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ABSTRACT

An imbalanced dataset often challenges machine learning, particularly classification methods. Underrepresented
minority classes can result in biased and inaccurate models. The Synthetic Minority Over-Sampling Technique
(SMOTE) was developed to address the problem of imbalanced data. Over time, several weaknesses of the SMOTE
method have been identified in generating synthetic minority class data, such as overlapping, noise, and small
disjuncts. However, these studies generally focus on only one of SMOTE’s weaknesses: noise or overlapping.
Therefore, this study addresses both issues simultaneously by tackling noise and overlapping in SMOTE-generated
data. This study proposes a combined approach of filtering, clustering, and distance modification to reduce noise
and overlapping produced by SMOTE. Filtering removes minority class data (noise) located in majority class
regions, with the k-nn method applied for filtering. The use of Noise Reduction (NR), which removes data that
is considered noise before applying SMOTE, has a positive impact in overcoming data imbalance. Clustering
establishes decision boundaries by partitioning data into clusters, allowing SMOTE with modified distance metrics
to generate minority class data within each cluster. This SMOTE clustering and distance modification approach
aims to minimize overlap in synthetic minority data that could introduce noise. The proposed method is called
“NR-Clustering SMOTE,” which has several stages in balancing data: (1) filtering by removing minority classes
close to majority classes (data noise) using the k-nn method; (2) clustering data using K-means aims to establish
decision boundaries by partitioning data into several clusters; (3) applying SMOTE oversampling with Manhattan
distance within each cluster. Test results indicate that the proposed NR-Clustering SMOTE method achieves the
best performance across all evaluation metrics for classification methods such as Random Forest, SVM, and Naïve
Bayes, compared to the original data and traditional SMOTE. The proposed method (NR-Clustering SMOTE)
improves accuracy by 15.34% on the Pima dataset and 20.96% on the Haberman dataset compared to SMOTE-LOF.
Compared to Radius-SMOTE, this method increases accuracy by 3.16% on the Pima dataset and 13.24% on the
Haberman dataset. Meanwhile, compared to RN-SMOTE, the accuracy improvement reaches 15.56% on the Pima
dataset and 19.84% on the Haberman dataset. This research result implies that the proposed method experiences
consistent performance improvement compared to traditional SMOTE and its latest variants, such as SMOTE-LOF,
Radius-SMOTE, and RN-SMOTE, in solving imbalanced health data with class binaries.
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Abbreviations

SMOTE Synthetic Minority Over-Sampling Technique
NR Noise Reduction
SVM Support Vector Machine
LOF Local Outlier Factor
KSMOTE Kalman SMOTE
ENN Edited Nearest Neighbor
K-NN K-Nearest Neighbor
TP True Positive
TN True Negative
FP False Positive
FN False Negative
DBSCAN Density-Based Spatial Clustering of Applications with Noise
AUC Area Under the Curve
ED Euclidean Distance
Min Minimum
Max Maximum
DManhattan Distance of Manhattan
RN-SMOTE Reduced Noise-SMOTE

1 Introduction

Dataset balancing is crucial in data preprocessing, especially for classification problems involving
imbalanced datasets. Imbalanced datasets often present challenges in machine learning, particularly in
classification methods. The underrepresentation of minority classes can lead to biased and inaccurate
models. Researchers developed the Synthetic Minority Over-Sampling Technique (SMOTE) [1] to
address the issue of imbalanced data. Many researchers have applied SMOTE to solve data-balancing
problems in recent decades. SMOTE generates synthetic data for the minority class based on nearest
neighbors using Euclidean distance through linear interpolation [2]. Over time, several weaknesses in
SMOTE’s approach to creating synthetic minority class data have been identified, such as overlapping,
noise, and small disjuncts [3,4]. Noise refers to minority class data situated in the majority class region,
while overlapping refers to minority class data (noise data) located near majority data at the decision
boundary. SMOTE introduces noise in synthetic minority data due to noise in the oversampled original
data [5]. Furthermore, SMOTE produces overlapping in synthetic minority data, potentially creating
noise caused by an unclear decision boundary, thereby reducing classification performance [6].

Several previous studies have developed SMOTE-based methods with different approaches. For
example, study [7] developed SMOTE-LOF to balance data in the Pima, Haberman, and Glass
datasets. SMOTE-LOF first oversamples the data using SMOTE. Once the data is balanced, minority
class data identified as outliers are removed through the Local Outlier Factor (LOF) method. However,
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this study only addresses noise data considered as outliers and does not solve the problem of minority
class data located near majority class data, which can also be noise. Study [8] introduced Radius-
SMOTE to address data imbalance. Radius-SMOTE filters out minority class data considered as noise
before applying SMOTE oversampling based on a specified radius. This study’s limitation is its lack
of detailed criteria for removing minority class noise data, and the chosen radius does not establish a
clear decision boundary between minority and majority classes. Study [9] developed RN-SMOTE to
address data imbalance by balancing data with SMOTE, then detecting and removing noise with the
DBSCAN clustering method. After minority class noise data is removed, oversampling with SMOTE
is repeated. Studies [10–12] used distance metrics in SMOTE to generate synthetic data for minority
classes, finding that various distance metrics can enhance classification performance. However, these
studies lack specific criteria for identifying and removing minority-class noise data.

The KSMOTE (Kalman SMOTE) method introduced in the study is an enhancement of the
SMOTE technique that uses a Kalman filter to identify and remove data samples considered as noise
from the dataset. A limitation of this study is the lack of detailed criteria for determining which data
should be removed as noise. Study [13] applied a hybrid SMOTE-ENN sampling method to address
data imbalance in liver disease cases. SMOTE is used to oversample the minority class until it is
balanced with the majority class. Once balanced, noise in the majority class data is removed using
the Edited Nearest Neighbor (ENN) method. The drawback of this study is the removal of a large
amount of majority class data, which may lead to the loss of valuable information. The study [14]
introduces the DiGAN method to solve the problem of imbalanced data in diabetes disease data.

Several previous studies have developed SMOTE methods using different approaches. However,
these studies generally focus on only one of SMOTE’s weaknesses: noise or overlapping. Therefore, this
study addresses both issues simultaneously by tackling noise and overlapping in SMOTE-generated
data. This study proposes a combined approach of filtering, clustering, and distance modification
to reduce noise and overlapping produced by SMOTE. Filtering removes minority class data (noise)
located in majority class regions, with the k-nn method applied for filtering. The use of NR, which
eliminates data that is considered noise before applying SMOTE, has a positive impact on overcoming
data imbalance [4]. By removing these noise points, the synthetic data generation focuses on the
core patterns of the minority class, resulting in improved model robustness and better generalization.
Clustering establishes decision boundaries by partitioning data into clusters, allowing SMOTE with
modified distance metrics to generate minority class data within each cluster. SMOTE with modified
Manhattan distance for balancing minor classes in each cluster can minimize the occurrence of
potential noise in artificially generated minor class overlaps.

This study introduces a modified SMOTE method called Noise Reduction-Clustering SMOTE
with Manhattan Distance (NR-Clustering SMOTE) for balancing data, particularly in healthcare
data. Meanwhile, the contributions of this research are as follows:

1. Using the k-nn method for filtering by eliminating minority classes adjacent to the majority
class (noise data).

2. Clustering data into several groups with the K-means method, with the number of clusters
determined by the silhouette value. K-means clustering aims to establish decision boundaries
by partitioning data into clusters.

3. Applying a modified Manhattan distance in SMOTE to perform oversampling within each
cluster to minimize overlapping data that may generate noise.

4. Using Random Forest, SVM, and Naïve Bayes data classification methods, the results are
verified or evaluated using Accuracy, F1-measure, and AUC metrics.
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5. Comparing the proposed method with other techniques for addressing data imbalance, such
as SMOTE, SMOTE-LOF [7], Radius-SMOTE [8], and RN-SMOTE [9].

2 Method

Fig. 1 illustrates the flow of this research. The study begins with dataset collection, preprocessing,
and division using 10-fold cross-validation, classification, and performance evaluation.

Figure 1: Research flow

2.1 Data Collection

The initial step involves collecting health data from Kaggle, specifically the Pima and Haberman
datasets exhibiting different imbalance ratios. The Pima dataset contains 768 instances with eight
attributes, while the Haberman dataset consists of 306 instances with three attributes. In the Pima
dataset, the minority class (Positive) has 268 instances, and the majority class (Negative) has 500
instances, resulting in an imbalance ratio of 1.87%. In contrast, the Haberman dataset has a majority
class (class 1) with 225 instances and a minority class (class 2) with 81 instances, yielding an imbalance
ratio of 2.78%. Samples from the Pima and Haberman datasets are presented in Tables 1 and 2,
respectively.
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Table 1: Datasets of pima sample

No. Pregnancies
(number)

Glucose
(mg/dl)

Blood
pressure
(mmHg)

Skin
thickness
(mm)

Insulin
(mu U/dl)

BMI
(kg/m2)

Diabetes
pedigree
function

Age
(Year)

Outcome

1 6 148 72 35 0 33.6 0.627 50 1
2 1 85 66 29 0 26.6 0.351 31 0
3 8 183 64 0 0 23.3 0.672 32 1
4 1 89 66 23 94 28.1 0.167 21 0
5 0 137 40 35 168 43.1 2.888 33 1
.. .. .. .. .. .. .. .. .. ..
764 10 101 76 48 180 32.9 0.171 63 0
765 2 122 70 27 0 36.8 0.34 27 0
766 5 121 72 23 112 26.2 0.245 30 0
767 2 126 60 0 0 30.1 0.349 47 1
768 1 93 70 31 0 30.4 0.315 23 0

Table 2: Datasets of haberman sample

No. Age (year) Year Node Status

1 30 64 1 1
2 30 62 3 1
3 30 65 0 1
4 31 59 2 1
5 31 65 4 1
.. .. .. .. ..
302 75 62 1 1
303 76 67 0 1
304 77 65 3 1
305 78 65 1 2
306 83 58 2 2

2.2 Data Preprocessing

This study’s data preprocessing includes scaling and balancing the data using the proposed
approach (NR-Clustering SMOTE). Scaling reduces the impact of features with the highest value
range (max) compared to features with the lowest value range (min). The scaling formula is presented
in Eq. (1).

X ′ = x − minx

maxx − minx

(1)
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SMOTE is one of the oversampling methods designed to address data distribution issues devel-
oped by [1]. SMOTE aims to balance the data distribution by randomly adding instances of the
minority class and creating new instance data through linear interpolation using the Euclidean distance
[1]. The creation of new data in the minority class utilizes Eq. (6) and linear interpolation between
minority data points with k nearest neighbors using the Euclidean distance formula is shown in Eq. (7)
[15]. The use of Euclidean distance in SMOTE to create artificial minority classes has limitations,
particularly when the data distribution is high-dimensional; it can lead to potential noise-generating
overlapping data in the artificial minority classes produced. Therefore, an alternative distance metric
that can be used in high-dimensional data is the Manhattan distance (Eq. (8)) [16]. Moreover, the
Manhattan distance performs better than the Euclidean distance when applied to SMOTE. The
SMOTE method has a crucial weakness: it generates noise data in the minority classes and potentially
noise-generating overlapping data, leading to inaccurate classification results. Therefore, this research
proposes a solution using a method called NR-Clustering SMOTE.

Fig. 2 illustrates the detailed steps of the proposed method (NR-Clustering SMOTE) to address
the issues of noise and overlapping data in imbalanced datasets. The first step involves filtering using
the k-nn method to categorize minority data into noise or non-noise categories using k = 3 [8,17].
Minority data located around the majority class (noise) is removed. Removing noise from the minority
class before applying SMOTE can help reduce the noise data produced by SMOTE, thereby improving
the performance of the classification method [9]. Examples of minority class data as noise can be seen
in Fig. 3. Afterward, the data is clustered into several groups using K-means, which first determines
the number of clusters based on the silhouette score. The purpose of clustering the data with K-means
is to establish decision boundaries by partitioning the data into multiple clusters. Subsequently, the
SMOTE method (k = 5) with modification of the Manhattan distance metric is applied to balance
the minority class and minimize the potential overlap of artificially generated minority class data that
could become noise within each cluster. Using k = 5 in SMOTE is a standard parameter and has been
proven to give good results in various datasets [1,8]. The selection of the Manhattan distance metric in
SMOTE is due to its capability to work in high-dimensional data [16]. Moreover, Manhattan distance
outperforms Euclidean distance when applied in SMOTE.

Clustering is an unsupervised machine-learning technique that groups similar data based on
specific features or characteristics. The primary objective of clustering is to discover patterns within a
dataset without prior knowledge. Clustering techniques are commonly employed for data exploration,
pattern recognition, and segmentation. Numerous clustering methods have been developed for data
grouping in machine learning, including K-means clustering, DBSCAN, mean shift, and agglomer-
ative clustering [18]. The most frequently utilized clustering method in SMOTE modifications is K-
means, as evidenced in studies [19–22]. Therefore, this research incorporates the K-means method in
the modification of SMOTE to address the issue of imbalanced health data. The K-means algorithm
is a clustering method that falls under unsupervised learning. This method seeks to partition existing
data into several groups where the data within each group share similar characteristics [23]. The steps
to perform clustering with the K-means method are [23]:

1. Select the number of clusters k.
2. Randomly initialize k cluster centers. The cluster centers (centroids) are assigned initial random

values.
3. Allocate all data objects to the nearest cluster by calculating the distance of each data point to

the centroid using Euclidean distance as per Eq. (7).
4. Repeat steps (2) and (3) until the members of each cluster stabilize and no further movements

occur.
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Figure 2: Proposed method steps (NR-Clustering SMOTE)
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Figure 3: Minority class data as noise

Algorithm 1 represents the Noise Reduction (NR) model, while Algorithm 2 represents the
Clustering SMOTE model with modification metric distance of SMOTE.

Algorithm 1: Noise Reduction (NR)
1. Select random minority class data points.
2. Choose k to use (k = 3).
3. From the minority class data points, identify the number of k-nearest neighbors of the minority and
majority classes.
4. If the number of k-nearest neighbors is dominant in the majority class, then the minority class data
points are considered noise data and deleted.
5. On the other hand, if the number of k-nearest neighbors is dominant in the minority class, then the
minority class data points are considered safe data and are retained.

Algorithm 2: Clustering SMOTE with modification metric distance of SMOTE
1. Selection of the number of clusters using silhouette.
2. Grouping data into several clusters with K-means (Number of clusters based on silhouette value).
3. Select a random instance of a minority class for each cluster.
4. Identity k-nearest neighbor of minority class.
5. Choose k to use (k = 5) for SMOTE.
6. Calculate the distance between two selected sample minority classes using each cluster’s Manhattan
distance (Eq. (8)).
7. Creation of new data in the minority class by multiplying the distance by a number between 0 and
1 (Eq. (6)) for each cluster.
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Choosing the best k value in the K-means method is a difficult task. One way that can be used to
select the best k value is the silhouette coefficient. This method measures the similarity of an object with
its cluster(cohesion) compared to other clusters (separation). The steps in calculating the silhouette
coefficient value [24]. The silhouette coefficient ranges from −1 to 1, and the higher the value, the
better the clustering results. The silhouette coefficient value equals 1, meaning the number of clusters
produced is perfect.

1. Calculate the average distance from one data to another in a cluster using the formula in
Eq. (2).

a (i) = 1
|A| − 1

∑
j∈A,j �=i

d (i, j) (2)

where j is the other data in cluster A, and d(i, j) is the distance between data i and j.
2. Calculate the average distance from data i to all data in other clusters using the Eq. (3). Then,

find the minimum average distance using Eq. (4).

d(i, C) = 1
|C|

∑
j∈C

d (i, j) (3)

b(i) = minc�=Ad(i, C) (4)

3. Calculate the silhouette coefficient value using Eq. (5).

S(i) = b (i) − a(i)
max(a (i) , b(i))

(5)

The value a(i) represents the density level of the cluster containing object i. A smaller value of
a(i) indicates a denser cluster. Meanwhile, the value b(i) indicates how far object i distance from other
clusters. A larger value of b(i) signifies that object i is farther away from other clusters.

y′ = yi + (
yj − yi

) ∗ ϒ (6)

where y′ denotes the addition of the minority class, yi represents the minority class, yj is the value of
the k-nearest neighbor to yi, and ϒ is a randomly selected vector value ranging from 0 to 1.

ED(x, y) =
√∑n

i=1
(xi − yi)2 (7)

DManhattan(x, y) =
∑n

i=1
|xi − yi| (8)

where ED is the Euclidean distance, DManhattan is the Manhattan distance, xi represents the i-th test data
on variable x, and yi is the i-th sample data on variable y.

2.3 Classification Method

The fourth step involves dividing the data into training and testing sets using 10-fold cross-
validation. The performance of the classification method is evaluated using 10-fold cross-validation
to validate each fold. The 10-fold cross-validation method divides the data into ten subsets, with each
fold alternately serving as training and testing data. The k-fold cross-validation method is a popular
technique for evaluating the performance of classification algorithms. This technique is generally
considered to be able to improve model performance, especially on small data sets, and provide reliable
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accuracy estimates with relatively low variance [25]. The next process is implementing classification
methods using Random Forest, SVM, and Naïve Bayes methods.

Random Forest is one part of a variety of decision trees that uses the concept of ensemble learning,
namely bagging (bootstrap aggregating), which aims to divide the data into several decision trees.
Then, each decision tree provides a prediction, and the majority decision is used as the final prediction
using voting. Random forests can use the concepts of Gini and Information Gain in forming decision
trees, the formulas for which are shown in Eqs. (9) and (10). Gini functions in forming decision trees,
while Information Gain is used to select the best attributes in forming decision trees.

Gini (t) = 1 −
∑J

i−1
p(i|t)2 (9)

where p(i|t) is the proportion of samples from class i in node t.

Gain (S, A) = Gini (S) −
∑n

i=1

|Si|
S

∗ Gini(Si) (10)

where S is the dataset, A is the attribute in the dataset, Si is the number of cases in the i-partition.

SVM is a classification method that maximizes the margin on each class’s decision boundary to
make it easy to predict (Eq. (11)). The SVM method can work on nonlinear data by utilizing several
kernels.

y = sign(
∑n

i=1
aiyi (xi, x) + b) (11)

where y is the class prediction, αi is the weight of each training sample, yi is the class label, xi is the
training sample, x is the sample to be predicted, and b is the bias.

Naïve Bayes is a probabilistic method based on Bayes’ theorem with the assumption that the
features used for classification are independent of each other. The Naïve Bayes formula used in
classification is like Eq. (12).

P(C|X) = P (X |C) ∗ P(C)

P(X)
(12)

where P(C|X ) is the probability of class C given feature X , P(X|C) is the probability of feature X given
class C, P(C) is the prior probability of class C, and P(X ) is the prior probability X feature.

2.4 Performance Evaluation

The final step is to evaluate the performance of the classification method. Performance evaluation
utilizes a confusion matrix table. The confusion matrix table depicts the number of correct and
incorrect classifications, as shown in Table 3 [26]. The formulas used to calculate accuracy is Eq. (13)
[27], recall is Eq. (14) [28], F1-measure is Eq. (15), and AUC is Eq. (16) [29].

Accuracy = TP + TN
TP + FN + TN + FN

(13)

Recall = TP
TP + FN

(14)

F1 − measure = 2 ∗ (precision ∗ recall)
(precision + recall)

(15)
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AUC = (recall + specificity)

2
(16)

Table 3: Confusion matrix

Actual Prediction

Negative Positive

Negative TN FP
Positive FN TP

3 Result and Discussion

This study tests the proposed method using the Pima and Haberman datasets with different
imbalance ratios. The Pima dataset contains 768 instances with 8 attributes, while the Haberman
dataset has 306 instances with 3 attributes. In the Pima dataset, there are 268 instances of the minority
class (Positive) and 500 instances of the majority class (Negative), resulting in an imbalance ratio
of 1.87%. In the Haberman dataset, the majority class (class 1) consists of 225 instances, and the
minority class (class 2) has 81 instances, leading to an imbalance ratio of 2.78%. Subsequently, scaling
is performed to mitigate the impact of features with the highest value range compared to those with
the lowest value range.

Subsequently, data balancing is carried out on both datasets (Pima and Haberman) using the
proposed method, NR-Clustering SMOTE. The NR-Clustering SMOTE approach involves steps
to balance the data namely the proposed method is called “NR-Clustering SMOTE,” which has
several stages in balancing data: (1) filtering by removing minority classes close to majority classes
(data noise) using the k-nn method; (2) clustering the data using K-means to establish decision
boundaries by partitioning the data into several clusters; and (3) applying SMOTE oversampling
with Manhattan distance to each cluster. The sampling process with NR-Clustering SMOTE on the
Pima and Haberman datasets is illustrated in Fig. 4. The data balanced with the proposed method are
then classified using Random Forest, SVM, and Naïve Bayes methods, with data training and testing
initially separated using 10-fold cross-validation. The 10-fold cross-validation method divides the data
into 10-fold. The classification results are measured based on Accuracy, Recall, F1-measure, and AUC
obtained from the confusion matrix table.

Table 4 demonstrates that the Random Forest method without sampling (using the original data)
accurately classified 431 instances of the negative class out of 500 instances and 155 instances of the
positive class out of 268 instances in the Pima dataset. The Random Forest method with SMOTE
accurately classified 392 instances of the negative class and 430 instances of the positive class out
of 1000 instances in the Pima dataset. Using the proposed approach (NR-Clustering SMOTE), the
Random Forest method accurately classified 439 instances of the negative class and 457 instances of
the positive class out of 1000 instances in the Pima dataset. Table 5 reveals that the Random Forest
method without sampling (using the original data) accurately classified 187 instances of class 1 out of
225 instances and 22 instances of class 2 out of 80 instances in the Haberman dataset. The Random
Forest method with SMOTE accurately classified 121 instances of class 1 and 180 instances of class 2
out of 500 instances in the Haberman dataset. Using the proposed approach (NR-Clustering SMOTE),



2942 CMC, 2025, vol.82, no.2

the Random Forest method accurately classified 185 instances of class 1 and 220 instances of class 2
out of 500 instances in the Pima dataset.

Figure 4: Number of classes in dataset after NR-Clustering SMOTE oversampling

Table 4: Confusion matrix results on pima data with random forest method

Actual Data original SMOTE NR-Clustering
SMOTE

Negative Positive Negative Positive Negative Positive

Negative 431 69 392 108 439 61
Positive 113 155 70 430 43 457

Table 5: Confusion matrix results on haberman data with random forest method

Actual Data original SMOTE NR-Clustering
SMOTE

1 2 1 2 1 2

1 187 38 121 104 185 40
2 59 21 45 180 5 220

Table 6 indicates that the SVM method without sampling (using the original data) accurately
classified 443 instances of the negative class out of 500 instances and 149 instances of the positive
class out of 268 instances in the Pima dataset. The SVM method with SMOTE accurately classified
372 instances of the negative class and 383 instances of the positive class out of 1000 instances in the
Pima dataset. The SVM method using the proposed approach (NR-Clustering SMOTE) accurately
classified 419 instances of the negative class and 434 instances of the positive class out of 1000 instances
in the Pima dataset. Table 7 reveals that the SVM method without sampling (using the original data)
accurately classified 219 instances of class 1 out of 225 instances and 12 instances of class 2 out of 80
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instances in the Haberman dataset. The SVM method with SMOTE accurately classified 142 instances
of class 1 and 130 instances of class 2 out of 500 instances in the Haberman dataset. Lastly, the SVM
method using the proposed approach (NR-Clustering SMOTE) accurately classified 188 class 1 and
173 instances of class 2 out of 500 instances in the Pima dataset.

Table 6: Confusion matrix results on pima data with SVM method

Actual Data original SMOTE NR-Clustering
SMOTE

Negative Positive Negative Positive Negative Positive

Negative 443 57 372 128 419 81
Positive 119 149 117 383 66 434

Table 7: Confusion matrix results on haberman data with SVM method

Actual Data original SMOTE NR-Clustering
SMOTE

1 2 1 2 1 2

1 219 6 142 83 188 37
2 69 12 95 130 52 173

Table 8 shows that the Naïve Bayes method without sampling (using the original data) accurately
classified 422 instances of the negative class from 500 instances and 159 instances of the positive class
from 268 instances in the Pima dataset. The Naïve Bayes method with SMOTE accurately classified
392 instances of the negative class and 338 instances of the positive class from 1000 instances in
the Pima dataset. The Naïve Bayes method using the proposed approach (NR-Clustering SMOTE)
accurately classified 420 instances of the negative class and 402 instances of the positive class from
1000 instances in the Pima dataset. Table 9 indicates that the Naïve Bayes method without sampling
(using the original data) accurately classified 213 instances of class 1 from 225 instances and 17
instances of class 2 from 80 instances in the Haberman dataset. The Naïve Bayes method with
SMOTE accurately classified 170 instances of class 1 and 80 instances of class 2 from 500 instances
in the Haberman dataset. Lastly, the Naïve Bayes method incorporating the proposed approach (NR-
Clustering SMOTE) accurately classified 202 class 1 and 134 instances of class 2 from 500 instances
in the Pima dataset.

Table 8: Confusion matrix results on pima data with Naïve Bayes method

Actual Data original SMOTE NR-Clustering
SMOTE

Negative Positive Negative Positive Negative Positive

Negative 422 78 393 107 420 80
Positive 109 159 162 338 98 402
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Table 9: Confusion matrix results on haberman data with Naïve Bayes method

Actual Data original SMOTE NR-Clustering
SMOTE

1 2 1 2 1 2

1 213 12 170 55 202 23
2 64 17 145 80 91 134

Table 10 compares data performance without oversampling, SMOTE and NR-Clustering
SMOTE using Random Forest, SVM, and Naïve Bayes methods for classifying the Pima and
Haberman datasets. NR-Clustering SMOTE demonstrates superior performance compared to the
non-sampling, and SMOTE approaches across all evaluation metrics, such as accuracy, F1-measure,
and AUC. Specifically, the NR-Clustering SMOTE method with Random Forest achieved an accuracy
of 89.56%, an F1-measure of 89.75%, and an AUC of 89.56% on the Pima dataset, while on the
Haberman dataset, the accuracy reached 89.84%, the F1-measure 90.58%, and the AUC 89.84%.
Similarly, NR-Clustering SMOTE with the SVM method attained an accuracy of 85.30%, an F1-
measure of 85.52%, an AUC of 85.30% on the Pima dataset, and an accuracy of 80.22%, an F1-
measure of 79.54%, and an AUC of 80.22% on the Haberman dataset. On average, NR-Clustering
SMOTE with Random Forest demonstrated the best performance on both the Pima and Haberman
datasets compared to the SVM and Naïve Bayes methods. This indicates that NR-Clustering SMOTE
can enhance the classification capabilities of the methods in classifying the Pima and Haberman data
more effectively while reducing noise and overlap at the decision boundaries that could interfere with
the learning process.

Table 10: Performance results of proposed method with classification method on health dataset

Data balancing method Method Dataset Accuracy Recall F1-measure AUC

Data
original

Random forest Pima 76.34% 57.99% 63.11% 72.08%
SVM 77.08% 55.60% 62.87% 72.10%
Naïve Bayes 75.65% 59.33% 62.97% 71.86%
Random forest Haberman 68.20% 26.33% 30.33% 54.74%
SVM 75.49% 14.81% 24.24% 56.07%
Naïve Bayes 75.16% 20.99% 30.91% 57.83%

SMOTE

Random forest Pima 82.22% 86% 82.85% 82.2%
SVM 75.5% 76.6% 75.77% 75.5%
Naïve Bayes 73.1% 67.6% 71.53% 73.1%
Random forest Haberman 66.89% 80% 70.73% 66.89%
SVM 60.44% 57.78% 59.36% 60.44%
Naïve Bayes 55.56% 35.56% 44.44% 55.56%

(Continued)
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Table 10 (continued)

Data balancing method Method Dataset Accuracy Recall F1-measure AUC

Adasyn

Random forest Pima 81.11% 85.44% 81.48% 81.22%
SVM 71.35% 67.51% 69.64% 71.25%
Naïve Bayes 68.89% 60.75% 65.52% 68.67%
Random forest Haberman 60.3% 75.75% 65.91% 60.1%
SVM 54.82% 27.27% 37.95% 55.19%
Naïve Bayes 56.35% 27.7% 39.14% 56.74%

NR-
Clustering
SMOTE

Random forest Pima 89.56% 91.38% 89.75% 89.56%
SVM 85.30% 86.8% 85.52% 85.3%
Naïve Bayes 82.20% 80.4% 81.87% 82.2%
Random forest Haberman 89.84% 97.6% 90.58% 80.84%
SVM 80.22% 76.89% 79.54% 80.22%
Naïve Bayes 74.67% 59.56% 70.16% 74.67%

The proposed NR-Clustering SMOTE method aims to address the weaknesses of SMOTE by
combining filtering, clustering, and distance adjustment techniques using the Manhattan metric. NR-
Clustering SMOTE with Manhattan can be an effective solution for handling dataset imbalance
by reducing noise and overlap. The use of NR, which removes data that is considered noise before
applying SMOTE, has a positive impact on overcoming data imbalance [4]. Clustering establishes
decision boundaries by partitioning data into clusters, allowing SMOTE with modified distance
metrics to generate minority class data within each cluster. The clustering method approach in SMOTE
can minimize the overlap of artificial minority data, which is potential noise [30]. In recent years,
various developments of SMOTE have been introduced, such as LOF-SMOTE [7], Radius-SMOTE
[8], and RN-SMOTE [9] on the same dataset. Table 11 shows that the NR-Clustering SMOTE method
increases accuracy by 15.34% on the Pima dataset and by 20.96% on the Haberman dataset compared
to SMOTE-LOF [7]. Compared to Radius-SMOTE [8], this method improves accuracy by 3.16% on
the Pima dataset and 13.24% on the Haberman dataset. Meanwhile, compared to RN-SMOTE [9], the
accuracy improvement achieved is 14.56% on the Pima dataset and 19.84% on the Haberman dataset.

Table 11: Comparison of the results of this research with previous research

Method Dataset Accuracy F1-measure AUC

SMOTE-LOF [7] Pima 74.22% 73.30% 74.24%
Haberman 68.88% 58.93% 66.79%

RN-SMOTE [9] Pima 75% 74% –
Haberman 70% 70% –

Radius-SMOTE [8] Pima 86.40% 84% –
Haberman 76.6% 75%

Proposed method (NR-Clustering SMOTE) Pima 89.56% 91.38% 89.56%
Haberman 89.84% 97.60% 89.84%
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The proposed method exhibits superior performance across all classification methods compared
to several SMOTE modifications, such as SMOTE-LOF [7], Radius-SMOTE [8], and RN-SMOTE [9].
The performance enhancement of NR-Clustering SMOTE is attributed to removing noise, clustering
data using K-means to establish decision boundaries, and subsequently performing oversampling
with SMOTE that employs a modified Manhattan distance. Eliminating minority classes identified
as noise before applying Clustering SMOTE aids this method in reducing the noise produced, thereby
improving classification outcomes [9,31]. Furthermore, using K-means clustering to establish decision
boundaries across multiple clusters can reduce overlap [32]. Modifying the Manhattan distance in
SMOTE for balancing minority classes also minimizes the risk of noise arising from overlapping
minority classes within each cluster. Not only that, the selection of the Manhattan distance metric in
SMOTE is due to its capability to work in high-dimensional data [16]. Moreover, Manhattan distance
outperforms Euclidean distance when applied in SMOTE.

There are several limitations of the NR-Clustering SMOTE method that can be further explored
in future research: (1) the proposed method is currently only applied to binary class cases, suggesting
that future studies could be developed to address multi-class data; (2) this research has not resolved
the issue of small disjuncts within the minority class, indicating that subsequent studies should aim to
tackle this challenge.

4 Conclusion

This study proposes the NR-Clustering SMOTE method to address the problem of data imbalance
in the health field. The health datasets used in testing this method are Pima and Haberman, each
of which has a different level of imbalance ratio. The NR-Clustering SMOTE method has stages
in data balancing, namely: (1) filtering by removing minority classes close to majority classes (data
noise) using the k-nn method; (2) clustering data with clustering (K-means), which aims to form
decision boundaries by partitioning data into several clusters; (3) applying SMOTE oversampling with
Manhattan distance to each cluster. Overall, the NR-Clustering SMOTE method performed better on
all evaluation metrics than the traditional SMOTE method in all classification methods. The proposed
NR-Clustering SMOTE method improved accuracy by 15.34% on the Pima dataset and 20.96% on the
Haberman dataset compared to LOF-SMOTE. Compared to Radius-SMOTE, this method improves
accuracy by 3.16% on the Pima dataset and 13.24% on the Haberman dataset. Meanwhile, compared
to RN-SMOTE, the accuracy improvement obtained reached 15.56% on the Pima dataset and 19.84%
on the Haberman dataset.

Future research can solve the small disjuncts problem using a cluster approach by observing the
density of each cluster and the sparsity of data in the cluster. Understanding how dense or sparse
the data in each cluster is can determine the amount of synthetic data needed to be added. This
approach ensures that the synthetic data samples are appropriately distributed to each cluster, thus
balancing data distribution within the minority class and addressing the within-class imbalance. Not
only that, further research can extend the NR-Clustering SMOTE to multi-class imbalances or explore
its integration with deep learning frameworks for large-scale health data analytics.
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