Scopus

Documents

Aboelazm, E.A.A.^{a b}, Khe, C.S.^{a b}, Bin Abd. Shukur, M.F.^{a b}, Saheed, M.S.M.^{b c}, Ali, G.A.M.^d, Chong, K.F.^e

Hollow Cobalt Carbide Cubes / Reduced Graphene Oxide Nanocomposite via Cyanide Coordination Polymer for Supercapacitor Applications

(2024) Solid State Phenomena, 355, pp. 133-140.

DOI: 10.4028/p-5jYdAj

- ^a Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Perak, Seri Iskandar, 32610, Malaysia
- ^b Centre of Innovative Nanostructure and Nanodevices (COINN), Universiti Teknologi PETRONAS, Perak, Seri Iskandar, 32610, Malaysia
- ^c Department of Mechanical Engineering, Universiti Teknology PETRONAS, Perak, Seri Iskandar, 32610, Malaysia
- ^d Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
- ^e Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan, Gambang, 26300, Malaysia

Correspondence Address

Khe C.S.; Department of Fundamental and Applied Sciences, Perak, Malaysia; email: chengseong.khe@utp.edu.my

Publisher: Trans Tech Publications Ltd

ISSN: 10120394

Language of Original Document: English

Abbreviated Source Title: Solid State Phenomena

2-s2.0-85204708352

Document Type: Book Chapter **Publication Stage:** Final

Source: Scopus

Copyright © 2024 Elsevier B.V. All rights reserved. Scopus® is a registered trademark of Elsevier B.V.

PROTECTIVE COATINGS AND CORROSION PROTECTION

EDITED BY
OLEKSANDR VASILIEV
ABIODUN AYODEJI ABIOYE
GAANTY PRAGAS MANIAM

TRANS TECH PUBLICATIONS

Protective Coatings and Corrosion Protection

Edited by Oleksandr Vasiliev Abiodun Ayodeji Abioye Gaanty Pragas Maniam

Protective Coatings and Corrosion Protection

Special topic volume with invited peer-reviewed papers only

Edited by

Oleksandr Vasiliev, Abiodun Ayodeji Abioye and Gaanty Pragas Maniam

Copyright © 2024 Trans Tech Publications Ltd, Switzerland

All rights reserved. No part of the contents of this publication may be reproduced or transmitted in any form or by any means without the written permission of the publisher.

Trans Tech Publications Ltd Seestrasse 24c CH-8806 Baech Switzerland https://www.scientific.net

Volume 355 of Solid State Phenomena ISSN print 1012-0394 ISSN web 1662-9779

(Pt. B of Diffusion and Defect Data - Solid State Data (ISSN 0377-6883))

Full text available online at https://www.scientific.net

Distributed worldwide by

Trans Tech Publications Ltd Seestrasse 24c CH-8806 Baech Switzerland

Phone: +41 (44) 922 10 22 e-mail: sales@scientific.net

Preface

The main topics of this special issue are corrosion, corrosion protection and protective coatings of machines and equipment components.

The first chapter is dedicated to topical issues of corrosion behaviour and means of corrosion protection of structural steel and alloys. Corrosion inhibitors, anti-corrosive coatings, corrosion control, analysis of metal corrosion behaviour in various aggressive environments, etc. are presented here.

The next chapter contains articles related to tribological engineering namely an analysis of properties and deposition methods of the various wear-protective and anti-friction coatings of machine components that work in various hard conditions.

The last chapter acquaints the reader with the results of studies of the electromechanical qualities of dielectric elastomers and ehe hollow cube structure of cobalt carbide mixed with graphene synthesized using coordination polymer for high-performance supercapacitor applications.

The special edition will be useful to many engineers in mechanical engineering.

Table of Contents

Preface

Chapter 1: Metal Corrosion Behaviour and Corrosion Protection

Improvement on Corrosion and Wear Resistance of Graphene-Based Coatings: A Review R. Thivagaran, M.R. Aridi, N. binti Salim, K.F. Chong and N.H. Abu Bakar	3
Corrosion Evaluation and Inhibiting Effect of Chlorpheniramine Drug on Mild Steel in HCl	
Acid O.A. Odunlami, O. Ogunleye, O.S.I. Fayomi and M. Fajobi	11
Silicon Nanoparticles Derived from Waste Rice Husk as Potential Siliconizing Material for	
Mild Steel V.S. Aigbodion, P.A. Ozor and N. Sukdeo	27
Effects of Surfactants on the Corrosion Behavior of Aluminum Alloy in Graphene	21
Nanofluid	
A. Borode, N.A. Ahmed and P.A. Olubambi	35
Emerging Behaviour of Alloy Steel Microstructure in Hydrogen Sulphide Environment - A Review	
S.L. Lawal, S.A. Afolalu, T.C. Jen and E.T. Akinlabi	49
Corrosion Control and its Application in Marine Environment - A Review S.L. Lawal, S.A. Afolalu, T.C. Jen and E.T. Akinlabi	61
Chapter 2: Protective Coatings	
Microstructure and Tribological Behavior of Plasma Sprayed (Ti,Cr)C-Ni Composite Coatings	
M. Storozhenko, O. Umanskyi, O. Melnyk, O. Terentyev, T. Chevychelova, V. Varchenko, O. Koval, V. Brazhevsky and O. Chernyshov	77
The Formation of C-S Coatings by Electrospark Alloying with the Use Special Process Media	0.7
O. Haponova, V. Tarelnyk, N. Tarelnyk and P. Kurp The Standard Grades of Standard Condes	85
The Structure of Boride Diffusion Coatings Produced on Selected Grades of Structural Steels	
M. Góral, B. Kościelniak, K. Ochał, T. Kubaszek, J. Jopek and M. Drajewicz	95
Influence of Ni Content on Microstructure and Hardness of Nickel-Graphite Abradable	
Seal Coatings Produced by Plasma Spraying O. Umanskyi, O. Kushchev, M. Storozhenko, I. Martsenyuk, O. Terentyev, V. Brazhevsky, R. Kostiunik, O. Chernyshov and T. Mosina	101
Structural and Tribology Properties of Ti-Al-C Coatings Deposited by Vacuum Arc Method V. Podhurska, O. Kuprin, M. Bortnitskaya, O. Ostash, T. Prikhna, R. Chepil, V. Sverdun, I. Kolodiy and V. Belous	107
The Influence of Plasma Spraying Parameters on Microstructure and Porosity of Bronze-Polyester Coatings for Plain Bearings Applications M. Góral, T. Kubaszek, B. Kościelniak and D. Stawarz	117
Strength and Crack Resistance Structural Criteria of Composite Coatings Produced by the Method of Multi-Chamber Detonation Spraying	
V. Korzhyk, O.M. Berdnikova, P. Stukhliak, O. Kushnarova, J.J. Zhao and I. Skachkov	123
Chapter 3: Functional Materials	
Cobalt Carbide / Reduced Graphene Oxide Hollow Cubes Composites Prepared by Coordination Polymer for High-Performance Supercapacitor	
E.A.A. Aboelazm, C.S. Khe, M.F.A. Shukur, M.S.M. Saheed, G.A.M. Ali and K.F. Chong	133

Confinement of the Permittivity Enhancing Fillers in Bacterial Cellulose for Dielectric Elastomer Applications N.S. Binti Ismail, S.M.A.B.S.M. Hakhiri, S.N.H. Binti Mustapha, A.H.B. Bin A Razak, M.H. Bin Ab. Rahim and S. Bin Zakaria

141

Hollow Cobalt Carbide Cubes / Reduced Graphene Oxide Nanocomposite via Cyanide Coordination Polymer for Supercapacitor Applications

Submitted: 2023-01-10

Revised: 2023-07-25

Accepted: 2023-10-19 Online: 2024-02-15

Eslam Atef Abdelaziz Aboelazm^{1,2,a}, Cheng Seong Khe ^{1,2,b*}, Muhammad Fadhlullah bin Abd. Shukur ^{1,2,c}, Mohamed Shuaib Mohamed Saheed ^{2,3,d}, Gomaa Abdelgawad Mohammed Ali^{4,e} and Kwok Feng Chong ^{5,f}

¹Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia

²Centre of Innovative Nanostructure and Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia

³Department of Mechanical Engineering, Universiti Teknology PETRONAS, 32610 Seri Iskandar, Perak, Malaysia

⁴Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt

⁵Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Gambang, 26300, Kuantan, Malaysia

aeslam_21000845@utp.edu.my, bchengseong.khe@utp.edu.my, cmfadhlullah.ashukur@utp.edu.my, dshuaib.saheed@utp.edu.my, egomaasanad@azhar.edu.eg, fckfeng@ump.edu.my

Keywords: Cobalt Carbide, Graphene, Supercapacitor, hybrid materials.

Abstract. Coordination polymers, a broad class of porous hybrid materials resulting from the connection of metal ions with organic ligands, showcase enduring porosity, well-organised crystalline structures, and open metal active sites that augment their metal ions' redox activity. This investigation focuses on examining a nanocomposite composed of cobalt carbide/reduced graphene oxide (Co_3C/rGO) prepared through the copolymer method, serving as an electrode material for supercapacitor devices. The nanocomposite's structure and hollow cubic morphology were confirmed through X-ray diffraction, Raman spectroscopy, and field emission scanning electron microscopy (FESEM) analysis. Electrochemical properties were thoroughly assessed using cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge in 6M KOH with a voltage window of 0 V to 0.5 V. The Co_3C/rGO electrode exhibited notable electrochemical performance, displaying a specific capacitance of 486.6 F g^{-1} at 1 mV s^{-1} and a low internal resistance of 0.58 Ω , surpassing existing literature due to its porous morphology. Additionally, to evaluate the nanocomposite's cycling stability, 5000 charge/discharge cycles were conducted, revealing a capacitive retention of 82% of its original capacitance after 5000 cycles. This underscores its excellent long-term durability as a high-performance material for supercapacitor applications.

Introduction

The world needs energy due to the exponential growth of the human population, which consumes the available energy sources. For centuries, non-renewable energy sources, such as fossil fuels, have been used despite their numerous negative environmental impacts, such as air pollution and global warming, due to the growth of greenhouse gas emissions. This issue motivated the search for alternate supplies, such as wind and solar energy. These energies appear to be time- or weather-dependent, so we cannot receive them consistently. To address this issue, energy storage is being investigated as a means of storing renewable energy and ensuring a reliable electricity supply.

Studying energy storage techniques, involving batteries, fuel cells and supercapacitors, has gained tremendous scholarly interest. In an enhanced iteration of capacitors, researchers have engineered

Keyword Index

\mathbf{A}			
Abradable Coatings	101	Н	
Alloy Steel	49	Heat Treatment	95
Aluminium Bronze Coating	117	Hybrid Materials	133
Aluminum Alloy	35	Hydrogen Sulphide	49
_		3.4	
В		M	
Bacterial Cellulose (BC)	141	Marine Environment	61
		Microhardness	85, 123
\mathbf{C}		Microstructure	49, 77, 85, 95, 123
Characterization	61	Mild Steel	11, 27
Chlorpheniramine Drug	11		,
Coating	85	N	
Coatings	107		
Cobalt Carbide	133	Nanocomposites	3
Composite Coatings	123	Nanofluid	35
Confinement	141	Nanohardness	107
Control	61	Nickel-Graphite	101
Corrosion	27, 35, 61		
Crack Resistance	123	O	
Cracking Characterization	49	Open Circuit Potential	11
D		p	
D Determine Surviving	122	P	05
Detonation Spraying	123	Pack Boriding	95
Detonation Spraying Dielectric Elastomer	141	Pack Boriding Plasma Coatings	77, 101
Detonation Spraying		Pack Boriding Plasma Coatings Plasma Spray	77, 101 117
Detonation Spraying Dielectric Elastomer Dislocation Density	141	Pack Boriding Plasma Coatings Plasma Spray Polydimethylsiloxane (PDMS)	77, 101 117 141
Detonation Spraying Dielectric Elastomer	141	Pack Boriding Plasma Coatings Plasma Spray Polydimethylsiloxane (PDMS) Porosity	77, 101 117 141 117
Detonation Spraying Dielectric Elastomer Dislocation Density	141	Pack Boriding Plasma Coatings Plasma Spray Polydimethylsiloxane (PDMS)	77, 101 117 141
Detonation Spraying Dielectric Elastomer Dislocation Density	141 123	Pack Boriding Plasma Coatings Plasma Spray Polydimethylsiloxane (PDMS) Porosity	77, 101 117 141 117
Detonation Spraying Dielectric Elastomer Dislocation Density E Electrospark Alloying F	141 123 85	Pack Boriding Plasma Coatings Plasma Spray Polydimethylsiloxane (PDMS) Porosity Potentiodynamic Polarization	77, 101 117 141 117
Detonation Spraying Dielectric Elastomer Dislocation Density E Electrospark Alloying	141 123	Pack Boriding Plasma Coatings Plasma Spray Polydimethylsiloxane (PDMS) Porosity Potentiodynamic Polarization	77, 101 117 141 117 11, 35
Detonation Spraying Dielectric Elastomer Dislocation Density E Electrospark Alloying F Friction Coefficient	141 123 85	Pack Boriding Plasma Coatings Plasma Spray Polydimethylsiloxane (PDMS) Porosity Potentiodynamic Polarization R Residual Stresses Rice Husk	77, 101 117 141 117 11, 35
Detonation Spraying Dielectric Elastomer Dislocation Density E Electrospark Alloying F Friction Coefficient G	141 123 85	Pack Boriding Plasma Coatings Plasma Spray Polydimethylsiloxane (PDMS) Porosity Potentiodynamic Polarization R Residual Stresses	77, 101 117 141 117 11, 35
Detonation Spraying Dielectric Elastomer Dislocation Density E Electrospark Alloying F Friction Coefficient G Gas Turbine Engines	141 123 85 107	Pack Boriding Plasma Coatings Plasma Spray Polydimethylsiloxane (PDMS) Porosity Potentiodynamic Polarization R Residual Stresses Rice Husk	77, 101 117 141 117 11, 35
Detonation Spraying Dielectric Elastomer Dislocation Density E Electrospark Alloying F Friction Coefficient G Gas Turbine Engines Graphene	141 123 85 107	Pack Boriding Plasma Coatings Plasma Spray Polydimethylsiloxane (PDMS) Porosity Potentiodynamic Polarization R Residual Stresses Rice Husk	77, 101 117 141 117 11, 35
Detonation Spraying Dielectric Elastomer Dislocation Density E Electrospark Alloying F Friction Coefficient G Gas Turbine Engines Graphene Graphene-Metal	141 123 85 107 101 133 3	Pack Boriding Plasma Coatings Plasma Spray Polydimethylsiloxane (PDMS) Porosity Potentiodynamic Polarization R Residual Stresses Rice Husk S Ships	77, 101 117 141 117 11, 35
Detonation Spraying Dielectric Elastomer Dislocation Density E Electrospark Alloying F Friction Coefficient G Gas Turbine Engines Graphene Graphene-Metal Graphene Nanoplatelet	141 123 85 107 101 133 3 35	Pack Boriding Plasma Coatings Plasma Spray Polydimethylsiloxane (PDMS) Porosity Potentiodynamic Polarization R Residual Stresses Rice Husk S Ships Silicon Silicone Oil	77, 101 117 141 117 11, 35 123 27
Detonation Spraying Dielectric Elastomer Dislocation Density E Electrospark Alloying F Friction Coefficient G Gas Turbine Engines Graphene Graphene-Metal Graphene Nanoplatelet Graphene Oxide	141 123 85 107 101 133 3 35 3	Pack Boriding Plasma Coatings Plasma Spray Polydimethylsiloxane (PDMS) Porosity Potentiodynamic Polarization R Residual Stresses Rice Husk S Ships Silicon	77, 101 117 141 117 11, 35 123 27 61 27 141
Detonation Spraying Dielectric Elastomer Dislocation Density E Electrospark Alloying F Friction Coefficient G Gas Turbine Engines Graphene Graphene-Metal Graphene Nanoplatelet Graphene Oxide Graphene-Polymer	141 123 85 107 101 133 3 35 3 3	Pack Boriding Plasma Coatings Plasma Spray Polydimethylsiloxane (PDMS) Porosity Potentiodynamic Polarization R Residual Stresses Rice Husk S Ships Silicon Silicone Oil Special Technological	77, 101 117 141 117 11, 35 123 27 61 27 141
Detonation Spraying Dielectric Elastomer Dislocation Density E Electrospark Alloying F Friction Coefficient G Gas Turbine Engines Graphene Graphene-Metal Graphene Nanoplatelet Graphene Oxide	141 123 85 107 101 133 3 35 3	Pack Boriding Plasma Coatings Plasma Spray Polydimethylsiloxane (PDMS) Porosity Potentiodynamic Polarization R Residual Stresses Rice Husk S Ships Silicon Silicone Oil Special Technological Environment	77, 101 117 141 117 11, 35 123 27 61 27 141 85

Author Index

\mathbf{A}			
Aboelazm, E.A.A.	133	J	
Afolalu, S.A.	49, 61	Jen, T.C.	49, 61
Ahmed, N.A.	35	Jopek, J.	95
Aigbodion, V.S.	27		
Akinlabi, E.T.	49, 61	K	
Ali, G.A.M.	133	Khe, C.S.	133
Aridi, M.R.	3	Kolodiy, I.	107
		Korzhyk, V.	123
В		Kościelniak, B.	95, 117
Bakar, N.H.A.	3	Kostiunik, R.	101
Belous, V.	107	Koval, O.	77
Berdnikova, O.M.	123	Kubaszek, T.	95, 117
Bin A Razak, A.H.B.	141	Kuprin, O.	107
Bin Ab. Rahim, M.H.	141	Kurp, P.	85
Bin Zakaria, S.	141	Kushchev, O.	101
Binti Ismail, N.S.	141	Kushnarova, O.	123
Binti Mustapha, S.N.H.	141		
Borode, A.	35	${f L}$	
Bortnitskaya, M.	107	Lawal, S.L.	49, 61
Brazhevsky, V.	77, 101	,	,
C		\mathbf{M}	
C		Martsenyuk, I.	101
Chepil, R.	107	Melnyk, O.	77
Chernyshov, O.	77, 101	Mosina, T.	101
Chevychelova, T.	77	.,	
Chong, K.F.	3, 133	0	
D		Ochał, K.	95
D		Odunlami, O.A.	11
Drajewicz, M.	95	Ogunleye, O.	11
		Olubambi, P.A.	35
\mathbf{F}		Ostash, O.	107
Fajobi, M.	11	Ozor, P.A.	27
Fayomi, O.S.I.	11		
		P	
\mathbf{G}		Podhurska, V.	107
Góral, M.	95, 117	Prikhna, T.	107
Н		S	
Hakhiri, S.M.A.B.S.M.	141	Saheed, M.S.M.	133
Haponova, O.	85	Salim, N.	3
-		Shukur, M.F.A.	133
		Skachkov, I.	123