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Food security challenges in Southeast Asia, across all income brackets, 
have been growing, according to the Food and Agriculture Organization 
(FAO) of the United Nations. This article introduced innovative Artificial 
Intelligence-based (AI-based) predictive algorithms for short-term rice 
production, utilizing the Cross Industry Standard Process for Data 
Mining (CRISP-DM) data science framework. The predictive algorithms 
integrated features addressing three food security dimensions: 
availability, accessibility, and stability, and identified key determinants 
in three clusters: atmospheric, socioeconomic, and farming practices. By 
employing the proposed innovative modified stacked Multiple Linear 
Regression-Support Vector Regression-based (MLR-SVR-based) 
algorithms, and ranking them utilizing the modified Taguchi-based 
VIseKriterijumska Optimizacija I Kompromisno Resenje (Taguchi-based 
VIKOR) multi-criteria decision-making algorithm, the analysis 
demonstrated high predictive accuracy even with limited data. The 
proposed AI-based predictive algorithm was utilized to forecast 5-year 
future rice production for Southeast Asia nations, yielding generally 
accurate results except for Cambodia (KHM). This research has 
significant implications for agriculture, food production, data analytics, 
and policymaking, potentially enhancing efficiency and innovation in 
agricultural operations. 
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1. Introduction 

Food security, as defined by the United Nations Committee on World Food Security, entails ensuring that all 
individuals have consistent physical, social, and economic access to sufficient, safe, and nutritious food that 
meets their preferences and dietary needs for an active and healthy life. This concept encompasses four key 
dimensions: availability, accessibility, utilization, and stability [1]. Availability ensures the consistent presence 
and quality of food from various sources. Accessibility involves having the income or resources to obtain 
appropriate food, while utilization focuses on proper food utilization and storage, considering nutritional and 
health factors. Stability ensures that food remains consistently available without disruption from emergencies or 
shortages. 



Multidisciplinary Applied Research and Innovation Vol. 6 No. 2 Special Issue (2025) p. 1-17 2 

 

 

In Asia and parts of the Pacific, agriculture, especially rice production, is crucial, providing approximately 
90% of staple foods [2]. However, challenges such as climate change, exponential population growth, global food 
inflation, technological advancements, and national and international social-environmental stressors have 
increased food security uncertainty, impacting Sustainable Development Goals (SDGs) such as No Poverty 
(SDG1), Zero Hunger (SDG2), and Good Health and Well-Being (SDG3). Rice cultivation is also linked to Decent 
Work and Economic Growth (SDG8). However, the Food and Agriculture Organization (FAO) of the United 
Nations [3] reports a rise in the 3-year average prevalence of severe and moderate food insecurity (in total 
population) in Southeast Asia, particularly in low-middle-income and upper-middle-income nations. 

To foster economic growth and sustainability in Southeast Asia, various studies have investigated predictive 
algorithms in fields such as econometrics, mathematical multivariable regression, traditional statistical 
multivariable and multivariate regression, and Artificial Intelligence-based (AI-based) predictive algorithms. 
These studies primarily focus on the availability and accessibility dimensions of food security. For instance, Tan 
et al. [4] utilized a fixed-effect panel regression econometrics algorithm to investigate the association between 
rice production and atmospheric clustered determinants in Malaysia (MYS). Their results showed a strong fit for 
the main season. In contrast, Chuan et al. [5] utilized a random-effect panel regression econometrics algorithm 
to study the association between agricultural production of C3 plants and various atmospheric and non-
atmospheric clustered determinants in MYS, finding a limited fit due to a low coefficient of determination.  

The utilization of fixed-effect and random-effect panel regression econometrics algorithms is widespread in 
recent Southeast Asia studies on rice production, considering atmospheric and socioeconomics clustered 
determinants. These studies cover nations such as Cambodia (KHM), Laos (LAO), Myanmar (MMR), Philippines 
(PHL), Vietnam (VNM), Indonesia (IDN), MYS, Thailand (THA), and Brunei (BRN) [6], THA [7], IDN [8], and PHL 
[9]. However, this paper does not explore their applicability due to the reliance on cross-sectional data and 
several statistical assumptions. Additionally, these studies do not simultaneously account for clustered 
determinants, including atmospheric, socioeconomic, and farming practices in econometrics algorithm 
development.  

In previous studies on Southeast Asia, researchers have utilized various mathematical and statistical 
predictive algorithms to model and forecast rice and paddy production. These predictive algorithms include the 
general circular model-based (GCM-based) [10], Multiple Linear Regression (MLR) [11]-[15], Multivariate 
Normal Distribution (MND) [14], and Multivariate Copula-Based (MCB) algorithms [14]. Koide et al. [10] 
evaluated the GCM-based mathematical multivariable algorithm for predicting rice production in the PHL, 
considering climatology-related determinants at various levels. While GCM-based algorithms effectively capture 
trends, their deterministic nature presents challenges in forecasting due to inherent uncertainties. To overcome 
these challenges, researchers have turned to probabilistic predictive algorithms, which offer more reliable 
predictions. 

Bashir and Yuliana [11] proposed utilizing a probabilistic multivariable MLR algorithm to regress the 
linearized associations of socioeconomic and farming practices clustered determinants toward rice production 
and consumption in IDN. However, this study’s assessment of multicollinearity assumptions utilizing a 
correlation matrix might not fully capture the severity of multicollinearity, potentially affecting the reliability of 
the predictive algorithms. Similarly, Win et al. [12] investigated the linear association between socioeconomic 
and farming practices clustered determinants and the hybrid rice production among farmers in MMR, utilizing a 
probabilistic multivariable MLR algorithm. This study raised concerns as it did not provide diagnostic checking 
for the MLR algorithm. 

Idalisa et al. [13] also utilized a probabilistic multivariable MLR algorithm to regress the linear association 
between socioeconomic and farming practices clustered determinants, and rice production in MYS. They aimed 
to improve the parameter estimation utilizing the Conjugate Gradient (CG) method compared to the classical 
Ordinary Least Squares (OLS) method. However, the study’s conclusion might be suboptimal due to 
contradictory performance measurements between CG and OLS methods, and the lack of diagnostic checking. 
Recently, Aprizkiyandari and Palupi [15] conducted a comparative analysis of econometrics and traditional 
statistical multivariable regression predictive algorithms. They compared the fixed-effect panel regression and 
probabilistic multivariable MLR algorithms, but this study also did not include diagnostic checking, raising 
questions about the reliability and validity of the developed algorithm. 

In addition to probabilistic multivariable MLR algorithms, probabilistic multivariate predictive algorithms 
such as the MCB algorithm have been explored in literature for modeling and forecasting paddy production in 
Southeast Asia. Roslan et al. [14] applied the MCB algorithm to five Southeast Asia nations: MMR, VNM, IDN, 
MYS, and THA. They evaluated the predictive algorithm’s performance utilizing two families of multivariate 
copulas: elliptical copula (normal and t), and Archimedean copula (Joe, Clayton, and Gumbel) families, and 
compared it with MLR and MND algorithms. Their analysis demonstrated that the MCB algorithm generally 
outperformed both MLR and MND algorithms. However, a universally effective MCB algorithm for all five nations 
was not identified. Despite its potential, the MCB algorithm was not pursued further in this study due to the 
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preliminary results showed that the MLR algorithm did not violate the multicollinearity assumption, indicating a 
low correlation among determinants. 

AI-based predictive algorithms have gained attention for their potential to enhance the accuracy and 
robustness of rice production forecasts in Southeast Asia. Researchers have explored these predictive 
algorithms through feature engineering, algorithm refinement, and parameter optimization since the teen 21st 
century. Saithanu et al. [16] introduced an innovative AI-driven approach to predict rice production in THA 
utilizing atmospheric and rice-type dummy determinants within a machine learning framework, specifically 
applying the MLR algorithm. A key limitation of their study was the sole reliance on performance metrics such as 
Root Mean Square Error (RMSE), and adherence to OLS assumptions. 

David [17] compared various AI-based predictive algorithms, including Artificial Neural Network (ANN), 
MLR, and Random Forest (RF) algorithms, for predicting rice production in the PHL. The RF algorithm 
outperformed both ANN and MLR algorithms, though the study was limited by a lack of feature selection, 
impacting parsimony, reliability, and cost, as well as the lack of diagnostic checking for the MLR algorithm. 
Consequently, the RF algorithm was not considered further in this paper due to its limited practical 
interpretability, particularly concerning statistically significant determinants. 

Chuan et al. [18] compared the effectiveness of the MLR and Multiple Nonlinear Regression (MNLR) 
algorithms, along with various hybrid wrapper-filter feature selection methods, for modeling and forecasting 
rice production in MYS. They incorporated atmospheric, socioeconomic, and farming practices clustered 
determinants, splitting the dataset into training and test sets utilizing the Pareto principle. Their analysis found 
the MLR algorithm to be more effective than the MNLR algorithm. Notably, AI Neural Network-based (NN-based) 
algorithms such as Gated Recurrent Unit-based (GRU-based) and Long Short-Term Memory-based (LSTM-
based) architectures, were not considered in this study. Previous research [19]-[23] had primarily focused on 
prediction evaluation rather than forecasting, and faced limitations such as sample size constraints and 
computational complexities. These complexities include determining the optimal number of epochs, hidden 
layers, and neurons for GRU-based and LSTM-based architectures, which impacted their practical applicability 
for forecasting future paddy and rice production. 

Given the effectiveness demonstrated by Chuan et al. [18], the principal objective of this study is to propose 
an innovative modified stacked ensemble multivariable AI-based predictive algorithm for predicting rice 
production across six low-middle-income and three upper-middle-income nations in Southeast Asia. This AI-
based predictive algorithm integrates classical statistical regression and semi-parametric machine learning 
regression algorithms, specifically the MLR and Support Vector Regression-based (MLR-SVR-based) algorithms, 
utilizing the Cross Industry Standard Process for Data Mining (CRISP-DM) data science framework. The low-
middle-income nations considered are KHM, LAO, MMR, PHL, Timor-Leste (TLS), and VNM. The upper-middle-
income nations included IDN, MYS, and THA.  

This study makes significant contributions to both theoretical and practical domains. Theoretically, the 
proposed modified stacked ensemble AI-based predictive algorithm advances existing literature by enhancing 
predictive accuracy and interpretability. It effectively addresses three dimensions of food security: availability, 
accessibility, and stability, surpassing previous approaches. Practically, the predictive insights from this study 
support better health and well-being by ensuring access to sufficient and nutritious food. They also aid increase 
small farmers’ income through improved rice production and promote agriculture entrepreneurs via sustainable 
practices. The research outcome facilitates informed decision-making and effective policy development, 
contributing to economic growth and sustainability in Southeast Asia. 

2. Research Methodology 

The CRISP-DM data science framework, well-regarded in both academia and industry, has evolved from its 
initial focus on optimizing business value to also supporting academic research with diverse applications, 
including commercialization pathways. This article explores its academic application within agriculture 
economics and engineering, building on its successful utilization in various fields such as computer science [24], 
energy economics [25], education economics [26]-[27], finance [28], and healthcare [29]. The CRISP-DM data 
science framework consists of six key phases: business understanding, data understanding, data preparation, 
modeling, evaluation, and deployment. Each phase’s statistical methodologies are tailored to the business and 
data mining objectives, the nature of the data, and the analysis results. The following sections detailed research 
methodologies specific to each phase within the context of this study.      

2.1 Business Understanding 

The business understanding phase aims to define both the business and data mining objectives, including 
research requirements, costs, risks, and management strategies. As outlined in Section 1, the business objective 
of this article is to provide predictive insights that optimize health-related products or services, enhance market 
competitiveness, improve consumer well-being, increase income opportunities for small farmers, support 
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agricultural entrepreneurship, facilitate informed policy development, and boost agricultural productivity for 
economic growth and sustainability. Correspondingly, the data mining objective is to develop an innovative 
modified stacked ensemble multivariable AI-based predictive algorithm for predicting rice production across six 
low-middle-income and three upper-middle-income nations in Southeast Asia. To manage costs and risks, this 
study utilizes an open-source dataset and R statistical software, with minimal finance resources. To avoid 
suboptimal decisions, the modified Taguchi-based multi-criteria decision-making algorithm is utilized to rank 
the proposed and benchmark predictive algorithms due to conflicting Goodness-of-Fits (GoFs) measures. Figure 
1 illustrates the management strategies based on the CRISP-DM data science framework to effectively achieve 
these objectives. 

 

Fig. 1 Unveiling management insights: CRISP-DM data science framework in focus 

2.2 Data Understanding 

Understanding the data is foundational to comprehending the business context. This section provided insights 
into data collection, correlogram, correlation analysis, and exploratory data analysis (EDA). The dataset was 
sourced from reputable databases such as the Climate Change Knowledge Portal (CCKP) [30]-[31] and Our 
World in Data (OWID) [32]-[33], as documented in publications by leading publishers such as Elsevier. The 
dataset is presented in a Comma-Separated Value (CSV) file format spanning from 1961 to 2019. It encompassed 
14 continuous determinants related to rice production as the endogenous variable ( 1θ ). These 14 determinants 

are classified into three principal categories: atmospheric ( 2 :θ annual mean maximum temperature; 

3 :θ average annual precipitation; 4 :θ CO2 emission (per capita)), socioeconomic ( 5 :θ crude oil price (US$ per 

m3); 6 :θ domestic supply (tones); 7 :θ food supply (kcal per capita per day); 8 :θ import (tones); 9 :θ inflation 

consumer prices (annual %); 10 :θ labor index; 11 :θ population; 12 :θ urbanization rate (%)), and farming 

practices ( 13 :θ agriculture land index; 14 :θ land use (hectare); 15 :θ machinery per agriculture land). This study 

investigated the associations among these variables utilizing the correlogram and Pearson correlation 
coefficient, which revealed both direction and strength. This study highlighted that the high correlation among 
the determinants is not excluded from the data preparation and modeling phases. This is due to merely utilizing 
the correlation analysis in investigating the multicollinearity is insufficient. Additionally, hidden characteristics 
are explored through descriptive statistics, focusing on the first four L-moments (L-Mean ( 1 ), L-Coefficient of 

Variation ( 2 ), L-Skewness ( 3 ), and L-Kurtosis ( 4 ). L-moments are preferred over classical statistical 

moments due to their robustness against outliers and suitability for small sample sizes [25]. Mathematically, the 
first four sample L-moments [34] can be expressed as equations (1)-(4). 
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2.3 Data Preparation 

Data preparation, also known as data munging, is crucial for crafting high-quality datasets for modeling. This 
process included outlier detection and correction, variable transformation, data integration, formatting, 
splitting, and feature engineering. In this study, mild and extreme outliers are identified utilizing the 1.5 
interquartile range (IQR) and the 3 IQR rules, respectively. Mathematically, the lower inner fence (LIF) and 
upper inner fence (UIF) for the 1.5 IQR rule, and lower outer fence (LOF) and the upper outer fence (UOF) are 
denoted in equations (5)-(8), respectively. 

 1 3 1LIF 1.5θ θ θ θi i i i
Q Q Q    (5) 

 3 3 1UIF 1.5θ θ θ θi i i i
Q Q Q    (6) 

 1 3 1LOF 3θ θ θ θi i i i
Q Q Q    (7) 

 3 3 1UOF 3θ θ θ θi i i i
Q Q Q    (8) 

where 1θi
Q  and 3θi

Q  represent the first and third quartiles corresponding to each observation falling below LIF 

and exceeding UIF, or falling below LOF and exceeding UOF, are identified as mild and extreme outliers, 
respectively. However, in this study, extreme outlier correction is not performed due to the proposed modified 
stacked ensemble AI-based predictive algorithm’s robustness to the outliers. The primary goal of outlier 
detection is to evaluate the appropriateness of the numerical EDA measures employed. In contrast, variable 
transformation is not imposed in this study. Data integration and formatting have been employed to integrate all 
θi  into a cohesive dataset and save it in CSV format. These steps are essential for data splitting, feature 

engineering, modeling, and evaluation.  
 Specifically, this study explored the effectiveness of different training-to-test ratios (60:40, 70:30, 80:20, 
and 90:10) in splitting the integrated dataset to identify the optimal sample size for training the proposed AI-
based predictive algorithm. Additionally, this study employed the hybrid stepwise automatic wrapper and 
Student’s t-test feature selection (SAWFS) method with the MLR algorithm, utilizing the Akaike Information 
Criterion (AIC) for evaluation metrics. Since not all selected ; 1θ  i i   utilizing the SAWFS method are statistically 

significant, further steps are taken to remove the insignificant θi  corresponding to the MLR algorithm in a 

parsimony feature set. This feature selection method is validated in a previous study related to Malaysia [18], 
aiming to improve the algorithm’s predictive power and interpretability. In summary, these approaches in data 
preparation offered a robust methodology for algorithm development, ensuring appropriate training data size, 
relevant feature selection, and reliable evaluation. 

2.4 Modeling 

The primary data mining objective of this study is to propose a modified stacked ensemble AI-based predictive 
algorithm. The methodology involved a modeling phase where machine learning algorithms are trained on a 
split training dataset, and their predictive performance is evaluated utilizing a split test dataset. For this study, 
the base algorithm selected is the MLR algorithm [18], which plays a crucial role in feature engineering 
associated with the SAWFS method. Meta-algorithms such as  -SVR and  -SVR [25] algorithms are employed, 

with the principal differences between them lying in their insensitive loss function. The proposed modified 
stacked ensemble AI-based predictive algorithms include two variants: the modified stacked ensemble MLR-  -

SVR and the modified stacked ensemble MLR- -SVR. These variants depart from the conventional approach of 

training numerous machine learning algorithms and integrating their values utilizing a meta-algorithm. The 
conventional approach significantly increases algorithm complexity and restricts the interpretability of 
determinants in practical applications, posing challenges in evaluating the statistical significance of these 
determinants. These limitations contradicted the business objective of this study. 
 Specifically, the MLR algorithm is utilized for feature engineering and initial prediction of a 5-year future 

1,θ  with the resulting statistically significant feature set utilized to train multivariable  -SVR and  -SVR 

algorithms with a linear kernel function. The selection of the linear kernel function is informed by preliminary 



Multidisciplinary Applied Research and Innovation Vol. 6 No. 2 Special Issue (2025) p. 1-17 6 

 

 

analysis indicating the linear association between 1θ  against ; 2,3, ,15.θi i   Predictions from the MLR 

algorithm are updated utilizing the superior modified stacked ensemble AI-based predictive algorithm identified 
through the modified Taguchi-based VIseKriterijumska Optimizacija I Kompromisno Resenje (Taguchi-based 
VIKOR) multi-criteria decision-making algorithm, enhancing the reliability and validity of predictions. The 
principal advantage of the proposed modified stacked ensemble AI-based predictive algorithm lies in its 
independence from pre-defined OLS assumptions, low computational cost, compatibility with mid-end spec 
computers, and robustness to the outliers. Despite these advantages, further investigation of pre-defined OLS 
assumptions is warranted to enhance prediction reliability and validity. 

2.5 Evaluation 

This study employed both internal and hold-out cross-validation methods to evaluate prediction performance, 
utilizing the split test set for a comprehensive evaluation. Diverging from conventional machine learning 
methods, which frequently relied solely on graphical representation, known for their subjectivity and lack of 
robustness, this study adopted a more rigorous approach for evaluation. To facilitate optimal decision-making in 
selecting the superior modified stacked ensemble AI-based predictive algorithm, a modified Taguchi-based 
VIKOR multi-criteria decision-making algorithm is employed. The evaluation criteria included RMSE, Mean 
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and the average absolute difference of the GoF 
measures between the training and test sets (AD). These criteria are mathematically expressed as equations (9)-
(12). 
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 Training Training Training Test Test Test
1

AD RMSE MAE MAPE RMSE MAE MAPE
3

       (12) 

where *
1t  represents the predicted value of 1 .t  

 To determine the superior modified stacked ensemble AI-based predictive algorithm, this study employed 
a modified Taguchi-based VIKOR multi-criteria decision-making algorithm. This decision is prompted by 
discrepancies in the GoF measures between the training and test sets. Specifically, all GoF measures are 

transformed into a normalized matrix,    ; , 1 , 2, , , ,Ω pq P Q
p q P Q


     composed of P  modified stacked 

ensemble AI-based predictive algorithms (alternatives) and Q  GoF measures (criteria). Subsequently, pq  is 

converted into Taguchi Design’s signal-to-noise ratio (SNR) values, as denoted in equation (13). 

 SNR 10logpq pq   (13) 

The superiority of the modified stacked ensemble AI-based predictive algorithms is determined by ranking them 
based on the reverse direction of the conventional VIKOR multi-criteria decision-making algorithm. 
Mathematically, the modified VIKOR multi-criteria decision-making function ( p ) can be expressed as 
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represents the weight for each GoF measure. This study was set 0.5   due to a lack of prior knowledge. The 

decision to employ rank reversal is primarily driven by the resulting irrational ranking among the predictive 
algorithms observed during a thorough check conducted via the resulting GoF measures. Rank reversal is a 
widely applied method in numerous multi-criteria decision-making algorithms [35]. Additionally, this study 
employed the MLR algorithm as a benchmark comparison. However,  -SVR and  -SVR algorithms are excluded 

from benchmark comparisons due to prevalent misconceptions in the literature regarding machine learning 
algorithms’ forecasting capabilities [36]-[37], which are distinct from the predictive performance evaluation. 

2.6 Deployment 

The superior modified stacked ensemble AI-based predictive algorithm, identified during the evaluation phase is 
deployed to the forecast 5-year future 1,θ  significantly enhancing decision-making in the agricultural realm. 

Additionally, there’s potential for the predictive algorithm to be published as an article, aiming to solicit valuable 
feedback from reviewers and contribute to scientific knowledge in the field, currently at a Technology Readiness 
Level of 3 (TRL3). Moreover, the superior modified stacked ensemble AI-based predictive algorithm holds 
promise for adaption into an interactive dashboard, which could facilitate easy accessibility and insight 
generation. Furthermore, it is envisioned to be deployed as a technology at TRL4 by integrating with Arduino 
Integrated Development Environment (IDE) and Internet of Things (IoT) technology. This integration enables 
real-time monitoring and decision support in agriculture, with applications such as ensuring food security. In 
summary, this integration demonstrates the predictive algorithm’s scalability and its potential to significantly 
impact the agricultural industry. 

3.   Analysis Results and Discussion 

In this section, all analysis results are meticulously examined utilizing free and open-source software such as R 
statistical software, supplemented by Microsoft Excel to minimize costs. The analyses are conducted on a mid-
end spec computer (Intel(R) Core (TM) i5-10210U CPU @ 1.60GHz, 4 Core(s), 8 Logical Processor(s)). To 
maintain clarity and coherence, the presentation of analyses, in this section aligned with the phases of the 
CRISP-DM data science framework. Specifically, the analysis results of the initial phases (Business 
Understanding, Data Understanding, and Data Preparation) are discussed in Section 3.1, while those associated 
with the concluding phases (Modeling, Evaluation, and Deployment) are elaborated in Section 3.2.   

3.1 Business Understanding, Data Understanding, and Data Preparation 

In Table 1, the analysis results of EDA utilizing the first four L-moments and detecting outliers are outlined. As 
presented earlier, L-moments are selected for their robustness in summarizing statistics, particularly in the 
presence of outliers and small sample sizes. Table 1 illustrated that some variables employed in this study 
comprised mild and extreme outliers, highlighting the suitability of L-moments over classical statistical 
moments for effectively characterizing numerical summary statistics. Additionally, it’s worth noting that the 
analysis results of the nine correlograms associated with the Pearson correlation coefficient corresponding to 
each Southeast Asia nation have revealed that merely a limited number of determinants exhibited substantial 

correlation ( ˆ 0.7  ) across each Southeast Asia nation. However, due to space limitations within this article, 

this study is unable to include these analysis results. Moreover, high correlation determinants are not excluded 
from this section, as the provided figures do not adequately depict multicollinearity. 
 Among the nine selected nations, MMR, VNM, and THA ranked among the top ten leading rice exporters 
globally in 2019 [38]. Consequently, Table 1 demonstrates that the annual average of 1θ  for these nations is 

significantly higher compared to other Southeast Asia nations, with the exception of IDN. Despite not being the 
leading exporter of 1θ  globally, IDN prioritizes 1θ  for domestic consumption due to its self-sufficiency ratio 



Multidisciplinary Applied Research and Innovation Vol. 6 No. 2 Special Issue (2025) p. 1-17 8 

 

 

(SSR) and demand ratio of 1,θ  which achieved 90% from 2019 to 2021 [39]. Moreover, Table 1 revealed 

significant fluctuation in the average of certain determinants across Southeast Asia nations, as supported by 2  

values (bold) exceeding acceptable statistical thresholds [40]. These fluctuations may be attributed to various 
factors, including geographical considerations, national and international economic strategies and policies, and 
agriculture policies adopted by policymakers. These variabilities could impact the 1θ in practice. In developing 

the proposed modified stacked ensemble AI-based predictive algorithms, it’s noted that most dataset 
fluctuations are insignificant, except for KHM as detailed in Section 3.2. 
 In statistical theory, 3  and 4  are frequently utilized to evaluate the shape of variable distributions based 

on a rule of thumb. However, relying solely on this technique may lead to subjective and suboptimal decisions 
without proper statistical evidence. Therefore, this study employed the Shapiro-Wilk normality test, as detailed 
in Table 1. The analysis revealed that not all variables across the Southeast Asia nations considered in this study 
followed a normal distribution. However, it is important to note that the normality of the dataset is not a 
prerequisite for developing the proposed modified stacked ensemble AI-based predictive algorithms. These 
predictive algorithms are not bound by pre-defined statistical assumptions, such as the requirements for 
residuals to be independently and identically normally distributed. To address feature selection, this study 
utilized the SAWFS method, as outlined in Section 2. However, the results of the statistical feature selection are 
not presented in this section. Instead, the analysis discussed in a subsequent section alongside the modeling 
analysis results for a comprehensive discussion.  

Table 1 Unveiling insights: harnessing L-moments, 1.5 IQR, and 3 IQR rule in EDA analysis 

Country Variables 
Descriptive statistics Outlier detection 

1  2  3  4  1.5 IQR 3 IQR 

KHM 1θ *      4031166.0000 0.3946   0.3144   0.1139 Yes   No 

 2θ                   31.6702  0.0076   0.0288   0.0882   No   No 

 3θ              1834.1910  0.0472   0.0143   0.1099   No   No 

 4θ *                     0.1871 0.5602   0.4519   0.2735 Yes Yes 

 5θ *                197.6814 0.5117   0.3248   0.1425 Yes   No 

 6θ *      3118881.0000 0.4443   0.4849   0.1681 Yes Yes 

 7θ *             1529.7630  0.0252 -0.1289   0.1995 Yes   No 

 8θ *           55508.4700 0.5045   0.2363   0.1143 Yes   No 

 9θ  NA NA NA NA NA NA 

 10θ *                  87.7952  0.1437   0.1198 -0.0600   No   No 

 11θ *      9896397.0000  0.2038   0.1487 -0.0820   No   No 

 12θ                   16.2479  0.1858 -0.0868   0.1262 Yes   No 

 13θ *                  78.5225  0.1398 -0.2104 -0.0709   No   No 

 14θ       1996421.0000  0.1905 -0.0194   0.1107   No   No 

 15θ *                     0.0698 0.5209   0.4517   0.1389 Yes   No 

LAO 1θ *      1767986.0000 0.3388   0.2551   0.0366   No   No 

 2θ                   28.7986  0.0087   0.0739   0.1497 Yes   No 

 3θ              1830.1770  0.0559 -0.0256   0.0688   No   No 

 4θ *                     0.3631 0.6681   0.6875   0.4830 Yes Yes 

 5θ *                197.6814 0.5117   0.3248   0.1425 Yes   No 

 6θ *      1428288.0000 0.3949   0.4321   0.1485 Yes   No 

 7θ *             1470.4880  0.0332   0.2808   0.0210   No   No 

 8θ *           50322.0300 0.4817   0.2726   0.0694   No   No 

 9θ  NA NA NA NA NA NA 

 10θ *                  71.2219  0.1666   0.0092 -0.0616   No   No 

 11θ *      4449597.0000  0.2047   0.0576 -0.0378   No   No 

 12θ *                  18.4587  0.2694   0.1875 -0.0106   No   No 

 13θ *                  55.3222  0.2081   0.2835   0.0683   No   No 

 14θ *        717618.2000  0.1038   0.1341   0.0610   No   No 

 15θ *                     0.0347 0.3515   0.1643   0.2271 Yes Yes 

MMR 1θ *   16928990.0000  0.2694   0.1458 -0.0131   No   No 

 2θ                   28.9663  0.0062   0.1057   0.1320   No   No 

 3θ              2036.2990  0.0454 -0.0425   0.1118   No   No 
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 4θ *                     0.2022  0.2587   0.4281   0.3057 Yes Yes 

 5θ *                197.6814 0.5117   0.3248   0.1425 Yes   No 

 6θ *   12105830.0000 0.3487   0.2399   0.0574   No   No 

 7θ *             1141.1500  0.0566 -0.0640 -0.0801   No   No 

 8θ *             4949.1530 0.8375   0.6992   0.4161 Yes Yes 

 9θ *                  13.3689 0.5753   0.2045   0.0743   No   No 

 10θ *                  85.9892  0.1100 -0.2273 -0.0552   No   No 

 11θ *   38938500.0000  0.1420 -0.0686 -0.0241   No   No 

 12θ                   25.5398  0.0655   0.0048   0.0774   No   No 

 13θ *                  83.4187  0.0551   0.3756   0.0332   No   No 

 14θ *      5666431.0000  0.1144   0.2593 -0.0050   No   No 

 15θ *                     0.1076 0.5539   0.4627   0.2175 Yes Yes 

PHL 1θ *   10380770.0000  0.2701   0.1227   0.0074   No   No 

 2θ                   30.3339  0.0059 -0.0039   0.1442   No   No 

 3θ              2551.1740  0.0718   0.0713   0.1578 Yes   No 

 4θ                      0.7678  0.1555   0.0117   0.2112 Yes   No 

 5θ *                197.6814 0.5117   0.3248   0.1425 Yes   No 

 6θ *      8582085.0000 0.3555   0.3062   0.0853 Yes   No 

 7θ *                956.6432  0.0924   0.1252   0.0341   No   No 

 8θ *        769372.9000 0.6341   0.4095   0.1541 Yes Yes 

 9θ *                     8.6525 0.4449   0.3982   0.2770 Yes Yes 

 10θ *                  83.4266  0.1293 -0.2067   0.0376   No   No 

 11θ *   64792500.0000  0.2195   0.0830 -0.0119   No   No 

 12θ *                  41.3441  0.0779 -0.2676 -0.0689   No   No 

 13θ *                  84.6634  0.0784 -0.1807   0.0990   No   No 

 14θ *      3746360.0000  0.0824   0.1971 -0.0056   No   No 

 15θ *                     1.3322 0.5208   0.2646   0.0385   No   No 

TLS 1θ *           44440.4900 0.3321   0.2048   0.1477 Yes   No 

 2θ                   29.3314  0.0055 -0.0482   0.0833   No   No 

 3θ *             1305.3780  0.0931   0.1461   0.2423 Yes Yes 

 4θ  NA NA NA NA NA NA 

 5θ *                197.6814 0.5117   0.3248   0.1425 Yes   No 

 6θ *           66508.4700  0.2304   0.4627   0.2284 Yes Yes 

 7θ *                627.1337  0.0715 -0.1066   0.0663   No   No 

 8θ *           33169.4900  0.2676   0.3869   0.5528 Yes Yes 

 9θ  NA NA NA NA NA NA 

 10θ *                  92.9518  0.0679 -0.1058   0.0115   No   No 

 11θ *        797351.4000  0.1688   0.1512   0.0300   No   No 

 12θ *                  20.4417  0.1801 -0.0041 -0.0188   No   No 

 13θ *                  69.1668  0.2110 -0.0269 -0.1109   No   No 

 14θ *           20042.9800 0.3023   0.2298   0.1103 Yes   No 

 15θ *                     0.0384 0.4135   0.2774   0.1635 Yes   No 

VNM 1θ *   23332070.0000 0.3160   0.1526 -0.0857   No   No 

 2θ                   28.4010  0.0072   0.0397   0.1474 Yes   No 

 3θ *             1767.0760  0.0336   0.0068 -0.0149   No   No 

 4θ *                     0.8234 0.4380   0.4694   0.1938 Yes Yes 

 5θ *                197.6814 0.5117   0.3248   0.1425 Yes   No 

 6θ *   14412930.0000  0.2935   0.2411   0.0179   No   No 

 7θ *             1430.5600  0.0259 -0.1704   0.2880 Yes Yes 

 8θ *        243271.2000 0.7188   0.5111   0.1837 Yes Yes 

 9θ  NA NA NA NA NA NA 

 10θ *                  86.8255  0.1149 -0.1042 -0.0537   No   No 

 11θ *   65544520.0000  0.1725 -0.0302 -0.0384   No   No 

 12θ *                  22.9775  0.1426   0.2498   0.0767   No   No 

 13θ *                  65.6091  0.1549   0.2257 -0.0194   No   No 
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 14θ *      6275102.0000  0.1045 -0.0118 -0.1009   No   No 

 15θ *                     0.3518 0.6373   0.4484   0.0780 Yes   No 

IDN 1θ *   39429630.0000  0.2378 -0.1316 -0.0479   No   No 

 2θ                   30.3678  0.0040 -0.0461   0.0917   No   No 

 3θ              2754.4340  0.0454 -0.1054   0.0871   No   No 

 4θ *                     1.0275 0.3575   0.1444   0.0074   No   No 

 5θ *                197.6814 0.5117   0.3248   0.1425 Yes   No 

 6θ *   30350390.0000  0.2986   0.1136   0.0574   No   No 

 7θ *             1190.5040  0.0656 -0.3104   0.2202 Yes   No 

 8θ *      1135458.0000 0.4886   0.3206   0.1617 Yes   No 

 9θ *                  44.6816 0.7932   0.8371   0.7163 Yes Yes 

 10θ *                  88.2896  0.1058 -0.1248 -0.0926   No   No 

 11θ * 180676600.0000  0.1761 -0.0098 -0.0137   No   No 

 12θ *                  32.7439  0.2425   0.0840 -0.0682   No   No 

 13θ *                  70.1968  0.1645   0.1608 -0.0100   No   No 

 14θ *      9984559.0000  0.0936 -0.1569 -0.0491   No   No 

 15θ *                     0.0320 0.4874   0.2111 -0.0247   No   No 

MYS 1θ       1970238.0000  0.1240 -0.0674   0.1275   No   No 

 2θ                   30.2458  0.0066   0.0316   0.0970   No   No 

 3θ              2922.7170  0.0553   0.0601   0.0613   No   No 

 4θ *                     4.0573 0.3645   0.0910 -0.0696   No   No 

 5θ *                197.6814 0.5117   0.3248   0.1425 Yes   No 

 6θ *      2078695.0000  0.2349   0.3787   0.1581 Yes Yes 

 7θ *                953.6877  0.1269   0.1522 -0.0473   No   No 

 8θ *        643915.3000 0.3753   0.3819   0.1611 Yes Yes 

 9θ *                     3.0321 0.4593   0.2519   0.2592 Yes Yes 

 10θ                   90.1016  0.0327 -0.0571   0.0341   No   No 

 11θ *   18813600.0000  0.2394   0.1026 -0.0308   No   No 

 12θ *                  51.6514  0.1759   0.0228 -0.0337   No   No 

 13θ *                  68.9910  0.1639 -0.0729   0.0012   No   No 

 14θ *        670000.6000  0.0409 -0.1858   0.2841 Yes Yes 

 15θ *                     0.1884 0.4416   0.1971 -0.0123   No   No 

THA 1θ *   21863300.0000  0.2114   0.1165   0.0067   No   No 

 2θ                   31.8581  0.0077   0.0631   0.1292 Yes   No 

 3θ              1588.9650  0.0523   0.0123   0.1497 Yes   No 

 4θ *                     1.9537 0.4146   0.1041 -0.0948   No   No 

 5θ *                197.6814 0.5117   0.3248   0.1425 Yes   No 

 6θ *   10517640.0000 0.2158   0.3803   0.1997 Yes Yes 

 7θ *             1300.5080 0.0943   0.1961 -0.0298   No   No 

 8θ *           14796.6100 0.8186   0.6498   0.3015 Yes Yes 

 9θ *                     4.2572 0.5203   0.3142   0.2727 Yes Yes 

 10θ *                116.5800  0.1095   0.1116   0.0443   No   No 

 11θ *   53013210.0000  0.1507 -0.1094 -0.0265   No   No 

 12θ *                  31.1928  0.1653   0.1881   0.0732   No   No 

 13θ *                  82.2344  0.1032 -0.2619   0.0736   No   No 

 14θ *      9120229.0000  0.0961 -0.0910   0.1145   No   No 

 15θ *                     0.8327 0.4777   0.1019 -0.1534   No   No 

         *Note: “*” represents the corresponding variable a non-normal distribution that was verified utilizing the Shapiro-Wilk normality test, while NA represents the variable that is not  
           available. 

3.2 Modeling, Evaluation, and Deployment 

This study aimed to develop a modified stacked ensemble MLR-SVR-based algorithm and compare its 
effectiveness to benchmarks. Table 2 depicts a ranking analysis of proposed AI-based predictive algorithms 
against benchmarks, particularly focusing on the proposed modified stacked ensemble MLR-SVR-based 
algorithms across various training-to-test ratios. Results consistently revealed the superiority of the proposed 
modified stacked ensemble AI-based predictive algorithm, except for PHL, VNM, and THA, where other 



11 Multidisciplinary Applied Research and Innovation Vol. 6 No. 2 Special Issue (2025) p. 1-17 

 

 

predictive algorithms performed better. However, upon closer examination, this study found that in PHL, VNM, 
and THA, the proposed modified stacked ensemble AI-based predictive algorithms outperformed the traditional 
MLR algorithm due to their flexibility and independence from pre-defined OLS assumptions.  
 To ensure the reliability and validity of the proposed modified stacked ensemble AI-based predictive 
algorithms, various tests were conducted, including the Shapiro-Wilks test for normality, the run test for 
independence, and the Breusch-Pagan test for homoscedasticity. Results verified that, except for TLS, the 
superior modified stacked ensemble MLR-SVR-based algorithms for each Southeast Asia nation did not violate 
the OLS assumptions. Importantly, the violation of these assumptions did not compromise the predictive 
capability of the proposed modified stacked ensemble AI-based predictive algorithms. Moreover, although the 
GoF measures for the training and test sets could not be included in this article due to limitations, these 
measures further supported the effectiveness of the proposed modified stacked ensemble AI-based predictive 
algorithms. Additionally, Table 2 also revealed that the superiority of the proposed modified stacked ensemble 
AI-based predictive algorithm associated with the optimal training-to-test ratios varied across nations. In simple 
terms, there was no universal optimal training-to-test ratio for training the proposed modified stacked ensemble 
AI-based predictive algorithm, as it could be affected by various factors such as the size and complexity of the 
dataset, the nature of the addressed problems, and the employed predictive algorithms. The finding of this study 
was consistently valid from the machine learning perspective. 
  In practice, the determinants included in the superior modified stacked ensemble MLR-SVR-based 
algorithms across Southeast Asia nations are attributed to geographical determinants, national and international 
economic strategies and policies, and agriculture policies adopted by policymakers. This practical statement is 
further authenticated based on the findings presented in Table 3, which elucidate the association between these 
determinants and their impacts on agricultural outcomes. Particularly, the determinants across Southeast Asia 
nations that are statistically significantly affected 1θ  are varied. For convincing interpretation, this study further 

partitioned all the determinants considered into three clustered principles: atmospheric, socioeconomic, and 
farming practices. This partitioning is necessary to provide a structured framework for analyzing the diverse 
determinants influencing and to facilitate a deeper understanding of their contribution. 
 In brief, the findings of this study revealed that atmospheric clustered determinants statistically affected 

1θ  merely for MMR, IDN, and THA and vice versa in other low-middle-income and upper-middle-income 

Southeast Asia nations. Conversely, the analysis results indicated that both socioeconomic and farming practices 
statistically significantly affected 1θ  for all Southeast Asia nations considered in this study. This comprehensive 

analysis underscored the multifaceted nature of determinants influencing 1θ  and highlights the importance of 

considering diverse determinants in agricultural research and policymaking.  Consequently, these findings are 
also consistently valid from the agriculture economy perspective, primarily due to the occurrence of global 
climate change, the exponential growth of population density, global food inflation, the arrival of Industrial 
Revolution 4.0 (IR4.0), and the revised national and international economy policies principally focusing on the 
green economy. These overreaching trends underscored the need for adaptive and sustainable approaches to 
agricultural development and emphasized the importance of integrating environmental, economic, and 
technological considerations into agricultural policies and practices. 
 Building upon these insights, this study deployed the superior modified stacked ensemble MLR-SVR-based 
algorithm to forecast the 5-year future trends of 1θ  for each Southeast Asia nation, as illustrated in Figure 2. The 

analysis focused on presenting forecasted results for both the top-ranked (Figure 2(a)) and bottom-ranked 
(Figures 2(b)-2(c)) nations, determined by the modified Taguchi-based VIKOR multi-criteria decision-making 
algorithm. In Figure 2(a), the proposed modified stacked ensemble MLR-SVR-based algorithm for LAO emerged 
as the most suitable among the nine superior modified stacked ensemble AI-based predictive algorithms for 
Southeast Asia nations. The forecasted trends of 1θ  showed a consistent increase from 2020 to 2024, aligning 

with forecasts by the United States Department of Agriculture [41] and supporting the implementation of Lao 
policymakers’ Agricultural Development Strategy, which prioritized 1θ  and export by 2025 [41].  

 Similarly, Figure 2(c) indicated increasing trends in the 5-year futures of 1θ  for KHM. This finding is 

consistent with the continuous growth in 1θ  in KHM observed from 2012 to 2020 [42], and the targeted 

increase set by the Cambodia Rice Federation in collaboration with the Ministry of Commerce up to 2025 to 
assess new market [43]. However, a decline in the forecast between 2019 and 2020 suggested the limitations of 
the proposed modified stacked ensemble AI-based predictive algorithm. Therefore, a decline in the forecast 
suggested limitations in the proposed modified stacked ensemble AI-based predictive algorithm, prompting 
further exploration of more suitable kernels such as the polynomial kernel. To further validate these findings, 
this study also presented forecasted results based on the second-bottom-ranked algorithm for MYS in Figure 
2(b). The forecast indicated an increasing trend in 1θ  for the next 5 years, supported by mild evidence from 

statistics provided by the Department of Statistics Malaysia [44]. However, a decrease that occurred in 2022 was 
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noted in 2023 [45], primarily attributed to uncontrollable determinants such as the insufficient supply of basic 
paddy seeds and prevailing farming practices [46]. These aspects are influenced by broader agricultural policies 
and conditions beyond the determinants considered in this study. While there was uncertainty regarding formal 
statistics on paddy and 1θ  beyond 2022, the trend suggested a potential continuation of growth. This forecasted 

result is consistent with Malaysia’s target to achieve an SSR of 73.8% in 2022 and 80% by 2030 [46], 
demonstrating alignment with national agriculture goals.     
 This article’s findings were crucial for policymakers, as they provided valuable insights into the impact of 
atmospheric clustered determinants on 1θ  and served as an early warning regarding climate change’s effect on 

this critical staple food. Moreover, these findings highlighted the significant roles played by socioeconomic and 
farming practices clustered determinants in impacting both national and regional 1,θ  offering valuable guidance 

to policymakers and farmers, especially in the context of technological advancements and Industrial Revolution 
4.0 (IR4.0). Aligned with several regional SDGs, including SDG1, SDG2, SDG3, and SDG8, this study emphasized 
rice’s pivotal role as a staple food in Southeast Asia. Agriculture emerged as a key sector capable of generating 
job opportunities, increasing household income, promoting women’s participation in the labor market, and 
enhancing food security. In brief, fostering economic growth through agriculture, while considering 
atmospheric, socioeconomic, and farming practices clustered determinants, is essential for long-term prosperity 
and sustainable development. This approach propelled low-middle-income and upper-middle-income Southeast 
Asia nations toward achieving high-income countries.     
      

Table 2 Empowering predictive algorithms: exploring superior predictive algorithm through modified Taguchi-
based VIKOR multi-criteria decision-making analysis 

Algorithm Ratio 

Rank 

Low-middle-income Upper-middle-income 

KHM LAO MMR PHL TLS VNM IDN MYS THA 

MLR 60:40 12 11 2 9 2 6 12 12 11 

MLR 70:30 9 3 4 1 4 1 9 10 4 

MLR 80:20 6 5 5 5 9 4 3 5 1 

MLR 90:10 4 9 6 11 10 3 5 4 9 

MLR-  -SVR 60:40 10 12 1 7 3 5 10 11 12 

MLR-  -SVR 70:30 7 4 7 3 6 8 7 9 6 

MLR-  -SVR 80:20 5 6 11 6 8 12 2 8 2 

MLR-  -SVR 90:10 3 8 10 10 12 2 8 6 7 

MLR- -SVR 60:40 11 10 3 8 1 7 11 1 8 

MLR- -SVR 70:30 8 1 8 2 5 10 4 2 5 

MLR- -SVR 80:20 2 2 12 4 7 11 1 7 3 

MLR- -SVR 90:10 1 7 9 12 11 9 6 3 10 

Table 3 Unveiling the key factors: statistically significant determinants in superior AI-based predictive algorithms 
across Southeast Asia nations 

Nation Algorithm Ratio 

Determinant 

Atmospheric Socioeconomic Farming practices 

2θ  3θ  4θ  5θ  6θ  7θ  8θ  9θ  10θ  11θ  12θ  13θ  14θ  15θ  

KHM MLR- -SVR 90:10     √   NA  √  √ √ √ 

LAO MLR- -SVR 70:30     √ √  NA   √  √ √ 

MMR MLR-  -SVR 60:40 √   √ √ √   √  √  √  

PHL MLR- -SVR 70:30     √  √     √ √  

TLS MLR- -SVR 70:30   NA  √  √ NA     √ √ 

VNM MLR-  -SVR 90:10    √  √    √ √  √ √ 

IDN MLR- -SVR 80:20   √  √  √  √   √ √ √ 

MYS MLR- -SVR 60:40    √  √     √  √  

THA MLR-  -SVR 80:20  √  √ √ √     √ √ √  
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(c) 

Fig. 2 Unveiling future trends: deployment of top-ranked and AI-based predictive algorithms in 5-year 1θ forecasts 

for (a) LAO, (b) MYS, and (c) KHM 

4. Conclusions 

The principal objective of this study is to propose an innovative modified stacked ensemble MLR-SVR-based 
algorithms for 1θ  in six low-middle-income (KHM, LAO, MMR, PHL, TLS, and VNM) and three upper-middle-

income (IDN, MYS, and THA) nations in Southeast Asia, utilizing the CRISP-DM data science framework. The MLR 
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algorithm served as a benchmark for comparison. A key advantage of the proposed modified stacked ensemble 
AI-based predictive algorithm is its ability to bypass the pre-defined assumptions of MLR algorithms while 
retaining interpretability for statistically significant determinants. To evaluate the efficiency of the proposed 
modified stacked ensemble AI-based predictive algorithms, annual time-series datasets from 1961 to 2019, 
consisting of one endogenous variable and 14 potential determinants, were employed.  
 Due to discrepancies in GoF measures between the training and test sets, the modified Taguchi-based 
VIKOR multi-criteria decision-making algorithm was applied to evaluate the superiority of the AI-based 
predictive algorithms. The results indicated that no single AI-based predictive algorithm universally fit all 
nations' datasets across varying training-to-test ratios (60:40, 70:30, 80:20, and 90:10). However, the proposed 
modified stacked ensemble MLR-SVR-based algorithm performed well for most low-middle-income and upper-
middle-income nations, except for PHL, VNM, and THA, where the MLR algorithm was found superior. Despite 
this, this study concluded that the proposed modified stacked ensemble MLR-SVR-based algorithm was superior 
for PHL, VNM, and THA based on its lower AD  measures. 
 Additionally, socioeconomic and farming practices were identified as key determinants affecting 1θ  in 

Southeast Asia, except for MMR, IDN, and THA. These nations, 1θ  is also affected by atmospheric clustered 

determinants, likely due to the diverse climate types across the region. Specifically, the analysis showed that 
atmospheric conditions statistically affected 1θ  in these nations, alongside socioeconomic and farming practices 

clustered determinants such as international trade, human resource economics, and agriculture resources and 
technologies. However, the variability in determinants (Table 3) across Southeast Asia nations can be attributed 
to geographical determinants, national and international economic strategies and policies, and agriculture 
policies adopted by policymakers. Future research could focus on developing predictive algorithms based on the 
geographical determinants to gain more precise insights into determinants of 1θ  in the region.       
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