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Abstract: Obesity is among the most prevalent risk factors in the severe forms of Coro-
navirus disease 2019 (COVID-19) infection. COVID-19 patients with obesity often face
severe complications that might be associated with overexpression of adiponectin, in-
flammatory cytokines, and angiotensin-converting enzyme 2 (ACE2) receptors in visceral
fat. The pre-existing subclinical inflammation associated with obesity can also lead to
severe inflammatory responses. Elevation of proinflammatory cytokines considerably
activates coagulation cascades, including the tissue factor (TF) pathway. The hypercoagula-
ble state in COVID-19 is presented with severe pulmonary complications such as venous
thromboembolism (VTE), disseminated intravascular coagulation (DIC), and disruption of
vascular endothelial cells, which can lead to severe complications and death. The interac-
tion between inflammatory response and coagulation mechanism in COVID-19 patients
with obesity warrants a further understanding of prognosis and potential therapeutic
approaches. This review discusses the crosstalk between inflammation and coagulopathy
in obesity-related severe COVID-19 infection.
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1. Introduction
Coronavirus disease 2019 (COVID-19) has emerged as one of the most highly con-

tagious disease outbreaks in history, caused by the severe acute respiratory syndrome
coronavirus (SARS-CoV)-2 virus. This disease has given rise to the most consequential
global economic and health crisis, infecting over 700 million people and causing more
than 6.99 million deaths worldwide as of December 2023 [1]. The most common clinical
symptoms of COVID-19 are severe cough, fever, fatigue, and dyspnea [2]. However, the
disease can lead to severe complications, including pneumonia-induced acute respiratory
distress syndrome (ARDS), sepsis, organ failure, and, eventually, death. Many clinical find-
ings have associated severe COVID-19 with obesity, hypertension, diabetes, cardiovascular
disease, asthma, and aging [3]. In Malaysia, the crucial determinants of severe COVID-19
include old age, chronic kidney disease, chronic pulmonary diseases, shortness of breath,
and high serum C-reactive protein (CRP) (≥5 mg/dL) [4]. Obesity, in particular, has been
linked to severe complications of COVID-19, where most patients require intensive care
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unit (ICU) hospitalization [5]. In most cases, obesity is accompanied by other diseases,
such as dyslipidemia, hypertension, and diabetes mellitus, providing an increased risk of
developing severe COVID-19 [6].

Obesity is a low degree of chronic inflammation in which adipose tissue expresses
a broad spectrum of Toll-like receptors and produces proinflammatory cytokines and
chemokines [7]. The prevalence of severe COVID-19 cases among patients with obesity
and the associated mortality varies in different countries. However, the consensus is that
these patients face a higher risk of death than non-obese patients [8]. Previous reports had
associated patients with obesity and severe COVID-19, where most of them suffered from
ARDS and often required ventilators compared to their normal-weight counterparts [6,9]. In
the United States of America (USA), obesity was reported as the most significant association
with COVID-19 mortality in patients under 60 years old [10]. In France, approximately
85% of COVID-19 patients with a body mass index (BMI) > 40 needed ventilators upon
hospitalization [11]. Meanwhile, in Malaysia, comorbidities contribute to the highest
incidence (75.4%) of mortality, with 5.8% being obesity [12].

Coagulopathy, or bleeding disorder, is seen more in severe COVID-19 patients, as-
sociated with impairment in the coagulation cascade and clot formation, giving rise to
disseminated intravascular coagulation (DIC). Importantly, patients with obesity are more
susceptible to coagulopathy and cytokine storms (elevation of prothrombin factors and
proinflammatory cytokines, respectively) when they are affected by COVID-19; hence, the
mortality rate in these patients is high [13]. Understanding the mechanisms of inflammation
and coagulopathy in obesity-related severe COVID-19 is essential to developing treatment
approaches for managing the severity and mortality. Thus, this review comprehensively
discusses the association of coagulopathy and inflammation with the development of
severe COVID-19 in patients with obesity.

2. Materials and Methods
A comprehensive search on Google Scholar and PubMed databases was conducted for

articles published between May 2010 and January 2024. The keywords include “inflamma-
tion, coagulation, obesity, SARS-CoV-2, COVID-19, coagulopathy, and cytokine storms”.
We also include COVID-19 data from the World Health Organization (WHO) 2023.

3. Mechanisms of Inflammation and Coagulopathy in Severe COVID-19
3.1. Entry and Lifecycle of SARS-CoV-2 Virus

SARS-CoV-2 viral entry occurs via a host cell receptor known as angiotensin-
converting enzyme 2 (ACE2), previously recognized as an SARS-CoV-2 receptor; a process
mediated via its spike (S) protein, which consists of S1 and S2 subunits [14]. ACE2 is a
functional receptor that is highly expressed in pulmonary epithelial cells. This receptor is
also present in cells of other vital organs, such as gastrointestinal tracts, heart, endothe-
lial cells, and kidneys [15]. During SARS-CoV-2 infection, the S1 protein binds to ACE2,
leading to exposure of another cleavage site, called the “S2 site” on S2 subunit, which is
subsequently cleaved by host proteases [16]. These host proteases, namely, type II trans-
membrane serine protease (TMPRSS2) and lysosomal cathepsins, are critical for S2 subunit
activation, resulting in dissociation of S1 and drastic structural change in S2, exposing
the fusion peptide and promoting membrane fusion [17]. S2 subunit activation at the
plasma membrane surface is stimulated by TMPRSS2, while that in endosomes is induced
by lysosomal cathepsin, which can also compensate for viral invasion into cells lacking
TMPRSS2 [17]. Following membrane fusion, the viral RNA genome is released into the
cytosol of the host cell via fusion pore, inducing viral polymerase translation and RNA
replication by host cell mechanisms, which subsequently leads to virion assembly and
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exocytosis of the newly synthesized virion, which can infect new host cells and continue
the replication cycle [18].

3.2. SARS-CoV-2-Induced Coagulopathy

Coagulation is a crucial mechanism to prevent excessive bleeding in the damaged
vessel walls. It consists of two main phases, namely, primary and secondary hemostasis
(Figure 1). During primary hemostasis, following a vascular injury, platelets in circulation
begin to adhere to the exposed collagen fibers at the site of injury, facilitated by von
Willebrand factor (vWF) and overexpression of Glycoprotein (GP) VI in the surface of
platelets, resulting in the platelets activation. Activated platelets secrete granules, such as
adenosine diphosphate (ADP), and produce substances such as thromboxane A2 (TXA2),
promoting platelet aggregation. The coagulation cascades begin in secondary hemostasis
when the platelets have formed a temporary plug at the site of injury. Activation of tissue
factor (TF) by forming a complex with FVIIa subsequently triggers the intrinsic (Factor
XII) and/or extrinsic (Factor XII) pathway activation and eventually converges at the
activation of Factor X, which then combines with other factors to activate prothrombin
into thrombin by the prothrombinase complex. Thrombin mediates the conversion of
soluble fibrinogen into insoluble fibrin which polymerizes and is cross-linked by Factor
XIIIa to create a stable blood clot [19,20]. Coagulation is kept in check by two other systems,
namely, the anticoagulant, mediated by thrombomodulin (TM), Protein C, and Protein
S, and the fibrinolytic involving factors such as plasminogen and its activator [21,22].
The latter system converges on the formation of plasmin, which then breaks down fibrin.
An imbalance of any of these systems results in coagulopathy, leading to uncontrolled
thrombosis or bleeding.
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Figure 1. A schematic representation of primary and secondary hemostasis pathways resulting in clot
formation. In primary hemostasis, the initial response to vascular injury involves a series of processes,
including the roles of von Willebrand factor (vWF), Glycoprotein (GP) VI, adenosine diphosphate
(ADP) and thromboxane A2 (TXA2) production, and platelet (Pl) activation and aggregation. During
secondary hemostasis, the activation of tissue factor (TF), through its complex formation with
FVIIa, triggers the extrinsic pathway, leading to the generation of a small amount of thrombin from
prothrombin. This initial thrombin amplifies its production on the surface of activated platelets by
stimulating Factor XI (FXI) of the intrinsic pathway. Activated FXI then converts Factor IX (FIX) into
its active form. Platelet-bound FXa, in the presence of its cofactor FVa, generates a large thrombin
burst. Thrombin then cleaves fibrinogen into soluble fibrin and activates Factor XIII (FXIII), converting
it into FXIIIa, which crosslinks the soluble fibrin, forming a stable, crosslinked fibrin clot.
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Elevated hypercoagulability factors such as Factor VIII, and those that induce hypofib-
rinolysis such as plasminogen activator inhibitor type 1 (PAI-1), have been linked to a
higher risk of venous thromboembolism (VTE) [23]. These complications are commonly as-
sociated with severe COVID-19. Increased levels of D-dimer and other fibrinolytic products
indicate widespread fibrin formation in coagulopathy, and D-dimer has been identified as
an independent risk factor for the worst COVID-19 outcomes [24]. In addition, increased
D-dimer levels in the plasma of COVID-19 patients also indicate hypofibrinolysis [25]. The
hypofibrinolytic state is a common manifestation in the development of thrombotic in
severe and critically ill patients, leading to a high mortality rate in COVID-19. Alterations
of PAI-1, tPA, and TAFI expressions have been investigated in COVID-19 disease [26],
in which increased levels of these markers have been observed in critically ill patients
admitted to the ICU [27–29].

3.3. SARS-CoV-2-Induced Inflammation

Following viral infection, alveolar epithelial cells undergo programmed cell death
induced by pathogen-associated molecular patterns (PAMPs), such as viral RNA; the
subsequent release of damage-associated molecular patterns (DAMPs) such as RNA or
histone triggers activation of macrophages that lead to high cytokines secretion, particu-
larly interleukin (IL)-6 and reactive oxygen species (ROS) [30]. Circulation of IL-6 receptor
complexes and cytokines indirectly activates a series of cells, including endothelial cells,
platelets, and neutrophils, culminating in an exaggerated production of proinflammatory
cytokines, which ultimately results in a cytokine storm. Cytokine storms occur due to
the significant overexpression of inflammatory cytokines that initiate lung inflammation
and damage, followed by pneumonia, ARDS, septic shock, loss of respiratory functions,
and, ultimately, death [31]. The critical nuclear factor-κB (NF-κB) pathway is activated in a
cytokine storm, releasing excessive inflammatory cytokines, such as IL-1β, IL-2, IL-7, IL-10,
granulocyte-colony stimulating factor (G-CSF), Interferon-γ-inducible protein 10 (IP10),
monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein (MIP)
1-A, and tumor necrosis factor (TNF)-α in severe COVID-19 patients, and the resulting
inflammation may lead to the development and progression of ARDS. COVID-19 patients
admitted to the ICU had a higher concentration of these cytokines than healthy individ-
uals, and it has been reported in secondary hemophagocytic lymphohistiocytosis (HLH)
associated with severe COVID-19 [32,33].

3.4. The Crosstalk Between Inflammation and Coagulation

Crosstalk between Factor XIIa in the coagulation cascade and kallikrein and kinin
system (KKS) is crucial in the cytokine storm and coagulopathy in COVID-19 patients,
activated by SARS-CoV-2 RNA [34]. Loss of inactivation of the proinflammatory des-Arg9

bradykinin by ACE2 increases the production of inflammatory cytokines and oxidative
stress by activating the kinin B1 receptor (KB1R) [35]. Increased inflammatory cytokines in
COVID-19 patients also induce TF and P-selectin in vascular endothelium cells, promoting
vascular thrombosis and neutrophil extracellular traps (NETs) formation, respectively [36].
Moreover, inhibition of anticoagulants by IL-1 elevates thrombin production and aggra-
vates vascular thrombosis [37]. Overexpression of P-selectin directly correlates with higher
TF levels in monocytes, promoting DIC occurrence [38]. This condition is common in severe
COVID-19 patients, where D-dimer induces P-selectin and, subsequently, TF overexpres-
sion [39]. Therefore, stimulating P-selectin production via D-dimer and high TF expression
level is a mechanism for coagulopathy in severe COVID-19 patients.

Overexpression of both angiotensin II (AngII) and angiotensin II receptor type 1 (AT1R)
can also lead to overproduction of TF by monocytes and vascularized endothelial cells [40].



Hemato 2025, 6, 4 5 of 16

Activated platelets have also been shown to stimulate TF expression by monocytes, via
P-selectin and integrin αIIb/β3 [39], thus promoting a TF-dependent coagulation pathway.
The AngII/AT1R axis also inhibits the fibrinolytic pathway by increasing plasminogen
activator inhibitor 1 (PAI-1) expression, further promoting a hypercoagulable state [41].
Moreover, overexpression of AngII and AT1R leads to the upregulation of both intercellular
adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in the
vascular endothelium, promoting leucocyte adhesion, and it is therefore associated with
the severity of COVID-19 disease [42,43]. The resultant activation of endothelial cells is
reflected by elevated levels of D-dimer, which is considered a biomarker for coagulopathy
and is associated with poor prognosis in COVID-19 patients. Although D-dimer represents
the degradation of clots by the fibrinolytic pathway hence generated in the late stage of the
coagulation pathway, the mechanisms of D-dimer elevation in COVID-19 patients are not
fully understood.

Systemic inflammation in COVID-19 resulting from the severe elevation of inflam-
matory cytokines has been observed in association with the activation of coagulation
cascades, thrombosis formation, and endothelial cell dysfunction [44]. The resultant hy-
perinflammatory and hypercoagulability condition, characterized by cytokine storm and
overstimulated coagulation cascade with impaired fibrinolytic system, respectively, is aptly
coined immuno-thrombosis [43]. The generation of vascular microthrombi eventually leads
to systemic DIC, followed eventually by multi-organ failure [43]. In addition, the formation
of platelet–neutrophil complexes (PNCs) and toxic NETs promotes coagulopathy in several
ways, including further cellular recruitment, activation of platelet and coagulation cascade
pathways, and inhibition of anticoagulant and fibrinolytic pathways, which could confer
detrimental effects in endothelial injury, lung damage, and thrombosis [45,46].

Disseminated intravascular coagulopathy is a condition where the formation of blood
clots and thrombosis in vessels obstructs blood flow due to inflammation-mediated activa-
tion of the blood coagulation cascade [47]. DIC, accompanied by fibrin formation in blood
vessels, leads to organ dysfunction and increased patient mortality [48]. Coagulopathy
occurs when the balance between coagulation and anticoagulant factors is disturbed [49].
On one hand, proinflammatory cytokines and CRP can induce blood coagulation cascade
through TF/Factor VIIa complex activation, primarily driven by the vascular endothelium
cells. On the other hand, when these cells encounter pathogens or inflammatory cytokines,
they lose their antithrombin (AT) properties, resulting in overall favorable conditions for
coagulation [50,51]. In addition, hypoxic conditions due to lung damage in COVID-19
patients exacerbate the stimulation of TF production by the endothelium; thus, high TF
levels are predictors of increased morbidity and mortality [52].

The TF pathway activation by cytokines IL-1, IL-6, and TNF-α also downregulates
anticoagulant factors such as AT, thrombomodulin (TM), and endothelial protein C re-
ceptor (EPCR), thus preventing fibrinolysis and promoting DIC [53,54]. Nevertheless, the
relationship between inflammation and coagulation is not unidirectional. Coagulation
can lead to inflammatory responses by protease-activated receptors (PARs) located on
the endothelium of vessels and platelets. PARs bind to Factor VIIa upon activation and
increase inflammatory cytokines production, including IL-1β and TNF-α and ROS-induced
oxidative stress [55,56]. Furthermore, TM/activated protein C (APC) and its EPCR are
essential in eliminating coagulation factors, such as Factor Va and VIIIa [57]. The APC
downregulation leads to endotheliopathy and vascular thrombosis [58].

High levels of coagulation factors, such as von Willebrand factor (vWF), Factor VIII,
and soluble TM, indicate endothelial damage in severe COVID-19 found in patients’ lung
samples [59]. The TNF-α and IL-1 cytokines play an important role in activating the
endothelial damage biomarkers in this process, indicating the activation of coagulation
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cascades by inflammatory cytokines [60]. In addition, downregulated AT levels have
been reported in hospitalized COVID-19 patients, which has led to increased ventilator
requirement and mortality [61]. Therefore, AT administration is recommended for critical
COVID-19 patients hospitalized in the ICU, but discrepancies have been highlighted
between studies [62].

Coagulopathy caused by venous thromboembolism (VTE) events and unresponsive-
ness to prophylactic anticoagulants is common in severe COVID-19 patients in the ICU [63].
Treatment with thromboprophylaxis for hospitalized critically ill COVID-19 patients is
recommended for preventing VTE [64,65]. In addition, COVID-19 patients with high
bleeding risk or contraindications to pharmacological thromboprophylaxis might bene-
fit from mechanical thromboprophylaxis. On the other hand, COVID-19 patients with
moderate illness and low bleeding risk might benefit from therapeutic heparin [65]. This
condition promotes heart and brain ischemia, which increases mortality among COVID-19
patients [66]. D-dimer, a coagulopathy biomarker, of >1000 ng/mL predicts VTE incidence
and mortality in COVID-19 [67]. Furthermore, the upregulation of TF, Factor VIII, and vWF
and the downregulation of anticoagulant factors, such as protein C and AT III, have been
reported in COVID-19 cases [68].

4. Hyperinflammation and Coagulation in COVID-19 Patients
with Obesity

The prevalence of obesity has continued to rise in recent years, and approximately a
quarter of the world’s population is obese or overweight. Obesity-associated complications
and mortality are relatively high due to comorbidities such as cardiovascular disease (CVD),
hypertension, and diabetes mellitus [69]. In light of the recent global pandemic, obesity has
been identified as one of the risk factors for severe COVID-19 [70]. Clinical reports have
shown that almost half of COVID-19 patients hospitalized in the ICU had a BMI > 30, and
the high severity of COVID-19 among young patients was also correlated with obesity [71].
Approximately 37% (n = 1370) of 3615 COVID-19 patients in the USA were obese (BMI > 30),
and it turned out that a BMI greater than 35 in patients under 60 years old increases the
probability of admission to critical care units [10]. Meanwhile, in France, out of 124 patients
admitted to the ICU, 47.6% and 28.2% were obese and severely obese, respectively, and
85 patients (68.6%) needed mechanical ventilation [11]. The most critically ill COVID-19
patients admitted to the ICU exhibited hypercoagulopathy symptoms, primarily caused
by severe inflammatory responses and endotheliopathy, which activate the coagulation
cascade through the TF pathway [72]. These patients also demonstrate high D-dimer levels
and long prothrombin time (PT).

Increased inflammation and activation of coagulation pathways lead to coagulopathy,
known as thromboinflammation. Thromboinflammation is a major contributor to the severe
outcomes in COVID-19 patients. This condition has been linked to high morbidity and
mortality rates and is evident in the postmortem findings, where platelet-rich thrombi
and microangiopathy are frequently observed in various visceral organs [73]. The throm-
boinflammation observed in COVID-19 can be partly attributed to the interaction between
the virus and the immune system, particularly platelets and immune cells like alveolar
macrophages. One of the key pathways involved in SARS-CoV-2-induced thromboin-
flammation is the activation of Spleen Tyrosine Kinase (Syk)-coupled C-type Lectin-like
Receptor 2 (CLEC2) [74]. CLEC2, a receptor highly expressed on platelets, has emerged as
a novel pattern recognition receptor for SARS-CoV-2 [74]. Given its central role in SARS-
CoV-2-induced thromboinflammation, CLEC2 represents a promising target for therapeutic
intervention [74] and as an independent predictor for oxygen requirement in COVID-19
patients [75].
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A meta-analysis demonstrated that obese subjects are at higher risk of severe dis-
ease and mortality due to COVID-19 [76]. Meanwhile, Gao et al. (2020) reported high
plasma CRP levels and low lymphocyte counts in COVID-19 patients with obesity [77].
Consequently, these patients had a longer hospital stay (median = 23 days) compared to
non-obese COVID-19 patients (median = 18 days) [77]. Therefore, COVID-19 patients with
obesity face a higher risk of severe COVID-19, ICU admission, and death compared to non-
obese patients. ACE2 overexpression, leptin production, and pre-existing inflammation are
reported to contribute to severe COVID-19 in patients with obesity and further reduce their
chances of survival.

Obesity is associated with subclinical inflammation [78], and adipose tissue plays an
important role in this process by producing inflammatory cytokines and chemokines by
macrophages [79]. The ACE2 receptors in adipose tissue are stimulated in several infectious
diseases [80] and increase the production of cytokines. Meanwhile, the activation of
endothelial cells by IL-6 activates the JAK/STAT pathway [81] and results in inflammatory
responses. In COVID-19 patients, it has been found that IL-6 and leptin levels are elevated
in obese patients [82], and this provides the basis for high disease severity, cytokine storm,
and lymphopenia [83]. Also, high levels of leptin are positively correlated with neutrophilic
lung inflammation, lung damage, and ARDS in SARA-CoV-2 patients [84].

In obese people, due to subclinical inflammation, the probability of high severity of
COVID-19 is higher, which leads to severe inflammatory responses or cytokine storms. This
has provided a suitable background for the hypercoagulable state, which is accompanied by
symptoms of DIC, VTE, and gastrointestinal bleeding [85]. The fact that obese COVID-19
patients are more likely to suffer from high severity of the disease and show symptoms
of hypercoagulopathy can be attributed to visceral fat [86]. In fact, these tissues produce
adipokines such as leptin, which can increase inflammation through the upregulation of
IL-6. IL-6, in turn, leads to the production of other cytokines through the NF-κB pathway
and induces severe inflammatory responses. IL-6 and TNF-α lead to the activation of the TF
pathway and coagulation cascades in the endothelium of vessels and result in thrombosis.
These inflammatory cytokines increase vWF expressions and cause platelet aggregation and
thrombosis [87]. Obese patients with other comorbidities such as hypertension, diabetes
mellitus, and CVD experience severe disease complications when they are affected by
SARS-CoV-2 [88].

4.1. Overexpression of ACE2

SARS-CoV-2 utilizes the ACE2 receptor to initiate infection, and the high expression of
this receptor has been associated with severe COVID-19 [89]. One of the contributing factors
to the high probability of severe COVID-19 among patients with obesity is the high amount
of visceral fat tissue, which is associated with the high expression of the ACE2 receptor [90].
Overexpression of the ACE2 gene in adipose tissue has been associated with increased
ICU admission, ventilator requirement, and mortality rate in severe patients with obesity
(BMI > 40) affected by COVID-19 [90]. Furthermore, high expression of the ACE2 receptor is
also found particularly in vital organs such as the lung, heart, kidney, gastrointestinal tract,
and visceral tissue, which could lead to further dissemination and high viral load in COVID-
19 patients with obesity [91]. In addition, the presence of SARS-CoV-2 RNA in critically
ill COVID-19 patients is associated with platelet hyperactivity [92]. Further investigation
indicated that the binding of the spike protein to the ACE2 receptor on platelets enhances
platelet activation via the MAPK pathway [93]. Thus, platelet hyperactivation leading to
thrombosis in critically ill COVID-19 patients with obesity could imply the overexpression
of the ACE2 receptor, which exposes them to more susceptibility to coagulopathy.
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4.2. Leptin

The adipose tissue is a source of energy and is essential in regulating inflammatory
responses to infections [94]. Adipocytes are responsible for secreting various adiponectins,
including leptin, which is abundantly detected in individuals with obesity [95]. High serum
leptin in individuals with obesity is an indicator of cell resistance to leptin, impacting the
signal transduction pathways Janus kinase-2 (JAK2) and signal transducer and activator of
transcription 3 (STAT3), in addition to promoting inflammatory cytokines including IL-6
and TNF-α production by monocytes [96,97].

Leptin also causes CRP overexpression in hepatocytes, indicating the proinflammatory
role of this adipokine [98]. Precisely, leptin regulates the inflammatory responses via leptin
receptor modulation and upregulates multiple inflammatory cytokines (i.e., TNF-α and IL-
6) [96]. Likewise, a surge in leptin levels leads to the activation and proliferation of immune
cells, increasing TNF-α and IL-6 levels, thus aggravating the inflammatory responses of
obesity with high leptin levels [99]. A previous report highlighted that severe COVID-19
patients hospitalized in ICU and under mechanical ventilation have high leptin levels,
providing the basis for ARDS development [100]. High leptin levels render patients with
obesity susceptible to inflammation and increase their risk of highly severe COVID-19.
High leptin levels positively correlate with neutrophilic lung inflammation, lung damage,
and ARDS in COVID-19 patients [84]. Thus, obesity is a significant risk factor for the
high severity of COVID-19 due to the high leptin and inflammatory factors production,
particularly IL-6, by excessive visceral fat.

4.3. Pre-Existing Inflammation

Visceral tissue composition is correlated with metabolic syndrome diseases, such as
type 2 diabetes mellitus (T2DM) [101]. High levels of inflammatory factors such as CRP,
IL-6, and TNF-α have been detected in obesity, which is attributed to the excessive visceral
fat tissue that regulates the body’s metabolism by producing adipokines, chemokines, and
various growth factors [102,103]. Thus, subclinical inflammation exists in obesity, creating
a suitable environment for other diseases to develop in the long term, such as T2DM [104].

Acute IL-6 upregulation in visceral tissue has been reported in infectious diseases
associated with the cytokine storm and various tissue damage [105]. High IL-6 levels often
lead to a cytokine storm in COVID-19 patients, particularly those who are obese [106]. The
relationship between IL-6 and leptin has been linked to the increased mortality of COVID-
19 patients with obesity. High leptin, IL-6, and TNF-α levels have been reported in obesity,
which provides a favorable environment for cytokine storms (Figure 2) [107]. Leptin and
IL-6 receptors activate the JAK/STAT pathway and increase IL-6 production, causing the
phosphorylation of the Akt/PI3K STAT3 signaling pathway [108]. This process triggers the
activation of the NF-κB pathway and IL-6 overexpression, giving rise to TNF-α and IL-1
production [109]. Moreover, IL-6 overproduces to increase vascular permeability, resulting
in a high viral load [110], intense inflammatory responses, and the overproduction of
inflammatory cytokines. This condition activates the TF coagulation pathway, thrombosis,
and coagulopathy. The obese patients show high serum levels of procoagulant biomarkers
including D-dimer and fibrinogen, which correlate with BMI [111]. This makes them more
susceptible to coagulopathy caused by COVID-19, and, in fact, obesity has been identified
as one of the important risk factors in the high mortality of COVID-19 patients [112]. The
exacerbated inflammatory responses and overactivation of the coagulation cascade have
been stated to be the main causes of mortality in obese COVID-19 patients [112]. This
process elucidates the sensitivity of patients with obesity to SARS-CoV-2 infection and their
potential vulnerability to the disease severity and mortality. When IL-6 receptor inhibitor
(i.e., Tocilizumab) was administered to patients, a reduction in ARDS was observed [113].
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In COVID-19 patients with obesity, the dosage of neutralizing antibodies is indiscernible
compared to autoimmune antibodies, causing a weak response to infection and high-grade
fevers [114]. Interestingly, a positive correlation was found between autoimmune antibodies
and CRP serum levels in obese COVID-19 patients, which indicates the possibility of severe
inflammatory response in them [114]. It is worth noting that neutralizing antibodies play a
role in protecting against COVID-19 infection [115], and their reduction in obese patients
could predispose them to developing severe disease.
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Figure 2. The crosstalk between coagulation and cytokine storm in obese COVID-19 patients. Pre-
existing conditions include a high frequency of ACE2 receptors, high leptin, and inflammation
contributing to severe COVID-19. SARS-CoV-2 infection induces activation of kallikrein and kinin
system (KKS) and angiotensin-converting enzyme 2 (ACE2), angiotensin II (AngII), and the an-
giotensin II receptor type 1 (AT1R) axis, leading to monocyte hyperactivation and overproduction
of cytokines (cytokine storm). AngII overexpression also results in tissue factor (TF), plasminogen
activator inhibitor 1 (PAI-1), and tissue plasminogen activator (tPA) upregulation, as well as down-
regulation of Thrombin Activatable Fibrinolysis Inhibitor (TAFI), which subsequently upregulates
thrombin, fibrin, and D-dimer expression. The overexpressions of TF, P-selectin, and cytokines also
downregulate the anticoagulants including antithrombin (AT), thrombomodulin (TM), and endothe-
lial protein C receptor (EPCR) leading to neutrophil extracellular trap (NET) formation. TF and
cytokines also activate von Willebrand factor (vWF), Factor VIII, and soluble TM, which subsequently
increase coagulant levels, including thrombin, fibrin, and D-dimer, leading to platelet aggregation,
which is also mediated by αIIb/β3 integrin. Cumulatively, these inflammation and coagulation
factors eventually lead to coagulopathy in obese COVID-19 patients.

5. Therapeutic Approach in COVID-19 Patients with Obesity
The development of COVID-19 vaccines has significantly reduced the death toll of this

disease worldwide. In general, COVID-19 vaccines can be divided into three types: mRNA,
vector, and protein vaccines, all of which target the S protein of the virus [116]. However,
there are inter-individual differences in vaccine responses. For example, individuals with
obesity who were administered double doses of the BNT162b2 or CoronaVac (Sinovac)
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vaccine mostly displayed a significantly lower antibody titer than their non-obese coun-
terparts [117]. However, a booster dose of this vaccine resulted in a high antibody titer in
obese subjects without any interaction with BMI in the regression model [118]. Similarly,
mRNA vaccine humoral immunogenicity is not affected by obesity, indicating no need to
consider obesity in vaccine dosing strategies [119]. Gender differences in response to the
vaccine have also been reported: men with obesity had lower antibody titers compared to
women; thus, men are more susceptible to the SARS-CoV-2 infection [120].

Alternatively, the inhibition of inflammatory factors, particularly IL-6 and TNF-α,
may reduce the severity of COVID-19 in obesity [121]. Lonicera japonica and Astragalus
membranaceus have demonstrated inhibitory effects against IL-6 and TNF-α through the up-
regulation of let-7a, miR-148b, and miR-146a, preventing the cytokine storm in COVID-19
patients [122]. Other IL-6 inhibitors include baricitinib, which reduces the recovery time
of COVID-19 patients compared to remdesivir (95% confidence interval (CI) 6 to 8) [123],
although clinical trials of remdesivir in high-risk patients including those with obesity have
shown a reduction in hospitalization for COVID-19 [124]. In addition, sarilumab binds
to the IL-6 receptor and was found to improve the survival of hospitalized patients [125].
Tocilizumab, another IL-6 receptor inhibitor, reduced the mortality of critically ill COVID-19
patients [126]. It is recommended that medications prescribed to obese people, such as
statins, renin–angiotensin system blockers, and anticoagulants, not be discontinued during
COVID-19 infection [127]. The administration of IL-6 receptor inhibitors in COVID-19 pa-
tients with obesity potentially prevents cytokine storms and improves survival. However,
it is worth mentioning that there is no standard specific treatment for obese COVID-19
patients in the scientific literature, and when considering IL-6 as a biomarker for high
disease severity and that obese individuals have high serum levels of this cytokine, we rec-
ommended inhibitors of this cytokine as a therapeutic option for obese patients. Therefore,
specific treatment strategies for patients with obesity should be established to avoid future
complications in this group.

6. Conclusions
Obesity is a risk factor for the highly severe SARS-CoV-2 infection and it increases

mortality. The primary contributing factors to this condition are pre-subclinical inflamma-
tion and high IL-6 levels, which increase one’s risk of severe inflammatory responses by
activating inflammatory pathways. These proinflammatory factors activate coagulation
pathways, such as TF, and provide the basis for thrombosis, DIC, and hypercoagulopathy.
Therefore, there is a synergistic interaction between inflammation and coagulation in SARS-
CoV-2 infection, whereby inflammation leads to the activation of coagulation cascades.
This crosstalk is more severe in COVID-19 patients with obesity, given their background
proinflammatory state, thus rendering them susceptible to high disease severity and mor-
tality. Inhibiting the inflammatory cytokines IL-6/TNF-α could be a promising treatment
option for this group of patients and should be further explored in future studies.
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