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The spatial distribution and temporal evolution of pollutant concentration are complex 
phenomena. Advection and diffusion are the primary drivers influencing the dynamic of 
pollutant concentrations. This paper aims to investigate and elucidate the roles of 
advection and diffusion on pollutant concentration's spatial and temporal evolution in 
a one-dimensional domain. The finite element method (FEM) is used to solve the 
governing equation numerically. The underlying concepts of FEM hand-to-hand with 
MATLAB software were presented. The simulation study revealed that advection and 
diffusion uniquely impact the system's dynamic. Advection, driven by the bulk 
movement of water, leads to rapid and long-range transport of pollutants, while 
diffusion, driven by random molecular motion, causes more gradual dispersion. The 
interplay between these processes is a critical determinant in understanding the overall 
behaviour of pollutant concentrations over time and space. 
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1. Introduction 
 

The advection-diffusion equation is a type of partial differential equation (PDE) that poses a 
significant role in modelling transport phenomena. Some applications of the advection-diffusion are 
to model the transportation in shallow porewater [1], a reactive rock [2], a porous media [3], a 
turbulent pipe flow [4], open-channel flows [5], and street canyon [6]. In other studies, Jamil and 
Wang discussed the PBE-advection-diffusion model for the enzymatic hydrolysis process [6-13]. In 
2019, Azimi and Jamil presented diffusion-reaction and coupled diffusion-reaction-advection models 
for ethanol production systems via fermentation [14,15]. Their result shows that the diffusion was 
insignificant on the whole ethanol production system but is contrary to the advection.  

The advection-diffusion equation can be used to model the spatial evolution of a system. The 
action of particles moving from one location to another is driven by two terms: advection and 
diffusion. Those two terms act differently, where advection goes following the streamline or mean 
flow while diffusion disperses the particles to another place regardless of the stream direction [16]. 

 
* Corresponding author. 
E-mail address: norazaliza@umpsa.edu.my 
 
https://doi.org/10.37934/arfmts.119.2.112 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 119, Issue 2 (2024) 1-12 

18 
 

In other words, advection is typically drifted by fluid flow movement. Diffusion, conversely, is drifted 
by the molecular motion where particles move from areas of high concentration to low 
concentration. Diffusion does not require the movement of fluid flow to move; instead, it relies on 
the kinetic energy of particles [22].  

Since analytical solutions do not exist for most practical engineering problems, one always resorts 
to numerical methods to obtain the approximate solution. The most commonly used numerical 
methods include Finite Difference Method (FDM), Finite Volume Method (FVM), Boundary Element 
Method (BEM), Meshfree Methods, Collocation Method, and Finite Element Method (FEM). For 
example, Dehghan [17] solved the three-dimensional advection-diffusion equation using FDM. Abidin 
and Misro [18] presented the solution to the heat transfer problem on two-dimensional irregular 
geometry by applying FEM and recommended exploring mesh refinement and optimization. In their 
study, the comparison of triangular and rectangular mesh in the heat transfer problem showed a 
good agreement. Mojtabi and Deville [19] solved a one-dimensional advection-diffusion equation 
analytically and numerically using FEM. They found the analytical solution harder to evaluate if the 
advection term becomes dominant.  From all of those methods, solving the advection-diffusion 
problem using FEM will be our main interest. FEM is the most stable numerical scheme compared to 
FDM and FVM [20]. Using FEM, the domain is discretized into smaller elements. A system of algebraic 
equations is formulated for each element called a local stiffness matrix. The overall solution is then 
obtained by assembling all the local solutions throughout the domain.  

The spatial distribution and temporal evolution of pollutant concentration in a fluid flow are 
complex phenomena. This study area has greatly interested environmental scientists, policymakers, 
and practitioners involved in pollution control and risk assessment. There is a lack of comprehensive 
knowledge of the significant role and interplay of advection and diffusion in shaping the spatially and 
timely pollution concentration pattern. With a clear understanding of how advection and diffusion 
contribute to pollutant distribution, it is easier to design effective management strategies and 
sustainable solutions to mitigate water pollution. Therefore, this study aims to investigate and 
elucidate the roles of advection and diffusion on pollutant concentration's spatial and temporal 
evolution in a one-dimensional domain. The work is organized as follows. In Section 2, the 
methodology of this research was presented. Besides, the essential step using FEM, including pre-
processing, post-processing, and processing, were also discussed in this section. Section 3 is devoted 
to the results and discussion of the simulation study. Lastly, in Section 4, the conclusion is discussed.  

 
2. Methodology  

 
Consider an unsteady linear advection-diffusion equation given by the following relation    

 
2

2
0, 1 1, 0

U U U
v x t

t x x


  
− + = −   

  
          (1) 

 
where U  is the concentration of the pollutant at point x at time t,   is the advection coefficient 
(velocity of water flow), and v  is the diffusion coefficient. The second term on the left-hand side of 
Eq. (1) describes the loss or gain of the concentration due to diffusion, while the third term denotes 
the influence of advection on the concentration. This partial differential equation (PDE) problem is 
subjected to homogeneous Dirichlet boundary conditions 
 

( 1, ) (1, ) 0U t U t− = = , 
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and the initial condition 
 

( ,0) sin 1U x x= − + .  

 
The main factors affecting pollutant concentration distribution in the domain were diffusion and 

advection velocity. We take into account the fact that particles move through space due to diffusion 
and advection. The advection-diffusion problems involve a double discretization process: space 
discretization and time discretization. In this paper, space discretization is performed by the Finite 
Element Method (FEM). Various methods can be employed to trace the temporal evolution of the 
solution of the advection-diffusion problem. The Crank-Nicolson Scheme will be employed for time 
discretization.  

A usual practise in the FEM of time-dependent problems consists of discretizing first with respect 
to the spatial variables, thus obtaining of coupled first-order ODE (with respect to time). Then, it 
remains to integrate the first-order DE system forward in time to trace the temporal evolution of the 
solution. The steps of using the FEM were summarized in the flow chart, as shown in Figure 1. There 
were three major stages, namely pre-processing, processing, and post-processing. 

 

 
Fig. 1. Flow chart for finite element method 

 
2.1 Pre-Processing 

 
The FEM starts with the pre-processing step. It involves the setup of geometry, boundary 

condition and initial condition of the problem. The geometry is a one-dimensional space 1 1x−    
with a total length of 2. The boundary condition and initial condition were given directly in the 
previous part. Then, the process is continued with the generation of mesh, nodes and connectivity. 
For simplification, suppose the domain is discretized equally into three elements in such a way that 
every element consists of two nodes as shown in Figure 2.  

 

 
Fig. 2. Three elements and four nodes 
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Hence, the total number of nodes for that mesh is equal to 4. The connection of all nodes and 
elements is tabulated in Table 1. For element 2, the connected nodes are 2 and 3. 

 
  Table 1 
  Elements and nodes connectivity 

Element 1st node 2nd node 

1 1 2 
2 2 3 
3 3 4 

 
Here in this study, we consider 100 finite elements which every element consists of two nodes 

yielding 101 nodes. The source code of MATLAB for solving the stated advection-diffusion problem 
in the pre-processing stage is given as follows. 

 

 
 
2.2 Processing 

 
The most crucial step in FEM is the processing stage. The weak form is governed, and a system of 

algebraic equations is derived. The resulting equations were computed and transformed into a matrix 
system. The steps are described and listed in the following. 

 
i. Calculate the element matrices 

First, one needs to calculate the element matrices. In this study, we consider linear 
element which has two nodes per element. Suppose the trial function is a polynomial 
function  

 

1 2U a a x= +  

 
and the Galerkin Weighted Residual Method equation is  

 

1 1 2 2( , ) ( ) ( ) ( ) ( )U x t N x u t N x u t= +  

%% Geometry, boundary and initial conditions 

x_i=-1;                                  % Initial point (x=0) 

x_f=1;                                  % Final point (x=1) 

L=x_f-x_i;                              % Domain length 

alpha=1;                                % Convection velocity 

v = 1/(10*pi); 

  

% Initial condition 

u_0_fun=@(x) -sin(pi*x);       % Initial condition 

  

% Boundary condition 

bound_cond_fun={@(t) 0,@(t) 0};         % Boundary conditions 

 

%% Meshing 

Nx = 100;                                 % Number of finite 

elements  

ndof = Nx + 1; 

  

% Elemental length 

h=L/Nx;                            % Length of a finite element 
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where 1( )N x , 2 ( )N x  are shape functions and 1( )u t , 2 ( )u t are the degree of freedom. By 

performing evaluation at the nodes, one can derive the shape functions are follows. 
 

2
1

2 1

( )
x x

N x
x x

−
=

−
 and 1

2

2 1

( )
x x

N x
x x

−
=

−
. 

 
By referring to the strong form equation in Eq. (1), next, we write the weak form of the 
governing equation using the Galerkin residual method. By applying residual to Eq. (1), we 
obtained 

 
2

2

u u u
v R

t x x


  
+ − =

  
                                   (2) 

 
where R is the residual error. Eq. (2) is multiplied with a set of weight function i.e. the 
shape functions. The residual error should not exist; hence the integration of that 
multiplication should be set to zero. The governing equation yields a weak form given by 
 

 

 
or 

 

( ) ( ) ( )2

1

2

1 1 2 2 1 1 2 2 1 1 2 2

2
0

x

i i i

x

N u N u N u N u N u N u
N N N v dx

t x x


  +  +  +
+ − = 

   
 . 

 
By using integration by parts, 

 
2

1

0

x

j j ji
i j i j j

x

u N dNdN
N N N u v u dx

t x dx dx


  
+ + = 

  
  

 
Hence, the matrix system for one element is given by  

 
2 2 2 2

1 1 1 1

2 2 2 2

1 1 1 1

2

1 1

1 2
11 1 1 2 1 1

1

22 1 2
2 1 2 2 2 2

1 1 1 2

x x x x

x x x x

x x x x

x x x x

x x

x x

N NuN N dx N N dx N dx N dx
x x ut

uu N N
N N dx N N dx N dx N dx

t x x

N N N N
v dx v dx

x x x x

 

 

        
       

+             
         

   

   
+

   

   


2

2 2

1 1

1

2
2 1 2 2

0

0x x

x x

u

uN N N N
v dx v dx

x x x x

 
 

    
=    
      

     



 

 

2

2

0

0

L

i

u u u
N v dx

t x x


   
+ − = 

   

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 [ ] [ ]{ } [ ]{ } 0M U K U D U+ + =  

 

  ( )[ ] [ ] [ ] { } 0M U K D U+ + =  

 
where 

 

2 1
[ ]

1 26

h
M

 
=  

 
, 

1 1
[ ]

1 12
K

 − 
=  

− 
, and 

1 1
[ ]

1 1

v
D

h

− 
=  

− 
 

 
In time-dependent problems, the spatial representation provided by finite elements need 
to be accurately transported in time to trace the transient response. By discretizing the 

time derivative using Crank-Nicolson Scheme, i.e. 𝜃 =
1

2
, the matrix system for one 

element is obtained as follows. 
 

( ) ( )

( ) ( ) ( )

1
1

1 1

{ } { }
[ ] [ ] [ ] { } (1 ) [ ] [ ] { } 0

[ ] { } { } [ ] [ ] { } (1 ) [ ] [ ] { } 0

s s
s s

s s s s

U U
M K D U K D U

t

M U U t K D U t K D U

 

 

+
+

+ +

− 
+ + + − + = 

 

− +  + + − + =

 

 

( )( ) ( )1[ ] [ ] [ ] { } [ ]{ } (1 ) [ ] [ ] { }s s sM t K D U M U t K D U ++  + = − − +  

 

( ) ( )1[ ] [ ] [ ] { } [ ] [ ] [ ] { }
2 2

s s

t t
M K D U M K D U+

    
+ + = − +   

   
 

 
The source code of MATLAB for the element metrics also known as local stiffness matrix 
is as follows. 

 

 
 

ii. Assemble the element matrices 
Next, one needs to assemble all the element matrices according to the nodes connectivity 
to obtain the global matrix as coded in MATLAB software as follows. 

% local stiffness matrix 

  

k = alpha/2*[-1 1; 

            -1 1]; 

  

m = h/6*[2 1; 

            1 2]; 

  

d = v/h*[1 -1; 

            -1 1]; 

 

%% Discretize time 

t_i=0;                                  % Initial time 

t_f=2;                                % Final time 

  

dt=1/10; 

T=t_i:dt:t_f;                           % Time vector                                        
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iii. Solve the system of element matrices 

The global matrix system in the form of  
 

e eK T R=  

 
can be solved using MATLAB programming software. By imposing the essential boundary 
conditions, the global matrix system can be reduced to a smaller size. The source code of 
MATLAB for solving the system is as follows.  
 

 
 

2.3 Post-Processing 
 
The last stage in FEM is the post-processing stage which involved the interpretation of result and 

data. In this paper, the FEM result of the advection-diffusion problem is discussed in Section 3. 
 
 
 

 

 

% Solve for global 

U=zeros(ndof,1); 

  

G1 = M + dt/2*(K+D); 

G2 = (M - dt/2*(K+D))*U_0; 

   

dof_k=[1 4]; 

U_b = 0; % boundary condition 

  

% boundary condition 

U([1 4])= U_b;    %  

  

%F=F-K(:,1)*U_b-K(:,4)*U_b; 

G2=G2-G1(:,1)*U_b-G1(:,4)*U_b; 

  

%Solve the matrix system 

dof_u=setdiff(1:ndof,dof_k);        % node 2, 3,  

  

%solve for U at iteration = 1 

G2(dof_u) = (M(dof_u,dof_u) - 

dt/2*(K(dof_u,dof_u)+D(dof_u,dof_u)))*U_0(dof_u); 

U(dof_u)=G1(dof_u,dof_u)\G2(dof_u) 

 

 

 

% Global matrix 

K = zeros(ndof,ndof); 

M = zeros(ndof,ndof); 

D = zeros(ndof,ndof); 

U_0 = zeros(ndof,1); 

  

for i = 1:ndof -1 

          K([i i+1],[i i+1])= K([i i+1],[i i+1])+k; 

          M([i i+1],[i i+1])= M([i i+1],[i i+1])+m; 

          D([i i+1],[i i+1])= D([i i+1],[i i+1])+d; 

end 
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3. Results and Discussion 
 
The advection-diffusion problem is solved numerically using FEM, which is coded in MATLAB 

software to assemble 100 elements from 0t = s to 2t = s with 0.1t =  in a one-dimensional domain. 
Then, the effect of advection and diffusion is simulated. The evolution of the pollutant concentration 

in the model with zero in both advection velocity and diffusion coefficient ( 0 =  and 0v = ) is shown 
in Figure 3. The variation of the colour scheme and symbol in the figure is based on the times 

recorded at 0,0.5,1,2t = . All the curves overlap, and it is difficult to distinguish from one to the other 

at different times. The profile projection is initially a sine function with a higher concentration on the 
left zone. As time goes by, the results show that the pollutant concentration remains at its position. 
It indicates that without the factor of advection or diffusion, the spatial distribution of the pollutant 
concentration does not change.  
 

 
Fig. 3. The evolution of pollutant concentration with zero 

advection and diffusion coefficient i.e. 0 =  and 0v =  

 
Next, we consider advection in addition to diffusing through the surrounding medium. This is the 

case of simultaneous effects of advection and diffusion. We set 1 =  and 
1

v


= . The evolution of 

the pollutant concentration is shown in Figure 4. Initially, the peak value of pollutant concentration 

is 2 at 0.5x = − , and the minimum value is 0 at 0.5x = . The left zone originally had a higher 
concentration than the right area. As time goes by, the value of pollutant concentration at the right 
spot is more significant than that in other places, which is brought out by the presence of advection 
velocity. The highest concentration on the left zone decreases over time because of diffusion into the 
unoccupied interior of the domain. After a sufficiently long time, the highest concentration is located 
at the right end of the boundary due to the velocity moving the pollutant particles to the right, which 
is known as the advection effect. 
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Fig. 4. The evolution of pollutant concentration for 1 =  

and 
1

v


=  

 

In order to reveal the effect of advection on the model, simulation for 1 =  and 0v =  is 
performed, and the spatial distribution of pollutant concentration is presented in Figure 5. The 
advection takes place and accelerates the movement of pollutants particles and significantly alters 
the spatial distribution from the initial setting. The pollutant concentration is moved to the right zone 
concerning time, indicating a significant contribution of advection velocity to the model. It is 
observed that without the diffusion factor, the peak value remains high and does not decrease during 
the early simulation time, as depicted in Figure 5. 
 

 
Fig. 5. The evolution of pollutant concentration for 1 =  and 

0v =  

 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 119, Issue 2 (2024) 1-12 

26 
 

To elucidate the role of diffusion in the model, we set 0 =  and 
1

v


=  for the advection and 

diffusion coefficients, respectively. As illustrated in Figure 6, diffusion alone can also prominently 
alter the pollutant concentration distribution. Initially, the pollutant particles are concentrated 
heterogeneously, and it is apparent from the graph that diffusion makes particles move from high to 
low concentration so that the domain fills up with the species over time. However, the effect of 
pushing the pollutant particles to the right zone is not obviously seen compared to the case in Figure 
6.  
 

 
Fig. 6. The evolution of pollutant concentration for 0 =  

and 
1

v


=  

 
The findings in this study matched with Celia et al., [21], stating that the numerical solution 

procedures perform well when diffusion is the dominant process. However, the numerical solution 
exhibits nonphysical oscillations when advection is the dominant transport process. In the case of the 
evolution of the pollutant concentration distribution, the expected value needs to be positive or zero 
because the negative value of concentrations has no physical meaning (Dehghan). One of the possible 
solutions to avoid negative concentration is to apply an extremely fine mesh refinement. However, 
this approach will cost excessive computation. 

The simulation study revealed that advection and diffusion are distinct mechanisms that uniquely 
impact the system's dynamic. Advection, driven by the bulk movement of water, leads to rapid and 
long-range transport of pollutants from one location to another. Through advection, the 
transportation of the pollutant is carried along with the moving fluid. Driven by random molecular 
motion, diffusion, on the other hand, causes gradual dispersion, spreading the pollutant evenly over 
time.  

In terms of transport speed, the advection effect is much faster than diffusion, as the speed of 
the advection depends on the velocity of the fluid. Diffusion is a slower process where the diffusion 
rate depends on the concentration gradient. Advection can transport pollutants over long distances 
and significant spatial scales, while diffusion disperses the pollutant over short distances. Although 
diffusion does not transport the pollutant particles as quickly as advection, diffusion is essential for 
achieving homogenization and equilibrium in the system. The interplay between advection and 
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diffusion is a critical determinant in understanding the overall behaviour of pollutant concentrations 
over time and space. The combination of both factors will significantly speed up the movement of 
particles. 

 
4. Conclusions 
 

In conclusion, this study delved into the intricate process of pollutant concentration dynamics 
within a one-dimensional domain. The investigation focused on two fundamental mechanisms: 
advection and diffusion. Using the finite element method (FEM) in conjunction with MATLAB 
software, we were able to shed light on the distinct roles played by advection and diffusion in shaping 
the spatial and temporal evolution of pollutant concentrations. The findings from the simulation 
study revealed that advection emerged as the force responsible for rapid and extensive pollutant 
transport, covering great distances in a relatively short period. In contrast, diffusion acted as a more 
deliberate dispersal mechanism, gradually spreading pollutants throughout the domain. The 
interplay between these two processes dictates the overall behaviour of pollutant concentrations 
over time and space. This study enhances the understanding of the complexities inherent in the 
dynamics of pollutant concentrations. 
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