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ABSTRACT Article information:
Short-term load forecasting (STLF) plays a vital role in e�ective power sys-
tem management by assisting power dispatch centers in developing gener-
ation plans and ensuring smooth system operation. This study introduces
a novel hybrid prediction model called iSSA-LSSVM to tackle the STLF
challenge. By integrating the Salp Swarm Algorithm (SSA) with Least
Squares Support Vector Machines (LSSVM), the iSSA-LSSVM model sig-
ni�cantly improves LSSVM's prediction accuracy. One of the key contri-
butions is the model's ability to autonomously �ne-tune LSSVM hyper-
parameters, eliminating the need for manual adjustments and optimizing
performance. Modifying the SSA within iSSA-LSSVM enhances the orig-
inal algorithm's exploration and exploitation capabilities, ensuring better
search e�ciency and precision. Using a dataset with four independent vari-
ables as input and electrical power output as the target variable, the model
demonstrates superior predictive performance. Comparative analysis with
three other models shows that iSSA-LSSVM achieves a lower Mean Square
Error (MSE) and faster convergence. This improvement in accuracy and
e�ciency enhances STLF, allowing power dispatch centers to develop more
precise generation plans and ensure more reliable power system operation.
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1. INTRODUCTION

The power system is an intricate network where
challenges emerge throughout planning, execution,
commissioning, and ongoing maintenance, spanning
from generation and transmission to distribution. In-
tegrating renewable energy sources into these exist-
ing networks introduces signi�cant concerns, includ-
ing voltage �uctuations, power imbalances, and a no-
table increase in power losses. One of the most excit-
ing topics in power system planning is forecasting the
electricity load. This particularly crucial because the
power system, characterized by its complexity and
challenges across various stages from generation to
distribution, faces issues such as voltage �uctuations,
power imbalances, and increased power losses, espe-
cially in integrating renewable energy sources.

Electricity load forecasting, predominantly in the
context of short-term predictions, holds substantial
academic importance due to its pivotal role in en-

hancing the operational e�ciency of power systems
and aiding participants in the electricity market.
Load prediction entails forecasting future energy de-
mand by analyzing historical energy consumption
records in a time series format [1]. The accuracy of
forecasts for renewable energy e�ciency plays a cru-
cial role in the e�ective management and operation
of energy systems. [2]. More precise predictions re-
duced risk and enhanced stability and reliability of
the network [3, 4]. Precise load forecasting outcomes
o�er valuable insights for crafting power generation
strategies and facilitating informed decision-making
among market stakeholders. As a consequence, this
is a key factor in ensuring the stability and economic
viability of the power system. Historical demand data
combined with piecewise interpolation, an electricity
demand forecasting methodology, has been proposed
in [5].

Short-Term Load Forecasting (STLF) is essential
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for evaluating and planning power grid needs, as it
allows for predicting future electricity demand from
customers [6]. This forecasting process employs dif-
ferent scoring methods to determine the accuracy of
load predictions across various time horizons. De-
pending on the timeframe of the prediction, load fore-
casting can be categorized into several groups. Very
STLF (VSTLF), which operates on timescales from
one minute to ten minutes, focuses on achieving eco-
nomic control and managing load frequency fluctu-
ations. STLF, spanning from minutes or hours to
weeks [7, 8], is instrumental in balancing the supply
and demand of electricity. Medium-Term Load Fore-
casting (MTLF), covering periods from one day to
a year, aids in scheduling power outages and plan-
ning maintenance activities. MTLF offers a theo-
retical foundation for optimizing the maintenance of
grid equipment [9]. Lastly, Long-Term Load Fore-
casting, extending beyond a year, plays a crucial role
in the strategic planning of infrastructure develop-
ment within the power grid domain [10].

Electric load forecasting relies on three primary
types of models: statistical models, conventional
models, and hybrid models. Traditionally, statistical
models and machine learning (ML) techniques have
been vital in forecasting electric load demand. The
field has witnessed extensive utilization of both meth-
ods. Moreover, achieving improved forecasting re-
sults typically involves combining various techniques
or models. Hybrid approaches, for instance, may in-
clude integrating time series analysis with ML or com-
bining multiple ML models to optimize predictions.

ML techniques have demonstrated significant ef-
ficiency across diverse fields, such as the study in
[11], which evaluated Sift-SVM for defect detection
in smartphone camera modules. Meanwhile, a study
in [12] presented a lightweight model that leverages
optical flow and RGB data to detect violence in video
streams, achieving high accuracy in categorizing vi-
olent behaviors. The study highlights the poten-
tial of machine learning models to enhance real-time
decision-making, similar to their application in STLF.

Load forecasting remains a significant subject of
interest, as evidenced by numerous published studies
in literature, spanning from the past to the present.
Numerous techniques, whether single or hybrid, have
been proposed to enhance the precision of load fore-
casting, with the goal of improving overall accuracy
in predicting future electrical demands. Load fore-
casting and operation strategy for distributed en-
ergy systems (DES) based on utility reformation has
been discussed in [13]. In the study conducted by
[10], two distinct techniques were presented for STLF,
namely Auto-Regressive Integrated Moving Average
(ARIMA) and Artificial Neural Network (ANN). The
efficacy of these proposed techniques was evaluated
using actual daily electricity consumption data from
707 individual households in Ireland, spanning for a

18-month duration. In the study, the evaluation cri-
terion used was the Mean Absolute Percentage Error
(MAPE), which indicated a preference for the ANN
approach in terms of forecasting accuracy. The pref-
erence for the ANN approach arises from the fact that
ARIMA is unsuitable for handling these datasets due
to its limitations in capturing non-linear characteris-
tics. Additionally, ARIMA outcomes are highly in-
fluenced by observation frequency and measurement
errors [14]. This assertion is further substantiated in
[15]. The application of ANN can also be observed in
[16], where it demonstrates the utilization of ANN in
conjunction with an improved Markov chain, while
another ANN-based method is [17]. In the study,
an error-correction module inspired by the concept
of meta-learning is incorporated into the model to
capture the nonstationary pattern of the grid load.
On the other hand, the study in [18], the ANN is
applied to a large-scale power system. Nonetheless,
it is worth noting that ANN is sensitive to hyper-
parameters, requiring careful tuning to achieve good
results. Besides, it also involves longer training time.
As a result, hybrid models have been proposed, such
as those discussed in [19], which combine ANN with
Invasive Weed Optimization and Differential Evolu-
tion methods. The primary objective of the study is
to utilize meta-heuristic approaches for training the
neural network to enhance the precision of the per-
ceptron neural network. The findings indicate that
the algorithm put forward leads to increased conver-
gence with neural network coefficients compared to
existing algorithms. Nevertheless, the suggested ap-
proach also resulted in a decrease in prediction errors
within the neural network.

Empirical Wavelet Transform (EWT) and Auto-
former time series prediction model for Time series
analysis model in forecasting have been proposed in
[20]. Meanwhile, in [1], a hybrid technique for res-
idential loads using Empirical Mode Decomposition
(EMD) and Extreme Learning Machines (ELM) is
presented, which is validated using real-time residen-
tial intelligent meter data. The approach presented
in [1] is similar to the models [21-23], which also uti-
lized ELM-based techniques for predicting of the case
of interest. A refined version of ELM is presented in
[24], where the ELM is in hybrid with Particle Swarm
Optimization (PSO) to attain optimal parameter val-
ues. Even with the hybrid model, the ELM may be
exposed to its limited adaptability to dynamic envi-
ronments and changing data patterns, which require
further improvement.

The study in [25] utilized a hybrid model combin-
ing Manta-Ray Foraging Optimization to optimize
the Support Vector Regressor (SVR). The evalua-
tion also considers other hybrid techniques, such as
SVR optimized by the Slime Mould Algorithm (SMA)
[26], Moth Flame Optimization (MFO) [27], and a
few others. When tested on real-world case data,
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these proposed hybrid techniques have shown the
ability to mitigate the weaknesses of a single method.
Other hybrid techniques between ML and optimiza-
tion techniques also can be seen in [28-30]. In [30],
the study optimized the use of Deep Learning (DL)
for short-term multivariate time series load forecast-
ing at low voltage levels by incorporating Adaptive
Wind-Driven Optimization (AWDO). This optimiza-
tion technique has significantly improved the perfor-
mance of the proposed technique.

Another hybrid DL approach for load forecasting
is demonstrated in [31]. In this study, features are
selected using Pearson correlation coefficients, and
subsequently, the hybrid DL model is constructed by
combining BiLSTM and Random Forest. When eval-
uated using the MAPE, the proposed model demon-
strated lower error rates compared to benchmark
models, including the single Random Forest and sin-
gle BiLSTM models. In [32], a mathematical model
is developed for predicting energy output using both
the Sequential API and Functional API within ANN,
specifically with a single hidden layer for each ap-
proach. The successful training and testing of all
models demonstrated their strong compatibility in
predicting the energy output of a Combined Cycle
Power Plant (CCPP). Works in [33] employed similar
data as in [34].

Previously, in 2017, an STLF model that com-
bines singular spectrum analysis and Support Vector
Machines (SVM), and fine-tuned using the Cuckoo
Search (CS) algorithm was developed [35]. SVM is
a supervised learning algorithm used for classifica-
tion and regression tasks [36]. Before the forecast-
ing process, the CS algorithm was employed to ad-
dress the shortcomings associated with manually cho-
sen parameters. Experimental results showcased that
the suggested model surpassed the performance of
individual SVM, Seasonal Autoregressive Integrated
Moving Average (SARIMA), and Back Propagation
Neural Network (BPNN). An alternative hybrid SVM
incorporating optimization techniques has been docu-
mented in [37, 38], where the SVM was automatically
fine-tuned using the Grasshopper Optimization Al-
gorithm (GOA) and Firefly Algorithm (FA), respec-
tively.

The study centered on developing a prediction
model for the full-load electrical power output of a
base power plant. To achieve this objective, a hy-
brid model is introduced that combines an improved
version of the Salp-Swarm Algorithm (iSSA) with
the Least Squares Support Vector Machine (LSSVM)
[39], referred to as the iSSA-LSSVM. The SSA is cho-
sen as an optimizer for LSSVM due to its encourag-
ing performance, which has been proven in numerous
published studies [40-42].

The primary contributions of this study are as fol-
lows:

1. Automatic Hyper-Parameter Tuning for LSSVM:

This study introduces a novel approach for au-
tomatic hyper-parameter tuning specifically de-
signed for LSSVM. This method significantly
reduces the need for manual intervention and
enhances the model performance and general-
ization capabilities.

2. Enhancement of the Standard Salp Swarm Al-
gorithm (SSA): Significant improvements to the
standard SSA are proposed, focusing on refining
both the exploitation and exploration phases
(see Section 3.2). These enhancements lead to
a more efficient and effective search process, re-
sulting in better optimization outcomes.

3. Application of iSSA-LSSVM for Predicting
Power Plant Output: The iSSA-LSSVM is im-
plemented to predict the full load of electri-
cal power output of a base power plant. This
application illustrates the practical usefulness
and higher predictive accuracy of the proposed
method when applied to real-world situations.

This paper is organized as follows: Section 1
discusses the importance of time series prediction,
mainly using ML-based algorithms. The existing
works related to the research topic are also presented
in this section. Sections 2 and 3 provide a concise
overview of the chosen machine learning technique,
LSSVM, and the optimization tool, SSA, respectively.
The implemented methodology is described in Section
4, while the obtained results are discussed in Section
5. Finally, Section 6 concludes the paper.

2. LEAST SQUARES SUPPORT VECTOR
MACHINES

Least Squares Support Vector Machines (LSSVM)
[39] is a noteworthy machine learning technique de-
rived from the conventional SVM [43]. The expres-
sion for the LSSVM regression model is as follows:

y(x) =
∑

i=1
aiK(x, xi) + b (1)

This expression represents the kernel functions,
with b denoting the ith support vector, Lagrange
multipliers, and bias parameters, respectively. Com-
pared to other available kernels, such as linear, poly-
nomial, and multilayer perceptron, the Radial Basis
Function (RBF) kernel has demonstrated its superi-
ority in delivering outstanding performance. Hence,
the RBF kernel was employed in this study and is
defined as follows:

K(xi, xj) = exp

(
‖xi− xj‖2

2σ2

)
(2)

3. OPTIMIZATION BASED ON THE SALP-
SWARM ALGORITHM

This section discusses the characteristics of the
SSA as found in nature, along with its mathemati-
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cal model. A detailed explanation of the algorithm
can be discovered in [44].

3.1 Formulation of Salp-swarm Algorithm

The salp population is first divided into two
groups: the leaders and the followers. The leader is
situated at the forefront of the salp chain, while the
remaining salps make up the followers. The leader is
responsible for guiding the salp swarm, while the fol-
lowers follow each other (including the leader directly
or indirectly). The Salp Swarm Algorithm (SSA) [44]
is controlled by only one parameter. Salp positions
are defined in an n-dimensional space, where n repre-
sents the number of variables for the specific problem
being addressed, as follows:

xij =

{
Fj + c1[(ubj − lbj)c2 + lbj ]c3 ≥ 0

[Fj + c1[ubj − lbj ]c2 + lbj ]c3 < 0
(3)

where;
Fj = food source position in the jth dimension
xij = the position of the first salp i.e., the leader
c1, c2 and c3 = random numbers
ubj and lbj = upper and lower bound of jth di-

mension, respectively
Equation (3) defines how the position of xij , the

first salp or leader, is updated based on the position
of the food source Fj . This equation updates only
the leader’s position in relation to the food source.
However, the second step, responsible for balancing
both the exploitation and exploration processes, re-
quires a more sophisticated approach. The random
number c1 plays a crucial role in achieving this bal-
ance between the two processes. Equation (4) defines
c1, which is essential in ensuring optimal results for
the Salp Swarm Algorithm, as follows:

c1 = 2e−( 4l
L )

2

(4)

Equation (5) defines how the position of followers
is updated. In this equation, the position of each
follower is adjusted according to the positions of both
the leader and the other followers. The variables l and
L represent the current iteration and the maximum
number of iterations, respectively. Additionally, the
parameters c2 and c3 are random numbers uniformly
generated within the interval of [0, 1]. They dictate
whether the following positions in the jth dimension
should be towards positive infinity or negative, as well
as the step size.

xij =
1

2
at2 + v0t (5)

where
i ≥ 2
xij = position of ith follower salp in jth dimension
t = time

v0 =initial speed

a =
vfinal
v0

, where v =
x− x0
t

In optimization, the measure of time is typically
the number of iterations. Thus, the difference be-
tween iterations is usually one. When v0 = 0, this
can be defined using equation (6):

xij =
1

2
(xij + xi−1

j ) (6)

xij = position of ith follower salp in jth dimension
The salp chain simulation can be implemented us-

ing equations (3) to (6). A pseudocode for the Salp
Swarm Algorithm is provided in Figure 1.

Fig.1: SSA Pseudo Code.

3.2 Improved Salp-swarm Algorithm

In this study, two specific enhancements to the tra-
ditional SSA has been introduced to improve its per-
formance in optimization tasks:
a. The traditional SSA can be less effective dur-

ing the exploitation phase, especially when the
search space is enormous. To improve this,
equation (3) has been revised by eliminating the
lower bound, enabling a more aggressive search
for optimal solutions. The updated equation is:

x1
j =

{
Fj + c1 ((ubj − lbj)c2) , c3 ≥ r

Fj − c1 ((ubj − lbj)c2) , c3 < r
(7)

Where r is a uniformly distributed random number
between 0 and 1. The modification enhances the al-
gorithm’s ability to focus on promising areas in the
search space, thereby improving exploitation.
b. Improved Exploration: To enhance the explo-

ration capability, particularly at the followers’
level, a new term has been introduced incorpo-
rating the distance between the follower’s cur-
rent position and the leader’s position. This
term, combined with random parameters p and
q = (1 − p), increases diversity in the search
process. The updated position update equation
for followers is:
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xi
j =

(
pxij + qxi−1

j

)
, i ≥ 2 (8)

This addition promotes a more diverse search pat-
tern and prevents premature convergence by encour-
aging followers to explore new areas around the
leader.

These modifications, detailed in Equations (7)
and (8), are designed to enhance both the exploita-
tion and exploration capabilities of the SSA. Conse-
quently, the iSSA demonstrates better performance
in locating optimal solutions. The iSSA is then hy-
bridized with LSSVM, resulting in a more robust
model for predictive applications, as discussed in Sec-
tion 5. The improvement of iSSA is similar that ob-
served in [45]. Subsequently, the iSSA was hybridized
with LSSVM for predictive applications.

4. RESULT AND DISCUSSION

This section describes the methodology imple-
mented for this study, which includes details about
the employed dataset, the proposed iSSA-LSSVM
prediction model, the parameter settings, and the
metric used for evaluation.

4.1 Dataset Description

The dataset used in this study was the same as
the one used in a previous study [34]. The dataset
includes four independent parameters: AT , which
represents ambient temperature; AP , indicating at-
mospheric pressure; RH, denoting relative humidity;
and V , which refers to exhaust steam pressure. One
dependent parameter, labeled PE, corresponds to the
total electrical power output. The dataset spans a
six-year period from 2006 to 2011 and contains 9,568
instances. The AT is recorded in whole degrees Cel-
sius (◦C) with values ranging from 1.81 to 37.11◦C.
AP , is collected in milli bars unit with values varying
from 992.89 to 1033.30 mbar. Meanwhile, the RH
is measured in percentage with collected values rang-
ing from 25.56-100.16%. The value of V is measured
in cm Hg and ranges from 25.36-81.56 cm Hg, while
the dependent output variable, PE, is measured in
Megawatt (MW) with a range of 420.26-495.76 MW.
It is important to note that the prediction approach
used in this study differs slightly from the one used
in [34].

The selected input variables for this study are
based on their direct influence on power plant per-
formance and overall energy output. AT affects the
efficiency of the plant’s cooling systems and, conse-
quently, its production. AP influences air density,
which is critical for combustion and turbine perfor-
mance. RH plays a role in the cooling process and
energy transfer efficiency, while V is a crucial factor
in the efficiency of steam turbines, directly affecting
the plant’s power generation. Together, these four
independent variables provide a comprehensive rep-

resentation of environmental and operational condi-
tions, allowing for a more accurate prediction of the
PE.

To prevent overfitting and to ensure the applica-
bility of the proposed hybrid model for future power
output prediction of combined cycle power plant
(CCPP), the 9568 data points are divided into 70%
for training, 15% for validation, and 15% for testing.
The specifications of the input-output model can be
found in Table 1.

Table 1: Training, Validation and Testing Data.

The mentioned dataset was normalized using zero
mean normalization. The purpose is to provide the
same range of values for each input in the prediction
model. Correctly selecting input variables is essen-
tial in predicting the full load electrical power out-
put because it directly affects the accuracy of the
prediction model. Determining which input vari-
ables significantly influence the prediction results is
a crucial component of this task. These parameters,
which are related to ambient conditions and exhaust
steam pressure, serve as the input variables within
the dataset utilized in this study.

4.2 iSSA-LSSVM Prediction Model

In the proposed iSSA-LSSVM, the improved Salp
Swarm Algorithm (iSSA) is utilized to fine-tune the
hyperparameters γ and σ2 of the LSSVM automat-
ically. These hyperparameters significantly influ-
ence the model’s performance, as they determine the
trade-off between the regularization term and the ker-
nel function’s spread. Manual tuning of these pa-
rameters is often labor-intensive and prone to sub-
optimal results, mainly when dealing with complex
datasets. The iSSA algorithm, as detailed in Sec-
tion 3.2, automates this tuning process by efficiently
exploring the solution space, enhancing both explo-
ration and exploitation capabilities. This automation
ensures that the model consistently identifies the op-
timal hyper-parameter values without requiring ex-
tensive trial-and-error methods. By integrating iSSA,
the proposed model navigates the hyper-parameter
space more effectively, adjusting γ and σ2 in response
to the dataset’s characteristics. The flowchart in Fig-
ure 2 visualizes the complete tuning process, illus-
trating how iSSA iteratively searches for the optimal
hyper-parameters within the defined maximum num-
ber of iterations.

Once these optimal values are identified, they
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Fig.2: iSSA-LSSVM flowchart.

are directly applied to the LSSVM, leading to en-
hanced predictive performance, as shown in the test-
ing phase. This automatic hyper-parameter tuning
approach provides significant benefits by reducing the
computational effort required for manual tuning and
improving the overall reliability of the LSSVM model.
As a result, the iSSA-LSSVM model delivers im-
proved prediction accuracy and robustness, providing
a more practical and scalable solution for real-world
applications.

4.3 Comparison Hybrid Algorithms

For comparison, the proposed iSSA-LSSVM will
be tested against three other hybrid methods: SSA-
LSSVM, PSO-LSSVM, and CV-LSSVM. Brief de-
scriptions of PSO and CV are provided below:

4.3.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) [46], a meta-
heuristic optimization algorithm, is inspired by the
social behavior of bird flocks or fish schools. It in-
volves a population of potential solutions, called par-
ticles, that move through the search space, guided by
their own best-known position and the global best-
known position in the swarm. Each particle’s posi-
tion represents a potential solution, and the algorithm
continuously refines these solutions until a satisfac-
tory one is identified. At each iteration, the particles
update their velocities and positions based on their
previous velocity, best-known position, and the global
best-known position in the swarm. In PSO, the ve-
locity update rule is influenced by the particle’s ten-
dency to move towards its own best-known position
(exploitation) and its tendency to move towards the
global best-known position (exploration). PSO has
gained widespread popularity because of several key
advantages: its computational efficiency and straight-

forward implementation, its ability to adapt to differ-
ent types of problems, its flexibility in handling vari-
ous constraints, its rapid convergence toward optimal
solutions[47], and the fact that it requires tuning rel-
atively few parameter values [48].

4.3.2 Cross Validation

K-fold cross-validation is a commonly used tech-
nique for assessing the performance of a ML model.
The method involves partitioning the available data
into k equal-sized subsets or folds, and then repeat-
edly training the model on k − 1 of these folds while
using the remaining. This process is carried out k
times, with each fold being the validation set once.
The model performance is then averaged over all k
iterations, which yields a more reliable estimate of
the model’s performance.

4.4 Parameters Setting

Before training the dataset, parameters settings
for all identified algorithms, namely iSSA-LSSVM,
LSSVM optimized by Particle Swarm Optimization
(PSO-LSSVM), original SSA (SSA-LSSVM), and
Cross Validation (CV-LSSVM) are established as
shown in Table 2. The proposed iSSA-LSSVM algo-
rithm, and the selected approaches, was used to de-
termine the optimal hyper-parameters settings, with
the maximum iteration required for achieving the
best mean squared error (MSE) being governed as
10 through a series of experiments. Increasing the
maximum number of iterations did not lead to bet-
ter results. Meanwhile, the size of the population,
lower bound, and upper bound values were deter-
mined based on a trial-and-error approach.
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Table 2: Parameters Setting.
iSSA- SSA- PSO- CV-

LSSVM LSSVM LSSVM LSSVM
Maximum 10 10 10 10
iteration

Population 10 10 10 -
size

The lower 1 1 1 1
bound of γ

and σ2

The upper 1000 1000 1000 1000
bound of γ

and σ2

4.5 Prediction Evaluation Metrics

The performance of the prediction models is eval-
uated using the following metrics:

MSE =
1

n

∑∑∑n

i=1
(Yi − Ŷi)

2 (9)

Where n represents the number of data points, Yi de-
notes Observed values while Ŷi is the predicted val-
ues. This means that if a prediction model performs
better, the metrics used to evaluate its performance
would have smaller values.

5. RESULTS

Experiments were conducted using the parameter
setting outlined in section 4.4. The goal was to com-
pare the performance of iSSA-LSSVM with other al-
gorithms, including SSA-LSSVM, PSO-LSSVM, and
CV-LSSVM, in predicting power output.

The results obtained are presented in Table 3. The
table demonstrates that the iSSA-LSSVM outper-
formed other hybrid algorithms, achieving the low-
est MSE of 14.4322, marked in bold. This result

indicates a higher accuracy and efficiency than the
different models. The optimal hyper-parameters for
iSSA-LSSVM γ = 707.0735 and σ2 = 1, reflecting the
best balance of model complexity and performance.
In contrast, SSA-LSSVM, while close in performance,
showed an MSE that was slightly higher by 0.0066,
with γ = 748.6146 and σ2 = 1. Though the difference
is marginal, it demonstrates the refinement achieved
through the improved optimization in iSSA-LSSVM.

PSO-LSSVM, which has an MSE of 16.8418, and
CV-LSSVM, with the highest MSE of 17.1841, lag in
accuracy and efficiency. The significant difference in
MSE for CV-LSSVM, which uses γ = 14.2488 and
σ2 = 35.3795, indicates that this algorithm struggled
to optimize the hyper-parameters effectively, result-
ing in a lower performance. This analysis highlights
the superior performance of iSSA-LSSVM in terms
of accuracy (lower MSE) and efficiency (optimized
hyper-parameters), thereby reinforcing its potential
in the application domain.

Table 3: Optimal Results Obtained by All Hybrid
Algorithms.

iSSA- SSA- PSO- CV-
LSSVM LSSVM LSSVM LSSVM

γ 707.0735 748.6146 829.8137 14.2488
σ2 1 1 45.1214 35.3795

MSE 14.4322 14.4388 16.8418 17.1841

Furthermore, Figure 3 compares the performance
of iSSA-LSSVM with different hybrid algorithms.
The blue line defined iSSA-LSSVM, while the or-
ange line represents SSA-LSSVM. The other algo-
rithms, including PSO-LSSVM, CV-LSSVM, and ac-
tual values, are represented by the yellow, purple, and
green lines, respectively. The figure shows that iSSA-
LSSVM generated prediction values that are closest

Fig.3: Comparison of Predicted power output for 24 hours by all identified hybrid methods.
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Fig.4: Comparison of Convergence Curve.

to the actual values compared to the other hybrid al-
gorithms. Even during sudden spikes in hour 4, the
proposed iSSA-LSSVM could still to learn the pattern
and produce the closest values. Additionally, during
hours 10, 13, and 21, iSSA-LSSVM yielded the closest
values. It is also noteworthy that during hour 13, all
algorithms could to produce almost precise outputs.

Figure 4 compares the convergence rate perfor-
mance of iSSA-LSSVM, SSA-LSSVM, and PSO-
LSSVM. The graph indicates that iSSA-LSSVM has a
faster convergence rate than SSA-LSSVM, as the line
for iSSA-LSSVM falls below the line for SSA-LSSVM.
This improvement is attributed to the introduced en-
hancement that supports the algorithm’s exploration
and exploitation process, which ultimately enables it
to attain global optimal rather than local optimal.

The results presented in Figure 4 provide com-
pelling evidence of the superiority of the iSSA-
LSSVM over SSA-LSSVM and PSO-LSSVM in terms
of convergence rate for time series prediction. The in-
troduced improvement contributed to the faster con-
vergence rate achieved by iSSA-LSSVM, effectively
supporting both the exploitation and exploration pro-
cesses. By striking a balance between exploitation
and exploration, iSSA-LSSVM avoids being trapped
in local optima and converges more rapidly towards
the global optimum. This feature is beneficial for
time series prediction tasks, where it is essential to
accurately capture the patterns and dynamics of the
data.

It is worth noting that while SSA-LSSVM even-
tually converges, the results indicate a saturation
point at a higher MSE value. This finding sug-
gests that SSA may encounter challenges handling
specific datasets or prediction tasks, leading to
suboptimal outcomes or longer convergence times.

The iSSA-LSSVM, on the other hand, exhibits a
more favorable convergence behavior, demonstrat-
ing its potential to overcome such limitations and
deliver improved performance in various scenarios.
However, it can struggle with specific data sets
or prediction tasks, leading to suboptimal results
or longer convergence times. Regarding compu-
tational efficiency, all the algorithms evaluated in
this study, namely iSSA-LSSVM, SSA-LSSVM, CV-
LSSVM, and PSO-LSSVM, demonstrated highly ef-
ficient performance, with computation times consis-
tently under one minute.

The differences in computational times between
the algorithms were minimal, indicating that each
method can provide predictions within an acceptable
time frame for real-time applications such as STLF.
The overall time efficiency was comparable across
all algorithms, ensuring that the choice of method
does not impose a significant computational burden
in practical settings. Therefore, computational time
is not a limiting factor when selecting these methods
for STLF tasks.

Overall, the results provide valuable insights into
the effectiveness of different hybrid algorithms for
predicting power output from generators. The supe-
rior performance of iSSA-LSSVM could suggest that
combining different optimization techniques can lead
to better results than using only a single optimization
method. However, more research is needed to validate
these findings and determine the optimal parameter
settings for different data sets and prediction tasks.
The enhanced exploration and exploitation process
of iSSA-LSSVM contributed to its faster convergence
rate and ability to attain global optimal. These find-
ings can inform future research in the field of power
output prediction and provide a basis for devoloping
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of more effective hybrid algorithms.

6. CONCLUSION

This study introduces the iSSA-LSSVM hybrid
method to enhance the generalization capabilities of
LSSVM in time series prediction of full-load elec-
trical power output. By optimizing LSSVM hyper-
parameters through improved SSA, the approach
aims to improve overall performance by avoiding lo-
cal optima. This study focuses on two main ob-
jectives: automatic optimization of critical LSSVM
hyper-parameters using the advantages of the SSA al-
gorithm and enhancing the SSA algorithm itself. The
iSSA-LSSVM method shows promising outcomes, es-
pecially regarding convergence rate, suggesting ef-
ficiency in finding optimal solutions. For future
work, the proposed method will be evaluated on a
broader range of time series data. Additionally, hy-
brid approaches will be explored, explicitly integrat-
ing iSSA-LSSVM with various deep learning archi-
tectures, such as recurrent neural networks (RNNs)
and convolutional neural networks (CNNs), to en-
hance time series prediction accuracy further. The
focus will be on investigating how these hybrid mod-
els can improve performance in short-term and long-
term forecasting scenarios.
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