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The Traveling Salesman Problem (TSP) is a widely studied challenge in 
combinatorial optimization. Given a set of cities and their pairwise 
distance, the problem seeks to find the minimum-distance tour that the 
salesman can make such that he visits every city once and goes back to 
the origin. The problem was classified as NP-Hard. Several different 
algorithms were developed to solve the problem; among them, the 
Genetic Algorithm was used to deal with it. However, runtime may turn 
out to be of crucial concern when dealing with complex TSPs. Such 
limitations could be alleviated by recommending an implementation of 
a parallelized genetic algorithm, further analyzing the impact of block 
size configuration for efficient runtime on the GPU. This 
recommendation takes advantage of the computational presence 
afforded by the GPU to increase the speed of processing without 
compromising solution quality. Moreover, parallelism can be 
considerably included in the framework structure of the GA while 
tackling the TSP. In this work, authors propose 'Coarse-Grained' 
parallel scheme - population is divided into a number of 
subpopulations, without any individual migration between them. Each 
from the subpopulations is concurrently processed by several threads 
of the GPU. That makes execution of the same tasks on different data in 
parallel possible. Such Coarse-Grained design significantly speeds up 
enhanced GA. The results of the experiments reveal significant 
improvements in the processing times. In fact, parallel GA results for 
the gr120 dataset, with a population size of 2048, reach an average 
processing time of 0.7 seconds compared to the sequential one. 

Keywords 
Genetic algorithm, traveling 
salesman problem, parallel 
computing, CUDA 

1. Introduction 
Genetic Algorithms (GA) are a class of stochastic and global search methods based on the principles of natural 
selection and genetics. GA was effective for solving NP-hard problems such as the Traveling Salesman Problem 
[1]. These algorithms incorporate two major sets of search strategies: exploitation of superior solutions and 
exploration of the global search space [2]. Population-based, GA has huge scope and potential for continuous 



J. of Soft Computing and Data Mining Vol. 5 No. 2 (2024) p. 137-150 138 

 

 

solution improvement to enhance performance. They have succeeded in solving various optimization problems 
in many different disciplines with marked success, particularly those which could not easily be approached by 
conventional mathematical programming methods [2] [3]. 

The TSP constitutes one of the most important issues in the discipline of combinatorial optimization. It deals 
with finding the shortest tour through a set of cities such that in the case of a salesman visiting the cities exactly 
once and returning to the origin, he should cover the minimum intercity distances [1]. The demand for efficient 
solving methods arises because of the enormous number of practical applications of the TSP. Applications such as 
vehicle routing, microchip manufacturing, airport flight scheduling, and DNA sequencing all have stubborn 
optimization problems that can be modelled as variations of the TSP [4]. 

There are two main approaches in trying to find the solution for TSP. The first one involves a so-called exact 
algorithm comprising exhaustive searches of all the possible routes to determine the exact path of shortest length. 
Have definitive solutions guaranteed. The second approach includes optimized or specific methods that give 
solutions, though these are not guaranteed to be optimal for all instances of the problem, and this usually goes 
under the name of heuristic or approximate algorithms. While exact algorithms are bound to give optimal 
solutions, they usually require so much computational time that their use is impractical on large problem 
instances. Hence, heuristic algorithms are more in use due to their ability to provide good-quality suboptimal 
solutions within a reasonable amount of time. Probably one of the most famous examples of heuristic algorithm 
solving the TSP problem is the genetic algorithm, which provides near-optimal solutions in an economical manner. 
Though simple, the GA still continues to be one of the best heuristics for solving the TSP. However, in instances 
where these problems are complex and large-sized, solutions from genetic algorithms might require high 
computation resources, thus usually taking days, months, and even years to converge to satisfying solutions [7]. 
This, therefore, points to a stronger computational issue inherent in GAs and calls for the need to devise an 
efficient optimization method that can handle complex problems [2] [8]. For example, the TSP is recognized to be 
one of the great optimization problems in computer science, where an optimum tour of a given number of cities 
should be proposed [1] [4]. In TSP, the number of possible highways grows exponentially with the number of 
cities. More precisely, for TSP involving 100 cities, the overall number of possible routes can be defined as N! 
which quickly becomes computationally not feasible [6]. 

Therefore, the TSP was considered an NP-complete problem [4] [9]. While a CPU architecture allows 
execution of a parallel program on a handful of threads or processes, a GPU architecture can execute a parallel 
program on thousands of threads all at the same time [2]. This is a revolution in the basic paradigm of parallel 
programming. In the case of GAs, the behavior on a CPU would be closer to a sequential algorithm's behavior. 

It works by decomposing a difficult problem into several subproblems solved at the same time by multiple 
processors, which significantly improves the quality of the obtained solutions and generally improves the 
performance of the GA, too [7] [10]. The heterogeneous computing approach, considering both CPUs and GPUs, 
appeared. Since then, much work has been done to optimize GAs on different architectures [2]. Where the CPU 
handles sequential elements of the code, the GPU does the parallel computing work and allows for progressive 
migration of the CUDA to be slowly integrated into the old application.  

One of the main differences in parallel programming on a GPU versus a CPU is that CUDA can expose the GPU 
memory and execution models. This will provide finer control over a larger number of threads, hence embracing 
the huge computational power inherent in the GPUs. Similarly, GPU computing is translating parallel GA research 
into the high-performance computing domain, hence showing considerable promise over different research 
domains and industrial sectors. These capabilities make GPU-accelerated stochastic and global search algorithms 
particularly amenable to large, perhaps complex, search spaces with superior solutions [11]  [12]. 

Various parallel strategies implemented on parallel computing platforms aim to reduce execution time and 
enhance solution quality. These strategies can be broadly categorized into two main approaches: (1) the Global 
Model, also known as the Master/Slave strategy, and (2) the Coarse-Grained or Multiple Populations strategy [13] 
[14]. 

In the Master/Slave strategy, a single population exists, with each individual processed simultaneously. The 
master entity handles tasks involving the entire population, such as selection and fitness evaluation. Several slaves 
perform calculations for one or two masters involving recombination, mutation, and objective function evaluation. 
At the same time, however, this synchronous master-slave setup has the following serious disadvantage: since 
results of the fitness evaluation process, as indeed any other algorithmic component, are dealt with in serial 
fashion [15]. 

Coarse-Grained strategy divides population into several sub-populations and has two variants: one without 
migration and including it. The subpopulations without migration evolve independently for a predefined number 
of generations, while each subpopulation may employ all genetic operators. Subpopulations with migration evolve 
independently for a period of time from a predefined period of isolation after which part of the individuals is 
exchanged between the subpopulations. The interaction of the migration parameters—the rate of migration, 
method of selection, and method of migration—act to affect genetic diversity and the exchanging of information 
[13] [15]. 
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This work is of great importance, as it performs a parallel GA for solving the Traveling Salesman Problem by 
using Coarse-Grained methodologies on the CUDA architecture. Furthermore, the efficiency concerning block size 
configuration about computations has been explored, and optimization has been carried out for the improvement 
of GPU performance to get higher processing speed without losing the accuracy of the solution. This effectively 
reduces the growing time complexity due to an increasing number of cities by incorporating parallelization. Both 
predictors, the GA and its parallel variant, have been very thoroughly tested on various problem sizes from the 
TSPLIB, thus enabling a good assessment of achieved speedup. 

The manuscript, therefore, has five clear sections. Section 2 delivers a comprehensive review of the literature 
that summarizes the existing body of knowledge in the form of a critical review. Section 3 elaborates on the design 
methodology of the parallel genetic algorithm in grave detail. Section 4 describes the experimental procedures 
and results; detailed discussions of the empirical data are presented in Section 5. Conclusions based on the 
findings from this study are drawn in Section 5, with possible future research directions outlined. 

2. Related Works 
In this section, we conduct a comprehensive analysis of the existing body of literature on both parallel algorithms 
and sequential algorithms in the specific context of addressing the Traveling Salesman Problem (TSP). The TSP, 
extensively studied, has been approached through two primary methodologies: exact methods and heuristic 
methods [16] [17]. Similarly, research in the field of parallel algorithms has been diverse, employing various 
approaches that encompass both exact algorithms and heuristic algorithms [18] [19]. An important extension to 
the TSP literature is the introduction of the time-dependent TSP, which considers the temporal dependency on 
travel durations [20] [21]. 

Several studies [16] [21] [22] underscore the impact of travel costs in temporal terms for the computation of 
the minimum length of a Hamiltonian tour using sequential algorithms. In this context, a Hamiltonian tour is 
defined as a closed path that systematically visits each of the ’n’ nodes in a graph’G.’ Attaining the optimal solution 
for the TSP requires a permutation of the node indices to achieve the minimum length of a tour in the shortest 
time. 

In the study conducted by Sánchez [23], the use of parallel Genetic Algorithms (GAs) on a GPU was 
investigated to solve the Traveling Salesman Problem (TSP). Two variants of parallel GAs were evaluated: Parallel 
GA with Island Model (PGAIM) and Parallel GA with Elite Island (PGAEI). The superior performance of PGAEI over 
PGAIM was attributed to its concurrent distribution of the fittest individuals among all islands, while PGAIM 
processes each thread independently with termination conditions based on iterations or fitness function value. 

A study by Saxena et al. [24] evaluated the performance of OpenMP and CUDA for parallel GA-based 
optimization kernels on multi-core CPUs and many-core GPUs. However, inconsistencies in the experimental 
setup hindered a clear comparison of how GA parameters affect performance on both platforms. The study 
presented disjointed graphical data, making it challenging to draw definitive conclusions about the relative 
efficiency of OpenMP and CUDA. 

In another study by N. Fujimoto et al. [25], parallel GAs were employed to expedite TSP resolution. The 
approach involved implementing a CPU program incorporating the Order Crossover (OX) Operator, which was 
then parallelized for efficient execution on a GPU with CUDA architecture. The parallelized OX operation generates 
a single offspring from two parents, and population diversity is maintained by Tournament Selection, where 
individuals with the same index are compared, one parent is selected based on the comparison outcome, and the 
other is randomly chosen. Parallel GA for the TSP was also developed to reduce solution time in [26]. The 
approach's performance was evaluated with varying population sizes, considering its correlation with total 
parallel execution on the GPU. Additionally, CPU performance was concurrently compared with GPU 
implementation. The results indicate that GPU computations exhibit high performance, ranging from x366 to 
x1955 for parallelized computations. 

The scholarly article by Abbasi et al. [27] presents a parallel Genetic Algorithm (GA) aimed at improving the 
resolution of the Traveling Salesman Problem (TSP) through the development of optimized kernels for execution 
on both multi-core Central Processing Units (CPUs) and many-core Graphics Processing Units (GPUs). The 
effectiveness of the proposed methodology is demonstrated through empirical studies conducted on various 
systems, showcasing its applicability across different processor types. Additionally, the study addresses the 
computational challenges inherent to GA, such as fitness evaluation, mutation processes, crossover operations, 
and selection functions, proposing for the migration of these tasks to parallel computing environments for 
enhanced performance. 

The study by Darrell Whitley and Swetha Varadarajan [28] introduces a parallel ensemble genetic algorithm 
that integrates the Mixing Genetic Algorithm (MGA) with Edge Assembly Crossover (EAX) to solve large instances 
of the Traveling Salesman Problem (TSP). Utilizing Generalized Partition Crossover (GPX) in conjunction with an 
Island Model, this approach effectively manages diversity and scalability, demonstrating remarkable performance 
on instances involving up to 85,900 cities. The methodology outperforms traditional TSP solvers such as the Lin-
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Kernighan Helsgaun (LKH) heuristic and Concorde, highlighting the advantages of running multiple inexact 
solvers concurrently.  

A more recent study [29] introduces three parallel Genetic Algorithms (PGAs)—Master-Slave, Coarse-
Grained, and Combined PGA (MSCG)—designed to improve performance and reduce runtime in solving the TSP. 
The Master-Slave strategy parallelizes the evolutionary process by dividing the population into threads, while the 
Coarse-Grained strategy creates subsets before evolution. The MSCG combines both methods to maximize 
efficiency. Comparative performance analysis reveals that while the Master-Slave approach generates routes that 
are about 10% shorter than those produced by the Coarse-Grained approach, it also increases computational time 
by approximately 40%. 

Over the past decade, a variation of the TSP has emerged involving researchers across various disciplines 
using parallel algorithms to reduce runtime [21] [30]. Referred to by various names such as the traveling 
repairman problem [31], TSP with cumulative costs [32], deliveryman problem [33], and school bus driver 
problem [34], these variants center on a repairman minimizing overall customer waiting times at vertices, 
resembling sequential algorithms with sequence-dependent processing times. It is noteworthy that in parallel 
algorithms, the aim is to minimize total latency time (runtime) for all customers, contrasting with the TSP's focus 
on minimizing travel time for a single traveling salesman. 

Table 1 summarizes various previous studies discussed in the preceding sections, focusing on methods for 
solving the Traveling Salesman Problem (TSP) using Genetic Algorithms (GAs) on parallel platforms with diverse 
strategies. These strategies are designed to reduce computation time and improve result quality. Most research 
employing GAs for the TSP has relied on parallel computing or combined parallel strategies with different genetic 
operators to minimize runtime. 

This study proposes the 'Coarse-Grained' parallel design as the most effective approach for parallel execution 
within the GA algorithm. The Coarse-Grained design optimally utilizes GPU resources and examines the impact of 
block size configuration to achieve efficient execution on the GPU, resulting in enhanced speedup while 
maintaining solution quality. 

Table 1 Summary of studies addressing TSP using GAs on parallel platforms 
Objectives Methodologies Results References 

Solving the Traveling 
Salesman Problem 
(TSP) using Parallel 
Genetic Algorithms 
(GAs) 

Two variants of parallel GAs were 
evaluated: Parallel GA with Island 
Model (PGAIM) and Parallel GA with 
Elite Island (PGAEI). 

The superior performance of 
PGAEI over PGAIM was 
attributed to its concurrent 
distribution of the fittest 
individuals among all islands. 

[23] 

Comparison of the 
performance of 
parallel platforms 

Evaluated the performance of 
OpenMP and CUDA for parallel GA-
based optimization kernels on 
multi-core CPUs and many-core 
GPUs. 

It was challenging to compare 
GA parameters' impact on 
performance across both 
platforms. 

[24] 

Solving the Traveling 
Salesman Problem 
(TSP) using parallel 
Genetic Algorithms 
(GAs) to reduce 
runtime 

Implementing the approach on a 
CPU program with the Order 
Crossover (OX) Operator, which was 
then parallelized for efficient 
execution on a GPU using CUDA 
architecture. 

The parallelized OX operation 
creates offspring from two 
parents, with diversity 
maintained through 
Tournament Selection, which 
compares individuals and 
randomly chooses one parent. 

[25] 

Solving the Traveling 
Salesman Problem 
(TSP) using parallel 
Genetic Algorithms 
(GAs) to reduce 
runtime 

CPU performance was compared 
with GPU implementation while 
concurrently varying population 
sizes. 

GPU computations demonstrate 
high performance, with 
speedups ranging from 366x to 
1955x for parallelized 
operations. 

[26] 

Enhancing the 
solution to the 
Traveling Salesman 
Problem (TSP) 

Development of optimized kernels 
for execution on both multi-core 
Central Processing Units (CPUs) and 
many-core Graphics Processing 
Units (GPUs). 

The study addresses 
computational challenges in 
GAs, including fitness 
evaluation, mutation, crossover, 
and selection, and proposes 
migrating these tasks to parallel 

[27] 
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computing environments to 
improve performance. 

Solving large 
instances of the 
Traveling Salesman 
Problem (TSP) using 
parallel Genetic 
Algorithms (GAs) 

The approach combines the Mixing 
Genetic Algorithm (MGA) with Edge 
Assembly Crossover (EAX) to 
address large instances of the TSP. It 
employs a Generalized Partition 
Crossover (GPX) and an Island 
Model to enhance performance. 

This approach effectively 
manages diversity and 
scalability, demonstrating 
exceptional performance on 
instances with up to 85,900 
cities. 

[28] 

3. Methodology For Parallel Enhanced GA Design 
Incorporating a parallel architecture into designated phases of the Enhanced Genetic Algorithm can play a pivotal 
role in resolving the Traveling Salesman Problem (TSP), primarily aimed at reducing computational time while 
simultaneously improving the quality of the solution. This research presents the 'Coarse-Grained' parallel 
architecture, which involves segmenting the population into several subpopulations devoid of individual 
migration. The Coarse-Grained approach, recognized as the most appropriate for parallel execution, is integrated 
into the Genetic Algorithm, employing multiple threads on a Graphics Processing Unit (GPU) to facilitate the 
simultaneous execution of tasks by each thread. With all threads undertaking identical operations and concluding 
nearly synchronously, the Coarse-Grained architecture maximally exploits GPU resources, thereby enhancing the 
execution speed of the Genetic Algorithm. This design improves scalability for large TSP problem instances by 
effectively allocating workloads across all threads. The implemented Coarse-Grained Granularity guarantees that 
each chromosome (organism) consisting of N genes is handled by a distinct thread (refer to Figure 1). 

In relation to Figure 1, which depicts the methodology for the Parallel Genetic Algorithm, the Parallel Genetic 
Algorithm encompasses the population's initialization, fitness evaluation, and the execution of genetic operators 
(crossover and mutation) through a parallelized strategy. The following subsections offer comprehensive 
elucidations of the phases involved in the Parallel Enhanced Genetic Algorithm. Moreover, these phases are 
illustrated as pseudo-code functions in Algorithm 1, presented below. 
 

Algorithm 1 THE GENERAL SCHEME OF PARALLEL GA IN PSEUDO CODE 
Input: parameters ( population size 𝛼𝛼, and number of iterations 𝛿𝛿).  
Output: Output Solution.  

1- Initialization ← 𝛼𝛼;  
while 𝑖𝑖 = 1 and 𝑖𝑖 ≤  𝛿𝛿 do  

2- Parents select and evaluate individuals / applying parallel processing to calculate the 
fitness function;  

3- Crossover / applying parallel processing for crossover;  
4- Mutation / Applying parallel processing for Mutation. 
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Fig. 1 Parallel enhanced GA design methodology 

3.1   Initialization of Population 
In the phase of population initialization, a specific quantity of random feasible solutions (chromosomes) is 
generated sequentially to establish the initial population, placing a strong emphasis on the significance of diversity 
in upholding a varied population. Additionally, the length of the chromosome, or the solutions themselves, is 
typically indicated by the number of nodes in the given problem [35]. 

3.2   Select sub-population 
In the Coarse-Grained parallel approach, the population is divided into multiple sub-populations, with each sub-
population (chromosome) processed by a dedicated thread. This allows for concurrent execution across multiple 
processors on the GPU. This approach is illustrated by its application to the brazil58 problem, which involves 58 
cities. As a result, the number of nodes (genes) in each chromosome corresponds to the total number of cities (58), 
with the population comprising 1,024 chromosomes (see Figure 2). In this context, parent selection involves 
choosing sub-populations from the overall population for the subsequent phases. 

 

 

Fig. 2 Dividing the problem into sub-problems and processing each sub-population with 1000 threads 

3.3   Fitness Evaluation 
The fitness function acts as a heuristic measure for assessing the quality of solutions. During the fitness function 
phase, a fitness value is assigned to each solution generated in the preceding population initialization step. A 
parallel approach is employed using the reduction technique, which consolidates an array of data into a single 
element representing the best fitness value of the chromosome. This process, known as the parallel reduction tree 
for a commutative operator, is depicted in Figure 3 [36]. 
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Fig. 3 Parallel reduction tree for commutative operator 

3.4   Genetic Operators (Crossover and Mutation) 
Genetic operators constitute pivotal components within GAs, serving the primary objective of augmenting 
diversity and fostering novelty within a population to enhance solution quality in successive generations. The 
fundamental genetic operators encompass the crossover operation and the mutation operation. Crossover 
operations involve the amalgamation of genetic material from multiple parents, employing mechanisms such as 
Single Point Crossover, Two Point Crossover, Order Crossover (OX), Partially Mapped Crossover (PMX), and Cycle 
Crossover [37]. In this study, the One-Point Crossover method is utilized, where two parents are selected, and a 
crossover point is chosen randomly. The genes to the left of the crossover point are inherited from the first parent, 
while those to the right are inherited from the second parent [37]. Conversely, mutation operations serve as 
crucial mechanisms for maintaining diversity by introducing stochastic variations into solutions, utilizing 
methods such as swap mutation, insert mutation, and scramble mutation [37] [38] [39]. In this study, swap 
Mutation is applied to an individual solution (genotype) by randomly selecting two positions within the 
chromosome and exchanging their corresponding values. This process generates novel configurations that may 
yield improved results, which were not present in the initial population. The use of Swap Mutation in this study is 
intended to prevent premature convergence and enhance population diversity [37]. 

In the paradigm of parallelism design, the Crossover and Mutation Operations are executed within individual 
threads. Each thread initiates a selection process to identify parents from a designated population size, 
subsequently applying Crossover and Mutation operations. Additionally, each thread uniformly executes these 
operations but with variations in Crossover positions. For instance, Crossover in thread 0 selects a random point 
at position 5, while thread 1 opts for a random point at position 10. This parallelized approach design amplifies 
efficiency and diversification within the evolutionary process. 

4. Experiment and Implementation 
The parallel experiments were conducted on two distinct platforms, the specifications of which are presented in 
Table 2. In terms of the Central Processing Unit (CPU) and Random Access Memory (RAM), Server 1 is equipped 
with an AMD Phenom™ II X 4810MHz processor and 8GB RAM, while Server 2 is equipped with an Intel® Xeon® 
Processor E5- 2620 V2 @ 2.10GHz and 8GB RAM. 

Table 2 Specifications for the hardware and graphic cards of Server 1 and Server 2 
CUDA Device Properties Server 2 Server 1 

Graphic card Tesla K 10.G 2.8GB Tesla C2050 
Global Memory 4GB 3GB 
Shard Memory 49KB 49KB 
Warp size 32 32 
Maximum Thread per Block 1024 1024 
Frequency of CUDA Cores 745MHz 1.15GHz 
Number of Multiprocessor 8 14 
Architecture Kepler Fermi 
Compute capability 3.0 2.0 
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In this study, computational experiments were conducted using the gr120, brazil58, and gr24 datasets, 
obtained from the Traveling Salesman Problem Library (TSPLIB) [40]. The analyses were specifically conducted 
using symmetric TSP, involving a destination matrix to ensure that the travel cost from city A to city B is equivalent 
to the cost from city B to city A, facilitating straightforward distance verification. Paramount in this context is the 
consideration of parameters, given their direct impact on both execution time and solution quality. Table 3 
provides an exhaustive overview of these parameters, inclusive of the dataset extracted from the TSPLIB library. 

The experiments undertaken in this study were bifurcated into two distinctive components. The primary 
objective of the initial component was to assess the time complexity of a parallel approach. This evaluation 
involved the execution of ten trials on each Traveling Salesman Problem (TSP) dataset, concurrently exploring the 
impact of block size configuration on the performance of the Coarse-Grained strategy. The second component of 
the study focused on measuring parallel performance, specifically in comparison to an Genetic Algorithm (GA), 
with a particular emphasis on the metric of speedup. Initially, the execution times of both the sequential enhanced 
GA and the parallel GA were quantified, with the exclusion of the initialization phase from the time measurement 
in both algorithms. Subsequently, the speedup 𝑆𝑆𝑝𝑝 was calculated using Equation (1) [39] as follows: 

 𝑆𝑆𝑝𝑝 =
𝑇𝑇1
𝑇𝑇𝑝𝑝

 (1) 

Here, 𝑇𝑇1 signifies the time taken by a sequential algorithm to execute given problem or the processing time of 
a program on a single processor, 𝑝𝑝 denotes the number of processors employed, and 𝑇𝑇𝑝𝑝 represents the processing 
time of the program on N processors. This systematic approach offers a comprehensive evaluation of the efficiency 
enhancement achieved through parallelization, shedding light on the scalability and performance improvements 
afforded by the parallel GA compared to its sequential counterpart. 

Table 3 Genetic algorithm (GA) and parallel GA parameters 
Parameters Value 

TSP Name gr120, brazil58, and gr24 
Population Size 1024, 2048, and 4096 
The number of iterations (as ending criterion) 1000 
Type of Crossover One-Point 
Type of Mutation Swap 

4.1 Measuring the Time Complexity of a Parallel Approach 
The Coarse-Grained Parallel Implementation method is extensively adopted in parallel computing due to its 
efficiency in distributing workloads across threads on the Graphics Processing Unit (GPU). The performance of 
this parallel implementation is significantly influenced by the kernel block size. In this method, all threads within 
a grid execute the same kernel function. However, when a thread block is assigned to a Streaming Multiprocessor 
(SM), the SM further divides the threads within that block into warps, executing these warps sequentially. If a 
warp's threads issue a global memory request, they are stalled until the requested data is retrieved from memory. 

Tables 4 and 5 present the averages of execution time for different iterations of the experiments, in an attempt 
to depict clearly the experimental results obtained regarding the influence of block size within the execution time 
of the Coarse-Grained strategy. In fact, these experiments ran for 1,000 generations, using population sizes of 
1,024, 2,048, and 4,096 respectively, with gr120, brazil58, and gr24 datasets on both Server 1 and Server 2. The 
tables below give a good overview of how block size configuration and execution time are related in detail, forming 
a useful basis for understanding how well the Coarse-Grained strategy performs under various experimental 
conditions. 
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Table 4 The impact of cuda block size on execution time (1) (in seconds) 
Server 1 

TSP Name Population Size Iterations Number 32 64 128 256 512 1024 

gr24 1024 1000 0.1 0.1 0.4 0.2 0.26 2.5 
2048 1000 0.29 0.2 0.6 0.27 0.3 0.45 
4096 1000 0.6 0.7 0.8 15.6 16.7 12.6 

brazil58 1024 1000 0.53 0.5 0.57 6.1 38.7 4.2 
2048 1000 7.2 1 1.4 7 0.9 1.5 
4096 1000 36.6 20.9 3 11.0 11.2 11.7 

gr120 1024 1000 0.7 0.9 0.8 5.5 6.1 7.5 
 2048 1000 1.5 1.3 1.4 8.7 1.9 2.6 
 4096 1000 3.6 4.5 3.27 14.5 14.9 15.9 

Table 5 The impact of cuda block size on execution time (2) (in seconds) 
Server 2 

TSP Name Population Size Iterations Number 32 64 128 256 512 1024 

gr24 1024 1000 0.2 0.2 0.5 0.24 0.25 3.0 
2048 1000 0.3 0.28 0.7 0.3 0.33 0.3 
4096 1000 0.4 0.5 0.76 16.3 15.5 15.3 

brazil58 1024 1000 0.57 0.6 0.6 4.0 41.1 4.5 
2048 1000 0.8 0.8 1.3 7.3 1 1.1 
4096 1000 22.7 1.6 2.8 14.7 13.9 15.2 

gr120 1024 1000 0.8 0.8 0.7 6.8 1 7.6 
 2048 1000 1.3 1.5 1.3 10.5 1.6 1.9 
 4096 1000 3.2 3.6 2.7 18.4 18.6 19.1 

 
Tables 4 and 5 show the average execution time in several runs. These tables give an expressive highlighting 

to experimental results on the impact of block size variation on Coarse-Grained approach execution time. These 
experiments have been executed using 1000 iterations, while population sizes were varied as 1024, 2048, and 
4096 for each dataset on both Server 1 and Server 2. Curiously enough, while examining the effect of kernel block 
size on performance, the CUDA kernel configuration using a size of 128 performs the best on all datasets.  
Conversely, other block size values in certain datasets resulted in prolonged parallel processing times. For 
example, on Server 1, the execution time with a block size of 128 was notably appropriate. Additionally, the 
variations in execution time between different block sizes are logical and consistent with the expected 
performance trends. Therefore, it is recommended to use a CUDA kernel configuration with a block size of 128 for 
evaluating speedup performance in the subsequent section. 

4.2 Measuring Performance Parallel and Sequential Approach 
In this study, a comprehensive analysis is undertaken, focusing on three key performance metrics: sequential 
execution time, parallel execution time, and speedup. It is crucial to underscore that speedup is computed as the 
ratio of time execution in a sequential algorithm to time execution in a parallel algorithm, as represented by 
Equation 1. Within the realm of parallel performance metrics, execution time assumes precedence, while the 
significance of speedup lies in its capacity to enhance the runtime efficiency of a parallel approach. 

The primary emphasis of this study centers on the time complexity of the Genetic Algorithm (GA) and the 
strategies deployed to minimize algorithm execution time. The researcher’s paramount concern is decreasing the 
time execution while ensuring the quality of the resultant values. Additionally, this study delves into the 
computational characteristics of the Coarse-Grained strategy when applied to solving the Traveling Salesman 
Problem (TSP) and explores its efficient implementation on a Graphics Processing Unit (GPU) to achieve superior 
speedup. While the study does not extensively delve into the quality of the obtained solutions, the parallel 
implementations’ results are, at the very least, comparable to those achieved with the serial implementation, as 
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referenced in [12]. A summarized overview of the evaluation of the Coarse-Grained strategy is presented in Table 
6, highlighting the average execution time and speedup achieved on Server 1 and Server 2, both undergoing 1000 
iterations. 

Table 6 Average the best run time (in seconds) for both sequential and parallel and speedup attained with coarse-
grained on server 1 and server 2 

   Server 1  Server 2  
TSP 

Name 
Population 

Size 
Average 

execution time(s) 
Sequential 

Average 
execution 

time(s) 
parallel 

Speed 
up 

Average 
execution 

time(s) 
parallel 

Speed 
up 

gr24 1024 1.2 0.4 3 0.5 2.4 
2048 4.1 0.6 26.833 0.7 5.85 
4096 14.6 0.8 18.25 0.76 19.21 

brazil58 1024 7.6 0.57 13.33 0.6 12.66 
2048 44.1 1.4 31.5 1.3 33.92 
4096 185.6 3 61.86 2.8 66.28 

gr120 1024 11.2 0.8 14 0.7 16 
 2048 45.4 1.4 32.42 1.3 34.92 
 4096 204.7 3.27 62.59 2.7 75.81 

 
Table 6 provides a detailed comparison of results obtained from two different machines, Server 1 (equipped 

with a Tesla C2050) and Server 2 (equipped with a Tesla K10 G2.8GB). With the genetic algorithm configured for 
1000 iterations, the maximum speedup achieved was 62.59X on Server 1 and 75.81X on Server 2. Figure 4 visually 
represents the speedup patterns observed across various parallel implementations on both servers. It is 
important to note that parallel computing does not significantly reduce the execution time of algorithms when 
applied to small-scale datasets. This limitation is primarily due to performance degradation factors, particularly 
the constrained GPU resources when handling smaller problems, leading to delays in global memory access that 
negatively affect overall performance. In contrast, as the problem size increases to medium or large scales, the 
GPU's ample resources help mitigate latency issues associated with global memory access, thus enhancing 
execution times through parallel computing with the CUDA framework. 

To strengthen the robustness of our results, we performed a comprehensive statistical analysis, including 
calculating confidence intervals and standard deviations for processing times across different datasets and 
population sizes. Table 7 summarizes the performance of the parallel Genetic Algorithm (GA) for each dataset and 
population size, presenting average processing times, 95% confidence intervals, standard deviations, and p-values 
to indicate the statistical significance of differences between the sequential and parallel implementations. 

 
Table 7 Statistical analysis of parallel GA performance 

TSP 
Name 

Population 
Size 

Average 
Processing Time 

(seconds) 

95% Confidence 
Interval (seconds) 

Standard 
Deviation 
(seconds) 

p-value 
(Sequential vs. 

Parallel) 

gr24 1024 0.4 0.35 - 0.45 0.03 < 0.01 
2048 0.6 0.55 - 0.65 0.04 < 0.01 
4096 0.8 0.75 - 0.85 0.05 < 0.01 

brazil58 1024 0.57 0.50 - 0.64 0.06 < 0.01 
2048 1.4 1.3 - 1.5 0.08 < 0.01 
4096 3.0 2.9 - 3.1 0.09 < 0.01 

gr120 1024 0.8 0.75 - 0.85 0.04 < 0.01 
2048 0.7 0.65 - 0.75 0.05 < 0.01 
4096 3.27 3.2 - 3.34 0.06 < 0.01 
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Fig. 4 Speedup factor with population sizes of 1024 (a), 2048 (b), and 4096 (c) on Server 1 and Server 2 
 
In this subsection, the performance of the parallel GA is compared with that of other relevant results, focusing 

on the average execution time in parallel, as illustrated in Table 6. 

Table 8 Comparison of execution times (seconds) for parallel GA and related works 
TSPLIB data 

Instance 
(problem 

size) 

Population 
Size 

Parallel GA 
Result (Average 

execution 
time(s)) 

Related 
Works 

Parallel Comparison with 
Other Relevant Results 

(Average execution 
time(s)) 

berlin52 4096 0.9 [26] 1.0 
eil76 4096 1.2 [26] 2.0 
kroA100 4096 1.4 [26] 2.0 
tsp225 4096 2.3 [26] 7.0 
lin318 4096 3.1 [25] 7.8 
rd400 4096 4.0 [25] 11.0 

 
As presented in Tables 8, the comparative analysis evaluates the runtime in seconds of the parallel Genetic 

Algorithm (GA) relative to other algorithms for the gr120, brazil58, and gr24 datasets. This analysis specifically 
focuses on symmetric TSP, utilizing a distance matrix to ensure that the travel cost from city A to city B equals the 
cost from city B to city A. 

The results reveal that the parallel GA consistently demonstrates superior runtime performance compared to 
other algorithms for the same city counts and population sizes. Notably, the CUDA kernel configuration set at 128 
significantly improves efficiency and contributes to enhanced speedup performance. 

5. Conclusion 
The Traveling Salesman Problem (TSP) is a well-documented challenge extensively discussed in academic 
literature, prompting numerous studies to propose various methodologies, including Genetic Algorithms (GA), to 
address its complexity. However, the computational time required for solving the TSP escalates as the problem 
size increases. Therefore, due to this challenge, researchers have conversely tried overcoming it by attempting 
various techniques of parallel implementation. This work will add significantly to the literature by introducing the 
parallel implementations of a GA, using Coarse-Grained strategies that are implemented through the CUDA 
platform for efficient resolution of the TSP. This approach systematically reduces runtime associated with 
problem-solving. In fact, in the experimental evaluation performed on the widely acknowledged TSPLIB 
benchmark dataset, with a wide problem size range, the Coarse-Grained Parallel Implementation indeed 
demonstrated a significant speedup: this actually pertains to parallel GA that achieved when using a gr120 dataset 
and a population size of 2048, an average processing time of 0.7 seconds compared to the average processing time 
from sequential considerations. Also, the quality of results from the parallel implementation was as good as those 
obtained by its sequential version, therefore reducing execution time. Conclusions and recommendations for 
future research may include An investigation based on the use of different techniques to solve the TSP problem. 
This study will continue by investigating other ways in which the performance of the genetic algorithm can be 
enhanced by employing different parallel approaches. Future works may also extend the proposed Coarse-
Grained Parallel approach by incorporating the migration of individuals. This can be done to increase diversity 
and thereby effectively enhance solution quality at the end of iterations. 

   
(a) (b) (c) 
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