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Abstract: The integration of photovoltaic (PV) systems into traditional power grids introduces signifi-
cant challenges in maintaining system stability, particularly in multi-area power systems. This study
proposes a novel approach to load frequency control (LFC) in a two-area power system, where one
area is powered by a PV grid and the other by a thermal generator. To enhance system performance,
a cascaded control strategy combining a fractional-order proportional–integral (FOPI) controller
and a proportional–derivative with filter (PDN) controller, FOPI(1+PDN), is introduced. The con-
troller parameters are optimized using the spider wasp optimizer (SWO). Extensive simulations are
conducted to validate the effectiveness of the SWO-tuned FOPI(1+PDN) controller. The proposed
method demonstrates superior performance in reducing frequency deviations and tie-line power fluc-
tuations under various disturbances. The results are compared against other advanced optimization
algorithms, each applied to the FOPI(1+PDN) controller. Additionally, this study benchmarks the
SWO-tuned controller against recently reported control strategies that were optimized using different
algorithms. The SWO-tuned FOPI(1+PDN) controller demonstrates superior performance in terms of
faster response, reduced overshoot and undershoot, and better error minimization.

Keywords: two-area power system; renewable energy control; spider wasp optimizer; cascaded
fractional-order controller; load frequency control

MSC: 68T20

1. Introduction

Photovoltaic (PV) power generation has become increasingly significant in modern
power systems because of its renewable nature and the reduction in associated costs. The
integration of PV systems into multi-area power networks, particularly in combination with
traditional thermal generators, introduces complex dynamic interactions that must be effec-
tively managed to ensure system stability [1]. A typical configuration studied is the two-area
system, where one area incorporates a PV grid and the other a thermal generator. In such
systems, the balance between power generation and consumption is crucial, especially given
the variability in load demands and the intermittent nature of solar energy.

A major challenge in these systems is maintaining this balance while minimizing
frequency deviations and tie-line power exchanges between the areas [2]. In this regard,
load frequency control (LFC) is essential in multi-area power systems to maintain system
frequency within specified limits and to ensure the scheduled power exchange between
areas through the tie-line [3]. The importance of LFC is amplified in systems integrating
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renewable energy sources such as PV, where power generation is subject to fluctuations
due to environmental conditions [4]. Therefore, effective LFC strategies are necessary to
mitigate the impact of these fluctuations on system stability, which has driven significant
research into advanced control methods and optimization techniques to enhance LFC
performance in systems with renewable energy integration [5].

Various control strategies have been explored to manage LFC in two-area systems.
In that sense, traditional controllers like proportional–integral (PI), proportional–integral–
derivative (PID), and their fractional-order counterparts have been widely used [6,7]. PI
controllers are known for their simplicity and ease of implementation but may lack the
robustness required for complex, multi-area power systems. PID controllers, which include
a derivative component, offer improved response times and stability. However, in systems
with significant nonlinearity and time delays, the performance of conventional PI and
PID controllers can be suboptimal [8]. Such a case highlights the need for more advanced
and flexible control strategies capable of handling the dynamic and uncertain nature of
PV-integrated multi-area power systems.

To address these challenges, fractional-order PI (FOPI) controllers have also been intro-
duced. The FOPI controller, in particular, offers enhanced flexibility and robustness in LFC
applications [9]. By incorporating fractional calculus into the control strategy, FOPI controllers
provide an additional degree of freedom, allowing for more precise tuning of the system’s
dynamic response. This makes them particularly well-suited for PV-integrated two-area sys-
tems, where the variability and uncertainty inherent in renewable energy sources demand a
more sophisticated control approach [10]. Considering these facts, this study employs a novel
controller by employing a cascaded controller that combines a FOPI controller with filtered
proportional-derivative (PDN) structure. The proposed cascaded FOPI(1+PDN) controller
eliminates steady-state error, provides additional flexibility in tuning the system’s dynamic
response, helps anticipate future errors, and enhances the robustness against noise.

The effectiveness of any control strategy, including the FOPI controller, is heavily depen-
dent on the optimal tuning of its parameters. Given the complexity of LFC in modern power
systems, finding these optimal parameters of the controllers requires advanced optimization
techniques [11]. Traditional methods may fall short because of the nonlinear and multi-modal
nature of the problem, leading to the exploration of metaheuristic algorithms [12]. As part of
the above challenge, several optimization algorithms have been employed to optimize the
parameters of controllers, thereby improving their adaptability to changing system conditions.
For example, the whale optimization algorithm (WOA) has been used to optimize LFC in
PV-integrated systems, showing enhanced performance over traditional methods [13,14].
Similarly, the slime mold algorithm (SMA) [15,16] and the reptile search algorithm (RSA) [17]
have been applied to optimize control parameters in complex power systems, demonstrating
the potential to improve control performance in renewable energy scenarios significantly.
Other notable examples include the use of the firefly algorithm (FA) [18], modified grey
wolf optimization (MGWO) [19], hybrid shuffled frog-leaping and pattern search algorithm
(hSFLA-PS) [20], black widow optimization (BWO) [21], RIME algorithm [22], artificial rabbit
optimization (ARO) [23], sea horse optimizer (SHO) [24], and reinforcement learning-based
approaches [25] to enhance LFC in similar contexts.

In terms of the optimizer, this study introduces the spider wasp optimizer (SWO) [26]
as a novel approach in order to contribute to the ongoing effort in this field. The SWO is
a novel metaheuristic algorithm inspired by the predatory behavior of spider wasps. It
balances exploration and exploitation effectively, making it a promising tool for solving
complex optimization problems such as controller parameter tuning [26]. The reason for
employing the SWO in this study is due to the fact that none of the previously proposed
optimizers have demonstrated the level of performance achieved by the SWO in handling
the complexities of LFC in PV-integrated systems. In the context of LFC, the SWO has
been employed to optimize the parameters of cascaded fractional-order controllers by
employing the integral of time-weighted absolute error as the objective function in order
to ensure faster and more stable system responses [25], resulting in improved system
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performance [27]. By optimizing the parameters of the cascaded FOPI(1+PDN) controller,
the SWO enhances system stability and robustness in PV-integrated two-area systems. This
approach addresses the limitations of conventional controllers and introduces a flexible
solution for the dynamic challenges posed by renewable energy integration.

The performance analysis of cascaded fractional-order controllers, optimized using
the SWO, demonstrates significant enhancements in the stability and robustness of PV-
integrated two-area systems. By leveraging the strengths of the SWO, the proposed control
strategy not only improves frequency regulation but also adapts more effectively to the
dynamic and uncertain nature of renewable energy sources [28]. In this regard, the present
work introduces the following novelties:

• The proposed approach effectively combines a state-of-the-art metaheuristic optimization
algorithm with fractional-order control techniques, offering a novel solution to the
challenges associated with renewable energy integration into traditional power systems.

• The application of the SWO for tuning the cascaded FOPI(1+PDN) controller in a
PV-integrated two-area system represents a significant advancement in the field.

• This study emphasizes the effectiveness of the FOPI(1+PDN) controller in managing
the intricacies of PV-integrated systems

• This study represents one of the earliest applications of the SWO in the domain of LFC,
showcasing its potential for solving complex power system challenges.

2. Spider Wasp Optimizer

The spider wasp optimizer (SWO) is an advanced optimization algorithm inspired
by the natural behaviors of spider wasps, particularly their hunting, nesting, and mating
practices [26]. This algorithm is designed to address complex optimization problems by
emulating the strategic actions of spider wasps in their natural environment [29].

2.1. Behavioral Simulation

The SWO algorithm simulates the following key behaviors of spider wasps:

• Searching Behavior: The female spider wasp searches for a spider, which will serve
as a host for her larva. This behavior corresponds to the exploration phase in the
algorithm, where the search space is explored for potential solutions.

• Pursuit and Escape Behavior: After locating a suitable spider, the wasp paralyzes it
and drags it to a prepared nest. This behavior represents the exploitation phase, where
the algorithm focuses on refining the search around promising solutions.

• Nesting Behavior: The paralyzed spider is dragged into a nest, where the wasp lays
her egg. This behavior is analogous to finalizing a solution in the optimization process.

• Mating Behavior: The SWO algorithm incorporates a mating process that mimics the
genetic recombination of solutions, enhancing diversity and enabling the exploration
of new potential solutions.

2.2. Mathematical Formulation of Behavioral Simulation

The mathematical formulation of the SWO [29] begins with the generation of an initial
population (SW), where each individual represents a potential solution in a D-dimensional
space. The initial population is generated as follows:

SW = [x1, x2, x3 . . . ., xD] (1)

The spider wasps’ initial population (SWPop) is represented as a matrix, where each
row corresponds to a wasp and each column to a dimension of the problem.

SWPop =


SW1,1 SW1,2 · · · SW1,D

SW2,1
...

SWN,1

SW2,2
...

SWN,2

· · ·
. . .
· · ·

SW2,D
...

SWN,D

 (2)
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The position of each wasp in the search space is initialized using (3).

SWi = L + r × (H − L) (3)

where L and H are the lower and upper bounds of the search space, respectively, and r is a
random vector of dimension D, uniformly distributed between 0 and 1.

2.2.1. Searching Stage (Exploration)

During the exploration phase, the position of each wasp is updated to search for the
optimal prey (solution) using

SWt+1
i = SWt

i + ∆1 ×
(
SWt

a − SWt
b
)

(4)

where t denotes the current iteration, SWa and SWa are positions of randomly selected
wasps, and ∆1 is a velocity factor calculated as

∆1 = |rn| × r1 (5)

where rn is a normally distributed random number and r1 is a uniformly distributed random
number between 0 and 1. If the wasp misses the optimal prey location, it recalculates its
position using

SWt+1
i = SWt

c + ∆2 × (L + r2 × (H − L)) (6)

where SWc is the position of another randomly selected wasp, and ∆2 is defined in (7).

∆2 = B × cos(2πl) (7)

with B being a parameter calculated in (8).

B =
1

1 + el (8)

where l is a number randomly generated between 1 and −2. To find the most promising
locations and effectively explore the search space, (4) and (6) operate together. The decision
between using (4) or (6) is made randomly, determining the next position of the female wasp.

SWt+1
i =

{
SWt

i + ∆1 ×
(
SWt

a − SWt
b
)

SWt
c + ∆2 × (L + r2 × (H − L))

r3 < r4
otherwise

(9)

where r3 and r4 represent two random values within the interval [0, 1].

2.2.2. Pursuit and Escape Stage (Exploitation)

Once the prey is located, the wasp updates its position to close in on the prey, with the
following (10).

SWt+1
i = SWt

i + C ×
∣∣2 × r5 × SWt

a − SWt
i
∣∣ (10)

where C is a distance control parameter that decreases from 2 to 0 as the iterations progress,
modeled by (11).

C = 2 − 2 ×
(

t
T

)
× r6 (11)

where r6 is another random number between 0 and 1 and T is the maximum number of
iterations. To further enhance the search and ensure the wasps can escape local optima,
the SWO algorithm introduces additional mechanisms in the pursuit and escape phase.
Equation (12) represents how the distance between a wasp and its prey (the potential
solution) increases as the wasp continues its search

SWt+1
i = SWt

i × vc (12)
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where vc is a vector derived from a normal distribution, which influences the extent of
the wasp’s movement. As the iteration progresses, the value of vc gradually increases
the distance between the wasp and the prey, effectively switching the behavior from
exploitation (intensifying the search near the prey) to exploration (broadening the search
area). This transition is controlled by the parameter k, defined in (13) as follows:

k = 1 −
(

t
T

)
(13)

This equation ensures that as the algorithm approaches its final iterations, the search
gradually transitions from intensive local exploration to broader global exploration. Equa-
tion (14) formalizes the decision-making process between two potential movement strate-
gies, combining the influence of both exploitation and exploration.

SWt+1
i =

{
SWt

i + C ×
∣∣2 × r5 × SWt

a − SWt
i
∣∣

SWt
i × vc

i f r3 < r4
i f otherwise

(14)

Finally, the interchange between the different phases of the search is managed by (15)

SWt+1
i =


{

SWt
i + ∆1 ×

(
SWt

a − SWt
b
)

SWt
c + ∆2 × (L + r2 × (H − L))

r3 < r4
otherwise{

SWt
i + C ×

∣∣2 × r5 × SWt
a − SWt

i
∣∣

SWt
i × vc

i f r3 < r4
i f otherwise

i f p < k
i f p ≥ k

(15)

where p is another random value in [0, 1] and k is from (13). This equation allows the
algorithm to dynamically choose between continuing with the current strategy or switching
to another, based on the progression of the iterations and the randomness introduced by p.

2.2.3. Nesting Behavior (Finalization)

In the SWO, nesting behavior is crucial for refining and exploiting the best solutions
identified during the search process. This stage simulates the actions of the female spider
wasp when she drags the immobilized prey into her nest to prepare for laying eggs. The
corresponding mathematical representation of this behavior is provided in (16).

SWt+1
i = SW* + cos (2πl)×

(
SW* − SWt

i

)
(16)

where SW∗ represents the best solution found so far, and l is a random number that
influences the direction and magnitude of the adjustment, ensuring that the new position
SWt+1

i is closer to the optimal solution. Following this, the wasp’s position can also be
updated using another mechanism represented by (17).

SWt+1
i = SWt

a + r3 × |η| ×
(
SWt

a − SWt
i
)
+ (1 − r3)× U ×

(
SWt

b − SWt
c
)

(17)

where η is a step size influenced by a Lévy flight distribution, and U is a binary vector that
helps avoid overlapping of nests at the same location by adjusting the positions based on
the interactions between randomly selected wasps SWt

a, SWt
b, and SWt

c. To prevent the
establishment of multiple nests at the same location, (18) defines U as

U =

{
1
0

i f r4 > r5
i f r4 ≤ r5

(18)

where r4 and r5 are two random numbers in the range [0, 1]. The selection of whether to
apply (16) or (17) is determined randomly, as described in (19).
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SWt+1
i =

{
SW* + cos (2πl)×

(
SW* − SWt

i

)
SWt

a + r3 × |η| ×
(
SWt

a − SWt
i
)
+ (1 − r3)× U ×

(
SWt

b − SWt
c
) i f r3 < r4

i f otherwise
(19)

Finally, (20) achieves a trade-off between the different behaviors by deciding whether
the algorithm should continue refining the current best solutions or explore new ones.

SWt+1
i =




{

SWt
i + ∆1 ×

(
SWt

a − SWt
b
)

SWt
c + ∆2 × (L + r2 × (H − L))

r3 < r4
otherwise{

SWt
i + C ×

∣∣2 × r5 × SWt
a − SWt

i
∣∣

SWt
i × vc

i f r3 < r4
i f otherwise

i f p < k
i f p ≥ k{

SW* + cos (2πl)×
(

SW* − SWt
i

)
SWt

a + r3 × |η| ×
(
SWt

a − SWt
i
)
+ (1 − r3)× U ×

(
SWt

b − SWt
c
) i f r3 < r4

i f otherwise

i f i < N × k
i f otherwise

(20)

where i represents the index of the population, N is the population size, and k is defined in
(13) as a parameter that decreases over time, promoting more exploration in early stages
and more exploitation in later stages. Through these mechanisms, the nesting behavior in
SWO efficiently balances exploration and exploitation, allowing the algorithm to converge
on high-quality solutions while still maintaining diversity to avoid premature convergence.
The combination of random decisions and strategic updates ensures that the SWO can
effectively navigate complex search spaces, making it robust for various optimization tasks.

2.2.4. Mating Behavior

In the SWO, mating behavior plays a significant role in generating new candidate
solutions, which can be seen as the algorithm’s method of introducing diversity into the
population. During this phase, new “offspring” solutions are created through a crossover
process between pairs of “parent” solutions, represented by the male and female wasps.
The mathematical formulation of the crossover process is given by (21).

SWt+1
i = Crossover

(
SWt

i , SWt
m, CR

)
(21)

where SWt
i represents the position of the female wasp, SWt

m represents the position of the
male wasp, and CR is the crossover rate, which dictates the likelihood that the crossover
will occur between the two wasps. To introduce variability in the offspring, the male wasp’s
position is updated with an additional component that adds diversity to the population.
This update is captured by the following equation:

SWt+1
m = SWt

m + el × |β| × v1 +
(

1 − el
)
× |β1| × v2 (22)

where the vectors β and β1 represent step sizes that determine the magnitude of the position
change, while v1 and v2 are directional vectors calculated as represented in (23) and (24),
respectively.

v1 =

{
xa − xi
xi − xa

i f f (xa) < f (xi)
i f not

(23)

v2 =

{
xb − xc
xc − xb

i f f (xb) < f (xc)
i f not

(24)

The vectors v1 and v2 guide the movement based on the relative fitness of the solutions
xa, xb, xc, and xi. This process ensures that the new positions are influenced by better-
performing solutions, thereby improving the overall quality of the population in subsequent
generations. The use of these parameters in the mating behavior ensures diversity and
adaptability in the search process, allowing the algorithm to explore the solution space
effectively while avoiding local optima.
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2.3. Population Reduction and Memory Saving

In the SWO, population reduction and memory-saving strategies are critical for en-
hancing the optimization process. After the mating and hunting behaviors, the algorithm
focuses on reducing the population size to accelerate convergence toward the optimal solu-
tion. This is achieved by gradually decreasing the number of spider wasps in the population
while ensuring that the remaining individuals still maintain sufficient diversity to avoid
being trapped in local optima. The population reduction mechanism is mathematically
described by the following equation:

N = Nmin + (N − Nmin)× k (25)

where N represents the current population size, Nmin is the minimum population size
required to maintain diversity, and k is a control parameter that governs the rate of reduction.
Nmin ensures that there are always enough search agents to explore the solution space
effectively, even as the population is reduced. As the population size decreases, memory-
saving techniques are employed to store the best solutions found during the optimization
process. This approach ensures that even as the number of active search agents diminishes,
the algorithm retains a record of the most promising solutions, which can be used to guide
future generations. The memory-saving process is crucial for optimizing high-dimensional
and complex problems, where maintaining a balance between exploration and exploitation
is essential for achieving the best results.

3. System Modeling

In a two-area power system composed of a PV grid and a thermal generator, the
dynamic behavior of each area and their interaction through a tie-line are crucial for
maintaining system stability and efficient power exchange. The thermal power system,
consisting of components like the governor, reheater, turbine, and generator, can be mathe-
matically modeled using transfer functions. The governor, which regulates steam flow in
response to frequency deviations, is described by

Ggov(s) =
Kg

Tgs + 1
(26)

where Kg is the governor gain and Tg is the time constant. The re-heater, which introduces
a delay in the steam before it reaches the turbine, has the following transfer function:

Greheater(s) =
KrTrs + 1

Trs + 1
(27)

where Kr and Tr represent the reheater gain and time constant, respectively. The steam
turbine, converting thermal energy into mechanical power, is modeled as follows:

Gturbine(s) =
Kt

Tts + 1
(28)

with Kt being the turbine gain and Tt the time constant. The generator, converting mechan-
ical to electrical power, is represented by

Ggen(s) =
Kp

Tps + 1
(29)

where Kp and Tp are the generator gain and time constant. The PV system is characterized
by its output power, dependent on solar irradiance and temperature, expressed as follows:

PPV = η × A × G(t) (30)
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where η is the efficiency, A is the area of the PV panels, and G(t) is the solar irradiance.
The inverter, converting DC to AC power, follows the dynamic

Ginv(s) =
Kinv

Tinvs + 1
(31)

where Kinv and Tinv are the inverter gain and time constant. The overall behavior of the PV
system can be encapsulated in the transfer function

GPV(s) =
−18s + 900

s2 + 100s + 50
(32)

The interaction between the two areas is managed through the tie-line, which facilitates
power exchange. The tie-line power flow is modeled by

∆Ptie(t) =
2πT12

s
(∆ f1(t)− ∆ f2(t)) (33)

where T12 is the synchronizing coefficient and ∆ f1(t), ∆ f2(t) are the frequency deviations
in the respective areas. Figure 1 visually represents the layout of the two-area system,
highlighting the connection between the PV grid in Area 1 and the thermal power system
in Area 2 via the AC tie-line.

Figure 1. Layout of the two-area system employed in this study.

4. A Novel Control Strategy for Load Frequency Control

The proposed strategy employs a cascaded controller combining a FOPI controller
with a PDN controller. The mathematical representation of the proposed controller is given
by Equation (34).

CFOPI(1+PDN)(s) =
(

Kp1 +
Ki

sλ

)(
1 + Kp2 + Kds

N
s + N

)
(34)

where Kp1 and Kp2 are the proportional gains for the FOPI and PDN components, re-
spectively. Ki is the integrator gain in the FOPI controller, responsible for eliminating
steady-state error, λ represents the fractional order of the integral component in the FOPI
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controller, providing additional flexibility in tuning the system’s dynamic response, Kd is
the derivative gain in the PDN controller, which helps in anticipating future errors based on
the rate of change, and N is the filter coefficient that moderates the high-frequency gain of
the derivative term, enhancing the controller’s robustness against noise. The block diagram
of the cascaded FOPI(1+PDN) controller is shown in Figure 2.

Figure 2. Block diagram of the cascaded FOPI(1+PDN) controller.

The objective of this control strategy is to minimize the ITAE, a performance metric
that emphasizes the importance of reducing error over time, thus ensuring faster and
more stable system responses [24]. The objective function is mathematically expressed in
Equation (35).

FITAE =
∫ Tsim

0
(|∆ f1|+ |∆ f2|+ |∆Ptie|) · t · dt (35)

where Tsim = 30 s represents the total simulation time. ∆ f1 and ∆ f2 are the frequency
deviations in Area 1 and Area 2, respectively. ∆Ptie is the deviation in tie-line power between
the two areas. This objective function is minimized under the scenario of Disturbance I,
which involves a 10% step change in load in both areas of the power system. The goal is
to achieve a controller configuration that minimizes these deviations and restores system
stability as quickly as possible.

The block diagram illustrating the SWO-based tuning mechanism for the two-area
power system with the FOPI(1+PDN) controller is presented in Figure 3. The two-area
power system model shown in Figure 3 has been widely employed for testing the stability
performance of various algorithms and controllers, as referenced in [1,13,18–22,25,27,30].
These references have used the same model parameters for system analysis based on a
Simulink environment, which provides more flexible and comprehensive analyses com-
pared with reduced transfer function models. The validity of this model covers typical
operational conditions in multi-area power systems, including load variations and distur-
bances. The equations and transfer functions used in this model are based on standard
system parameters, as outlined in the system modeling section (Section 3), ensuring it
accurately represents real-world dynamic behavior under different disturbance scenarios.
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Figure 3. Block diagram of the SWO-based tuning mechanism for a two-area power system with the
FOPI(1+PDN) controller.

5. Simulation Results and Discussion
5.1. Statistical Success of the SWO

A thorough statistical analysis of the SWO in comparison with other well-known
metaheuristic algorithms is presented, specifically the WOA, SMA, RSA, and ARO. The
analysis is based on the results of 20 independent runs for each algorithm, focusing on their
effectiveness in minimizing the ITAE within a two-area power system. Table 1 provides
the parameter settings for each of the algorithms considered in this study, including the
population size, number of function evaluations, and other specific control parameters that
govern their search processes. It is important to note that the statistical performance of
metaheuristic algorithms is primarily influenced by the number of function evaluations
(NFE). Through detailed analysis, we determined that an NFE range of 3000–4000 provided
the best balance between accuracy and computational efficiency for the SWO, WOA, SMA,
RSA, and ARO algorithms, with 4000 being the optimal choice. This selection is supported
by the literature [1,13,18–22,25,27,30], where NFE values typically range between 2500
and 5000.

Table 1. Parameter values of the adopted algorithms.

Algorithm Population Size Number of Function Evaluation Other Control Parameters

SWO [26] 50 4000 TR = 0.3, CR = 0.2 and Nmin = 20
WOA [14] 50 4000 a = [0, 2], a2 = [−2,−1] and b = 1
SMA [15] 50 4000 z = 0.03
RSA [17] 5 4000 α = 0.1 and β = 0.1
ARO [23] 50 4000 No other parameters

To assess the performance and robustness of these algorithms, a boxplot analysis
was conducted, as depicted in Figure 4. This figure illustrates the distribution of ITAE
values achieved by each algorithm over 20 runs, providing insights into the variability



Mathematics 2024, 12, 3076 11 of 25

and consistency in their performance. The boxplot reveals that the SWO exhibits a nar-
rower range of ITAE values, indicating its robustness and reliability compared with the
other algorithms.

Figure 4. Boxplot analysis of the SWO, WOA, SMA, RSA, and ARO.

The outcome of a further analysis is shown in Table 2, which summarizes the statistical
results obtained from the different algorithms. Key performance metrics, including the
minimum, maximum, median, and average ITAE values, standard deviation (SD), and rank,
are presented to offer a comprehensive comparison. The SWO consistently outperforms
the other algorithms, as indicated by its superior rankings across most metrics.

Table 2. Statistical results obtained across different algorithms.

Algorithm Minimum Maximum Median Average SD Rank

SWO 0.2952 0.3107 0.3028 0.3030 0.0043 1
WOA 0.3740 0.3976 0.3835 0.3836 0.0072 5
SMA 0.3592 0.3851 0.3696 0.3701 0.0065 4
RSA 0.3277 0.3504 0.3362 0.3372 0.0063 2
ARO 0.3422 0.3665 0.3547 0.3534 0.0075 3

SD: standard deviation.

To validate the superiority of the SWO over the other algorithms statistically, a non-
parametric Wilcoxon signed-rank test was conducted. Table 3 presents the results of this
test, including the p-values for comparisons between the SWO and the other algorithms
(WOA, SMA, RSA, ARO). The table also indicates whether the SWO showed statistically
significant superiority in each comparison.

Table 3. Nonparametric statistical results obtained using the Wilcoxon test.

Proposed Competitor p-Value Superior

SWO WOA 8.8575 × 10−5 SWO
SWO SMA 8.8575 × 10−5 SWO
SWO RSA 8.8575 × 10−5 SWO
SWO ARO 8.8575 × 10−5 SWO

The convergence behavior of each algorithm was examined through a plot illustrating
the change in ITAE values with respect to the number of function evaluations. Figure 5
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shows how quickly each algorithm converges to an optimal solution, with the SWO demon-
strating a more efficient convergence profile compared with the others. As illustrated
in Figure 5, the ITAE objective function optimized by the SWO algorithm converges at
3000 NFEs and stabilizes beyond 4000 NFEs. Increasing NFE beyond 4000 does not im-
prove the ITAE value but extends the computation time, making 4000 NFEs the ideal
compromise between accuracy and computational cost.

Figure 5. Change in ITAE according to the number of function evaluations.

Table 4 provides a comparison of the controller parameters obtained through the
optimization processes of each algorithm for the two areas of the power system. This table
highlights the specific parameter settings achieved by each algorithm, offering a clear view
of how each method optimizes the control strategy for load frequency control.

Table 4. Obtained controller parameters via different algorithms.

FOPI(1+PDN) Range SWO WOA SMA RSA ARO

Area #1

Kp1 [−2, 2] −1.9734 −0.3016 −1.9938 −1.9727 −1.9931
Ki [−2, 2] −0.3019 −1.9936 −1.6491 −1.9984 −1.7614
λ [0.5, 1.5] 1.0143 0.9984 1.0011 0.9733 0.9658
Kp2 [0.01, 2] 1.2801 1.8217 1.8649 1.9653 1.9520
Kd [0.01, 2] 1.8975 1.1935 1.9975 1.9687 1.9804
N [0.1, 100] 33.8632 91.0544 40.4546 32.2658 39.6231

Area #2

Kp1 [−2, 2] −1.9948 −1.0174 −0.8513 −1.9753 −1.8706
Ki [−2, 2] −2 −1.8670 −1.6742 −1.9999 −1.9996
λ [0.5, 1.5] 1.0156 1.3855 1.4138 1.2750 1.3250
Kp2 [0.01, 2] 1.9989 1.6289 1.9986 1.9125 1.7061
Kd [0.01, 2] 0.4609 1.8930 1.9998 0.3405 0.4456
N [0.1, 100] 74.2275 11.3167 6.6095 85.6796 45.4981

The results from this statistical analysis confirm that the SWO is highly effective
in optimizing control parameters for the two-area power system. The SWO not only
consistently ranks highest in terms of statistical metrics but also demonstrates superior
robustness and convergence efficiency compared with the other algorithms evaluated.
These findings underscore the potential of the SWO as a powerful tool for optimizing
advanced control strategies in complex power systems, particularly in contexts involving
renewable energy integration. Furthermore, the parameters for the FOPI(1+PDN) controller
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were selected based on their standard operating ranges commonly used in power system
stability studies. As shown in Table 4, the parameters are constrained within specific ranges
to ensure stability and performance across different operating conditions. These ranges
were chosen to allow the controller to handle typical disturbances in a two-area power
system. However, it is important to note that these fixed parameter ranges might limit the
controller’s performance under extreme conditions, such as sudden large-scale renewable
energy input or severe system disturbances. Future research could explore more adaptive
ranges or the use of real-time tuning to extend the controller’s effectiveness in broader
operational scenarios.

5.2. Comparisons with Effective Algorithms

A detailed comparison of various metaheuristic algorithms in tuning the FOPI(1+PDN)
controller for load frequency LFC in a two-area power system is offered in this section.
The algorithms under comparison include the SWO, WOA, SMA, RSA, and ARO. The
performance is assessed under two distinct disturbance scenarios, with a focus on frequency
deviation in both areas and tie-line power fluctuations.

5.2.1. Disturbance I

In this scenario, a 10% step change in load is applied simultaneously to both areas of
the power system. ∆PD1 and ∆PD2 represent the step changes in load in Area 1 and Area 2,
respectively, both set to 0.1 per unit. This step change is significant as it introduces a sudden
demand on the system, challenging the load frequency control mechanisms to restore the
balance between supply and demand while maintaining system stability. The system’s
response is evaluated by analyzing the frequency deviations in Area 1 (∆ f1) and Area 2
(∆ f2), as well as the tie-line power change (∆Ptie) under the control strategies optimized by
the various algorithms.

Figures 6–8 illustrate the system’s response in terms of frequency deviations in Area 1
and Area 2 and the tie-line power change. These figures compare the performance of the
SWO-tuned FOPI(1+PDN) controller with those tuned by the WOA, SMA, RSA, and ARO.

Figure 6. Frequency deviation in Area 1 in the case of Disturbance I.

To ensure a meaningful analysis, settling times were calculated using a ±0.05 Hz
tolerance band for ∆ f1 and ∆ f2, and a ±0.01 MW tolerance band for ∆Ptie. These tolerance
bands are critical for determining when the system has effectively settled after a disturbance.
In Table 5, the obtained the undershoot, overshoot, and settling time values are presented
via the different approaches in response to Disturbance I. This table offers a quantitative
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comparison, emphasizing the superior performance of the SWO-tuned FOPI(1+PDN)
controller in terms of faster settling times and reduced overshoot and undershoot relative
to the other algorithms.

Figure 7. Frequency deviation in Area 2 in the case of Disturbance I.

Figure 8. Tie line power change in the case of Disturbance I.

Table 5. Undershoot, overshoot, and settling time values achieved via different approaches in the
case of Disturbance I.

Output Control Technique Undershoot Overshoot Settling Time (s)

∆ f1 (Hz)

SWO-tuned FOPI(1+PDN) −0.1273 0.0040 0.5482
WOA-tuned FOPI(1+PDN) −0.1003 0.0286 0.6763
SMA-tuned FOPI(1+PDN) −0.1462 0.0313 0.6028
RSA-tuned FOPI(1+PDN) −0.1487 0.0167 0.6205
ARO-tuned FOPI(1+PDN) −0.1386 0.0191 0.6226
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Table 5. Cont.

Output Control Technique Undershoot Overshoot Settling Time (s)

∆ f2 (Hz)

SWO-tuned FOPI(1+PDN) −0.0983 0.0037 0.4954
WOA-tuned FOPI(1+PDN) −0.1061 0.0280 0.5042
SMA-tuned FOPI(1+PDN) −0.1184 0.0298 0.5648
RSA-tuned FOPI(1+PDN) −0.1089 0.0145 0.5672
ARO-tuned FOPI(1+PDN) −0.1075 0.0183 0.5903

∆Ptie (puMW)

SWO-tuned FOPI(1+PDN) −0.0028 0.0011 0

WOA-tuned FOPI(1+PDN) −0.0038 9.1313 ×
10−4 0

SMA-tuned FOPI(1+PDN) −0.0027 0.0017 0
RSA-tuned FOPI(1+PDN) −0.0028 0.0019 0
ARO-tuned FOPI(1+PDN) −0.0028 0.0015 0

5.2.2. Disturbance II

In the second disturbance scenario, a 10% step change in load is applied exclusively to
Area 2. ∆PD2 represents the step change in load in Area 2, set to 0.1 per unit. This localized
disturbance tests the system’s ability to stabilize the frequency and tie-line power flow in
response to a significant change in demand within a single area. The system’s response is
analyzed by comparing the frequency deviations in Area 1 (∆ f1) and Area 2 (∆ f2), as well
as the ∆Ptie, under the control strategies optimized by the different algorithms.

Figures 9–11 provide a visual comparison of the system’s response to this localized
disturbance, highlighting the effectiveness of each algorithm in managing the frequency
deviations and tie-line power changes. As in the first disturbance scenario, the settling
times for ∆ f1, ∆ f2, and ∆Ptie were determined using the same tolerance bands (±0.05 Hz
for frequency deviations and ±0.01 MW for tie-line power changes).

Figure 9. Frequency deviation in Area 1 in the case of Disturbance II.

Table 6 summarizes the undershoot, overshoot, and settling time values obtained via
the different approaches in response to Disturbance II. This table offers a direct comparison
of the control strategies, showing how the SWO-tuned FOPI(1+PDN) controller performs
relative to the other algorithms under a localized disturbance. The results from these two
disturbance scenarios clearly demonstrate the effectiveness of the SWO-tuned FOPI(1+PDN)
controller in maintaining system stability. The SWO consistently achieves faster settling
times with minimal overshoot and undershoot, outperforming the other algorithms tested.
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These findings underscore the potential of the SWO to enhance control performance in
complex power systems, particularly those involving renewable energy integration.

Figure 10. Frequency deviation in Area 2 in the case of Disturbance II.

Figure 11. Tie-line power change in the case of Disturbance II.

Table 6. Undershoot, overshoot, and settling time values achieved via different approaches in the
case of Disturbance II.

Output Control Technique Undershoot Overshoot Settling Time (s)

∆ f1 (Hz)

SWO-tuned FOPI(1+PDN) −0.1071 0.0044 0.5368
WOA-tuned FOPI(1+PDN) −0.1118 0.0417 0.9370
SMA-tuned FOPI(1+PDN) −0.1254 0.0306 0.6002
RSA-tuned FOPI(1+PDN) −0.1230 0.0152 0.6073
ARO-tuned FOPI(1+PDN) −0.1163 0.0188 0.6235
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Table 6. Cont.

Output Control Technique Undershoot Overshoot Settling Time (s)

∆ f2 (Hz)

SWO-tuned FOPI(1+PDN) −0.0924 0.0043 0.4788
WOA-tuned FOPI(1+PDN) −0.0942 0.0344 1.0274
SMA-tuned FOPI(1+PDN) −0.1132 0.0294 0.5566
RSA-tuned FOPI(1+PDN) −0.1040 0.0141 0.5599
ARO-tuned FOPI(1+PDN) −0.1026 0.0181 0.5820

∆Ptie (puMW)

SWO-tuned FOPI(1+PDN) −6.1222 ×
10−4 0.0028 0

WOA-tuned FOPI(1+PDN) −0.0081 0.0086 0
SMA-tuned FOPI(1+PDN) −0.0011 0.0028 0
RSA-tuned FOPI(1+PDN) −0.0013 0.0027 0

ARO-tuned FOPI(1+PDN) −9.7925 ×
10−4 0.0026 0

5.3. Comparisons with Recently Reported Works

In recent years, various control methods have been developed and optimized using
different metaheuristic algorithms. This section compares the performance of the SWO-tuned
FOPI(1+PDN) controller with four other control strategies that have been optimized using
different algorithms. The control methods considered for comparison are the modified grey
wolf optimization–cuckoo search (MGWO-CS)-tuned TID controller [19], the modified whale
optimization algorithm (MWOA)-tuned PIDF controller [13], the black widow optimization
algorithm (BWOA)-tuned PID controller [21], and the RIME-tuned PI controller [22]. Each of
these controllers is represented by the following mathematical equations:

CTID(s) = Kt
1

s1/n + Ki
1
s
+ Kds (36)

CPIDF(s) = Kp +
Ki
s
+ Kds

N
s + N

(37)

CPID(s) = Kp +
Ki
s
+ Kds (38)

CPI(s) = Kp +
Ki
s

(39)

where n is a fractional order, which adds flexibility to the controller’s response, and Kp is
the proportional gain, which scales the error.

5.3.1. Disturbance I

This section compares the performance of the SWO-tuned FOPI(1+PDN) controller with
the above-mentioned control strategies under a 10% step change in load applied simultane-
ously to both areas of the power system (∆PD1 = ∆PD2 =0.1 per unit). The system’s response
is evaluated by analyzing the frequency deviations in Area 1 (∆ f1) and Area 2 (∆ f2), as well
as the ∆Ptie. Figures 12–14 illustrate the system’s response to this disturbance, comparing
the performance of the SWO-tuned FOPI(1+PDN) controller with the MGWO-CS-tuned TID,
MWOA-tuned PIDF, BWOA-tuned PID, and RIME-tuned PI controllers.

In evaluating the results, the settling times were calculated with a ±0.05 Hz tolerance
band for ∆ f1 and ∆ f2, and a ±0.01 MW tolerance band for ∆Ptie, ensuring that the sys-
tem’s response falls within acceptable limits before considering it stable. The undershoot,
overshoot, and settling time values achieved by the different approaches in response to
Disturbance I are summarized in Table 7. This table provides a quantitative comparison
of the control strategies, highlighting the advantages of the SWO-tuned FOPI(1+PDN)
controller in achieving quicker settling times and smaller overshoots and undershoots.
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Figure 12. Frequency deviation comparisons for Area 1 with respect to the reported approaches in
the case of Disturbance I.

Figure 13. Frequency deviation comparisons for Area 2 with respect to the reported approaches in
the case of Disturbance I.

Figure 14. Tie-line power change with respect to the reported approaches in the case of Disturbance I.
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Table 7. Undershoot, overshoot, and settling time values achieved via the reported approaches for
Disturbance I.

Output Control Technique Undershoot Overshoot Settling Time (s)

∆ f1 (Hz)

SWO-tuned FOPI(1+PDN) −0.1273 0.0040 0.5482
MGWO-CS-tuned TID −0.1620 0.0125 1.5816
MWOA-tuned PIDF −0.2570 0.0111 1.1910
BWOA-tuned PID −0.1172 0.0234 1.6523
RIME-tuned PI −0.1553 0.0213 2.8622

∆ f2 (Hz)

SWO-tuned FOPI(1+PDN) −0.0983 0.0037 0.4954
MGWO-CS-tuned TID −0.1814 0.0082 1.2810
MWOA-tuned PIDF −0.2055 0.0105 1.2404
BWOA-tuned PID −0.1172 0.0215 1.5783
RIME-tuned PI −0.2217 0.0459 4.0346

∆Ptie (puMW)

SWO-tuned FOPI(1+PDN) −0.0028 0.0011 0
MGWO-CS-tuned TID −0.0145 0.0092 3.7363
MWOA-tuned PIDF −0.0071 0.0110 0.6711
BWOA-tuned PID −0.0039 0.0011 0
RIME-tuned PI −0.0296 0.0229 5.3698

5.3.2. Disturbance II

The system’s response is visualized in Figures 15–17, which compare the performance
of the SWO-tuned FOPI(1+PDN) controller with the MGWO-CS-tuned TID, MWOA-tuned
PIDF, BWOA-tuned PID, and RIME-tuned PI controllers. Similar to Disturbance I, the
settling times were calculated using the same tolerance bands. Table 8 presents the under-
shoot, overshoot, and settling time values achieved by the different approaches in response
to Disturbance II. This table provides a direct comparison of the control strategies, showing
how the SWO-tuned FOPI(1+PDN) controller performs relative to the other algorithms
under this localized disturbance. The results from these comparisons demonstrate that the
SWO-tuned FOPI(1+PDN) controller consistently provides better performance in terms
of settling time, undershoot, and overshoot compared with the recently reported control
methods. This highlights the effectiveness of the SWO in optimizing advanced control
strategies for load frequency control in complex power systems.

Figure 15. Frequency deviation comparisons for Area 1 with respect to the reported approaches in
the case of Disturbance II.
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Figure 16. Frequency deviation comparisons for Area 2 with respect to the reported approaches in
the case of Disturbance II.

Figure 17. Tie-line power change with respect to the reported approaches in the case of Disturbance II.

Table 8. Undershoot, overshoot, and settling time values achieved via the reported approaches for
Disturbance II.

Output Control Technique Undershoot Overshoot Settling Time (s)

∆ f1 (Hz)

SWO-tuned FOPI(1+PDN) −0.1071 0.0044 0.5368
MGWO-CS-tuned TID −0.1387 0.0175 1.4674
MWOA-tuned PIDF −0.2431 0.0132 1.1994
BWOA-tuned PID −0.1106 0.0232 1.6142
RIME-tuned PI −0.1280 0.0209 2.9735

∆ f2 (Hz)

SWO-tuned FOPI(1+PDN) −0.0924 0.0043 0.4788
MGWO-CS-tuned TID −0.1572 0.0153 1.1487
MWOA-tuned PIDF −0.1856 0.0128 1.2318
BWOA-tuned PID −0.1074 0.0220 1.5148
RIME-tuned PI −0.1861 0.0553 4.0235
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Table 8. Cont.

Output Control Technique Undershoot Overshoot Settling Time (s)

∆Ptie (puMW)

SWO-tuned FOPI(1+PDN) −6.1222
×10−4 0.0028 0

MGWO-CS-tuned TID −0.0047 0.0195 1.1927
MWOA-tuned PIDF −0.0022 0.0146 0.6721
BWOA-tuned PID −0.0019 0.0051 0
RIME-tuned PI −0.0195 0.0417 5.1975

5.4. Comparison of ITAE Performance Metric

In this section, the integral of the time-weighted absolute error (ITAE) performance
metric is compared across 20 different control methods, each applied to the same power
system parameters. The ITAE metric is a crucial indicator of system performance in load
frequency control (LFC), as it emphasizes the importance of minimizing error over time,
thereby promoting faster and more stable system responses.

The ITAE values for each control method are summarized below, with the proposed
method (SWO-tuned FOPI(1+PDN)) achieving the lowest ITAE value of 0.3281, demonstrat-
ing superior performance compared with the other methods. The comparison highlights the
effectiveness of the SWO in tuning the FOPI(1+PDN) controller, significantly outperforming
other optimization algorithms and control strategies.

The results indicate that the SWO-tuned FOPI(1+PDN) controller not only outperforms
all other methods in minimizing the ITAE but does so by a substantial margin. The second-
best performance is observed with the MA-tuned PI-PD method, which achieves an ITAE
of 0.3379, slightly higher than the proposed SWO-tuned method. Other methods, such
as the MA-tuned TID and PID controllers, also perform well, with ITAE values of 0.5979
and 0.7577, respectively, but still fall short of the performance achieved by the SWO.
In contrast, traditional and other metaheuristic-based methods, such as the GA-tuned
PI and FA-tuned PI controllers, show significantly higher ITAE values, indicating less
effective control over the system’s frequency response. These results underscore the critical
advantage of using advanced optimization techniques like the SWO for tuning fractional-
order controllers in complex power systems. The comparative analysis of ITAE values
clearly demonstrates the superiority of the proposed SWO-tuned FOPI(1+PDN) approach,
confirming its effectiveness in achieving optimal load frequency control with minimal error
over time. This highlights the potential of the SWO as a powerful tool in the design of
robust and efficient control systems for power networks with integrated renewable energy
sources (see Table 9).

Consequently, the searching behavior of the SWO allows the algorithm to explore the
solution space more broadly in the early stages, while the pursuit and escape behavior
helps refine the search around promising solutions. As the optimization progresses, the
SWO dynamically adjusts its exploration and exploitation phases, ensuring that it does
not get trapped in local optima, a known limitation of algorithms like the WOA and SMA.
Furthermore, the nesting behavior ensures a thorough refinement of the best solutions
found, enhancing robustness, particularly in dynamic systems like photovoltaic-integrated
multi-area power systems. This mechanism provides the SWO with the ability to respond
more effectively to system disturbances, ensuring faster recovery and more stable system
performance. In comparison, algorithms such as the RSA and ARO may lack such adaptive
mechanisms, leading to less efficient handling of nonlinearities and system uncertainties.
The SWO’s dynamic adjustment of search parameters as the optimization progresses
allows it to better navigate the complex, multi-modal optimization landscape inherent in
LFC problems.
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Table 9. Minimized ITAE values compared with the reported approaches.

Method No. Reference Control Technique ITAE Value

Proposed This study SWO-tuned FOPI(1+PDN) 0.3281
1

[19]
MGWO-CS-tuned TID 0.9203

2 MGWO-CS-tuned fuzzy PID 0.9958
3 GWO-CS-tuned PID 1.116
4

[13]
MWOA-tuned PIDF 1.4841

5 MWOA-tuned PID 1.5602
6

[21]
BWOA-tuned PID 1.4098

7 BWOA-tuned PI 3.5086
8 [22] RIME-tuned PI 3.0773
9

[18]
GA-tuned PI 12.1244

10 FA-tuned PI 7.4259

11 [30] Optimized fuzzy-based
coordinator 5.039

12
[20]

hSFLA-PS-tuned PID 1.8142
13 SFLA-tuned PID 2.1125
14 SFLA-tuned PI 4.5432
15 [1] SSA-tuned PI 3.4664
16

[25]
SHO-tuned PID 0.8582

17 SHO-tuned PI 2.5308

18
[27]

MA-tuned PID 0.7577
19 MA-tuned TID 0.5979
20 MA-tuned PI-PD 0.3379

5.5. Qualitative Discussion

The simulation results presented in this study highlight the significant improvements
achieved by the SWO-tuned FOPI(1+PDN) controller for LFC in a PV-integrated two-area
power system. Beyond the numerical outcomes, the following qualitative insights into
the performance of the proposed control strategy further validate its effectiveness and
real-world applicability.

The SWO-tuned FOPI(1+PDN) controller demonstrated superior performance across
key metrics such as settling time, overshoot, and undershoot when compared with other
optimization algorithms and control techniques, including the WOA, SMA, RSA, and ARO.
The quicker settling times and reduced frequency deviations observed in the two-area
power system underscore the controller’s ability to maintain system stability even under
varying disturbance scenarios. This is particularly crucial in modern power systems, where
the variability in renewable energy sources, such as PV power, can introduce significant
instability. By minimizing frequency fluctuations and ensuring faster system recovery,
the proposed controller contributes to enhanced reliability and resilience in real-world
power systems.

The findings hold significant practical implications, especially in the context of renew-
able energy integration. As power grids continue to incorporate higher shares of renewable
sources, maintaining frequency stability becomes increasingly challenging. The SWO-tuned
FOPI(1+PDN) controller’s superior performance in frequency regulation positions it as a
valuable tool for future power grid management. Specifically, it could be applied in smart
grids and microgrids where renewable energy fluctuations are common. In practice, its
ability to reduce overshoot and undershoot translates to more stable power delivery and
improved system efficiency, which could help reduce the operational costs associated with
managing renewable energy intermittency.

While the proposed controller has shown robust performance in simulated environ-
ments, several limitations could arise in practical applications. One potential challenge
is the computational complexity associated with the SWO algorithm, which might limit
its real-time application in large-scale power systems. Although the controller performs
well in handling typical system disturbances, more extreme conditions, such as sudden
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large-scale renewable inputs or severe system faults, may require further adjustments or a
more adaptive approach. Future work could explore ways to reduce the computational
demands of the SWO algorithm or develop hybrid control strategies that combine the SWO
with simpler, real-time optimization techniques.

The scalability of the SWO-tuned FOPI(1+PDN) controller for larger and more com-
plex power systems is another avenue for future research [7,16,31]. Testing the controller
on physical testbeds or through hardware-in-the-loop simulations would provide addi-
tional insights into its performance in real-time environments. Furthermore, integrating
real-world data from actual renewable energy systems could help refine the controller’s
tuning process and enhance its adaptability to more dynamic and uncertain power sys-
tem conditions. Research into hybrid optimization techniques that blend the SWO with
other metaheuristic or adaptive algorithms could also extend its application to broader
operational scenarios.

6. Conclusions

This study presents a novel approach to LFC in a photovoltaic-integrated two-area
power system by employing the SWO to tune a cascaded FOPI controller combined with a
PDN controller, denoted as FOPI(1+PDN). The proposed method was rigorously evaluated
against various control strategies optimized by other advanced metaheuristic algorithms.
The simulation results unequivocally demonstrate that the SWO-tuned FOPI(1+PDN)
controller achieves superior performance metrics, particularly in terms of minimizing
frequency deviations and tie-line power fluctuations. Notably, the controller exhibits faster
settling times and smaller overshoot and undershoot compared with the other methods
under both global and localized disturbance scenarios. This superior performance is crucial
for maintaining the stability of power systems that incorporate renewable energy sources,
which are often characterized by variability and uncertainty. The comparative analysis
against recently reported control strategies further underscores the effectiveness of the
proposed approach. The SWO-tuned FOPI(1+PDN) controller consistently achieves the
lowest ITAE values across a wide range of control methods, highlighting its robustness and
efficacy in complex power system environments. The success of the SWO in optimizing the
parameters of the FOPI(1+PDN) controller is attributed to its ability to balance exploration
and exploitation effectively, ensuring a thorough search of the solution space while avoiding
premature convergence. This balance is particularly beneficial in addressing the nonlinear
and multi-modal nature of the optimization problem inherent in LFC tasks. Additionally,
this work not only advances control strategies for LFC but also demonstrates the potential
of the SWO as a versatile tool for complex optimization tasks in dynamic, multi-area
power networks.

Looking forward, future research could explore the application of the SWO-tuned
controller in larger, more diverse power grids with multiple renewable energy sources.
Experimental validation of the proposed method could involve testing the SWO-tuned
controller on physical testbeds or hardware-in-the-loop (HIL) simulation platforms to
assess its real-time performance. Additionally, the implementation of the controller in
small-scale microgrids or pilot renewable energy systems would provide valuable insights
into its practical applicability. Hybrid optimization techniques or real-time adaptive control
strategies could be investigated to further improve the controller’s performance in real-
world, large-scale systems. The integration of artificial intelligence for predictive LFC or
enhancing the SWO’s capabilities may also offer exciting avenues for further development.
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