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Abstract
A bio-based hydrogel is a complex compound that consists of natural biomaterials and is widely applied for various thera-
peutic purposes. The modification from traditional biomaterials to reformulated bio-based hydrogels has gained a place 
at biomedical field due to the growth of therapeutic benefits such as drug delivery, tissue engineering, and regenerative 
medicine. Moreover, the increasing global demand for bio-based hydrogels has resulted in a worldwide shortage of mass 
formulations and has raised environmental awareness. By using natural biomaterials instead of synthetic ones, these hydro-
gels minimize their negative effects on the environment while simultaneously maximizing the successful execution of the 
product. However, the mechanisms governing degradation and bioactivity in bio-based hydrogels, which dictate drug release 
profiles, hydrogel stability, and therapeutic effectiveness, are not yet comprehensively understood. Therefore, by analyzing 
recent progress and ongoing challenges, this review will reveal how advanced bio-based hydrogels are quietly transforming 
the future of healthcare and offering novel solutions to pressing health problems.
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Introduction

Biomaterials are consciously designed substances that have 
potential in repairing, replacing, or enhancing tissue func-
tions within biological systems. In addition, the fabrication 
of biomaterials involves two fundamental processes: either 
from natural resources or through synthetic methodologies 
[1]. Consequently, they are safe for the body because they 
don’t cause bad reactions and are strong and flexible like the 
tissues they help or replace. Moreover, various biomaterials, 
including metals, polysaccharides, ceramics, and proteins, 
are strategically selected by doctors and scientists based on 
the specific demands of the therapeutic intervention [2]. In 
other words, each biomaterial interacts with organismal sys-
tems for medical purposes, including diagnostic, therapeutic, 
or tissue engineering applications [3].

Bio-based hydrogels (BBHs), as naturally derived 
biomaterials, are characterized by extensively hydrated, 

three-dimensional networks, designed to create adaptable, 
sustainable platforms for diverse therapeutic and biomedi-
cal applications. In essence, biomaterials and bio-based 
hydrogels exhibit a synergistic relationship, since bio-based 
hydrogels exploit the natural biomaterials’ qualities such as 
biocompatibility, biodegradability, and bioactivity to form 
matrices that closely align with the human tissue extracel-
lular matrix [4, 5]. A notable trait of bio-based hydrogels 
is their capacity to self-repair [6]. This feature is particu-
larly advantageous for dynamic conditions where mechani-
cal stress is common, including soft tissue replacement 
and wound healing [7]. Furthermore, it can be exploited 
to create advanced drug delivery mechanisms because it is 
sensitive to changes in pH, temperature, and ionic strength 
[8]. Additionally, bio-based hydrogels, which are made by 
natural sources like chitosan, alginate, collagen, cellulose, 
dextrose, hyaluronic acid, pectin, and agar, have inherent 
antimicrobial activity, making them ideal for wound dress-
ings and infection control [9–12]. Besides providing thera-
peutic benefits, bio-based hydrogels work for sustainability 
by utilizing renewable resources and decreasing the need 
for nonbiodegradable synthetic materials [13]. As shown 
in Fig. 1 various biopolymers are summarized with their 
properties and therapeutic uses. Notably, prominent features 
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of these biomaterials are their capacity for biodegradation, 
absence of toxic effects, mechanical strength, biocompat-
ibility, beneficial physical characteristics, and reduced risk 
of foreign body reactions. Thus, applications of biomaterials 
cover areas like tissue engineering and scaffold fabrication 
to drug delivery, cardiovascular surgery, enzyme immobili-
zation, wound dressings, cancer treatment, and laparoscopic 
procedures [14].

Despite the extensive research on biomaterials for bio-
based hydrogels in therapeutic settings, there are still impor-
tant areas that need additional study. Most studies have con-
centrated on designing new materials and advancing their 
fundamental features. However, there is insufficient knowl-
edge of how these materials interact with the human body 
over long durations. Moreover, producing these hydrogels 
on a large scale and at a reasonable cost for common medi-
cal use remains a significant problem. Additionally, not all 
biomaterials used in hydrogels are fully compatible with the 
human body. Advanced investigation is necessary to identify 
materials that are safe and do not produce adverse effects. To 
address deficiencies in strength and flexibility observed in 
many bio-based hydrogels, there is a need for more research. 
Furthermore, to achieve better drug delivery outcomes, it 
is crucial to refine hydrogels’ targeting capabilities. Typi-
cally, hydrogels are utilized without the combination of other 
therapeutic approaches. Incorporating hydrogels into other 
treatments might boost their performance and deliver more 
complete patient solutions.

This review offers a comprehensive and accessible 
summary of recent progress and challenges in bio-based 

hydrogels for therapeutic uses. By reviewing current stud-
ies, this paper showcases how different biomaterials amplify 
the effectiveness of hydrogels in therapeutic uses. over and 
above, the review will highlight the challenges and limi-
tations faced by researchers and practitioners, suggesting 
potential solutions and future directions.

Classification of Biomaterials for BBHs

While not all biomaterials can be used to produce BBHs [5], 
it is important to note that BBHs are formulated from natu-
ral or synthetic polymers, which form a gel structure upon 
contact with water [15]. In nature, there are numerous mate-
rials but only a few biomaterials have active compounds, 
which are called bioactive compounds. These biomaterials 
have sourced goods widely that originated from a variety 
of genesis such as bacteria, minerals, plants, and animals. 
For illustration, AL-dabbagh, Salman et al., and EL-Ghwas 
et al. (2022) have pointed out that Acetobacter xylinum is 
the primary source of cellulose, as opposed to dextran has 
been derived from Leucistic mesenteries [16, 17].

Naturally, biomaterials are classified into three types, 
polysaccharides-based, protein-based, and gum-based. This 
review provides a comprehensive overview of the bioma-
terials used to produce BBHs for therapeutic applications, 
according to their types, origin, and active compounds as 
shown in Table 1 [14, 18].

Besides these natural biomaterials, a new compound 
existing biomaterial, modified from polysaccharides and 

Fig. 1  Properties, types, and applications of biomaterials [14]
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gum-based biomaterials has been explored, named after 
Oligo-alginate which has significant biological properties 
and therapeutical potentiality like antitumor, anticoagulant, 
antihypertensive, antidiabetic, neurogenerative, and antial-
lergic properties, immunomodulatory, antimicrobial, and 
antioxidant. Moreover, it can fight neurodegenerative dis-
eases (e.g., Alzheimer’s disease). That’s why it has achieved 
substantial attention in the field of pharma [59, 60]. Fur-
thermore, Exopolysaccharides (EPSs) which are isolated 
from microorganisms from extreme niches like hot springs, 
cold waters, halophilic environments, and salt marshes, have 
antitumor and antioxidant properties, nutraceuticals usage, 
cosmetics, and insecticide application [61, 62].

Characteristics of Biomaterials for BBHs

Biomaterials are natural composites utilized in the formula-
tion of BBHs that have some principal characteristics that 
recommend them as a promising catalyst for diverse thera-
peutic oriented. Figure 2 simplifies the characteristics of 
biomaterials to produce BBHs.

Biocompatibility

Biomaterials have been utilized as vectors in biocompatible 
drug delivery systems that conduct directly with biologi-
cal tissues and develop any organ, tissue, or body function. 
Although advanced biomaterials can give instant filling 
effects and stimulate tissue regeneration, they can avoid 

additional damage to the donor site, while minimizing the 
risk of prosthetic rejection and long-term infection. For 
example, Gelatin, chitosan, calcium phosphate, alginate, 
and xanthan gum, all-natural polymers are used to formu-
late diverse delivery systems. However, the transition of 
advanced biomaterials into clinical is experiencing great 
difficulties. In-depth and long-term research is crucial to 
explore the interaction between biomaterials and host tis-
sues, the biocompatibility, safety, and biodegradability of 
implanted biomaterials [63, 64].

Mechanical Strength

The mechanical strength of BBHs mainly depends on the 
breaking of bonds and unfolding of proteins under light. 
That’s why this is a crucial application in the biomedical 
field. Like, for wound dressing or injectable preparation, soft 
hydrogel is perfect. On the other hand, for tissue engineer-
ing, rigid hydrogel is utilized as scaffolds. Scientists have 
explored some strategies to enhance mechanical strength 
for instance using double-network frameworks, dynamic 
crosslinking strategies, and integrating reinforcing fibers 
[65, 66].

Degradation Kinetics

Degradation kinetics is the term that means the biomate-
rial that is taken into the body for medical purposes and 
how much time it will take to break. It is a fully biological 
process inside the body where the biomaterials are broken 
gradually. The advantages of these properties are mainly 
utilized in tissue engineering, improved cell integration, 
developed resorbable devices, and controlled-release drug 
as it is designed to degrade into non-toxic by-products that 
can be safely absorbed or excreted by the body temporarily. 
However, the material’s chemical composition, molecular 
structure, and environmental conditions such as pH and 
temperature are capable of influencing the degradation rate 
[67, 68].

Bioactivity

To promote healing and integration, by supporting cell adhe-
sion, proliferation, and differentiation, biomaterials that 
interact with the biological system of the body are known as 
bioactive materials. For example, collagen or chitosan have 
latent potential because of their ability to interact with cells, 
thereby promoting tissue regeneration. However, facilitating 
cellular interactions is always dependent on surface charac-
teristics, mechanical properties, and the material’s inherent 
capabilities. Therefore, researchers have been working to 
understand and optimize these properties to explore better 
therapeutic applications [69].Fig. 2  The characteristic of biomaterials for BBHs production
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Tunability

The use of knowledge-based tools to manipulate the prop-
erties of biomaterials according to the desired direction is 
defined as tunability [70]. For example, to respond to envi-
ronmental stimuli, making them suitable for drug delivery 
and tissue engineering, hydrogel can be modified and engi-
neered in living tissue. Moreover, precise control over drug 
release profiles, enhancing the efficacy of therapeutic agents, 
another class of tunable biomaterials, polyurethanes are uti-
lized. Additionally, sequence-controlled synthetic polymers 
can improve biomaterials that can reproduce natural biopoly-
mers, developing their functionality in medical applications. 
In regenerative medicine and other biomedical fields, the 
characteristics of biomaterials are significantly important 
[71, 72].

Non‑Toxicity

BBHs are biocompatible and do not generate toxic sub-
stances, as they are manufactured from natural sources. For 
example, in drug delivery systems, wound healing applica-
tions, tissue engineering scaffolds, and ophthalmic applica-
tions, BBHs are used to ensure that no harmful by-products 
are introduced to the body during degradation. This reduces 
the risk of adverse side effects and ensures patient safety 
[73, 74].

Therapeutic Advances in BBHs

BBHs which are made from biomaterials as key players in 
modern medicine, offering promising therapeutic possibili-
ties. These flexible materials, consisting of water-absorbing 
polymer networks, are particularly well-suited for drug 
delivery, tissue engineering, regenerative medicine, and 
diagnostic applications [75, 76].

Drug Delivery

New progress in BBHs has facilitated the development of 
complex drug delivery systems. For targeted action and con-
trolled release, scientists are working day to night. However, 
injectable hydrogels with temperature sensitivity ensure pre-
cise drug delivery, enhancing therapeutic effectiveness while 
minimizing side effects. A good example of this is a heat-
sensitive gel with curcumin particles that are used to treat 
cancer as it helps to release drugs slowly and steadily over 
time [77, 78]. To further illustrate, the researcher’s Xu, Qi 
et al. (2021) and Deng, Yang et al. (2023), have mentioned 
that bio-based hydrogel which contains active 3D peptides 
has strong efficacy in curing long-term inflammation and 
cancer more accurately and precisely [79, 80].

This is the result of the hard work of the scientists. Even, 
Drug delivery is greatly improved by bioactive molecules 
and nanoparticles provide superior treatment options for 
chronic diseases and cancer [81].

Wound Healing and Tissue Regeneration

BBHs have seen remarkable progress, making notable con-
tributions to wound management and tissue repair. The latest 
methods use hydrogels combined with growth factors, stem 
cells, or antimicrobial substances to promote faster healing 
and lower infection rates. Better mechanical and biological 
features in hydrogels support tissue repair in severe wounds 
and critical-sized bone defects.

For instance, Bai, Kyu-Cheol, et al. (2020) and Chen, 
Tong et al. (2021) demonstrated that hydrogel which con-
tains mesenchymal stem cells (MSCs) can speed up heal-
ing in diabetic mice. Even it can assist in formatting blood 
vessels and producing collagen which also makes BBHs- 
(MSCs) stronger to give better performance for stubborn 
wound treatment [82, 83].

Despite this, the researcher’s Wang, Pan, et al. (2020) 
and Fasiku, Omolo et al. (2021) have identified the syner-
gistic effect of silver nanoparticles within a chitosan-based 
hydrogel that has the efficacy not only to boost antibacterial 
and fibroblast proliferation but also accelerating the process 
of wound closure and reducing inflammation. By develop-
ing the potentiality and utilization of bio-based hydrogel, 
intricate wound vulnerability to infections can be effectively 
managed [84, 85].

Moreover, new 3D bioprinting technologies have allowed 
the fabrication of hydrogel scaffolds that effectively replicate 
the natural extracellular matrix, promoting better integration 
and regeneration of damaged tissues [86, 87]

Hydrogels for Osteoarthritis and Cartilage Repair

In treating osteoarthritis and repairing cartilage, bio-based 
hydrogels show hopeful results. Current research is focus-
ing on developing hydrogels with viscoelastic properties 
like cartilage to improve joint repair applications. To boost 
regenerative performance, these hydrogels usually contain 
chondrocyte cells or elements from cartilage matrices [88, 
89].

Breakthroughs in injectable hydrogel technologies and 
in situ gelation methods are facilitating minimally inva-
sive solutions for cartilage repair, presenting new hope for 
patients with joint conditions. For example, Bordbar, Li 
et al. (2024) mentioned in their research journal that a bio-
active glass and collagen-based hydrogel can faster expres-
sion of cartilage genes and facilities for cartilage repair in 
osteoarthritis models which indicates probable future clini-
cal therapy of collagen-based hydrogel for joint issues [90].
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Cancer Therapy and Diagnostic

In cancer care and diagnosis, advances in BBHs are con-
tributing to improvements. Recent developments in hydro-
gels include targeting ligands that enhance the precision 
of chemotherapy delivery, reducing collateral damage to 
healthy tissues [91–93]. Hydrogels designed for diagnostics 
allow for live monitoring of cancer biomarkers, facilitat-
ing both early detection and tailored treatment strategies. 
A notable instance of this is that Peng, Liang et al. (2024) 
engineered a hydrogel with ligands that can create chemo-
therapy drugs in tumors, having the capacity to minimize 
the possible side effects and enrich the therapeutic outcomes 
of doxorubicin in breast cancer treatment [94]. In parallel, 
the most advanced bio-based hydrogel biosensor is being 
demonstrated by Aranda Palomer, Relvas et al. and Nishat, 
Hossain et al. 2022 whose services can identify circulating 
tumor DNA (ctDNA) in real-time, permitting non-invasive 
malignant growth structure observation and enabling imme-
diate action and individualized treatment plans in the man-
agement of lung cancer [95, 96].

Neural Tissue Engineering

BBHs are showing considerable advancements in neural 
tissue engineering, showing promise for the treatment of 
neurological injuries and disorders. Recent progress in 
hydrogels that aid in neuronal growth and repair by offering 

an environment that encourages neural cell attachment and 
proliferation. The use of electrically conductive hydrogels 
with growth factors to support nerve repair and functional 
recovery in neurodegenerative and spinal cord injury con-
texts [97, 98].

In another respect, Chen, Xia et al. (2023) investigated 
that promoting the repair of peripheral nerves, the bio-
based hydrogel can be engineered by the effects of integrat-
ing graphene oxide, by boosting their electrical conductiv-
ity. According to the study’s findings, modification leads 
to more effective neuron regeneration, a higher degree of 
function recovery, and less development of tissue scarring 
as compared to hydrogels missing conductivity [99].

Moreover, Li, Xu et al. (2024) formulated a novel hydro-
gel formulation that incorporates BDNF (brain-derived 
neurotrophic factor) and neurological growth factor (NGF), 
which stimulates the proliferation and development of neural 
cells at the wounded site and speed up nerve healing after 
spinal cord fractures. The formulation is relatively simple 
to implement [100].

The latest developments in BBHs are changing how we 
treat different medical problems from delivering medicine to 
fixing nerve damage. These advancements in BBHs indicate 
their potential to deliver innovative, non-invasive, and highly 
effective treatments, that can enhance outcomes for patients 
with challenging conditions. Table 2 summarizes the bioma-
terials utilized in BBHs and their therapeutic applications, 
from treating wounds to addressing cancer.

Table 2  Advance therapeutic application of BBHs

Therapeutic field Biomaterials Therapeutic activity Ref

Wound care Alginate, chitosan, collagen, hyaluronic acid Create a moist environment, help cell migration, and 
repair wound healing

[101–105]

Drug delivery, pharmaceutical Alginate, gelatin, dextran, pectin Empowering drug efficacy and affinity, minimize 
side effects, encapsulate the drug, release them in 
control manner

[106–108]

Tissue engineering, implants Collagen, gelatin, hyaluronic acid, fibrin Assisting cell growth and tissue for genesis regenera-
tive medicine

[109–112]

Ophthalmic Hyaluronic Acid, chitosan, collagen used to treat a variety of ocular disorders and are also 
utilized for drug administration to the eye

[113, 114]

Orthopedic Hydroxyapatite, collagen, chitosan Enhances the integration of newly formed bone tissue 
and is used in bone regeneration and repair

[114–118]

Cardiovascular Alginate, collagen, hyaluronic Acid, Fibrin Heart tissue engineering scaffolds that are utilized for 
cardiac tissue repair

[119–122]

Dermatological Hyaluronic acid, collagen To enhance skin moisture and attractiveness, hydro-
gels are utilized in fillers and skin care products

[123, 124]

Nerve Regeneration Collagen, chitosan, hyaluronic acid In nerve growth and regeneration, hydrogels offer a 
favorable environment

[125, 126]

Gastrointestinal Pectin, chitosan, alginate The gastrointestinal system can be specifically tar-
geted for medication delivery with hydrogels

[127–129]

Cancer Alginate, chitosan, gelatin Anticancer medications can be delivered by hydrogels 
straight to the tumor site, enhancing targeted and 
lowering systemic toxicity

[130–132]
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Sustainability and Environmental Impact

Current biomedical research highly values the sustainabil-
ity and environmentally friendly biomaterials in BBHs is 
a top priority [133]. Polysaccharides (such as alginate, 
and chitosan) and proteins (such as gelatin, and collagen) 
from renewable resources, offer distinct advantages over 
synthetic materials [134]. Being biodegradable, these 
materials decompose over time, which reduces environ-
mental harm and waste disposal worries [135].

One notable environmental advantage of BBHs is their 
lower carbon emissions [136]. Compared to synthetic 
polymers, these biomaterials are produced with reduced 
energy consumption and lower greenhouse gas emissions 
[137]. By using agricultural by-products and waste materi-
als as raw materials, can enhance sustainability by trans-
forming waste into beneficial biomedical applications, 
promoting circular economy principles. In addition, these 
hydrogels decompose into harmless, eco-friendly sub-
stances, minimizing environmental impact [138, 139]. 

This approach would also enhance the reuse and recycling 
of lignocellulosic biomass, supporting the circular bioec-
onomy as illustrated in Fig. 3 [15]. In the medical realm, 
where materials are generally discarded after a single use, 
this issue is particularly pertinent. The natural degradation 
capability without harmful releases is in line with green 
chemistry standards and furthers sustainable development 
[140, 141].

Ultimately, the use of biomaterials in bio-based hydro-
gels advances therapeutic solutions while fostering environ-
mental sustainability. By emphasizing the use of renewable 
resources and biodegradability, these materials offer a prom-
ising route to environmentally friendly biomedical solutions.

Challenges of BBHs Formulation

BBHs, while offering great promise, they face a range of 
specific obstacles that affect their growth and practical appli-
cation. The challenges in formulating and performing with 
natural raw materials arise from their variability and the 

Fig. 3   The reuse and recycling 
of lignocellulosic biomass, sup-
porting the circular bioeconomy 
[15]
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complex requirements for crosslinking and functionalization. 
Besides, the constraints on functionalization and scalability 
issues add complexity to move these lab innovations into 
practical, widespread use. The challenges are mechanical 
inability, biocompatibility and immunogenicity, controlled 
drug release, long-term stability, environmental, cost, and 
ethical concerns.

Mechanical Inability

Compared to synthetic materials, biomaterials are less robust 
and stable. Alginate and chitosan have experienced mechani-
cal inferiority because of brittleness, weak hydrogen bonds 
and affected on the environment. Due to this limitation, their 
structural integration is vulnerable, and they are unfit for 
advanced therapeutic application [142, 143]. Another exam-
ple is gelatin which is relatively fragile and affected by tem-
perature [144]. Moreover, not only physical factor but also 
chemical factors weak crosslinking networks makes them 
unfit to give the best performance in the medical field [145]. 
Addressing mechanical issues generally involves refining the 
hydrogel formulation or including supplementary materials 
to tackle mechanical problems [146].

However, Gao, Peng et al. (2021) and Ma, Liu, et al. 
(2022) have explored that by synthesizing synthetic poly-
mers, such as poly (ethylene glycol) (PEG) or poly (vinyl 
alcohol) (PVA), with natural ones, or by using crosslinking 
agents, the mechanical appearance of bio-based hydrogels 
can be dramatically developed. For example, With the inter-
facing of alginate and PEG, the stronger stretcher hydrogel 
can be formulated. That capacity assists them more effec-
tively in situations where the load requires physical support 
[146, 147].

Additionally, bio-based hydrogels containing cellulose 
nanocrystals (CNC) can maintain their mechanical durabil-
ity, confirming the creation of stability and sturdiness. In 
this way, the hydrogel is synthesized and able to maintain 
more resistance to mechanical stress [148]. Furthermore, 
to improve mechanical integrity, Cross-linkers like calcium 
ions (for alginate) and genipin (for chitosan) have been used 
to reinforce hydrogels [149, 150] However, it is observed 
that modern advancements in hydrogel have been explored 
to meet the needs of more complex medical applications, 
like tissue repair and drug transport [151].

Biocompatibility and Immunogenicity

Bio-based hydrogels are typically biocompatible, yet they 
might still cause immunogenic reactions or other adverse 
biological outcomes [152]. Even with cutting-edge bio-
materials, unpredictable interactions between advanced 
biomaterials and biological systems can sometimes lead to 
inflammation or immune reactions [153]. Recent research 

underscores that hydrogels made from naturally occurring 
polymers may still trigger immune responses, influenced 
by contaminants, degradation by-products, or structural 
changes in the material. Achieving precise control over 
the hydrogel’s physical and chemical attributes is a major 
challenge, as these features can impact cellular and immune 
system responses [154, 155] To resolve these problems, the 
advancement of biomaterials, particularly through novel 
surface enhancements and immunomodulatory additions 
is needed. According to current findings by Song,Wang 
et al. 2024, a new double-network structure hydrogel can be 
achieved for tissue sealing and soft robotics by the combina-
tion of PVA (polyvinyl alcohol) with alginate, where adhe-
sive and cohesive forces are sequentially utilized to create 
3 times better potential hydrogel compared to before when 
the situation was unbalanced [156].

New approaches for in vitro and in vivo testing are being 
formulated to improve the assessment of hydrogel biocom-
patibility, aiming to lower the risk of adverse reactions and 
enhance safety for clinical applications. A formulation has 
been mentioned by Li, Zhang, et al. (2023), where the com-
bination of immunosuppressive drugs, for example, dexa-
methasone contained in the hydrogel structure effectively 
controlled to the inflammatory reactivity in real-time studies 
[157]. Additionally, Canciani, Semeraro et al. (2023) demon-
strated that finding out the immunogenicity in the hydrogel, 
a sophisticated in vitro testing technique has been followed 
as safe patient treatment is the main purpose [158].

Controlled Drug Release

The drug made from biomaterials is influenced by multiple 
factors, including the hydrogel composition, crosslinking 
density, and environmental conditions (e.g., pH, tempera-
ture). For instance, chitosan-based hydrogels are swell at 
low pH, which, in turn, can change the rate of drug release. 
Moreover, imbalanced degradation is another challenge of 
controlled-release drugs. Consequently, the degradation rate 
sometimes does not align with the expected drug release 
profile, resulting in either early release or inadequate dosage 
throughout the duration. Furthermore, biological interac-
tions, enzymatic processes, and tissue responses are critical 
factors that play a key role in shaping drug release profiles 
from hydrogels post-implantation [159]. For instance, Mal-
lakpour, Nikkhoo, et al. (2022) prepared a hydrogel that 
encompasses metal–organic frameworks (MOFs) within 
polyethylene glycol (PEG) gels, which works as carriers 
for chemotherapy medications and provides accurate drug 
release when enzymes in cancer tissues are reacted, thereby 
effective cancer therapy has been facilitated [160].

Furthermore, a special type of hydrogel which is used 
for the treatment of diabetes, has been demonstrated by the 
researcher Huang, Yu et al. (2021). This hydrogel contains 
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a mixture of phenylboronic acid and chitosan which triggers 
swelling based on sugar concentration, it has great poten-
tial to generate insulin in response to blood sugar levels. 
Dynamic and customized diabetes counseling has been 
achieved from the phenylboronic acid and chitosan-based 
hydrogel [161]. Moreover, Singh, Tripathi, et al. (2023) 
developed a hydrogel system that is a mixture of silk fibroin 
and magnetic nanoparticles, which can enable distance drug 
release management via an outside magnetic field, that can 
work for non-invasive adjustments to drug delivery with pre-
cision, particularly needed for inflammation and cancer in 
the targeted zone [162].

In addition, Chen, Jiang et.al (2024) have presented a par-
ticular type of hydrogel which is made by betamethasone 
with hyaluronic acid (HA). It helps to relieve sciatica as it 
has sustained release capability over a period on the affected 
area of the human body [163].

Long‑Term Stability

As bio-based hydrogels are mechanically weaker, excessive 
biodegradation rate, they also must face significant chal-
lenges in maintaining long-term stability and structural 
integrity compared to synthetic hydrogels. The interac-
tion between the functional groups of carbon materials can 
potentially disrupt water transport. In a recent experiment, 
coating corn seeds with a potato-starch-based hydrogel 
showed only a slight increase in water absorption, and no 
substantial difference in plant growth compared to uncoated 
seeds [164, 165].

In the research study of Saberianpour, Melotto et al. 
(2024), it was claimed that interactions between functional 
groups in carbon materials can capacity to block water 
movement, and they explored that hydrogel dressings like 
Aquacel® can effectively capture moisture and be structur-
ally sound for several days, in such way, healing and limiting 
degradation have acquired[166].

Likewise, Ghandforoushan, Golafshan et al. (2022) have 
pointed out that adding fibrin with injectable hydrogel can 
continue to execute lasting stability in physical conditions 
which can release the drug gradually over a longer period. 
This injectable hydrogel is significantly appreciated for car-
diovascular disease, regenerative medicine, and neural tissue 
engineering [167].

Environmental, Cost, and Ethical Concerns

Obtaining natural polymers for bio-based hydrogels may 
raise environmental, financial, and ethical issues. Over-
harvesting and non-renewable energy usage in production 
can negate the eco-friendly benefits of bio-based hydrogels, 
highlighting the importance of sustainable sourcing. Due 
to the substantial costs of acquiring and processing natural 
polymers, bio-based hydrogels less cost-effective than syn-
thetic options, hindering their broader use across industries 
[168, 169].

By way of example, Zhang, Zhou, et al. (2023) have 
emphasized the use of polymers that come from agricul-
tural waste, that can be modified in the manufacturing of 
hydrogels. It lessens environmental issues by allowing ethi-
cal awareness which is associated with overharvesting [170]. 
Moreover, Kumar, Kumar, et al. (2023) have explained that 
hydrogel can be designed based on biowaste materials whose 
formulation costs are also much cheaper in comparison with 
synthetic and most importantly can be fruitfully used for 
industrial applications [171].

However, these hydrogels’ formulation faces specific 
challenges, such as mechanical strength, degradation, and 
stability concerns. Addressing these challenges is critical for 
enhancing the therapeutic capabilities of bio-based hydro-
gels. Table 3 outlines the various biomaterials for BBHs, 
along with their types and formulation limitations.

The discussed challenges are pertinent and current, 
mirroring the continuous progress and focus on the field 

Table 3  Formulation limitations for BBHs

Biomaterials Formulation limitation Ref

Alginate Fast degradation, weak mechanical strength, sensitive gelation rate [172, 173]
Chitosan A high molecular weight substance can exhibit varying degrees of cytotoxicity, biodegradation, and Solubility 

Issues
[174, 175]

Hyaluronic Acid Viscosity control, stability, cost issue [176, 177]
Collagen Mechanical strength, variability, ethical and cost concerns [178, 179]
Gelatin Thermal sensitivity, excessive crosslinking, degradation [180, 181]
Fibrin Varied due to a few factors, such as the presence of thrombin and fibrinogen, resulting in different gel characteris-

tics, degradation
[182, 183]

Pectin Source variability, crosslinking issues, degradation [184, 185]
Dextran Complex synthesis, limited mechanical Strength, biodegradability [186, 187]
Hydroxyapatite Poor solubility, brittleness, processing challenges [188, 189]
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of bio-based hydrogel research. Mirroring the continu-
ous progress and focus on the field of bio-based hydrogel 
research. Long-standing challenges such as biocompatibility 
and mechanical strength are now joined by newer research 
focuses on advanced production techniques, economic 
considerations, and detailed evaluations of environmental 
impacts.

Conclusion and Future Prospects

In summary, bio-based hydrogels have shown possibili-
ties as viable options for several therapeutic uses, includ-
ing drug delivery, tissue engineering, and wound healing. 
They have been extremely desirable for clinical use due to 
their characteristics, especially their integration with host 
tissue, adjustable physical characteristics, controlled dosing 
capabilities, and biocompatibility. Bio-based hydrogels can 
have their properties tailored to specific applications through 
a combination of chemical and physical crosslinking tech-
niques used in their synthesis. Even with these noteworthy 
developments, there are still a lot of obstacles to be solved, 
including sterilization problems, restricted drug loading, and 
uncertainty about long-term performance.

In the future, overcoming the obstacles related to bio-
based hydrogels will facilitate their broader implementation 
in medical environments. The development of innovative 
sterilization methods, the improvement of pharmaceutical 
loading capacities, and the prediction of long-term perfor-
mance should be the main goals of research. Additionally, 
investigating new synthesis techniques and material compat-
ibility will make it possible to create bio-based hydrogels 
with improved characteristics and functions. To speed up the 
advancement of bio-based hydrogel technological advances 
from bench to bedside and ultimately improve patient out-
comes and healthcare advancements, a collaborative effort 
among researchers, medical professionals, and industry 
stakeholders is imperative.
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