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A B S T R A C T

In many regions of the world, water pollution from potentially harmful substances like nickel (II) and cobalt (II) 
ions is a recurring issue. The quality of rivers and lakes’ environments, wastewater discharge, and drinking water 
sources are all still significantly impacted by it. Many studies are focused on developing new treatment alter-
natives since, although treatment is often necessary, it is not always possible or accessible in a particular setting. 
Nanotechnology provides significant potential for water treatment. Although it has been demonstrated that 
nanomaterials may effectively remove both different type from chemical pollutants—including organic and 
inorganic—from contaminated source, their removal efficacy may be diminished by their propensity to floccu-
late. Iron oxide loaded with mesoporous silica (FeO@mSiO2) was effectively synthesized and characterized 
through the use of FTIR, SEM, TGA, XRD, and UV–visible spectral analysis. Tests and evaluations were conducted 
to determine FeO@mSiO2 nanocomposite ability to remove nickel (II) and cobalt (II) from solution, and the ideal 
removal conditions were determined at different condition Adsorption isotherms, Freundlich and Temkin iso-
therms to the data. FeO@mSiO2 composite material displayed significant efficacy in the removal of Ni and Co. 
The best removal rates were attained at pH 7 and 180-minute contact duration.

Introduction

Nickel and cobalt ions are among the list of toxic heavy metal ions 
that pose a major threat to the aquatic environment, as they are not 
biodegradable. in sewage and wastewater. They have been classified as 
toxic pollutants and as substances of priority according to the Clean 
Water Act of several international organization for water. Consequently, 
these metals are considered to be among the most dangerous pollutants 
typically found in water [1,2]. The main sources of water contamination 
with nickel and cobalt ions include electroplating, battery 
manufacturing, smelting, mining, refining, and printing processes, metal 
finishing, and other processes contribute to the release of these toxic 
metals into the water. /Furthermore, increased levels of nickel and co-
balt in the environment have resulted in several health hazards, 
including Skin conditions, nausea, persistent asthma, coughing, low 
blood pressure, lung irritation, paralysis, diarrhea, and bone 

deformities, as well as genetic alterations in living cells [3,4]. Therefore, 
it was necessary to search for techniques to treat water contamination 
with metal ions. Different techniques include oxidation- reduction, 
membrane filtration [5], coagulation [6], chemical precipitation [7], 
solvent extraction, flocculation [8], electrochemical treatment, ion ex-
change [9], reverse osmosis [10], evaporation, precipitation [11], and 
black sand filtration assisted by UV light [12]. These technologies can be 
good option in reduce water contamination, but they are expensive, the 
high cost of this techniques makes its application less economically 
attractive in industrial scale, complex operations, require high energy, 
and lead to the generation of by-products that require additional tech-
nologies to get rid of them. Therefore, adsorption is a promising tech-
nique found to be quite suitable, cheap, and more effective for removing 
Ni(II) and Co(II) from contaminated water [13]. During adsorption, 
substances typically transfer from the different phases (liquid or gas) to 
the solid cover and interact through physical forces, ion exchange, or 
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chemical bonds [14]. The adsorbent can also be renewed by an appro-
priate desorption process, as the adsorption process is sometimes 
reversible. Additionally, the adsorption method is excellent for 
removing metal ions from contaminated solutions when their concen-
tration is low [15]. Different adsorbents, such as agricultural wastes, 
natural substances, Sugar beet crown (SBC) [16], seaweeds, crab shell, 
and waste factory tea, chelating minerals, biopolymers, and activated 
carbon [14]. activated carbon which is one of the most crucial/best 
techniques for removing heavy ions metal from waste water. Due to high 
effective surface area, activated carbon has many benefits which is 
related to its high volume of micropores and mesopores [17]. This 
technique has been employed by numerous researchers to remove 
organic and inorganic from polluted water.Activated carbon has many 
benefits such as low cost and its muiltiple sources [18,19]. Addition, 
many of studied was using mesopuoros silica and ananocomposite to 
removal heavy metals. All those metals improve effectiveness in removal 
[2,20,21].

Therefore, it was necessary to develop new adsorbents with higher 
removal efficiency. Therefore, one of the most promising technologies 
for the exclusion of Ni and Co ions from water solution is nanotech-
nology [22,23]. The nanoparticles’ unique physical and chemical 
characteristics at the nanoscale have been observed [24]. Several metal 
oxide nanoparticles have shown potential as nano adsorbents for envi-
ronmental remediation. These include alumina (Al2O3) [25], zinc oxide 
(ZnO) [26], titanium dioxide (TiO2) [27], and iron oxide nanoparticles 
(FeO@mSiO2 nanocomposite) [28,29]. Among the nanoparticles above, 
the FeO@mSiO2 nanocomposite has demonstrated considerable poten-
tial as a nano adsorbent for environmental remediation. This phenom-
enon can be attributed to the significant ratio between their surface area 
and volume and their elevated surface energies [30]. In addition, it is 
worth noting that these iron oxide nanoparticles (IONPs) possess the 
advantageous characteristics of recyclability and low cost [31]. Never-
theless, the efficacy of metal nanoparticles as sorbents may be 
compromised when used independently due to aggregation and asso-
ciate phenomena in the context of water treatment [32]. Therefore, it 
was necessary to find a way to improve the properties of this material.

In this study, we are embedding iron oxide nanoparticles (FeO@m-
SiO2 nanocomposite) with silica in stable matrices that have unique 
properties for increasing the efficiency of removal heavy metals from 
water.

The synthesis has a lower level of complexity compared to composite 
materials, which makes the synthetic technique simpler, more repeat-
able, and easier to scale-up].,Ensuring the capacity of a substance to be 
broken down by natural processes, and the prevention of using sub-
stances that are harmful or not authorized [33,34,35,36,37,38,39]. The 
toughness and durability of oxide nanoparticles, especially when 
compared to organic or polymeric nanoparticles, is noteworthy. Also, 
Iron oxide particles exhibit a far lower sensitivity to variations in size or 
shape dispersion compared to other heat mediators, especially plas-
monic nanoparticles, in terms of their photothermal performance 
[40,41,42]. Many of studied was using mesopuoros silica,anano-
composite and activated carbon to removal nickel and cobalt. All those 
metals improve effectiveness in removal [43 20]. Current studies have 
used a different absorbent materials form remove nickel and cobalt from 
wastewater [44,45,46,47].

The present study focus to synthesis FeO@mSiO2 nanocomposite, the 
generated FeO@mSiO2 nanocomposite have been tested for their ca-
pacity to strip off Ni (II) and Co (II) from aqueous solutions in direct. 
Optimal conditions (pH, adsorbent to solution ratio, and equilibration 
time) for heavy metals removal have been also determined.

Experimental

Materials

All reagents used in the preparation were of high purity: Iron oxide 

nanoparticles, tetraethyl orthosilicate,and cetyltrimethyl bromide were 
purchased from Sigma-Aldrich, UK.Ammonium chloride from ACROS, 
nickel nitrate and cobalt nitrate tetrahydrate; from BDH, UK.

Synthesis of FeO@mSiO2 nanocomposite

Nanocomposite was synthesized ensuing elsewhere an approach re-
ported. 0.10 g of Fe NPs,60 ml of C2H5OH and 1.2 ml of (NH4OH; 28 wt 
%) were mixed under ultrasonic for 1 h. 0.30 g of CTAB was added to the 
mixture, followed by dropwise addition of 0.43 ml of TEOS with stirring. 
The mixture was stirred at 25 ◦C for 6 h. The mixture was separated and 
washed with HCl and deionized water, Then it was dried at 100 ◦C for 
overnight and calcined at 500 ◦C for 3 h [48,49].

Metal adsorption studies

Stock solutions containing nickel (II) and cobalt (II) ions at a con-
centration of 1000 mg/L were generated by dissolving appropriate 
quantities of Ni (NO3)2⋅6H2O and Co(NO3)⋅6H2O. The salts were dis-
solved in deionized water and diluted to provide standard solutions with 
concentrations ranging from 10 to 100 mg/L of Ni(II) and Co(II). The pH 
of the solution was changed either hydrochloric acid (1M HCl) and (1M 
NaOH) solutions. All chemicals and reagents utilized in the experiment 
were procured in analytical purity, employed without any purification 
procedures, and obtained from Sigma-Aldrich.

Characterization of FeO@mSiO2 nanocomposite

The FeO@mSiO2 nanocomposite was studied utilizing UV–Vis 
spectrophotometry (UV-Cary 60, Agilent) and Fourier-transform 
infrared spectroscopy (Bruker). Moreover, Powder X-ray diffraction 
(XRD) patterns were obtained using a Bruker D8 Advance apparatus 
diffractometer,. Thermogravimetric analysis (TGA) was examined uti-
lizing STA 1500 apparatus. The morphology materials was examined 
utilizing field emission scanning electron microscopy (S-4500, 
HITACHI).

Batch adsorption studies

The capacity of FeO@mSiO2 nanocomposite to strip off Ni and Co 
ions from its solutions was considered utilizing adsorption batch tests in 
a shaking shaker. The ideal adsorption conditions should be determined, 
these experiments looked at the prepared FeO@mSiO2 nanocomposite 
susceptibility to removing nickel and cobalt ions from aqueous solutions 
under several conditions, such as pH ranging from 3 to 9, contact time 
ranging from 15 to 180 min, initial concentrations of nickel and cobalt 
(10 to 100 mg/L), and adsorbent dose on nickel and cobalt adsorption 
efficiency (10 to 80 mg in 25 ml). In each experiment, 100 mg/L of 
FeO@mSiO2 nanocomposite was combined with 25 ml of solutions 
containing various amounts of cobalt and nickel ions. In each experi-
ment, 100 mg of FeO@mSiO2 nanocomposite was combined with 25 ml 
of solutions containing various amounts of cobalt and nickel ions. The 
samples were centrifuged at 5,000 rpm for 10 min to remove any 
remaining suspended material after being shaken in a water bath at 100 
rpm to make sure the adsorbent and adsorbate made great contact with 
one another. A final atomic absorption device was used to calculate the 
sample’s nickel and cobalt concentrations. At room temperature all ex-
periments carried out. The percentages of the removal efficiency (%R) 
and the adsorption capacity (qe) for nickel and cobalt ions, respectively, 
were calculated using Eqs. (1) and (2). 

%R =
(Co − Ce)

Co
× 100 (1) 

qe =
(Co − Ce) × V

m
(2) 
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where, 

Co: represent the initial metals ion concentrations (mg/L).
Ce: the concentration of metals ion at equilibrium (mg/L).
M: the mass of synthesis adsorbent (g), and V: volume of solution (l).

Result and discussion

Characterization of FeO@mSiO2 nanocomposite

Uv–visible spectroscopy
Fig. 1 displays the UV–vis spectra of FeO@mSiO2 nanocomposite. 

We conducted UV–Vis spectroscopy to observe the substance has a peak 
at 300 nm, which is distinguish for iron oxide.

Fourier transforms infrared spectroscopy
FTIR spectra of studied materials FeO@mSiO2 nanocomposite 

@mSiO2 are presented in Fig. 2.FeO@mSiO2 nanocomposite − mSiO2, a 
broad band at ~3419 cm− 1 due to the O-H and N–H bond stretching 
vibrations. The band at 1634–955 cm− 1 may be indicative of C––O and 
C––C stretching. While the band at 755 cm− 1 may be indicative of car-
bonate species bound to metal oxide surface.

X-ray diffraction
Crystalline properties of FeO@mSiO2 nanocomposite was evaluated 

from the XRD patterns as Fig. 3. Characteristic peaks were observed at 
24◦, 30◦, 33◦, 36◦, 39◦, 41◦, 43◦, 49◦, 54◦, 57◦, 63◦ and 65◦ for 
FeO@mSiO2 nanocomposite nanoparticles, corresponding to (111) 
crystal plane, (220), (311), (222), (400), (422), (511), (440), (620), 
(533) and (622) can be indexed into cubic structures. The XRD pattern of 
FeO@mSiO2 nanocomposite shows weak and broad peaks between 24◦

and 33◦, which is attributed to the amorphous structure of the SiO2 shell. 
In addition, the strong and sharp peaks at 33◦ and 36◦ indicate the 
crystalline nature.

Fig. 1. Uv–Vis for FeO@mSiO2 nanocomposite.

Fig. 2. FTIR spectra of for FeO@mSiO2 nanocomposite.
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Scanning electron microscopy
FeO@mSiO2 nanocomposite surface morphology was studied using 

SEM Fig. 4. According to the XRD data for this material, the FeO@mSiO2 

nanocomposite showed a morphology that approximated highly orga-
nized crystal flakes or shards. For this sample, an average iron to silica 
atomic ratio of 4 is determined by the SEM-EDX analysis Fig. 5.

Thermal analysis
The TG-DTA properties for FeO@mSiO2 nanocomposite as show 

Fig. 6. The first mass loss from material below 100–160 ◦C is an indi-
cation the of water removal that is present as physisorbed H2O on 
FeO@mSiO2 nanocomposite. The second weight loss from 300 to 400 ◦C 
is attributed to the formation of intermediate hematite (α-Fe2O3) phase. 
Between 400 and 800C, the sample’s weight is unaffected, and no 
weight loss is seen.

Adsorption studied

Effect of pH
The acid and basic level of the solution is a significant factor in 

eliminating Co (II) and Ni (II) ions from an aqueous solution using 
FeO@mSiO2 nanocomposite. The pH of the solution influences both the 
dissociation of functional groups and the chemical properties of the 
solution, significantly affecting its adsorption. Capabilities [49–51]. In 
this part of experiment, the effect of changing the pH scale of the solu-
tion on the removal of Ni (II) and Co (II), were investigated by adjusting 
the pH of the solution from 3 to 9 with initial concentration of 100 mg/L. 
The contact time was set at 3 h, and the quantity of adsorbent used was 
0.1g. According to the depiction in Fig. 7, the adsorption of ions on the 

Fig. 3. XRD spectra of FeO@mSiO2 nanocomposite @mSiO2.

Fig. 4. SEM images for FeO@mSiO2 (500 nm).

Fig. 5. EDS of FeO@mSiO2 nanocomposite.
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Fig. 6. TGA data for FeO@mSiO2 nanocomposite.

Fig. 7. Effect of pH on % Ni(II) and Co(II) removal, with an initial solution concentration of 100 mg/L, 25 mg of adsorbent, a solution volume of 25 mL, and an 
equilibrium time of 3 h.

Fig. 8. Effect of contact time on % Ni(II) and Co(II) removal at pH 6.5, initial concentration 100 mg/L, 25 mg adsorbent, and 25 mL total volume.
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FeO@mSiO2 nanocomposite at room temperature was shown to be 
considerably adopted by the pH of the solution.

The results can be divided into two pH regions. The first pH region is 
from 3 to 5, in which the removal efficiency of nickel and cobalt 
significantly rises when the pH level increases. As an illustration, the 
removal efficiency of Ni (II) exhibited a notable enhancement from 5% 
to 85%, but the removal efficiency of cobalt saw an increase from 10% to 
80% as the pH level was elevated from 3 to 5. The relationship can be 
described in terms of the charge of the adsorptive surface and the con-
centration of hydrogen ions in the solution. To clarify, when the pH level 
falls below three (pH < 3), the con of (H+) in the surrounding medium is 
elevated. Hence, the adsorbent’s surface exhibits a non negative charge. 
Competition between metal ions and H+ ions and repulsion between 
metal ions and positively charged adsorbent particles were observed [4]. 

The binding sites on the protons on the surface of the adsorbed material 
are no longer available, thus affecting its ability to bind to cationic 
metals [51]. In the second pH region, from 5 to 9, optimum removal was 
achieved. For nickel, it was approximately 93% at pH 8.6, after which it 
began to decline, while the optimal removal of cobalt was approxi-
mately 97% at pH 6, after which the removal efficiency remained almost 
constant. Perhaps this can be explained by with the pH increase of the 
solution, more negatively charged on the surface of FeO@mSiO2 nano-
composite can be available for the ion-exchange of Ni2+. This enhanced 
negative charge facilitates the ion exchange process of Ni2+, leading to 
an augmentation of the adsorption capacity for Ni2+. Upon the increase 
in pH, the adsorption capacity tended to stabilize, ultimately reaching a 
plateau and ceasing any further increase. However, the observed 
decrease in adsorption capacity can be attributed to the rise in OH– ions 

Fig. 9. Effect of initial concentration on % Ni(II) and Co(II) removal by the adsorbents with conditions set at pH 7, temperature 25 ◦C and sorbent dose 25 mg: 25 
ml solution.

Fig. 10. Adsorption process [61].

Fig. 11. Effect of adsorbent dose on % Ni(II) and Co(II) removal with conditions set at pH 6.5, temperature 25 ◦C, total volume 25 ml, and initial concentration 100 
mg/L.
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within the solution’s environment. This increase leads to metal hy-
droxide precipitates and soluble hydroxylated complexes of the metal 
ions. These species compete with the active sites on the FeO@mSiO2 
nanocomposite, resulting in no significant increase in adsorption ca-
pacity [52,53]. It is important to observe that as the pH of the stock 
solution was elevated beyond pH 9, there was a drop in the percentage 
removal of nickel.

Therefore, the adsorption mechanism changes due to the high con-
centration of negatively charged species on the surface. This results in 
attraction electrostatic between negatively charged species and cationic 
metal ions, resulting in increased binding of cationic metal ions [54]. 
Previous studies have demonstrated similar principles for the adsorption 
of various metal ions by biosorbents [49,55].

Effect of contact time
Another parameter that effectively affects the deletion of Ni (II) and 

Co (II) from its solutions is the contact time. Therefore, it is important to 
optimize the contact time in order to achieve maximum absorption ef-
ficiency. The connection time at which the metal adsorption rate reaches 
its maximum efficiency is imperative. The pH values of 6.5 that were 
previously tuned for nickel and cobalt ions [2]. The highest removal 
efficiency of nickel and cobalt was recorded after 3 h approximately was 
95%, for nickel and 98% for cobalt as Fig. 8.

This can be explained by the increase in contact time leading to an 
increase in the chances of collision between the particles of the adsor-
bent surface and the heavy ions of the contaminant to be removed [4]. 
The result obtained in this study is excellent agreement with another 
study [56–58].

Effect of concentration. Single of the most important factors in the 
adsorption of Ni (II) and Co (II) by FeO@mSiO2 nanocomposite as 
adsorbent material is the ratio of its quantity to concentration of the 
heavy metals. Batch-wise adsorption experiments were conducted on 
the treated FeO@mSiO2 nanocomposite to determine the most effective 
adsorbent. The objective was to explore the adsorption of Ni (II) and Co 
(II) ions under specific conditions performed at 25◦C, pH 6.5, the 
adsorbent 10 m., with range of concentration of Ni (II) and Co (II) ions 
from 10 mg/L to 100 mg/L. The percentage of nickel and cobalt 
adsorption on FeO@mSiO2 nanocomposite − mSiO2 concerning the 
adsorbent is shown in Fig. 9.

Results of this investigation indicate that adsorption effectiveness is 
directly related to the surface area of the adsorbent (the amount of 
adsorbent in solution). This phenomenon is explained by the increase in 
surface area, which provides more active sites for the binding of metal 
ions. As a result, this results in an increased removal rate of heavy metal 
ions from polluted water [49]. The results of this study align with those 
found in previous literature [58,59].

The mechanism by which biochar removes heavy metal pollutants 
involves the physical adsorption(SSA) process, specifically through the 
interaction of carboxyl (R-COOH) and hydroxyl (O–H) groups Fig. 10. 
This process effectively removes pollutants such as Cu(II), Ni(II), Pb(II), 
Zn(II), Cd(II), and Hg(II). Additionally, Cr(VI) is reduced to Cr(III) as the 
oxygen-containing functional group adsorbs Cr(III) and Al(III) at lower 
pH levels [60]. Our finding of this study is consistent with other studies 
[61].

Dose of adsorbed. The ions of metal dosage absorbed from the aqueous 
medium depends on the range of concentration of ions in the polluted 
solution. Experimental studies are necessary to determine the most 

Table 1 
Parameters and equations of the Freundlich,Langmuir and Temkin linear 
isotherm model.

Freundlich Line equation R2 1/n KF

Ni_FeO@mSiO2 y = 0.86015x +
0.8987

R2 =

0.9964
0.8615 7.919

Co_FeO@mSiO2 y = 0.865x + 0.9539 R2 = 0.999 0.7493 7.328
Langmuir Line equation R2 qm, (mg/ 

g)
KL (L/mg)

Ni_FeO@mSiO2 y = 0.1317x +
0.0036

R2 = 0.999 277.8 0.00047

Co_FeO@mSiO2 y = 0.01081x +
0.0049

R2 =

0.9987
204 0.000662

Temkin Line equation R2 BT (J/ 
mol)

KL (L/mg)

Ni_FeO@mSiO2 y = 24.235x +
0.3504

R2 =

0.9526
24.235 1.01

Co_FeO@mSiO2 y = 28.616x +
0.7475

R2 =

0.9255
28.616 1.026

Table 2 
The pseudo-second-order kinetic for Ni(II) and Co(II) ions.

FeO@mSiO2 Model Constant Value

Ni Pseudo-2nd-order Kinetic 
parameters

qe(exp)(mg/g) (mg/ 
g)

2.786

K2 (g mg− 1 

min− 1)
136.99

R2 0.964
Co Pseudo-2nd − order Kinetic 

parameters
qe(exp)(mg/g) (mg/ 
g)

4.87

K2 (g mg− 1 

min− 1)
0.256

R2 0.9989

Fig. 12. The pseudo-second-order kinetic for Ni (II) and Co (II) ions.
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favorable concentration of metal ion solutions while keeping other pa-
rameters constant., temperature 25◦C, pH 8–9, initial concentrations of 
Ni and Co ions (100) mg/L, and different amount of adsorbent 
FeO@mSiO2 nanocomposite (10, 30, 50, and 100) mg, Fig. 11 shows the 
results obtained in this experiment. The results show that when the dose 
is 10 mg/L, the removal efficiency of nickel and cobalt is about 99% 
[62,63].

At a concentration of 100 mg/L, the removal efficiency was 95% for 
nickel and 97% for cobalt. The results indicate that the adsorption ef-
ficiency reduced with growing concentration of polluting ions. This can 
be explained by the decrease in the number of active sites available on 
the surface of the adsorbent material to bind to heavy metal ions in the 
polluted solution [19,63].

Sorption isotherms

In order to explain the covering process on the surface of a solid 
adsorbent, which is characterized by homogeneity and depends on the 
action of the material being adsorbed at constant temperature, Langmuir 
presented an isothermal model [64]. It is assumed that the active site 
responsible for adsorption can form covalent, ionic, or coordination 
bonds, with minimal interaction between the adsorbed molecules. In 
order to obtain the maximum adsorption capacity, the particles being 
adsorbed organize themselves into a monolayer on the adsorbent’s 
surface, which is where adsorption particularly occurs [2,65,66]. Line-
arized Freundlich, Langmuir and Temkin adsorption isotherms for Ni(II) 
and Co(II) are shown in the Table 1.

The distribution coefficient and differences from linearity are indi-
cated by the Freundlich model isotherm parameters KF and 1/n, 
respectively. The latter can also be viewed as a measure of adsorption 
intensity. The affinity and heterogeneity of the adsorbent sites increase 
with decreasing 1/n value. The qm values for Ni (II) and Co (II) 
adsorption on FeO@mSiO2 are 277.8 mg/g, 204 mg/g, and 80.6 mg/g, 
respectively. While 1\n in Freundlich model in (0.8615,0.7493)in 
orderly. 0 < nf < 1, where nf > 1 indicates unfavorable adsorption and 
nf = 1 indicates linear adsorption. When nf = 0, the adsorption process is 
irreversible [67]. Langmuir and Freundlich models fitted best (R2 >

0.996) and indicated that the major contribution to Ni (II) and Co (II) 
removal process is via adsorption rather than a catalytic reaction. The 
results of the Temkin model are also same with other models, with Ni(II) 
being more affected by adsorption affinity than Co(II), as shown in 
Table 1.

Adsorption kinetics

Adsorption kinetics examines the relationship between reactants and 
contact duration. Kinetic models are essential for analyzing the 
adsorption process involved in the removal of hazardous heavy metals 
[68,68]. The two predominant kinetic theories are pseudo-first order 
and pseudo-second order kinetics [69,70].

The first and second pseudo order models
Pseudo-first-order, pseudo-second-order, and intraparticle diffusion 

kinetic models were applied [70]. The linear form of the pseudo-first- 
order kinetic model is expressed as Equation (1.1) 

ln(qe − qt) = lnqe − k1.t (1.1) 

where qt is the amount of adsorbed ion per gram of adsorbent at time t, 
and k1 is the constant adsorption rate of the pseudo-first-order kinetic 
model.

The linear form of the pseudo-second-order kinetic model is given by 
Equation (1–2): 

t
qt

=
1

k2 × q2
e
+

t
qe 

where K2 is the constant of the pseudo-second-order kinetic model
By studying the matching between the calculated and it was 

confirmed that (qe (cal.) = 2.786 and 4.87 mg/g, as shown as Table 2.
As well, Fig. 12 obtained from the pseudo-second-order kinetic 

model were higher than that obtained from the pseudo-first-order ki-
netic model Ni(II) and Co(II) ions indicating that the pseudo-second- 
order model controlled adsorption process.

Conclusions

Nano-iron loaded mesoporous silica (FeO@mSiO2) nanocomposite 
was synthesised and study its characterization using FTIR, XRD, SEM, 
and TG analysis to Interpretation of the structure of matter of the syn-
thesised material.FeO@mSiO2 was proven to be capable of a good 
removal efficiency for Ni (II) and Co (II) at various condition. Under 
several usual pH conditions, the removal efficacy always remainder 
above 80%. The optimal sorption or removal occurred after a contact 
time ranging from 90 to120 minutes. The experimental data of the 
adsorption process under isothermal circumstances were analyzed. At 
varying temperatures, (FeO@mSiO2) demonstrated a removal effec-
tiveness of almost 99.999% and 92.55% for Ni (II) and Co (II), respec-
tively. Nanocomposite produced which can be synthesized using easily 
accessible equipment and at a cheap expense, offers a favourable choice 
for water treatment especially the heavy metals. Future work should 
thus include (a) optimization of the FeO-mSiO2 synthesis; (b) studies on 
the regeneration and re-usability of the composite and that of FeO- 
mSiO2; and (c) Study of the thermodynamic and mechanism proper-
ties of adsorption process.
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