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A B S T R A C T

This study investigates the thermal performance and temperature uniformity of a hybrid battery thermal man-
agement system (BTMS) that integrates phase change material (PCM), metal foam, and minichannels. Compu-
tational fluid dynamics is used to model the PCM melting process and heat transfer between all components. The
primary goal of the work is to investigate BTMS architectures which can enhance thermal uniformity and prevent
critical temperature rise in a high-voltage battery pack under fast discharging and real-world driving cycle. Four
BTMS designs are compared. The design that integrates PCM, metal foam, and counterflow minichannels is
shown to have the best performance. At low pumping power (coolant Reynolds number Re = 10), this design
reduces the peak battery temperature by 11.5 K compared to a design employing pure PCM only. This config-
uration also ensures a temperature difference of less than 5 K among individual battery cells, addressing thermal
safety considerations and extending battery lifespan. Further analysis revealed that the inclusion of metal foam
delays PCM melting, enhances both system and battery thermal uniformity, and offers a higher performance-to-
weight ratio compared to designs without metal foam. Although wavy-shaped minichannels offer minimal
temperature improvement (0.3 K) over straight minichannels, their higher cost and increased pumping power
requirements do not justify their practicality. Under both fast discharging and real driving conditions, the first
design with pure PCM provides uniform heat distribution within batteries but fails to maintain the maximum
battery temperature within the optimal range. Overall, this study highlights the effectiveness of the proposed
hybrid BTMS design in providing uniform temperature distribution and maintaining the maximum battery
temperature within the optimal range under harsh environmental conditions, fast discharging, and the Urban
Dynamometer Driving Schedule (UDDS) drive cycle.

1. Introduction

Electric vehicles (EVs) have lower operating costs, less harmful
environmental impact, and zero carbon emissions during operation
when compared to internal combustion engine vehicles [1]. A signifi-
cant obstacle to EV utilization is the cost and complexity associated with
their need for implementation with an efficient and sometimes complex
battery thermal management system (BTMS). The battery maximum

temperature and thermal non-uniformity are two critical factors that
affect the performance of lithium-ion batteries (LIBs) and the entire
battery pack [2]. Normally, the optimal operational temperature for
LIBs falls within the range of 288 to 313 K. Additionally, it is recom-
mended to maintain a maximum temperature difference of no more than
5 K within a single battery or between cells/modules [3]. When the
battery experiences thermal stress beyond safe limits due to failure to
maintain its optimum working temperature, there is a higher risk of
battery thermal runaway, which can result in significant safety issues
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