating mechanism that 
involves sliding data within a fixed time window to progressively update a model [15]. 
Specifically, we define a fixed window of 30 days in length, where the model is trained 
using only the data within the window for updating. As new data arrives, the window 
slides forward to encompass the latest data while discarding the earliest data. The abso-
lute error time series distribution plot of the blending model on the COVID-19 dataset 
(Fig. 3) clearly shows that the blending model can provide relatively accurate results for 
the next 7  days. Therefore, we slide the time window forward by 7  days each time to 
achieve a matching performance effect on the blending model, as shown in Fig. 4.

This study hypothesized that by utilizing 14 days of monkeypox data in the very early 
stages of an outbreak, followed by the incorporation of 16  days of COVID-19 data to 

Fig. 2  Alignment of COVID-19 and Monkeypox dataset features
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complete a 30-day time window, with each additional week of monkeypox data replacing 
the earliest week of COVID-19 data, a sliding time window approach was implemented 
to enable real-time prediction and dynamic model updating [63].

The biological feature Rt is described below

In epidemiology, the effective reproduction number, Rt, is a crucial metric that signifies 
the average number of individuals to whom an infected person can transmit the infec-
tion during a specific period under prevailing conditions [8]. The dynamic fluctuations in 
Rt serve as indicators of the speed of transmission and the efficacy of control measures 
during an outbreak. Therefore, incorporating Rt as a biological characteristic is highly 
valuable for predicting the emergence of new infectious diseases such as monkeypox:

1.	 When Rt is greater than 1, the epidemic spreads, with each infected individual on 
average transmitting to more than one person.

2.	 When Rt equals 1, the epidemic is in a stable state, with the number of infections no 
longer increasing.

3.	 When Rt is less than 1, it signifies a decline in the epidemic, with each infected indi-
vidual on average transmitting to fewer than one person.

Methodology for calculating Rt

The calculation of the effective reproduction number (Rt) is highly important in the 
formulation and assessment of public health policies such as social distancing meas-
ures and vaccination strategies, as it provides real-time insights into the impact of these 
interventions [46]. Various commonly employed methods for estimating Rt include the 
following:

1.	 Time series methods: This method uses time series data of reported case numbers to 
infer Rt by estimating the growth rate of infections. The growth rate is estimated by 
the slope of the logarithmically transformed case numbers, which is then combined 
with the virus’s serial interval to calculate Rt.

2.	 The Bayesian method, a sophisticated statistical approach, integrates uncertainty 
and prior knowledge (such as historical data or other epidemiological characteris-
tics). Typically, by employing Markov chain Monte Carlo (MCMC) techniques, this 
method estimates the probability distribution of Rt, offering confidence intervals and 
uncertainty assessments regarding Rt estimates.

3.	 Real time estimation tool:There are several readily available tools and software pack-
ages, such as EpiEstim and EpiFilter, that can be utilized for estimating Rt. These 
tools typically incorporate the aforementioned methods and enable researchers to 
input real-time case data to obtain estimates of Rt.

In this study, we utilized time series methods to calculate Rt to understand the trans-
mission characteristics of monkepox and other related diseases. It is plausible to con-
sider using a generation interval similar to that of smallpox or cowpox, which typically 
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falls between 12 and 14 days. For the purpose of this analysis, we may opt for an average 
value of 13 days as the generation interval to estimate Rt. The fundamental steps for cal-
culating Rt are as follows:

The daily growth rate, denoted as r, is calculated by comparing the number of cases 
on two consecutive days. If Ct represents the number of cases on day t, the daily growth 
rate r can be calculated via the following formula:

1.	 The daily growth rate, denoted as r,is calculated; this estimation is derived by com-
paring the number of cases over two consecutive days. If we denote the number of 
cases on day t as Ct​, then the daily growth rate r can be calculated via the following 
formula:

	 Here, ’ln’ denotes the natural logarithm.
2.	 To calculate Rt, utilize the serial interval T in the context of secondary transmission;

Once we have the daily growth rate, we can calculate Rt via the estimated generation 
interval. The generation interval is the average time it takes for an individual to infect the 
next individual. The formula for Rt is as follows:

Here, *e* represents the base of the natural logarithm, indicating that, in the absence of 
interventions, an infected individual will on average infect *Rt* other individuals during 
their infectious period.

Model evaluation metrics

When evaluating the performance of new infectious disease prediction models, select-
ing appropriate evaluation metrics is crucial. Accurate predictions can provide strong 
support for public health decision-making. By employing sliding time window technol-
ogy, we can achieve real-time forecasting and dynamically update the model through 
blending [25]. Therefore, it is necessary to utilize multiple metrics to assess the predic-
tive accuracy and reliability of the model comprehensively.

The root mean square error (RMSE) is the square root of the MSE, and serves as a 
metric for assessing the average magnitude of prediction errors. Being in the same units 
as the data facilitates the interpretation of the practical significance of errors. The calcu-
lation formula is as follows:

In this context, yi represents the actual value, ŷ  i denotes the predicted value, and 
n represents the sample size. A lower RMSE value generally indicates higher model 
accuracy.

rt = ln
Ct

Ct−1

Rt = e
rt×T

RMSE =

√√√√1

n

n∑

i=1

(
yi − ŷi

)2
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The mean absolute error (MAE) represents the average of the absolute errors between 
the predicted and actual values and measures the absolute magnitude of the errors 
regardless of their direction.

In this context, n represents the total number of observation points. yi represents the 
actual value observed at the ith point, with ŷ  i indicating the corresponding predicted 
value. The absolute difference between the actual and predicted values is expressed 
as
∣∣yi − ŷi

∣∣ .

Results
In this section, we present the experimental results when the blending framework and 
transfer learning incremental learning technique are used on the monkeypox dataset. 
Our focus lies in evaluating the predictive performance of the models under different 
features and methodologies, encompassing the efficacy of time window-based feature 
transfer incremental learning and the performance enhancement upon the introduction 
of the biological feature Rt.

Preliminary predictions of the blending framework

Initially, we evaluated the progressive predictive capability of the blending framework on 
the monkeypox dataset. With the ongoing accumulation of early monkeypox data, there 
was a corresponding increase in the volume of data within the training set, enabling the 
observation of fluctuations in model performance. This methodology facilitated our 
comprehension of how the blending model performs under the circumstance of con-
tinually refreshing early data.

As shown in Table 3, the data were trained, validated, and tested within four time peri-
ods of 30, 37, 44, and 51 days as they increased. The corresponding numbers of days for 
the training, validation, and testing sets, along with their predictive performance metrics 
(RMSE and MAE), are presented below.

These findings clearly indicate that as the size of the training dataset increases, the 
model’s prediction error significantly increases. This could be attributed to several 
factors:

1.	 The complexity of features in the training and testing data of the model: The blend-
ing model demonstrates promising performance in training on COVID-19 data and 

MAE =

1

n

n∑

i=1

∣∣yi − ŷi
∣∣

Table 3  Preliminary predictions of blending

Times Number of training 
set

Number of validation 
set

Number of test 
set

RMSE MAE

30 day 18 day 6 day 6 day 5.94 4.19

37 day 23 day 7 day 7 day 10.06 9.22

44 day 26 day 9 day 9 day 18.64 15.88

51 day 31 day 10 day 10 day 57.18 49.25
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making predictions on COVID-19 datasets. However, as the volume of monkeypox 
data increases, the model may struggle to capture all features and patterns during 
training. Consequently, the model may exhibit signs of underfitting, leading to an 
increase in errors on the validation and test sets.

2.	 Variations in data distribution: The blending model is trained on a COVID-19 data-
set, and over time, the monkepox epidemic may exhibit varying patterns of transmis-
sion. Discrepancies in the data distribution between the training and validation sets 
may hinder the model’s ability to accurately predict future trends.

Comparing the effects of blending transfer learning with incremental learning 

for predicting monkeypox with the incorporation of the biological feature Rt

In this study, we further evaluated a blending model that demonstrated robust perfor-
mance in training on COVID-19 data, utilizing transfer learning and incremental learn-
ing on the monkeypox dataset. To increase the predictive accuracy of the model, we 
introduced the biological feature Rt to capture the dynamic changes in epidemic spread. 
The model’s prediction results with and without the Rt feature are presented in Table 4 
for varying sliding time windows.

By employing transfer learning, we utilize the pertinent features of the COVID-19 
dataset to construct a model for the monkeypox data. Incremental learning facilitates 
the model’s progressive updates to accommodate the evolving data. The findings reveal a 
gradual reduction in prediction errors as the time window shifts, underscoring the adap-
tiveness of incremental learning to the ongoing integration of new data.

Introducing the effect of the biological trait Rt

Among all the tested models, the inclusion of the biological feature Rt demonstrated 
a significant performance improvement in each sliding window phase. In particu-
lar, following the first week of sliding, the model’s RMSE decreased significantly from 
2.49–0.82, and the MAE decreased from 1.94–0.67. These results indicate that the Rt 
feature substantially enhances the model’s ability to capture epidemic transmission 
trends. Transfer learning leverages features from previous COVID-19 datasets, result-
ing in notable performance gains in data-scarce scenarios. The initial findings show that 

Table 4  Compares the effects of blending transfer learning, incremental learning, and the 
prediction of monkeypox with the introduction of the biological feature Rt

Model Type Times RMSE MAE

Transfer Learning Incremental Learning Slide 0 weeks
Slide 0 weeks

3.14 2.3

Transfer Learning Incremental Learning Rt 3.14 2.3

Transfer Learning Incremental Learning Slide 1 weeks
Slide 1 weeks

2.49 1.94

Transfer Learning Incremental Learning Rt 0.82 0.67

Transfer Learning Incremental Learning Slide 2 weeks
Slide 2 weeks

0.93 0.61

Transfer Learning Incremental Learning Rt 0.45 0.31

Transfer Learning Incremental Learning Slide 3 weeks
Slide 3 weeks

0.27 0.25

Transfer Learning Incremental Learning Rt 0.21 0.19
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at sliding week 0, the model’s RMSE and MAE were 3.14 and 2.30, respectively. As the 
sliding window progresses, incremental learning gradually updates the model to adapt 
to new monkepox data. We observed a significant decrease in the model’s RMSE and 
MAE with each additional week of data, highlighting the effectiveness of incremental 
learning in adapting to data changes. The introduction of Rt led to improved predictive 
performance across all time windows, particularly in the sliding windows of the first and 
second weeks. Rt, as a key biological feature, can reflect real-time changes in epidemic 
transmission; thus, its incorporation into the model significantly enhances prediction 
accuracy.

Discussion
In this study, we investigate the application and effectiveness of the blending framework, 
transfer learning, incremental learning, and biological feature Rt in predicting emerging 
infectious monkeypox. The experimental results demonstrate the significant advantages 
of these methods in addressing the challenges of early-stage emerging infectious disease 
data scarcity and real-time updates.

The applicability of the blending framework in predicting emerging infectious diseases

The blending framework enhances the overall predictive performance by combining 
predictions from multiple base models. Specifically, when predicting the next 6  days, 
the model achieves low RMSE and MAE values of 5.94 and 4.19, respectively. However, 
with increasing data, particularly at 51 days, the forecasts for the next 10 days show sig-
nificant increases in the RMSE and MAE to 57.18 and 49.25, respectively. This suggests 
that the blending model performs well in short-term forecasts (within 7 days). The find-
ings indicate that the blending framework is effective for short-term predictions but may 
require further optimization for handling long time series data. Adjusting model com-
plexity or incorporating additional data preprocessing steps, such as feature selection or 
dimensionality reduction, may help improve the predictive accuracy of long time series 
data [18, 33].

Advantages of transfer learning and incremental learning in the context of data scarcity 

and dynamic updates

The application of transfer learning and incremental learning in this study demonstrates 
their potential in addressing data scarcity and real-time dynamic updates [49, 50]. The 
experimental results show that by transferring features from COVID-19 data to the 
monkeypox dataset, the model can still provide relatively accurate predictions in the 
early stages of data scarcity. For instance, at week 0 of the sliding window, the model’s 
RMSE and MAE are 3.14 and 2.30, respectively, highlighting the advantage of trans-
fer learning in leveraging existing knowledge for new tasks. Furthermore, incremental 
learning techniques enable the model to adapt to new data in real time, maintaining 
prediction accuracy. With each week of increase in the data, the model’s prediction 
errors significantly decrease, reaching RMSE and MAE values of 0.27 and 0.25, respec-
tively, after 3 weeks of sliding. This indicates the effectiveness of incremental learning in 
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real-time data updates, particularly in dealing with continuously changing data distribu-
tions. These results underscore the key advantages of transfer learning and incremental 
learning: they can initiate predictions in data-scarce scenarios and continuously update 
and optimize the model as new data arrives. This is particularly crucial for predicting 
new infectious diseases, as early-stage data are often limited and dynamically changing.

The advantages of the biological feature Rt in the early prediction of emerging infectious 

diseases

The inclusion of the biological feature Rt significantly enhances the predictive perfor-
mance of the model, particularly in the very early stages of an epidemic. Rt, a key epi-
demiological indicator, reflects the average number of individuals to whom an infected 
person can transmit the virus under existing conditions [3,  39, 40]. The experimental 
data demonstrate that incorporating Rt results in a significant decrease in both the 
RMSE and the MAE of the model,for example, during a one-week sliding window, the 
RMSE decreases from 2.49 to 0.82, and the MAE decreases from 1.94 to 0.67. This indi-
cates the effectiveness of the Rt feature in capturing the dynamics of epidemic spread, 
providing the model with more precise trend information. In the initial stages of a novel 
infectious disease outbreak, data are often limited and unstable; therefore, Rt can serve 
as a valuable feature, aiding the model in rapidly adapting to new circumstances and 
offering more accurate predictions.

Feasibility of cross‑disease prediction

Comparison with recent research [28, 29, 59, 79, 81, 87]. This study combines integrated 
learning, incremental learning, and transfer learning, while introducing the biological 
feature Rt. This approach enables the model to be robust, real-time, and cross-disease 
predictive, even under conditions of data scarcity during the early stages of emerging 
infectious diseases. Such capabilities are critical in the initial phases of rapidly evolving 
epidemics. Despite the significant differences in transmission modes between COVID-
19 and monkeypox, predictions for COVID-19 can be effectively adapted for monkey-
pox through feature generation, extraction, and alignment. The incremental learning 
technique allows for continuous adjustment of the model as outbreak data accumulate, 
enabling it to adapt to the specific transmission dynamics of monkeypox. This approach 
not only addresses the issue of data scarcity but also enhances the robustness and adapt-
ability of the model in practical applications. The reproduction number (Rt), a common 
indicator of disease transmission capacity, can be effectively integrated into various 
infectious disease prediction models. Its incorporation improves the model’s ability to 
capture the epidemic’s spread rate, thereby enhancing prediction accuracy.

Potential applications of models in public health decision‑making

The blending prediction model developed in this study holds significant potential for 
application in public health decision-making. By integrating transfer learning, incre-
mental learning, and the biological feature Rt, we can provide highly accurate early epi-
demic forecasts for emerging infectious diseases, which is crucial for resource allocation 
and emergency response. For example, the model can predict the growth trend of case 
numbers in the next 7 days, aiding health authorities in preparing medical resources in 
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advance, formulating isolation policies, and optimizing vaccine distribution strategies. 
Accurate predictions can significantly reduce public health risks, enhancing the time-
liness and effectiveness of prevention and control measures. Compared with previous 
studies, this research has made several important advancements. First, we introduce the 
blending framework, which synthesizes the strengths of various models when dealing 
with multiple model outputs, thereby enhancing the overall predictive performance. 
Second, through transfer learning and incremental learning, we successfully leveraged 
knowledge from COVID-19 data, significantly improving the accuracy of monkepox 
epidemic prediction. Finally, the incorporation of the biological feature Rt provides 
profound insights into the dynamics of epidemic spread, enabling the model to more 
accurately capture changes in disease transmission trends. These enhancements position 
our model as superior to many traditional methods in terms of predictive accuracy and 
adaptability.

Insights for the development of future infectious disease prediction tools

The results of this study provide several important insights for the development of future 
infectious disease prediction tools. First, the integration of multiple models (such as the 
blending framework) is an effective method for improving prediction accuracy, particu-
larly when dealing with complex and variable data [75]. Second, transfer learning per-
forms well in cases of data scarcity, indicating that leveraging existing relevant data for 
knowledge transfer can significantly enhance model performance [79, 81]. Incremental 
learning enables real-time prediction and dynamic model updates. Third, the incorpora-
tion of biological features (such as Rt) can provide crucial epidemiological information 
to the model, aiding in capturing potential changes in outbreaks. Future research could 
further explore the optimization of these methods. For example, more advanced feature 
selection and extraction techniques should be investigated to further enhance the pre-
dictive capabilities of the models. Additionally, the development of real-time data updat-
ing and automated model tuning systems will make prediction tools more efficient and 
reliable in practical applications.

Limitations of the research

One significant limitation of this study lies in the impact of data quality and quan-
tity on the model’s performance. The data utilized originate primarily from public 
sources such as the monkepox dataset provided by Our World in Data. These datasets 
may suffer from inconsistencies in data collection, reporting delays, or missing infor-
mation, all of which can potentially affect the predictive accuracy of the model [13, 
22, 52]. For example, in cases of sparse data, the model may struggle to adequately 
capture the characteristics of disease transmission, leading to increased prediction 
errors. Furthermore, the temporal span and geographical coverage of the data also 
influence the model’s generalizability. During the early stages of an epidemic, data 
are typically limited and unstable, which could result in model overfitting to the 
restricted training data and failure to accurately forecast future trends. Therefore, the 
quality and quantity of data are critical factors influencing model performance, par-
ticularly in addressing rapidly evolving infectious disease outbreaks [17, 65].
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Another limitation is the generalizability of the model in predicting different dis-
eases. While this study improved the prediction accuracy of monkeypox outbreaks by 
utilizing features from COVID-19 data through transfer learning, the generalizability 
of this approach may be limited. Different diseases have distinct transmission mech-
anisms and characteristics, such as routes of transmission, incubation periods, and 
severities of infection. Therefore, the successful application of a model for one disease 
does not guarantee similar performance for other diseases. Further research is needed 
to explore ways to enhance the model’s generalization ability to better adapt to vari-
ous infectious disease scenarios. This may involve developing more universal feature 
extraction methods or incorporating more biological and epidemiological knowledge 
into the model. Additionally, integrating multiple data sources, such as epidemiologi-
cal survey data, genomic data, and environmental data, may help improve the model’s 
prediction accuracy and generalizability [83].

Conclusion
This study investigates the application of the blending framework trained with 
COVID -19 data, combined with transfer learning and incremental learning, in the 
prediction of monkepox outbreaks. The incorporation of the biological feature Rt sig-
nificantly enhances the predictive accuracy of the model. The research findings indi-
cate the following:

1.	 Evaluation of the blending framework’s performance and limitations: The blending 
framework proves effective in short-term forecasting but may require further opti-
mization when handling long time series data. Adjusting model complexity or incor-
porating additional data preprocessing steps, such as feature selection or dimension-
ality reduction, could enhance the predictive accuracy of long time series data.

2.	 The advantages of transfer learning: By leveraging the features of a COVID-19 data-
set, we successfully applied it to predict monkepox outbreaks. The utilization of 
transfer learning significantly enhanced the model’s predictive capacity in scenarios 
of limited data availability, underscoring the critical importance of leveraging inter-
disciplinary knowledge in forecasting emerging infectious diseases.

3.	 Dynamic adaptability of incremental learning: Through incremental learning, models 
can dynamically adapt to changes in new data, maintaining a high level of predic-
tive accuracy. This technique is particularly suitable for situations involving dynamic 
changes, such as in the case of epidemic outbreaks, enabling real-time forecast 
updates.

4.	 Introduction of the biological feature Rt: The inclusion of the effective reproduction 
number (Rt) as a crucial indicator reflecting the dynamics of disease spread signifi-
cantly enhances the predictive ability of models. Particularly in the early stages of 
emerging infectious diseases, incorporating Rt assists models in capturing changes in 
disease transmission more accurately.

This study demonstrates the potential application of a blending framework that inte-
grates transfer learning, incremental learning, and biological feature Rt in infectious 
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disease prediction, offering reliable technological support for public health emergency 
responses.

Research in the future

While this study yielded valuable results, there are still numerous areas that warrant fur-
ther exploration. The following are some research recommendations for future investi-
gations in the field of forecasting emerging infectious diseases:

1.	 Improving Data Quality and Integrating Multiple Data Sources: Future research 
should focus on enhancing the quality and usability of data, particularly in situations 
where early epidemic data are scarce. Integrating multiple data sources, such as epi-
demiological, environmental, and genomic data, will aid in the construction of more 
comprehensive and precise predictive models.

2.	 Real-time prediction and automated updating system: With the continuous influx of 
new data, the development of real-time prediction and automated model updating 
systems is becoming increasingly crucial. Such systems should be capable of auto-
matically acquiring new data, updating model parameters, and generating prediction 
outcomes to provide timely information support to decision-makers.

3.	 Interdisciplinary collaboration: The prediction of emerging infectious diseases 
involves knowledge from various fields, such as epidemiology, statistics, and data sci-
ence. Future research should emphasize interdisciplinary collaboration, integrating 
the latest findings from different disciplines to develop more precise and practical 
forecasting models.

Through further research and exploration, we can continuously enhance the accuracy 
and practicality of infectious disease prediction models, thus providing more robust 
support for global public health.
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