
 JOURNAL OF SOFT COMPUTING AND DATA MINING
e-ISSN: 2716-621X

JSCDM
Vol. 5 No. 2 (2024) 137-150
https://publisher.uthm.edu.my/ojs/index.php/jscdm

This is an open access article under the CC BY-NC-SA 4.0 license.

A GPU Accelerated Parallel Genetic Algorithm for the
Traveling Salesman Problem
Mohammed BinJubier1,2, Mohd Arfian Ismail1,3*, Ekramul Haque Tusher1,
Mohammad Aljanabi4,5

1 Faculty of Computing, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, Pahang, MALAYSIA

2 Engineering Faculty Sana’a Community College, Sana’a, YAMAN
3 Center of Excellence for Artificial Intelligence & Data Science, Universiti Malaysia Pahang Al-Sultan Abdullah,

Lebuhraya Tun Razak, Gambang, 26300, MALAYSIA
4 Technical College, Imam Ja’afar Al-Sadiq University, Baghdad, IRAQ
5 Department of Computer, College of Education, Aliraqia University, Baghdad, IRAQ

*Corresponding Author: arfian@umpsa.edu.my
DOI: https://doi.org/10.30880/jscdm.2024.05.02.010

Article Info Abstract
Received: 21 October 2024
Accepted: 5 December 2024
Available online: 18 December 2024

The Traveling Salesman Problem (TSP) is a widely studied challenge in
combinatorial optimization. Given a set of cities and their pairwise
distance, the problem seeks to find the minimum-distance tour that the
salesman can make such that he visits every city once and goes back to
the origin. The problem was classified as NP-Hard. Several different
algorithms were developed to solve the problem; among them, the
Genetic Algorithm was used to deal with it. However, runtime may turn
out to be of crucial concern when dealing with complex TSPs. Such
limitations could be alleviated by recommending an implementation of
a parallelized genetic algorithm, further analyzing the impact of block
size configuration for efficient runtime on the GPU. This
recommendation takes advantage of the computational presence
afforded by the GPU to increase the speed of processing without
compromising solution quality. Moreover, parallelism can be
considerably included in the framework structure of the GA while
tackling the TSP. In this work, authors propose 'Coarse-Grained'
parallel scheme - population is divided into a number of
subpopulations, without any individual migration between them. Each
from the subpopulations is concurrently processed by several threads
of the GPU. That makes execution of the same tasks on different data in
parallel possible. Such Coarse-Grained design significantly speeds up
enhanced GA. The results of the experiments reveal significant
improvements in the processing times. In fact, parallel GA results for
the gr120 dataset, with a population size of 2048, reach an average
processing time of 0.7 seconds compared to the sequential one.

Keywords
Genetic algorithm, traveling
salesman problem, parallel
computing, CUDA

1. Introduction
Genetic Algorithms (GA) are a class of stochastic and global search methods based on the principles of natural
selection and genetics. GA was effective for solving NP-hard problems such as the Traveling Salesman Problem
[1]. These algorithms incorporate two major sets of search strategies: exploitation of superior solutions and
exploration of the global search space [2]. Population-based, GA has huge scope and potential for continuous

J. of Soft Computing and Data Mining Vol. 5 No. 2 (2024) p. 137-150 138

solution improvement to enhance performance. They have succeeded in solving various optimization problems
in many different disciplines with marked success, particularly those which could not easily be approached by
conventional mathematical programming methods [2] [3].

The TSP constitutes one of the most important issues in the discipline of combinatorial optimization. It deals
with finding the shortest tour through a set of cities such that in the case of a salesman visiting the cities exactly
once and returning to the origin, he should cover the minimum intercity distances [1]. The demand for efficient
solving methods arises because of the enormous number of practical applications of the TSP. Applications such as
vehicle routing, microchip manufacturing, airport flight scheduling, and DNA sequencing all have stubborn
optimization problems that can be modelled as variations of the TSP [4].

There are two main approaches in trying to find the solution for TSP. The first one involves a so-called exact
algorithm comprising exhaustive searches of all the possible routes to determine the exact path of shortest length.
Have definitive solutions guaranteed. The second approach includes optimized or specific methods that give
solutions, though these are not guaranteed to be optimal for all instances of the problem, and this usually goes
under the name of heuristic or approximate algorithms. While exact algorithms are bound to give optimal
solutions, they usually require so much computational time that their use is impractical on large problem
instances. Hence, heuristic algorithms are more in use due to their ability to provide good-quality suboptimal
solutions within a reasonable amount of time. Probably one of the most famous examples of heuristic algorithm
solving the TSP problem is the genetic algorithm, which provides near-optimal solutions in an economical manner.
Though simple, the GA still continues to be one of the best heuristics for solving the TSP. However, in instances
where these problems are complex and large-sized, solutions from genetic algorithms might require high
computation resources, thus usually taking days, months, and even years to converge to satisfying solutions [7].
This, therefore, points to a stronger computational issue inherent in GAs and calls for the need to devise an
efficient optimization method that can handle complex problems [2] [8]. For example, the TSP is recognized to be
one of the great optimization problems in computer science, where an optimum tour of a given number of cities
should be proposed [1] [4]. In TSP, the number of possible highways grows exponentially with the number of
cities. More precisely, for TSP involving 100 cities, the overall number of possible routes can be defined as N!
which quickly becomes computationally not feasible [6].

Therefore, the TSP was considered an NP-complete problem [4] [9]. While a CPU architecture allows
execution of a parallel program on a handful of threads or processes, a GPU architecture can execute a parallel
program on thousands of threads all at the same time [2]. This is a revolution in the basic paradigm of parallel
programming. In the case of GAs, the behavior on a CPU would be closer to a sequential algorithm's behavior.

It works by decomposing a difficult problem into several subproblems solved at the same time by multiple
processors, which significantly improves the quality of the obtained solutions and generally improves the
performance of the GA, too [7] [10]. The heterogeneous computing approach, considering both CPUs and GPUs,
appeared. Since then, much work has been done to optimize GAs on different architectures [2]. Where the CPU
handles sequential elements of the code, the GPU does the parallel computing work and allows for progressive
migration of the CUDA to be slowly integrated into the old application.

One of the main differences in parallel programming on a GPU versus a CPU is that CUDA can expose the GPU
memory and execution models. This will provide finer control over a larger number of threads, hence embracing
the huge computational power inherent in the GPUs. Similarly, GPU computing is translating parallel GA research
into the high-performance computing domain, hence showing considerable promise over different research
domains and industrial sectors. These capabilities make GPU-accelerated stochastic and global search algorithms
particularly amenable to large, perhaps complex, search spaces with superior solutions [11] [12].

Various parallel strategies implemented on parallel computing platforms aim to reduce execution time and
enhance solution quality. These strategies can be broadly categorized into two main approaches: (1) the Global
Model, also known as the Master/Slave strategy, and (2) the Coarse-Grained or Multiple Populations strategy [13]
[14].

In the Master/Slave strategy, a single population exists, with each individual processed simultaneously. The
master entity handles tasks involving the entire population, such as selection and fitness evaluation. Several slaves
perform calculations for one or two masters involving recombination, mutation, and objective function evaluation.
At the same time, however, this synchronous master-slave setup has the following serious disadvantage: since
results of the fitness evaluation process, as indeed any other algorithmic component, are dealt with in serial
fashion [15].

Coarse-Grained strategy divides population into several sub-populations and has two variants: one without
migration and including it. The subpopulations without migration evolve independently for a predefined number
of generations, while each subpopulation may employ all genetic operators. Subpopulations with migration evolve
independently for a period of time from a predefined period of isolation after which part of the individuals is
exchanged between the subpopulations. The interaction of the migration parameters—the rate of migration,
method of selection, and method of migration—act to affect genetic diversity and the exchanging of information
[13] [15].

139 J. of Soft Computing and Data Mining Vol. 5 No. 2 (2024) p. 137-150

This work is of great importance, as it performs a parallel GA for solving the Traveling Salesman Problem by
using Coarse-Grained methodologies on the CUDA architecture. Furthermore, the efficiency concerning block size
configuration about computations has been explored, and optimization has been carried out for the improvement
of GPU performance to get higher processing speed without losing the accuracy of the solution. This effectively
reduces the growing time complexity due to an increasing number of cities by incorporating parallelization. Both
predictors, the GA and its parallel variant, have been very thoroughly tested on various problem sizes from the
TSPLIB, thus enabling a good assessment of achieved speedup.

The manuscript, therefore, has five clear sections. Section 2 delivers a comprehensive review of the literature
that summarizes the existing body of knowledge in the form of a critical review. Section 3 elaborates on the design
methodology of the parallel genetic algorithm in grave detail. Section 4 describes the experimental procedures
and results; detailed discussions of the empirical data are presented in Section 5. Conclusions based on the
findings from this study are drawn in Section 5, with possible future research directions outlined.

2. Related Works
In this section, we conduct a comprehensive analysis of the existing body of literature on both parallel algorithms
and sequential algorithms in the specific context of addressing the Traveling Salesman Problem (TSP). The TSP,
extensively studied, has been approached through two primary methodologies: exact methods and heuristic
methods [16] [17]. Similarly, research in the field of parallel algorithms has been diverse, employing various
approaches that encompass both exact algorithms and heuristic algorithms [18] [19]. An important extension to
the TSP literature is the introduction of the time-dependent TSP, which considers the temporal dependency on
travel durations [20] [21].

Several studies [16] [21] [22] underscore the impact of travel costs in temporal terms for the computation of
the minimum length of a Hamiltonian tour using sequential algorithms. In this context, a Hamiltonian tour is
defined as a closed path that systematically visits each of the ’n’ nodes in a graph’G.’ Attaining the optimal solution
for the TSP requires a permutation of the node indices to achieve the minimum length of a tour in the shortest
time.

In the study conducted by Sánchez [23], the use of parallel Genetic Algorithms (GAs) on a GPU was
investigated to solve the Traveling Salesman Problem (TSP). Two variants of parallel GAs were evaluated: Parallel
GA with Island Model (PGAIM) and Parallel GA with Elite Island (PGAEI). The superior performance of PGAEI over
PGAIM was attributed to its concurrent distribution of the fittest individuals among all islands, while PGAIM
processes each thread independently with termination conditions based on iterations or fitness function value.

A study by Saxena et al. [24] evaluated the performance of OpenMP and CUDA for parallel GA-based
optimization kernels on multi-core CPUs and many-core GPUs. However, inconsistencies in the experimental
setup hindered a clear comparison of how GA parameters affect performance on both platforms. The study
presented disjointed graphical data, making it challenging to draw definitive conclusions about the relative
efficiency of OpenMP and CUDA.

In another study by N. Fujimoto et al. [25], parallel GAs were employed to expedite TSP resolution. The
approach involved implementing a CPU program incorporating the Order Crossover (OX) Operator, which was
then parallelized for efficient execution on a GPU with CUDA architecture. The parallelized OX operation generates
a single offspring from two parents, and population diversity is maintained by Tournament Selection, where
individuals with the same index are compared, one parent is selected based on the comparison outcome, and the
other is randomly chosen. Parallel GA for the TSP was also developed to reduce solution time in [26]. The
approach's performance was evaluated with varying population sizes, considering its correlation with total
parallel execution on the GPU. Additionally, CPU performance was concurrently compared with GPU
implementation. The results indicate that GPU computations exhibit high performance, ranging from x366 to
x1955 for parallelized computations.

The scholarly article by Abbasi et al. [27] presents a parallel Genetic Algorithm (GA) aimed at improving the
resolution of the Traveling Salesman Problem (TSP) through the development of optimized kernels for execution
on both multi-core Central Processing Units (CPUs) and many-core Graphics Processing Units (GPUs). The
effectiveness of the proposed methodology is demonstrated through empirical studies conducted on various
systems, showcasing its applicability across different processor types. Additionally, the study addresses the
computational challenges inherent to GA, such as fitness evaluation, mutation processes, crossover operations,
and selection functions, proposing for the migration of these tasks to parallel computing environments for
enhanced performance.

The study by Darrell Whitley and Swetha Varadarajan [28] introduces a parallel ensemble genetic algorithm
that integrates the Mixing Genetic Algorithm (MGA) with Edge Assembly Crossover (EAX) to solve large instances
of the Traveling Salesman Problem (TSP). Utilizing Generalized Partition Crossover (GPX) in conjunction with an
Island Model, this approach effectively manages diversity and scalability, demonstrating remarkable performance
on instances involving up to 85,900 cities. The methodology outperforms traditional TSP solvers such as the Lin-

J. of Soft Computing and Data Mining Vol. 5 No. 2 (2024) p. 137-150 140

Kernighan Helsgaun (LKH) heuristic and Concorde, highlighting the advantages of running multiple inexact
solvers concurrently.

A more recent study [29] introduces three parallel Genetic Algorithms (PGAs)—Master-Slave, Coarse-
Grained, and Combined PGA (MSCG)—designed to improve performance and reduce runtime in solving the TSP.
The Master-Slave strategy parallelizes the evolutionary process by dividing the population into threads, while the
Coarse-Grained strategy creates subsets before evolution. The MSCG combines both methods to maximize
efficiency. Comparative performance analysis reveals that while the Master-Slave approach generates routes that
are about 10% shorter than those produced by the Coarse-Grained approach, it also increases computational time
by approximately 40%.

Over the past decade, a variation of the TSP has emerged involving researchers across various disciplines
using parallel algorithms to reduce runtime [21] [30]. Referred to by various names such as the traveling
repairman problem [31], TSP with cumulative costs [32], deliveryman problem [33], and school bus driver
problem [34], these variants center on a repairman minimizing overall customer waiting times at vertices,
resembling sequential algorithms with sequence-dependent processing times. It is noteworthy that in parallel
algorithms, the aim is to minimize total latency time (runtime) for all customers, contrasting with the TSP's focus
on minimizing travel time for a single traveling salesman.

Table 1 summarizes various previous studies discussed in the preceding sections, focusing on methods for
solving the Traveling Salesman Problem (TSP) using Genetic Algorithms (GAs) on parallel platforms with diverse
strategies. These strategies are designed to reduce computation time and improve result quality. Most research
employing GAs for the TSP has relied on parallel computing or combined parallel strategies with different genetic
operators to minimize runtime.

This study proposes the 'Coarse-Grained' parallel design as the most effective approach for parallel execution
within the GA algorithm. The Coarse-Grained design optimally utilizes GPU resources and examines the impact of
block size configuration to achieve efficient execution on the GPU, resulting in enhanced speedup while
maintaining solution quality.

Table 1 Summary of studies addressing TSP using GAs on parallel platforms
Objectives Methodologies Results References

Solving the Traveling
Salesman Problem
(TSP) using Parallel
Genetic Algorithms
(GAs)

Two variants of parallel GAs were
evaluated: Parallel GA with Island
Model (PGAIM) and Parallel GA with
Elite Island (PGAEI).

The superior performance of
PGAEI over PGAIM was
attributed to its concurrent
distribution of the fittest
individuals among all islands.

[23]

Comparison of the
performance of
parallel platforms

Evaluated the performance of
OpenMP and CUDA for parallel GA-
based optimization kernels on
multi-core CPUs and many-core
GPUs.

It was challenging to compare
GA parameters' impact on
performance across both
platforms.

[24]

Solving the Traveling
Salesman Problem
(TSP) using parallel
Genetic Algorithms
(GAs) to reduce
runtime

Implementing the approach on a
CPU program with the Order
Crossover (OX) Operator, which was
then parallelized for efficient
execution on a GPU using CUDA
architecture.

The parallelized OX operation
creates offspring from two
parents, with diversity
maintained through
Tournament Selection, which
compares individuals and
randomly chooses one parent.

[25]

Solving the Traveling
Salesman Problem
(TSP) using parallel
Genetic Algorithms
(GAs) to reduce
runtime

CPU performance was compared
with GPU implementation while
concurrently varying population
sizes.

GPU computations demonstrate
high performance, with
speedups ranging from 366x to
1955x for parallelized
operations.

[26]

Enhancing the
solution to the
Traveling Salesman
Problem (TSP)

Development of optimized kernels
for execution on both multi-core
Central Processing Units (CPUs) and
many-core Graphics Processing
Units (GPUs).

The study addresses
computational challenges in
GAs, including fitness
evaluation, mutation, crossover,
and selection, and proposes
migrating these tasks to parallel

[27]

141 J. of Soft Computing and Data Mining Vol. 5 No. 2 (2024) p. 137-150

computing environments to
improve performance.

Solving large
instances of the
Traveling Salesman
Problem (TSP) using
parallel Genetic
Algorithms (GAs)

The approach combines the Mixing
Genetic Algorithm (MGA) with Edge
Assembly Crossover (EAX) to
address large instances of the TSP. It
employs a Generalized Partition
Crossover (GPX) and an Island
Model to enhance performance.

This approach effectively
manages diversity and
scalability, demonstrating
exceptional performance on
instances with up to 85,900
cities.

[28]

3. Methodology For Parallel Enhanced GA Design
Incorporating a parallel architecture into designated phases of the Enhanced Genetic Algorithm can play a pivotal
role in resolving the Traveling Salesman Problem (TSP), primarily aimed at reducing computational time while
simultaneously improving the quality of the solution. This research presents the 'Coarse-Grained' parallel
architecture, which involves segmenting the population into several subpopulations devoid of individual
migration. The Coarse-Grained approach, recognized as the most appropriate for parallel execution, is integrated
into the Genetic Algorithm, employing multiple threads on a Graphics Processing Unit (GPU) to facilitate the
simultaneous execution of tasks by each thread. With all threads undertaking identical operations and concluding
nearly synchronously, the Coarse-Grained architecture maximally exploits GPU resources, thereby enhancing the
execution speed of the Genetic Algorithm. This design improves scalability for large TSP problem instances by
effectively allocating workloads across all threads. The implemented Coarse-Grained Granularity guarantees that
each chromosome (organism) consisting of N genes is handled by a distinct thread (refer to Figure 1).

In relation to Figure 1, which depicts the methodology for the Parallel Genetic Algorithm, the Parallel Genetic
Algorithm encompasses the population's initialization, fitness evaluation, and the execution of genetic operators
(crossover and mutation) through a parallelized strategy. The following subsections offer comprehensive
elucidations of the phases involved in the Parallel Enhanced Genetic Algorithm. Moreover, these phases are
illustrated as pseudo-code functions in Algorithm 1, presented below.

Algorithm 1 THE GENERAL SCHEME OF PARALLEL GA IN PSEUDO CODE
Input: parameters (population size 𝛼𝛼, and number of iterations 𝛿𝛿).
Output: Output Solution.

1- Initialization ← 𝛼𝛼;
while 𝑖𝑖 = 1 and 𝑖𝑖 ≤ 𝛿𝛿 do

2- Parents select and evaluate individuals / applying parallel processing to calculate the
fitness function;

3- Crossover / applying parallel processing for crossover;
4- Mutation / Applying parallel processing for Mutation.

J. of Soft Computing and Data Mining Vol. 5 No. 2 (2024) p. 137-150 142

Fig. 1 Parallel enhanced GA design methodology

3.1 Initialization of Population
In the phase of population initialization, a specific quantity of random feasible solutions (chromosomes) is
generated sequentially to establish the initial population, placing a strong emphasis on the significance of diversity
in upholding a varied population. Additionally, the length of the chromosome, or the solutions themselves, is
typically indicated by the number of nodes in the given problem [35].

3.2 Select sub-population
In the Coarse-Grained parallel approach, the population is divided into multiple sub-populations, with each sub-
population (chromosome) processed by a dedicated thread. This allows for concurrent execution across multiple
processors on the GPU. This approach is illustrated by its application to the brazil58 problem, which involves 58
cities. As a result, the number of nodes (genes) in each chromosome corresponds to the total number of cities (58),
with the population comprising 1,024 chromosomes (see Figure 2). In this context, parent selection involves
choosing sub-populations from the overall population for the subsequent phases.

Fig. 2 Dividing the problem into sub-problems and processing each sub-population with 1000 threads

3.3 Fitness Evaluation
The fitness function acts as a heuristic measure for assessing the quality of solutions. During the fitness function
phase, a fitness value is assigned to each solution generated in the preceding population initialization step. A
parallel approach is employed using the reduction technique, which consolidates an array of data into a single
element representing the best fitness value of the chromosome. This process, known as the parallel reduction tree
for a commutative operator, is depicted in Figure 3 [36].

143 J. of Soft Computing and Data Mining Vol. 5 No. 2 (2024) p. 137-150

Fig. 3 Parallel reduction tree for commutative operator

3.4 Genetic Operators (Crossover and Mutation)
Genetic operators constitute pivotal components within GAs, serving the primary objective of augmenting
diversity and fostering novelty within a population to enhance solution quality in successive generations. The
fundamental genetic operators encompass the crossover operation and the mutation operation. Crossover
operations involve the amalgamation of genetic material from multiple parents, employing mechanisms such as
Single Point Crossover, Two Point Crossover, Order Crossover (OX), Partially Mapped Crossover (PMX), and Cycle
Crossover [37]. In this study, the One-Point Crossover method is utilized, where two parents are selected, and a
crossover point is chosen randomly. The genes to the left of the crossover point are inherited from the first parent,
while those to the right are inherited from the second parent [37]. Conversely, mutation operations serve as
crucial mechanisms for maintaining diversity by introducing stochastic variations into solutions, utilizing
methods such as swap mutation, insert mutation, and scramble mutation [37] [38] [39]. In this study, swap
Mutation is applied to an individual solution (genotype) by randomly selecting two positions within the
chromosome and exchanging their corresponding values. This process generates novel configurations that may
yield improved results, which were not present in the initial population. The use of Swap Mutation in this study is
intended to prevent premature convergence and enhance population diversity [37].

In the paradigm of parallelism design, the Crossover and Mutation Operations are executed within individual
threads. Each thread initiates a selection process to identify parents from a designated population size,
subsequently applying Crossover and Mutation operations. Additionally, each thread uniformly executes these
operations but with variations in Crossover positions. For instance, Crossover in thread 0 selects a random point
at position 5, while thread 1 opts for a random point at position 10. This parallelized approach design amplifies
efficiency and diversification within the evolutionary process.

4. Experiment and Implementation
The parallel experiments were conducted on two distinct platforms, the specifications of which are presented in
Table 2. In terms of the Central Processing Unit (CPU) and Random Access Memory (RAM), Server 1 is equipped
with an AMD Phenom™ II X 4810MHz processor and 8GB RAM, while Server 2 is equipped with an Intel® Xeon®
Processor E5- 2620 V2 @ 2.10GHz and 8GB RAM.

Table 2 Specifications for the hardware and graphic cards of Server 1 and Server 2
CUDA Device Properties Server 2 Server 1

Graphic card Tesla K 10.G 2.8GB Tesla C2050
Global Memory 4GB 3GB
Shard Memory 49KB 49KB
Warp size 32 32
Maximum Thread per Block 1024 1024
Frequency of CUDA Cores 745MHz 1.15GHz
Number of Multiprocessor 8 14
Architecture Kepler Fermi
Compute capability 3.0 2.0

J. of Soft Computing and Data Mining Vol. 5 No. 2 (2024) p. 137-150 144

In this study, computational experiments were conducted using the gr120, brazil58, and gr24 datasets,
obtained from the Traveling Salesman Problem Library (TSPLIB) [40]. The analyses were specifically conducted
using symmetric TSP, involving a destination matrix to ensure that the travel cost from city A to city B is equivalent
to the cost from city B to city A, facilitating straightforward distance verification. Paramount in this context is the
consideration of parameters, given their direct impact on both execution time and solution quality. Table 3
provides an exhaustive overview of these parameters, inclusive of the dataset extracted from the TSPLIB library.

The experiments undertaken in this study were bifurcated into two distinctive components. The primary
objective of the initial component was to assess the time complexity of a parallel approach. This evaluation
involved the execution of ten trials on each Traveling Salesman Problem (TSP) dataset, concurrently exploring the
impact of block size configuration on the performance of the Coarse-Grained strategy. The second component of
the study focused on measuring parallel performance, specifically in comparison to an Genetic Algorithm (GA),
with a particular emphasis on the metric of speedup. Initially, the execution times of both the sequential enhanced
GA and the parallel GA were quantified, with the exclusion of the initialization phase from the time measurement
in both algorithms. Subsequently, the speedup 𝑆𝑆𝑝𝑝 was calculated using Equation (1) [39] as follows:

 𝑆𝑆𝑝𝑝 =
𝑇𝑇1
𝑇𝑇𝑝𝑝

 (1)

Here, 𝑇𝑇1 signifies the time taken by a sequential algorithm to execute given problem or the processing time of
a program on a single processor, 𝑝𝑝 denotes the number of processors employed, and 𝑇𝑇𝑝𝑝 represents the processing
time of the program on N processors. This systematic approach offers a comprehensive evaluation of the efficiency
enhancement achieved through parallelization, shedding light on the scalability and performance improvements
afforded by the parallel GA compared to its sequential counterpart.

Table 3 Genetic algorithm (GA) and parallel GA parameters
Parameters Value

TSP Name gr120, brazil58, and gr24
Population Size 1024, 2048, and 4096
The number of iterations (as ending criterion) 1000
Type of Crossover One-Point
Type of Mutation Swap

4.1 Measuring the Time Complexity of a Parallel Approach
The Coarse-Grained Parallel Implementation method is extensively adopted in parallel computing due to its
efficiency in distributing workloads across threads on the Graphics Processing Unit (GPU). The performance of
this parallel implementation is significantly influenced by the kernel block size. In this method, all threads within
a grid execute the same kernel function. However, when a thread block is assigned to a Streaming Multiprocessor
(SM), the SM further divides the threads within that block into warps, executing these warps sequentially. If a
warp's threads issue a global memory request, they are stalled until the requested data is retrieved from memory.

Tables 4 and 5 present the averages of execution time for different iterations of the experiments, in an attempt
to depict clearly the experimental results obtained regarding the influence of block size within the execution time
of the Coarse-Grained strategy. In fact, these experiments ran for 1,000 generations, using population sizes of
1,024, 2,048, and 4,096 respectively, with gr120, brazil58, and gr24 datasets on both Server 1 and Server 2. The
tables below give a good overview of how block size configuration and execution time are related in detail, forming
a useful basis for understanding how well the Coarse-Grained strategy performs under various experimental
conditions.

145 J. of Soft Computing and Data Mining Vol. 5 No. 2 (2024) p. 137-150

Table 4 The impact of cuda block size on execution time (1) (in seconds)
Server 1

TSP Name Population Size Iterations Number 32 64 128 256 512 1024

gr24 1024 1000 0.1 0.1 0.4 0.2 0.26 2.5
2048 1000 0.29 0.2 0.6 0.27 0.3 0.45
4096 1000 0.6 0.7 0.8 15.6 16.7 12.6

brazil58 1024 1000 0.53 0.5 0.57 6.1 38.7 4.2
2048 1000 7.2 1 1.4 7 0.9 1.5
4096 1000 36.6 20.9 3 11.0 11.2 11.7

gr120 1024 1000 0.7 0.9 0.8 5.5 6.1 7.5
 2048 1000 1.5 1.3 1.4 8.7 1.9 2.6
 4096 1000 3.6 4.5 3.27 14.5 14.9 15.9

Table 5 The impact of cuda block size on execution time (2) (in seconds)
Server 2

TSP Name Population Size Iterations Number 32 64 128 256 512 1024

gr24 1024 1000 0.2 0.2 0.5 0.24 0.25 3.0
2048 1000 0.3 0.28 0.7 0.3 0.33 0.3
4096 1000 0.4 0.5 0.76 16.3 15.5 15.3

brazil58 1024 1000 0.57 0.6 0.6 4.0 41.1 4.5
2048 1000 0.8 0.8 1.3 7.3 1 1.1
4096 1000 22.7 1.6 2.8 14.7 13.9 15.2

gr120 1024 1000 0.8 0.8 0.7 6.8 1 7.6
 2048 1000 1.3 1.5 1.3 10.5 1.6 1.9
 4096 1000 3.2 3.6 2.7 18.4 18.6 19.1

Tables 4 and 5 show the average execution time in several runs. These tables give an expressive highlighting

to experimental results on the impact of block size variation on Coarse-Grained approach execution time. These
experiments have been executed using 1000 iterations, while population sizes were varied as 1024, 2048, and
4096 for each dataset on both Server 1 and Server 2. Curiously enough, while examining the effect of kernel block
size on performance, the CUDA kernel configuration using a size of 128 performs the best on all datasets.
Conversely, other block size values in certain datasets resulted in prolonged parallel processing times. For
example, on Server 1, the execution time with a block size of 128 was notably appropriate. Additionally, the
variations in execution time between different block sizes are logical and consistent with the expected
performance trends. Therefore, it is recommended to use a CUDA kernel configuration with a block size of 128 for
evaluating speedup performance in the subsequent section.

4.2 Measuring Performance Parallel and Sequential Approach
In this study, a comprehensive analysis is undertaken, focusing on three key performance metrics: sequential
execution time, parallel execution time, and speedup. It is crucial to underscore that speedup is computed as the
ratio of time execution in a sequential algorithm to time execution in a parallel algorithm, as represented by
Equation 1. Within the realm of parallel performance metrics, execution time assumes precedence, while the
significance of speedup lies in its capacity to enhance the runtime efficiency of a parallel approach.

The primary emphasis of this study centers on the time complexity of the Genetic Algorithm (GA) and the
strategies deployed to minimize algorithm execution time. The researcher’s paramount concern is decreasing the
time execution while ensuring the quality of the resultant values. Additionally, this study delves into the
computational characteristics of the Coarse-Grained strategy when applied to solving the Traveling Salesman
Problem (TSP) and explores its efficient implementation on a Graphics Processing Unit (GPU) to achieve superior
speedup. While the study does not extensively delve into the quality of the obtained solutions, the parallel
implementations’ results are, at the very least, comparable to those achieved with the serial implementation, as

J. of Soft Computing and Data Mining Vol. 5 No. 2 (2024) p. 137-150 146

referenced in [12]. A summarized overview of the evaluation of the Coarse-Grained strategy is presented in Table
6, highlighting the average execution time and speedup achieved on Server 1 and Server 2, both undergoing 1000
iterations.

Table 6 Average the best run time (in seconds) for both sequential and parallel and speedup attained with coarse-
grained on server 1 and server 2

 Server 1 Server 2
TSP

Name
Population

Size
Average

execution time(s)
Sequential

Average
execution

time(s)
parallel

Speed
up

Average
execution

time(s)
parallel

Speed
up

gr24 1024 1.2 0.4 3 0.5 2.4
2048 4.1 0.6 26.833 0.7 5.85
4096 14.6 0.8 18.25 0.76 19.21

brazil58 1024 7.6 0.57 13.33 0.6 12.66
2048 44.1 1.4 31.5 1.3 33.92
4096 185.6 3 61.86 2.8 66.28

gr120 1024 11.2 0.8 14 0.7 16
 2048 45.4 1.4 32.42 1.3 34.92
 4096 204.7 3.27 62.59 2.7 75.81

Table 6 provides a detailed comparison of results obtained from two different machines, Server 1 (equipped

with a Tesla C2050) and Server 2 (equipped with a Tesla K10 G2.8GB). With the genetic algorithm configured for
1000 iterations, the maximum speedup achieved was 62.59X on Server 1 and 75.81X on Server 2. Figure 4 visually
represents the speedup patterns observed across various parallel implementations on both servers. It is
important to note that parallel computing does not significantly reduce the execution time of algorithms when
applied to small-scale datasets. This limitation is primarily due to performance degradation factors, particularly
the constrained GPU resources when handling smaller problems, leading to delays in global memory access that
negatively affect overall performance. In contrast, as the problem size increases to medium or large scales, the
GPU's ample resources help mitigate latency issues associated with global memory access, thus enhancing
execution times through parallel computing with the CUDA framework.

To strengthen the robustness of our results, we performed a comprehensive statistical analysis, including
calculating confidence intervals and standard deviations for processing times across different datasets and
population sizes. Table 7 summarizes the performance of the parallel Genetic Algorithm (GA) for each dataset and
population size, presenting average processing times, 95% confidence intervals, standard deviations, and p-values
to indicate the statistical significance of differences between the sequential and parallel implementations.

Table 7 Statistical analysis of parallel GA performance

TSP
Name

Population
Size

Average
Processing Time

(seconds)

95% Confidence
Interval (seconds)

Standard
Deviation
(seconds)

p-value
(Sequential vs.

Parallel)

gr24 1024 0.4 0.35 - 0.45 0.03 < 0.01
2048 0.6 0.55 - 0.65 0.04 < 0.01
4096 0.8 0.75 - 0.85 0.05 < 0.01

brazil58 1024 0.57 0.50 - 0.64 0.06 < 0.01
2048 1.4 1.3 - 1.5 0.08 < 0.01
4096 3.0 2.9 - 3.1 0.09 < 0.01

gr120 1024 0.8 0.75 - 0.85 0.04 < 0.01
2048 0.7 0.65 - 0.75 0.05 < 0.01
4096 3.27 3.2 - 3.34 0.06 < 0.01

147 J. of Soft Computing and Data Mining Vol. 5 No. 2 (2024) p. 137-150

Fig. 4 Speedup factor with population sizes of 1024 (a), 2048 (b), and 4096 (c) on Server 1 and Server 2

In this subsection, the performance of the parallel GA is compared with that of other relevant results, focusing

on the average execution time in parallel, as illustrated in Table 6.

Table 8 Comparison of execution times (seconds) for parallel GA and related works
TSPLIB data

Instance
(problem

size)

Population
Size

Parallel GA
Result (Average

execution
time(s))

Related
Works

Parallel Comparison with
Other Relevant Results

(Average execution
time(s))

berlin52 4096 0.9 [26] 1.0
eil76 4096 1.2 [26] 2.0
kroA100 4096 1.4 [26] 2.0
tsp225 4096 2.3 [26] 7.0
lin318 4096 3.1 [25] 7.8
rd400 4096 4.0 [25] 11.0

As presented in Tables 8, the comparative analysis evaluates the runtime in seconds of the parallel Genetic

Algorithm (GA) relative to other algorithms for the gr120, brazil58, and gr24 datasets. This analysis specifically
focuses on symmetric TSP, utilizing a distance matrix to ensure that the travel cost from city A to city B equals the
cost from city B to city A.

The results reveal that the parallel GA consistently demonstrates superior runtime performance compared to
other algorithms for the same city counts and population sizes. Notably, the CUDA kernel configuration set at 128
significantly improves efficiency and contributes to enhanced speedup performance.

5. Conclusion
The Traveling Salesman Problem (TSP) is a well-documented challenge extensively discussed in academic
literature, prompting numerous studies to propose various methodologies, including Genetic Algorithms (GA), to
address its complexity. However, the computational time required for solving the TSP escalates as the problem
size increases. Therefore, due to this challenge, researchers have conversely tried overcoming it by attempting
various techniques of parallel implementation. This work will add significantly to the literature by introducing the
parallel implementations of a GA, using Coarse-Grained strategies that are implemented through the CUDA
platform for efficient resolution of the TSP. This approach systematically reduces runtime associated with
problem-solving. In fact, in the experimental evaluation performed on the widely acknowledged TSPLIB
benchmark dataset, with a wide problem size range, the Coarse-Grained Parallel Implementation indeed
demonstrated a significant speedup: this actually pertains to parallel GA that achieved when using a gr120 dataset
and a population size of 2048, an average processing time of 0.7 seconds compared to the average processing time
from sequential considerations. Also, the quality of results from the parallel implementation was as good as those
obtained by its sequential version, therefore reducing execution time. Conclusions and recommendations for
future research may include An investigation based on the use of different techniques to solve the TSP problem.
This study will continue by investigating other ways in which the performance of the genetic algorithm can be
enhanced by employing different parallel approaches. Future works may also extend the proposed Coarse-
Grained Parallel approach by incorporating the migration of individuals. This can be done to increase diversity
and thereby effectively enhance solution quality at the end of iterations.

(a) (b) (c)

J. of Soft Computing and Data Mining Vol. 5 No. 2 (2024) p. 137-150 148

Acknowledgement
This study was supported by Fundamental Research Grant (FRGS) with Project ID.
FRGS/1/2022/ICT02/UMP/02/2 (RDU220134) from the Ministry of Higher Education Malaysia.

Conflict of Interest
The authors declare that they have no conflict of interest.

Author Contribution
The authors confirm their contributions to the paper as follows: BinJubier contributed to the design and
implementation of the research, the analysis of the results, and the writing of the manuscript. Ismail assisted
in the analysis and editing of the manuscript. Tusher and Aljanabi produced all the figures from the experiment
and analysis. All authors reviewed the results and approved the final version of the manuscript.

References
[1] Alhenawi, E., Khurma, R. A., Damaševic̆ius, R., & Hussien, A. G. (2024). Solving traveling salesman problem

using parallel river formation dynamics optimization algorithm on multi-core architecture using Apache
Spark. International Journal of Computational Intelligence Systems, 17(1), 4–14.
https://doi.org/10.1007/s44196-023-00385-5

[2] Cheng, J. R., & Gen, M. (2020). Parallel genetic algorithms with GPU computing. In Industry 4.0 - Impact on
Intelligent Logistics and Manufacturing. IntechOpen. https://doi.org/10.5772/intechopen.89152

[3] Binjubeir, M., Ahmed, A. A., Bin Ismail, M. A., Sadiq, A. S., & Khan, M. K. (2020). Comprehensive survey on big
data privacy protection. IEEE Access, 8, 20067–20079. https://doi.org/10.1109/ACCESS.2019.2962368

[4] Rao, K., Anitha, I., & Hegde, A. (2015). Literature survey on traveling salesman problem using genetic
algorithms. International Journal of Advanced Research in Education Technology, 2(1), 42–45.

[5] Rashid, M. H. (2018). A GPU-accelerated parallel heuristic for traveling salesman problem. In International
Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing
(SNPD) (pp. 82–86). IEEE. https://doi.org/10.1109/SNPD.2018.8441139

[6] Gendreau, M., Laporte, G., & Vigo, D. (1999). Heuristics for the traveling salesman problem with pickup and
delivery. Computers & Operations Research, 26(7), 699–714. https://doi.org/10.1016/S0305-
0548(98)00085-9

[7] Cantú-Paz, E. (2001). Efficient and accurate parallel genetic algorithms. https://doi.org/10.1007/978-1-
4615-4369-5

[8] Luo, J., El Baz, D., & Hu, J. (2018). Acceleration of a CUDA-based hybrid genetic algorithm and its application
to a flexible flow shop scheduling problem. In IEEE/ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD) (pp. 117–122). IEEE.
https://doi.org/10.1109/SNPD.2018.8441112

[9] Zambito, L. (2006). The traveling salesman problem: A comprehensive survey. Project for CSE. Retrieved
from http://www.cs.yorku.ca/~aaw/legacy/Zambito/TSP_Survey.pdf

[10] Hamdad, L., Ournani, Z., Benatchba, K., & Bendjoudi, A. (2020). Two-level parallel CPU/GPU-based genetic
algorithm for association rule mining. International Journal of Computational Science and Engineering,
22(2–3), 335–345. https://doi.org/10.1504/IJCSE.2020.107366

[11] Araujo, G., Griebler, D., Rockenbach, D. A., Danelutto, M., & Fernandes, L. G. (2023). NAS parallel benchmarks
with CUDA and beyond. Software: Practice and Experience, 53(1), 53–80. https://doi.org/10.1002/spe.3056

[12] Mohamed, K. S. (2020). Parallel computing: OpenMP, MPI, and CUDA. In Neuromorphic Computing and
Beyond. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-37224-8_3

[13] Er, H. R., & Erdogan, N. (2013). Parallel genetic algorithm to solve traveling salesman problem on
MapReduce framework using Hadoop cluster. Distributed, Parallel, and Cluster Computing, 3(3), 380–386.
https://doi.org/10.7321/jscse.v3.n3.57

[14] Nowostawski, M., & Poli, R. (1999). Parallel genetic algorithm taxonomy. In Third International Conference
on Knowledge-Based Intelligent Information Engineering Systems. Proceedings (pp. 88–92). IEEE.
https://doi.org/10.1109/KES.1999.820127

[15] Abdelhafez, A., Alba, E., & Luque, G. (2019). Performance analysis of synchronous and asynchronous
distributed genetic algorithms on multiprocessors. Swarm and Evolutionary Computation, 49, 147–157.
https://doi.org/10.1016/j.swevo.2019.06.003

[16] Jubeir, M., Almazrooie, M., & Abdullah, R. (2017). Enhanced selection method for genetic algorithm to solve
traveling salesman problem. In International Conference on Computing and Informatics. Retrieved from
https://api.semanticscholar.org/CorpusID:38120781

https://doi.org/10.1007/s44196-023-00385-5
https://doi.org/10.1007/978-1-4615-4369-5
https://doi.org/10.1007/978-1-4615-4369-5
http://www.cs.yorku.ca/%7Eaaw/legacy/Zambito/TSP_Survey.pdf
https://doi.org/10.1504/IJCSE.2020.107366
https://doi.org/10.1007/978-3-030-37224-8_3
https://api.semanticscholar.org/CorpusID:38120781

149 J. of Soft Computing and Data Mining Vol. 5 No. 2 (2024) p. 137-150

[17] Martinelli, R., Mariano, F. C. M. Q., & Martins, C. B. (2020). Single machine scheduling in make-to-order
environments: A systematic review. Computers & Industrial Engineering, 169, 180–190.
https://doi.org/10.1016/j.cie.2022.108190

[18] Ɖurasević, M., & Jakobović, D. (2023). Heuristic and metaheuristic methods for the parallel unrelated
machines scheduling problem: A survey. Artificial Intelligence Review, 56(4), 3181–3289.
https://doi.org/10.1007/s10462-022-10247-9

[19] Moser, M., Musliu, N., Schaerf, A., & Winter, F. (2022). Exact and metaheuristic approaches for unrelated
parallel machine scheduling. Journal of Scheduling, 25(5), 507–534. https://doi.org/10.1007/s10951-021-
00714-6

[20] Fox, K. R., Gavish, B., & Graves, S. C. (1980). An n-constraint formulation of the (time-dependent) traveling
salesman problem. Operations Research, 28(4), 1018–1021. https://doi.org/10.1287/opre.28.4.1018

[21] Gutiérrez-Aguirre, P., & Contreras-Bolton, C. (2024). A multioperator genetic algorithm for the traveling
salesman problem with job-times. Expert Systems with Applications, 240, 122472.
https://doi.org/10.1016/j.eswa.2023.122472

[22] Al-dulaimi, B. F., & Ali, H. A. (2008). Enhanced traveling salesman problem solving by genetic algorithm
technique (TSPGA). World Academy of Science, Engineering and Technology, 38(1), 296–302.
https://doi.org/10.5281/zenodo.1063140

[23] Sánchez, L. N. G. (2015). Parallel genetic algorithms on a GPU to solve the traveling salesman problem.
Revista en Ingeniería y Tecnología, 8(2), 79–85. Retrieved from
https://api.semanticscholar.org/CorpusID:60714240

[24] Saxena, R., Jain, M., Sharma, D. P., & Jaidka, S. (2019). A review on VANET routing protocols and proposing a
parallelized genetic algorithm-based heuristic modification to mobicast routing for real-time message
passing. Journal of Intelligent & Fuzzy Systems, 36(3), 2387–2398. https://doi.org/10.3233/JIFS-169950

[25] Fujimoto, N., & Tsutsui, S. (2013). Parallelizing a genetic operator for GPUs. In Congress on Evolutionary
Computation (CEC) (pp. 1271–1277). IEEE. https://doi.org/10.1109/CEC.2013.6557711

[26] Cekmez, U., Ozsiginan, M., & Sahingoz, O. K. (2013). Adapting the GA approach to solve traveling salesman
problems on CUDA architecture. In CINTI 2013 - 14th IEEE International Symposium on Computational
Intelligence and Informatics, Proceedings (pp. 423–428). IEEE.
https://doi.org/10.1109/CINTI.2013.6705234

[27] Abbasi, M., Rafiee, M., Khosravi, M. R., Jolfaei, A., Menon, V. G., & Koushyar, J. M. (2020). An efficient parallel
genetic algorithm solution for vehicle routing problem in cloud implementation of the intelligent
transportation systems. Journal of Cloud Computing, 9(1), 6. https://doi.org/10.1186/s13677-020-0157-4

[28] Varadarajan, S., & Whitley, D. (2021). A parallel ensemble genetic algorithm for the traveling salesman
problem. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 636–643).
https://doi.org/10.1145/3449639.3459281

[29] Peng, C. (2022). Parallel genetic algorithm for traveling salesman problem. In International Conference on
Automation Control, Algorithm, and Intelligent Bionics (ACAIB 2022) (p. 24).
https://doi.org/10.1117/12.2639457

[30] Almazrooie, M., Abdullah, R., Yi, L. Y., Venkat, I., & Adnan, Z. (2014). Parallel Laplacian filter using CUDA on
GP-GPU. In International Conference on Information Technology and Multimedia (ICIMU) (pp. 60–65).
IEEE. https://doi.org/10.1109/ICIMU.2014.7066604

[31] Tsitsiklis, J. N. (1992). Special cases of traveling salesman and repairman problems with time windows.
Networks, 22(3), 263–282. https://doi.org/10.1002/net.3230220305

[32] Bianco, L., Mingozzi, A., & Ricciardelli, S. (1993). The traveling salesman problem with cumulative costs.
Networks, 23(2), 81–91. https://doi.org/10.1002/net.3230230202

[33] Fischetti, M., Laporte, G., & Martello, S. (1993). The delivery man problem and cumulative matroids.
Operations Research, 41(6), 1055–1064. https://doi.org/10.1287/opre.41.6.1055

[34] Will, T. G. (1993). Extremal results and algorithms for degree sequences of graphs. University of Illinois.
Retrieved from https://dl.acm.org/doi/10.5555/920635

[35] Mudaliar, D. N., & Modi, N. K. (2013). Unraveling traveling salesman problem by genetic algorithm using m-
crossover operator. In International Conference on Signal Processing, Image Processing & Pattern
Recognition (ICSIPR) (pp. 127–130). IEEE. https://doi.org/10.1109/ICSIPR.2013.6497974

[36] Matsuzaki, K., Hu, Z., & Takeichi, M. (2006). Towards automatic parallelization of tree reductions in
dynamic programming. In Proceedings of the Eighteenth Annual ACM Symposium on Parallelism in
Algorithms and Architectures (pp. 39–48). https://doi.org/10.1145/1148109.1148116

[37] Eiben, A. E., & Smith, J. E. (2015). Introduction to Evolutionary Computing. Springer.
https://doi.org/10.1007/978-3-662-44874-8

[38] Mirjalili, S. (2019). Genetic Algorithm, Evolutionary Algorithms and Neural Networks: Theory and
Applications. Springer. https://doi.org/10.1007/978-3-319-93025-1

https://doi.org/10.1287/opre.28.4.1018

J. of Soft Computing and Data Mining Vol. 5 No. 2 (2024) p. 137-150 150

[39] Almazrooie, M., Abdullah, R., Yi, L. Y., Venkat, I., & Adnan, Z. (2014). Parallel Laplacian filter using CUDA on
GP-GPU. In International Conference on Information Technology and Multimedia at UNITEN (pp. 60–65).
https://doi.org/10.1109/ICIMU.2014.7066604

[40] Reinhelt, G. (2014). TSPLIB: A library of sample instances for the TSP (and related problems) from various
sources and of various types. Retrieved from http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

