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This paper presents an improved variant of the Manta Ray Foraging Optimization 
(MRFO) algorithm. The optimization method of the original MRFO is a combination of 
random and spiral strategies. Like other optimization algorithms, MRFO still has a 
limitation when applied to a complex real-world problem. In this work, mating strategy 
of a barnacle species is incorporated into the MRFO algorithm. It allows good features 
of the parent manta ray to be inherited by its offspring thus creating a high-quality 
population. The proposed algorithm is applied to acquire a dynamic model of an 
electric water heater. A fuzzy-Hammerstein model is chosen as the candidate model 
for the water heater considering electrical voltage and water temperature as the input 
and output responses respectively. The result of the modelling has shown MRFO and 
the proposed MRFO variant have satisfactorily acquired the dynamic model of the 
water heater. The improved MRFO variant has tracked the output temperature 
response more accurately than the original MRFO at costs 425 and 508 respectively.  
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1. Introduction 
 

Water heater is an important equipment in our daily lives. Gas, electricity and solar are the 
examples of the commonly found energy sources available. Solar water heater is more 
environmentally friendly and cost-saving depending on climate while gas water heater has a faster 
response but has a lower Energy Factor. Electric water heater has higher efficiency or an Energy 
Factor greater than 0.9 as reported in the study of Energysage [1]. The amount of electricity needed 
to heat the water and the loss of thermal energy are minimal. An electric water heater converts 
electricity into heat through a heating element such as a coil. Iron, nickel, chromium and copper are 
the types of materials used to make the heating element. A resistance from the materials produces 
a thermal energy known as heat when an electric current is applied. The temperature of water is 
increased if the heating element is properly immersed in the water. An electric water heater is widely 
used for commercial and industrial use as well as for residential purposes. Typical usage for 
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residential includes cleaning, bathing, cooking and heating spaces such as rooms and kitchens. 
Examples of commercial usage include heating large spaces such as restaurants, hotels, aircraft and 
public buildings. An electric water heater has a wider application in industries including chemical and 
food processing industries, plantation, paper and metal manufacturing and wastewater treatment. 
Global Market Insights [2] has reported that the demand for electric water heaters keeps on growing 
worldwide with the forecasted cumulative annual growth rate of about 4.9%. With the increasing 
demand for electric water heaters in various sectors, good control of its working mechanism should 
be considered. It affects the electric water heater’s performance in maintaining a quick response to 
achieve the desired water temperature and the equipment’s stability to maintain the temperature. 
As in manufacturing applications, slow response and unstable temperature might affect the quality 
of a final product, extend production time, increase cost and low profitability. The aforementioned 
issues indicate that modelling and control of an electric heater is an important area to study as shown 
in the literature [3]. 

Nowadays, various potential control mechanisms are available to maintain the performance of a 
water heater ranging from conventional, modern state-space, artificial intelligence and adaptive 
controllers. In literature of LaMeres et al., [4], a fuzzy logic controller was used to control the average 
power of an electric water heater in a residential area during high-demand electricity and off-peak 
periods. The power is determined based on minimum and maximum range of desired temperature 
as well as the distribution level of power demand. The strategy successfully controlled the daily usage 
of electric power in the residential area. Kamran et al., [5] used Proportional-Integral-Derivative (PID) 
control mechanism to accurately control temperature level at a desired 450 ℃. The heated water 
was broken into hydrogen and oxygen elements from the water which were then used to generate 
power.  

On the other hand, modelling of an electric water heater is an equally important subject as 
control. A dynamic model of an electric water heater should be developed before its control design. 
An accurate model is crucial as it represents the actual water heater and is used in the control design 
process as well as to study the dynamic behaviour of the water heater system. Low-accurate dynamic 
model causes the designed controller unable to perform satisfactorily when it is applied to the actual 
water heater. Dolan et al., [6] developed a dynamic model of an electric water heater for residential 
usage using a Monte carlo rejection method. The developed model was used to optimize power 
demand for various load profiles. Paull et al., [7] developed a water heater model to predict 
household water usage patterns. It then was used to generate a power load profile based on usage 
behaviour. Thermal losses and water usage data were included as inputs for the model while the 
output was the water temperature flowing out from the heater. The model was derived based on the 
energy flow analysis method and represented in differential equation form. In another work of 
Khurram et al., [8], the dynamic model was derived based on the Markov model associated with 
energy measurement and demand response from the load.  

A more recent dynamic modelling approach is conducted through data-driven. Given an input-
output data pair from actual hardware is available, a dynamic model of the physical system can be 
satisfactorily acquired. Candidate models can be adopted from linear models such as Autoregressive 
with Exogeneous input (ARX) [9], Autoregressive moving average with exogenous input (ARMAX) 
[10], box-jenkin [11]. Nonlinear candidate models such as Nonlinear ARX [12], Nonlinear ARMAX [13], 
Hammerstein [14], Hammerstein-Wiener [15], fuzzy [16], neural network (NN) [17], convolution NN 
[18] and long-short term NN [19], are more promising than the linear ones in capturing the dynamic 
behaviour of the physical system. As the nonlinear model is more complex and highly challenging, a 
metaheuristic algorithm is commonly adopted as an optimization tool. This is evidenced from the 
works presented in spiral-fuzzy model [20], Bacterial Foraging Algorithm (BFA)-NN model [21], Levy 
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flight-fuzzy model [22], Spiral-ARX model [23], Sooty Tern-ARX model [24] and Particle Swarm 
Optimization (PSO)-NN model [25].   

The aforementioned literatures show that a nonlinear model such as fuzzy-Hammerstein has 
better captured dynamic features of a real-world physical system. However, determining parameters 
of the nonlinear is challenging while MRFO algorithm has not yet been used to solve the problem. 
This work significantly contributes to the method of acquiring parameters of the nonlinear water 
heater model with better accuracy through an improved metaheuristic algorithm. This paper 
presents a data-driven dynamic modelling for an electric water heater. A pair of input-output data 
captured from the electric water heater is used to optimize the pre-defined fuzzy-Hammerstein 
model. A Mating-based Manta Ray Foraging Optimization (MMRFO) algorithm is proposed and used 
to optimize the parameters of the fuzzy-Hammerstein in comparison to the original MRFO algorithm 
as reported in the literature [26]. The paper is organized as follows. Section 2 presents the proposed 
MMRFO algorithm, its corresponding concept, equations and pseudocode in detail. Section 3 
presents the electric heater system used in the work and its principle of operation. Section 4 
elaborates optimization of the fuzzy-Hammerstein model and modelling result. Section 5 concludes 
the work presented within the scope of the paper. 

 
2. Mating-Based Manta Ray Foraging Optimization Algorithm 

 
Mating-based Mata Ray Foraging Optimization (MMRFO) algorithm is a synergy between MRFO 

and a mating technique adopted from barnacle species as reported by Sulaiman et al., [27]. The 
algorithm comprises of three main phases known as Chain, Cyclone and Mating strategies. Chain and 
Cyclone are foraging strategies adopted from manta ray species while mating is a strategy adopted 
from barnacle species. In the Chain foraging, a group of manta rays form a line heading towards a 
position rich of plankton. Plankton is viewed as a type of food for the manta rays. Mathematical 
representation of the Chain foraging is shown as Eq. (1a) and Eq. (1b).  

 
( 1) ( ) .( ( ) ( )) .( ( ) ( )) 1d d d d d d

i i best i best ix k x k r x k x k x k x k iα+ = + − + − =       (1a) 
 

1( 1) ( ) .( ( ) ( )) .( ( ) ( )) 2,...,d d d d d d
i i i i best ix k x k r x k x k x k x k i Nα−+ = + − + − =                  (1b) 

 
where ( 1)d

ix k +  is the location of the thi  manta ray. k  is the iteration and d  is a dimension of a 
problem that is intended to solve. ( )d

bestx k  is the location of the current best manta ray. r  is a random 
vector between [0,1] and N  is the maximum number of searching agent. α  is a log function and 
defined with respect to random value shown as Eq. (1c). 

 
2. . log( )r rα =                         (1c) 
 
In the second foraging strategy or the Cyclonic foraging, the group of manta rays swim in a spiral 

form towards the plankton food. A spiral trajectory is developed in reference to the plankton position 
and relative position of a searching agent to its front agent. Mathematical representations of Cyclonic 
foraging are shown as Eq. (2a) and Eq. (2b).  
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1( 1) ( ) .( ( ) ( )) .( ( ) ( )) 2,...,d d d d d d
i best i i best ix k x k r x k x k x k x k i Nβ−+ = + − + − =                         (2b)  

 
where α  is similar to Eq. (1c), β  is a sine function defined with respect to the maximum as well as 
current iterations. β  is represented as Eq. (2c). 

 
1

1

12 sin(2 )
T tr

Te rβ π
− +

=             (2c) 
 

where 1r  is a random number between [0,1] while T  and t  are maximum and current iterations 
respectively. As an alternatively to the Eq. (2a) and Eq. (2b), the Cyclonic foraging can be represented 
by Eq. (2d) and Eq. (2e). Those equations are used interchangeably depending on a generated random 
value. Here, the spiral trajectory is developed in reference to the generated random value rather 
than the best agent position.  

 
1))()(.())()(.()1( =−+−+=+ ikxkxkxkxrxkx d

i
d
rand

d
i

d
rand

d
rand

d
i β                               (2d) 

 
1( 1) ( ) .( ( ) ( )) .( ( ) ( )) 2,...,d d d d d d

i rand i i rand ix k x k r x k x k x k x k i Nβ−+ = + − + − =                               (2e)  
 
where d

randx  is a random position defined within the searching area. The d
randx  is defined as Eq. (2f).  

 
min max min( )d

randx x r x x= + × −           (2f) 
 

where minx  and maxx  are the lower and upper boundaries of the searching area respectively while the 
r  is a random value between [0,1].  

In the third or the final phase of the MRFO operation, every searching agent rolls around the food 
source location repeatedly. The operation is known as Somersault foraging where it can be 
mathematically defined as Eq. (3). 

 
2 3( 1) ( ) .( . . ( )) 1...d d d d

i i best ix k x k S r x r x k i N+ = + − =           (3) 
 
where S is a constant defined as 2, 1r  and 2r  are random numbers in the range [0,1]. Unless a stopping 
condition is met, all these three phases are continuously repeated. 

In general, the MMRFO algorithm consists of eight steps. The step-by-step description of the 
proposed MMRFO is presented as follows.  

 
Step 1: Initialize manta ray populations, 𝑥𝑥𝑁𝑁𝑑𝑑  
Step 2: Compute searching agent’s fitness, 𝑓𝑓𝑖𝑖  and determine the best agent 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑 . 
Step 3: For i = 1 to N  
   If 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 0.5 
   Conduct Cyclone foraging phase and execute Eq. (2a) to Eq. (2f). 
     Else 
    Conduct chain foraging phase and execute Eq. (1a) to Eq. (1c). 
  End 
     End 
Step 4: Execute Mating operation.  
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Apply a random operator for the whole manta ray population to produce male and female parent 
as ray_m and ray_f respectively. 

_
N
ray mx  = random permutation (1, N). Apply a random value between the range [1, N] to the male. 

_
N
ray fx  = random permutation (1, N). Apply a random value between the range [1, N] to the 

female. 
Step 5: Generate manta ray offspring, , ( 1)d

i OSx k +  as in Eq. (4). p rand= , 1q p= − . rand  is a random 
value to generate random number between the range [0, 1].  
 

, _ _( 1) . .d d d
i OS ray m ray fx k p x q x+ = +             (4) 

 
Step 6: Calculate fitness cost of the newly generated manta ray ( 1)d

ix k +  and offspring, , ( 1)d
i OSx k +   

Step 7: Sort the manta ray off-springs , ( 1)d
i OSx k +  and the newly updated manta ray ( 1)d

ix k +  based 
on their fitness value. The first N manta ray with the lowest fitness cost , ( 1)N

i newf k +  are considered as 
the new manta ray , ( 1)N

i newx k + . Determine the best manta ray, 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑 (𝑘𝑘 + 1). 
Step 8: Repeat Step 3 to Step 7 until stopping criteria are met.  
 

3. Mating-Based Manta Ray Foraging Optimization Algorithm 
 
Figure 1 shows a schematic diagram of the electric water heater system used in the experiment 

as reported by Abonyi et al., [28]. Main elements of the system include heating unit, control valve, 
CV  flow rate meter, wF  temperature sensor, ,in outT T , water chamber and a computer. A data 
acquisition card, PCL-812 is inserted to transfer data between the system and computer. It is a two-
way communication system where the data is transmitted to or received from the system or the 
computer. Data processing, manipulation and analysis are done inside the computer unit. The 
operation of the system starts with a water source is supplied to the water chamber through an 
automatic control valve. Heating elements are placed in the chamber to heat the water inside the 
chamber. A temperature sensor is placed at the outlet and inlet pipes of the water chamber for 
measuring temperature of the outgoing and incoming water respectively. Both temperature readings 
are transmitted to the computer via the data acquisition card. A flow rate meter is placed at the inlet 
pipe of the control valve for measuring the flow rate of the incoming water source. The flow rate 
reading is also transmitted to the computer via the data acquisition card. A designed controller inside 
the computer controls the system which controls the valve opening and valve closing to regulate the 
water flow into the chamber. It also controls electrical power to the heating element based on the 
reading of the temperature sensors. 
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Fig. 1. Schematic diagram of electric water heater 

 
In the experiment, a series of input-output data was recorded from the system for developing a 

dynamic equation for the system. The input-data considered in the experiment was the control signal 
from the control unit which has the reading in the range [0-1]. A random signal was applied to the 
heating element such that it could capture the whole dynamic of the system. The output-data was 
the temperature of the outgoing water flowing through the outlet pipe of the water chamber 
measured in the range between [15,33] o C . This was the reaction of the outgoing water temperature 
in response to the applied signal into the heating unit. The visual responses of both recorded input-
output data pair are shown in Figure 2 and Figure 3 respectively. The figures show 450 input-output 
data pair were acquired with a sampling time of 2 seconds. These data were taken from the previous 
experiment as reported by Abonyi et al., [28].  
 

 
Fig. 2. Response of the control signal 

 

 
Fig. 3. Response of the outlet temperature 
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4. Fuzzy-Hammerstein Dynamic Modelling 
 
The concept of nonlinear Fuzzy-Hammerstein model is presented in this section. The nonlinear 

part comes from the fuzzy-logic model. As the name implies, fuzzy-Hammerstein model comprises of 
a combination of a nonlinear fuzzy-logic model and a linear dynamic model. The nonlinear behaviour 
of the fuzzy-logic model is used to capture the presence of uncertainty in the system. Explanation 
about the fuzzy membership function, linguistic rules, transfer function of the linear model and a 
complete dynamic equation of the fuzzy-Hammerstein are presented in detail. 

 
4.1. Fuzzy-Hammerstein Model 

 
The structure of Fuzzy-Hammerstein is adopted Abonyi et al., [29] and is shown in Figure 4. In the 

first part, it consists of a static nonlinear function, ( )v f u=  while in the second part, it consists of a 
linear function, G . The nonlinear model is defined with respect to input signal, u  that is the input 
data recorded from the experiment. Both nonlinear and linear are cascaded together such that the 
output signal of the nonlinear function is injected into the linear model. The output signal of the 
linear model is considered as temperature of the outgoing water, Y .  
 

 
Fig. 4. Hammerstein structure 

 
As the nonlinear model is represented by a fuzzy-logic structure, it should consist of fuzzy 

linguistic rules and membership function. In the work, 6 fuzzy logic rules as presented in the form of 
expression shown in Eq. (5).  

 
: ,j j jR If u is A then v is d=                         (5) 

 
where jA , jd  and jR  are thj  antecedent and thj  consequent of the thj  fuzzy rule respectively. u  
and v  are the fuzzy input and output respectively. Triangular membership function is applied at the 
fuzzy input and they are evenly distributed along the universe of discourse of the input signal on the 
horizontal axis. The membership function is defined in the range between [0, 1] on the vertical axis.  

On the other hand, the dynamic equation for the linear model is shown as Eq. (6). 
 

1 2 3 4 1 2( 1) ( ) ( 1) ( 2) ( 3) ( 3) ( 4)y k a y k a y k a y k a y k b v k b v k+ = + − + − + − + − + −        (6) 
 

where 1 2 3 4, , ,a a a a  are coefficients of the output while 1 2,b b  are coefficients of the input of the linear 
model. Rearranging Eq. (6) and considering discrete sample time as 2q− , the overall linear part of the 
fuzzy-Hammerstein model is represented as Eq. (7). 

 
1 2

21 2
1 2 3 4

1 2 3 4
( ) ( )

1
b q b q

C q q
a q a q a q a q

− −
−

− − − −
+

=
− − − −

          (7) 
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The general expression of the complete fuzzy-Hammerstein dynamic model is then shown as Eq. 
(8).  

 

( 1) ( 1) ( ( 1))
1 1 1

n N ny R u jy k a y k i b u k i ni j di
i j i

β+ = − + + − − +∑ ∑ ∑
= = =

         (8)

  
where NR  is the number of fuzzy rules, nu  is the number of inputs and nd  is the discrete time delay. 

Figure 5 represents the complete structure of the fuzzy-Hammerstein dynamic model. 
 

( )C q
( 1)y k +( )u t

∑

RNβ

RNβ

RNd

RNd

 
Fig. 5. Fuzzy-Hammerstein structure 

 
4.2 Optimization of Fuzzy-Hammerstein Model  

 
The proposed MMRFO and MRFO algorithms were applied to optimally obtain coefficients of the 

consequent part of the fuzzy rules as in Eq. (5) and coefficients of the linear model as in Eq. (6). In 
the work, 6 coefficients for the fuzzy rules and 6 coefficients for the linear model that were optimized 
simultaneously. Experimental setup for MMRFO and MRFO algorithms was defined as 100 iterations, 
10 search agents, search range between [0, 5] and 12-dimensional problem. 𝛽𝛽 and 𝛼𝛼 coefficients for 
MMRFO were defined as 0.5 while for MRFO the value was defined as 2. Eq. (9) and Eq. (10) show 
the optimized linear and nonlinear results of the MMRFO-based fuzzy Hammerstein model 
respectively. Eq. (11) and Eq. (12) present the optimized linear and nonlinear results of the MRFO-
based fuzzy Hammerstein model respectively.  

 
2

1 20.180 0.988
( ) 1 2 3 41 0.522 0.169 0.086 0.111

z z
C qMMRFO z z z z

z−
− −+

= − − − −− − − −
         (9) 

 
[1.526 1.467 2.278 2.945 2.491 3.261]dMMRFO =                    (10) 

 
2

1 20.608 3.135
( ) 1 2 3 41 0.353 0.151 0.381 0.040

z z
C qMRFO z z z z

z−
− −+

= − − − −− − − −
                  (11) 

 
[0.183 0.260 0.359 0.585 0.800 0.877]dMRFO =                    (12) 

 
Figure 6 shows a comparison of convergence curve for both MRFO and MMRFO in optimizing 

electric water heater model during the modelling phase. The vertical axis shows the fitness cost in 
log-based scale. It shows that MRFO has found a good location at the beginning of operation but has 
slowly converged to a local optima solution. It has settled down at fitness cost 508 at iteration 100. 
The proposed MMRFO has found a little bit far location at the beginning but has converged relatively 
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faster than the MRFO until iteration 30. From iteration 31 onwards, it has slowly converged and finally 
reached fitness cost 425. MMRFO has intercepted MRFO at iteration 26 and has converged to a lower 
cost function result indicating a higher accuracy. 
 

 
Fig. 6. Convergence curve of the fitness cost 

 
Figure 7 shows a comparison of temperature responses at the water heater outlet in the 

modelling phase between MMRFO and MRFO algorithms and the actual data. The smoothed-black is 
the temperature response of heater output from actual system, dashed-blue and dotted-dashed-red 
lines represent temperature response of heater output optimized by MMRFO and MRFO 
respectively. It shows the MMRFO has tracked the temperature response of heater output better 
than MRFO. The worst temperature response of MRFO-based model is at the 15 ℃ between the 
period of [200, 250] seconds. Here, the output temperature response of MRFO-optimized model has 
deviated a bit more than the output temperature response of MMRFO-optimized model from the 
actual response. In general, both MMRFO and MRFO has successfully imitated the actual response in 
modelling phase.  

 

 
Fig. 7. Temperature response in modelling part 
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Figure 8 shows a comparison of temperature responses of heater output in validation phase 
between MMRFO and MRFO algorithms and actual data. It shows the MMRFO-based model has 
validated a better response than the MRFO-based model for the whole temperature. However, at 
the highest temperature between the period [1600, 2700] seconds, the response of MMRFO-based 
model has significantly deviated from the actual response compared to other time instants. On the 
other hand, the temperature response of the MRFO-based model has shown much more deviation 
than the MMRFO-based model. The MRFO-based model has shown a larger error between the 
periods of [0, 1000] and [3300, 3800] seconds. It able to portray the overall pattern of temperature 
response but has shown a larger gap than the MMRFO-based model if compared to the actual data 
in smoothed-black line. Overall, the plot shows that the temperature response of MMRFO-optimized 
model has a better performance than the temperature response of MRFO-optimized model.  

 

 
Fig. 8. Temperature response in validation part 

 
5. Conclusion 

 
Mating-based Manta Ray Foraging Optimization (MMRFO) has been proposed in the paper. It is 

an improved version of the original MRFO algorithm. Mating strategy of a barnacle species has been 
incorporated into the MRFO algorithm and complementing the existing Cyclone, Chain and 
Somersault foraging strategies. Through the mating, some good features of the parents Manta Ray 
are inherited into new offspring of the species. It also has retained communication between the best-
so-far manta ray agent and all other manta ray agents. The algorithm has been adopted to optimize 
the parameters of nonlinear fuzzy-Hammerstein model for an electric water heater. Both numerical 
value and graphical plot of the results have been included comparing the performance of both 
MMRFO and MRFO algorithms. The result of the experiment conducted on the fuzzy-Hammerstein 
model optimization has shown that both algorithms have satisfactorily tracked the output 
temperature from the actual electric heater system. However, the output temperature of the heater 
optimized by MMRFO has acquired a better dynamic model than the MRFO in both modelling and 
validation phases. The proposed algorithm will be applied to optimize parameters of a fuzzy logic 
controller for the developed electric water heater in the future. In a more complex problem, it will 
be further tested in solving a constraint and multi-objective economic dispatch problem. 
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