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ABSTRAK 

Aliran dan olakan pemindahan haba ferrobendalir memainkan peranan penting dalam 
kejuruteraan, elektronik, dan bidang perubatan. Aplikasi aliran seperti ini meluas dalam 
pembesar suara hi-fi, cakera keras komputer, rawatan kanser, imej resonans magnetik, 
dan ujian diagnostik lain. Ferrobendalir biasanya mengandungi ferrozarah yang diperbuat 
daripada oksida, yang mempunyai kekonduksian terma rendah, memberikan prestasi 
pemindahan haba yang terhad. Gabungan ferrozarah dengan nanozarah lain yang 
mempunyai kekonduksian terma yang tinggi dalam bendalir asas, dikenali sebagai 
ferrobendalir hibrid, dijangka dapat meningkatkan pemindahan haba berbanding dengan 
ferrobendalir biasa. Secara amnya, bendalir asas yang digunakan dalam aplikasi 
kejuruteraan dan industri, seperti larutan polimer, darah, dan cat, adalah bendalir bukan 
Newtonan dengan ciri-ciri pseudo-plastik. Disebabkan hanya sedikit data eksperimen dan 
analisis teori sedia ada bagi mengesahkan penjelasan dalam aliran ferrobendalir hibrid 
pseudo-plastik, kajian terhadap topik ini perlu dilakukan bagi menambah baik dan 
meneroka keupayaannya dalam aliran dan olakan pemindahan haba. Dalam kajian ini, 
aliran bendalir pseudo-plastik ini dimodelkan berdasarkan model Williamson. Tiga 
masalah dipertimbangkan dalam penyelidikan ini, iaitu aliran titik genangan di atas 
helaian meregang, aliran di atas helaian telap meregang dengan kehadiran sinaran termal, 
dan aliran di atas plat bergerak dengan kesan lepasan likat dalam ferrobendalir hibrid 
Williamson. Persamaan-persamaan menakluk bagi setiap masalah dimodelkan dalam 
bentuk persamaan-persamaan pembezaan separa tak linear. Persamaan-persamaan ini 
kemudian dijelmakan menjadi persamaan pembezaan biasa menggunakan penjelmaan 
keserupaan dan diselesaikan secara berangka menggunakan kaedah kotak Keller. Perisian 
MATLAB digunakan untuk mengira kod-kod berangka bagi semua masalah. Parameter 
magnetik, parameter regangan, parameter ferrobendalir Williamson, parameter kadar 
telapan, parameter sinaran termal, parameter plat bergerak, dan parameter pelesapan likat 
adalah parameter-parameter yang dipertimbangkan dalam kajian ini. Perbandingan 
dengan jenis ferrobendalir hibrid lain dan pecahan isipadu ferrozarah yang berbeza juga 
dipertimbangkan. Hasil kajian menunjukkan bahawa ferrobendalir hibrid Williamson 
berpotensi memberikan prestasi yang lebih baik dalam keupayaan pemindahan haba 
berbanding dengan ferrobendalir dengan pecahan isipadu nanozarah yang sama. Nombor 
Nusselt meningkat apabila parameter magnetik, parameter regangan, parameter kadar 
kebolehregangan, parameter plat bergerak, dan parameter sinaran termal meningkat, 
dengan mengurangkan ketebalan aliran lapisan sempadan. Peningkatan parameter 
magnetik telah meningkatkan nilai pekali geseran kulit bagi semua masalah yang dikaji. 
Nilai pekali geseran kulit merosot apabila parameter regangan dan plat bergerak 
meningkat, seterusnya mendorong momentum dalam aliran lapisan sempadan. Apabila 
parameter Williamson meningkat, pekali geseran kulit meningkat manakala nombor 
Nusselt tidak terjejas, seperti yang ditunjukkan dalam formula nombor Nusselt. 
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ABSTRACT 

The flow and convective heat transfer of ferrofluid plays an important role in engineering, 
electronics, and medicine. Such flows are widely applied in hi-fi speakers, computer hard 
disks, cancer treatment, magnetic resonance imaging, and other diagnostic tests. 
Ferrofluid usually contains ferroparticles made from oxide, which has low thermal 
conductivity, thus providing limited heat transfer performance. Combining the 
ferroparticles with other highly thermally conductive nanoparticles in the based fluid, 
known as hybrid ferrofluid, is expected to enhance heat transfer over the ferrofluid. 
Generally, the based fluids employed in engineering and industrial applications such as 
polymer solutions, blood, and paint are non-Newtonian fluids with pseudo-plastic 
characteristics. Due to the lack of experimental data and theoretical analysis available to 
verify such an explanation for a pseudo-plastic hybrid ferrofluid flow, a study on this 
topic is needed in order to improve and explore its capabilities in flow and convective 
heat transfer. In this study, the pseudo-plastic fluid flow is modeled based on the 
Williamson model. Three problems are considered in this research, which are the 
stagnation point flow over a stretching sheet, the flow over a permeable stretching sheet 
with the presence of thermal radiation, and the flow over a moving plate with viscous 
dissipation effects in Williamson hybrid ferrofluid. The governing equations for each 
problem are modeled in the form of non-linear partial differential equations. These 
equations are then transformed into ordinary differential equations using the similarity 
transformation and solved numerically using the Keller-box method (KBM). MATLAB 
software is used to compute the numerical codes for all the problems. The magnetic 
parameter, stretching parameter, Williamson fluid parameter, permeability rate 
parameter, thermal radiation parameter, moving plate parameter, and viscous dissipation 
parameter are the parameters considered in this research. Comparisons with other types 
of hybrids ferrofluid and different ferroparticle volume fractions are also considered. The 
results show that Williamson hybrid ferrofluid potentially provides better performance in 
heat transfer capability compared to ferrofluid with the same volume of nanoparticle 
volume fraction. Nusselt number increases as the magnetic parameter, stretching 
parameter, permeability rate parameter, moving plate parameter, and thermal radiation 
parameter are induced, thus reducing the thermal boundary layer thickness. The increased 
magnetic parameter increases the skin friction coefficient for all problem studies. Skin 
friction coefficient values decrease as stretching and moving parameters increase, which 
increases momentum in the boundary layer flow. As Williamson parameter increases, the 
skin friction coefficient increases while Nusselt number does not affected, as shown in 
Nusselt number formula. 
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CHAPTER 1 

 

 

PRELIMINARIES 

1.1 Introduction 

The demand for innovative fluids, such as ferrofluids, is continually increasing. 

These fluids are specifically engineered to be directed in a particular direction by utilizing 

magnetic field intensity. This rendered ferrofluid appropriate for use as a manipulable 

fluid for transportation purposes and as a convective heat transfer agent for maintaining 

the operational temperature of equipment. Ferrofluid can be found in electronic devices 

such as electric motors, hi-fi speakers, and computer hard disks. It is also employed in 

the medical sciences, especially as a drug carrier in cancer treatment. A novel hybrid 

ferrofluid has been developed with the aim of enhancing the convective heat transfer 

capabilities of conventional ferrofluids. This type of fluid is upgraded not only within 

Newtonian fluid-based fluids like water and oil but also involves non-Newtonian 

substances such as polymer solutions, paint, ketchup, and blood, which have explicitly 

pseudo-plastic flow characteristics.   

1.1.1 Convective Boundary Layer Flow Theory 

Ludwig Prandtl (1875–1953) established the idea of the boundary layer in August 

1904 through his presentation titled "On the motion of a fluid with very small viscosity," 

which he delivered at the Third International Congress of Mathematicians. Prandtl found 

this theory after he built a special water channel to observe the detachment of vortices 

from curved bodies. He presented his findings with photographic evidence from the 

channel during his 10-minute presentation at the congress. The idea presented in his 

research paper is novel and has not been proposed before, thereby providing a pathway 

to understand fluid dynamics better (Tani, 2003; Anderson, 2005; Eckert, 2017). 

Convective heat transfer is the mechanism by which heat is transferred by the 

movement of gas or fluid over a surface. An example of convective heat transfer is when 
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air flows across the body of an athlete, providing convective cooling for the athlete. There 

are two types of convection heat transfer: forced convection and free convection. Forced 

convection exists when there is an external force inducing the fluid motion through 

mechanical movement such as a fan, motor, blower, condenser, etc. Free or natural 

convection occurs when a temperature gradient causes a density difference, thus inducing 

fluid movement. Convection maintains the steep temperature gradient between the body 

and surrounding fluid, which makes it an effective heat transfer mechanism. The rate of 

convective heat transfer depends on the fluid and surface temperature, surface area, and 

velocity of the flow across the surface (Blair, 2007; Mohamed, 2013; Müller, 2019; 

Sokolova, 2019). 

Anderson (2005) and Mohamed (2013) define a boundary layer as a narrow zone 

that occurs in close proximity to the surface within a fluid flow field. The velocity 

gradient in this region is large due to the skin friction between the fluid motion and the 

surface. Hence, it is imperative to consider skin friction and viscosity in investigations of 

boundary layers unless the drag force is insignificantly small. Figure 1.1 illustrates the 

fluid flow on a flat plate and boundary layer formation to visualize and understand the 

boundary layer theory. 

 

Figure 1.1 Fluid flow on a flat plate boundary layer formation 

Figure 1.1 illustrates two boundary layers when fluid flows on the flat plate. The 

momentum boundary layer, the hydrodynamic boundary layer, and the thermal boundary 

layer are the two types of boundary layers that can be studied. The momentum boundary 

layer exists as a result of the no-slip condition, which then causes skin friction drag from 

the occurrence of a velocity gradient near the wall. In detail, fluid molecules that are 
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attached to the flat surface will assume the velocity is zero, then delay other molecules 

movement in the layer next to it until hy   (momentum boundary layer thickness) from 

the flat surface. The thermal boundary layer, denoted as area T , arises due to a 

temperature disparity between the free flow and the temperature of the flat plate surface. 

Similar to the velocity boundary layer, the fluid molecules in contact with the flat plate 

achieve thermal equilibrium with the surface through conduction. It will transfer the 

energy to another molecule at another layer until Ty   (Mohamed, 2013). Layers above 

both regions will not be considered. 

1.1.2 Williamson Fluid Model 

Non-Newtonian fluids are defined as fluids that do not obey Newton’s law of 

viscosity. Among many types of fluids under non-Newtonian conditions, pseudo-plastic 

fluid is the most commonly encountered fluid due to its popularity in a wide range of 

industry applications. Examples of industry applications are plastic sheet forming, 

asphalts, glues, oils, biological outcomes, etc. (Khan et al., 2022). A pseudo-plastic fluid 

exhibits shear-thinning characteristics, where its viscosity decreases as the shear rate 

increases. Typical examples of pseudo-plastic fluids include polymers and solutions 

containing high-molecular-weight substances (Rapp, 2017). Many fluid models are 

designed to describe the flow behavior of shear-thinning (pseudo-plastic) fluids. Some 

notable examples include the Maxwell model, Casson model, Carreau model, Cross 

model, Ellis model, and others. However, Williamson's model has the upper hand in 

describing the flow of pseudo-plastic fluid. Williamson (1929) was the pioneer in 

proposing a model equation to depict the flow behavior of pseudo-plastic fluids. As a 

result, researchers later named it Williamson fluid. 

The advantage of the Williamson fluid model is the inclusion of minimum and 

maximum viscosities to ensure better results in describing pseudo-plastic fluids. 

Therefore, this model offers reliable experimental information when compared to other 

Newtonian and non-Newtonian fluid models for polymer solutions and particle 

suspensions (Cramer & Marchello, 1968; Jain & Parmar, 2018; Rajendar & Babu, 2018; 

Subbarayudu et al., 2020; Ullah Awan et al., 2022). Examples of Williamson fluids are 

human blood, paint, ketchup, whipped cream nail polish, etc. (Khan et al., 2017)). 



 

 4 

According to Almeida et al., , blood is a prime example of Williamson fluid, as it reduces 

blood viscosity when shear strain increases. Previous studies from Almeida et al. (2023), 

Khan et al. (2014a), and Hashim et al. (2016) also stated that the Williamson fluid model 

almost fully illustrates the behavior of human blood flow. Additionally, in contrast to 

other types of Williamson fluid models that require consideration of variables such as 

fluid type, thermophysical properties, Prandtl number, and so on, human blood can be 

assumed to have generally fixed physical properties, thermophysical characteristics, and 

Prandtl number. These assumptions simplify the research by reducing the number of 

variables to consider. After exploring the pseudo-plastic fluid model, this research 

considered the Williamson model to describe the fluid model with blood as the base fluid. 

1.1.3 Hybrid Ferrofluid 

Conventional base fluids typically exhibit low thermal conductivity, hindering 

effective heat transfer. For instance, water, despite having a high specific heat capacity, 

requires a substantial amount of energy to raise its temperature, making it insufficient for 

certain heat transfer applications. One method to enhance the thermal conductivity of a 

typical base fluid is by introducing non-identical nanoparticles into the fluid, causing 

them to dissolve. The objective of distributing nanoparticles with different properties into 

the base fluid is to enhance the individual functionality of each component or to offset 

any deficiencies, resulting in an optimal heat transfer rate. Therefore, the term "hybrid 

nanofluid" is employed to describe this particular form of fluid. 

The rising popularity of hybrid nanofluid topics among researchers started when 

Choi (1995) dispersed metallic nanoparticles into a conventional-based fluid to improve 

the fluid's thermal conductivity. Their research suggests that the smaller size of 

nanoparticles, with a typical length of 1–50 nm (Zheng et al., 2013), compared to 

microparticles, is better for fluid incorporation to enhance thermal conductivity. This 

work established the term "nanofluid" and it has become more popular among academics 

for investigating and creating novel forms of fluid, namely hybrid nanofluids, to meet the 

needs of many sectors. In another study conducted by Maxwell (2010), a significant 

proportion of solid particles was distributed into the base fluid with the aim of potentially 

enhancing the heat transfer efficiency of the base fluid. However, due to the large volume 
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fraction of solid particles, this results in the occurrence of sedimentation that inhibits heat 

transfer performance (Yasin et al., 2018b). Compared with these two studies, 

nanoparticles demonstrate an advantage in enhancing the thermal conductivity of the base 

fluid. Metal nanoparticles are commonly used ,  ,  ,  ,  ,Cu Ag Au Fe Ti Hg , while non-

metallic nanoparticles are 2 3 2 2,  , ,Al O CuO SiO TiO , etc. (Hashim et al., 2018). The 

researchers investigated several features, including thermal physical characteristics, 

viscosity, thermal conductivity, magnetism, plate movement, stretching, stagnation, and 

other factors. The studies conducted by Mahesh et al. (2023) and Yap et al. (2023) 

investigate the influence of heat radiation and viscous dissipation on hybrid nanofluid. 

Assessment of unique or multiple exact solutions of nonlinear coupled ordinary 

differential equations to portray the flow and heat field of hybrid 2 3Cu Al O /water flow 

was done by Usafzai and Aly (2022). Khashi'ie et al. (2022a) examine the flow and heat 

transfer characteristics of a hybrid 2 3Cu Al O /water nanofluid on a stretching/shrinking 

surface using the bvp4c method. In their study, Gumber et al. (2022) examined the effects 

of surface suction/injection, heat generation/absorption, joule heating, viscosity 

dissipation, and thermal radiation on the flow of a micropolar CuO Ag /water hybrid 

nanofluid. Yaseen et al. (2021) constructed a model to examine the effects of hybrid 

nanofluid ( 2 2SiO MOS /water) on the flow across a convectively heated moving surface, 

both in terms of assistance and opposition. Recent research that studied blood as a base 

fluid in their hybrid nanofluid studies was done by Waqas et al. (2022) and Saeed et al. 

(2021a). They focused on the use of blood as a hybrid nanofluid in their research. Using 

the optimal homotopy analysis method, Gul et al. (2021) investigated the stagnation point 

inviscid flow of couple stress hybrid nanofluid ( 2TiO Ag /blood) around a rotating 

sphere. They found that increasing the nanoparticle volume fraction of hybrid nanofluid 

boosts the thermal conductivity from 5.8 to 11.947%. Basha et al. (2022) concluded that 

fluid with hybrid nanoparticles has better flow and heat transfer compared to fluid with 

nanoparticles in their studies of fluid transport behavior in an inclined stenosis artery of 

bio-magnetic blood hybrid nanofluid ( Au Cu /blood). Al-Zahrani et al. (2023) also 

produce the same conclusion in their investigation in proposing a new type of biohybrid 

nanofluid ( Ag  graphene/blood), where it is more superior in controlling fluid 

movement compared to mono-nano biohybrid nanofluid. Sandhya Rani and Venkata 
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Ramana Reddy (2022) provide a unique study where they consider magnetic fields and 

electromagnetic fields directed towards the flow direction of blood-based hybrid 

nanofluid using the Cattaneo-Christov model. They were using the spectral relaxation 

method (SRM) and found that velocity and temperature profile as electric field factors 

are enhanced. 

Scientists have developed ferrofluid as a fuel for space shuttles to address the 

challenges of zero-gravity circumstances during the aerospace race. In a zero-gravity 

environment, fuel exhibits erratic motion without any consistent trajectory. The 

ferrofluid, a magnetized nanofluid, may be used to guide the fuel-containing 

ferroparticles into the combustion chamber by means of a magnetic field (Papell, 1965). 

Nowadays, ferrofluid is employed in plenty of applications. The importance of this kind 

of magnetic fluid attracted researchers to explore its potential, especially in the 

convective flow and heat transfer processes. 

Research on ferrofluid that includes the study of heat, thermal radiation, and slip 

flow of ferrofluid towards various geometry like stagnation point, stretching/shrinking 

surface, as well as a flat surface with heat flux and Newtonian heating boundary 

conditions was conducted by Ramli et al. (2017), Jusoh et al. (2018), Mohamed et al., 

(2019a; 2019b; 2021c; 2021d), Yasin et al. (2020), Jamaludin et al. (2020) and Anantha 

Kumar et al. (2019). The most recent studies of ferrofluid were done by Yasin et al. 

(2022), who researched the stagnation point flow of ferrofluid over a vertical flat plate 

with mixed convection of the boundary layer. They concluded that the main contribution 

of ferrofluid velocity, skin friction, and heat transfer performance behavior is from the 

ferroparticle volume fraction. 

1.1.4 Dimensionless Parameter 

A dimensionless parameter is a quantity or value that doesn't have any physical 

dimensions. These figures frequently arise in computations utilized by process engineers. 

Dimensionless numbers stay unchanged regardless of whether metric or other units are 

used in the equations, as long as consistent units are employed (Oyama, 2011). 

Dimensionless parameters that are used in this research are the Prandtl number, Reynolds 
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number, Nusselt number, and Eckert number. The sub-section below will provide details 

on this dimensionless parameter. 

1.1.4.1 Prandtl Number 

The Prandtl number, denoted as Pr , is a dimensionless characteristic of a fluid 

that is determined by the ratio of its kinematic viscosity, represented by v , to its thermal 

diffusivity, represented by a  (Sundén, 2019): 

Pr .
v

a
  

It evaluates the correlation between the ability of a fluid to convey momentum and its 

ability to transport heat. Pr  is a dimensionless quantity that characterizes the inherent 

properties of a fluid. Liquids with low Prandtl values are very conductive and hence ideal 

for heat transfer. The Prandtl number is only a modulus that characterizes the properties 

of a fluid. The range of the fluid is as follows: 0.001–0.03 for liquid metals, 0.2–1 for 

gases, 1–10 for water, 5–50 for light organic liquids, and 5–2000 for oils (Shah & 

London, 1978; Rapp, 2017). 

1.1.4.2 Reynolds Number 

Reynolds number defined as the ratio of fluid momentum force to viscous shear 

force. The numerical value was initially developed by Sir George Stokes in 1851 and was 

subsequently named after Osborne Reynolds by Arnold Sommerfield in 1908. The 

parameter is used to quantitatively study viscosity (Kumar & Panda, 2022). The Reynolds 

number, Re , has the following mathematical definition (Guo & Ghalambor, 2005; 

LaNasa & Upp, 2014; Caket et al., 2022): 

Re
vd


  

Where   is density, v  is velocity, d  is diameter and   is viscosity of a fluid. 

To identify whether a fluid is flowing laminarly or turbulently, one uses the Reynolds 
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number. It is thought that a Reynolds number less than or equal to 2100 indicates laminar 

flow and a Reynolds number more than 2100 indicates turbulent flow based on the 

American Petroleum Institute, API RP 13D, standards (API, 2010). 

1.1.4.3 Nusselt Number 

The Nusselt number is a well-recognized dimensionless metric that quantifies the 

ratio of convective heat transfer to conductive heat transfer at the surface of a material. It 

can be described as (Herwig, 2016; Caket et al., 2022): 

.
( )

w w
x

f f w

xq xq
Nu

k T k T T

 
 

 

Where wq is the heat flux, is the characteristic length, fk  is the thermal conductivity of 

the fluid and T  is the temperature difference external flow. The above equation shows 

that Nusselt number represents the ratio of convective heat transfer, occurring when a 

fluid layer with a thickness x , wall and ambient temperatures wT  and T  respectively on 

opposite sides, is in motion, to the conductive heat transfer that occurs when the fluid 

layer is not moving (Dincer & Siddiqui, 2018). There are two crucial factors to consider 

when defining the Nusselt number: the characteristic length and the reference temperature 

difference. The Nusselt number is a significant metric that can enhance the efficiency of 

heat transfer. It is mostly determined by the Reynolds and Prandtl numbers (Roy & Roy, 

2020). 

1.1.4.4 Eckert Number  

The effect of viscous dissipation was introduced by Gebhart (1962). Using 

perturbation method, Gebhart studies the viscous dissipation effect in natural convection. 

Geropp (1969) then extend the research by conducted a theoretical investigation on the 

Eckert number phenomena. This phenomenon refers to the reversal of heat transfer from 

a moving wall when the Eckert number, denoted as CE , is almost equal to 1. The Eckert 

number quantifies the impact of dissipation effects on a fluid's self-heating. At high flow 

velocities, the temperature distribution in a fluidic system is influenced not only by the 
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existing temperature gradients, but also by the dissipation effects caused by internal fluid 

friction. This will lead to self-heating, resulting in a modification of the temperature 

profile. The Eckert number is used to determine whether the impact of self-heating caused 

by dissipation may be disregarded ( 1CE  ) or not. This dimensionless number is given 

by (Gschwendtner, 2004; Rapp, 2017): 

   
2 2

.C
p p wf

U U
E

C T C T T
  
  

 

1.1.5 Keller-Box Method 

The Keller-box method was introduced by Keller (1971; 1978). This method 

combined both implicit finite difference methods with Newton’s method for linearization, 

which was discovered to be very effective in solving the convective boundary layer 

problem and the parabolic partial differential equation. In addition, this method can be 

modified to solve the problem in any order and proves to be unconditionally stable and 

quickly converges for highly non-linear flows, thus providing a solid reason to use this 

method for solving boundary layer problems in this study (Vajravelu & Prasad, 2014). 

The Keller-box approach has four sequential steps, commencing with the 

reduction of ordinary differential boundary layer equations into a first-order system. The 

equations are transformed into difference equations using central differences. These 

difference equations are then linearized using Newton's method and expressed in matrix-

vector form. The linear systems are solved using the block tridiagonal elimination 

approach (Na, 1979; Cebeci & Bradshaw, 1988; Cebeci & Cousteix, 2005; Mohamed, 

2018). 

Among the researchers who used this method to solve the boundary layer 

problems are Ilias et al. (2017), Ishak et al. (2006), Swalmeh et al., (2018; 2019), Vittal 

et al. (2017a), Yacob et al. (2011), Salleh et al. (2010), Iqbal et al. (2021), Yasin et al., 

(2018a; 2020; 2021a; 2021b; 2022), Mohamed et al., (2013b; 2014; 2016a; 2016b; 2019c; 

2020c; 2021b). 
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1.2 Problem Statement 

Magnetized nanofluids have gained popularity due to their capacity to be 

manipulated to flow by controlling the position and intensity of the magnetic field. 

Referred to as a ferrofluid, this liquid has substantial advantages in terms of fluidity and 

thermal conduction, especially in the medical domain. Applications encompass cancer 

therapy, hemostasis in critical wounds, magnetic resonance imaging, and other diagnostic 

examinations. 

The ferroparticles found in ferrofluids are often composed of oxide particles, 

which possess a low thermal conductivity, hence restricting their ability to transport heat 

effectively. To accomplish the necessary boost in thermal conductivity, one possible 

solution is to increase the volume percentage of oxide ferroparticles in the ferrofluid. 

However, the use of a substantial quantity of nanoparticles might result in flow 

obstruction, as indicated by Sahoo et al. (2022) and Yasin et al. (2018b). Therefore, oxide 

ferroparticles alone cannot meet the criteria of optimum thermal conductivity and 

fluidity, even by increasing the volume of nanoparticles. As mentioned in Section 1.1.3, 

the addition of metal nanoparticles to a nanofluid enhances the heat transfer performance 

of the fluid. 

Therefore, this research proposes a mathematical modeling study on a new type 

of ferrofluid named hybrid ferrofluid. The combination of a tiny quantity of metal 

nanoparticles and oxide ferroparticles mixed in a base fluid is thought to enhance thermal 

characteristics, preserve friction and fluidity, and also derive advantages from the metal 

nanoparticles, such as acting as a hygiene control agent. The usual Navier-Stokes 

equations are insufficient to characterize fluid behavior like ketchup and human blood in 

medicine; thus, the non-Newtonian Williamson model is considered to describe the fluid. 

In view of this consideration, three questions are developed in order to guide this 

theoretical research on the newly upgraded fluid: 

i. How to formulate mathematical model of Williamson hybrid ferrofluid: 

ii. How to solve the proposed problems using the Keller-box method and develop 

the numerical algorithm and computations? 
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iii. What are the effects on the skin friction and Nusselt, as well as the temperature 

and velocity profile produced when pertinent parameters are applied? 

After reviewing previous literature, little experimental data and theoretical 

analysis are available to answer these questions. This research will cover three (3) related 

problems: 

i. Stagnation point flow over a stretching sheet in a Williamson hybrid ferrofluid 

with the presence of magnetic parameter. 

ii. Boundary layer flow of Williamson hybrid ferrofluid over a stretching sheet in 

the presence of thermal radiation, suction injection effects 

iii. Convective Boundary layer flow of Williamson hybrid ferrofluid over a moving 

plate with the appearance of viscous dissipation effect. 

 

1.3 Research Objectives 

The objectives of this project to: 

i. extend the formulation of ferrofluid mathematical model to a Williamson hybrid 

ferrofluid;  

ii. provide mathematical formulations and numerical algorithms for computations;  

iii. analyse the numerical results of fluid flow characteristics affected by pertinent 

fluid parameters 

for each of the problems mentioned Section 1.2 that would facilitate the elucidation and 

validation of the experimental findings in the future regarding the issue of convective 

boundary layer flow on a stagnation point, a stretching surface, and a moving flat surface 

immersed in a Williamson hybrid ferrofluid with a constant wall temperature. 

1.4 Research Scope 

The scope of this research is confined to addressing issues related to the steady, 

two-dimensional flow of convective boundary layer flows on a stagnation point flow, a 
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stretching sheet, and a moving flat plate in a Williamson hybrid ferrofluid with a constant 

wall temperature. The governing boundary layer equations for each of the problems are 

in the form of non-linear partial differential equations, then transformed into ordinary 

differential equations using similarity transformation. Then, the transformed equations 

are solved numerically using an implicit finite difference scheme known as the Keller-

box method. Figure 1.2 below shows the flow chart solution procedures to solve the 

problems in this research. 
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Figure 1.2 Flow chart solution procedures  

Literature 
Review 

1. Stagnation point flow of Williamson hybrid ferrofluid over a 
stretching sheet 

2. Boundary layer flow of Williamson hybrid ferrofluid over a 
permeable stretching sheet with thermal radiation effects. 

3. Convective boundary layer flow of Williamson hybrid ferrofluid 
over a moving plate with viscous dissipation. 

Finite Difference Scheme – Keller-box method. 

Problem Formulation – Reduce the governing equations into non-
dimensional equations. 

Mathematical Analysis – Transformation using similarity transformation. 

Pertinent fluid parameter; Williamson fluid, magnetic, thermal radiation, 
stretching sheet, permeability rate, moving surface and viscous dissipation. 

Numerical Computation 

Validate Efficiency Method – 
Comparison with previous 

published result. 

Calculate flow characteristics for various parameter of physical condition 
with corresponding respective problem. 

Analysis of results 
and discussion. 

YES 

NO 

Developing of numerical codes for programming. 
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1.5 Thesis Outline 

This thesis contains 7 chapters that will discuss the convective boundary layer 

flow of Williamson hybrid ferrofluid. The preliminaries, which are Chapter 1, provide 

introductions to convective boundary layer theory, hybrid ferrofluid, and pseudo-plastic 

fluid models. This chapter also provides research objectives, research methodology, and 

problem statements. 

The literature review is presented in Chapter 2, covering aspects such as 

stagnation points, stretching sheets, moving surfaces, and Williamson fluid. This chapter 

aims to highlight the significance, differences, and gaps in the information pertinent to 

this study. 

The governing equation and numerical method specifically used to solve the first 

problem are discussed in Chapter 3, using the problem from Chapter 4. The Keller-Box 

method was chosen as the numerical method for this study because of its well-known 

reliability in producing numerical results. It is also able to solve ordinary differential 

equation problems in any order. The Keller-Box method is coded into MATLAB software 

to solve the equation numerically for each problem. Chapters 5 and 6 will use the same 

numerical method but with some adjustments to suit the problems, respectively. 

Chapters 4, 5, and 6 discuss the results of problems i, ii, and iii that have been 

stated in Section 1.2, respectively. Using the numerical method from Chapter 3, each 

problem includes different pertinent parameters except for magnetic parameters and 

Williamson parameters, which are covered in all the problems studied. The Prandtl 

number is kept constant throughout the results since the base fluid of this new type of 

hybrid ferrofluid is human blood. 

The conclusion of this research is articulated in Chapter 7, where the summary 

discusses the findings and conclusions of the study. Additionally, it proposes various 

conditions and parameters for future research to explore the characteristics of this new 

type of hybrid ferrofluid. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction 

This chapter discussed previous research that has been done on certain aspects 

that are related to the scope of this research. Reviewing previous research is important as 

it will provide knowledge as well as discover significance, differences, and gaps in 

information and results in doing this research. Moreover, the mathematical models 

developed in this research resulted from reviewing and comparing previous research. 

Reviewing previous research will help strengthen the quality of the research, thus 

providing trusted results.  

2.2 Williamson Hybrid Nanofluid  

Section 1.1.2 describes the relationships between the Williamson fluid model and 

pseudo-plastic fluid, highlights the advantages of the Williamson model, and explores the 

connection between human blood and the Williamson model. This section will review 

past research on the Williamson fluid model to identify gaps and relationships with the 

current research on blood hybrid ferrofluid. Human blood, being the closest non-

Newtonian fluid resembling a pseudo-plastic, reveals that the conventional Navier-Stokes 

equations are insufficient in capturing the necessary properties to reflect the model of 

fluid flow accurately. Hence, some adjustments to the Navier-Stokes equations suggested 

in the aforementioned literature must be made to accommodate this pseudo-plastic 

property. 

Lyubimov and Perminov (2002), Daprà and Scarpi (2007), and Nadeem and 

Akbar (2011) expanded upon the Williamson model by examining the solution for a thin 

oblique layer flow, the fluid pulsatile flow in rock fracture, and the peristaltic flow with 

radially varying magnetohydrodynamics (MHD), respectively. Nadeem and Akram 

(2010b) presented their work on two-dimensional peristaltic flow in an asymmetrical 
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channel using the perturbation expansion method to obtain an analytical solution to the 

non-linear problem. Another study of two-dimensional peristaltic flow was investigated 

by Nadeem and Akram (2010a), but under the influence of an inclined magnetic field and 

an inclined symmetric or asymmetrical channel. They were using lubrication to solve the 

numerical solution. Furthermore, Nadeem and Hussain (2016) concluded that 

Williamson nanofluid has better thermal conductivity compared to Williamson-based 

fluids. The homotopy analysis method was also used in this research. They found that the 

temperature profile increases as magnetic properties are inclined. 

Recent studies regarding the heat transfer of Williamson fluid include those by 

Ahmed et al. (2021), where they found in their investigation Williamson nanofluid heat 

transfer characteristics where skin friction and reduced Nusselt number decrease as 

Williamson parameter increases. They were using the bvp4c method coded in MATLAB 

to solve numerically ordinary differential equations. The presence of graphene oxide in 

Williamson fluid was investigated by Al-Sankoor et al. (2021) using the Akbari Ganji 

method (AGM) and the homotopy perturbation method (HPM) for solving nonlinear 

equations. Haider et al. (2021) studied the thermal performance of hybrid nano-

Williamson and found that the thermal conductivity performance of hybrid 

nanostructures is better than that of nanofluid. The nanoparticles that they were using 

were molybdenum disulfide and silicon dioxide. The thermal properties of motor oil as a 

Williamson fluid with a combination of molybdenum disulfide ( 2MoS ) and zinc oxide (

ZnO ) were investigated by Yahya et al. (2021). They used the Runge-Kutta method with 

a shooting methodology to solve the ordinary differential equation on a stretched sheet. 

They provide evidence that the temperature profile rises when Eckert numbers, heat 

sources, and biot numbers increase. A comparison between Cu -Williamson fluid and 

Cu Al -Williamson hybrid fluid was investigated by Almaneea (2022). Using the finite 

element method (FEM) to solve the model, they found that Lorentz force produces when 

the magnetic parameter increases for Cu Al -Williamson are greater than Cu -

Williamson fluid. The effects of thermal radiation and the bioconvection of 

microorganisms in Williamson fluid flow over a stretching sheet under the influence of 

Brownian motion and thermophoresis diffusion were investigated by Asjad et al. (2022). 

The Runge-Kutta method with shooting technique was used in this research, and they 
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found that temperature rises with parameters of Brownian motion and thermophoresis. 

Loganathan and Sangeetha (2022) claimed that the Williamson parameter reduces the 

temperature profile caused by the reduction of intermolecular collisions due to the ability 

of the Williamson fluid to withstand higher resistance. 

Other research that has been reviewed includes studies by Krishnamurthy et al. 

(2016), Kho et al., (2017; 2019), Hashim et al., (2018; 2019a; 2019b), Jain and Parmar 

(2018), Rashid et al. (2020), Srinivasulu and Goud (2021) and Jalili et al. (2022). All of 

this research investigated Williamson fluid or Williamson nanofluid with various 

conditions, effects, and methods such as stretching sheet, peristaltic flow, thermal 

radiation and chemical effects, bvp4c function, RKF (45), AGM and HPM, etc.  

2.3 Stagnation Point Flow of Williamson Hybrid Fluid 

Stagnation point flow refers to the stagnation line generated when vertical flow 

collides with the horizontal surface. Hence, the term stagnation point flow is defined 

(Mohamed, 2013). The zone of stagnation located beneath the stagnation line generates 

the highest levels of pressure, heat transmission, and mass deposition (Wang, 2008; 

Nandy & Mahapatra, 2013). The external velocity is directed along the negative y -axis 

of the plate, whereas the strain rate is applied horizontally (Salleh, 2011). Furthermore, 

stagnation point flow exists in two types: axisymmetrical and plane (Chu et al., 2021). 

The problem involving stagnation points was first explored by Hiemenz (1911). 

He also succeeded in solving the exact value of the Navier-Stokes equation. Due to his 

findings, it attracts researchers to further explore this topic, such as Chao and Jeng (1965), 

who discovered that the time needed to reach a stagnation line for the thermal boundary 

layer is inversely proportional to the velocity stream and directly proportional to the ¼ 

power of the Prandtl number of the fluid. This topic is also extended by considering 

suction and blowing (Sano, 1981). It was found that accurate results of heat transfer are 

achieved with a large Prandtl number compared to the moderate Prandtl number of 

asymptotic solutions. Salleh et al. (2009) investigate two-dimensional forced convection 

at a forward stagnation point with Newtonian heating effects. The Keller-Box method 

was used in this research for numerical analysis. An investigation of radiation and 

chemical reaction effects near the region of stagnation point of a micropolar fluid was 
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executed by Chamkha et al. (2015). Their assumption for this research was free stream 

velocity, and the surface temperature and concentration are assumed to vary linearly with 

the distance along the surface. Mabood et al. (2016) also studied radiation and chemical 

reactions as well as viscous dissipation effects on water-based nanofluids ( Cu and 2 3Al O

) using the Runge-Kutta-Fehlberg method to solve numerical equations. Hamid et al. 

(2016) have pointed out that stagnation is often studied with stretching sheets. The next 

sub-topic will review previous literature that studies this matter. Thompson and Troian 

slip boundary conditions were included in the investigation of the stagnation point of 

Casson nanofluid with thermal radiation impact (Akaje & Olajuwon, 2021). It is found 

that the temperature increases linearly with thermal radiation, Eckert number, and Casson 

parameter. Sahoo (2022) found that the boundary layer for fluids with very small 

viscosities will not be affected by the viscous effect in the investigation of viscous fluid 

flow in stagnation point flow. The Buongiorno model was used by Mabood et al. (2022) 

to study the stagnation point flow of viscoelastic nanofluid. Other research on stagnation 

points was accomplished by Mabood et al. (2022), Abbasi et al. (2022), and Rehman et 

al. (2022). They have included various parameters, various surfaces, and fluid models in 

their research on stagnation point flow.  

Waqas et al. (2021) conducts research on the behavior of a hybrid nanofluid, 

3 4 2/Fe O CuO H O , in the presence of a magnetic field to improve heat transmission on 

a horizontally stretchable surface. The heat transfer in the absence of a magnetic field is 

boosted by the collision of nanoparticles of varying sizes in the base fluid. They found 

that incorporation of 3 4Fe O and CuO  into a water-based fluid greatly enhanced the 

process of heat transmission. Khan et al. (2014b) examines the stagnation point flow and 

heat transfer characteristics of three different types of ferroparticles: magnetite ( 3 4Fe O ), 

cobalt ferrite ( 2 4CoFe O ), and Mn Zn  ferrite ( 2 4Mn ZnFe O ), when combined with 

water and kerosene as standard base fluids. Yasin et al. (2020) researched the stagnation 

point flow of ferrofluid with the presence of Newtonian heating. Using the Keller-box 

method to solve the numerical equations, they recorded inclination of ferrofluid thermal 

conductivity as the magnetite volume fraction increases. They extend their research on 

lower stagnation points of ferrofluid with mixed convection. Using the same method, 
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viscosity and temperature of fluid can influence the velocity of ferrofluid (Yasin et al., 

2021a). Khashi'ie et al. (2022b) used the bvp4c function to analyze the dynamic unsteady 

separated stagnation point (USSP) flow and thermal behavior of 3 4 2 4 2/Fe O CoFe O H O  

on a mobile plate under the influence of heat generation and MHD influences.  

2.4 Stretching Sheet in Williamson Hybrid Ferrofluid  

As mentioned in Section 2.2, stagnation points often relate to the stretching sheet 

effect. A stretching sheet is defined as the velocity at the boundary layer moving away 

from a fixed point (Ishak, 2011; Yahaya et al., 2018; Mohd Nasir et al., 2020). The 

pioneer in exploring the convection boundary layer flow on a stretching sheet was Crane 

(1970). He learned that the boundary layer for fluid velocity varied linearly when 

investigating the incompressible viscous fluid flow over a stretching sheet. Some 

researchers have obtained closed-form solutions when extending Crane's research 

(Kumaran et al., 2009). Nazar et al. (2004) and Ishak et al., (2006; 2008) used the 

combination of similarity transformation and Keller-box method (KBM) to study the 

characteristics of boundary layer flow in the stagnation point for stretching, vertical and 

continuous, and vertical and linearly sheet, respectively, using different types of fluid. 

Many researchers who are interested in this topic also extend it to viscous fluid, 

viscoelastic fluid, micropolar fluid, nanofluid, and hybrid fluid. The stretching sheet is 

often encountered in real-life problems, and it also plays significant roles in numerous 

engineering and industrial applications such as microelectronics, microfluidics, 

transportation, manufacturing, stretching of plastic films, etc. (Nadeem et al., 2013c; 

Devi & Anjali Devi, 2016, 2017; Zeeshan et al., 2016). 

Bachok et al. (2011b) study three types of nanofluid stagnation point flow over a 

stretching sheet. They were using water as the base fluid for all the nanofluids. The 

homotopy analysis approach was used by Khan et al. (2012) to investigate the 

viscoelastic fluid model with stretching effects. Mohamed et al., (2012a; 2012b) studied 

the presence of Newtonian heating on the flow over as a stretching sheet using the 

shooting and Keller-box methods, respectively. After that, Mohamed et al., (2013a; 2014) 

extended their research to thermal radiation effects using the Keller-Box method for 

numerical solutions. They found that temperature boundary layer flow declines while the 
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velocity profile increases as the stretching parameter increases. Another study by 

Mohamed et al. (2013b) also stated the same finding in their numerical investigation of 

flow over stretching sheets with convective boundary conditions. Yacob and Ishak (2012) 

studied micropolar fluid flow over a stretching sheet using the Runge-Kutta-Fehlberg 

method and shooting technique. They also concluded with the same findings. Vittal et al. 

(2017a) studied the stagnation point flow and heat transfer of magnetohydrodynamics 

(MHD) on a stretching sheet submerged in a thermal stratified medium. Then, Nadeem 

et al., (2013a; 2013; 2014) investigate the Williamson fluid flow over a stretching sheet 

using the homotopy analysis method to solve the reduced equations analytically. Nadeem 

found that the Williamson parameter reduces the velocity profile. They also presented the 

plotted graph of shear stress against the deformation rate and apparent viscosity against 

the deformation rate of Williamson fluid, with the Williamson parameter being, 0.4 

. From both graphs, they concluded that the behavior is similar to that of a pseudo-plastic 

fluid. 

A recent study on this topic was accomplished by Abbasian Arani and 

Aberoumand (2021). They investigated flow of hybrid Ag CuO /water nanofluids over 

the permeable stretching sheet using Runge-Kutta-Fehlberg (RKF45) method with 

shooting technique. Anuar et al. (2021) also study the effect of permeable stretching 

sheets of Ag MgO water hybrid nanofluid flow. Bvp4c function in MATLAB is used 

in this investigation, revealing that Ag  nanoparticle volume fraction in MgO /water 

nanofluid declines the local Nusselt number. Another research of hybrid nanofluid with 

permeable stretching sheets was discussed by Zainal et al. (2021). They studied 

2 3Al O Cu /water hybrid nanofluid using bvp4v function. Investigation of permeable 

stretching curved surface Williamson nanofluid was studied by Ahmed et al. (2021). 

They found that increasing the permeability parameter reduces the velocity profile due to 

the porosity of the surface increases. Kausar et al. (2022) concluded that Eckert number 

and radiation parameter increases the temperature in their study of micropolar nanofluid 

flow towards a permeable stretching sheet using Tiwari–Das nanofluid model. Dawar et 

al. (2023) researched the characteristics of copper nanofluid on the stagnation point flow 

with the effect of solar radiation. Other research that is reviewed included from Ullah 
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Awan et al. (2022), Jalili et al. (2022), Sinha and Sarma (2020), Mohamed et al. (2020a), 

and Khashi'ie et al. (2020a; 2020b).  

Yasin et al. (2018a) and Mohamed et al. (2019b) both studied the stagnation point 

flow of ferrofluid with the effect of Newtonian heating and thermal radiation and 

stretching sheets with Newtonian heating, respectively. Imtiaz et al. (2017) investigate 

the movement of ferrofluid over a curved, stretched surface with heterogeneous 

responses. The wall surface undergoes heterogeneous reactions that follow isothermal 

cubic auto-catalator kinetics. They found that larger curvature values enhanced the 

magnitude of velocity. The effect of homogeneous-heterogeneous reactions on ferrofluid 

was studied by Nadeem et al. (2017). They discovered that fluid particle motion is slowed 

down by magneto-thermomechanical interaction, increasing skin friction and slowing 

down the rate of heat transfer at a cylinder's surface. Jalili et al. (2019) investigated the 

ferrofluid's microstructure and inertial properties throughout a stretching sheet. The 

governing equation was formulated based on the Tiwari-Das nanofluid model, where 

3 4Fe O  as a nanoparticle and water as a base fluid. They discovered that the presence of 

the magnetic parameter causes an increase in the thickness of the thermal boundary layer 

using two semi-analytical methods: the homotopy perturbation method (HPM) and 

Akbari-Ganji's method (AGM). Rashad (2017) conducted a study on the effect of 

anisotropic slip on the transient three-dimensional magnetohydrodynamic (MHD) flow 

of cobalt-kerosene ferrofluid over an inclined radiating stretching surface. Rashad 

employed the Thomas algorithm, utilizing a finite-difference approach, to solve the 

governing partial differential equations in his work. 

2.5 Moving Surface in Williamson Hybrid Ferrofluid 

Studying the flow of the boundary layer on a plate or surface that is in motion is 

crucial due to its relevance in various technological processes. Examples of applications 

that use flow over a moving plate are metal and plastic extrusion, glass blowing hot 

rolling, and electro timing of copper wire (Raju, 2022). Sakiadis (1961) was the first to 

investigate the concept and formulation of boundary layer flow over a moving plate. He 

specifically examined the scenario when the plate was moving at a constant speed. This 

form of flow is characterized by the introduction of surrounding fluid, setting it apart 
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from Blasius flow (Sravanthi et al., 2022). In their study, Cao et al. (2016) examined the 

impact of a moving plate on a fractional Maxwell viscoelastic nanofluid. They achieved 

this by integrating the finite-difference approach with the L1-algorithm. In their study, 

Aladdin et al. (2020) found that the increment of shear stress for hybrid nanofluid is better 

than nanofluid. Reduction of temperature profile as moving parameter increases in an 

investigation of water hybrid nanofluid ( 2 2SiO MoS ) flow by Yaseen et al. (2021) using 

bvp4c method. Khashi'ie et al. (2022a) concluded that the inclusion of small-scale suction 

and magnetic field effects is recommended for cooling and heating industries to increase 

the heat transfer rate of hybrid nanofluid. Bachok et al. (2012) conducted an investigation 

on the features of three types of nanofluid, namely Copper ( Cu ), Alumina ( 2 3Al O ), and 

Titania ( 2TiO ), in their ability to expand the Blasius and Sakiadis problems. Asshaari et 

al. (2023) investigated the heat and mass transport properties of water-based nanofluids 

containing carbon nanotubes flowing between moving plates. They utilized the Tiwari 

and Das, and Buongiorno nanofluid model for their investigation. The effect of viscous 

dissipation with vertical moving plate of nanofluid was discussed by Mohamed et al. 

(2020c). Using the Keller-box method, Mohamed found that moving parameters reduce 

the thermal boundary layer flow. Megahed (2019) studies the effects of viscous 

dissipation and slip velocity on the Williamson fluid flow. They found that the heat 

transfer performance increased in slip velocity and viscosity parameter. Increasing 

Williamson fluid and suction/injection parameters, Khan et al. (2018) found that the 

velocity profile decreases in their paper analyzing relations of magneto-nanoparticles in 

Williamson fluid flow over convective oscillatory moving surface. 

Ramli et al. (2017) utilized the shooting method to examine the slip impact of 

ferrofluid flow across a mobile flat plate. They studied three type of ferroparticles, 

magnetite ( 3 4Fe O ), cobalt ferrite ( 2 4CoFe O ) and Mangane-zinc ferrite ( 2 4Mn ZnFe O ) 

with water-based fluid. Tripple solutions exist when moving parameter are applied in the 

research of stability analysis of mixed convection flow (Ramli & Ahmad, 2019). 

Sravanthi et al. (2022) examined the properties of a magnetite-water nano liquid in the 

presence of permeable moving plates. Idris et al. (2023) investigates the rheological 

properties and thermal conductivity characteristics of a hybrid ferrofluid 
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3 4 2 4Fe O CoFe O /water flowing over a porous moving surface. By employing the bvp4pc 

approach, they found that the use of a 1% volume fraction of 3 4Fe O  and 2 4CoFe O  in the 

hybrid ferrofluid resulted in a higher convective heat transfer rate compared to both the 

mono-ferrofluid and water, with enhancements of 2.75% and 6.91% respectively. Kamis 

et al. (2023) examines the ferrohydrodynamic interaction of hybrid magnetic 

nanoparticles in a mixture of ethylene glycol and water flowing over an inclined stretched 

sheet, while considering the magnetic dipole effect. An increase in the inclination angle 

and mixed convective parameter was found to boost the velocity profile and Nusselt 

number, according to their assertion. 

After reviewing previous research on Williamson hybrid ferrofluid from different 

aspects that presented in Section 2.2 to 2.5, it can be concluded that research on the 

Williamson fluid model on blood hybrid ferrofluid was not available during the time of 

executing this research. Therefore, this issue is new and relevant to be studied. 
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CHAPTER 3 

 

 

METHODOLOGY 

3.1 Introduction 

This chapter outlines the process of deriving the fundamental equations that 

regulate the movement of Williamson hybrid ferrofluid. The derivation begins with the 

conservation equations, which are first written in vector form. In addition, this chapter 

will provide a comprehensive explanation of the process of solving the modified ordinary 

differential equations for the initial issue, which entails analyzing the flow of Williamson 

hybrid ferrofluid at a stagnation point across a stretched sheet. The Keller-box method, 

is an implicit finite difference technique, is implemented and programmed in MATLAB 

software. In Chapter 4, the discussion on the results of this problem with the Keller-box 

approach is continued. This numerical approach will also be employed in Chapter 5 and 

Chapter 6 to solve the numerical equations correspondingly. 

3.2 Governing Equation 

The fundamental equation in fluid dynamics is derived from the principles of 

conservation, namely the laws of mass, momentum, and energy conservation. Bejan 

(1984)  provides the vector version of the governing equations for continuity, momentum, 

and energy for an incompressible viscous fluid: 

Continuity equation 

 . 0u
t

 
 


 3.1 

Momentum equation 

. ,
v Du

p S F
t Dt

        
 3.2 
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Energy equation 

  2 ,
p

DT
C k T

Dt
      3.3 

with 

. ,
D

u u v w
Dt t t x y z

    
      
    

 
 

,
x y z

  
   

  
i j k  3.4 

where u  represents a velocity component and F  represents a force. Other 

definitions for other variables are as follows:   represents fluid density, p  represents 

pressure,   represents dynamic viscosity, t  represents time, T  represents temperature, 

pC  represents specific heat at constant pressure, k  represents thermal conductivity, 

Cauchy stress tensor is denoted by the symbol S . Finally, x  and y  denote the Cartesian 

coordinates parallel and perpendicular to the surface, respectively.   refers to the 

viscous dissipation function, whereas the material derivative is represented by 
D

Dt
. The 

omission of the viscous dissipation function,   in Equation 3.3, is justified due to the 

low flow velocities and the presence of free convection, as stated by Ozisik (1985) and 

Lok (2002).  

This thesis investigates a steady two-dimensional flow in an incompressible fluid; 

consequently, the variable t  is disregarded. The fluid properties, including specific heat, 

thermal conductivity, and viscosity, remain unchanged. The Equations 3.1 - 3.3, as 

discussed before, can be represented as (Nadeem & Hussain, 2013). 

0,
u v

x y

 
 

 
 3.5 

1
,xyxx

x

u u dp
u v F

x y dx x y




 
     

   
 3.6 
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1
,yx yy

y

v v dp
u v F

x y dy x y

 


  
     

   
 3.7 

 
2 2

2 2
 .

p

T T k T T
u v

x y x yC
    

       
 3.8 

where u  represents the velocity in the x  direction, whereas v  represents the 

velocity in the y  direction. The body force per unit volume is composed of two 

components, xF  and yF . Additionally, the thermal diffusivity is represented by the 

variable 
 p

k

C
. ,  ,  ,  and xx yx xy yy     defines as the extra stress tensor, which will be 

explained in Section 3.3. 

3.3 Williamson Hybrid Ferrofluid Model 

For an incompressible Williamson fluid model, the Cauchy stress tensor is given 

by (Nadeem & Hussain, 2013; 2013c; Kebede et al., 2020; Ibrahim & Negera, 2020): 

pI ,S     3.9 

 0
1,1

A
 

 





 
   

 3.10 

where I  represents the identity vector, p  represents pressure, 0  and   

represent the limiting viscosities at zero and infinite shear rate respectively,   is a 

positive time constant, 1A  represents the first Rivlin-Erickson tensor, and   is defined as 

follows (Nadeem & Hussain, 2013; 2013c): 

 2
1

1
,  trace ,

2
A     3.11 

1
2 22 21

.
2

u u v v

x y x y


                         
  3.12 
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  represents the second invariant of the strain tensor. Only the scenario when   

and 0  is equal to zero and    is less than one has been taken into account. Therefore, 

the additional stress tensor is expressed as (Nadeem & Hussain, 2013; 2013c; Kebede et 

al., 2020): 

0
1,1

using binomial expansion we get:

A



 
     3.13 

 0 11 .A      3.14 

The components of the extra stress tensor are: 

 

 

 

0

0

0

2 1 ,

1 ,

2 1 ,

0.

xx

xy yx

yy

xz yz zx zz

u

x

u v

y x

v

y

  

   

  

   


  


  

       


 


   







 3.15 

Substitute Equation 3.12 and 3.15 into the components of tensor in x-momentum, 

Equation 3.6, and y-momentum, Equation 3.7, the components become (Nadeem, 2013): 
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                             

    
                

 
  

  
    
  

1

2

2

2

,x

u v

y x

v

y

F

  
   
   
   
                        

    
                


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  
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

 

3.17 

 
2 2

2 2
        ,hnf

p hnf

kT T T T
u v

x y x yC
    

       
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where hnf
hnf

hnf

v



  as the hybrid ferrofluid kinematic viscosity. The hybrid 

ferrofluid dynamic viscosity, and density are denoted as hnf  and hnf  respectively. T  

is the temperature inside the boundary layer, ( )p hnfC  is the heat capacity of hybrid 

ferrofluid, and hnfk  is the thermal conductivity of Williamson hybrid ferrofluid. Next, 0B  

is the magnetic field and  is the electric conductivity.  

Other properties related to base fluid and the nanoparticles are denoted with 

subscript bf  and 1,  s2s  respectively (Devi & Anjali Devi, 2017) as shown in Equation 

3.19: 
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where 1 2,   are the nanoparticles volume fractions. 

3.4 Volume Force 

Volume force refers to the forces exerted on the flow of fluid. It is alternatively 

referred to as the long-range force. The magnitude of this force exhibits gradual variations 

and exerts a consistent effect on every component of a fluid motion. Examples of such 

forces include gravitational and magnetic forces from a momentum equation. According 

to Kasim (2014) and Ahmed et al. (2012)  , ,0x yF F F  is defined as 

.F g J B    3.20 

J  represents current density, g  represents the gravitational field and B  

represents the external magnetic field.  J B  represents the Lorentz force that arises 

from the interaction between the velocity of the fluid and the magnetic field that is 

applied. Cowling (1976) and Kasim (2014) asserted that the mechanical force J B  

exerted by the electromagnetic force is at a right angle to the magnetic field. Therefore, 
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the motion parallel to the field is unaffected. The current density may be determined by 

applying Ohm's law. 

 .J E V B    3.21 

  represents the electrical conductivity of the fluid, E  represents the electric 

field, 0B B b   with  0 00,0,B B  represents the magnetic field, and b  represents the 

induced magnetic field. Both the electric field and the induced magnetic field are 

disregarded in this study because of the minimal magnetic Reynolds number, as stated by 

Nihoul (1967) and Mangi (2013). Hence, 

 0 .J V B   3.22 

Substituting Equation 3.22 into Equation 3.20, we obtain 

 0 0 .F g V B B      3.23 

Since 

 0 0 0

0

0 ,

0 0

i j k

V B B u v B

B

     3.24 

the above expression is calculated and obtained as 

   2 2
0 0 0 0, , 0 .V B B uB vB      3.25 

Then the Equation 3.23 becomes 

 2 2
0 0, ,0 .F g uB vB      3.26 
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In the context of two-dimensional flows, the gravitational force is typically 

denoted as  . , 0x yg g g   . Equation 3.26 can be expressed as 

     2 2
0 0, ,0 . ,0 , ,0 .x y x yF F F g g uB vB         3.27 

This research considered forced convection where 0g  . Hence, the gravitational 

term can be disregarded. This is due to the little impact of gravity force on the fluid flow 

over a flat plate. Thus, Equation 3.16 and 3.17 can be expressed as 
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
 

3.29 

 

3.5 Order of Magnitude Analysis 

The expansion of Equations 3.28 and 3.29 becomes intricate, resulting in an 

elliptical form similar to that in energy Equation 3.18, posing a challenge for resolution. 

The Equations 3.18, 3.28, and 3.29 can be transformed into a parabolic form by removing 

the second derivatives with regard to x  or y . Solving parabolic partial differential 

equations is more manageable (Anderson et al., 1997; Ishak, 2008). 

In order to transform the elliptic equations into parabolic equations, it is important 

to eliminate one of the second derivative elements by assessing its magnitude. The 

smallest term in an equation will be deleted when compared to the other terms (Ahmad, 

2009). This is due to the fact that tiny values have less impact and may be disregarded in 

the context of the boundary layer flow. 

Considering the assumption by Nadeem and Hussain (2013), it is assumed that 

the boundary layer approximations to the components of the tensor, we find that the order 
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of x , T  and u  is 1, whereas the order of  , y , and v  is  . Apply this on x-momentum 

Equation 3.28 it becomes: 
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            
       

 

3.30 

Comparing the order of each term in Equation 3.28, the term with order 1 remains 

while the term with order dell will be eliminated. It is suggested that, all of the term in 

xx  are neglected except the term 
2

2

u

y




 and 
2

2
2

u u

y y

 

 

 in xy .  

For y-momentum Equation 3.29 
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3.31 

Interestingly, all the term in this equation is neglected except for 
1 dp

dy
 . Lastly, 

for the energy equation, the order of magnitude analysis is as follows: 

 
2 2

2 2
        ,hnf

p hnf

kT T T T
u v

x y x yC
    
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1
1   1      1   .


 
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From the order of magnitude analysis, the term 
2

2

T

x




have a 2 order thus will be 

eliminated while 
2

2

T

y




with order 1 will remained.  

In overall, from the order of magnitude analysis, the governing equation of the 

boundary layer flow in Williamson hybrid ferrofluid can be written as: 

0,
u v

x y

 
 

 
 3.33 

2 2
2
02 2

1 1
2 ,hnf hnf

hnf hnf

u u u dp u u
u v v v uB

x y y dx y y


 
    

     
    

 3.34 

1
0 ,

hnf

dp

dy
   3.35 

 
2

2
.hnf

p hnf

kT T T
u v

x y yC
  

 
  

 3.36 

 

3.6 Stagnation Point Flow of Williamson Hybrid Ferrofluid Over a Stretching 

Sheet 

Considering the steady flow of a two-dimensional hybrid ferrofluid in blood on a 

stagnation point over a stretched sheet with ambient temperature, T . Let's assume that

u  represents the velocity component along the x   axis, whereas v  represents the 

velocity component along the y   axis. 0B  represents the magnetic field. It is assumed 

that the stretching velocity ( )wu x ax  and the free stream velocity U bx  can be 

expressed in linear forms, with a  and b  being positive constants (Mohamed et al., 

2012b). 
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Figure 3.1  Physical model and the coordinate system of Williamson hybrid ferrofluid 
on a stagnation point of a stretching sheet 

Under the assumption that the boundary layer is valid, the dimensional gov 

equation can be written in cartesian coordinates as in Equations 3.33-3.36 subjected to 

the boundary conditions. 

, 0,  at 0,

,   as y .
w wu u v T T y

u U T T 

   

  
 3.37 

From Equation 3.35, it can be shown that the pressure p  is solely dependent on 

x . Consequently, the pressure gradient 
dp

dx
 may be derived from Equation 3.34 and 

become: 

2
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1 1
,

hnf hnf

dp U
U B U
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  


  
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 3.38 

where U  is the free stream velocity. By substituting Equation 3.38 into Equation 

3.34, it becomes  

 
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2 .hnf hnf

hnf

BUu u u u u
u v v U v u U

x y y x y y





 

    
      
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3.39 
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3.7 Similarity Transformation 

Equations 3.33, 3.36, and 3.39 are non-linear partial differential equations with 

several dependent and independent variables. Furthermore, it exists in many dimensions 

configurations, hence posing challenges in direct solutions. Thus, the method of 

similarity transformation is utilised. (Merkin, 1994; Lesnic et al., 1999; Salleh et al., 

2010; Yacob & Ishak, 2012; Hashim et al., 2015; Hashim et al., 2019b; Sarif et al., 2013): 

 
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2
1

2, ( ), ( ) ,f
f w
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y b xf
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

  
      

 3.40 

Equation 3.40 presents the similarity variables where   and   is a non-

dimensional variable while   is the stream function where is the stream function defined 

as u
y





 and v
x


 


. Then, u  and v  can be derived as  

1/2( ),  ( ) ( ),fu bxf v bv f     
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u v b
bf bv f

x y v

 


              
 

 

3.7.1 Similarity Transformation of Continuity Equation 

By inserting the above equation into Equation 3.33, then  
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and thus Equation 3.33 is satisfied. 

3.7.2 Similarity Transformation of Momentum Equation 

From the similarity Equation 3.40, it is found that 
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By substituting the above equation and Equation 3.40 into momentum Equation 

3.39, then 
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 3.41 

Let 1x    where   is constant (Mohamed et al., 2021a; Ishak, 2010). By 

definition, 
32

f

b 


  is the Williamson fluid parameter, 
2
o

hnf

B
M

b




  is the magnetic 

parameter. 

3.7.3 Similarity Transformation of Energy Equation 

Below shows the energy equation after inserting similarity variables Equation 

3.40, 
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Substituting above equation and Equation 3.19 into energy Equation 3.36 and 

become 
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 
Pr

f p f

f

C

k

 
  is the Prandtl number, and the value is Pr 21 , corresponds to 

human blood (Khalid et al., 2018; Saeed et al., 2021a; Mohamed et al., 2021c). Equations 

3.39 and 3.36 have been transformed into ordinary differential equations, namely 

Equations 3.41 and 3.42.  

3.7.4 Similarity Transformation of Boundary Conditions 

Considering the boundary condition stated in Equation 3.37, after transformation, 

it becomes: 

( )

( )

( ) ,

wu u
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a
f

b
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 


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( ) ( ) 0

( ) 0,

f

v

bv f

f
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
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
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(0) 0,   (0) ,   (0) 1,

( ) 1,     ( ) 0  as  .

f f

f

 
   

  
   

 3.43 

, ( 0)
a
b

   is the stretching parameter and thus similarity transformation for 

continuity, momentum, energy and boundary conditions are completed.  

3.8 Numerical Method: Keller Box Method 

Overview of KBM has already been explained in Section 1.1.5.4. This section 

will discuss details on this numerical method that is used for this research. The 

transformed ordinary differential Equations 3.41 and 3.42 subjected to the boundary 

conditions, Equation 3.43, will be solved numerically by using the Keller-box method. 

The procedures of Keller-box method are discussed in this Section while the numerical 

results will be fully discussed in Chapter 4. 

Chapter 4 discusses the problem of Williamson hybrid ferrofluid on a stagnation 

point flow over a stretching sheet, and in this chapter detailed explanation on the solution 

of boundary layer equation in Chapter 3 using the Keller-box method is explained. This 

method was also used for Chapter 5 and Chapter 6. 
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3.8.1 Finite Difference Method 

The Keller-box technique involves the conversion of Equations 3.41 and 3.42 into 

a system of first-order differentiation equations: 

,f u   3.44 

,u v   3.45 

,s t   3.46 

where ( )s s   , ( )u u  , ( )v v  , ( )t t   and ( ' ) is derivative with 

respect to  . With this definition, the Equations 3.41 and 3.42 can be written as 

  2 ( 1) 1 0hnf

f

v
v vv fv u M f

v
         

3.47 

 
 

Pr 0,
phnf f

f p hnf

Ck
t

k C
ft




   

3.48 

and the boundary condition Equation 3.43 become 

(0) 0,  (0) ,  (0) 1

( ) 1,  ( ) 0,   .

f u s

u s as


  

  
  

 3.49 

The net rectangle in the   plane shown in Figure 3.2 is considered. The net points 

are defined as below: 

0 1

,

0,  ,  1,2,...., ,j j

j

h j J 

 




  


 

3.50 

where jh is the j -spacing. Here j  is not tensor indices or exponents. It is a 

sequence of numbers that denotes the coordinate position. 
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Figure 3.2 Net rectangle for difference approximations 

The finite difference forms for any points are  

     1/2 1

1
,

2
n n n

j j j 
     

3.51 

1/2 1/2 1/2
1

1/2

n n n
j j

jj

u uu

h

  




 
  

 
3.52 

The Equations 3.44 - 3.48 are modified by taking into account the net rectangle 

shown in Figure 3.2. The finite difference approximations for ordinary differential 

Equations 3.44 - 3.48 are derived by evaluating the midpoint 1/2
n
j   of the segment 1 2PP  

using central differences. Therefore, the following are acquired: 

1 1
1/22

n n n n
j j j j n

j
j

f f u u
u

h
 



 
   

3.53 

1 1
1/22

n n n n
j j j j n

j
j

u u v v
v

h
 



 
   

3.54 

1 1
1/22

n n n n
j j j j n

j
j

s s t t
t

h
 



 
   

3.55 

Equations 3.47 and 3.48 are shown as the finite centered differential equation at 

point 1/2j  , specifically for line 1 2PP . The terms 1L  and 2L  correspond to the left-hand 

side of Equations 3.47 and 3.48, respectively. The finite difference equation may be 

expressed as follows: 



 

 45 

  1/2

1 1/2
0

n

j
L




  3.56 

1/2
2 1/2( ) 0n

jL 
   3.57 

Following the Equation 3.47, Equations 3.56 and 3.57 can be written as  

1
1 1/2 1 1/2( ) ( ) 0,n n

j jL L 
    3.58 

1
2 1/2 2 1/2( ) ( ) 0,n n

j jL L 
    3.59 

with 

 

2
1 1/2 1 1/2

1 1
1 1/2 1/2 1/2

2

1/2 1/2

( ) [ ( ' ') 1 ( 1)]

1 ( 1)
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j j j jn n n
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L H v vv fv u M u

v v v v
H v f v

h h

u M u
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

 

 
  

 

      

  
    

 

   

 3.60 

2 1/2 2 1/2

1
2 1/2 1/2

( ) [ '
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Pr ]n n
j j

n n
j j n n

j j
j

L H t

t t
H f t

h

ft 


 



 
   

 



 3.61 

 
 

1

2

hnf

f

phnf f

f p hnf

v
H

v

Ck
H

k C









  

The fluid properties variables in Equations 3.60 and 3.61 are denoted as 1H  and 

2H  since it does not involve in the process and to ease the method. 
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 

 
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
 
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    

 
    

  
    

 
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 3.62 

and 

1 1
2 1/2 1/2 2 1/2
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2 1/2 1/2 2 1/2
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j j n n n

j j j
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t t
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 
  

 
  

 
    

 
 

    
 

 3.63 

Multiply jh  with Equations 3.53 – 3.55 and 3.62 – 3.63, therefore 

 1 12
jn n n n

j j j j

h
f f u u     3.64 

 1 12
jn n n n

j j j j

h
u u v v     3.65 

 1 12
jn n n n

j j j j

h
s s t t     3.66 

  
 

1 1 1 1 1 1 1 1
1 1/2 1 1 1/2 1 1/2 1/2

21 1
1/2 1/2
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n n n n n n n n
j j j j j j j j j
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j j j j j

R H v v v v v h f v

h u h h M u

       
     

 
 

    

   
 3.67 

 1 1 1 1 1
2 1/2 2 1 1/2 1/2( ) Prn n n n n

j j j j j jR H t t h f t    
       3.68 

where 

1 1
1 1/2 1 1/2( ) ( )n n

j j jR h L 
    
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1 1
2 1/2 2 1/2( ) ( )n n

j j jR h L 
    

The Equations 3.64 – 3.68 are for 1,2,...j J  at the given n . Also, the boundary 

condition 3.49 become 

0 0 00,  ,  s 1,  1,  0n n n n n
j jf u u s      3.69 

 

3.8.2 Newton’s Method 

Equations 3.64 – 3.68 are then form a system equation for the solution of the 

unknown variable ( ,  ,  ,  , n n n n n
j j j j jf u v s t ), 1,2,...j J  due to the assumption that 

1 1 1 1 1,  ,  ,  , n n n n n
j j j j jf u v s t      are known for 0 j J   (Mohamed, 2013; Cebeci & Cousteix, 

2005). Unknown variables ( ,  ,  ,  , n n n n n
j j j j jf u v s t ) are revised as ( ,  ,  ,  , j j j j jf u v s t ) to ease 

the process for this step. With Equation 3.52, Equations 3.64– 3.68 can be written as 

 1 1 0
2

j
j j j j

h
f f u u      3.70 
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j j j j
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where 
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The nonlinear Equations 3.70 - 3.74 are resolved with Newton's technique. 

Therefore, the subsequent iterations are introduced. (Mohamed, 2013; Cebeci & 

Cousteix, 2005; Salleh et al., 2010): 
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( 1) ( ) ( )

i i i
j j j
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 

 

3.75 

Equation 3.75 is substituted into the system of Equations 3.70 – 3.74, and become 
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3.80 

The superscript i from iterates are eliminated for ease of operation and 

simplification. Subsequently, via a series of algebraic manipulations and disregarding the 

terms of higher order for ( ) ( ) ( ) ( ) ( ),  , ,  ,  ,i i i i i
j j j j jf u v s t      the system of equations can be 

expressed as follows: 
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j j j j j j j j
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f f u u f f h u             
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Pr
Pr

2

Pr Pr Pr

2 2 2

n j
j j j j j j jj

j j j
j j j j j j

h
R H t t h f t t H f

h h h
t H f f t f t



  


  

    

 
     

 
     

         
     

 

 

The above system of equations has been simplified to  

   1 1 1 1/22
j

j j j j j

h
f f u u r     
     3.81 

   1 1 2 1/22
j

j j j j j

h
u u v v r     
     3.82 

   1 1 3 1/22
j

j j j j j

h
s s t t r     
     3.83 

         
   

4 1 2 1 3 4 11/2

5 6 1

j j j jj j j

j j

r a v a v a f a f

a u a u

   

 
 



   

 
 3.84 

         5 1 2 1 3 4 11/2 j j j jj
r b t b t b f b f    

     3.85 

where 
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   

   

     

     

1 1 1/2

2 1 1 1/2

3 1/2 4 3

5 1/2 6 5

1
2

1
2

,     a ,
2

,     
2

j
j jj

j
j jj

j
jj j j

j jj j j

h
a H v f

h
a H v f

h
a v a

M
a h u a a







 





  

   

 

     
 

 3.86 

 

   

     

1 2 1/2

2 1 2

3 1/2 4 3

Pr

2
2

Pr
,     

2

j
jj

j j

j
jj j j

h
b H f

b b H

h
b t b b





 

 

 

 3.87 

 
 
 

       

   
     

1 1 1/21/2

2 1 1/21/2

3 1 1/21/2

2 2
1

4 1 1 1 1/2 1/21/2

2

1/2 1/2 4 1/2

5 2 1 1/2 1/21/2 1/2

2

Pr

j j j jj

j j j jj

j j j jj

j j j j j j jj

j j j j j j j

j j j j jj j

r f f h u

r u u h v

r s s h t

H
r H v v v v h f v

h u Mh u Mh h R

r H t t h f t R



 

 

 

   

  

   

  

  

  

       

    

   

 3.88 

As stated by Cebeci and Bradshaw (1988), the boundary conditions given by 

Equation 3.69 may be met without the need for iteration. Thus, the boundary conditions 

can be expressed as: 

0 0 00, 0, 0,  0 and 0j jf u s u s          3.89 

 

3.8.3 The Block Elimination Technique 

After the process of linearization from Newton’s method, Equations 3.81 - 3.85 

are solved with the block elimination technique (Na, 1979) due to the system consisting 

of three diagonal block structures.  
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A common three-diagonal block structure consists of variables or constants. 

Nevertheless, the Keller-box technique incorporates the use of block matrices. In order 

to solve the linearized difference Equations 3.81 to 3.85 using the block elimination 

approach, it is necessary to specify the elements of the block matrices. The blocks are 

specified by three situations, which is when 1,  2,  ...., 1 and  j j j J j J     . 

When 1j  , the linearize difference Equations 3.81 - 3.85 become 

   1 1 0 1 1 01 1/2

1

2
r f f h u u   


     

   2 1 0 1 1 01 1/2

1

2
r u u h v v   


     

   3 1 0 1 01 1/2 2
jh

r s s t t   


     

             4 1 1 2 0 3 1 4 0 5 1 6 01 1/2 1 1 1 1 1 1
r a v a v a f a f a u a u     


       

         5 1 1 2 0 3 1 4 01 1/2 1 1 1 1
r b t b t b f b f   


     

Subjected to the boundary conditions 3.89, suitable matrices can be formed is 

     
     

0

1 1
1 12 2 0

1 1
1 12 2 1

2 3 1 11 1 1

2 3 1 11 1 1

1
1 1 1/2112

2 1 1/21

2

25 1

2

0 0 1 0 0

0 0 0

0 0 0

0 0

0 0

( )0 0 0 0

( )1 0 0 0 0

0 1 0 0 0

( ) 0 0 0 0

0 0 0 0 0

v

h h t

h h f

a a a v

b b b t

ruh

rs

f

va

t

















   
       
     
   
   
     
   

  
  
   
  
  
     

3 1 1/2

4 1 1/2

5 1 1/2

( )

( )

( )

r

r

r







 
 
 
 
 
 
  

 

Hence, for 1j  , it can be written as 
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       1 1 1 2 1A C r    

Next, when 2 ....,  1j j J    the linearize difference Equations 3.81 - 3.85 

become 

    1 1 2 1 1 21 1/2

1

2J J J J JJ
r f f h u u        

     

    2 1 2 1 1 21 1/2

1

2J J J J JJ
r u u h v v        

     

    3 1 2 1 21 1/2 2
j

J J J JJ

h
r s s t t       

     

          
   

4 1 1 2 2 3 1 4 21 1/2 1 1 1 1

5 2 6 21 1

J J J JJ J J J J

J JJ J

r a v a v a f a f

a u a u

   

 

        

  

   

 
 

          5 1 1 2 2 3 1 4 21 1/2 1 1 1 1J J J JJ J J J J
r b t b t b f b f           

     

Subjected to the boundary conditions 3.89, suitable matrices can be formed is  
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   
   

3

1
12 3

1
12 2

4 2 21 1

4 2 21 1

1
12

1
12

1
12

6 1 3 1 1 1

3 1 1 1

0 0 1 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0

0 1 0 0

1 0 0 0

0 1 0 0

( ) 0 ( ) ( ) 0

0 0 ( ) 0 ( )

J

J J

J J

JJ J

JJ J

J

J

J

J J J

J J

u

h s

h f

a a v

b b t

h

h

h

a a a

b b









 

 

 

 







  

 

   
      
    
   
   
     
 
   
  


 

2

2

1

1

1

1
1 ( 1) 1/2112

2 ( 1) 1/21

3 ( 1) 1/2

4 ( 1) 1/25 1

5 ( 1) 1/2

( )0 0 0 0

( )1 0 0 0 0

( )0 1 0 0 0

( )( ) 0 0 0 0

( )0 0 0 0 0

J

J

J

J

J

JJJ

JJ

JJ

JJJ

JJ

u

s

f

v

t

ruh

rs

rf

rva

rt























 

 

 

 

 

 
 
 
 

  
  
   

   
  
  
   
  
  
     

 
 
 
 
 
 
    

hence, for 2 ....,  1j j J   , it can be written as 

1 1 1j j j j j j jr B A C                                  

Lastly, when j J , the linearize difference Equations 3.81 - 3.85 become 

   1 1 11/2

1

2J J J J JJ
r f f h u u    

     

   2 1 11/2

1

2J J J J JJ
r u u h v v    

     

   3 1 11/2

1

2J J J J JJ
r s s h t t    

     

             4 1 2 1 3 4 1 5 6 11/2 J J J J J JJ J J J J J J
r a v a v a f a f a u a u       

       

         5 1 2 1 3 4 11/2 J J J JJ J J J J
r b t b t b f b f    

     

Subjected to the boundary conditions 3.89, the suitable matrices can be formed as 
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   
   

2

1
2 2

1
2 1

4 2 1

4 2 1

1
12

1
12

1
2

6 3 1

3

0 0 1 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

( ) 0 ( ) ( ) 0

0 0 ( ) 0 0

J

J J

J J

JJ J

JJ J

JJ

JJ

JJ

JJ J J

JJ

u

h s

h f

a a v

b b t

uh

sh

fh

va a a

tb



























   
      
   
   
   
     

   
     
    
  
  
    

1 1/2

2 1/2

3 1/2

4 1/2

5 1/2

( )

( )

( )

( )

( )

J

J

J

J

J

r

r

r

r

r











 
  
  
  
  
  
   

 

hence, for j J , it can be written as 

     1j J J J Jr B A      

Therefore, in overall, for 1,2,3,...., 1,j J J  , the system of equations can be 

summarized as  

       1 1 1 1 21    : ,j r A C     

          2 2 1 2 2 2 32    :  ,j r B A C       

          3 3 2 3 3 3 43    :  ,

                                                                   

j r B A C     

 
 

         1 1 2 1 1 11 : J J J J J j Jj J r B A C                

       1    : J J J J Jj J r B A     

Generally, in matrix vector form, the above system can be simplified as 

,A r   3.90 

with 
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   
     

     
   

 
 

 
 

1 1 1

2 2 2 2

1 1 1 1

,  

J J J J

J J J

A C

B A C

A

B A C

B A










   

   
   
   
   
   
    
   
   
   
   
   
   

 
 
 

 

and 

 
 

 
 

1

1

2

J

J

r

r

r

r

r


 
 
 
 
 

  
 
 
 
 
 





 

The elements of the matrices are 

 
     

     

1 1
1 12 2

1 1
1 12 21

2 3 11 1 1

2 3 11 1 1

0 0 1 0 0

0 0 0

0 0 0 ,

0 0

0 0

h h

h hA

a a a

b b b

 
   
  
 
 
  

 3.91 

1
2

1
2

1
2

6 3 1

3 1

0 0 0 0

1 0 0 0

0 1 0 0 ,  2 ,

( ) 0 ( ) ( ) 0

0 0 ( ) 0 ( )

j

j

jj

j j j

j j

h

h

hA j J

a a a

b b

 
   
    
 
 
  

 3.92 
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   
   

1
2

1
2

4 2

4 2

0 0 1 0 0

0 0 0 0

0 0 0 0 ,  2 ,
0 0 0

0 0 0

j

jj

j j

j j

h

hB j J
a a

b b

 
  
       
 
 
 

 3.93 

1
2

5

0 0 0 0

1 0 0 0 0

,  20 1 0 0 0

( ) 0 0 0 0

0 0 0 0 0

j

j

j

h

C j J

a

 
 
 
       
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Matrix A in Equation 3.90 is known as a tridiagonal matrix with zero elements, 

except at its main diagonal. Equation 3.90 can be solved by using a block elimination 

technique (Na, 1979) with the assumption that matrix A is non-singular and can be 

factored in the form of 

,A LU  3.97 

with 
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where  I  is the identity matrix of order 5 and  1 , and  i  are 5x5 matrices 

which elements are determined by the following equations: 

   1 1 ,A   3.98 

    1 1 1 ,A C   3.99 

1 ,     2,3,....., ,j j j jA B j J                    3.100 

,     2,3,....., 1,j j jC j J                3.101 

Then, Equation 3.97 is substituted into Equation 3.90, hence 

.LU r   3.102 

if 

,U W   3.103 

then the Equation 3.102 become 
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,LW r  3.104 

where 
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 
  

  

and jW    are 5 x 1 column matrices. The elements W  can be solved from 

Equation 3.103 which is 

    1 1 1W r   3.105 

1 ,     2 .j j j j jW r B W j J                        3.106 

The process of calculating j , j  and jW  is often known as the forward sweep. 

After identifying the elements of W , the answer   may be derived using Equation 3.103 

in the backward sweep. The elements are determined using the following relationships: 

   ,J JW   3.107 

1 ,     1 1.j j j jW j J                       3.108 

Once the constituents of   are identified, Equation 3.81 - 3.85 can be utilised to 

get the ( 1i  )th iterates for Equation 3.75. 

The computations are iterated until a convergence condition is met. The parameter 

 0v , which represents the wall shear stress, is frequently employed as a convergence 

criteria in laminar boundary layer computations (Cebeci & Bradshaw, 1988). The likely 

explanation for this is the computations involving the boundary layer, where the most 

significant inaccuracies often arise in the parameter related to wall shear stress. Thus, the 
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wall shear stress parameter is employed as the convergence criteria in this work. 

Calculations cease when 

 
0 1,
iv   3.109 

where 1  is a predetermined, insufficient value. This study used 1 0.00001  , 

which provides accurate data up to four decimal places, as recommended by Cebeci and 

Bradshaw (1988). 

3.8.4 Initial Conditions and Thermophysical Properties 

In order to ensure that the numerical results of the quantities of interest are not 

affected, it is necessary to select the appropriate step size   and boundary layer 

thickness   for the numerical computation. The trial-and-error method is normally 

employed, commencing with the determination of the value of   by considering the 

velocity and temperature profile. Boundary layer thickness   that is either large or small 

may not satisfy the boundary condition   . This study reveals that a boundary layer 

thickness,  , ranging from 1 to 7 is optimal for obtaining precise numerical outcomes, 

depending on the specific challenges being addressed. Subsequently, once the value of 

  is ascertained, it is important to establish the appropriate value of   (Nazar, 2003; 

Mohamed, 2013; Swalmeh et al., 2018). 

According to Nazar (2003), a step size between 0.02   and 0.07 is typically 

enough to provide precise numerical results. However, the specific value of the step size 

should not noticeably impact the final converged results. In order to get precise and 

convergent numerical findings, Mohamed et al. (2021b) defined the boundary layer 

thickness and step size as 7 and 0.02, respectively, across various parameters. In order to 

validate the precision of the numerical approach and MATLAB programming, the current 

result is compared to previously published results. The suitable way to verify the results 

is to compare them with other studies that use different methods of solving but has the 

same momentum and energy equation along with the same boundary condition to the 

present studies (Iqbal et al., 2021; Yasin et al., 2021a). 
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The are several types of fluid used in this research. The different types of fluid 

are use in this research is to evaluate the capabilities with the upgraded fluid. Table 3.1 

below shows the thermophysical properties of fluid/ particles used for this research 

(Khalid et al., 2018; Mohamed et al., 2019a; 2019b; Waqas et al., 2021; Ramli & Ahmad, 

2019; Abu Bakar et al., 2021; Khan et al., 2022; Mohamed et al.2020b; 2021a): 

Table 3.1 Thermophysical properties of fluid and particles that are used in this 
research. 

Fluid/Particles 
Physical Properties 

  (kg/m3) 
pC  (J/kg·K) k (W/m·K) 

Human blood 1053 3594 0.492 

Magnetite (Fe3O4), 1  5180 670 9.7 

Copper (Cu), 2  8933 385 400 

Water 997 4179 0.613 

Cobalt ferrite (CoFe2O4) 4907 700 3.7 

Manganese-zinc ferrite (Mn-

ZnFe2O4) 
4900 800 5 

Silver (Ag) 10500 235 429 

Gold (Au) 19300 129 318 

 

3.9 Initial Profiles 

Initial guesses for the function and in the boundary layer flow is required to 

proceed the numerical computation. Since velocity and temperature distribution are both 

boundary conditions at and then the initial guesses will start with and for ease of process. 

Other functions will be defined after and with differentiation and integration. The 

selection of distribution curves has some possibilities as long as the boundary condition 

Equation 3.49 is satisfied.  For the problem considered here, one possibility distribution 

curve for and suggested by Bejan (1984), and Bejan and Kraus (2003) 

Prior to doing numerical computations, it is necessary to provide initial estimates 

for the variables , , ,f u v s  and t  in the boundary layer flow. Given that the boundary 
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conditions at points 0   and    involve the velocity u  and temperature 

distribution s , the initial guesses for the process will be u  and s  for simplicity. 

Functions ,f v , and t  will be defined subsequent to u and s  using differentiation and 

integration. The choice of distribution curves is viable as long as the boundary constraint 

Equation 3.49 is met. Regarding the topic at hand, Bejan (1984) and Bejan and Kraus 

(2003) proposed a potential distribution curve for the variables u  and s : 

2
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Integrate Equation 3.110 with respect to   produce 
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and differentiate Equation 3.110 and Equation 3.111, respectively will produce 
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Chapter 4 will provide a comprehensive remedy for the problem addressed in this 

chapter. The Keller-box approach has been determined to yield precise outcomes for 

solving the stagnation point flow across the stretching sheet. Given its high level of 

precision, this method will also be employed for problem-solving purposes in Chapter 5 

and Chapter 6. Figure 3.3 depicts the calculation flow diagram of the Keller-box 

approach, as it is utilized for the issues addressed in this thesis. The programming and 

numerical computations were performed using the MATLAB software. Appendix A 
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contains a compilation of symbols utilized in the MATLAB program, whereas Appendix 

B showcases the comprehensive program for this particular problem. 

 

Figure 3.3 Keller-box method flow diagram 
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CHAPTER 4 

 

 

STAGNATION POINT FLOW OF WILLIAMSON HYBRID FERROFLUID 

OVER A STRETCHING SHEET  

4.1 Introduction 

This chapter will explore the properties of convective boundary layer flow and 

heat transfer of a hybrid ferrofluid, with blood as based fluid, on a stagnation point flow 

over a stretching sheet. Specific cases for this problem are from Yasin et al., (2018a; 

2020) and Hashim et al. (2019b). Section 2.2 and Section 2.3 have provided information 

on stagnation point and stretching sheet, which is discussed in this research problem. In 

those two Sections, it can be concluded that there is a gap in studies for this new upgraded 

type of fluid. The formulation of the governing equations and the Keller-box algorithm 

for this problem has been discussed in Chapter 3. The boundary layer thickness and step 

size values inserted into the Keller-box method are 7 and 0.02, respectively. This chapter 

investigates the fluid flow properties and heat transmission of Williamson hybrid 

ferrofluid by examining a few relevant fluid parameters, including the magnetic 

parameter, Williamson parameter, and stretching parameter. The performance of the 

enhanced fluid is further evaluated by comparing it with various ferroparticle volume 

fractions. Section 4.3 examines and discusses the analysis of temperature distribution, 

velocity profiles, variation of the Nusselt number, and skin friction coefficient. 

4.2 Mathematical Formulation 

Considering a steady two-dimensional flow on a stagnation point over a stretching 

sheet with ambient temperature, as shown in Figure 3.1. A detailed discussion of the 

mathematical formulation has been covered in Chapter 3, Section 3.6, Equations 3.41 and 

3.42 with boundary conditions in Equation 3.43. Below is the rewritten equation for this 

problem: 
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The focus of this work is on two specific physical quantities: the skin friction 

coefficient fC  and the local Nusselt number xNu . Local skin coefficient, referred to as 

local dynamic pressure perceived as the shear stress of fluid on the surface (Kundu et al., 

2016). Local Nusselt number is referred to as the ratio of convection to conduction heat 

transfer under the same conditions (Astakhov, 2012). Both physical quantities are given 

(Salleh et al., 2010; Bachok et al., 2011b; 2012; Yasin et al., 2018a; 2020): 
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4.1 

with the surface shear stress w and the surface heat flux wq  defined as (Asjad et 

al., 2022; Lund et al., 2019; Hashim et al., 2016; 2019a; 2019b); 
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4.2 

Using variables in Equation 3.40 and Equation 4.1 give  
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4.3 

where Rex
f

U x


  is the Reynold’s number. 

4.3 Results and Discussion 

Numerical solutions were obtained for the non-linear ordinary differential 

Equation 3.41 and Equation 3.42, together with their corresponding boundary conditions 

3.43, using the Keller-box technique implemented in MATLAB software. An analysis 

was conducted on the influence of physical factors, namely the stretching parameter  , 

magnetic parameter M , and Williamson fluid parameter  , on the velocity profiles, 

temperature profiles, reduced skin friction coefficient 1/2Re ,f xC  and reduced Nusselt 

Number 1/2Rex xNu  . As mentioned before in Chapter 3, Prandtl number is set 21 

throughout the results while ( 3 4Fe O ), and copper ( Cu ) are considered as the nanoparticle 

volume fraction, 1 , and 2 respectively. The default nanoparticle volume fractions used 

for the hybrid ferrofluid fluid are 1 0.1   and 2 0.06   referenced from Devi and Anjali 

Devi (2017). The thermophysical characteristics of human blood, magnetite ( 3 4Fe O  ), 

and copper ( Cu  ) can be referred to Table 3.1. To authenticate the efficiency of the 

Keller-box used in this study, a comparison has been made that is shown in Table 4.1 

with 2 0       and Pr 6.2 . The observed decrease in skin friction 1/2Ref xC  is 

consistent with the findings of Yasin et al. (2018b), who also utilized the Keller-box 

approach. 

Table 4.2 displays the lowered Nusselt number and skin friction values 

corresponding to the stretching parameter, Pr 21,  M=0.5, and 0.1  . The parameter 

values for this parameter is referred from Bachok et al. (2011a). As the stretching 

parameter increases, the fluid's heat transmission capability improves. The skin friction 
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values provide the opposite outcome. As the stretching parameter rises, the skin friction 

is significantly reduced until it reaches negative values after point 1  . 

Figure 4.1 illustrate the distributions of 1/2Ref xC  with   for four types of fluid 

when Pr 21,   = 0.5 and 0.5M  . Nadeem et al. (2013; 2013b; 2014) is the reference 

for the parameter values of  . Figure 4.1 show that the hybrid ferrofluid produces the 

highest distributions of 1/2Ref xC  as Williamson fluid parameter increases compared to 

the other types of fluid. The high distributions of 1/2Ref xC  are due to the presence of Cu  

in the fluid mixture which has high particle density. Furthermore, the trend distributions 

of 1/2Ref xC are similar for all types of fluid in the figure. Increasing Williamson reduces 

the flow velocity as it increases the resistance of flow leading to increase of 1/2Ref xC

values (Vittal et al., 2017b). The distribution of 1/2Rex xNu   is not considered as this 

parameter does not involve in the respective physical quantity which can be referred to 

Equation 4.3.  

Figures 4.2 and 4.3 show the distributions of 1/2Rex xNu   and 1/2Ref xC  with M for 

four types of fluid when Pr 21,  0.1,  and 0.5    . The parameter values used for M 

is referred to Yasin et al. (2018b).There are four types of fluid involved in this study: 

blood ( 1 2 0   ), 0.1 vol. of 3 4Fe O /blood ferrofluid ( 1 20.1, 0   ), 0.16 vol. of 

3 4Fe O Cu /blood hybrid ferrofluid ( 1 20.1, 0.06   ), and 0.16 vol. of Fe3O4/blood 

ferrofluid ( 1 20.16, 0   ). It is evident that in both figures, the increase of M and the 

volume of nanoparticles leads to an increase of 1/2Rex xNu   and 1/2Ref xC . 3 4Fe O Cu

/blood hybrid ferrofluid produces the highest values of 1/2Rex xNu   and 1/2Ref xC  

compared to other types of fluid while blood-based fluid produces the lowest . 1/2Rex xNu 

. and 1/2Ref xC  value. The elevated values of 1/2Rex xNu   in 0.16 volume of 3 4Fe O Cu

/blood hybrid ferrofluid are attributed to the exceptional heat conductivity of copper. 

Mathematically, it is determined that the values of 1/2Rex xNu   may be enhanced by 
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modifying the proportion of copper nanoparticle volume fraction that exceeds that of 

magnetite. 

Figures 4.4 and 4.5 display the temperature profiles and velocity profiles for 

different values of the stretching parameter,  . An increase in parameter   indicates a 

greater influence of the stretching velocity ax  on the free stream velocity bx , resulting 

in a reduction in the thickness of the thermal boundary layer in Figure 4.4. This 

observation aligns with the findings of Mohamed et al. (2019b). Finally, Figure 4.5 

concludes that if the free stream velocity ( 1  ) is greater than the stretching velocity of 

the surface, it results in the flow having a boundary layer structure. Conversely, in the 

case of an inverted boundary layer flow, the thickness of the momentum boundary layer 

decreases with 1   (Mohamed et al., 2013b).  

Table 4.1  Comparison values of 1/ 2Ref xC  with previously published results. 

1  
Yasin et al. (2018a) Present Result 

M=1 M=2 M=5 M=10 M=1 M=2 M=5 M=10 

0.01 1.639 1.937 2.637 3.506 1.639 1.937 2.637 3.506 

0.10 2.155 2.547 3.467 4.610 2.155 2.547 3.467 4.610 

0.20 2.842 3.358 4.572 6.080 2.842 3.358 4.572 6.080 

 

Table 4.2  The values of 1/2Rex xNu   and 1/2Ref xC  for various values of  . 

  1/2Rex xNu   1/2Ref xC  

0 2.39742 2.41828 

0.5 3.54431 1.34050 

1 4.49063 0.00000 

2 5.99939 -3.20462 

2.5 6.62046 -4.94039 
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Figure 4.1 Distribution of 1/2Ref xC  for various values of   for different nano 

particle volume fractions. 

 

 

Figure 4.2 Distribution of 1/2Rex xNu   with M  for different nanoparticle volume 

fraction.  
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Figure 4.3 Distribution of 1/2Ref xC  with M  for different nanoparticle volume 

fraction. 

 

Figure 4.4 Temperature profiles for various values of  .  
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Figure 4.5  Velocity profiles for various values of  . 

 

4.4 Conclusion 

This chapter has addressed the convective boundary layer flow and heat transfer 

of Williamson hybrid ferrofluid on a stagnation point towards a stretched sheet. The study 

demonstrated the impact of the magnetic parameter M , the Williamson fluid parameter 

 , the stretching parameter  , and the volume fractions of nanoparticles 1 2,   for 

3 4Fe O  and Cu respectively on the temperature profiles, velocity profiles, reduced 

Nusselt number 1/2Rex xNu  , and skin friction 1/2Ref xC . The research findings can be 

summarized as follows: 

 The distribution of reduced Nusselt number and skin friction values for 
Williamson hybrid ferrofluid is the highest compared to other types of fluid that 
are compared. 

 The Lorentz force, which opposes the fluid flow, leads to a rise in the skin 
friction coefficient as the magnetic parameter increases.  

 As the stretching parameter increases, the thickness of the thermal and 
momentum boundary layer decreases.  
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CHAPTER 5 

 

 

BOUNDARY LAYER FLOW OF WILLIAMSON HYBRID FERROFLUID 

OVER A PERMEABLE STRETCHING SHEET WITH THERMAL 

RADIATION EFFECTS 

5.1 Introduction 

This chapter investigated the mathematical model of a Williamson hybrid 

ferrofluid flow over a permeable stretching sheet with thermal radiation effects. The 

works from Salleh et al. (2010), Yasin et al. (2018a), and Mohamed et al. (2019a) are the 

specific cases of this problem. Crane (1970) has pioneered the research of the boundary 

layer flow on stretching sheets. Investigating incompressible viscous fluid flow over a 

stretching plate, Crane discovered that the boundary layer for fluid velocity varied 

linearly with the distance from a fixed point using an analytical solution. Kumaran et al. 

(2009) stated that the researchers extended Crane studies and obtained closed-form 

solutions. The liquid used for cooling and the rate of stretching are the two factors that 

would determine the desired fluid mechanical properties of such a process. Some 

applications in the industrial and manufacturing industries where stretching sheets play a 

major role in the quality of products are paper production, hot rolling, extrusion, metal 

spinning, and fiber making (Ahmed et al., 2021). Other than conduction and convection, 

thermal radiation is another heat and energy transfer method, and it is the only heat 

transfer method that occurred without medium of transfer (vacuum). This method of heat 

and energy transfer influenced by a variety of physical systems, including heat, gas flow, 

and mass transit. The properties of thermal radiation in heat transfer processes become 

provocatively more apparent, especially at high temperatures. In engineering application 

thermal radiation plays role in process that involves high temperature such as nuclear 

power plants, polymer and glass productions, gas turbines, and so forth radiation mode 

contributes significantly (Saeed et al., 2021b). Permeable surfaces through which the 

fluid is either injected or sucked received an interest from researchers due to their 
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practical application towards boundary layer management and thermal protection of high 

energy flow by means of mass transfer. Jusoh et al. (2018) and Jalili et al. (2019) both 

study the characteristics of ferrofluid over a permeable stretching sheet. Mohamed et al. 

(2019a) compared three types of ferroparticles in their investigation of boundary layer 

flow and heat transfer over a permeable flat plate. His research on the permeability rate 

found that skin friction increased with suction rate but reduced with injection rate. The 

difference between this problem with Chapter 4 is that the exclusion of stagnation points 

flow, and the flow of the fluid are horizontal. Then this problem introduced additional 

parameter: permeability rate parameter and thermal radiation parameter. From Chapter 3 

mathematical model, Chapter 5 will modify and extend the model to add two parameter 

which are the permeability rate and thermal radiation parameter and transformed into 

ordinary differential equation. 

5.2 Mathematical Formulation 

A steady two-dimensional Williamson hybrid ferrofluid flow on a permeable 

stretching sheet with ambient temperature is considered. As illustrated in Figure 5.1, 

assuming that wT T  is the wall temperature, u  and v  are the velocity components 

along the x  and y  axes, respectively. Next rq  is the radiative heat flux and 0B  is the 

uniform magnetic field of strength that is assumed to be applied the positive y -

directional normal to the flat plate. 

 

Figure 5.1 Physical model and the coordinate system of Williamson hybrid ferrofluid 
flow over a permeable stretching sheet.  
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The governing equations in the form of Navier-Stoke equations that can be 

formed are (Salleh et al., 2010; Yasin et al., 2018a; Hashim et al., 2019b; Mohamed et 

al., 2019a): 
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with boundary conditions: 
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5.4 

  is a stretching parameter and wv  is a plate permeability rate. Using the 

Rosseland approximation for radiation, the radiative heat flux is simplified as (Zheng et 

al., 2013): 
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k y
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5.5 

where *  and *k  are the Stefan-Boltzmann constant and the mean absorption 

coefficient, respectively. The hybrid ferrofluid kinematic viscosity, a dynamic viscosity, 

a density, and electric conductivity are denoted as , ,hnf hnf hnfv    and   , respectively. 

Furthermore, ,   and ( )hnf p hnfk C  are the time constant, the thermal conductivity, and the 

heat capacity of Williamson hybrid ferrofluid, respectively. Other properties related to 

base fluid and the nanoparticles are denoted with subscript bf  and 1, 2s s  respectively. 

We assume that the temperature differences within the flow through the fluid, such as 
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that the term 4T may be expressed as a linear function of temperature. Hence, expanding 

4T  in a Taylor series about T  and neglecting higher-order terms, we get: 

4 3 44 3T T T T    5.6 

In view of Equations 5.5 and 5.6, Equation 5.3 reduces to 
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The similarity variables considered are as follows (Salleh et al., 2010): 
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5.9 

where ,  and   is a non-dimensional variable, dimensional stream function, 

and temperature, respectively. The similarity variables in Equation 5.9 satisfy the 

continuity Equation 5.1. 

u
y





and .v
x


 


 

5.10 

Next, substitute the similarity variables Equations 5.9 and 5.10 into governing 

Equations 5.2 and 5.3, which gives the following transformed ordinary differential 

equations: 
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The boundary conditions Equation 5.4 become 

(0) , (0) , (0) 1,f S f      

( ) 0, ( ) 0,f      as .   

5.13 

By definition, 
1/ 2( )

w

f

v
S

a
   is the permeability parameter at the plate surface, 

with S>0 and S<0 corresponding for suction and injection, respectively. 
* 3

*

4
R

hnf

T
N

k k

   is 

the thermal radiation parameter. Definitions for Pr,  ,  ,  and M   are mentioned in 

Chapter 4. Other quantities related to hybrid nanofluid are mentioned in Equation 3.19. 

The physical quantities of interest are the skin friction coefficient fC  and the local 

Nusselt number xNu . Skin friction coefficient is the same as in Equation 4.3. The local 

Nusselt number xNu  is given by: 
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with the surface heat flux wq  are given by  
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Using variables in Equation 3.40, Equation 5.14 give  
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5.16 

5.3 Results and Discussion 

The non-linear ordinary differential Equations 5.11 and. 5.12 with boundary 

conditions Equation 5.13 were solved using the Keller-box method with 6 physical 

parameters that will be considered, namely thermal radiation parameter, magnetic 
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parameter, Williamson parameter, stretching parameter, permeability plate parameter, 

and nanoparticle volume fraction. The thermophysical properties of fluid and particles 

that are used for this research can be referred to Table 3.1. The nanoparticle volume 

fraction used for the hybrid ferrofluid is the same as in Chapter 4. A previously published 

result validates the efficiency of the method used in this study. Table 5.1 shows a 

comparison between present and previously published results, which also used the Keller-

box method. Table 5.1 shows that the results obtained in this study are accurate with 

1 2 0RM N S          . Boundary layer thickness, step size, parameter 

,   and M    values inserted in KBM for this problem are the same as in Chapter 4.  

Table 5.2 shows the result of 1/2Rex xNu   and 1/2Ref xC  for various values of 

magnetic parameter, M , with Pr 21,  1,  0.5,  1,  and 0.5RN S      . The 

increasing strength of magnetic effects causes `inclination of 1/2Ref xC  values and 

reduction in 1/2Rex xNu   values. Magnetic parameters induce Lorentz force, which slows 

down the fluid velocity via ferroparticles, thus opposing the flow and increasing the skin 

friction values.  

Table 5.3 shows the effects of a stretching parameter   on both 1/2Rex xNu   and 

1/2Ref xC  with Pr 21,  0.5,  0.1,  1,  and 0.5RM N S     . As   increases, it is 

observed that both 1/2Rex xNu   and 1/2Ref xC  increases. Physically, as   increases, the 

stretching velocity increases, thus dragging the fluid together with the plate, which then 

reduces the skin friction of the fluid. This result is similar to the results from Hashim et 

al. (2019b). 

Table 5.4 shows the effects of the permeability rate parameter S  on both 

1/2Rex xNu   and 1/2Ref xC  values with Pr 21,  0.5,  0.5,  0.1,  and 1RM N      . 

Gumber et al. (2022) and Ishak (2010) are the referenced for the parameter values. Noted 

that ( 0S  ) and ( 0S  ) are the injection and suction parameters, respectively. It can be 

concluded that increasing the S  parameter results in an increase in both quantities. This 

result is in line with the claim from Jahan et al. (2018) and Naramgari and Sulochana 

(2016). The result for the permeability injection rate ( 0S  ) will be the opposite of 
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permeability suction rate ( 0S  ) where skin friction and Nusselt number value are 

decreasing. Noticed that the large injection rate effect may promote the pure conduction 

heat transfer process ( 1/2Re 0x xNu   ). 

Figures 5.2 illustrates the distributions of 1/2Ref xC  with various values of   

parameter for different types of fluid with 

Pr 21,  0.5,  0.5,  0.5,  and 1RM S N     . Figure 5.2 shows the hybrid ferrofluid 

has the highest distributions of skin frictions values compared to other types of fluid 

similar to Figure 4.1. Different with Figure 4.1, the 1/2Ref xC  is decreasing with an 

increase of   for all types of fluid compared. This result is actually similar with the 

research from Nadeem et al., (2013b; 2014). Nadeem mentioned that the skin friction is 

decreasing due to the values of  0f   being negative and skin friction equation, 

Equation 4.3, is the sum of  0f   and its square. The square being positive multiplied 

by a fraction    less than 1, the difference is reduced as   increases. Thus reduces the 

distributions of 1/2Ref xC  as illustrated in Figure 5.2. 

The effects of thermal radiation parameter RN  , as well as various nanoparticle 

volume fractions are illustrated in Figures 5.3 and 5 with the parameter values are referred 

from Zeeshan et al. (2016). From Figure 5.3, it shows that the 3 4Fe O Cu /blood hybrid 

ferrofluid ( 1 20.1, 0.06   ) scored the highest in 1/2Rex xNu  . Physically, 3 4Fe O Cu

/blood hybrid ferrofluid has better performance in heat transfer compared to blood-based 

viscous fluid ( 1 2 0   ) and 3 4Fe O /blood ferrofluid ( 1 20.1, 0   ). Its performance 

is almost similar with the concentrated 3 4Fe O /blood ferrofluid ( 1 20.16, 0   ) as RN  

increases. Figure 5.4 shows that the blood hybrid ferrofluid produces the highest skin 

friction compared to other fluids. This is due to the presence of copper in the fluid, which 

has high-density properties. Besides, it is found that the increase of RN  does not affect 

the skin friction of ferroparticle volume fractions, it produces constant 1/2Ref xC  values 

throughout the parameter. This phenomenon is realistic where RN  has no relation with 

the velocity term in Equation 5.2. 
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Figures 5.5 and 5.6 illustrate the temperature and velocity for various magnetic 

parameters. Increasing the magnetic parameter reduces the boundary layer for velocity 

profiles in Figure 5.6 due to Lorentz force, as mentioned before. Due to the slow 

momentum of nanoparticles because of the magnetic presence, the thermal boundary 

layer increases with the rise of magnetic parameter. 

The effects of stretching parameters for temperature and velocity profile are 

illustrated in Figure 5.7 and 5.8. The temperature profile shows a reduction of boundary 

layer while velocity profile shows the opposite characteristics when the stretching 

parameter increases. 

Figures 5.9 and 5.10 showed significant changes of boundary layer with the 

permeability rate parameter. It can be seen in the temperature profile, Figure 5.9, when (

0S  ) it starts to develop a boundary layer, and as the permeability rate increases, the 

thermal boundary layer is reduced. The momentum boundary layer in Figure 5.10 also 

decreases as the parameter increases. According to Devi and Anjali Devi (2016), an 

increase in suction parameters tends to force the fluid into a vacant space, which causes 

a reduction in temperature and velocity profile.  

Table 5.1 Comparison values of '(0)( )CWT  with previously published result. 

Pr '(0)  

Salleh et al. (2010) Present Result 

0.72 0.46317 0.46697 

1 0.58198 0.58266 

3 1.16522 1.16516 

10 2.30821 2.30795 
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Table 5.2 Results 1/2Rex xNu   and 1/2Ref xC  for various values of M . 

M  
1/2Rex xNu   1/2Ref xC  

0 12.44450 0.85161 

1 12.27305 1.25583 

2 12.15307 1.53795 

5 11.95180 2.14104 

10 11.74956 2.83803 

 

Table 5.3 Results 1/2Rex xNu   and 1/2Ref xC and for various values of  . 

  1/2Rex xNu   1/2Ref xC  

0.6 12.65888 1.33770 

0.8 13.23635 1.88913 

1 13.76078 2.47926 

1.2 14.24307 3.10163 

1.4 14.69011 3.75022 

 

Table 5.4 Results 1/2Rex xNu   and 1/2Ref xC  for various values of S . 

S  1/2Rex xNu   1/2Ref xC  

-0.8 0.00006 0.53796 

-0.6 0.01754 0.59573 

-0.4 0.34321 0.66201 

-0.2 1.64054 0.73749 

0 3.99166 0.82271 

0.5 12.34609 1.07876 

1 21.97220 1.39027 

1.2 25.94791 1.52752 

1.4 29.96149 1.67064 
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Figure 5.2 Velocity profiles for various values of   for different nano particle volume 

fractions. 

 

 

Figure 5.3 Distribution of 1/2Rex xNu   with RN for different nanoparticle volume 

fractions.  
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Figure 5.4 Distribution of 1/2Ref xC  with RN  for different nanoparticle volume 

fractions. 

 

 

Figure 5.5 Temperature profiles for various values of M .  
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Figure 5.6 Velocity profiles for various values of M . 

 

 

Figure 5.7  Temperature profiles for various values of  .  
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Figure 5.8 Velocity profiles for various values of  . 

 

 

Figure 5.9  Temperature profiles for various values of S .  
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Figure 5.10 Velocity profiles for various values of S . 

 

5.4 Conclusion 

This chapter discusses the topic of convective boundary layer flow and heat 

transfer of Williamson hybrid ferrofluid om permeable stretching sheet with thermal 

radiation presents. The parameters involved in this research are similar to Chapter 4, with 

the addition of two new parameters. The effects of the magnetic parameter, M , 

Williamson parameter,  , stretching parameter,  , the permeability rate parameter, S , 

and the thermal radiation parameter, RN , on the Nusselt number and the skin friction 

coefficient of Williamson hybrid ferrofluid is numerically studied. Below is the summary 

of the results: 

 The blood hybrid ferrofluid has the same performance of heat transfer as 
ferrofluid with the same volume fraction of nanoparticle. 

 The blood hybrid ferrofluid has the highest skin friction values when compared 

using the RN  and   parameter to other types of ferroparticle volume fraction 

due to the presence of copper particles inside the fluid.  
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 The RN  parameter produces constant skin friction values due to the absence of 

respective parameter in the skin friction equation. 

 Enhancing the stretching parameter and permeability rate parameter reduces the 
temperature profile while the magnetic parameter produces the opposite 
outcome. 

 As Williamson parameter increase, distribution of 1/2Ref xC  values are reduced 

due to  0f   values produce is negative.  
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CHAPTER 6 

 

 

CONVECTIVE BOUNDARY LAYER FLOW OF WILLIAMSON HYBRID 

FERROFLUID OVER A MOVING PLATE WITH VISCOUS DISSIPATION 

6.1 Introduction 

This chapter investigates the convective boundary layer flow of a Williamson 

hybrid ferrofluid over a moving flat plate with viscous dissipation effects. Specific cases 

for this research are from Mohamed et al., (2020c; 2021a; 2021c). The term "viscous 

dissipation" refers to how the kinetic energy produced by the fluid's motion is absorbed 

by the fluid's viscosity, then transformed into internal energy and heated by the fluid (Yap 

et al., 2023). It controls the temperature profile during the heat transfer process and is 

crucial to the flow of energy. The reliability of viscous dissipation depends on the plate 

conditions whether it is frozen or heated. The effect of viscous dissipation on the thermal 

boundary layer was first identified by Gebhart (1962) and often ignored in unsteady 

conditions. From a practical point of view, this effect is important in several flow issues, 

and it is also the source of rising temperatures and geodynamic heating. In the behavior 

of dynamic temperature, which is equivalent to the attributed difference in heat transfer 

temperature, the impact of viscous dissipation cannot be ignored except for the lower 

velocity method due to the small temperature profile. Gebhart also pointed out that if the 

influence of viscous dissipation is neglected, then the natural convection flow is 

incomplete (Kausar et al., 2022). This chapter differs from Chapter 4 and 5 where moving 

plate parameters and viscous dissipation are introduced. In addition, this chapter also 

discusses the comparison between blood hybrid ferrofluid with different types of hybrid 

ferrofluid. 

6.2 Mathematical Formulation 

A two-dimensional moving flat plate immersed in a steady Williamson hybrid 

ferrofluid with ambient temperature as ( T ) is illustrated in Figure 6.1 below. It is 
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assumed that the wall temperature, and velocity components along the x  and y  axes are 

defined as u  and v . U  defined as the free stream while u U   is the moving plate 

velocity with   and 0B  as the plate velocity parameter and magnetic field strength 

proportional to y   directional normal to the moving flat plate.  

 

Figure 6.1 Physical model and the coordinate system of Williamson hybrid ferrofluid 
flow over a moving flat plate with viscous dissipation. 

From Figure 6.1 above, the boundary layer equation that can be formed 

(Mohamed et al., 2020c; 2021a; 2021c): 
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The hybrid ferrofluid kinematic viscosity, a dynamic viscosity, a density, and 

electric conductivity are denoted as , ,hnf hnf hnfv    and   , respectively. Furthermore, 

,   and ( )hnf p hnfk C  are the time constant, the thermal conductivity, and the heat capacity 

of Williamson hybrid ferrofluid, respectively. Other properties related to base fluid and 

the nanoparticles are denoted with subscript bf  and 1,  2s s  respectively. The hybrid 

ferrofluid properties are given as (Bachok et al., 2012; Devi & Anjali Devi, 2017): 
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where ,  and   is a non-dimensional variable, dimensional stream function, 

and temperature, respectively. The similarity variables (6) satisfy the continuity equation 

(1) by definition: 
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6.6 

Next, substitute the similarity variables equations (6.2) and (6.3) into governing 

equations (6.5) and (6.6) gives the following transformed ordinary differential equations: 
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6.8 

The boundary conditions (6.4) become 

(0) 0, (0) , (0) 1,f f      

( ) 1, ( ) 0,f      as .   

6.9 
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By definition, 
   

2

C
p wf
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E

C T T
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 is an Eckert number. Other parameter 

definitions for Pr,   and M   are similar to Chapter 4 and 5. Other quantities related to 

hybrid nanofluid are stated in Equation 3.19. The physical quantities of interest are the 

skin friction coefficient fC  and the local Nusselt number xNu . Skin friction coefficient 

fC  and the local Nusselt number xNu  for this problem are similar with Equation 4.3. 

6.3 Results and Discussion 

This sub-section will discuss the results of Equations 6.7 and 6.8 as well as 

boundary conditions, Equation 6.9, numerically solved using the Keller-box method 

programmed in MATLAB software. The effects of physical parameters that are tested for 

this chapter are Eckert number CE , magnetic M , Williamson  , and moving plate 

parameter  . As mentioned earlier, this research includes a comparison of Williamson 

hybrid ferrofluid with various types of hybrids ferrofluid and different ferroparticle 

volume fractions. Thermophysical properties for blood, magnetite, and copper can be 

referred to Table 3.1. Other thermophysical properties of fluid and particles that are used 

for this research are also provided in Table 3.1. The nanoparticle volume fraction used 

for the hybrid ferrofluid is the same as in Chapter 4 and 5. The accuracy of numerical 

method is validated by comparing it with the previous numerical shown in Table 6.1 

using copper-water fluid, Pr 6.2  with 1 0CM E       . The method used for 

numerical solutions in previous studies was the shooting method. Comparison with both 

previous results achieved good agreement. Boundary layer thickness, step size, parameter 

,  and M   values inserted in KBM for this problem are the same as in Chapter 4 and 5. 

Table 6.2 shows the values of 1/2Rex xNu   and 1/2Ref xC  change significantly as 

moving plate parameter increase with Pr 21,  0.1,  M 0.5,  0.1CE    . As the 

moving plate parameter increases, 1/2Rex xNu   values increase while 1/2Ref xC  values 

decrease and produce negative values when 1  . When 1   the fluid flowing on the 

moving surface experiences zero skin friction.  
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Distributions of 1/2Ref xC  values with the influence of   for several types of fluid 

is illustrated in Figure 6.2 with Pr 21,  0.5,  M 0.5,  0.1CE     . Parameter values 

used for this parameter is same as in Chapter 4 and 5. It is seen that the Distributions of 

1/2Ref xC  values are still the highest compared to the other type of fluid compared similar 

to result in Figure 4.1 and 5.2. The trend distributions of 1/2Ref xC  in Figure 6.2 is similar 

to the result from Figure 4.1 where the distributions are increasing.  

Figures 6.3 and 6.4 illustrated the distributions of 1/2Rex xNu   and 1/2Ref xC  for 

four different ferroparticle volume fraction with the influence of viscous dissipation 

parameter known as Eckert number, CE  with Pr 21,  0.5,  0.1,  0.1M      . 

Mohamed et al., (2020c; 2021a; 2021b) are the referenced used for the parameter values. 

Blood ( 1 2 0   ), 0.1 vol. of 3 4Fe O /blood ferrofluid (s), 0.16 vol. of 3 4Fe O Cu

/blood hybrid ferrofluid ( 1 20.1, 0.06   ), and 0.16 vol. of 3 4Fe O /blood ferrofluid (

1 20.16, 0   ) are the four ferroparticle volume fraction that is tested. Analyzing the 

results in Figures 6.3 and 6.4, the increase of CE  parameter reduces the performance of 

convective heat transfer but does not affect skin friction of the fluid. This result is similar 

with previous research done by Hasanuzzaman et al. (2023). When comparing different 

ferroparticle volume fractions, Figure 6.4 illustrates that blood hybrid ferrofluid produces 

the highest skin friction compared to other ferroparticle volume fractions. Blood has the 

lowest skin friction due to the absence of nanoparticles in the fluid, that resist the fluid 

flow. Considering the heat transfer performance, the 0.16 vol. of 3 4Fe O Cu /blood 

hybrid ferrofluid has the best convective heat transfer performance as 0CE  . The 

presence of CE  has eliminated the nanoparticle volume fraction effects, thus high cE  

producing similar performance in convective heat transfer capabilities. It is clearly seen 

in Figure 6.4 that the values of 1/2Rex xNu   become similar with the other volume fractions 

as CE  increases.  

Figure 6.5 and 6.6 shows the distribution of 1/2Rex xNu   and 1/2Ref xC  for three 

types of blood-based hybrid ferrofluid with the influence of magnetic parameter, M with 
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Pr 21,  0.5,  0.1,  0.1CE     . The three types of hybrids ferrofluid tested are blood 

with copper ferrite ( 3 4Fe O Cu /blood), cobalt ferrite with silver ( 2 4CoFe O Ag /blood) 

and manganese zinc ferrite with gold ( 2 4Mn ZnFe O Au  /blood). The ferroparticle 

volume is kept constant ( 1 20.1, 0.06   ). Figure 6.5 illustrates that 3 4Fe O Cu /blood 

has the highest convective heat transfer performance compared to 2 4CoFe O Ag /blood 

and 2 4Mn ZnFe O Au  /blood. It is noted that, the increase of magnetic parameter 

reduced the values of 1/2Rex xNu  . Physically, the increase in M , enhanced the magnetic 

force that attracts the hybrid ferrofluid to the plate surface, thus promoting the conductive 

heat transfer process, which translates into reducing the convective heat transfer 

capabilities. From Figure 6.6, it is found that the increase in magnetic parameters M  

enhanced the skin friction coefficient. The Lorentz force increases as the magnetic 

parameter increases, thus retarding the fluid flow and resisting the fluid flow for the 

hybrid ferrofluid tested. It is also found that the 2 4Mn ZnFe O Au  /blood hybrid 

ferrofluid has the highest 1/2Ref xC  values than 2 4CoFe O Ag /blood and 3 4Fe O Cu

/blood hybrid ferrofluid. It is due to the high density of gold in the fluid, thus producing 

high resistance in fluid flow. 

The effects of moving plate parameters on a temperature and velocity profile are 

illustrated in Figure 6.7 and 6.8. Parameter values are referred from Bachok et al. (2012) 

and Mohamed et al. (2020c). Respectively while in Figure 6.7, the boundary layer for the 

temperature profile decreases as the moving plate parameter increases. The area of 

boundary layer decreases due to the increase of 1/2Rex xNu   values, which then promotes 

the convective heat transfer capabilities in the fluid. This trend is similar to the results 

from Mohamed et al. (2020c). In Figure 6.8, the velocity gradient is in inverted structure 

as 1   and momentum boundary layer thickness decreases with the moving plate 

parameter. As 1   , the flow has the boundary layer structured, which is formed from 

the high plate velocity compared to the free stream velocity. It is observed that the 

boundary layer thickness increases with  . This pattern of boundary layer is similar to 

the findings of Mohamed et al. (2013b). 
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Table 6.1 Comparison values of ''(0)f with previously published result. 

2  ''(0)f  

Bachok et al. (2012) Present Result 

0 0.3321 0.3321 

0.1 0.3901 0.3901 

0.2 0.4045 0.4045 

 

Table 6.2 Values of 1/2Rex xNu   and 1/2Ref xC  for various values of  . 

  1/2Rex xNu   1/2Ref xC  

0 0.7231 1.2988 

0.5 2.2283 0.6952 

1 3.1745 0.0000 

1.5 3.5172 -0.7728 

2 3.1826 -1.6098 
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Figure 6.2 Velocity profiles for various values of   for different nano particle 
volume fractions. 

 

 

Figure 6.3 Distribution of 1/2Rex xNu   with CE  for different nano particle volume 

fractions.  
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Figure 6.4 Distribution of 1/2Ref xC  with CE  for different nano particle volume 

fractions. 

 

 

Figure 6.5 Distribution of 1/2Rex xNu   with M  for different types of hybrid 

ferrofluid.  
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Figure 6.6 Distribution of 1/2Ref xC  with M  for different types of hybrid ferrofluid. 

 

 

Figure 6.7 Temperature profiles for various values of  .  
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Figure 6.8 Velocity profiles for various values of  . 

 

6.4 Conclusion 

The convective boundary layer flow of Williamson hybrid ferrofluid over a 

moving flat with viscous dissipation were numerically studied. The present numerical 

method is validated with the sample result from Bachok et al. (2012), and the comparison 

achieved good agreement. Four parameters were tested in this chapter: Eckert number, 

CE , magnetic parameter, M , Williamson parameter,  , and moving plate parameter, 

 . Eckert number and magnetic parameter were tested with various ferroparticle volume 

fractions and different types of hybrids ferrofluid, respectively. The summarization of the 

results is as follows: 

 Williamson hybrid ferrofluid produces slightly better convective heat transfer 
performance as viscous dissipation is neglected.  

 Increase in magnetic parameters results in a decrease in 1/2Rex xNu   but increase 

in 1/2Ref xC  value.  
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   parameters reduced the temperature profile while increasing the velocity 
profile. 

 Heat transfer performance for different types of fluid tested becomes similar as 
viscous dissipation parameters increases and also does not effect the skin 
friction of the fluids tested. 

 Distributions of 1/2Ref xC  values increase as Williamson parameter is induced 

similar to the result in Chapter 4. 
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CHAPTER 7 

 

 

CONCLUSION 

7.1 Summary 

This present thesis has numerically investigated the convective boundary layer 

flow in a Williamson hybrid ferrofluid. Considering 3 problems, which are stagnation 

point flow over a stretching sheet, convective boundary layer over a permeable stretching 

sheet with the presence of thermal radiation, and convective boundary layer flow over a 

moving plate with convective viscous dissipation, the three problems are subjected to the 

constant wall temperature. 

It can be concluded that all of the three research objectives mentioned in Section 

1.3 were successfully achieved. All the problems studied have been extended to hybrid 

ferrofluid mathematical model, numerical algorithm and analyzation of numerical result. 

For problem 1 the ferrofluid mathematical model is extended to Williamson hybrid 

ferrofluid model with the presence of stretching sheet, magnetic and Williamson effects. 

Meanwhile, problems 2 and 3, the Williamson hybrid ferrofluid model is extended with 

the presence of thermal radiation, suction and injection, moving plate and viscous 

dissipation effects. The mathematical formulations for each problem are in the form of 

non-linear partial differential equations. Using similarity transformation, the equations 

are then transformed into ordinary differential equations. The algorithm to solve the ODE 

using the KBM is developed for each problem and then coded into MATLAB software 

for numerical calculations. These transformation and numerical solutions are discussed 

in Chapter 3 Methodology. The results are then analyzed in Chapter 4, 5 and 6 for each 

problem respectively with the Nusselt number, 1/2Rex xNu  , and skin friction, 1/2Ref xC  

values. 

In conclusion, when comparing the hybrid ferrofluid with different ferroparticle 

volume fraction using magnetic parameter, blood hybrid ferrofluid produced the highest 
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1/2Rex xNu   and 1/2Ref xC . The presence of copper improves the heat transfer performance 

of the fluid, but due to its high density, it causes the fluid to exert more drag on the 

surface. Furthermore, when comparing with different types of hybrids ferrofluid using 

the same parameter, Williamson hybrid ferrofluid has the highest distributions of

1/2Rex xNu   and the lowest distributions of 1/2Ref xC  compared to the other types of 

hybrids ferrofluid. This accomplishes the objectives of proposing a hybrid ferrofluid with 

enhanced thermal conductivity and reduced skin friction characteristics. 

The main parameter that is focused on Chapter 4 is stretching parameter. The 

result shows that when the stretching parameter increases, the values of 1/2Rex xNu   

increase while the values of 1/2Ref xC  decreases. This results in the reduction of thermal 

boundary layer flow and inclination of momentum boundary layer flow, respectively. The 

stretching parameter increases the surface stretching sheet, which causes the fluid to 

move with the surface, thus reducing skin friction.  

Chapter 5 introduces two main parameters that focus on thermal radiation and 

permeability rate parameters. The thermal radiation parameter induces 1/2Rex xNu   values 

but has no effect on 1/2Ref xC  values. This is because Nr parameter does not have relations 

with 1/2Ref xC  equations. For permeability rate parameter, the results show that it 

increases 1/2Rex xNu   and 1/2Ref xC  values. When this parameter increases, forcing the 

fluid into a vacant space, resulting in the reduction of thermal and momentum boundary 

layer flow.  

Viscous dissipation and moving plate parameters are introduced in Chapter 6. The 

viscous dissipation parameter, which is defined as Eckert number, CE , inhibits the 

convective heat transfer of fluid as the parameter reduces 1/2Rex xNu   values. This 

parameter does not affect the skin friction of the fluid. Furthermore, moving plate 

parameters causes the surface to increase in velocity. This results in the inclination of 

1/2Rex xNu   and reduction of 1/2Ref xC . The thermal boundary layer flow is declining 

while the momentum boundary layer is increasing. 
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Since all the problems studied in this research have produced results and been 

completed, it can be concluded that the objectives of this study have been achieved. 

Mathematical modelling for all the problems is developed, tested, and compared with 

previous results. All the numerical algorithms developed show good agreement with 

previous studies, which indicates that they can produce reliable results. It is noted that 

the problems studied for this hybrid ferrofluid in this research are new during the time of 

doing research and have not been considered before. This research does not produce the 

product or physical outcome. This research provides mathematical modelling for hybrid 

ferrofluid, which can be used for future reference and comparison in future studies. 

7.2 Future Studies 

This research only covers convective boundary layer flow in Williamson hybrid 

ferrofluid with constant wall temperature. Many other aspects can be covered for future 

studies:  

1. Type of geometries: cylinder, stretching cylinder, sphere, curved, thin needle, 

cavity, horizontal plate, incline surface, wedge, cone, rotating channel, aligned 

angle, moving surface, and vertical plate.  

2. Physical effects: heat generation and absorption, chemical reaction as well as 

porosity effect, and temperature jump. 

3. Boundary conditions: slip condition, peristaltic flow, unsteady flow with mixed 

thermal boundary condition.  

4. Method of numerical solution: homotopy perturbation method (HPM), homotopy 

analysis method (HAM), shooting method bvp4c, and Spectral-relaxation 

method.  
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Appendix A: List of Symbol in Matlab 

MATLAB Keller-box 

np J  

eta, etainf, deleta ,  ,       

f, u, v, s, t ,  ',  '',  , 'f f f    

cfb, cub, cvb, csb, ctb 1 1 1 1 1
1/2 1/2 1/2 1/2 1/2,  ,  ,  ,  ,n n n n n

j j j j jf u v s t    
      

cuub, cfvb, cftb, cusb  21 1 1 1 1 1 1
1/2 1/2 1/2 1/2 1/2 1/2 1/2,   ,  ,  ,n n n n n n n

j j j j j j ju f v f t u s      
        

cdervb, cdertb    1 1 1 1 1 1
1 1,  n n n n

j j j j j jv v h t t h     
    

fb, ub, vb, sb, tb 
1/2 1/2 1/2 1/2 1/2,  ,  ,  ,  ,j j j j jf u v s t      

uub, fvb, ftb, usb  2

1/2 1/2 1/2 1/2 1/2 1/2 1/2,  ,  ,  ,j j j j j j ju f v f t u s        

dervb, dertb    1 1
1 1,  j j j j j jv v h t t h 
    

a1 to a6  1 ja  to  6 ja  

b1 to b4  1 jb  to  4 jb  

r1 to r5  1 jr  to  5 jr  

R1, R2   1

1 1/2

n

j
R




 to   1

2 1/2

n

j
R




 

a, b, c , , j j jA B C            

alfa, gamma ,  j j         

ww, rr,dell ,  ,  j j jW r             

delf, delu, delv, dels, delt ,  ,  ,  ,  f u v s t      
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Appendix B: MATLAB Program for Stagnation Point Flow of Williamson Hybrid 
Ferrofluid Over a Stretching Sheet 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Stagnation Point Flow of Williamson Hybrid         % 
% Ferrofluid Over a Stretching Sheet                 % 
%                                                    % 
% 1/aa*(f'''+Lf''f''')+ff'+1–f'^2-M(f'-1)=0          % 
% knkf/ab*g''+Prfg'=0                                % 
% f(0)=0  f'(0)=ee  g(0)=1                           % 
% f'(inf)=1  g(inf)=0                                % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
key in the fluid : 
clear all;clc; 
blt =input('Input the thickness of boundary layer = 
'); 
deleta = input('Input the step size of blt = '); 
np = (blt / deleta) + 1; 
pr = input ('Input the prandtl number = '); 
input ('Input the stretching  parameter = '); 
L =input ('Input the Lambda value = '); 
M = input ('Input the M value = '); 
aa = input ('Input the aa value = '); 
ab= input ('Input the ab value = '); 
knkf= input ('Input the knkf value = '); 
  
%calculation for H1 and H2 value 
H1= 1/aa 
H2= knkf/ab 
  
% Previous station 
bil =5 
    prandtl(1)=0;     
    prandtl(2)=1;     
    prandtl(3)=2;   
    prandtl(4)=5;   
    prandtl(5)=10;  
     
for NumData = 1: bil 
    M = prandtl(NumData) 
stop = 1.0; k = 1; 
while stop > 0.00001 
eta(1,1) = 0.0; 
for j = 2:np 
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        eta(j,1) = eta(j-1,1) + deleta;  
end 
  etanpq = eta(np,1) / 4; 
  etau15 = 1 / eta(np,1); 
  etanp = eta(np,1); 
    for j = 1:np 
        deta(j,k) = deleta; 
        etab = eta(j,1) / eta(np,1);        etab1 = 
etab^2; 
        etab3 = ((3/2) - (1/2)* etab1); 
        etau = eta(j,1);  etau3 =  (eta(j,1)) / 3;     
       f(j,1) = (3/4)*eta(j,1)*etab - 
(1/8)*eta(j,1)*etab1*etab + ee*(eta(j,1)-etau3*etab1); 
       u(j,1) = etab * etab3  + ee * (1  - etab1); 
        v(j,1) = (3/2) * etau15 * (1 - etab1)  + ee  * 
(-2  * etau15  * etab);          
        s(j,1) = (1-etab)^2;  
        t(j,1) = 2* etau15*etab; 
    end  
    % Present station          
    for j = 2:np 
      fb(j,k) = 0.5 * ( f(j,k) + f(j-1,k) ); 
      ub(j,k) = 0.5 * ( u(j,k) + u(j-1,k) ); 
      vb(j,k) = 0.5 * ( v(j,k) + v(j-1,k) ); 
      sb(j,k) = 0.5 * ( s(j,k) + s(j-1,k) ); 
      tb(j,k) = 0.5 * ( t(j,k) + t(j-1,k) );  
      fvb(j,k) = fb(j,k) * vb(j,k); 
      uub(j,k) = ub(j,k) * ub(j,k); 
      ftb(j,k) = fb(j,k) * tb(j,k);  
      vv(j,k) = v(j,k) * v(j,k); 
      vv(j-1,k) = v(j-1,k) * v(j-1,k); 
  
      
    a1(j,k) = H1*(1.0+L*v(j,k)) + (0.5 * deta(j,k) * 
fb(j,k)); 
    a2(j,k) = -H1*(1.0+L*v(j-1,k)) + (0.5 * deta(j,k) 
* fb(j,k)); 
    a3(j,k) = 0.5 * deta(j,k) * vb(j,k); 
    a4(j,k) = a3(j,k); 
    a5(j,k) = -deta(j,k)*(ub(j,k) + 0.5*M); 
    a6(j,k) = a5(j,k); 
                 
    b1(j,k) = H2 + 0.5* pr * deta(j,k)*fb(j,k); 
    b2(j,k) = b1(j,k) - 2.0*H2; 
    b3(j,k) = 0.5* pr * deta(j,k) * tb(j,k); 
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    b4(j,k) = b3(j,k); 
           
      r1(j,k) = (f(j-1,k) - f(j,k)) + (deta(j,k) * 
ub(j,k)); 
      r2(j,k) = (u(j-1,k) - u(j,k)) + (deta(j,k) * 
vb(j,k)); 
      r3(j,k) = (s(j-1,k) - s(j,k)) + (deta(j,k) * 
tb(j,k)); 
      r4(j,k) = H1*(v(j-1,k) - v(j,k)) - 
H1*0.5*L*(vv(j,k) - vv(j-1,k)) - deta(j,k)*fvb(j,k) + 
deta(j,k)*uub(j,k) +  M*deta(j,k)*ub(j,k)  - 
M*deta(j,k) - deta(j,k); 
      r5(j,k) = H2*(t(j-1,k) - t(j,k)) - pr*deta(j,k)* 
ftb(j,k); 
   end 
  
  
    a{2,k} = [ 0 0 1 0 0; ...  
              -0.5*deta(2,k) 0 0 -0.5*deta(2,k) 0; ... 
               0 -0.5*deta(2,k) 0 0 -0.5*deta(2,k) ; 
...   
               a2(2,k) 0 a3(2,k) a1(2,k) 0;.....  
               0 b2(2,k) b3(2,k) 0 b1(2,k)]; 
  
    for j = 3:np 
      a{j,k} = [ -0.5*deta(j,k) 0 1 0 0; ...  
                 -1 0 0 -0.5*deta(j,k) 0 ; ... 
                  0 -1 0 0 -0.5*deta(j,k); ...  
                  a6(j,k) 0 a3(j,k) a1(j,k) 0; ...  
                  0 0 b3(j,k) 0 b1(j,k) ]; 
    
      b{j,k} = [ 0 0 -1 0 0; ...  
                 0 0 0 -0.5*deta(j,k) 0; ...  
                 0 0 0 0 -0.5*deta(j,k); ... 
                 0 0 a4(j,k) a2(j,k) 0; ...  
                 0 0 b4(j,k) 0 b2(j,k)]; 
    end 
    
      
    for j = 2:np-1 
    c{j,k} = [ -0.5*deta(j,k) 0 0 0 0; ... 
                1 0 0 0 0; ...  
                0 1 0 0 0; ... 
                a5(j,k) 0 0 0 0 ; ...   
                0 0 0 0 0]; 
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 end 

 alfa{2,k} = a{2,k}; 
 gamma{2,k} = inv(alfa{2,k}) * c{2,k}; 

 for j = 3:np 

 gamma{j,k} = b{j,k} * inv(alfa{j-1,k}); 
 alfa{j,k} = a{j,k} - gamma{j,k} * c{j-1,k}; 

 end 

 for j = 2:np 
   rr{j,k} = [ r1(j,k); r2(j,k); r3(j,k); 

r4(j,k); r5(j,k)]; 
 end 

 ww{2,k} = rr{2,k}; 

 for j = 3:np 

 ww{j,k} = rr{j,k} - gamma{j,k} * ww{j-1,k}; 
 end 

 delf(1,k) = 0; 
 delu(1,k) = 0; 
 dels(1,k) = 0; 
 delu(np,k) = 0;  
 dels(np,k) = 0; 
 %check here 
 %    dell{np,k} = ww{np,k}; 

 dell{np,k} = inv(alfa{np,k}) * ww{np,k}; 

 for j = np-1:-1:2 
 dell{j,k} = inv(alfa{j,k}) * (ww{j,k} - (c{j,k} 

* dell{j+1,k}));
 end 

 delv(1,k) = dell{2,k}(1,1); 
 delt(1,k) = dell{2,k}(2,1); 
 delf(2,k) = dell{2,k}(3,1); 
 delv(2,k) = dell{2,k}(4,1); 
 delt(2,k) = dell{2,k}(5,1); 
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   for j = np:-1:3 
  delu(j-1,k) = dell{j,k}(1,1); 
  dels(j-1,k) = dell{j,k}(2,1); 
  delf(j,k)   = dell{j,k}(3,1); 
  delv(j,k)   = dell{j,k}(4,1); 
  delt(j,k)   = dell{j,k}(5,1); 

   end 

   for j = 1:np 
   f(j,k+1) = f(j,k) + delf(j,k); 
   u(j,k+1) = u(j,k) + delu(j,k); 
   v(j,k+1) = v(j,k) + delv(j,k); 
   s(j,k+1) = s(j,k) + dels(j,k); 
   t(j,k+1) = t(j,k) + delt(j,k); 
   end 

stop = abs(delv(1,k)); 
kmax = k; 
k = k+1; 

end 
kmax 
f_0=f(1,kmax) 
u_0=u(1,kmax) 
u_inf=u(np,kmax) 
v_0=v(1,kmax) 
s_0=s(1,kmax) 
t_0=-t(1,kmax) 
f_inf=f(np,kmax) 
s_inf=s(np,kmax) 
   xlabel('\eta') 
    ylabel('\theta(\eta)') 

plot (eta,s(:,kmax));hold on 
plot (eta,u(:,kmax));hold on 
end 
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