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ABSTRAK 

Setiap individu mempunyai bau badan semulajadi yang boleh menyebabkan rasa rendah 

diri, malu serta dapat menjejaskan hubungan antara individu. Penggunaan fabrik 

antibakteria berpotensi untuk menawarkan penyelesaian terhadap masalah ini. Justeru, 

pendekatan baru diperkenalkan dengan menggunakan ekstrak kulit delima (PRE) 

sebagai agen antibakteria untuk mengoptimumkan parameter sintesis sol-gel dan 

sintesis hijau bagi menghasilkan zarah antibakteria untuk salutan fabrik. Masalah yang 

ditangani adalah keperluan untuk kaedah sintesis yang cekap, mesra alam, dan 

ekonomik untuk menghasilkan salutan antibakteria untuk fabrik. Penyelidikan ini 

tertumpu kepada kesan prekursor; zarah kuprum oksida (CuO) dan magnesium oksida 

(MgO), dan kaedah sintesis terhadap sifat antibakteria zarah yang disalut ke atas fabrik 

kapas, poliester, dan fabrik bulu biri-biri campuran. Sebatian alkaloid, fenolik, dan 

polifenol yang bertindak sebagai ejen antibakteria telah dikenal pasti dalam PRE. 

Kehadiran unsur CuO dan MgO dalam larutan zarah masing-masing telah disahkan oleh 

Sinar-X Berpendarflour (XRF). Kaedah sol-gel menghasilkan zarah yang lebih kecil 

dengan saiz 325.9 nm (CuO) dan 317.7 nm (MgO) berbanding kaedah sintesis hijau 

(CuO, 374.5 nm; MgO, 325 nm). Imej daripada Mikroskopi Pengimbasan Elektron 

(SEM) menunjukkan permukaan lapisan yang seragam bagi fabrik kapas yang disaluti 

dengan zarah MgO, manakala zarah CuO menunjukkan sedikit pengaglomeratan. 

Sementara itu, pengendapan zarah yang tidak homogen dan tidak seragam diperhatikan 

pada semua fabrik poliester dan fabrik bulu biri-biri campuran. Spektrum Serakan 

Tenaga Sinar-X (EDX) telah mengesahkan kehadiran zarah MgO dan CuO dalam 

fabrik yang disaluti. Ujian antibakteria mendapati keberkesanan zarah MgO terhadap 

bakteria gram-positif (B. linens, C. acnes, dan S. epidermidis) untuk semua jenis fabrik. 

Sementara itu, aktiviti antibakteria tertinggi (7 mm) terhadap B. linens diperhatikan 

pada fabrik kapas yang dilapisi zarah CuO dari kaedah sol-gel . Kekuatan regangan 

dipengaruhi oleh jenis fabrik dan kaedah sintesis salutan, dengan peningkatan tertinggi 

kekuatan regangan lidah sebanyak 33.73% (arah lungsin) serta beban putus sebanyak 

13.59 % (arah lungsin) dan 10.67 % (arah pakan) diperhatikan pada fabrik kapas yang 

disaluti zarah CuO yang dihasilkan melalui sintesis hijau. Kebolehtelapan udara 

berkurang pada fabrik kapas yang disaluti dengan zarah MgO dari kaedah sol-gel 

(42.82%), manakala fabrik polyester yang disaluti partikal CuO dari kaedah sol-gel 

menunjukkan peningkatan tertinggi sebanyak 12.01%. Ketahanan salutan adalah 

berlainan, dengan zarah MgO dari kaedah sol-gel menunjukkan ketahanan basuhan 

yang lebih baik. Analisa Kromatografi Gas-Spektrometri Jisim (GC-MS) menunjukkan 

kehadiran sebatian organik mudah meruap (VOCs) dalam fabrik kapas yang tidak 

disalut (asid fosforik, asid heksanoik, dan asid oktanoik), fabrik poliester yang tidak 

disalut (etil karbamat), dan kain bulu biri-biri campuran yang tidak disalut (asid asetik). 

Walau bagaimanapun, tiada VOCs yang dikesan dalam semua fabrik yang telah disalut, 

menunjukkan keberkesanan dalam mencegah bakteria penyebab bau badan. 

Berdasarkan keseragaman salutan, sifat antibakteria, ketahanan basuhan, peningkatan 

kebolehtelapan udara dan kekuatan regangan, zarah MgO dari kaedah sol-gel dan 

disaluti pada fabrik kapas dianggap sebagai fabrik antibakteria yang paling berkesan. 
Hasil kajian ini menunjukkan potensi PRE dalam sintesis partikel antibakteria. 

Penyelidikan ini menyumbang kepada penyediaan kaedah yang mampan dan berkesan 

untuk menghasilkan salutan fabrik antibakteria. Kajian lanjutan boleh ditumpukan 

kepada peningkatan sifat antibakteria dan ketahanan salutan pada fabrik untuk 

menghasilkan fabrik antibakteria berkualiti tinggi. 
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ABSTRACT 

Every person has a natural body odour, which may lead to low self-esteem, 

embarrassment, and even affecting interpersonal relationships. The use of antibacterial 

fabric offers a potential solution to this problem. Thus, this study introduces a novel 

approach by utilizing pomegranate rind extract (PRE) as an antibacterial agent to 

optimize sol-gel and green synthesis parameters for producing antibacterial particles 

designed for fabric coatings. The problem addressed is the need for an efficient, eco-

friendly, and economical synthesis method to fabricate antibacterial coatings for fabrics. 
The research focuses on the effects of precursors; copper oxide particles (CuO) and 

magnesium oxide particles (MgO) and synthesis methods on the antibacterial properties 

of the synthesized particles coated onto cotton, polyester, and blend wool fabrics. The 

alkaloid, phenolic, and polyphenols compounds which act as antibacterial agent were 

identified in pomegranate rind extract (PRE). The presence of CuO and MgO elements 

in respective particle’s solution was confirmed by X-Ray Fluorescent (XRF). The sol-

gel method produced smaller particle with the size of 325.9 nm (CuO) and 317.7 nm 

(MgO) compared to green synthesis method (CuO, 374.5 nm; MgO, 325 nm). Scanning 

Electron Microscopy (SEM) images showed uniform coating surfaces for MgO-coated 

cotton fabrics, while CuO particles exhibited small agglomerations. Meanwhile, non-

homogenize and non-uniform depositions of particles were observed in all coated 

polyester and coated blend wool fabrics. The Energy Dispersive X-Ray (EDX) spectra 

has verified the presence of MgO particles and CuO particles in the coated fabrics. 

Antibacterial testing demonstrated the effectiveness of MgO particles against gram-

positive bacteria (B. linens, C. acnes, and S. epidermidis) for all fabric types. In the 

meantime, the highest antibacterial activity was observed (7 mm) against B. linens on 

CuO-coated cotton fabric synthesized via sol-gel method. Tensile strength was 

influenced by fabric type and coating synthesis method, with the highest increment of 

tongue tear strength was 33.73 % in warp direction and breaking load was 13.59% 

(warp direction) and 10.67% (weft direction) observed for CuO-coated cotton fabrics 

synthesized via green synthesis. Air permeability decreased in MgO-coated cotton 

fabrics synthesized via sol-gel method (42.82%), while CuO-coated polyester fabrics 

showed the highest increment of 12.01%. The durability of the coatings varied, with the 

MgO particles from sol-gel method exhibiting better washing durability. Gas 

Chromatography-Mass Spectrometry (GC-MS) analysis revealed the presence of 

volatile organic compounds (VOCs) in uncoated cotton (phosphoric acid, hexanoic 

acid, and octanoic acid), uncoated polyester (ethyl carbamate), and uncoated blend wool 

fabric (acetic acid). However, none of the VOCs were detected in all coated fabrics, 

indicating effective prevention of bacteria-causing body odour. Owing to the coating 

uniformity, antibacterial properties, washing durability and the increment in air 

permeability and tensile strength, the MgO particles synthesized via sol-gel method and 

coated onto cotton fabric were identified as the most effective antibacterial coated 

fabric. The knowledge gained from this study demonstrates the potential of PRE in the 

synthesis of antibacterial particles. This research contributes to the field by providing a 

sustainable and effective method for producing antibacterial fabric coatings. Further 

research can focus on enhancing the antibacterial properties and durability in order to 

produce high quality antibacterial coated fabrics. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Introduction 

This chapter serves as an introduction to the thesis, providing essential 

background information to elucidate the context and scope of the study. It outlines the 

research problem, objectives, and the significance of this research.  Section 1.2 delves 

into the motivation, rationale, and main concepts and theories that support the research 

topic. Additionally, Section 1.3 expresses the main problem, justifying existing gaps in 

knowledge, which lead to the aims and objectives of this research (Section 1.4). Section 

1.5 depicts the scopes of this research, providing an overview of its implementation. 

Lastly, Section 1.6 highlights the contribution and value of this study to the existing 

literature, theory and practical applications.  

1.2 Background of the Study 

Every person has a body odour. It is caused by a combination of exocrine and 

the growth of bacteria which, largely linked to the apocrine glands (James, 2020; 

Pickett, 2017). The condition of poor hygiene with a beneficial environment promotes 

the growth of certain microbes, producing odorous acids. Common acids that produce 

odours are lactic acid, acetic acid, propanoic acid, and ammonia (Smallegange et al., 

2011). Most of these acids come from healthy skin microbial flora such as 

Propionibacterium, Staphylococcus, and Bacilli, which perform fermentation on 

carbohydrates, proteins, and fatty acids that come from dead skin cells on people’s feet 

(Abedi & Hashemi, 2020; Baker, 2019). The density and species of bacteria are linked 

to the intensity and volatile composition of odour (Verhulst et al., 2018). Odour is 

associated with Brevibacterium species, which are commensals on the human skin that 

thrive in humid environments such as the webs of the toes (van Vuuren et al., 2019). 

The presence of Brevibacterium sp. or Staphylococcus sp. attributed to “cheese-like” 
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odour due to the release of isovaleric acid (3-methyl-butanoic acid) (Öztürkoğlu et al., 

2018). At the same time, the “vinegar” odour occurred due to the presence of propionic 

acid and acetic acid, resulted from the metabolite action of Propionibacterium sp., 

which presents in the ducts of the sebaceous glands of the skin (Chen et al., 2020). The 

use of amino acid methionine sulphur by Brevibacterium sp. to generate methanethiol 

has contributed to “ammonia” odour (Abdelraof et al., 2020). 

Another contributor to odour is the type of fabric used. It plays an essential role 

because it can be a potential site for microorganism’s propagation. The optimal 

conditions of temperature, moisture affinity, and nutrient source of fabric could be 

favourable for microorganism’s hostility, which can lead to deterioration of fabric 

strength, defacement, and odour (Tan, et al., 2019). There are three primary sources of 

fabric, which are animal-based, plant-based, and synthetic-based fabric. Animal-based 

fabric like wool mainly consists of keratin, which contains more sulphur than other 

types of protein. It has improved the strength and thermal stability of the fabric. 

However, keratin acts as a nutrition and energy source for microbes and bacteria growth 

which could lead to bad odour (Sanders et al., 2021). A plant-based fabric; cotton, is the 

most abundant natural polymer on earth. Cotton is susceptible to microbial degradation 

as it composes of celluloses and hemicelluloses, which is one of the carbon sources  

(Tan, et al., 2019). The biodegradation of cotton could lead to foul-smelling, 

discoloration, appearance disfiguration, and hygiene issues in the products (Yae, 2018). 

Synthetic-based fabrics like polyester, nylon, and acrylic give less ventilation to the foot 

than cotton or wool, which can lead to increased perspiration and odour, although they 

can also reduce the incidence of blisters by wicking away perspiration (Deopura & 

Padaki, 2015; Ma & Sun, 2005). 

Coating of fabric with particles is an approach to the production of highly active 

surfaces with antibacterial properties. Compared to other materials, metals oxide is 

receiving huge attention as antibacterial agents because of their stability, non-toxicity, 

and efficient biological properties (Javed et al., 2022; Kumar et al., 2017). Copper oxide 

(CuO) particles are preferably coated with a plant extract to sustain the efficiency and 

durability of the antibacterial performance. The plant extract helps to cap the particles 

on the material by facilitating the slow release of ions (Sebastian & Arruebo, 2019). 
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Besides that, the high surface area also helps in creating a high probability of reaching 

and inhibiting the surrounding bacteria in the external environment (Pandey et al., 2022; 

Tamayo et al., 2016). Magnesium oxide (MgO) has an advantage of being non-toxic. It 

has been recognized as safe by regulatory agencies such as the United States Food and 

Drug (Abdallah et al., 2022; Altaee, 2022). MgO particles are able to damage and 

destroy the cell membrane of bacteria resulting in the leakage of intracellular content 

which can cause the death of the cell (Choudhary et al., 2022; Jin & He, 2011). 

The utilization of plant extract in synthesis methods may enhance the 

antibacterial properties of the particles. Pomegranate rind extract (PRE), commonly 

deemed as an agricultural waste product, is known for its high content of bioactive 

compounds associated with antibacterial properties (Kumar et al., 2022). This is 

attributed to the presence of ellagitannins and other secondary polyphenolic 

compounds, which exhibit broad-spectrum activities against microbes (Celiksoy & 

Heard, 2021). The use of PRE together with metal and metal oxide particles could 

potentially improve its efficiency against antibiotic-resistant pathogens (McCarrell et 

al., 2008). The interaction of PRE with bacteria cell walls may inhibit enzymes and 

directly disrupt the co-aggregation of bacteria (Janani & Estherlydia, 2013). 

Additionally, the bioactive compounds presence in PRE could reduce the biofilm 

formation and eradicate pre-formed biofilms of certain bacterial species (Celiksoy et al., 

2022).  

The synthesis method of antibacterial agents may influence its mechanism of 

action and activity, which can indirectly affect the subsequent antibacterial effect. The 

sol-gel is one of the well-established synthetic approaches for the preparation of metal 

oxide. It creates new surface properties, controls stoichiometry, obtains coatings’ 

homogeneity, large area of substrate coating, and the ability to scale up in the 

fabrication industries (Simon et al., 2021). The sol-gel method involves hydrolysis, 

polymerization, and condensation followed by drying to produce the final metal oxide 

(Rex & dos Santos, 2023). There are two routes of the sol-gel method, which are 

aqueous sol-gel and non-aqueous sol-gel, depending on the nature of the solvent (Bakar 

et al., 2023). Another method to synthesize metal oxide particles is the green synthesis 

method. It is a reliable, biocompatible, and green method which has gained more 
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attention from the scientific community (Jain et al., 2011). It involves the use of 

numerous natural resources such as plants, plants tissues, fruits, microorganisms, and 

algae to synthesize the metal oxide particles (Alhaji & Sujatha, 2022). Furthermore, the 

green synthesis method is environmentally friendly, cost-effective, and a fast alternative 

that avoids the use of harsh conditions, toxic reagents, and expensive chemicals (Mohd 

Yusop & Wan Ismail, 2021). 

Therefore, this research was conducted to fabricate an antibacterial coating for 

fabrics in order to eliminate or reduce odour. Three types of fabrics which are 100% 

polyester, 100 % cotton and blend wool which consist of 20 % wool, 33 % of tencel, 

and 47 % of anti-pilling acrylic were used in this research. In addition, sol-gel and 

green synthesis methods were used to synthesize two different types of modified metal 

oxide particles, namely CuO and MgO to coat into the fabrics. Easily obtained and 

economical are the criteria for the selection of these metal oxides. Besides, there have 

been very few studies on the antibacterial activity of these two metals oxide compared 

to zinc oxide (ZnO) and silver (Ag). To date, there are very few studies on the use of 

modified CuO particles and modified MgO particles as an antibacterial coating for 

fabrics to prevent body odour. The modification of metal oxide particles involved the 

use of bio extracts from natural resources which is pomegranate rind extract. 

Pomegranate rind extract has an antimicrobial property that can exhibit certain species 

of gram-positive bacteria and fungus, which cause body odour (Celiksoy, 2022; 

Celiksoy & Heard, 2021). The modified metal oxide particles were then coated onto the 

fabrics to test its antibacterial and mechanicals performance. The optimization of the 

coating parameters and properties have been considered to produce particles for fabrics 

coating with enhanced antibacterial effects. Lastly, in order to understand the odorant 

composition, an analysis using GC-MS was conducted. Results obtained from this study 

may contribute to the understanding of the relationship between the antibacterial 

activity of the modified metal oxide particles with the types of fabric and synthesis 

methods. 
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1.3 Problem Statement 

Every person has a natural body odour that is produced from a range of 

substances that carry a smell. The accumulation of these substance is important for 

regular bodily function, but excessive accumulation can result in noticeable smells. 

Body odour may change for several reasons such as diet, medications, stress, lifestyle, 

and others. It becomes more apparent to the teenagers as their sweat glands and 

hormones become more active during this time.  

Body odour may contribute to low self-esteem, embarrassment, and even affect 

the personal relationships. The combination of sweat and the growth of certain 

microbes may produce offensive odour (McQueen et al., 2022; Lam et al., 2018). 

However, sweat itself is odourless and provides a cooling effect when the body’s 

temperature rises too high (Baker, 2019). The warmth and dark conditions also provide 

an ideal environment for microorganisms to grow. Offensive odours are released when 

the microorganisms break down the substances contained in sweat (Pessemier et al., 

2022). Besides, body odour can cause rashes, itchy skin, Athlete’s foot, and other 

bacterial infections (Shastri et al., 2012). These infections can also increase the severity 

of punctured wound and cut injuries, especially in diabetic patients (Semkova et al., 

2015). 

Additionally, in Malaysia, there is an increasing concern for an active lifestyle. 

People tend to do physical exercises to keep fit and healthy. Sweat from physical 

activity not merely releases water and salt but also chemicals that, in combination with 

water and salt, can attract certain bacteria to grow (Liu et al., 2022). Clothes that absorb 

this type of sweat can cause foul-smelling due to the reaction of sweat, bacteria, and 

fabric. Therefore, choosing the right types of fabric for physical activity is vital in 

building comfort for the wearer, as the combination of sweat from the skin and the 

growth of bacteria may cause odour.  

The use of deodorants and antiperspirants also can control odour. However, 

excessive use of these products can worsen the situation. It can lead to an increase in 

bacterial diversity, which reduces the density of existing bacteria and open up space for 

new species (Callewaert et al., 2014). This leads to the growth of malodour-causing 
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bacteria that are able to withstand the anaerobic environment in the sweat glands around 

the hair roots (Knight et al., 2017) 

Therefore, the production of antibacterial coating fabrics has been widely 

studied as a potential solution to this problem. The direct interaction between particles 

and bacteria cells on fabric surfaces disrupts cell walls and biological processes, thereby 

reducing odours by affecting proteins and deoxyribonucleic acid (DNA), hence 

disrupting cell functions. Despite the advancements, several research gaps remain in 

this area.  

One prevalent research gap involves the absence of a systematic comparison 

regarding the utilization of plant extract to optimize the sol-gel and green synthesis 

parameters for producing antibacterial particles designed for fabric coating. For 

instance, the study conducted by Perveen et al. (2020) compared the antimicrobial 

activity of the sol-gel and green synthesis methods against a range of pathogens but did 

not integrate plant extract in sol-gel synthesis. Similarly, Haque et al. (2020) did not 

employ plant extract in the preparation of particles using sol-gel method and solely 

discussed the differences in characterization of ZnO, antibacterial and photolytic 

activities between sol-gel and green synthesis methods. A study by Samat & Md Nor 

(2013), showed that ZnO particles produced from sol-gel synthesis method ranged in 

size from 50-200 nm with a spherical shape, while the ZnO particles produced via the 

green synthesis method had a nanorod shape and a size of 100 nm (Rafaie et al., 2014). 

Both synthesis methods utilized Citrus aurantifolia extracts in the process, but the 

synthesis parameters  differed.  Therefore, this study aims to improve the efficiency and 

effectiveness of both processes by systematically comparing the optimization of 

synthesis process using plant extract for the production of antibacterial particles, 

thereby expanding their potential applications. 

Another notable research gap is the limited comprehension of how antibacterial 

coatings impact different types of fabric, their tensile strength, and the generated 

odorants. A study conducted by Gokarneshan et al. (2012) discussed the comparison of 

antibacterial activity on different type of fabrics, but used a different synthesis method 

and failed to report the tensile strength and odour composition of the coated fabrics. 
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Meanwhile, Tan et al. (2019) only reported the antibacterial activity and tensile strength 

of the cotton fabric without comparative analysis with other fabric types. The volatile 

profile of the coated fabrics was not reported in the paper, which limit the determination 

of the effectiveness of coated fabrics in preventing body odour. Furthermore, 

Richardson et al. (2022) discussed the antibacterial activity across various type of 

fabrics and concluded that the antibacterial coated fabric effectively prevents body 

odour. However, no comparison of odorant profile between the fabric types was 

indicated, nor the effect of coating on tensile strength. Consequently, there exists 

research gaps in exploring how antibacterial coatings on different fabric types influence 

tensile strength and evaluating their effectiveness in preventing body odour. 

1.4 Objectives of the Study 

The aim of this research is to fabricate antibacterial coatings for various types of 

fabrics in order to minimize or eliminate odour. The objectives of the research are as 

follows: 

i. To synthesize modified PRE-metal oxide particles using sol-gel and green 

synthesis methods by optimizing the parameters such as pH, amount of plant 

extract and number of coatings. 

ii. To evaluate the antibacterial behaviour of the coated and uncoated fabric against 

different species of gram-positive bacteria. 

iii. To investigate the correlation between the performance of particles on different 

types of fabric and their mechanical properties. 

iv. To analyse the odorant compositions of the coated and uncoated fabrics using 

GC-MS. 

1.5 Scope of the Study 

This study aims to synthesize modified CuO and MgO particles using sol-gel 

and green synthesis methods to produce antibacterial fabric. The study focuses on the 

use of pomegranate rind extract as an antibacterial agent in the modification of 
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particles. The study optimizes the extraction method of the plant extract, by varying 

factors such as temperature and amount of pomegranate rind powder used. The 

compounds presence in the extract is identified using UPLC-QTOF-MS. Several 

important synthesis parameters of modified metal oxide particles such as pH, volume of 

plant extract, and coating cycles were optimized, and the optimum conditions were 

applied to the fabrics in order to create new surface properties with enhanced 

antibacterial properties. 

The modified metal oxide particles performance on different types of fabric 

were evaluated based on the antibacterial performance, mechanical characteristics and 

washing durability. The characterization of modified metal oxide particles is performed 

using XRF and SEM-EDX, while the size of particles was measured using particle size 

analyser. The antibacterial activity of the coated fabrics towards three species of gram-

positive bacteria that cause body odour, namely Staphylococcus epidermidis, 

Brevibacterium linens, and Cutibacterium acnes were studied. The mechanical testing 

of coated and uncoated fabric samples is carried out using a universal tensile testing 

machine. The tongue tear strength test was run for both cotton and polyester fabrics, 

while the breaking load test was carried out for cotton, polyester, and blended wool 

fabric samples. The air permeability of the fabric samples was determined using an air 

permeability test device to ensure ventilation. The washing durability of the coated 

fabric were conducted to evaluate the effectiveness and durability of the modified 

particles on the fabric. Finally, the study analysed the odorant composition of the coated 

and uncoated fabrics using GC-MS for a better understanding of their odour 

compounds. 

1.6 Significant of the Study 

Fabric can serve as a breeding ground for microorganisms due to its ability to 

provide a favourable environment for microbial growth when in contact with skin, 

leading to unpleasant odours. This is due to the fact that fabrics can trap odorous 

compound, thereby increasing the surface area on which bacteria can thrive (Van 

Herreweghen et al., 2020; Revathi et al., 2015). Coating fabrics with metal oxide 

particles offers an excellent solution since it provides a large surface area that can 
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interact with microbial membranes and has unique physical and chemical properties 

compared to bulk materials (Sharma et al., 2022; Subhankari & Nayak, 2013). 

Therefore, developing antibacterial fabric is essential in order to ensure the safety and 

well-being of wearers. 

Recent advancements in the field of technology have opened up a new era for 

the utilization of materials as antibacterial agents. The new modified metal oxide 

particles synthesis method is environmentally benign since it uses water as a solvent. 

Both synthesis methods are also straightforward, easy to carry out under mild 

conditions and inexpensive. The use of MgO and CuO as precursors is expected to 

reduce operating costs since they are less expensive compared to other metal oxide 

precursors.  Moreover, both substances have antibacterial properties, and optimizing the 

synthesis parameters can enhance the antibacterial property of the coated fabric. 

Besides, the use of pomegranate rind extract as antibacterial agent is anticipated to 

preserve the fabric’s softness and smooth texture, which indirectly enhances the 

wearer’s comfort. 

Examining the antibacterial activity on different types of coated fabric is 

essential since it may give a solution for eliminating or minimizing odour. For instance, 

very limited research has been conducted in determining the antibacterial activity on 

different types of coated fabric to prevent odour. Therefore, this study aims to 

determine the efficacy of antibacterial activities of coated fabric in preventing odour, 

leading to new knowledge in this field. Furthermore, the research’s impact on society 

and the nation can be significant by enhancing the quality of fabric used by athletes, 

militaries, and others to prevent odours. This research is also expected to be 

internationally competitive, emphasizing innovation that advances new knowledge. 

Lastly, the results obtained from this research can be used to transform knowledge into 

products or solutions for the industry, directly upgrading the quality of fabric. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction 

This chapter attempts to review the relevant literatures and researches related to 

the production of antibacterial coatings for fabrics using various synthesis methods. It 

begins by discussing the concept of body odour in Section 2.2, followed by an 

exploration of its underlying causes in Section 2.3, and strategies to mitigate body 

odour in Section 2.4. Subsequently, the discussion delves into textiles, a key focal point 

of this study, outlined in Section 2.5. Section 2.6 focuses on the antibacterial agents, 

particularly metal oxides and natural-based agents specifically pomegranate, and 

examining their mechanisms in bacteria inhibition or eradication. Furthermore, Section 

2.7 emphasize on the significance of sol-gel synthesis and green synthesis methods in 

generating antibacterial agents, outlining their advantages and limitations. Finally, 

Section 2.8 discusses the effect of coatings on the mechanical properties of the fabrics, 

such as air permeability and tensile strength.  

2.2 Body Odour 

Body odour can be defined as the unpleasant odour coming from the human 

body.  It is a characteristic trait of humans and there are several factors influencing it, 

such as sex, genetics, age, diet, and disease. Body odour is a widespread problem 

suffered by many people. It is not a disease but rather a symptom. Generally, men 

produce more sweat and intensified odour due to larger sweat glands and higher 

quantities of volatile fatty acids than women. According to Pandey & Kim (2011), body 

odour can be categorized into three types: skin odour (perspiration), exhaled breath 

odour (released from the human oral cavity) and urine (released from human excreta). 

Body odour, especially from perspiration, is considered as a social taboo in most 
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cultures and may contribute to low self-esteem and even affect interpersonal social 

skills.  

The surface of human skin has about 2-4 million sweat glands comprising 

eccrine, apoeccrine and apocrine sweat glands (Ezure et al., 2021). A human’s foot 

alone has over 250,000 sweat glands, which can produce up to a half-pint of sweat per 

day (Mishra et al., 2021). The major types of sweat glands found on the surface of skin 

is eccrine which mainly distributed in the axilla (Chen et al., 2020). Concurrently, the 

apocrine sweat glands also can be found in the axilla, as well as breasts and perineum 

(Berth-Jones & Tebbs, 2022). The skin surface condition and regulation of body 

temperature is controlled by the eccrine sweat glands (Cramer et al., 2022) while the 

human skin niche is colonized by a diverse species of bacteria (Natsch & Emter, 2020). 

The complex interaction between the biochemical pathway of skin glands and bacterial 

enzymes initiates the production of odorant compounds, thus causing the body odour 

(Pickett, 2017). 

2.3 Main Cause of Body Odour  

Initially, sweat is odourless, but after being degraded by the bacteria present on 

human skin, it becomes odorous. The odorous compounds are caused by gram-positive 

microbial metabolisms such as Propionibacteria, Staphylococcus, Bacilli, and 

Brevibacterium (James, 2020; Mayer et al., 2021). The microflora presents on the skin 

surface eventually find the secreted amino acids to break down via multiple metabolic 

processes (Natsch & Emter, 2020). The branched free amino acids responsible for 

odour are dehydrogenated by microbes into volatile fatty acids to create particular 

odoriferous compounds (Kim et al., 2021). Odour is produced with an association 

between high population densities of Staphylococci, along with aerobic Coryneform 

bacteria (James, 2020). It is also occurred due to the high population densities of 

microbial exo-enzymes, like lipases, proteases, and callous degrading enzymes (Pickett, 

2017). The intensity of odour depends on the quantity of the enzymes for the 

degradation of sweat components and the number of bacteria present during that 

process (de Oliveira et al., 2021; Mark & Harding, 2013). Body odour is composed of 

volatile organic compounds (VOCs) that contain various free fatty acids such as 
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propionic, isobutyric, butyric acids, hexanoic acid, octanoic acid and isovaleric acid, as 

well as thioalcohols (Hand, 2019). The presence of VOCs in the human body is shown 

in Table 2.1 

According to Ara et al. (2006), human sensory tests detected S. epidermidis, S. 

hominis, and Corynebacterium minutissimum to produce mild odour. On the other hand, 

S. aureus, P. granulosum, P. avidum, and Bacillus sp. were detected to produce intense 

odour, particularly the genus Bacillus. The characteristic of odour is attributed to the 

presence of S. epidermis and P. acnes, along with the quantity of isovaleric and 

propionic acids, and the intensity can be increased with the increasing population of 

Bacillus sp. (Stevens et al., 2014). Isovaleric acid and isobutyric acid are the main 

contributors to plantar malodour due to their pungencies (Pickett, 2017). These acids 

can be detected at a low concentration of about 0.17 µg/m³ and 0.72 µg/m³, 

respectively. Ara et al. (2006) reported that less than 3% of foot odour composition is 

from isovaleric acid, which is nearly 1/2000 the concentration of acetic acid detected in 

individuals. Meanwhile, acetic acid and hexanoic acid have a pungent odour (Wang et 

al., 2021; Kanlayavattanakul & Lourith, 2011), while octanoic acid and carbamic acid 

have a mild odour (Stevens et al., 2014). 

Although microbial metabolism causes odour, the problem also aggravated by 

poor ventilation of the skin covered by the attire. This is because it retains the skin’s 

moisture, creating an environment for microbial growth. The flourishing microbial is 

responsible for body odour, which is expected to increase in amount when there is poor 

ventilation of the attire and high level of sweat. Poor hygiene and engaging in sports, 

mainly running, may create a more significant problem because sweat provides an ideal 

environment for microbial growth (Van Vuuren et al., 2019). Proper hygiene may 

eliminate some of the microbes that cause body odour. However, excessive hygiene 

may disrupt the skin’s environment, leading to other problems such as fungal infections. 

Besides, the diet also may affect body odour by excreting the foul-smelling or VOCs 

compounds through sweat glands (Bontempi et al., 2023). To combat this problem, it is 

essential to understand the cause that contributes to this problem, as there is no quick 

fix cure for body odour problems.  
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Table 2.1 The volatile organic compounds presence in human body. 

Chemical class Compound Possible origin References 

Acid Octanoic acid Breath, skin (sebaceous gland secretions) (Girod et al., 2012; 

Vishinkin et al., 2021) 

 Acetic acid Breath, skin (human metabolism, microbial metabolism) (Kruza & Carslaw, 2019) 

 Propanoic acid Breath, skin (microbial metabolism) (Showering et al., 2022) 

 Hexanoic acid Breath, skin (microbial metabolism) (Drabińska et al., 2021) 

 Decanoic acid Breath, skin (sebaceous gland secretions) (Vishinkin & Hossam 

Haick, 2022) 

 Dodecanoic acid Skin (diet) (Mohd Kamal et al., 2020) 

 Nonanoic acid Breath, skin (sebaceous gland secretions) (Drabińska et al., 2021) 

 Benzoic acid Breath, skin (sebaceous gland secretions) (Vishinkin & Hossam 

Haick, 2022) 

 Isovaleric acid Skin (microbial metabolite) (Showering et al., 2022) 

 Isobutyric acid Breath, skin (microbial metabolite) (Zhang et al., 2022; Zou & 

Yang, 2022a) 

 Valeric acid Skin (microbial metabolite) (Mohd Kamal et al., 2020) 
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Table 2.1 Continued 

Chemical class Compound Possible origin References 

Alcohol Isocaproic acid Breath, skin (microbial metabolite) (Gio-Batta et al., 2020) 

 Ethanol, 2-butoxy Skin (microbial metabolite) (Rankin-Turner & 

McMeniman, 2022) 

 Benzyl alcohol Breath, skin (toluene metabolism, microbial metabolite) (Zou & Yang, 2022a) 

 1-Dodecanol Breath, skin (microbial metabolite) (Mitra et al., 2022) 

 Phenylethyl alcohol Skin (microbial metabolite) (Rankin-Turner & 

McMeniman, 2022) 

 2-Ethyl-1-hexanol Breath, skin (exogenous) (Mitra et al., 2022) 

Aldehyde Decanal Breath, skin (fatty acid degradation, microbial metabolite) (Kruza & Carslaw, 2019) 

 Hexanal Breath, skin (fatty acid degradation) (Zou & Yang, 2022a) 

 Benzaldehyde Breath, skin (benzyl alcohol oxidation, microbial metabolite) (Willems et al., 2022) 

 Nonanal Breath, skin (fatty acid degradation) (Zou & Yang, 2022a) 

 Octanal Breath, skin (fatty acid degradation) (Zou & Yang, 2022b) 

 Furfural Breath, skin (unknown) (Wilkinson et al., 2020) 

 Heptanal Breath, skin (fatty acid degradation) (Haze et al., 2001) 
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Table 2.1 Continued 

Chemical class Compound Possible origin References 

Aromatic Xylenes Breath, skin (unknown) (Vishinkin & Hossam  

2022) 

 Cymene Breath (diet) (Papaefstathiou et al., 2020) 

 Naphthalene Skin (microbial metabolite) (Zou & Yang, 2022b) 

 Styrene Breath, skin (microbial metabolite) (Rankin-Turner & 

McMeniman, 2022) 

 Ethylbenzene Breath, skin (exogenous) (Rankin-Turner & 

McMeniman, 2022) 

 Phenol Breath, skin (microbial metabolite) (Fitzgerald et al., 2020) 

Hydrocarbon Undecane Breath, skin (lipid peroxidation, microbial metabolite) (Eshima et al., 2020) 

 Dodecane Breath, skin (microbial metabolite) (Eshima et al., 2020) 

 Pentadecane Breath, skin (lipid peroxidation, microbial metabolite) (Fitzgerald et al., 2020) 

 Hexadecane Breath, skin (lipid peroxidation) (Eshima et al., 2020) 

 Decane Breath, skin (lipid peroxidation, microbial metabolite) (Eshima et al., 2020) 

 Heptadecane Breath, skin (lipid peroxidation) (Rankin-Turner & 

McMeniman, 2022) 
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Table 2.1 Continued 

Chemical class Compound Possible origin References 

Hydrocarbon Tridecane Breath, skin (microbial metabolite) (Fitzgerald et al., 2020) 

 Octadecane Breath, skin (lipid peroxidation)  

 Tetradecane Breath, skin (microbial metabolite) (Eshima et al., 2020) 

Ketone 6-Methyl-5-hepten-2-one (sulcatone) Skin (oxidation of squalene, breath) (Dalvi & Rossky, 2010) 

 3-Hydroxy-2-butanone (acetoin) Breath, skin (microbial metabolite) (Fitzgerald et al., 2020) 

 6,10-Dimethyl-5,9-undecadien-2-one 

(geranylacetone) 

Skin (oxidation of squalene) (Dalvi & Rossky, 2010) 

 Acetophenone Breath, skin (unknown) (Rankin-Turner & 

McMeniman, 2022) 

Terpene Limonene Breath, skin,(diet, cleaning product) (Amann & Smith, 2013) 

 Pinene Breath, skin (exogenous) (King et al., 2010) 

Terpenoid Linalool Breath, skin (unknown) (Rankin-Turner & 

McMeniman, 2022) 

 Terpineol Breath, skin (exogenous) (Amann & Smith, 2013) 

Thiozole Benzothiazole Breath, skin (exogenous) (Rankin-Turner & 

McMeniman, 2022) 
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2.4 Minimizing Body Odour 

Deodorants and antiperspirants are commonly used to minimize or prevent body 

odour. Deodorant acts by killing skin flora and blocking the production of malodour 

compounds produced by bacteria metabolites (Yuan et al., 2021). The use of 

antiperspirants may help in reducing sweat as they can keep the skin dry, which 

eventually inhibits the growth of microbes on the skin (Srikrishnan, 2022). The 

aluminium chloride (AlCl3) contained in antiperspirants helps in clogging the sweat 

ducts in the skin, thus reducing the production of sweat (Shukla et al., 2019). However, 

the propylene glycol, and benzalkonium chloride contained in most of these products 

could decrease the bacteria growth and, in long term, alter the skin microbiome (Wood 

& Cock, 2022). According to McLoughlin et al. (2022), the use of antiperspirants for a 

long time was found to increase of the presence of odour-producing Actinobacteria in 

individuals. Moreover, the reaction of sweat and AlCl3 causes the de-coloration and 

degradation of the fabric fibres (Srikrishnan, 2022). 

Maintaining proper hygiene is crucial to minimize body odour resulting from 

microbial digestion of sweat. Regular showers and the use of antibacterial soaps can aid 

in reducing body odour by eliminating unpleasant smells. The antibacterial soaps are 

effective in killing microbes on the skin, thereby directly reducing the microbes 

responsible for body odour. However, according to Food and Drug Administration 

(2019), the presence of triclosan and triclocarban in antibacterial soaps can contribute to 

bacterial resistance and environmental pollution. Additionally, changing attire regularly 

is important, as the microbes could adhere to clothing and contribute to body odour. 

Wearing clean clothes may help to decrease the number of microbes on the skin. 

Nevertheless, due to busy schedules related to work or school activities, it is often 

challenging to shower and change the attire frequently.  

The use of appropriate fabric in the manufacturing of attire is also important in 

order to prevent body odour. Fabric can be a host for odour causing microbes and the 

odoriferous compounds. According to McQueen & Vaezafshar (2020), the reaction of 

skin microbiome with textile could produce more intense odour than in axillae. The 

chemical composition of fabric materials plays a crucial role in the trap and release 
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actions of body odour (Yao et al., 2015). Cotton is susceptible to microbial degradation 

and may cause discoloration, hygiene issues, and bad odour (Karim et al., 2020). The 

use of polyester and nylon fabric may increase perspiration and directly increase the 

body odour (Thilagavathi & Rathinamoorthy, 2022). Bamboo fibre possesses 

antimicrobial properties and acts as a bacteriostatic bio-agent due to the presence of 

bamboo cane substance in the fibre (Jais et al., 2023). However, its limited availability 

in the market and higher cost makes it less accessible for widespread use. Blending both 

natural and synthetic fibres presents a potential solution to address body odour issues 

and enhance the absorption of sweat (Wang et al., 2020). Additionally, this blending 

approach can mitigate the negative characteristics of individual fibres by producing a 

diverse range of yarns with desirable attributes (Kahoush & Kadi, 2022). Nevertheless, 

the utilization of blended fibres remains restricted due to challenges for commercially 

separating them back into their original components (Peterson et al., 2022). 

The removal of sweat glands can aid in reducing body odour by eliminating the 

medium for bacteria propagation, namely sweat (Wang et al., 2022). The results of 

sweat gland removal are typically immediate and permanent in the treated area. 

However, sweat glands removal surgery can lead to both temporary and, in rare cases, 

lasting side effects. The temporary side effects may include infection, bruising and pain 

at the surgical site (Song et al., 2023). Rare negative side effects may involve nerve 

damage leading to loss of sensation under the arm, underarm scarring, and low blood 

pressure (Schlereth, 2009). The heat intolerance may arise post-surgery due to inability 

of the body to produce sweat for cooling purposes and maintaining body temperature 

(Baker, 2019). Besides, the excessive sweating may occur in other parts of the body, 

and causing discomfort for some individuals. Moreover, the sweat glands removal 

surgery is costly, making it unaffordable for many. 

Recently, there has been a growing interest in the use of antibacterial fabric 

prepared using antibacterial agents such as metal ions and natural resources. These 

fabrics act as a medium to kill or inhibit skin bacteria (Bakar et al., 2023). In addition, 

fabric coated with metal ions can help in avoiding skin injuries and promote 

regeneration of the damaged tissue (Thampi et al., 2015). Research conducted by Dykes 

(2015), has found that CuO particles coated on fabric can improve skin elasticity by 
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reducing the fine lines and wrinkles, resulting in a younger-looking appearance. 

Moreover, a low concentration of metal ions is required in the production of 

antibacterial fabric in order to destroy the key intracellular protein of bacteria (Li et al., 

2021). The destructive mechanisms involved in metal ions antibacterial activity include 

disruption of the cell wall membrane, damage of bacteria membrane, oxidation of key 

proteins, and interruption of electron transport chains (Godoy-Gallardo et al., 2021). A 

natural defensive amino acid found in natural resources is considered as a promising 

antibacterial candidate (Li et al., 2021; Kaskow et al., 2020). While numerous studies 

have explored antibacterial coatings for fabrics, there remains a scarcity of research 

investigating the effect of antibacterial coatings on natural, synthetic and blend fabrics 

concerning their effectiveness in preventing body odour. 

2.5 Textiles 

Textiles have been widely used in many industries for several decades, 

including clothings, furnishings, automotive textiles, sports equipment, medical 

devices, and hygiene applications (Antinate et al., 2023). They are composed of a 

natural or synthetic yarn fibres that are interlaced through processes such as weaving, 

knitting, crocheting, knotting, or pressing (Jahandideh et al., 2021). Various types of 

fibres used in the production of textile is shown in Figure 2.1. 

The production of textiles can be traced back to ancient times, with women 

primarily manufacturing them manually at home until the seventeenth century (Sinclair, 

2015). The industrial revolution in the late 18th century marked the beginning of mass 

textile production, with the invention and patenting of the world’s first sewing machine 

by Thomas Saint in 1790 (Nayak & Padhye, 2015). In the 1850s, Isaac Merritt Singer 

developed the high-speed sewing machine, surpassing human capabilities in the 

production of textile (Strauven, 2020). Further advancements occurred in the 20th 

century, with the introduction of steam engines replacing manual power for sewing 

machines (Aloviddinovich, 2020). Nowadays, modern electronic machines have led the 

rapid growth of the textile industry, resulting in competitive pricing and the production 

of technical textiles.  
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The global production of textile fibres has witnessed substantial growth, 

increasing from 34 million metric tons (MMT) in 1975 to 109 MMT in 2020, and the 

demand for textiles is expected to reach 149 MMT by 2030 (Statista Research 

Department, 2022). In 2021, the sales values for global technical textile were USD 

993.6 billion and is estimated to increase by 4.0% at compound annual growth rate 

(CAGR) from 2022 to 2030 by Asia Pacific region became the largest worldwide 

market with over 48% revenue share due to the increase and high demand for clothing 

and apparel (Grand View Research, 2020). The presence of multiple e-commerce 

platforms such as Shopee, Lazada and others has added the positive growth in the 

textile market. It is estimated that the consumption of textile will increase every year 

due to the growing population, rapid urbanization in economic, favourable government 

policies and significant technological advancement in conducive textile (Shaw, 2022).  
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Figure 2.1 The types and sources of fibres for the production of textiles.  
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2.5.1 Natural-based Textiles 

 Natural-based textiles can be classified into three types: plant-based textiles, 

animal-based textiles, and mineral-based textiles. They are produced from natural 

sources of fibres, either from plants, animals, or minerals (Lopes et al., 2021). However, 

mineral-based textiles will not be further discussed as they are not commonly used in 

textile manufacturing. Natural-based textiles are differed from each other in terms of 

colour, surface contour, chemical structure, and cross-sectional shape depending on the 

origin of the fibres (Nayak et al., 2020). 

Recently, the demand for natural-based textile has been rising, and thus 

becoming a key factor to the growth of textile industry. The fact that natural-based 

textiles are stronger than synthetic-based textiles have risen their popularity (Shaw, 

2022). Many manufacturing sectors have increased their usage of natural fibres due to 

the demand for long-lasting products (Wankhede et al., 2023). The natural-based 

textiles have a wide range of applications and versatility (Patil et al., 2022). They can be 

used in the production of clothing, furnishings, car upholsteries, sports equipment, 

medical devices, and many more. In addition, the natural-based textiles are considered 

sustainable, renewable, and eco-friendly as they able to break down in the environment 

over time (Shaw, 2022). Due to the growing concern about environmental impact 

among the consumer, the production of eco-friendly materials has had a positive impact 

on manufacturers, as these materials have become more popular amid the end users.  

2.5.1.1 Plant-based Textiles 

 Plant-based textiles are derived from different parts of plants, such as seeds, 

bast, and leaves. These components mainly composed of cellulose, lignin, and 

hemicellulose (Promhuad et al., 2022). The physical and chemical properties of the 

plant-based textiles depend on the chemical composition of the fibres, growing 

conditions of the plant, and extraction process (Muthu & Gardetti, 2020). Due to their 

abundance, comfortability, softness, and breathability, plant-based textiles have gained 

popularity in clothing applications (Syduzzaman et al., 2020).  
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Cotton is the most commonly used plant fibre in the production of textiles, 

accounting for about half of the textile production. It belongs to the Malvaceae family 

and the Gossypium genus (Wendel & Grover, 2015). Cotton is known for its softness, 

biocompatibility, breathability, and comfort, making it suitable for human use (Imran et 

al., 2020). It is the most abundant natural polymer on earth and mainly composed of 

cellulose, accounting for about 80-90%, along with other macromolecules such as 

hemicelluloses, waxes, protein, and pectin (Pullas Navarrete & de la Torre, 2022; Tan 

et al., 2019). It is also composed of a lengthy series of glucose units connected through 

oxygen bridges between the C−1 and C−4 positions (Peter, 2021). This connection, 

known as a glycosidic bond, is formed with the removal of a water molecule (Etale et 

al., 2023). Hydrogen bonding, which occurs between the hydroxyl groups of adjacent 

molecules, typically stabilizes the cellulose chains present within cotton fibers (Poletto 

et al., 2014). This interaction contributes to the strength and durability of the cotton 

fabric.  

Also, owing to the richness of cellulose content in the fibres, cotton has high 

absorption efficiency. This is due to the high number of free hydroxyl groups exist in 

the fibres (Rosli et al., 2019). Begum et al. (2021), have reported that cotton can absorb 

moisture approximately 24 to 27 times its own weight. Besides, cellulose is also known 

as one of the renewable carbon sources which can be degraded by microorganisms (Abe 

et al., 2021). The deterioration of cotton in terms of weight and strength occurs due to 

the depolymerization of the cotton fibres (Pullas Navarrete & de la Torre, 2022). The 

degradation of cotton by fungi begins from the inner to the outer layer of fibres, while 

the degradation by bacteria starts from the fibre surface to the inner layer (Zayed et al., 

2021). In order to enhance the quality of the cotton fabric, numerous studies on 

antimicrobial treatments using metal and metal oxide particles have been conducted. 

Such research includes the use of Ag/chitosan composite (Gao et al., 2022), nano silica 

dioxide (SiO2) loaded Ag particles (Amibo et al., 2022), chitosan Schiff base-titanium 

dioxide-zinc oxide (base-TiO2-ZnO) nanocomposites (Refaee et al., 2022), ZnO 

particles (Shehabeldine et al., 2022), Ag-CuO-zeolite particles (Sk et al., 2023), 

titanium oxide (TiO) particles (El‐Naggar et al., 2022), MgO particles (Ramezani 

Farani et al., 2023), and many more. 
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2.5.1.2 Animal-based Textiles 

 Animal fibres, also known as natural protein fibres, such as wool, hair, and silk, 

are largely composed of certain proteins (Roy Choudhury, 2023). They are formed 

through polymerization of peptide bonds by a series of amino acids into 

macromolecular chains (Xueliang, 2020). The physical characteristics of these fibres is 

differed in terms of length, fineness, internal structure, and shape (Nayak et al., 2020). 

However, the chemical structure of these fibres is associated with wool (Nayak & 

Padhye, 2015). Among all animal fibres, wool plays an important role in textile 

industry.  It has excellent properties which endow it with different unique styles. Such 

properties are high water absorption, elasticity, thermal stability, and stain resistance (Li 

et al., 2023). Wool fabrics are originated from sheep, camel, rabbit, and goat  

(Xueliang, 2020). Comprising roughly 97% protein and 3% fat, wool possesses unique 

characteristics that make it particularly suitable for specific uses (Das & Das, 2022). 

The wool fibres are commonly used to produce technical products such as apparel, 

blankets, cushions, carpets and many more (Allafi et al., 2022). Wool fibre is widely 

used in textile applications due to its thermal characteristics. Additionally, wool fabric 

is eco-friendly, soft, durable, and tear-resistant (Bharath et al., 2019). Wool fibre 

possesses a unique and versatile physical and chemical property due to its composition 

and macromolecule spatial structure (Zhu et al., 2021). The shape of wool fabric 

remains the same at temperature below 100 °C (Xueliang, 2020). Wool fabric has high 

moisture absorption due to the large amount of hydroxyl groups, which make it 

comfortable to the wearer (Khosravi & Montazer, 2023).  

 The main component of wool fibres is a fibrous protein substance called keratin 

(Navone et al., 2020). Keratin can be found in cuticles and cortical cells (Andra et al., 

2021). Keratin contains sulphur, which is bound to a lipid membrane cell complex 

(Giteru et al., 2023). The strength and thermal stability of the fabric are improved 

through the crosslinking of keratin fibres and polypeptide chains (Zhu et al., 2023).  

However, the presence of cysteine bonds in keratin, which are susceptible to sunlight, 

may weaken the fabric (Wilkie et al., 2016). Keratin also acts as a nutrient and energy 

source for microbial growth, which can indirectly cause damage to the fabric. Infected 

fabric may induce health problems such as irritation to the consumers (Rohani Shirvan 
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et al., 2022). In terms of chemical characteristics, wool exhibits resistance to all 

concentrations of mineral acids, even at elevated temperatures, although it can be 

damaged by oxidation due to nitric acids (Lakshmanan, 2022). On the other hand, wool 

is notably susceptible to substances with alkaline properties. While strong alkaline 

substances can impact wool fibers, those with a weak alkaline nature do not have an 

effect (Mostafizur Rahman et al., 2023). Given the unique chemical characteristics of 

wool, numerous research studies have been conducted to functionalize the wool fabric 

with different types of particles. The bonding formation of wool with metal oxide 

particles such as ZnO, MgO, and TiO2 could provide hydrophilic, UV protection, and 

good colourfastness properties to the fabric (Abdelrahman et al., 2020). These new 

characteristics could facilitate the dyeing and finishing process of the fabric. Coating 

wool fabric with particles such as Ag (Hasan et al., 2021; Sadeghi-Kiakhani et al., 

2021), ZnO (Abdelghaffar et al., 2021; Hassabo et al., 2023), and MgO (Kafafy et al., 

2021) offers excellent antimicrobial characteristics.  

2.5.2 Synthetic-based Textiles 

 Synthetic-based textiles are produced through various processes by adding 

chemicals to natural processing materials. This process combines monomers into 

polymer chains to form fabrics with different characteristics (Egan & Salmon, 2022). 

Examples of synthetic fabrics are polyester, nylon, polyamide, and acrylic. Synthetic 

fabrics are easy to maintain, lightweight and poor conductors of heat (Karimah et al., 

2021). They are often considered inexpensive and have specific characteristics not 

found in their natural counterparts like waterproofing, flame resistance, elasticity, and 

wrinkle resistance (Pironti et al., 2021). However, unlike the natural-based textiles, the 

manufacturing of synthetic textiles involved the use of toxic chemicals in the 

polymerization process, which is harmful to the environment (Patti et al., 2020). The 

synthetic textiles also serve as a medium for microbial growth (Andra et al., 2021). 

According to Jeevanandam et al. (2022), the chemical-based synthetic textiles exhibit 

toxicity towards microorganisms, which can help control the growth of microbes. The 

synthetic textiles have a rod-like structure with long and circular filament fibres, giving 

them a smooth and shiny appearance (Afzal et al., 2020).  
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Polyester is the most well-known and widely used synthetic fabric, synthesized 

through a chemical process that involves various elements such as coal, water, air, and 

petroleum (Lee, 2017). It is primarily composed of compounds within the ester 

functional group. The typical method of producing polyesters involves a condensation 

reaction between an organic alcohol, which contains hydroxyl (OH) groups, and a 

carboxylic acid, which contains carboxyl (COOH) groups (Kobayashi & Uyama, 2019). 

The reaction between these two functional groups results in the formation of the 

distinctive ester linkage. Poly(ethylene terephthalate), commonly referred to as PET, is 

a frequently used type of polyester (Singh et al., 2022). The creation of this type of 

polyester involves a reaction between an acid, benzene-1,4-dicarboxylic acid (also 

known as terephthalic acid), which has two −COOH groups, and an alcohol, ethane-1,2-

diol (also known as ethylene glycol), which has two −OH groups (Wang et al., 2024). 

In the process of forming ester linkages, these substances undergo a reaction, and each 

formation of an ester bond results in the expulsion of a water molecule (Wang et al., 

2022). 

Polyester fabric is commonly used as an alternative to cotton and linen fabrics. 

According to Business Research Insight, (2022), the global market size of polyester was 

USD 805.9 million in 2022, and it is expected to reach 973.6 million in 2028. Polyester 

is widely used in apparel applications such as children’s wear, lingerie, pants, dresses, 

and raincoats. This is due to its elastic characteristics, wrinkle and shrinkage resistance, 

pleat retention, easy-care properties, and resistance to damage from sunlight (Tan et al., 

2019). According to Ketema & Worku (2020), polyester fabric is hydrophobic and not 

capable to form hydrogen bonds with other molecules, making it resistant to microbial 

growth. However, the presence of fibre lubricants and spinning oil used during the 

finishing process can provide sufficient nutrients for the growth of microorganisms 

(Andra et al., 2021).  

 Blending polyester with natural-based fibres could enhance the quality of the 

polyester fabric. For example, blending polyester with wool could reduce fading and 

eliminate crushing, making it suitable for furniture applications and pillow filling 

(Deopura & Padaki, 2015). However, the lack of hydrophobic properties in polyester 

can lead to poor adhesion of coatings and shorten the durability of finishing treatments, 
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which resulted in hygiene and health issues of the consumers (Prorokova et al., 2022). 

Thus, research on modification of polyester to have more hydrophilic characteristics has 

been conducted to overcome this problem using materials such as Ag (Zhao et al., 

2023) and titanium dioxide (TiO2) (Abdelghaffar et al., 2020). Meanwhile, blending 

polyester with cotton resulted in high moisture absorption and easy-care characteristics, 

although it reduces moisture absorption from polyester and weakens wrinkle recovery 

from cotton (Tan et al., 2019). The blending fabrics can cover up the negative 

characteristics of both fibres.  

 Coating fabrics with metal oxide particles can also enhance their quality. Hanh 

et al. (2016) determined that the antimicrobial efficacy of silver (Ag) is enhanced when 

bound to polyester/cotton fabric, although this efficacy varies with the fabric type. 

Wool has the lowest antimicrobial performance, followed by polyester/wool, and 

polyester fabric, due to the different concentrations of Ag absorbed by the fabric 

(Klemenčič et al., 2013).   

2.6 Particles 

Particles can be defined as small pieces or amount of a substance characterized 

by their physical or chemical properties such as volume, density, or mass (Gross-Rother 

et al., 2020). It can be divided into metal-based, metal oxide-based, natural-based, 

carbon-based, and ceramic-based depending on their composition (Joudeh & Linke, 

2022). However, only metal oxide-based and natural-based particles will be further 

discussed in this study. As for size and shape of particles, it can be varied and are 

generally classified based on their sizes (Amidon et al., 2009). The particles within the 

range of 1-1000 µm are called microparticles, while those between 2500 to 10,000 nm 

are considered coarse particles (Kumbhar et al., 2023; Lengyel et al., 2019). The fine 

particles typically range from 100 to 2500 nm, while nanoparticles possess sizes smaller 

than 100 nm (Kumbhar et al., 2023). The size of particles is important as it can 

influence various properties such as surface area, porosity, optical properties, electrical 

conductivity, magnetic behaviour, and biological attributes, that directly affecting the 

properties and functionalities of the materials or products (Nguyen et al., 2021; 

Zwijnenburg, 2021).  
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2.6.1 Metal oxide-based Particles as Antibacterial Agent 

Metal oxides have been used as antibacterial agents since ancient times, when 

Egyptians, Romans, Greeks, and Persian kings used them for preservation of food and 

water disinfection, with records dating back to 450 BC (Gold et al., 2018). The 

discovery of antibiotics in 1920 reduced the use of metal oxides as antibacterial agents 

in many applications (Sharma et al., 2022). However, long-term use of antibiotics 

caused mutation of bacteria cells resulting in the resistance of bacteria from multiple 

mechanisms towards antibiotics (Figure 2.2) (Pulingam et al., 2022; Sánchez-López et 

al., 2020; Bakkeren et al., 2020). This is due to the agglomeration of bacteria, 

irreversibly adhere to substrates, and forms biofilms (Gold et al., 2018).   

 

Figure 2.2 The timeline of the discovery of antibiotic and antibiotic resistance.  

Source: Dam (2018) 

With growing concern of bacterial resistance, metal oxides have been explored 

as antibacterial agents due to their application history. Metal oxide-based particles are 

often used in the form of salt-based additives due to the high cost of metal oxide in its 

pure form (Jamshideasli, 2022). Metal oxide-based particles are not a new technology 

in the textile industry. They have been widely used to develop efficient antibacterial 

textiles in recent years (Bhandari et al., 2022). Metal oxide-based particles are 
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considered a promising solution against antibiotics as they can address the gaps where 

antibiotics often fail (Khalil et al., 2021). Both antibiotics and metal oxide-based 

particles able to recognize bacterial cells through the presence of bacteria’s metal 

transport system and metalloproteins (Gold et al., 2018; Yin et al., 2023). However, 

unlike antibiotics, the antibacterial activity of metal oxide-based particles occurs via 

multiple mechanisms (Subhan, 2020).  

Metal oxide-based particles typically have a size ranging from 1 to 100 nm, yet 

it depends on their source or application (Battistini et al., 2020). The small dosage of 

metal oxide-based particles is required in order to inhibit the bacteria growth as it 

provides a strong and targeted antibacterial activity (Rosli et al., 2021). Their small 

particle size and large surface area to volume ratio have permit the interaction with 

biofilms and bacteria cells (Gold et al., 2018). Metal oxide-based particles also can be 

dissolved faster in a given solution and be easily embedded into fibre’s polymeric 

matrices (Zakhireh et al., 2022). Therefore, they could give a higher release of metal 

ions, and a more potent antimicrobial effect to the fabric (Stanić & Tanasković, 2020). 

The antibacterial activities of metal oxide particles also are greatly affected by its 

physicochemical properties including size, shape, chemical modification, coating, and 

mixture ratios with other particles and solvent (Dediu et al., 2022). Besides, the 

physiological state of the bacteria such as growth rate, biofilm, planktonic, stationary, 

or starvation phase also affect the sensitivity of the bacteria towards metal oxide 

particles (Chakraborty et al., 2022). The ratio of the bacteria to particles and 

environmental factors such as aeration, pH, and temperature further contribute to the 

toxicity of particles to bacteria (Khorsandi, Keyvani-Ghamsari, et al., 2021).  

The toxicological effects of metal oxide-based particles on bacteria depend on 

the types of bacteria being targeted (Ameen et al., 2021). This is due to the direct 

contact of metal oxide-based particles with the cell wall of gram-positive and gram-

negative (Awassa et al., 2022). Gram-positive bacteria have a negatively charged 

surface and a thick layer of peptidoglycan (Rohde, 2019). Meanwhile, gram-negative 

bacteria have a more complex structure with a negatively charged surface (Alfei & 

Schito, 2020). Positively charged particles and the negatively charged bacterial cell wall 

attracted to each other due to electrostatic interactions (Figure 2.3) (Fang et al., 2019; Li 



 

 30 

et al., 2019), leading to the disruption of cell walls and increased membrane 

permeability (Karnwal et al., 2023). Metal oxide-based particles can also release metal 

ions into extracellular space, inducing the production of reactive oxygen species (ROS) 

and causing oxidative stress that inhibits the antioxidant defence mechanisms of 

bacteria (Yusop et al., 2023; Soheili et al., 2022; Stensberg et al., 2011). The interaction 

of metal ions with cellular structures such as membranes, proteins, and 

deoxyribonucleic acid (DNA) can further disrupt cell functions (Rajagopalachar et al., 

2022). Metal oxide-based particles exhibit broad-spectrum antibacterial activity due to 

their ability to form strong bonds with nitrogen (N), oxygen (O), or sulfur (S) atoms in 

biomolecules and organic compounds (Chidre et al., 2023; Yuan et al., 2018). 

 

Figure 2.3 Damage to Gram-positive bacteria cell through electrostatic interactions. 

Source: Li et al. (2019) 

 

2.6.1.1 Copper Oxide 

Copper oxide is one of the metal oxide-based particles which possesses 

antimicrobial properties (Manjunatha et al., 2021). It consists of copper and oxygen 

elements (Singh et al., 2016). Copper oxide is considered as an excellent candidate for 

the synthesis of metal oxide-based particles due to its ease of synthesis using plant 
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extracts, algae, bacteria, and fungi (Chand Mali et al., 2023). Copper is a semiconductor 

with excellent electrical and thermal conductivity (El Nahrawy et al., 2019). It has been 

widely used in various applications such as in electronics, sensors, catalysis, and 

biomedicine. Copper is resistant to heat, reliable, cheap, and stable (Zhang et al., 2020). 

Both copper oxide (CuO) and cupric oxides (Cu2O), commonly known as copper (II) 

oxide, have a monoclinic structure (Jun et al., 2021) and can take on numerous shapes 

such as rods, wires, spheres, flowers and many more (Majumdar & Ghosh, 2021). The 

shape and size of CuO particles can affect their absorption and fluorescence spectra (El-

Trass et al., 2012). CuO is more attractive than Cu2O due to its stability, simplicity, and 

photovoltaic properties (Wang, Liu, et al., 2021). CuO is capable of withstanding high 

temperatures because it has a more stable valence state compared to Cu2O (Lupan et al., 

2021)  

There are three mechanisms associated with the antimicrobial activities of CuO 

particles including the ROS generation, release of copper ions, and contact killing. CuO 

particles exert their antimicrobial activity through disruption of membranes, proteins, 

and DNA of microorganisms due to the production of ROS (Jagadeeshan & 

Parsanathan, 2019). The interaction of copper ions with thiol groups of proteins and 

enzymes also may disrupt the cell functions, leading to cell death (Godoy-Gallardo et 

al., 2021). Besides, the adherence of CuO particles to the cell surface can cause physical 

damage such as membrane rupture, cytoplasm leakage and cell lysis (Bezza et al., 

2020).  The CuO particles can also prevent the formation and growth of biofilms by 

disrupting them and reducing their viability by generating ROS, releasing copper ions, 

and causing contact killing (Padmavathi et al., 2019). Generally, the CuO particles 

activity depends on the bacteria species. According to Rehan et al. (2015), Bacillus 

subtilis and Bacillus anthracis are more sensitive to CuO particles because they have 

rich amine and carboxyl groups in their cell walls, which bind more strongly to CuO 

particles. Coating CuO particles with supporting polymer matrices such as chitosan 

(Ancona et al., 2014), epoxy resin (Das et al., 2014), cellulose (Llorens et al., 2012), 

and bovine serum albumin (Rastogi & Arunachalam, 2013) can enhance their 

antimicrobial performance efficiency and durability. The surface area and morphology 
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of CuO particles also play important roles in their antimicrobial performance (Janani et 

al., 2022).  

The selection of synthesis method could influence the antimicrobial 

performance of metal oxide particles, resulting in differences in size and shape. In a wet 

chemical synthesis method conducted by Ananth et al. (2015), CuO particles 

synthesized with polyethylene-glyco (PEG) as a surfactant exhibited grain-like particles 

at 75 °C and needle-like particles at 100 °C. Both samples appeared in fine dispersion 

due to the reduction of Gibb’s free energy facilitated by PEG. However, the 

hydrothermal synthesis method showed a plate-like CuO particles with aggregated 

particles. They appeared to have a larger inhibitory zone compared to CuO particles 

with PEG. This is due to morphology-dependent interaction with the bacterial cell wall, 

which damages the bacteria and inhibits their growth. Muthuvel et al. (2020) founded 

that CuO particles synthesized by the green synthesis method exhibited a spherical 

morphology with a size of 25 nm. They also showed significant antibacterial activity 

against gram-negative bacteria (Pseudomonas aeruginosa, and Escherichia coli) 

compared to gram-positive bacteria (Staphylococcus. saprophyticus, and Bacillus 

subtilis).  

2.6.1.2 Magnesium Oxide 

Magnesium oxide (MgO) is one of the antibacterial metal oxides that is 

economical, easy to obtain, biocompatible and non-toxic (Ali et al., 2023; Hassan et al., 

2021). MgO particles have been listed as safe materials by the United States Food and 

Drug Administration (Fahmy et al., 2020). MgO particles have a cubic crystal structure 

with a rock salt-type array (Prado et al., 2020). They can be used in various forms, such 

as MgO or magnesium halides (MgX2 or MgF2) (Khorsandi et al., 2021). MgO particles 

are efficient against both gram-positive and gram-negative bacteria, viruses, and spores 

(Abhishek Singh et al., 2022). MgO particles are usually used in medicines to initiate 

post-activation of bone repair scaffolds, heartburn reliever, and act as hyperthermia 

agents in cancer therapy (Al-Karam & Yousef, 2021). Additionally, MgO particles can 

exert antioxidant properties (Faizan et al., 2022). MgO particles can be used as 

adsorbents, catalysts, and supports for various chemical processes due to their high 
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specific surface area and adsorption capacity (Ali et al., 2023; Balakrishnan et al., 

2020). MgO particles are able to decompose chlorinated and fluorinated compounds, 

and adsorb heavy metal ions, phosphorus compounds and dyes from wastewater 

(Owusu Adjei et al., 2021). MgO particles are ideal for refractory applications due to 

their high melting point of 2800 °C and boiling point of 3600 °C, and their wide band 

gap also makes them suitable for optical and electronic applications (Balakrishnan et 

al., 2020). 

The action mechanisms of MgO particles depend on pH and Mg2+ ions. Higher 

concentrations of MgO particles resulted in their dissociation in microbial cells due to 

an increase in OH− ions and broth pH (Saied et al., 2021). However, this is not the 

primary mechanism of microbial killing. The production of ROS is another mechanism 

responsible for the antimicrobial action of MgO particles (Hassan et al., 2021). Bacteria 

undergoing for aerobic respiration generates superoxide anions and other ROS, which 

are toxic to them (Kim et al., 2019). In order to neutralize the ROS, bacteria produce 

superoxide dismutase (SOD) (Palmieri et al., 2019). Higher concentrations of MgO 

particles could damage bacterial cells when not all the ROS could be timely neutralized 

by SOD (Prado et al., 2020). In some microbes, such as E. Coli, the inhibition was 

observed even without the presence of ROS (Leung et al., 2014). The MgO particles 

could inhibit gram-negative bacteria more efficiently than gram-positive bacteria 

(Zhang et al., 2021). This is due to the presence of a thinner layer of peptidoglycan in 

gram-negative bacteria, allowing MgO particles to penetrate the cell wall and bind to 

the cell membrane (Khorsandi, Keyvani-Ghamsari, et al., 2021), resulting in shape 

alteration and cell death. In gram-positive bacteria, the MgO particles may disrupt the 

interactions among the bacteria and inhibit their function and activity (Li et al., 2023). 

MgO particles could also disrupt the extracellular matrix by chelating with enzymes and 

acting as a catalyst to degrade the matrix in biofilms (Ramezani Farani et al., 2023). 

Several studies have been conducted on the synthesis of MgO particles using 

plant extracts. The MgO particles synthesized using plant extract acted as excellent 

sorbents, and a higher concentration of MgO (0.1 g/mL) was able to completely inhibit 

bacteria (Anantharaman et al., 2016). According to Khan et al. (2021), MgO particles 

exhibited antibacterial activity against both gram-positive and gram-negative bacteria, 
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such as Escherichia. coli, Pseudomonas aeruginosa, Staphylococcus aureus, 

Staphylococcus epidermidis, Serratia marcescens, Klebsiella pneumoniae, and 

Streptococcus. pyogenes, when synthesized with green tea. MgO synthesized using 

Amaranthus tricolor, Amaranthus blitum and Andrographis paniculate showed varying 

antibacterial activity against E. coli, even when using the same concentration of MgO. 

This variation has attributed to the number of bioactive compounds present in the leaf 

extract, including phenols, terpenoids, and flavonoids, which possess antibacterial 

activity (Govindarajan et al., 2023). Thus, these bioactive compounds contribute to the 

action mechanism of MgO particles. Furthermore, bioactive compounds act as reducing 

and stabilizing agents for particles synthesis, thereby influencing the particles 

concentration in the colloidal solution (Gebre, 2023). 

2.6.2 Natural-based Antimicrobial Agent 

Mother nature provides numerous natural antibacterial agents that can be 

obtained from various resources such as plants, animals, bacteria, algae, and fungi. 

Among these, plants provide a wide range of antibacterial compounds that can be 

extracted from various parts of plants, such as seed, peels, leaves, flowers, pulps, and 

husks (Singh, 2022). Most of the plant-derived compounds are phenolic compounds, 

with the main groups of compounds include flavonoid, phenolic acids, tannins, 

stilbenes, quinones, alkaloids, and lignans (Saranraj et al., 2019). According to Fan et 

al. (2018), most of the plant-derived antibacterial compounds come from secondary 

metabolites through the shikimate pathway, mevalonate and methylerythritol phosphate 

pathway. These compounds play an important role in biochemistry and physiology of 

plants as they act as natural defences of plants against microorganisms (Zehra et al., 

2021). The plant-derived antibacterial compounds are natural; thus, they are safe, non-

toxic to the skin, environmentally-friendly, and easy to obtain (Kamarudin et al., 2022). 

Besides, they do not exhibit the side effects associated with synthetic chemicals.  

The natural compounds from plants have a broad activity spectrum against 

invading pathogens such as bacteria, fungi, and viruses (Keita et al., 2022). The natural 

defensive amino acids and peptides have the ability to inhibit various microorganisms, 

including both gram-negative, and gram-positive bacteria (Matos et al., 2023). Phenolic 
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compounds were reported to have antimicrobial activity towards human pathogens 

(bacteria, fungi, and viruses) and food spoilage pathogens (bacteria and fungi) (Deabes 

et al., 2021). The antibacterial compounds from plants are an alternative therapeutic to 

combat bacterial growth on textiles (Hemthanon & Ungcharoenwiwat, 2022). Benzoic 

acid and sorbic acid have been used for ages in food industry in order to minimize food 

spoilage and extend the shelf-life of food (Marrez et al., 2022).  

There are about 12 to 50 amino acids, and they are classified based on size, 

predominant acid structure, or conformational structure (D’Aloisio et al., 2021). The 

structure of natural compounds and the composition of plant extracts have a significant 

effect on the antibacterial activities of the compounds (Table 2.2). Amphiphilicity is the 

key feature of an antibacterial compound as it consists of hydrophilic and lipophilic 

properties (Zhang & Ma, 2019). These properties permit the movement of antibacterial 

compounds through the cell membrane (Zhang et al., 2020). Also, an amphiphilic 

characteristic resulted in the solubility of antibacterial compounds in the aqueous phase 

(Echeverría et al., 2017). According to Fan et al. (2018), molecular size, polar groups, 

functional groups, and solubility in non-polar solvent were found to affect the 

antibacterial activities of plant compounds. Both polar groups and molecular solubility 

are related to each other, thus, the higher the polarity of the molecule, the better the 

solubility in polar solvents, which indirectly affects the antibacterial activity. The 

functional group such as hydroxyl group (–OH) acts as a proton exchanger in order to 

interact with the cell membrane of the bacteria (Park et al., 2021). The interaction 

causes destabilization of the cytoplasmic membrane due to the decrease in pH and leads 

to the leakage of cellular components and ultimately cell death (Lobiuc et al., 2023). 

The location of the −OH group also influences the antibacterial activity. The –OH 

group located at the meta position have higher antibacterial properties than those 

located at the ortho position (Synowiec et al., 2021). Moreover, the number and 

position of double bonds in the chain also can impact the antibacterial activities ( Lee et 

al., 2019). Compound with one double bond, such as citronellol (phenolic), are less 

effective than those with two double bonds, such as geraniol (phenolic) (Gyawali et al., 

2015), indicating that the degree of unsaturation is an important factor affecting the 

activity of natural antibacterial compounds. 
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Table 2.2 Plant-based antimicrobial agents and its antimicrobial spectrums. 

Plant-based 

Antimicrobial 

Agents 

Chemical Structure Antimicrobial Spectrum 

Alkaloids 

Terpenoids 

 

- Staphylococcus aures 

- Pseudomonas aeruginosa 

- Vibrio cholera 

Lectin and 

polypeptides 

 
- Staphylococcus aures 

- Bacillus subtilis 

- Escherichia coli 

- Pseudomonas aeruginosa  

Phenolics and Polyphenols 

Flavonoids 

 - Klebsiella pneumonia 

- Salmonella enterica 

- Pseudomonas aeruginosa 

- Staphylococcus aureus 

- Escherichia coli 

Quinones 

 
- Staphylococcus aureus 

- Bacillus subtilis 

- Pseudomonas aeruginosa 

Tannins 

 - Bacillus cereus 

- Listeria monocytogenes 

- Staphylococcus aureus 

- Salmonella enterica 

Coumarins 

 - Staphylococcus aureus 

- Escherichia coli 

- Vibrio parahaemolyticus 

Source: Morais et al. (2016) 
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Various mechanisms are involved in the antibacterial activities of plant-derived 

compounds. However, the exact mechanism for most of the compounds remains unclear 

due to the large variation in compositions and chemical structures. Some antimicrobial 

peptides (AMPs) are bacteriocins such as nisin, pediocin and reuterin, which are 

produced through bacterial fermentation (Mora-Villalobos et al., 2020). These 

compounds inhibit the growth of their related species of bacteria.  The mechanism of 

action of AMPs mainly involves the disruption of cell membranes by binding to them 

and leading to destabilization of membrane (Seyfi et al., 2020).  

There are three models that describe the binding of AMPs to membranes which 

are barrel-stave, toroidal pore wormhole and carpet model (Figure 2.4) (Corrêa et al., 

2019). The formation of ion channel occurred in the barrel-stave model is due to the 

accumulation and placement of peptides in same direction within the membrane 

(Guidelli & Becucci, 2022). In the toroidal pore wormhole model, the peptides initially 

accumulated parallel to the membrane (Kamal et al., 2023), leading to bending stress 

and the formation of pores that cause the eruption and lysis of cytoplasmic (Seyfi et al., 

2020; Corrêa et al., 2019). The carpet mechanism model resembles the action of 

detergents, where the peptides accumulated on the surface of the cell membrane, then 

destabilizing it due to the increase of fluid concentration and thus forming micelles 

(Lāce et al., 2022). Another mechanism of AMPs is the inhibition of DNA, ribonucleic 

acid (RNA), and protein synthesis. They affect several internal processes in actively 

respiring cells, resulting to the loss of adenosine triphosphate (ATP) (Yu et al., 2022). 

The loss of ATP resulted in the production of ROS, which are toxic and harmful to 

bacteria cells (Oliveira et al., 2019). 
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Figure 2.4  Models of antibacterial mechanisms of AMPs towards membranes.  

Source: Zhang et al. (2021). 

 

2.6.2.1 Pomegranate 

Pomegranate (Punica granatum L) belongs to the family of Punicaceae, which is 

the native fruit to the Mediterranean region (Laaraj et al., 2022). Due to its multi-

functionality and vast nutritional benefits, it is currently grown globally in many 

geographical regions (Kandylis & Kokkinomagoulos, 2020). Pomegranate has been 

used by Egyptians for thousands of years as a traditional remedy for treating several 

different infections (Ge et al., 2021). The extract from the rind of fruit and bark of the 

tree has been used to treat diarrhoea and dysentery (Howell & D’Souza, 2013). 

Pomegranate is also known for its potent antioxidant properties, which have shown 

anti-cancer activity against human cancer cells and anti-inflammatory effects (Akbari et 

al., 2022). In addition, pomegranate peel extract contains tannins and flavonoids, which 

exhibit high antioxidant activity (Saroj et al., 2020). The bioactive compounds found in 

various parts of the pomegranate tree are listed in Table 2.3. 
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Table 2.3 Bioactive compounds of pomegranate. 

Plant components Constituents 

- Pomegranate juice - Anthocyanins, glucose, ascorbic acid, ellagic 

acid, gallic acid; caffeic acid; catechin, 

Epigallocatechin gallate (EGCG), quercetin, 

rutin; numerous minerals, particularly iron; amino 

acids. 

- Pomegranate seed oil - 95% of punicic acid; other constituents, including 

ellagic acid; other fatty acids; sterols 

- Peel, rind - Phenolic punicalagins; gallic acid and other fatty 

acids; catechin, EGCG; quercetin, rutin and other 

flavonols; flavones, flavonones; anthocyanidins. 

- Pomegranate leaves - Tannins (punicalin and punicafolin); and flavones 

glycosides, including luteolin and apgenin. 

- Pomegranate flower - Tannins (punicalin and punicafolin); and flavones 

glycosides, including luteolin and apgenin. 

- Pomegranate roots and 

barks 

- Ellagitannins, including punicalin and 

punicalagin; numerous piperidine alkaloids. 

Source: Julie (2008).  

Pomegranate has demonstrated antimicrobial activity against several highly 

pathogenic and drug-resistant bacteria strains (Hanafy et al., 2021). Research conducted 

by Sabbar Dahham et al. (2010) showed that pomegranate rind had the highest 

antimicrobial activity against S. aureus, with an inhibition zone of 20 mm, compared to 

B. coagulans, B. cereus B. subtilis, E.  coli, and K.  pneumoniae. The white seed 

exhibited a lesser antimicrobial effect, with an inhibition zone of 8 mm against E. coli, 

while pomegranate juice showed antimicrobial effects against S. epidermidis and K. 

pneumoniae. The results varied depending on the content of phenolic compounds, citric 

acid, and pigments in the juice. Oligomeric ellagitannins are the most potent 

antimicrobial compounds found in pomegranate (Andishmand et al., 2023). Other 

compounds that synergistically contribute to the antimicrobial effects include flavanols 

(quercetin and myricetin) and anthocyanins (pelargonidin-3-galactose and cyanidin-3-
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glucose) (Fahmy et al., 2020).  According to Rongai et al. (2019), pomegranate also has 

an inhibitory effect on mycelial fungal growth. The peel extract of pomegranate 

contains punicalagin compound, which acts as antifungal agent to reduce or inhibit 

citrus mold (Salem et al., 2022).  

The extraction methods used for pomegranate have a significant effect on its 

bioactive composition, antioxidant potential, and antimicrobial activity (Alexandre et 

al., 2019; Chen et al., 2020). Factors that can influence the extraction method are types 

of solvent used, temperature, pressure, duration and frequency of extraction, and the 

presence of enzymes (Campos et al., 2022). Different extraction methods resulted in 

differences of yields and bioactive compounds, such as phenolics, flavonoids, and 

tannins  (Olvera-Aguirre et al., 2022). The extraction efficiency and quality can be 

improved by using high pressure and enzymatic-assisted extraction methods (Kumar et 

al., 2021). In the meantime, comparing to conventional extraction methods, the 

sonication-assisted extraction method was found to enhance the antioxidant and 

antimicrobial properties of pomegranate rind extract (Campos et al., 2022). However, 

the optimal extraction method depends on the cultivar of pomegranate as it may affect 

the bioactive compounds (Rosas-Burgos et al., 2017).  

2.7 Synthesizing Method of Antibacterial Particles 

The metal oxide-based particles have been a topic of concern in the scientific 

community for a few decades. Their versatility has initiated ongoing research into new 

compositions, synthesis methods, and applications. Among antibacterial particles, Ag 

particles are the most commonly used due to their wide spectrum of antibacterial 

activity against various bacteria (Akintelu et al., 2020). According to Sánchez-López et 

al. (2020), transition of metals such as zinc, copper, iron and gold are ideal for 

synthesizing metal oxide-based particles because they have partially-filled orbitals, 

which enable particles aggregation. 

The synthesis methods of antibacterial particles can be categorized into three, 

namely, the physical method, chemical method, and biological method. In the physical 

method, the bulk metals are fragmented into smaller fragments, which are then 

transformed into particles using physical forces such as light, electricity, heat, and 
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sound (Shah et al., 2022). However, this method is not suitable for the synthesis of 

metal oxide-based particles due to the size of particles, which is a crucial factor for their 

activity (Wang & Xia, 2004). Additionally, this method is expensive, energy-intensive 

and requires sophisticated equipment (Vishwanath & Negi, 2021). Chemical method 

involves the use of organic solvents to produce metal and metal oxide particles 

(Esmaeilzadeh et al., 2021). This method is relatively cheaper and faster compared to 

the physical method (Parashar et al., 2020). However, it may involve the use of toxic 

chemicals, which can pose environmental and health risks (Vishwanath & Negi, 2021). 

At the same time, biological method focuses on green-synthesis processes using 

different types of microorganisms such as plants, bacteria, or fungi (Kumar et al., 

2021). This method is typically considered eco-friendly, bio-compatible, and cost-

effective (Mohd Yusop & Wan Ismail, 2021). However, it may result in lower yields 

and less stable particles compared to other methods (Vishwanath & Negi, 2021). 

2.7.1 Sol-gel Synthesis 

Sol-gel method is an established wet-chemical technique used to synthesize 

metal oxides and produce particles. The history of the sol-gel method dates back to 

1921 when Geffcken and Berger prepared single oxide coatings (Sakka, 2022; Dislich 

& Hinz, 1982). However, it was not regarded as a significant sol-gel product. The first 

significant sol-gel product, known as aerogels, was invented in 1931 by Kistler (Sakka, 

2016). He used water glass as a silica source and dried using supercritical drying 

technique. In the 1960s, the development of sol-gel method continued to meet the new 

demands in the nuclear industry (Valverde, 2019). The revolution of the sol-gel method 

occurred in 1971 with the fabrication of transparent sodium aluminoborosilicate glass 

plates by Dislich (Sakka, 2022). Since then, it has gained popularity and has been 

extensively applied in a wide range of functional and high-tech materials, including 

electronic, photonic, chemical, micromechanical, and bionic materials (Sakka, 2022; 

Qian & Lu, 2020). 

The sol-gel method involves the conversion of a liquid “sol” into a solid “gel” 

phase (Bokov et al., 2021). Inorganic metal salts or metal-organic compounds such as 

metal alkoxides are typically used in the preparation of the sol (Gautam et al., 2020). 
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The sol-gel process consists of three steps, namely hydrolysis, condensation, and 

drying. Initially, the metal hydroxide solution is produced through the hydrolysis of the 

metal precursor, followed by the condensation process to create three-dimensional gels. 

Subsequently, the drying process takes place, converting the product into xerogel or 

aerogel based on the drying method employed (Esposito, 2019). 

The sol-gel method can be classified into two routes based on the nature of the 

solvent, which is aqueous sol-gel and non-aqueous sol-gel. The term “aqueous” refers 

to the use of water as the reaction medium, while “non-aqueous” indicates the use of 

organic solvents (Parashar et al., 2020). In the aqueous sol-gel route, water serves as the 

solvent, supplying oxygen for the formation of metal oxides (Mohammad, 2020). Metal 

alkoxides are normally used as precursors due to their high reactivity with water (Yorov 

et al., 2022). Other types of metal precursors are metal acetates, sulphates, nitrates, and 

chlorides (Gager et al., 2022). However, there are disadvantages of the aqueous sol-gel 

route when applied to nanoscale materials. In most cases, it is challenging to control 

particle morphology and achieve reproducibility in the final protocol due to the 

simultaneous process of hydrolysis, condensation, and drying (Vioux & Hubert Mutin, 

2018). Thus, the aqueous sol-gel route is only suggested for the synthesis of bulk metal 

oxides, as it has less impact on the synthesis process. 

In the non-aqueous sol-gel route, solvents such as alcohols, aldehydes, ketones, 

or solvents provided by the metal precursors supply the required oxygen for the 

formation of metal oxide (Mohammad, 2020). Besides, these organic solvents play a 

role in modifying various components such as particle size, morphology, composition, 

and surface properties of the metal oxide particles (Rao et al., 2017). The non-aqueous 

sol-gel route is more suitable for the production of nano oxides compared to the 

aqueous sol-gel route. There are two significant approaches for producing metal oxides 

particles in this route: surfactant controlled and solvent controlled methods. Surfactant 

control involves the hot injection method at high-temperatures for the conversion of 

metal precursor into the respective metal oxide (Soni et al., 2021).The control of the 

shape and growth of particles and to avoid their agglomeration are permits through this 

method (Rao et al., 2017). Meanwhile, the reaction between metal halide and alcohols 
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is involved in the solvent-controlled sol-gel route to produce metal oxide nanostructures 

(Niederberger, 2007). 

The sol-gel method is a versatile technique that offers many advantages over 

conventional method. It enables precise control of composition and structure, and 

particle size (Sakka, 2016). There is a possibility of incorporating organic materials and 

particles into the sol-gel matrix (Mura et al., 2020). Besides, materials can be moulded 

into complex geometries, and this can improve adhesion between substrate and topcoat 

(Zhu et al., 2012). The sol-gel process requires less energy consumption since it can be 

achieved at low temperatures (Bokov et al., 2021). The high homogeneity of the sol-gel 

method resulted in the production of high purity products by dissolving oxides 

precursors in an appropriate solvent during the transformation of sol-gel (Esposito, 

2019). Moreover, it allows for the fabrication of various oxide compositions as well as 

non-oxide and hybrid organic-inorganic materials (Bakar et al., 2023). Sol-gel is a cost-

effective method that does not require specialized or expensive equipment (Za’im et al., 

2021). It is simple and effective, capable of producing high-quality coatings in various 

forms such as thin films, fibres, monoliths, porous membranes, composites, and 

powders (Ismail, 2016). 

However, as stated by Rao et al. (2017), due to some limitations, the sol-gel 

method cannot be applied in certain industries. Some of the problems are having weak 

bonding, difficulty in controlling porosity, low wear-resistance, and high permeability. 

During the thermal process, thick coatings might be problematic because the maximum 

coating thickness limit for crack-free coatings is 0.5 µm. In the meantime, the shrinkage 

of wet gel during the drying process might lead to cracking due to capillary stress, 

making it challenging to prepare for massive monoliths (Buisson, 2003). The sol-gel 

method requires expensive raw materials like precursors, and the drying and sintering 

processes can be time-consuming (Modan & Schiopu, 2020). In multicomponent 

materials, the preferential precipitation of a particular oxide during sol formation may 

occur due to different reactivities of each precursor (Voon et al., 2020). Currently, sol-

gel technology faces challenges due to a lack of scientific understanding of its complex 

reactions. Despites its limitations, the sol-gel method remains a popular choice in many 
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industries due to its versatility and cost-effectiveness in terms of machinery. Further 

research could help overcome the problems faced by the industry. 

2.7.2 Green Synthesis 

Currently, green synthesis has received enormous attention from the scientific 

community as an alternative to physical and chemical synthesis for the production of 

metal oxide particles. Chemical synthesis often generates hazardous by-products, 

making the use of “green chemicals” that are clean, non-toxic, and environmentally 

friendly a desirable option for particles synthesis (Akintelu et al., 2020). Green 

synthesis offers a simple, cheap, and easy method for quick large-scale synthesis, 

making it suitable for various applications (Mohd Yusop & Wan Ismail, 2021). The 

history of green synthesis of metal oxide particles can be traced back to ancient times 

when gold and silver particles were used for colouring glass and ceramics (Schröfel & 

Kratošová, 2011). However, modern scientific interest in the green synthesis of metal 

oxide particles began in the late 20th century with the discovery of microorganism’s 

ability to produce particles (Saravanan et al., 2021). Since then, numerous research 

studies have been conducted to explore the use of biological sources for the synthesis of 

metal oxide particles (El-Seedi et al., 2019). 

Microorganisms, algae, plants materials, and bio-waste have been utilized as 

synthesizing agents to produce particles (Jadoun et al., 2021). Plant extracts have the 

edge over microorganisms as synthesizing agents because green synthesis of particles 

occurs extracellularly (Küünal et al., 2018). Extracellular synthesis is faster, easier, and 

more scalable than intracellular synthesis, which is more complex (Ahmad et al., 2021; 

Lahiri et al., 2021). Besides, plant extracts may act as both stabilizing and reducing 

agents in the synthesis of particles due to the presence of hydroxyl and carbonyl groups 

found in bioactive compounds (Sharma et al., 2019). The source of plant extracts can 

greatly influence the morphology of the synthesized particles due to variations in the 

concentrations of biochemical reducing agents present in different plant extracts 

(Qamar & Ahmad, 2021). The composition of biochemical reducing agents in most 

plant extracts differs seasonally and regionally, due to the nutrient uptake of the plants 
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(Chatterjee et al., 2020). As a result, there can be variations in the properties of particles 

produced in each batch. 

According to Mittal et al. 2013, there are three steps involved in the bio-

reduction of metal particles using plant extracts, namely activation, growth, and 

termination. In the activation step, also known as nucleation, metal ions are reduced and 

nucleated to form small-sized particles. This process is facilitated by bioactive 

compounds present in plant extract that donate electrons to the metal ions. In the growth 

phase, the small particles aggregate and join together to form larger particle sizes, while 

the thermodynamic stability of the particles increases. This step is also referred to as the 

aggregation process. The bio-reduction of metal particles is completed in the 

termination phase, where the shape of the particles is formed, and the active metabolites 

play a role. In this step, the stabilization of the metal oxide particles occurs through the 

formation of a protective layer of bioactive compounds that can prevent aggregation of 

the metal oxide particles. 

The morphology, size, and stability of the particles depend on various factors. 

These factors include the type of plant extract, concentration of metal ions, pH, 

temperature, and reaction time (Kaur et al., 2022). As stated by Adeyemi et al. (2022), 

different plant extracts may affect the reduction and stabilization of metal ions due to 

variations in their bioactive compositions and concentration. The rate of nucleation and 

growth of particles are controlled by the concentration of metal ions, while the 

solubility and charge of metal ions, and bioactive compositions in the solution are 

affected by pH (Mittal et al., 2013). The synthesis temperature affects the kinetics and 

thermodynamics of the reaction (Kaur et al., 2022). The duration of the nucleation, 

growth, and stabilization processes depends on the reaction time (Mittal et al., 2013). 

Similar to other synthesis methods, the green synthesis of metal oxide particles 

also has advantages and limitations. The green synthesis method is cost-effective and 

environmentally friendly as it can be performed in aqueous media at standard 

temperature and pressure  (Schröfel et al., 2014). The use of biological sources may 

enhance the novel properties of the metal oxide particles (Sharma & Tagad, 2022). 

Furthermore, different shapes and sizes of particles can be produced by varying the 
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biological sources and reaction conditions (Maťátková et al., 2022). However, the use 

of biological sources may influence the quality, quantity, and stability of the particles 

produced due to source variability, while additional procedures or chemicals may be 

needed to separate or purify the particles from the biological matrix (Mohd Yusof et al., 

2019). Thus, further research is needed to better understand the green synthesis process, 

optimize the production and properties of metal oxide particles, and overcome the 

challenges and limitation of this method. 

2.8 Fabric Coatings 

Coating is a process of applying a polymeric layer onto the surface of a fabric 

(Billah, 2019). This procedure could enhance the functional properties of the fabric, 

such as antibacterial, water repellent, flame retardancy, UV resistance, and many more 

(Tania & Ali, 2021; Paul, 2015). Coating of fabrics offers various advantages, such as 

protection from the environment and hazardous chemicals, improved performance, 

functionality, and aesthetic appeal (Singha, 2012). However, coating also poses some 

problems, such as elevated cost and complexity of fabrication, impact on the 

environmental compatibility and recyclability of fabrics, and the need for more rigorous 

quality and process control standards (Elzaabalawy & Meguid, 2020; Rosenberg et al., 

2019).  

There are several methods available for coating of fabrics, such as direct 

coating, immersion coating, direct roll coating, transfer coating, heat lamination, and 

adhesive lamination (Billah, 2019; Meirowitz, 2016). The choice of coating method 

depends on the types and characteristics of the fabric as well as coating materials 

(Shim, 2019). Coating of fabrics can affect their tensile strength and air permeability 

(Xu et al., 2020). The effectiveness of the coating can be influenced by many factors, 

including coating thickness, types of fabric, coating method and environmental 

conditions (Billah, 2019). Nowadays, coating is widely used in various fields and 

applications in order to meet the demands and challenges of modern technology and 

society. 
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2.8.1 Effect of Coating on Air Permeability  

Air permeability is a measure of air flow passing through a specific area at a 

given time (Mishra et al., 2019). It is an important property for the production of fabric 

as it may influence the thermal comfort of the fabric. Generally, the air permeability of 

a fabric depends on its porous openings (Kumar & T., 2022). The fabric material, 

structure, density, and thickness also play a role in determining air permeability (Islam 

et al., 2019). Fabrics with higher porosity and lower thickness usually have higher air 

permeability (Kumar & T., 2022). Coating the fabric can also affect air permeability as 

it may alter the pore size and shape of the fabric. The main factors that affect the air 

permeability of the coated fabric are the coating materials and the types of fabric (Hu et 

al., 2006). 

According to Hu et al. (2006), the air permeability of coated fabric can be 

influenced by the coating materials. Different coating materials have distinct properties. 

The viscosity, density, and surface tension of the coating material may affect the 

thickness and uniformity of the coating layer, thereby altering the size and shape of 

pores in the fabric (Mavukkandy et al., 2020). Higher viscosity, density, and surface 

tension of the coating material may reduce the air permeability of the fabric, and thus 

reducing breathability and increasing thermal properties (M’chaar et al., 2021). The pH 

level of the coating material may also affect the air permeability by modifying the 

structure of the fabric (Benltoufa et al., 2020). An acidic coating material may increase 

the porosity of the fabric, hence enhancing the air permeability (Ahirrao et al., 2021). 

Types of fabric also has a significant effect on the air permeability of the coated 

fabric. Fabrics with fibres that have radial expansion exhibit better air permeability than 

fabrics with circular section fibres (Zhou et al., 2022). This unalike is due to variations 

in moisture regain. Higher moisture regain in fibres may decrease air permeability by 

reducing the air space between fibres and yarns (Ivanovska et al., 2022). The type of 

yarn used can also affect the air permeability. The yarns with finer, lower crimp, and 

higher twist have lower air permeability than yarns with coarser, higher crimp, and 

lower twist (Corbin et al., 2021). According to Jamshaid et al. (2020), knitted fabrics 

generally have higher air permeability compared to woven fabrics. This is due to the 
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loop structure of knitted fabrics that provides more porosity and directly influences the 

air permeability of the fabric (Wen et al., 2021). 

2.8.2 Effect of Coating on Tensile Strength  

Tensile strength and tongue tear strength are two commonly used indicators for 

measuring the strength and durability of the fabric. The tensile strength of the fabric can 

be defined as the ability of the fabric to withstand force and stretching before breaking, 

while, tongue tear strength is defined as the force required to initiate or continue tearing 

of the fabric in either weft or warp direction under specified conditions (Zegan & 

Ayele, 2022). The high tensile strength and tear resistance of fabric are important for 

the production of architectural fabrics that are mainly used under tension (Shi et al., 

2020). Furthermore, the fabrics with these properties are also suitable for producing 

protective textiles, parachutes, tents, and furniture (Maity et al., 2023). Basically, tensile 

and tear strength may affect the durability, comfortability, and performance of the 

fabric (Motlogelwa, 2018). 

The strength of the yarns has a significant impact on both tensile and tear 

strength of the coated fabric. Finer yarns with higher twist tend to have greater strength 

than the coarse yarn (Shahzad et al., 2022). Normally, the fabrics with smooth surface 

have higher strength compared to textured surface fabrics due to the increased amount 

of twist (Irfan et al., 2023). However, beyond the optimum twist level, the strength of 

the yarn reduces and becomes more prone to breakage (Afroz & Islam, 2021). 

Additionally, the weave and fabric structure may also affect the fabric strength. 

Interlacing patterns and the tightness of the weave and fabric structure may influence 

stress distribution and deformation of the fabric (Begum & Milašius, 2022). The fabric 

strength increases with an increase in interlacement points in the weave structure, while 

a loose fabric structure allows for increased thread density, leading to high tearing 

strength (Mobarak Hossain, 2016). Although the warp and weft directions of the fabric 

may have the same weave structure, their strength for both directions can differ due to 

the differences in yarn count, density, and material (Begum & Milašius, 2022).  

Both tensile and tear strength can be affected by coating materials, either in 

positive or negative ways. The adhesion effect of coating materials can enhance the 
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fabric strength (Croll, 2020). It provides a strong bond between fibres and the coating 

material, restricting yarn movement (Shinde & Sampath, 2022; Eltahan, 2018). 

However, according to Yuksekkaya et al. (2016), the acidity of coating materials may 

result in the degradation of the fabric structure. This is due to the diffusion of acid 

molecules into the fabric structure, causing the breakdown of non-crystalline domains 

and inter-crystalline contacts, ultimately resulting in the damage of yarn fibres (Zheng 

et al., 2023; Ji et al., 2016). However, the affinity of acid to the fabric depends on the 

concentration, duration of the coating treatment, and the types of fabric (Ji et al., 2016). 

Reduction in tensile strength can occur due to defects, stress, or cracks during the 

coating process (Volkhonsky et al., 2020). 
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CHAPTER 3 

 

 

METHODOLOGY 

3.1 Introduction 

This chapter presents the methodology employed to fabricate antibacterial 

coatings for various fabric types aimed at minimizing or preventing body odour. 

Employing a mixed methods approach combining qualitative and quantitative data 

analysis, this study explored the impact of synthesis methods and formulations on the 

appearance, antibacterial activities, tensile strength, and odorant composition of cotton, 

polyester and blend wool fabrics. The experimental design (Section 3.2) facilitated 

comparison among synthesis methods and formulations to assess these fabric 

properties. Chemicals used in the study are presented in Section 3.3. The study 

commenced with parameter optimization for extraction and synthesis (Section 3.4) 

followed by pre-antibacterial activity testing of coated fabrics (Section 3.5). 

Characterization of particle solutions (Section 3.6) preceded scaling up solutions 

exhibiting antibacterial activity against tested bacteria species (Section 3.7) for fabric 

coating (Section 3.8). Effectiveness of the coatings in inhibiting the bacteria was 

confirmed via disc diffusion assay (Section 3.9). Tensile and tear strength (Section 

3.10), air permeability (Section 3.11), and durability of the coatings after washing 

(Section 3.12) were evaluated following ISO standards. Finally, the volatile odorant 

composition of the coated and uncoated fabrics was assessed using artificial sweat 

(Section 3.13). Statistical analysis of data on antibacterial activity, tensile and tear 

strength, and air permeability was conducted using Statistical Package for Social 

Science (SPSS) software (Section 3.14). 

3.2 Experimental Design 

Two synthesis methods, namely sol-gel and green synthesis method, were 

employed to produce modified metal oxide (CuO and MgO) particles. The 
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modifications were achieved using PRE as antibacterial agent. Two sets of modified 

metal oxide particle formulations were prepared using each method. However, to assess 

the antibacterial property of PRE, one set of Cu and Mg was synthesized without the 

addition of PRE using sol-gel method, resulting in a total of six sets of formulations. 

For each set, triplicate samples were prepared to estimate experimental error. The 

formulations of the modified metal oxide particles are presented in Table 3.1. 

Table 3.1 The formulations of modified metal oxide particles with synthesizing 

methods. 

Methods Formulations 

Sol-gel Cu 

Mg 

Cu + PRE 

Mg + PRE 

Green synthesis Cu + PRE 

Mg + PRE 

 

In each formulation using sol-gel method, the pH, volume of PRE and coating 

cycle were optimized, while for each formulation using green synthesis method, only 

the volume of PRE and coating cycle were optimized to maximize antibacterial activity 

before further analysis. The flowchart of the experimental design is presented in 

Appendix A. 

3.3 Experimental 

3.3.1 Reagent 

Copper nitrate [Cu(NO3)2.3H2O] with molecular weight of 241.6 g/mol and a 

purity of 99.6%, and magnesium nitrate [Mg(NO3)2.6H2O] with molecular weight of 

256.41 g/mol and a purity of 99.1% were purchased from Bendosen (Malaysia). Citric 

acid with a molecular weight of 210.14 g/mol and a purity of 100% and ethylene glycol 

with molecular weight of 62.07 g/mol and a purity of 99.9% were also obtained from 

Bendosen (Malaysia). Diethyl ether (purity:  99.6 %; molecular weight: 74.12 g/mol) 
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was obtained from R & M Chemicals (India). Ammonium hydroxide (NH4OH) with 

purity of 28-30% and molecular weight of 35.046 g/mol was purchased from Merck 

(United State). The pomegranate (Punica granatum) rind was purchased from 

Ayurvedic Pharmacopoeia (India) in powder form. Deionized water, obtained from a 

Milli-Q water purification system (Millipore), was used as a solvent, while distilled 

water was used to extract the pomegranate rind. Denatured ethanol with a purity of 95% 

and a molecular weight of 46.069 %, purchased from DChemie, was used to wash the 

fabrics (cotton, polyester, and blend wool). Both cotton and polyester fabrics were 

purchased from Kamdar Group of Company, while the blend wool fabric was 

purchased from Guangzhou Ntg Textile Co., Ltd (China). Anhydrous barium chloride 

(BaCl2) with molecular weight of 208.227 g/mol and a purity of 97%, and sulfuric acid 

(H2SO4) with a molecular weight of 98.08 g/mol and a purity of 99.99% were 

purchased from Sigma-Aldrich (United States) and were used for the preparation of 

McFarland solution. 

3.4 Sample Preparation 

Sample preparation consisted of two steps: extraction of pomegranate rind and 

preparation of modified metal oxide particles using sol-gel and green synthesis 

methods. 

3.4.1 Extraction of Pomegranate Rind 

Pomegranate rind was extracted using solvent extraction method (Garcia-

Vaquero et al., 2020). It was conducted by adding 4 g of pomegranate rind powder into 

100 mL of distilled water and stirring vigorously at 450 rpm for 1 hour at 100 °C. The 

solution was then filtered through Whatman No. 1 filter paper to separate the solid 

residue from the extract. The extract was then stored in a sterile Duran bottle covered 

with aluminium foil (dark packaging) at 4 °C in order to maintain high storage stability. 

3.4.1.1 Optimization of Pomegranate Rind Extraction 

The optimization of pomegranate rind extraction involved two parameters which 

are temperature (30 °C, 80 °C and 100 °C) and amount of pomegranate rind powder (2 
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g, 4 g and 8 g) while the stirring rate was kept constant. 30 °C was selected as one of 

the temperature parameters as it can help to preserve the stability and activity of 

bioactive compounds from oxidation or heat degradation (Theocharis et al., 2012). 

Meanwhile, the high temperature (80 °C and 100 °C) were selected for optimization of 

PRE as it can increase the solubility of some bioactive compounds and finally affecting 

the antibacterial property (Antony & Farid, 2022). The parameters with the best 

antibacterial efficiency against B. linens, C. acnes, and S. epidermidis were selected for 

the synthesis of modified metal oxide particles and subjected to UPLC-QTOF-MS 

analysis. 

3.4.1.2 Analysis of Bioactive Compounds of Optimized Pomegranate Rind 

Extract 

The bioactive compounds of PRE, which consist of flavonoids, alkaloids, 

phenols, and polyphenols, were analysed using an ACQUITY UPLC® I-Class system 

coupled to an ion mobility mass spectrometer Vion IMS QTOF with electrospray 

ionization mode (ESI) from Waters in Wilmslow, UK. The UPLC conditions were 

modified according to Shao et al. (2020). A silica-based column, ACQUITY UPLC 

HSS T3, with dimensions of 2.1 mm × 100 mm and a particle size of 1.8 µm, was used 

with a flow rate of 0.6 mL/min at 40 °C. The ACQUITY UPLC® I-Class system is 

equipped with a Binary Solvent Manager that ensures precise and accurate solvent 

delivery in the UPLC system. As for mobile phase, 0.1 % formic acid with water and 

acetonitrile was used as solvent A and solvent B, respectively. The optimized gradient 

for mobile phase A was as follows: 99 % (0 min), 99 % (0.5 min), 65 % (16 min), 0 % 

(18 min), and 99 % (20 min). Meanwhile, for mobile phase B, the optimized gradient 

was as follows: 1 % (0 min), 1 % (0.5 min), 35 % (16 min), 100 % (18 min), 1 % (20 

min).  The Vion IMS QTOF was operated in ESI- ionisation sensitive mode.  Nitrogen 

was used as the desolvation gas with a flow rate of 800 L/h and a capillary voltage of 

1.5 kV.  The source temperature was set to 120 °C, and the desolvation gas temperature 

was 500 °C. The data were acquired in High Definition MSE (HDMSE) acquisition 

mode. The scan range was from 50 m/z to 1500 m/z with a scan time of 0.1 s. The low 

collision energy was set at 4 eV, with a ramp of high collision energy from 10 eV to 40 
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eV. The acquisition and processing were performed using the UNIFI v2.0 Scientific 

Information System (Waters, Wilmslow, UK). 

3.4.2 Preparation of Modified Metal Oxide Particles 

3.4.2.1 Synthesis Methods 

The modified CuO particles solution was prepared using sol-gel synthesis 

according to Saridewi et al., (2021). Initially, 0.59 g of Cu(NO3)2, 0.42 g of citric acid 

and 20 mL of deionized water were stirred vigorously at 30 °C and 450 rpm. Then, 1 

mL of diethyl ether and 1 mL of ethylene glycol were added into the solution. After 30 

mins, 10 mL of PRE was dropwise added into the solution and the pH of the solution 

was adjusted to pH 4 with NH4OH. The solution was allowed to react for 24 h under 

constant stirring and temperature. Finally, the modified CuO particles were placed in 

sterile glass vial and stored at 4 °C until use. The same procedure was applied for the 

synthesis of modified MgO particles using 0.51 g of Mg(NO3)2. 

The green synthesis method was used as control. In this method, the preparation 

of modified CuO particles only involved the use of precursor, PRE and water. The 

synthesis was conducted by diluting 0.59 g of Cu(NO3)2 into 20 mL of deionized water. 

Then, 10 mL of PRE was added to the solution. The mixture was allowed to react at 30 

°C with constant stirring at 450 rpm until the colour of the solution changed completely 

from light green to dark green and lastly brownish black. For the synthesis of modified 

MgO particles, 0.51 g of Mg(NO3)2 was used and the same procedure was repeated. 

The colour change for MgO particles was yellowish to light brownish-orange. The 

change in colour after the addition of the PRE indicated that the synthesis had occurred 

and was completed when no further change in colour was observed (Aboyewa et al., 

2021). 

3.4.2.2 Optimization of Synthesis Process 

Three effects of the sol-gel coating process on fabrics were studied, namely the 

volume of the PRE, pH, and the number of coatings. For green synthesis, only two 

parameters were studied: the volume of the PRE, and the number of coatings. The pH 
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was not considered as one of green synthesis parameters as it may not give a significant 

effect on the reduction and capping ability of biomolecules (Mohammadi & Ghasemi, 

2018). Other synthesis conditions for both synthesis process was kept constant, 

including the amount of precursor, volume of solvent, volume of reagents (if any), and 

stirring conditions (temperature, and rpm). All experiments were conducted in triplicate 

to rule out the experimental bias. A total of 24 particles formulations for sol-gel and 6 

formulations for green synthesis were prepared. The pre-antibacterial test of the coated 

and uncoated fabrics using disk diffusion assay against three species of gram-positive 

bacteria was conducted before proceeding with further characterization and the scaling-

up process. Table 3.2 shows the summary of the sol-gel process and green synthesis 

process for each optimization used before scaling-up the process of the selected 

formulations. 

Table 3.2 Summary of sol-gel and green synthesis process for each optimization. 

Synthesis 

process 

Precursor Volume of 

PRE (mL) 

pH Number of 

coatings 

Sol-gel Cu (NO3)2 - 4, 5.5, 7 1×, 2×, 3× 

Cu (NO3)2 5, 10, 15 4, 5.5, 7 1×, 2×, 3× 

Mg (NO3)2 - 4, 5.5, 7 1×, 2×, 3× 

Mg (NO3)2 5, 10, 15 4, 5.5, 7 1×, 2×, 3× 

Green synthesis Cu (NO3)2 5, 10, 15 - 1×, 2×, 3× 

Mg (NO3)2 5, 10, 15 - 1×, 2×, 3× 

 

3.5 Pre-antibacterial Activity Characterization 

3.5.1 Cultivation of Bacteria 

Three gram-positive bacteria, namely Brevibacterium linens, Cutibacterium 

acnes, and Staphylococcus epidermidis, were used to test the antibacterial property of 

the uncoated and coated fabrics. B. linens (isolated from harzer cheese) and C. acnes 

(isolated from an acne lesion on human facial skin) were both obtained from Leibniz 

Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Germany, in 

freeze dried form, while the live culture of S. epidermidis was obtained from the Food 
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and Feed Laboratory, Universiti Malaysia Pahang Al-Sultan Abdullah. Trypticase Soy-

Yeast Extract (TSYE) broth powder and Brain Heart Infusion (BHI) broth powder were 

purchased from Shanghai Baiwei Chemicals (China). Both Mueller-Hinton Agar 

(MHA) and Mueller-Hinton Broth (MHB) were obtained from Shanghai Bio-way 

Technology (China). The prepared Columbia Agar with 5% Sheep Blood (CASB) was 

purchased from Isolab (Malaysia).  

The cultivation of the bacteria started with the preparation of the medium 

culture. For each species of bacteria, the specific medium, which was in solid form 

(agar) and liquid form, was prepared. To prepare TSYE agar medium, 36 g of TSYE 

broth powder was dissolved in 1 L of distilled water. Then, 15 g of agar powder was 

added into the solution, mixed, and autoclaved at 121 °C for 15 mins. In the laminar air 

flow, the autoclaved agar solution was then poured into sterilized petri dish and allowed 

to solidify and cold down before starting the inoculation process. The same procedure 

was applied for the preparation of MHA by replacing the 38 g of TSYE broth powder 

with MHA powder. However, the agar powder was not added to the solution as it 

already contained the agars. As for CASB, the purchased agar is ready to use. 

Preparation of liquid culture medium involved a very simple step. The TSYE broth 

powder (36 g) was dissolved in 1 L of distilled water, mixed, and autoclaved at 121 °C 

for 15 mins. Meanwhile, the preparation of BHI medium and MH medium required the 

use of 37 g BHI powder and 24 g MHB powder. The medium was ready to use once it 

reached room temperature. 

Initially, the freeze-dried bacteria B. linens and C. acnes were rehydrated. A 

specific liquid medium (0.5 mL) was added to the inner vial of the ampoules containing 

the dried pellet of bacteria and allowed to rehydrate for 30 mins. Later, the mixture was 

gently mixed using a Pasteur pipette by pressing and releasing the plunger a few times. 

Half of the hydrated bacteria were transferred to a sterilized test tube containing 5 mL 

of specific medium, while the other half was streaked and spread onto respective agar 

plates by using inoculation loop and a cell spreader, respectively. Both liquid and agar 

cultures were incubated. The culture was then used as inoculum to start the cultivation 

process. 
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In this study, the streaking technique was used for the cultivation of bacteria. It 

is a popular and widely used method to produce pure culture and discrete colonies. The 

bacteria were transferred to agar culture plates using an inoculation loop. The 

inoculation loop was flamed until red hot prior to each sterilization purpose. The plates 

were then sealed with parafilm and incubated at specific cultivation conditions in New 

BrunswickTM Innova® 42 incubator manufactured by Eppendorf Company 

(Germany). All apparatus used were sterilized and the experiments were conducted in 

an aseptic environment in an ESCO laminar airflow (Germany). The specific medium 

and cultivation conditions for each bacterial species are shown in Table 3.3. 

Table 3.3 The specific medium in agar and liquid form and, culture conditions of 

each species of bacteria used in this study. 

Bacteria 

species 

Agar 

medium 

Liquid 

medium 

Culture Conditions 

Temperature 

(°C) 

Incubation 

time (h) 

Biological 

process 

B. linens TSYE TSYE 30 72 Aerobic 

C. acnes CASB BHI 37 48 Anaerobic 

S. epidermidis MH MH 37 48 Aerobic 

 

3.5.2 Preparation of McFarland Standard 

McFarland turbidity standard was used as a reference in antibacterial activities 

characterization in order to determine the density of bacterial suspension used in this 

study. The McFarland turbidity standard solution consists of BaCl2 solution and H2SO4 

solution.  

To prepare McFarland turbidity standard, 1 g of BaCl2 was diluted in 100 mL of 

distilled water. Then, 1 mL of concentrated H2SO4 was diluted in 99 mL of distilled 

water. The BaCl2 and H2SO4 solutions were then mixed according to the required 

concentration to obtain the desired cell density (Table 3.4). The mixture was kept in 

screw cap vial covered with aluminium foil to prevent the evaporation of the solution. 

The McFarland turbidity standard solution was kept in a dark place at 4 °C to 25 °C and 
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could be used up to 6 months. Prior to each use, it was vigorously vortexed to prevent 

precipitation and clumps. 

Table 3.4 Variation of McFarland turbidity standard solution and the approximate 

concentration of bacteria in suspension. 

McFarland standard number 0.5 1 2 3 4 

1% BaCl2 (mL) 0.05 0.1 0.2 0.3 0.4 

1% H2SO4 (mL) 9.95 9.9 9.8 9.7 9.6 

Approx. cell density (1×108 CFU/mL) 1.5 3.0 6.0 9.0 12.0 

 

3.5.3 Agar Disc Diffusion Assay (Disc Test) 

The agar disk diffusion method is the most frequently used laboratory method to 

determine the susceptibility of the tested bacteria. In this method, a filter paper disc 

containing the test solution is placed on the inoculated agar medium and incubated. The 

diffusion of the test solution through the agar media during incubation resulted in 

inhibition of microbial growth, which is known as the inhibition zone surrounding the 

tested disc. 

In this study, the susceptibility of B. linens, C. acnes and S. epidermidis on 

different types of uncoated and coated fabric (cotton, polyester, and blended wool) was 

determined. The susceptibility test was also conducted to optimize pomegranate rind 

extraction. The antimicrobial susceptibility test disc (10 µg of ampicillin, 10 µg of 

gentamicin, and 30 µg of vancomycin) obtained from OxoidTM (United Kingdom) was 

used as a positive control. The ampicillin, gentamicin, and vancomycin susceptibility 

disks were used to test the antibacterial activity towards S. epidermidis, C. acnes and B. 

linens, respectively. The uncoated fabric was used as the negative control, while the 

coated fabrics were used as tested discs. However, for the optimization of pomegranate 

rind extraction, filter paper was used as a blank disk (negative control) and tested disk 

(positive control).  

To test the antibacterial activity of the fabric samples, a single colony of bacteria 

was picked using sterilized inoculation loop, transferred, and mixed into a sterilized 
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Eppendorf tube containing 3 mL of respective liquid medium. The density of the 

cultured bacterial suspension was compared with McFarland turbidity standard. 

Additional bacterial colonies were added to the suspension in case of insufficient 

bacterial density. However, the suspension was diluted with liquid media if it was too 

dense. After 15 to 20 mins, 300 µL of bacterial species with a concentration of 9.0 × 

108 CFU/mL was spread on the respective agar media using sterilized cell spreader. A 

positive control, negative control and tested disc were placed on the inoculated petri 

dish. The agar plate was sealed with parafilm and incubated based on the specific 

culture conditions as shown in Table 3.3. All the antibacterial tests were performed in 

triplicate to confirm reproducibility. 

3.6 Samples Characterization 

3.6.1 XRF Analysis 

The chemicals compositions of the sample solutions were analysed using X-Ray 

Fluorescence (XRF) (RIGAKU ZXS Primus II, Tokyo, Japan) with a Rh anode (4.0 

kW). This method provided rapid and accurate determinations of elemental 

compositions, with detection limits for the elements ranging between 0.01 % to 100 %. 

All equipment settings were controlled by the software provided by RIGAKU. Prior to 

analysis, the sample was placed into a plastic sample holder with a Polyethylene plastic 

support film to ensure a flat surface for the X-ray analyser. This step is crucial as it can 

affect the transmission capabilities and helps in supporting the sample over the X-ray 

beam.  

3.6.2 Particle Size Analysis 

Measurement of particle size is essential to ensure the bioavailability, efficiency, 

and durability of the product. The particle size of the sample solutions was carried out 

using Zetasizer Nano S90 particle size analyser (Malvern Instrument, UK). The 

disposable cuvette cell (DTS0012) with measurement position of 4.65 mm was used for 

the measurement of dynamic light scattering (DLS). The parameters employed for the 

sample analysis included a temperature of 25 °C, a measurement time of 60 s, a 

refractive index of 1.59, and an adsorption value of 0.001. Water served as the 
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dispersant, with refractive index and viscosity values of 1.330 and 0.8872 cP, 

respectively. 

3.6.3 Structure and Morphology Characterizations of the Coated and Uncoated 

Fabrics 

The surface of the fabrics before and after the deposition of modified MgO and 

CuO particles and their chemical compositions were studied using a combination of two 

effective systems called Scanning Electron Microscopy-Energy Dispersive X-Ray 

(SEM-EDX). The microscopic structure of the sample was observed using a SEM 

model TM3030 Plus from Hitachi High-Tech (Japan) in high resolution magnifications 

between 500 to 5K. The coated and uncoated fabrics were coated with gold for 1 min 

prior to SEM processing. This was to ensure the stability of the sample towards electron 

bombardment without charging effect (Su et al., 2023). The EDX model SwiftED3000, 

also from Hitachi High-Tech (Japan), was used for compositional analysis of the 

sample. The interaction of electrons and the surface of the sample during SEM imaging 

produced the X-ray for EDX analysis. It analysed and identified all the elements 

contained in the sample based on the X-ray spectrum with an acceleration voltage of 15 

kV and time of 30 seconds. 

3.7 Scaling-up of Synthesis Process 

The optimized formulations were used for the scaling-up process for both the 

sol-gel and green synthesis methods (Table 3.5). A total of 5 L of particles solutions of 

each formulation are needed to coat into 2 m of fabric.  

Table 3.5 The optimized formulation for sol-gel synthesis and green synthesis 

process. 

Synthesis 

process 

Precursor Amount of 

precursor (g) 

Volume of 

solvent (mL) 

Volume of 

PRE (mL) 

pH 

Sol-gel Cu (NO3)2 0.59 20 10 4 

Mg (NO3)2 0.51 20 10 4 

Green 

synthesis 

Cu (NO3)2 0.59 20 10 - 

Mg (NO3)2 0.51 20 10 - 
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3.8 Fabric Coating Process 

3.8.1 Fabrics Pre-treatment 

Fabric pre-treatment is important in order to eliminate foreign residue or 

impurities from the fabric samples. The pre-treatment of the fabric was carried out 

using ultrasonication with the DSA ultrasonic cleaner (DSA200-GL2-12L) (Fuzhou 

Desen Precision Ltd, China). To carry out the fabric pre-treatment process, 2 m of 

cotton fabric was fully immersed in 8 L of denatured ethanol and ultrasonicated at 35 

°C for 15 mins. The fabric was then air dried at ambient temperature for 8 h before 

undergoing the coating process. Similar procedures were carried out for the pre-

treatment of polyester and blended wool fabric. In each pre-treatment, new denatured 

ethanol was used to avoid contamination. 

3.8.2 Fabrics Coating 

The coating process was performed on fabric samples by the dip-dry method. 

The cotton, polyester, and blended wool fabrics were fully immersed in the prepared 

particles solution for 15 mins. Next, the fabric was air dried at 20 °C to 26 °C for 24 h. 

The fabric was dried in horizontal direction by folding the weft direction of the fabric to 

the drying rack (Figure 3.1). The plastic clothespins were used to hang up the fabric. 

During each coating process, newly prepared particles solution was used. The 

volume of particles solution required for each coating process depended on the types 

and sizes of fabric to be coated. The procedures from coating to drying for each fabric 

were repeated depending on the number of coatings required. 
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Figure 3.1 Drying method of fabric after the dipping process. 

 

3.9 Antibacterial Activity Characterization 

The antibacterial activity test was conducted to verify the effectiveness of the 

coated fabrics in preventing bacterial growth. To test the antibacterial activity of the 

coated fabrics, the procedures were similar to those used in the pre-antibacterial 

characterization. However, following the incubation period, the inhibition zones of the 

bacterial colonies around the antibiotic, coated and uncoated fabrics were measured and 

recorded for comparison.  

3.10 Tensile and Tear Strength Test 

Tensile strength is defined as the strength and elongation properties of fabric, 

which are typically measured in terms of force given to the fabric per cross-sectional 

area. On the other hand, tear strength refers to the resistance of fabric against tearing 

and is associated with the individual yarns in the fabric. In this study, the tests were 

conducted using the Universal Tensile Machine (UTM) from Tinius Olsen H25KS 

(United States). The tensile strength was measured for all types of coated and uncoated 

fabric, while the tear strength was only measured for coated and uncoated cotton and 
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polyester fabrics. The tear strength was not measured for blend wool fabric because it is 

knitted fabric which has a loop structure. This structure can easily unravel, making it 

cannot be measured accurately (Ma et al., 2014). The tensile and tear tests were carried 

out for both warp and weft direction of the fabric samples (Figure 3.2). 

The breaking load procedure used to measure the tensile strength was carried 

out for all coated and uncoated fabric samples according to ISO 13934-1:2013 - 

Textiles - Tensile properties of fabrics - Part 1: Determination of maximum force and 

elongation at maximum force using the strip method (International Organization for 

Standardization, 2013). According to this standard, the maximum force and elongation 

at the maximum force were determined using the strip method. The fabric sample was 

cut into a rectangular shape with the size of 400 mm × 50 mm. Then, the fabric sample 

was properly placed between the clamps by vertically aligning the sample from the 

upper clamp to the lower clamp in order to avoid side loading during the test. This is the 

crucial part of the test, as mishandling the fabric may lead to a negative result. The 

gauge length of the fabric used was 200 mm, with a speed of 10 mm/min. The fabric 

sample was slowly elongated and deformed in the middle of its length during this 

process. The testing was ended after the fabric sample was fractured. The breaking load 

of the fabric was determined by comparing the measurement of the fabric sample before 

and after coated with particles. 
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Figure 3.2 The warp and weft direction of the fabric. 

The tear property of fabrics was determined according to ISO 13937-4:2000 - 

Textiles - Tear properties of fabrics - Part 4: Determination of tear force of tongue-

shaped test specimens (Double tear test) (International Organization for 

Standardization, 2000). Based on this standard, the tongue-shape fabric sample (double 

tear test) was used for the determination of tear force. For each type of fabric, two sets 

of fabric samples with triplicates from warp and weft directions were prepared. The 

sample was cut into a rectangular shape with a size of 200 mm × 150 mm. Then, the 

sample was cut 100 mm parallel to the length direction from the middle of the width 

direction with a size of 100 mm × 50 mm. The size of the tear terminal was 25 mm. 

Figure 3.3 shows the standard measurement of fabric used in this study. To measure the 

tear strength, the fabric tongue was clamped symmetrically. The two legs of the fabric 

were then clamped symmetrically in parallel direction of tearing. The tongue of the 

fabric was pulled to the end marks of the sample with a stretch speed of 100 mm/min 

and an extension range of 200 mm. The result was recorded in newton (N) unit. 
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Figure 3.3 The standard measurement of fabric sample for tongue tear test. 

 

3.11 Air Permeability Test 

Air permeability is a fundamental property of fabric and can be defined as the 

volume of air passing through a specific area at a given time period (Mishra et al., 

2019). In this study, the SDL Atlas M021A Air Permeability Tester (United States) was 

used. The air permeability of the cotton, polyester, and blended wool fabrics before and 

after coating was measured according to ISO 9237:1995 - Textiles - Determination of 

the permeability of fabrics to air (International Organization for Standardization, 1995). 

The fabric samples were kept at 20 + 2 °C with a relative humidity of 65 + 2 % for 24 h 

before the test procedure were carried out (ISO 139:1937 - Textiles - Standard 

atmospheres for conditioning and testing) (International Organization for 

Standardization, 1937).  

Five tests were performed for each sample, and the test area for each sample 

was 20 cm2. A pressure of 100 Pa was used in this study. To measure the air 

permeability, the fabric sample was clamped in the air permeability device with the 

right side facing the air inlet, using a vacuum. The air was then sucked through the 
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fabric sample and the air flow was adjusted to achieve the agreed pressure drop. The 

velocity of the air flow, which is the air permeability, was read in cfm unit.  

3.12 Washing Durability 

The washing durability test was conducted to evaluate the effectiveness and 

durability of the modified particles on the fabric. It tested the antibacterial efficiency of 

the coated fabric after several washing processes. The washing durability test was 

conducted following ISO 6330:2012(E) - Domestic Washing and Drying Procedure for 

Textile Testing (International Organization for Standardization, 2012).  

The fabric samples were washed in a washing machine type C (vertical axis, top 

loading pulsator) with a water temperature inlet range of 20 °C to 25 °C. The relative 

humidity during the test was recorded at 65 ± 4 %. A total of 2 kg of fabric from the 

same types consisted of uncoated fabric and 20 cm × 20 cm of coated fabric was placed 

into the washing machine. A non-phosphate powder detergent with optical brightener 

and enzymes was used at a ratio of 1.33 g to 1 L of water. All the washing actions, such 

as water supply, washing, rinsing, and spinning cycles, were as programmed on the 

washing machine. 

After the washing process completed, the fabric sample was immediately air-

dried using the line dry method. Two corners of the fabric were hung unfolded with the 

fabric length in a vertical direction to avoid fabric distortion. The samples were dried at 

ambient temperature until completely dry. The washing and drying process was 

repeated 2, 3, 4, and 5 times and the antibacterial activities of the coated fabrics were 

recorded. 

3.13 Identification of Volatile Active Compounds 

3.13.1 Preparation of Samples 

A simple method was used to identify odours from fabric samples (Verhulst et 

al., 2016). In this method, the non-stabilized artificial sweat with a pH of 4.5 was 

purchased from Nanochemazone (Canada) and used as the substrate. A 2 cm × 2 cm 

fabric was inserted into a 2 mL autosampler vial containing 1.0 mL of artificial sweat. 
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Then, 100 µL of each bacteria species (B. linens, C. acnes and S. epidermidis) with a 

concentration of 1.5 × 108 CFU/mL was added to the artificial sweat solution and gently 

mixed. The solution was then incubated for 24 h at 37 °C. The fabric sample was 

removed from the vial prior to GC-MS analysis. All of these procedures were 

conducted in a laminar air flow. 

3.13.2 Gas Chromatography Mass Spectrometry analysis 

The volatile active compounds were determined using gas chromatography-

mass spectrometry (GC-MS) 6890 Series GC System (Agilent Technologies, USA). 

The GC was fitted with a 30 mm × 0.25 mm GC Capillary column (BPX5), with a film 

thickness of 0.25 µm and a maximum temperature of 360 °C to 370 °C. The GC-MS 

conditions were modified according to Xin et al. (2013). The injector was maintained at 

250 °C, with a transfer line temperature of 280 °C. The scanning range was about 40 – 

450 Da, and the ion energy of electron impact ionization of 70 eV was used. The ion 

source temperature was set to 230 °C. Helium gas was used as a carrier gas with a flow 

rate of 1.2 mL/min. The incubated artificial sweat solution which absorbed the analytes 

was introduced to the GC injector at 250 °C in the splitless mode for 3 min. The 

isothermal temperature was set at 40 °C for 3 min. The temperature was gradually 

increased by 3 °C/min until it reached 73 °C. The temperature was held for 3 min once 

it reached 73 °C. The temperature was then increased to 220 °C at a rate of 5 °C/min 

and was held for 1 min. 

3.14 Statistical Analysis 

The data on the tensile and tear strength, and air permeability of the uncoated 

and coated fabric samples were statistically analysed using Statistical Package for 

Social Science (SPSS) software. In this study, multiple range test was conducted using 

Least Significant Difference (LSD) as a post-hoc test to compare specific group means 

and identify any significant differences. The results are reported as mean ± standard 

deviation.  
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION  

4.1 Introduction 

This chapter presents the results and interpretations derived from the 

experiments conducted on the antibacterial coating for fabrics in the prevention of body 

odour. The key finding of this study reveals that all coated fabrics exhibited 

antibacterial properties against all the tested bacterial species and did not generate 

volatile odorant compounds responsible for body odour. These findings directly aligned 

with the research objectives, aiming to fabricate antibacterial coatings for various types 

of fabric to minimize or eliminate body odour. The chapter employs various methods 

and techniques for data analysis and interpretation, including UPLC analysis, XRF 

analysis, particles size analysis, SEM-EDX, antibacterial activity test (disc diffusion 

assay), tensile strength testing, washing durability assessment, and GC-MS analysis. 

The selection of these methodologies was based on their capacity to offer a 

comprehensive and reliable assessment of the antibacterial properties and efficacy of 

the fabric coatings.  

4.2 Optimization of Pomegranate Rind Extraction Parameters 

Pomegranate rind extract was extracted using the solvent extraction method. 

The optimization of extraction parameters is crucial as it directly influence the 

composition of bioactive compounds within the extract. Consequently, this factor can 

ultimately influence the antibacterial efficiency of the particles. In this study, the 

temperature and amount of pomegranate rind powder used were optimized using one-

variable-at-a-time (OVAT) methodology (Venkatachalam et al., 2021). Initially, the 

amount of pomegranate rind powder was optimized, followed by the extraction 

temperature. The antibacterial performance of all extracts was evaluated using the agar 

disk diffusion method.  
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Based on the observations, extracts obtained from 4 g and 8 g of pomegranate 

rind powder extracted at 100 °C showed an antibacterial activity against all tested 

species of bacteria (Table 4.1). However, the parameters of 4 g of pomegranate rind 

powder and a temperature of 100 °C were selected as the optimal parameters. This 

decision was based on the similar pattern of antibacterial efficiency observed between 

the use of 4 g and 8 g of pomegranate rind powder for extraction. 

According to Cavalaro et al., (2019), the solid-to-solvent ratio may influence the 

bioactive compounds of the extract due to concentration differences between the solid 

and liquid phases which affect the mass transfer rate. The use of a lower amount of 

pomegranate rind powder for extraction enhances its surface contact with the solvent, 

leading to increased extraction yields (Erragued et al., 2022). Additionally, it can reduce 

the extraction time and overall production cost for particles preparation. On the other 

hand, using a higher amount of pomegranate rind powder could significantly affect the 

equilibrium constant, resulting in the increased extraction time, and overall particles 

production time (López et al., 2023). This is due to the fact that exponential phase 

requires more time to produce the maximum yield of bioactive compounds 

(Suparmaniam et al., 2023).  

The extraction temperature also plays a role in influencing the antibacterial 

activity and cytotoxicity of the extract as it can impact the bioactive compounds 

present. Generally, increasing the extraction temperature can reduce the viscosity and 

surface tension of the liquid solvent, thereby improving the mass transfer and solubility 

of bioactive compounds (Rodríguez et al., 2020). Additionally, the polarity of water is 

reduced at high temperatures, allowing non-polar compounds to dissolve, and be 

extracted by water. The high extraction temperature may also lead to the release of 

reducing agents and sugars due to the breakdown of lignocellulose (Usmani et al., 

2022). As stated by (Cacace & Mazza, 2003) the high extraction temperature resulted in 

an increase in bioactive compounds such as anthocyanin in the extract, thereby the use 

of 100 °C as an extraction temperature enhanced the antibacterial activity of PRE.  

 

 



 

 70 

Table 4.1 The antibacterial activity of pomegranate rind extract towards B. linens, 

C. acnes, and S. epidermidis. 

Bacteria Temperature 

(° C) 

Amount of pomegranate rind powder (g) 

2 4 8 

B. linens 30 × × × 

80 × × × 

100 a a a 

C. acnes 30 × × × 

80 × × × 

100 × a a 

S. epidermidis 30 × × × 

80 × × × 

100 × a a 

Note: The symbol indicates; no antibacterial activity observed (×), presences of 

antibacterial activity (a). 

4.2.1 Analysis of Bioactive Compounds in the Optimized Pomegranate Rind 

Extract 

The identification of bioactive compounds within the optimized PRE was 

carried out using UPLC-QTOF-MS. This analysis holds its significance as it directly 

affects the antibacterial properties of the particle solutions and subsequently influences 

the effectiveness of the coated fabrics. Herein, a total of 82 bioactive compounds were 

identified in the extract which consists of alkaloids, phenolics and polyphenols 

compounds (Table 4.2), and the UPLC spectra are presented in Appendix B. These 

compounds, renowned for their antibacterial properties, potentially enhance the 

effectiveness of the particle solutions in eliminating or inhibiting the growth of skin’s 

bacteria.  

Among the identified compounds, tannins, a subset of phenolics and 

polyphenols, dominate the composition of the PRE, constituting 62.62%. Tannins are 

known for their ability to form strong complexes with proteins, leading to precipitation, 

which contributes to their antibacterial activity  (Baron et al., 2019). This mechanism 
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makes tannins an effective antibacterial agent, as they can target and incapacitate 

proteins that are vital for bacterial survival. By precipitating proteins, tannins-

incorporated coatings may not only inhibit bacterial growth but also prevent the 

formation of biofilms, enhancing the antibacterial efficacy of the treated fabrics. 

Examples of the tannins in the PRE include punicalagin (8.9%), ellagic acid (7.56%), 

penduculagin (4.06%), and terchebulin (22.37%). Terchebulin is particularly effective 

against anaerobic bacteria like C. acnes (Abozeid et al., 2022).   

Flavonoids, another class of phenolics and polyphenols, represent the largest 

group of compounds identified in the extract, numbering 47. Despite this, they account 

for only 33.18% of the extract’s total composition. Rutin, catechin, and quercetagetin 

are examples of flavonoids present in the extract, known for their efficacy against a 

wide range of bacteria, including both gram-positive and gram-negative strains, as well 

as antibiotic resistant strains such as Methicillin-resistant Staphylococcus aureus 

(MRSA) (Patra, 2012; Rasouli et al., 2019). Flavonoids exert their antibacterial activity 

through various mechanisms, including the inhibition of nucleic acid synthesis, 

cytoplasmic membrane function, energy metabolism, and disruption of ion and nutrient 

transportation across the membrane (Górniak et al., 2019; Veiko et al., 2023). 

Meanwhile, Quinones, yet another subset of phenolic and polyphenols identified in the 

extract, also contribute to its antibacterial state (Rahman et al., 2021).  

The presence of alkaloids compounds (2.27%) such as carbolin, harman, 

laevigating, and hypoxanthine in the extract has shown effectiveness in inhibiting both 

gram-positive and gram-negative bacteria (Tang et al., 2023). However, certain 

alkaloids like acutumidine and anhydroberberillic acid are effective solely against 

gram-positive bacteria (Mittal & Jaitak, 2019). Alkaloids act against bacteria through 

various mechanisms, including disrupting cell membranes, altering metabolic pathways, 

and interfering with the synthesis and function of nucleic acids, proteins, and enzymes 

within bacterial cells (Yan et al., 2021). Other compounds identified in PRE including 

xanthone (0.18%), quinone (0.52%), benzophenone (0.46%), phenol (0.07%), chalcone 

(0.05%), nucleoside (0.2%), and gingerol (0.32%). 
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Table 4.2 The identified alkaloids, phenolics and polyphenols compounds in the optimized pomegranate rind extract. 

No Component name Classification Molecular 

formula 

Retention 

time (min) 

Observed 

neutral mass 

Observed 

m/z 

Percentage of 

compounds (%) 

1 (-)- Gallocatechin Flavonoids C15 H14 O7 4.16 306.0737 305.0664 0.35 

2 2,5,7-Trihydroxy-6,8-dimethyl-3-(3',4'-

methylenedioxybenzyl) chroman-4-one 

 C19 H18 O7 0.94 358.1125 357.1053 0.20 

 0.88 358.1111 357.1038 

 

 0.9 344.1322 343.1249 

 

3 2,5,7-Trihydroxy-6,8-dimethyl-3-(4'-

methoxybenzyl) chroman-4-one 

 C19H20O6 0.9 344.1322 343.1249 1.52 

4 2′,6′-Dihydroxy-4,4′-

dimethoxydihydrochalcone 

 C17 H18 O5 9.77 302.1072 301.0999 0.12 

5 3',4',7-Trihydroxyisoflavanone  C15 H12 O5 2.6 272.0693 271.062 0.04 

6 3,4-O-Dicaffeoylquinic acid  C25 H24 O12 1.21 516.1361 515.1288 0.12 

7 5,7,3',4'-Tetramethoxyflavone  C19 H18 O6 0.74 342.1174 341.1101 0.85 

 0.87 342.1159 341.1086 

 

8 5-Hydroxyauranetin  C20 H20 O8 0.87 388.1215 387.1143 0.29 
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      Table 4.2 Continued 

No Component name Classification Molecular 

formula 

Retention 

time (min) 

Observed 

neutral mass 

Observed 

m/z 

Percentage of 

compounds 

9 6-Aldehydo-isoophio-pogonone A Flavonoids C19 H14 O7 0.84 354.0798 353.0725 0.45 

 1.21 354.0817 353.0744 

 

10 Asebotin  C22 H26 O10 0.9 450.159 449.1518 0.06 

11 6-Methoxy-2-[2-(4'-

methoxyphenyl) ethyl] chromone 

 C20 H22 O4 16.89 326.1594 325.1521 0.08 

12 6-Formyl-isoophiopogonanone A  C19 H16 O7 1.21 356.097 355.0897 0.64 

13 7,4′,7′′,4′′′-Tetra-O-amentoflavone  C34 H26 O10 10.78 594.1621 593.1548 0.38 

14 Cyanidin  C15 H11 Cl O6 18.69 322.0254 321.0181 0.03 

15 Cytidine  C9 H13 N3 O5 0.84 243.0864 242.0791 0.20 

 0.84 243.0864 242.0792 

 

16 d-Catechin  C15 H14 O6 6.17 290.0792 289.0719 0.07 

17 Divaricatol  C17 H18 O7 2.7 334.1094 333.1021 0.07 
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      Table 4.2 Continued 

No Component name Classification Molecular 

formula 

Retention 

time (min) 

Observed 

neutral mass 

Observed 

m/z 

Percentage of 

compounds 

18 Feroxidin Flavonoids C11 H14 O3 16.81 194.0955 193.0882 0.11 

19 Furosin Flavonoids C27 H22 O19 3.7 650.0855 649.0782 0.98 

 

 

  1.21 650.0812 649.0739 

 

 

 

  3.72 650.0716 649.0643 

 

 

 

  3.69 650.0718 649.0645 

 

 

 

  3.68 650.0747 649.0675 

 

20 Gallocatechin Flavonoids C15 H14 O7 5.75 306.0739 305.0666 0.39 

 7.1 306.0766 305.0693 

 

21 Gallocatechin(4α→8)-epicatechin Flavonoids C30 H26 O13 5.82 594.1389 593.1316 0.29 

 4.94 594.1385 593.1313 

 

 4.49 594.1384 593.1312 

 

22 Gemin D Flavonoids C27 H22 O18 5.47 634.0878 633.0805 9.34 
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      Table 4.2 Continued 

No Component name Classification Molecular 

formula 

Retention 

time (min) 

Observed 

neutral mass 

Observed 

m/z 

Percentage of 

compounds 

 

 

  5.43 634.0797 633.0724 

 

 

 

  5.25 634.08 633.0728 

 

 

 

  5.46 634.0877 633.0804 

 

 

 

  7.32 634.0845 633.0773 

 

23 Geraniin Flavonoids C41 H28 O27 4.03 952.0755 951.0682 3.96 

 

 

  4.78 952.0792 951.0719 

 

 

 

  5.5 952.0862 951.079 

 

 

 

  8.93 952.0905 951.0832 

 

 

 

  8.82 952.0886 951.0814 

 

 

 

  5.41 952.0848 951.0775 

 

 

 

  4.75 952.0844 951.0771 

 

 

 

  5.42 952.0885 951.0812 
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      Table 4.2 Continued 

No Component name Classification Molecular 

formula 

Retention 

time (min) 

Observed 

neutral mass 

Observed 

m/z 

Percentage of 

compounds 

 

 

  8.87 952.0899 951.0826 

 

 

 

  5.38 952.0829 951.0756 

 

24 Kuwanon L Flavonoids C35 H30 O11 0.81 626.1747 625.1674 0.03 

25 Laevigatin A Flavonoids C34 H26 O23 6.48 802.0904 801.0832 1.95 

 

 

  6.43 802.089 801.0817 

 

 

 

  6.49 802.0818 801.0745 

 

 

 

  6.64 802.0866 801.0793 

 

 

 

  6.45 802.0913 801.084 

 

26 Laevigatin G Flavonoids C54 H42 O36 5.5 1266.154 1265.147 0.62 

 5.98 1266.149 1265.141 

 

 6.31 1266.136 1265.129 

 

 5.68 1266.151 1265.144 
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      Table 4.2 Continued 

No Component name Classification Molecular 

formula 

Retention 

time (min) 

Observed 

neutral mass 

Observed 

m/z 

Percentage of 

compounds 

27 Maclurin Flavonoids C13 H10 O6 0.77 262.0419 261.0347 0.11 

28 Mahuannin E Flavonoids C30 H24 O9 5.22 528.1484 527.1412 0.15 

 5.18 528.1488 527.1415 

 

29 Mahuannin G Flavonoids C32 H22 O10 6.14 542.1249 541.1176 0.06 

30 Mallotinic acid Flavonoids C34 H26 O22 9.28 786.0931 785.0859 1.59 

 

 

  5.99 786.0907 785.0834 

 

 

 

  5.97 786.092 785.0847 

 

 

 

  8.1 786.0956 785.0883 

 

 

 

  5.94 786.0942 785.0869 

 

 

 

  7.09 786.0906 785.0834 

 

31 Maltol Flavonoids C6 H6 O3 2.55 126.0303 125.023 0.30 

 

 

  2.53 126.0296 125.0224 
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      Table 4.2 Continued 

No Component name Classification Molecular 

formula 

Retention 

time (min) 

Observed 

neutral mass 

Observed 

m/z 

Percentage of 

compounds 

 

 

  2.57 126.0308 125.0236 

 

32 Mulberrofuran O Flavonoids C39 H34 O9 2.75 646.2195 645.2123 0.06 

33 Mururin A Flavonoids C24 H16 O9 9.74 448.0696 447.0624 0.17 

34 Myricetin Flavonoids C15 H10 O8 3.82 318.037 317.0297 0.11 

 16.84 318.0319 317.0246 

 

35 Nilocitin Flavonoids C20 H20 O14 2.97 484.0819 483.0746 3.44 

 

 

  4.01 484.0815 483.0742 

 

 

 

  4.78 484.0867 483.0795 

 

 

 

  4.05 484.0812 483.0739 

 

 

 

  4.03 484.0812 483.0739 

 

 

 

  6.29 484.0872 483.0799 

 

 

 

  5.94 484.0861 483.0789 
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      Table 4.2 Continued 

No Component name Classification Molecular 

formula 

Retention 

time (min) 

Observed 

neutral mass 

Observed 

m/z 

Percentage of 

compounds 

 

 

  5.23 484.0856 483.0783 

 

 

 

  5.7 484.0862 483.0789 

 

 

 

  6.08 484.0863 483.079 

 

36 Nobilin C Flavonoids C18H22O6 18.69 334.1417 333.1344 0.14 

 2.73 334.1358 333.1285 

 

37 Ophiopogonanone B Flavonoids C18 H18 O5 0.92 314.1219 313.1146 0.07 

38 Polygoacetophenoside Flavonoids C14 H18 O10 7.37 346.091 345.0837 0.40 

 8.65 346.0948 345.0875 

 

 2.35 346.0909 345.0836 

 

 8.61 346.0922 345.085 

 

39 Procyanidin B2_1 Flavonoids C30 H26 O12 5.67 578.1437 577.1364 0.06 

40 Protosappanin A Flavonoids C15 H12 O5 3.09 272.0609 271.0537 0.42 
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      Table 4.2 Continued 

No Component name Classification Molecular 

formula 

Retention 

time (min) 

Observed 

neutral mass 

Observed 

m/z 

Percentage of 

compounds 

 

 

  3.07 272.0608 271.0535 

 

41 Quercetagetin Flavonoids C15 H10 O8 16.85 318.0319 317.0246 0.07 

42 Rutin Flavonoids C27 H30 O16 9.78 610.1577 609.1504 0.08 

43 Tachioside Flavonoids C13 H18 O8 9.77 302.1072 301.0999 0.16 

44 Terchebin Flavonoids C41 H30 O27 5.44 954.0914 953.0841 0.18 

 9.95 954.1066 953.0993 

 

45 Terflavin A Flavonoids C48 H30 O30 6.28 1086.087 1085.08 0.81 

 6.01 1086.079 1085.072 

 

 5.05 1086.076 1085.069 

 

 6.39 1086.091 1085.083 

 

46 Viscidulin Ⅰ Flavonoids C15 H10 O7 10.03 302.0352 301.028 0.22 

 9.8 302.0408 301.0335 
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      Table 4.2 Continued 

No Component name Classification Molecular 

formula 

Retention 

time (min) 

Observed 

neutral mass 

Observed 

m/z 

Percentage of 

compounds 

47 Yakuchinone A Flavonoids C20 H24 O3 16.88 312.1749 311.1676 1.57 

 16.78 312.1742 311.167 

 

 16.74 312.1764 311.1691 

 

 16.85 312.177 311.1697 

 

 18.67 312.1749 311.1676 

 

48 1,2,6-Tri-O-galloyl-β-D-

glucopyranoside 

Tannins C27 H24 O18 6.94 636.0983 635.091 0.17 

 7.6 636.1005 635.0932 

 

 7.72 636.0975 635.0902 

 

 7.72 636.0948 635.0875 

 

49 1-Galloyl-glucose Tannins C13 H16 O10 3.05 332.0799 331.0727 2.60 

 

 

  2.27 332.0747 331.0674 

 

 

 

  3.07 332.0819 331.0746 
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      Table 4.2 Continued 

No Component name Classification Molecular 

formula 

Retention 

time (min) 

Observed 

neutral mass 

Observed 

m/z 

Percentage of 

compounds 

 

 

  3.03 332.0786 331.0713 

 

 

 

  2.57 332.0741 331.0668 

 

 2.17 332.077 331.0697 

 

 2.12 332.0754 331.0681 

 

 1.2 332.076 331.0687 

 

 1.25 332.0744 331.0671 

 

50 1-O-Galloylpedun-culagin Tannins C41 H28 O26 6.64 936.0884 935.0811 0.41 

 8.1 936.0929 935.0857 

 

 6.7 936.0832 935.0759 

 

51 2,3-(S)-Hexahydroxydiphenoyl-D-

glucose 

Tannins C20 H18 O14 1.45 482.067 481.0597 13.75 

 

 

  6.04 482.0687 481.0614 
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      Table 4.2 Continued 

No Component name Classification Molecular 

formula 

Retention 

time (min) 

Observed 

neutral mass 

Observed 

m/z 

Percentage of 

compounds 

 

 

  1.44 482.0778 481.0706 

 

 

 

  1.32 482.0706 481.0633 

 

 

 

  1.39 482.07 481.0628 

 

 

 

  1.42 482.071 481.0638 

 

 

 

  1.56 482.07 481.0627 

 

 

 

  1.5 482.0716 481.0643 

 

 1.21 482.0729 481.0656 

 

52 5-Desgalloylstachyurin Tannins C34 H24 O22 6.94 784.0828 783.0755 1.41 

 6.83 784.0803 783.073 

 

 6.73 784.0817 783.0744 

 

53 Castalagin Tannins C41 H26 O26 4.06 934.0699 933.0626 0.74 

 4.25 934.0726 933.0654 
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      Table 4.2 Continued 

No Component name Classification Molecular 

formula 

Retention 

time (min) 

Observed 

neutral mass 

Observed 

m/z 

Percentage of 

compounds 

54 Corilagin Tannins C27 H22 O18 4.68 634.0784 633.0711 0.48 

 4.66 634.0796 633.0723 

 

55 Decaffeoylacteoside Tannins C20 H30 O12 7.64 462.1766 461.1693 0.17 

56 Ellagic acid Tannins C14 H6 O8 5.07 302.0063 300.999 7.56 

 

 

  16.84 301.9999 300.9926 

 

 

 

  6.04 302.0048 300.9975 

 

 

 

  5.81 302.0057 300.9984 

 

 

 

  9.9 302.0094 301.0021 

 

 

 

  9.85 302.0093 301.002 

 

 

 

  9.79 302.0092 301.002 

 

57 Pedunculagin Tannins C34 H24 O22 3.54 784.0748 783.0675 4.06 

 

 

  5.32 784.0848 783.0776 
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      Table 4.2 Continued 

No Component name Classification Molecular 

formula 

Retention 

time (min) 

Observed 

neutral mass 

Observed 

m/z 

Percentage of 

compounds 

 

 

  3.52 784.0736 783.0663 

 

 

 

  4.1 784.0768 783.0696 

 

58 Punicalagin Tannins C48 H28 O30 5.04 1084.071 1083.064 8.90 

 5.97 1084.069 1083.061 

 

 3.82 1084.069 1083.062 

 

 6.09 1084.068 1083.06 

 

 5.04 1084.071 1083.064 

 

 5.07 1084.069 1083.062 

 

59 Terchebulin Tannins C48 H28 O30 4.01 1084.065 1083.058 22.37 

 6.01 1084.072 1083.065 

 

 6.01 1084.07 1083.063 

 

60 1-Acetyl-β-carboline Alkaloids C13 H10 N2 O 11.23 210.0873 209.08 0.18 
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      Table 4.2 Continued 

No Component name Classification Molecular 

formula 

Retention 

time (min) 

Observed 

neutral mass 

Observed 

m/z 

Percentage of 

compounds 

61 1-Formyl-β-carboline 
 

Alkaloids C12 H8 N2 O 0.8 196.0581 195.0508 1.40 

 1.21 196.0592 195.0519 

 

 0.82 196.0566 195.0493 

 

 0.8 196.0581 195.0508 

 

 0.82 196.058 195.0507 

 

62 Acutumidine Alkaloids C18 H22 Cl N 

O6 

0.79 383.1131 382.1059 0.08 

63 Anhydroberberillic acid Alkaloids C20 H17 N O8 0.8 399.1054 398.0981 0.18 

64 Harman Alkaloids C12 H10 N2 0.94 182.0792 181.0719 0.16 

 1.12 182.0792 181.072 

 

65 Hordenine-Ο-α-L-rhamnopyranoside Alkaloids C16 H25 N O5 18.7 311.1816 310.1743 0.10 

66 Hypoxanthine Alkaloids C5 H4 N4 O 0.86 136.0367 135.0294 0.03 
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      Table 4.2 Continued 

No Component name Classification Molecular 

formula 

Retention 

time (min) 

Observed 

neutral mass 

Observed 

m/z 

Percentage of 

compounds 

67 Kukoamine A Alkaloids C28 H42 N4 O6 18.67 530.3086 529.3013 0.04 

68 Lysicamine Alkaloids C18 H13 N O3 1.21 291.0965 290.0893 0.07 

69 Tribulusamide A Alkaloids C36 H36 N2 O8 11.87 624.245 623.2377 0.03 

70 1-Hydroxy-2,3,7-trimethoxyxanthone Xanthone C16 H14 O6 9.77 302.0779 301.0706 0.10 

71 3-Hydroxy-2,8-dimethoxyxanthone Xanthone C15 H12 O5 3.06 272.061 271.0537 0.08 

72 Belladonnine Quinone C34 H42 N2 O4 6.03 542.3063 541.299 0.35 

 6.01 542.3103 541.3031 

 

 5.06 542.3094 541.3022 

 

73 Arbutin Quinone C12 H16 O7 2.6 272.0835 271.0763 0.06 

74 Protohypericin Quinone C30 H18 O8 1.21 506.0955 505.0882 0.11 

75 3-Hydroxy-1-(4-hydroxy-3-

methoxyphenyl)-2-propanone 

Benzophenone C10 H12 O4 0.81 196.0734 195.0661 0.05 

76 2,4,4′,6′-Tetrahydroxy-benzophenone Benzophenone C13 H10 O5 0.8 246.0505 245.0432 0.04 
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      Table 4.2 Continued 

No Component name Classification Molecular 

formula 

Retention 

time (min) 

Observed 

neutral mass 

Observed 

m/z 

Percentage of 

compounds 

77 2,4-Dihydroxyaceto-phenone Benzophenone C8 H8 O3 10.87 152.0481 151.0408 0.37 

 10.82 152.0485 151.0413 

 

 10.9 152.0484 151.0411 

 

78 6-Gingerol Gingerol C17 H26 O4 16.79 294.1856 293.1783 0.32 

 18.53 294.1857 293.1784 

 

 16.74 294.1865 293.1793 

 

 18.71 294.1825 293.1753 

 

79 7-Hydroxy-2,3,5-trimethoxy-9,10-

dihydrophenanthrene 

Phenols C17 H18 O4 1.02 286.1161 285.1088 0.07 

80 Bavachalcone Chalcone C20 H20 O4 3.67 324.1396 323.1323 0.05 

81 6-Isoinosine Nucleoside C10 H12 N4 O5 0.91 268.0801 267.0728 0.16 

82 Cordycepin Nucleoside C10 H13 N5 O3 0.74 251.1014 250.0941 0.04 
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4.3 Optimization of Synthesis and Coating Cycles Parameters 

The antibacterial properties of cotton, polyester and blend wool fabrics were 

enhanced through the optimization of process parameters in both sol-gel and green 

synthesis methods. For the sol-gel process, the volume of PRE, pH, and number of 

coating cycles were optimized. As for the green synthesis process, the optimization 

involved the volume of PRE and number of coating cycles.  

Table 4.3 shows the parameters for both sol-gel synthesis and green synthesis, 

focusing on their effects on the antibacterial activity against gram-positive bacteria. 

Based on the observations, the use of PRE in the sol-gel solution has greatly affected 

the antibacterial activity of the particles, as none of the formulations containing Cu and 

Mg particles (which acted as controls) exhibited antibacterial activities. This is probably 

due to the lesser amount of precursor used in the synthesis process (Parashar et al., 

2020). According to Kessler & Seisenbaeva (2023), the efficacy of metal oxide particles 

in inhibiting bacterial growth is frequently associated with their surface area and 

reactivity, which is related to the amount of precursor used during the synthesis process. 

Thus, the optimized parameters selected for both methods were 10 mL of PRE, 1× 

coating cycle, and pH 4 for sol-gel synthesis.  

According to Gopal et al. (2018), the hydrolysis and condensation of precursors, 

such as metal oxide can be influenced by the amount of plant extract used in the 

synthesis process, resulting in variations in the size, shape, and distribution of particles. 

Using a low amount of plant extract in the synthesis process may resulted in incomplete 

reduction and stabilization of metal oxide precursors, leading to the formation of large 

and non-uniform particles, which can impact their performance (Chaillot et al., 2019) 

and explain the absent of antibacterial activities when 5 mL of PRE was used. The 

small and uniform particles can be produced using high amount of plant extract due to 

the enhancement of reduction and stabilization of metal oxide precursors (Innocenzi, 

2019). However, the use of 15 mL of PRE resulted in fungal contamination in the 

particles solutions after two days being kept at room temperature. The excessive 

amount of plant extract can create a favourable environment for fungal growth due to 

the nutrient composition of plant extract (Singh et al., 2019). According to Younos & 
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Embaby (2023), the sugar content in plant extract can serve as a nutrient source for 

fungal growth as the microbes can adhere to the surface of extract, invade cellular 

space, and proliferate in the environment, leading to contamination issue. This can 

potentially affect the quality of the particles and indirectly impact the safety of the 

consumers (Stępień et al., 2015).  

Another important parameter studied for both sol-gel and green synthesis 

methods were the coating cycle. The coating cycle affects the thickness and stability of 

the coatings as well as their morphology, porosity, crystallinity, and properties (Mahltig 

et al., 2010; Xu et al., 2021). However, the number of coating cycles did not 

significantly affect the antibacterial properties of the sol-gel and green synthesis-

derived antibacterial particles (Soule et al., 2020). The antibacterial activity patterns of 

the 2× and 3× coating cycles were similar to that of the 1× coating cycle. Thus, the 1× 

coating cycle was selected as the optimal parameter to save time, energy, and overall 

production costs. Studies have shown that the antibacterial properties of the coated 

fabric are primarily influenced by the antibacterial compounds present in the particles, 

rather than the coating cycle itself (Gulati et al., 2022; Zada et al., 2020). 

Lastly, sol-gel synthesis parameter that influences the bactericidal activity of the 

particles is pH. According to Iyer et al. (2021), the optimal pH levels for the growth of 

bacteria vary among species, and growth is hindered below or above optimal pH range 

(Wan et al., 2020). B. linens, for example, has an optimal pH range for growth of 6.5 – 

8.5 (El Soda & Awad, 2014), thus it showed antibacterial activity at pH 5.5. 

Meanwhile, C. acnes and S. epidermidis have an optimal pH range of 5.0 – 7.4 and 4.5 

– 7, respectively (Dréno et al., 2018; Iyer et al., 2021). Therefore, no antibacterial 

activity of particles was observed at pH 5.5 and pH 7 for these species. Antibacterial 

particles may exhibit higher contact killing efficiency at acidic pH due to the release of 

more metal ions, leading to increased oxidative stress on bacterial cells and their 

subsequent death (Mendes et al., 2022). In the formulations containing Cu and Mg, 

antibacterial activity was not detected at pH levels of 4 and 5. This is due to the 

insufficient quantity of precursor and the omission of an antibacterial agent in the 

solution, both of which are critical to the antibacterial mechanism’s effectiveness 

(Abebe et al., 2020). 
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Table 4.3 The antibacterial activity of particles based on synthesis parameters against B. linens, C. acnes, and S. epidermidis. 

Bacteria Synthesis 

method 

Formulation Amount of PRE (mL) pH Number of coating cycles 

5 10 15 4 5.5 7 1× 2× 3× 

B. linens Sol-gel Cu N/A N/A N/A × × × × × × 

  Cu + PRE × a × a a × a a a 

  Mg N/A N/A N/A × × × × × × 

  Mg + PRE × a × a a × a a a 

 Green synthesis Cu + PRE × a × N/A N/A N/A a a a 

  Mg + PRE × a × N/A N/A N/A a a a 

C. acnes Sol-gel Cu N/A N/A N/A × × × × × × 

  Cu + PRE × a × a × × a a a 

  Mg N/A N/A N/A × × × × × × 

  Mg + PRE × a × a × × a a a 

 Green synthesis Cu + PRE × a × N/A N/A N/A a a a 

  Mg + PRE × a × N/A N/A N/A a a a 

S. epidermidis Sol-gel Cu N/A N/A N/A × × × × × × 

  Cu + PRE × a × a × × a a a 

  Mg N/A N/A N/A × × × × × × 
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Table 4.3 Continued 

Bacteria Synthesis 

method 

Formulation Amount of PRE (mL) pH Number of coating cycles 

5 10 15 5 10 15 1× 2× 3× 

  Mg + PRE × a × a × × a a a 

 Green synthesis Cu + PRE × a × N/A N/A N/A a a a 

  Mg + PRE × a × N/A N/A N/A a a a 

Note: The symbol indicates; no antibacterial activity observed (×), presences of antibacterial activity (a), antibacterial activity test did not 

conducted (N/A). 

 

 



 

 93 

4.4 XRF Analysis 

The XRF analysis was conducted to confirm the presence of CuO and MgO 

elements in each particle’s solution. Based on the XRF spectra (Appendix C), CuO and 

MgO were identified in their respective particle formulations, confirming the reaction 

of copper nitrate and magnesium nitrate with PRE, resulting in the production of CuO 

and MgO. The components identified in CuO and MgO particles solutions are listed in 

Table 4.4 

Table 4.4 The component identified in the formulations based on the synthesis 

methods. 

Synthesis process Formulation Component identified Mass (%) 

Sol-gel Cu + PRE CuO 0.620 

  P 0.0025 

  K 0.0180 

  H2O 99.4 

 Mg + PRE MgO 0.236 

  P 0.014 

  K 0.0217 

  Ca 0.0034 

  H2O 99.7 

Green synthesis Cu + PRE CuO 0.685 

  P 0.0046 

  S 0.0017 

  K 0.0201 

  H2O 99.4 

 Mg + PRE MgO 0.216 

  P 0.0018 

  K 0.0188 

  Fe 0.0019 

  S 0.0098 

  H2O 99.7 
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Among these, H2O was the major component found in all particle formulations, 

as it served as a solvent during both synthesis processes. Other elements identified 

included P, K, Ca, S, and Fe. However, these observed components are not considered 

as impurities or contaminants, as PRE was intentionally added as antibacterial agent 

during the synthesis process, and these components are naturally present in 

pomegranate rind (Ammulu et al., 2021). Additionally, only trace amounts of these 

elements were detected in CuO and MgO particles, making them insignificant in 

affecting the identity of both CuO and MgO particle solutions, respectively (Hirphaye 

et al., 2023).   

4.5 Synthesis Mechanism 

The synthesis of CuO particles and MgO particles through sol-gel method 

involves the use of Cu (NO3)2 and Mg(NO3)2 as precursors, PRE as antibacterial agent, 

water as the solvent, citric acid as the catalyst, and ethylene glycol and diethyl ether as 

reagents. The process includes hydrolysis and condensation of the sol-gel precursor, as 

well as condensation of the hydrolysed product with PRE. Initially, the addition of citric 

acid to the metal nitrate solution promotes the hydrolysis reactions of the metal ions 

(Muthuvel et al., 2020). The coordination of ethylene glycol with the metal ions 

prevents hydrolysis, and the condensation reaction begins with the addition of diethyl 

ether to form the gel (Rex & dos Santos, 2023). The addition of PRE, which acts as 

reductant and stabilizer for the metal ions, forms stable complexes in the sol and 

reduces them to metal oxides (Bao et al., 2021).  The proposed mechanisms for the 

production of metal oxide using MgO as an example is shown in Figure 4.1. 

Meanwhile, the following figures (Figure 4.2, Figure 4.3, and Figure 4.4) shown the 

interactions of MgO with different types of fabrics.  
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Figure 4.1 Possible reaction for the production of MgO particles.  

Source: Correia et al. (2023); Fuku et al. (2020); Kaur et al. (2022). 
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Figure 4.2 The interaction of MgO-PRE with cotton fabric.  

Source: Granados et al. (2021) 

 

Reaction of magnesium nitrate with water with the help of citric acid, diethyl ether and ethylene 

glycol producing metal salts 

 

Reaction of magnesium ions from magnesium salts and PRE producing magnesium oxide 
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Figure 4.3 The interaction of MgO-PRE with polyester fabric.  

Source: Pasichnyk et al. (2022) 
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Figure 4.4 The interaction of MgO-PRE with blend wool fabric.  

Source: Guo et al. (2022) 
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Green synthesis is a straightforward process that involves the use of plant 

extracts for the preparation of metal or metal oxide particles. The active compounds 

present in the PRE, such as phenolic acids, flavonoids, tannins and saponins, that act as 

antioxidants are responsible for the green synthesis process of CuO particles and MgO 

particles (Altemimi et al., 2017; Xu et al., 2017). These compounds also act as stabilizer 

to prevent the agglomeration and crystal growth (Singh et al., 2018). The antioxidant 

compounds donate electrons, leading to the reduction of copper salts and magnesium 

salts. The addition of PRE extract to copper and magnesium solutions results in 

observable colour changes, indicative of the formation of CuO and MgO particles, 

respectively. The emergence of a brownish-black colour suggests the formation of CuO 

particles (Vasantharaj et al., 2019), while a light brownish-orange colour signifies the 

formation of MgO particles (Ammulu et al., 2021) (Figure 4.5). While these studies 

provide initial validation, further supporting studies are crucial to confirm these 

observations and to understand the underlying mechanisms of particle formation in 

greater detail. 

The synthesis methods and precursor types used resulted in variations of colour 

to the particle solutions. The MgO particle solutions synthesized via both sol-gel and 

green synthesis methods exhibited an orange-brownish colour, with the sol-gel 

synthesis produced a darker tone compared to the green synthesis method. On the other 

hand, the CuO particles synthesized via sol-gel method displayed a green-brownish 

colour, which appeared lighter than those produced via the green synthesis method. 

According to Khurana & Jaggi (2021), the observed colour variations in particle 

solutions can be attributed to localized surface plasmon resonance (LSPR), which is 

influenced by factors such as particle size, shape, and composition. Specifically, the 

LSPR frequency is affected by the dielectric permittivity of the particles and the 

medium surrounding them (D’Ambrosio et al., 2022). Smaller particles typically exhibit 

a blue shift, indicating a higher frequency, whereas larger particles demonstrate a red 

shift, corresponding to a lower frequency (Ringe et al., 2009). Additionally, particles 

with sharp edges and corners can intensify electric fields, thereby impacting the 

resonance frequency (Lee et al., 2023). Furthermore, the composition of the particles 

plays a role in modulating the conductivity of electrons in response to the 
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electromagnetic field, thus altering the LSPR frequency (Hamamoto & Yagyu, 2023). 

Therefore, the colour variation in particle solutions may depend on the synthesis 

method, and the composition of the particles. 

 

Figure 4.5 The colour of  MgO particles synthesized via (a) green synthesis and (b) 

sol-gel methods; CuO particles synthesized via (c) green synthesis and (d) sol-gel 

methods. 

 

4.6 Particles Size Analysis 

The particles sizes of CuO and MgO synthesized using both the sol-gel and 

green synthesis methods were determined to compare the effect of synthesis methods 

and precursor types on the size of particles and their effectiveness in fabrics coating. 

The sizes of the produced particles are listed in Table 4.5, and the particle size 

distribution is provided in Appendix D. The results showed that both synthesis methods 

and precursor types slightly affect the particles size. The sol-gel method produced 

smaller particles than green synthesis method. Specifically, the average particle size for 

CuO particles synthesized via the sol-gel method was 325.9 nm, while for MgO 

particles, the average size was 317.5 nm. Conversely, CuO and MgO particles 

synthesized via the green synthesis method exhibited average sizes of 374.5 nm and 325 

nm, respectively.  

The differences in particle sizes between synthesis methods likely stem from 

distinct reaction mechanisms that affect nucleation, growth, and aggregation of particles 

(Hachem et al., 2022). Moreover, the choice of precursors influences these processes 
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during synthesis. In the nucleation phase, the type of precursor determines the rate at 

which monomers are formed and become available for nucleation (Wen et al., 2021). 

Once nucleation has commenced, particles begin to grow through the addition of 

monomers. The growth rate depends on the monomer concentration, which is controlled 

by the precursor. A precursor that leads to a high concentration of monomers can result 

in rapid growth, potentially yielding larger particles (Gao et al., 2019). Aggregation 

may occur during or after growth, and the chemical nature of the precursor can 

influence the surface properties of the particles, such as charge and hydrophobicity, 

affecting their tendency to aggregate (Harish et al., 2022). MgO, being more soluble 

and reactive in water compared to CuO, might limit the growth and aggregation of 

particles, resulting in the production of smaller particles (Rabea et al., 2023). 

Table 4.5 An average particle sizes of CuO and MgO particles based on the 

synthesis method. 

Synthesis method Solution Particles size (nm) 

Sol-gel CuO 325.9 

MgO 317.7 

Green synthesis CuO 374.5 

MgO 325 

 

4.7 Appearance of the Fabrics 

Coating fabrics with particles can alter their colour appearance due to the small 

size and large surface area of the particles, which may affect their optical properties 

(Munir et al., 2022). The absorption, reflection and scattering of light by particles vary 

depending on their shape, size, and surface modification (Ustin & Jacquemoud, 2020). 

Based on the observations, the particles coated onto fabrics resulted in variations of 

colour depending on the fabric types, particles used, and synthesis methods (Figure 

4.6). The particles coated onto blend wool fabric contributed to a darker colour 

compared to cotton and polyester fabrics. There were slight changes in the colour of 

coated polyester fabrics, but they were not very noticeable. Fabrics coated with particles 

synthesized using sol-gel method had lighter colours compared to fabrics coated with 
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particles synthesized using green synthesis method. Cotton, polyester, and blend wool 

fabrics coated with CuO particles synthesized via the sol-gel method changed from 

white to light brown-greenish, light green and dark brown-greenish colour, respectively. 

Meanwhile, CuO particles synthesized using the green synthesis method changed the 

fabric colour to light brown (cotton and polyester) and dark brown (blend wool). The 

fabrics coated with MgO particles had lighter colours than fabrics coated with CuO 

particles. The MgO particles altered the fabric colour to a yellowish-brown for both sol-

gel and green synthesis methods. However, the tone of the colour varied between the 

synthesis methods and fabric types.  

The difference in the chemical and physical properties of the fabric materials 

influences the specific mechanism by which the colour is absorbed (Ali et al., 2023). 

Blend wool fabric contains protein fibres which can form covalent bonds with CuO 

particles and reduce them to metallic Cu particles, resulting in a dark brown-greenish 

(sol-gel) and dark brown (green synthesis) colour on the fabric (Román et al., 2020). 

According to El-Meligi et al. (2016), MgO particles are stable and resistant to the 

reduction by blend wool fabric, therefore, they do not form metallic colour. However, 

in this study, the alteration of the colour in MgO particles coated blend wool fabric 

occurred possibly due to the presence of bioactive compounds in plant extract which 

interact with MgO particles and modify their optical properties, giving the fabric a 

slightly yellowish-brown colour (Venkatachalam et al., 2021).  

Cellulose, the main component of cotton fabric, can form hydrogen bonds with 

CuO particles, resulting in a light brown colour on the fabric coated with CuO particles 

synthesized via the green synthesis method (Dulta et al., 2022). The reaction of CuO 

partciles synthesized via the sol-gel method with carbon dioxide and water in the air 

may occur, resulting in the formation of a light brown-greenish and light greenish 

patina on cotton and polyester fabric, respectively (Turakhia et al., 2020). The 

formation of hydrogen bonds between cotton fabric and MgO particles can scatter light, 

giving the fabric a slightly yellowish-brown colour (Araújo et al., 2022).  

Polyester, being a synthetic fabric, has a lower affinity to absorb CuO particles 

and MgO particles compared to the cotton and wool fabrics (Saade et al., 2021). This is 
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due to the different surface charges and functional groups of the fabric, which can affect 

the electrostatic and chemical interactions between polyester fabric and particles, 

causing significant colour changes in the fabric (Palacios-Mateo et al., 2021; Ketema & 

Worku, 2020). The difference in colour of the fabrics between the synthesis methods 

may be attributed to the distribution and shape of the particles. According to Baig et al. 

(2021), the green synthesis method produces particles with a broader size distribution 

and irregular shape compared to the sol-gel synthesis, resulting in a darker colour of the 

fabric due to the increased of light scattering and absorption. 
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Figure 4.6  The appearance of the uncoated fabric, CuO particles coated fabric and MgO particles coated fabric synthesized using sol-gel and 

green synthesis method. 

. 
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4.8 SEM-EDX Analysis 

The surface morphology of the coated and uncoated fabrics and their chemical 

compositions were studied using a combination of two effective systems called SEM-

EDX. The SEM images of the fabric samples at 500× and 5K× magnifications are 

shown in Figure 4.7, Figure 4.8, and Figure 4.9. Based on the observations, the cotton 

fabric coated with MgO particles synthesized via sol-gel and green synthesis methods 

showed uniform and smooth coating surfaces without cracking, respectively. The MgO 

particles exhibited good adhesion strength to the cotton fabric due to the presence of 

cellulose, which forms hydrogen bonds with the particles, resulting in homogenous 

coatings (Permyakova et al., 2022). However, for the cotton fabric coated with CuO 

particles, small agglomerations of particles were observed. In the case of polyester and 

blend wool fabric samples, non-homogenous coatings with agglomerated and uneven 

depositions of amorphous particles were observed. The CuO particles and MgO 

particles were not fully coated on these fabrics and did not attach well, probably due to 

low concentration of particles precursor. This limits the available active sites for the 

particles deposition and weakened the hydrogen bonds formed between the fabric and 

particles, resulting in the particles agglomeration in certain areas of the fabric (Shaban 

et al., 2018). pH 4 for particles solution synthesized via sol-gel method, may also 

contribute to the non-homogenous coatings. According to Alias et al. (2010), the acidic 

particles solutions may lack sufficient vacant OH− ions in the sol, allowing for 

nucleation, growth of particles, and particle formation. 
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Figure 4.7  SEM images of uncoated and coated cotton fabrics at 500× and 5K× of 

magnifications. 
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Figure 4.8 SEM images of uncoated and coated polyester fabrics at 500× and 5K× 

of magnifications. 
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Figure 4.9 SEM images of uncoated and coated blend wool fabrics at 500× and 

5K× of magnifications. 
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The elemental composition of the uncoated and coated cotton, polyester, and 

blend wool fabrics are shown in Figure 4.10, Figure 4.11, and Figure 4.12, respectively. 

Based on the EDX spectrum, only carbon and oxygen elements were present in the 

uncoated cotton and polyester fabrics. The uncoated blend wool fabric contained 

carbon, oxygen, silicon, and sulfur. The presence of silicon and sulfur elements can be 

attributed to the anti-pilling acrylic (El Gabry et al., 2021) and wool (Jose et al., 2022), 

correspondingly. The EDX spectrum confirmed the presence of copper element in all 

CuO particles coated fabrics and the presence of magnesium element in all MgO 

particles coated fabrics, proportionately. However, the presence of potassium, which is 

associated with the PRE, was not found in the coated cotton spectra. Okonkwo, (2019) 

suggested that potassium, serving as an activator for the reaction between cellulose in 

cotton fabric and cellulase enzyme in the plant extract, is likely consumed during the 

coating process, leading to its absence in the EDX spectrum analysis.  
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Figure 4.10 EDX spectra of uncoated cotton fabric, CuO and MgO particles coated 

cotton fabric using sol-gel and green synthesis process. 
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Figure 4.11 EDX spectra of uncoated polyester fabric, CuO MgO particles coated 

polyester fabric using sol-gel and green synthesis process. 
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Figure 4.12 EDX spectra of uncoated blend wool fabric, CuO and MgO particles 

coated blend wool fabric using sol-gel and green synthesis process. 
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4.9 Antibacterial Activity Test 

The CuO and MgO particles synthesized via optimized sol-gel and green 

synthesis methods were coated onto the cotton, polyester and blend wool fabrics and 

tested for their antibacterial properties against three species of gram-positive bacteria 

using the disc diffusion assay. The bacteria used in this study were B. linens, C. acnes 

and S. epidermidis, which are known to cause body odour as they produce odoriferous 

compounds when breaking down the amino acids (Lam et al., 2018). The inhibition 

zone values of the coated fabrics are listed in Table 4.6. Figure 4.13, Figure 4.14, 

Figure 4.15, and Figure 4.16 showed the antibacterial activities of the CuO and MgO 

coated fabrics. 

Table 4.6 The inhibition zone value (mm) of coated cotton, coated polyester and 

coated blend wool fabric based on the synthesis process and solution against B. linens, 

C. acnes, S. epidermidis and antibiotic. 

Bacteria 

Species 

Synthesis 

Process 
Formulation 

Inhibition zone (mm) 

Cotton Polyester 
Blend 

wool 
Antibiotic 

B. linens 

Sol-gel 
CuO 3 1 7 10 

MgO 2 1 4 10 

Green synthesis 
CuO 1 1 3 10 

MgO 2 3 7 10 

C. acnes 

Sol-gel 
CuO 1 1 2 12 

MgO 2 2 3 12 

Green synthesis 
CuO 1 1 1 12 

MgO 2 3 6 12 

S. epidermidis 
Sol-gel 

CuO 2 2 2 17 

 MgO 4 4 4.5 17 

 
Green synthesis 

CuO 1.5 2 2 17 

 MgO 2 2 3 17 

 



 

 112 

 

Figure 4.13 The antibacterial activities of the modified CuO particles coated fabrics 

using sol-gel synthesis against B. linens, C. acnes and S. epidermidis. 

 

 

Figure 4.14 The antibacterial activities of the modified CuO particles coated fabrics 

using green synthesis against B. linens, C. acnes and S. epidermidis. 
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Figure 4.15 The antibacterial activities of the modified MgO particles coated fabrics 

using sol-gel synthesis against B. linens, C. acnes and S. epidermidis. 

 

 

            

Figure 4.16 The antibacterial activities of the modified MgO particles coated fabrics 

using green synthesis against B. linens, C. acnes and S. epidermidis. 
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The CuO- and MgO-coated fabrics demonstrated antibacterial activity against 

all the tested species of the bacteria. However, the inhibition zones observed for all the 

coated fabrics were less than those observed for antibiotics. Among the fabric types, the 

blend wool fabric showed the highest antibacterial activity against all tested bacteria 

compared to cotton and polyester fabrics. This is probably due to the greater thickness 

of the blend wool fabric which provides more surface area for particles to adhere to, 

potentially enhancing the antibacterial effect (Ahmed et al., 2020). The maximum 

inhibition zone of 7 mm was observed for B. linens on blend wool fabric coated with 

CuO particles and MgO particles synthesized via sol-gel and green synthesis methods, 

respectively. The MgO particles produced via green synthesis method showed the 

strongest antibacterial activity against C. acnes (6 mm), while the MgO particles 

produced via sol-gel method exhibited the strongest antibacterial activity against S. 

epidermidis (4.5 mm). The cotton fabric coated with CuO particles synthesized via 

green synthesis method only showed 1 mm of inhibition zone against B. linens. Both 

cotton and polyester fabrics coated with CuO particles synthesized via sol-gel and green 

synthesis methods showed similar trends of antibacterial activity against C. acnes, with 

an inhibition zone of 1 mm. The minimum inhibition zone of S. epidermidis was 

observed on cotton fabric coated with CuO particles (green synthesis method), with an 

inhibition zone of 1.5 mm.  

Based on the observations, the fabric types were found to affect the antibacterial 

activities of the particles. According to Abou Elmaaty et al. (2021), woven fabrics offer 

a larger surface area for particles penetration compared to knitted fabrics due to the pore 

size between the yarns. However, in this study, the knitted blend wool fabric showed 

higher antibacterial activity towards all tested species compared to the woven fabrics 

(cotton and polyester), probably due to the thickness of the fabric allowing for greater 

particles penetration into the yarn fibers (Shaker et al., 2022; Mohd Yusop et al., 2023). 

The presence of the phenylene group in the polymeric chain of the polyester fabric 

makes it hydrophobic, resulting in less penetration of particles (Gobikannan et al., 

2023). Cotton fabric, on the other hand, contains cellulose which aids in moisture 

absorption. Nevertheless, the absence of potassium element from PRE in the particles, 

which is consumed during the coating process (Okonkwo, 2019), may contribute to the 
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lower antibacterial properties of cotton fabric compared to blend wool fabric. The 

antibacterial activities of CuO particles and MgO particles correlated with the synthesis 

method of the particles and the species of bacteria. The synthesis methods affected the 

size, surface area, and stability of particles, resulting in variations of the inhibition zone 

of the bacteria (Ferreira et al., 2022). The agglomeration of the particles as seen in SEM 

images due to differences in synthesis methods, may reduce the surface area and 

consequently affect the antibacterial activity (Valenti & Giacomelli, 2017). The 

differences in antibacterial activity of the particles against different bacteria species are 

likely due to variations in the bacteria cell structure, which influences the attachment 

and interaction between the particles and the bacterial cell membrane (Phan et al., 

2020). 

The interactions between the bacterial surface and particles primarily occur 

through electrostatic interactions, mediated by the neutralization of surface charge on 

the bacteria membrane (Behera et al., 2019; Arakha et al., 2015). This surface charge 

neutralization is a common biological process that can result in antibacterial activity 

(Vejzovic et al., 2022). The gram-positive bacteria have a thick layer of peptidoglycan 

(Zhang et al., 2023). The teichoic acid in the peptidoglycan layer and lipoteichoic acid 

in the bacterial membrane contribute to the negatively charged surface of the cell 

(Mendes et al., 2022). The interaction between positively charged MgO particles and 

CuO particles with the negatively charged bacterial cell wall alters the membrane 

permeability and damages the cell surface due to the strong bonds formed between the 

particles and membranes (Raj et al., 2021; Yusof et al., 2019). According to Abebe et 

al. (2020), the inhibitory action of metal oxide depends on the size of particles. The 

particle size analysis reveals that the MgO particles are smaller than the CuO particles, 

which gives them an advantage in antibacterial activity for most of the samples. Smaller 

particles have better electrostatic interactions due to the diffusion of metal ions 

generated by the movement of hydrogen ions across the cell membrane of the bacteria. 

The electrostatic interactions between CuO particles and MgO particles with the 

bacterial cell wall caused damages to the cell membrane and allow the particles to 

penetrate into the cells. This generates oxidative stress and leads to the loss of cell 

functionality due to the leakage of intracellular components (Alnehia et al., 2022; 
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Ahmed et al., 2020; Demissie et al., 2020). The oxidative stress also inhibits the 

antioxidant defence mechanisms of bacteria against reactive oxygen species (ROS) by 

oxidizing glutathione (Soheili et al., 2022). As a result, CuO particles and MgO 

particles can interact with cellular structures such as proteins and DNA, directly 

disrupting cell function (Rajagopalachar et al., 2022). The penetration of Cu2+ ions and 

Mg2+ ions into the cell can cause the death of bacteria by inhibiting enzyme functions, 

metabolisms, and transportation. 

In addition, pomegranate rind extract contains phenolic compounds, flavonoids, 

and tannins, which contribute to its broad spectrum of antimicrobial effects against 

several highly pathogenic and drug-resistant bacteria strains (Chen et al., 2020). The 

phenolic compounds increase bacteria permeability (Alnehia et al., 2022) by inducing 

hyper-acidification at the plasma membrane interphase through phenolic 

acid dissociation (Chen et al., 2020). The sensitivity of bacteria to phenolic acids varies, 

with gram-positive bacteria being more susceptible due to the absence of an outer 

membrane which allows easier diffusion of phenolic acids through the cell wall (Lobiuc 

et al., 2023). The phenolic compounds exhibit anti-infective activity by forming 

complexes with proteins through hydrogen bonding, or covalent linkages (Jiang et al., 

2022). The leakage of nucleic acids, proteins and inorganic ions from bacteria cells 

occurs due to the presence of membrane-active properties in phenolic acids. Flavonoids 

disrupt bacterial membranes by penetrating the lipid bilayer, reducing membrane 

fluidity, causing cell lysis through the formation of hydrogen bonds with lipids 

(Renzetti et al., 2020; Kumar & Pandey, 2013). Flavonoids also inhibit biofilm 

formation by reducing active nutrient uptake and finally causing the death of bacteria 

cells through membrane diffusion (Cushnie & Lamb, 2011). Tannins inhibit bacteria by 

chelating iron, which is essential for bacterial growth. The deficiency of iron leads to a 

decrease in the activity of metalloenzymes and inhibition of oxidative phosphorylation 

(Lobiuc et al., 2023). Tannins can also inactive bacterial enzymes such as protease, 

phospholipase, urease, neuraminidase, and collagenase and bind them to the 

peptidoglycan layer of cell wall, making the bacteria more susceptible to osmotic lysis 

(Tintino et al., 2017).  
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4.10 Tensile Strength Test 

The effect of tongue tear strength and breaking load on the uncoated fabrics, 

CuO particles coated fabrics, and MgO particles coated fabrics synthesized using sol-

gel and green synthesis method are shown in Table 4.7. The applied coating had both 

positive and negative effects on the coated fabrics, depending on the type of fabrics and 

synthesis methods. The CuO particles coated on cotton fabric and synthesized via the 

green synthesis method showed the highest percentage increment of tongue tear 

strength in the warp direction and breaking load in both warp and weft directions. The 

percentage of tearing strength increment in the warp direction was 33.73%, while for 

both warp and weft directions of breaking load, the percentage increment was 13.59% 

and 10.67%, respectively. However, negative results were obtained for all coated 

polyester fabrics, as there was a decrement of tongue tear strength and breaking load in 

both warp and weft directions. Among the coated polyester fabrics, the polyester fabric 

coated with CuO particles and synthesized via sol-gel method showed the highest 

percentage of decrement. The coating resulted in a 36.42% reduction in tongue tear 

strength of warp direction and a 28.27% reduction of weft direction. Meanwhile, the 

percentage decrease in breaking load was 6.16% for warp direction and 5.75% for weft 

direction. As for the coated blend wool fabric, positive results were observed only in the 

weft direction, with a 7.63% increase of breaking load for the fabric coated with MgO 

particles synthesized via the green synthesis method. 

The study revealed that the fabric types, along with the synthesis methods, 

greatly affected the fabric’s strength due to the reaction with acidic particles solutions. 

The use of citric acid in the sol-gel synthesis could contribute to the formation of more 

cross-linking of acid molecules with the fibre (Ji et al., 2016). The small size of citric 

acid molecules could penetrate deeply into the fibre (Dheyab et al., 2020), causing 

damage to the yarn fibres and consequently reducing the fabric strength. The high 

affinity of acid to blend wool fibre resulted in a decrement of fabric strength. The 

degradation of polyester fibre probably occurred due to the high affinity of acid to the 

fibre, resulting in the breakdown of ester bonds (Woodard & Grunlan, 2018). Cotton 

fabric, composed of cellulose, exhibited resistance to the yarn fibres (Lv et al., 2020), 

contributing to a slight increase in tensile strength in most of the coated cotton fabrics. 
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The acid treatment probably had a low affinity to cellulose, thus causing no damage to 

the glycoside bond (Ahmad et al., 2012). Furthermore, the adhesion of particles 

restricted yarn movement upon tearing, resulting in the increment of fabric strength 

(Aslam et al., 2019). In addition, the physical morphology of the yarn played a role in 

the differences of fabric strength between the warp and weft directions. According to 

Eltahan, (2018), twisted yarn could improve the strength and elasticity of the fabric, 

making it harder to break or stretch. In the case of cotton fabric, the weft direction had 

lower fabric density, allowing for the absorption of a higher number of particles 

compared to the warp direction and consequently causing the decrement in fabric 

strength. This is in contrast with polyester and blend wool fabrics as both fabrics have 

low fabric density in the warp direction than in the weft direction. 
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Table 4.7 The tongue tear strength and breaking load of the uncoated and coated cotton, polyester, and blend wool fabrics with different 

particles solution. 

Fabric Process Solution 
Tongue tear strength (N) Breaking load (N) 

Warp Weft Warp Weft 

Uncoated cotton   15.83 + 1.852 15.58 + 2.624 743 + 9. 626 355.1 + 10.764 

Coated cotton Sol-gel CuO 14.5 + 0.353 7.75 + 0.353 747 + 9.741 330.3 + 27.118 

  MgO 17.0 + 0.353 9.5 + 0.353 752 + 17.913 367.3 + 8.543 

 Green synthesis CuO 21.17 + 0.824 8.83 + 2.201 844 + 18.457 393 + 14.291 

  MgO 16.67 + 1.328 11.08 + 0.471 720 + 15.839 339.3 + 12.221 

Uncoated Polyester   73.8 + 3.982 100.8 + 0.000 1268 + 3.091 1685 + 10.498 

Coated Polyester Sol-gel CuO 46.92 + 0.824 72.3 + 0.707 1190 + 8.379 1588 + 24.385 

 MgO 55.00 + 1.429 79.8 + 2.160 1224 + 8.164 1633 + 20.677 

 Green synthesis CuO 57.8 + 0.707 91.1 + 2.094 1199 + 14.522 1615 + 3.399 

  MgO 60.8 + 0.736 90.4 + 0.849 1211 + 14.522 1578 + 16.573 

Uncoated Blend 

Wool 

  
N/A N/A 366.7 + 67.633 120.5 + 3.001 

Coated Blend Wool Sol-gel CuO N/A N/A 236.5 + 23.700 91.3 + 6.789 

  MgO N/A N/A 238.4 + 6.086 107.8 + 5.493 
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Table 4.7 Continued 

Fabric Process Solution 
Tongue tear strength (N) Breaking load (N) 

Warp Weft Warp Weft 

 Green synthesis CuO N/A N/A 293.9 + 15. 596 119.8 + 1.761 

  MgO N/A N/A 258.1 + 21.559 129.7 + 3.456 

Notes: Values (mean + standard deviation) are significantly different at P < 0.05 based on LSD Multiple Range Test.  

N/A indicates the breaking load test was not conducted. 
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4.11 Air Permeability Test 

The air permeability is an important property to the fabric as it can affect the 

breathability and comfort of the wearer (Agrawal et al., 2019). Additionally, it can 

provide protection to the wearer by facilitating the evaporation of sweat, removal of 

heat from the body, acting as an insulator to keep body warm during cold or windy 

conditions, and serving as a protective layer to reduce the impact or penetration of 

external forces and substances (Mandal et al., 2022; Shen et al., 2020). There are a few 

factors that influence the air permeability of a fabric, such as fabric density, warp and 

weft linear density, weaving structure, and fibre content (Buzaite & Mikucioniene, 

2022). In this study, it was found that applying CuO particles synthesized via the sol-gel 

and green synthesis methods to polyester fabrics has significantly increased their air 

permeability by 12.01% and 6.73%, respectively (Table 4.8). The MgO particles 

synthesized via sol-gel method showed a slight increase in air permeability (~0.48%), 

while a slight reduction (1.92%) was observed for MgO particles synthesized via green 

synthesis method. On the other hand, the coating of CuO particles and MgO particles on 

cotton and blend wool fabrics resulted in a reduction of the air permeability, possibly 

due to the blockage of gaps structures (Nazarov & Dedov, 2020). The results obtained 

for the coated polyester and blend wool fabrics with MgO particles synthesized via 

green synthesis and sol-gel methods, respectively, did not align with the tensile strength 

results, probably due to the fabric density variations. The type, concentration, synthesis 

method of coating materials, coating method, fabric structure, and properties can all 

influence the fabric density (Jhanji et al., 2015).  

The thickness of the fabric also plays a role in the air permeability of the fabric 

(Ma et al., 2020). Based on the results, the application of MgO particles did not 

significantly affect the thickness of cotton fabric, as the coating was thin, uniform, and 

well-adhered to the fabric surface, as observed in the SEM image. However, there were 

differences in thickness between the warp and weft directions of cotton fabric coated 

with CuO particles, probably due to small agglomeration of particles. The filling of 

spaces between yarn fibres with particles materials resulted in decreased air 

permeability in all coated cotton fabrics (Shahid et al., 2021). As shown in Table 4.8, 

the thickness of the polyester fabric, both coated and uncoated, showed no difference 



 

 122 

due to the hydrophobic nature of the fabric, which limits the particles penetration 

(Gobikannan et al., 2023). Nevertheless, the acidic particles solution caused degradation 

of the fibre, hence affecting the air permeability of the polyester fabric. The decrease in 

thickness was observed in all coated blend wool fabrics, likely due to the wool fibre 

degradation, resulting in increased porosity of the fibre (Liu & Lv, 2022). However, the 

agglomerations and uneven depositions of particles, as observed in the SEM image, 

blocked the loop structure of the fabric, and consequently reduced the air permeability 

of blend wool fabric.   

Table 4.8 The thickness and air permeability of the coated and uncoated cotton, 

polyester, and blend wool fabrics with different particles solution. 

Fabric Process Solution 

Thickness (mm) Air 

Permeability 

(cfm) Warp Weft 

Uncoated cotton   0.26 + 0.00 0.26 + 0.00 40.4 + 2.612 

Cotton Sol-gel CuO 0.27 + 0.00 0.27 + 0.00 25.5 + 1.411 

MgO 0.26 + 0.00 0.26 + 0.00 23.1 + 1.506 

Green 

synthesis 

CuO 0.27 + 0.00 0.26 + 0.00 24.5 + 1.808 

MgO 0.26 + 0.00 0.26 + 0.00 37.9 + 1.408 

Uncoated 

Polyester 

  
0.35 + 0.00 0.35 + 0.00 20.8 + 0.679 

Polyester Sol-gel CuO 0.35 + 0.00 0.35 + 0.00 23.3 + 1.240 

MgO 0.35 + 0.00 0.35 + 0.00 20.9 + 0.440 

Green 

synthesis 

CuO 0.35 + 0.00 0.35 + 0.00 22.2 + 0.458 

MgO 0.35 + 0.00 0.35 + 0.00 20.4 + 0.839 

Uncoated Blend 

Wool 

  
1.32 + 0.00 1.30 + 0.00 522.8 + 9.520 

Blend Wool Sol-gel CuO 1.26 + 0.00 1.24 + 0.00 502.6 + 7.761 

MgO 1.26 + 0.00 1.26 + 0.00 509.2 + 10.186 

Green 

synthesis 

CuO 1.26 + 0.00 1.24 + 0.00 495.8 + 18.712 

MgO 1.26 + 0.00 1.24 + 0.00 507 + 7.924 

 Notes: Values (mean + standard deviation) are significantly different at P < 0.05 based 

on LSD Multiple Range Test. 
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4.12 Durability Test of the Coated Fabrics 

Durability testing is important in the development of any product in order to 

meet the industry standards. This test evaluates the quality, reliability and fitness of the 

product and indirectly identifies any weaknesses. It allows for product improvement to 

enhance customer satisfaction and retention. In this study, the durability of the coated 

cotton, coated polyester, and coated blend wool fabrics against bacteria after several 

washing cycles was determined. The antibacterial activities of the coated fabrics after 

one to five washing cycles are presented in Table 4.9. The results showed that the 

fabrics coated with CuO particles and MgO particles synthesized using the sol-gel 

method exhibited antibacterial properties for up to three washing cycles. However, the 

fabrics coated with CuO particles and MgO particles synthesized via the green synthesis 

method did not show antibacterial properties even after one time washing. 

Based on the results, the synthesis method of the particles was found to have a 

significant effect on the washing durability of the coated fabrics. The particles 

synthesized using the sol-gel method exhibited better adhesion to the fabric after the 

washing process compared to the particles synthesized via green synthesis method. This 

can be attributed to the presence of ethylene glycol in sol-gel synthesis, which acts as a 

structure-directing agent (SDA) or crosslinking agent, forming covalent or ester bonds 

between the particles and the fabric. Ethylene glycol contributes to the polymerization 

and network formation in metal oxides, resulting in a uniform and stable coating (Mao 

et al., 2022). Its interaction with metal precursors is key to stabilizing particles during 

synthesis, which is vital for a consistent antibacterial effect. Additionally, combining 

ethylene glycol with citric acid enhances particle attachment to fabric surfaces, 

significantly improving adhesion properties (Gorbunova et al., 2014). Moreover, the 

particles produced through sol-gel synthesis are more stable when coated onto the fabric 

surfaces owing to the controlled hydrolysis and condensation reactions of the precursors 

(Bokov et al., 2021). The weak adhesion of the particles synthesized via green synthesis 

method is probably due to their irregular shapes and sizes, which affect the surface 

contact and bonding between the particles and fabric (Baig et al., 2021b). The low 

stability and uniformity of these particles can also impact the quality of the coating and 
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the performance of the fabric surface, resulting in low adhesion of particles to the fabric 

after the washing process (Mohd Yusop & Wan Ismail, 2021; Liu et al., 2020). 

Furthermore, according to Ahmed et al. (2023), the types and number of particles, such 

as magnesium or copper, embedded in plant extract may influence the stability of the 

particles after washing cycles and directly affect their antibacterial properties. The plant 

extract also affects the grafting efficiency of the fabric composite, thereby influencing 

the formation of a durable bond between the particles and the fabric surface (Akter et 

al., 2024). The solvent types used can also distress the washing durability of the fabric, 

as the dissolution of particles may occur, reducing their adhesion and performance 

(Zeng et al., 2015). 

Table 4.9 The antibacterial activity of the coated cotton, coated polyester and 

coated blend wool fabric after 1, 2, 3, 4 and 5 times of washing cycles against B. linens, 

C. acnes, and S. epidermidis. 

Bacteria Fabric Method Solution 
Washing cycles 

1 2 3 4 5 

B. linens Cotton Sol-gel CuO  a a a × × 

MgO  a a a × × 

Green synthesis CuO × × × × × 

MgO × × × × × 

Polyester Sol- gel CuO a a a × × 

MgO a a a × × 

Green synthesis CuO × × × × × 

MgO × × × × × 

Blend wool Sol-gel CuO  a a a × × 

MgO  a a a × × 

Green synthesis CuO × × × × × 

MgO × × × × × 

C. acnes Cotton Sol-gel CuO a a a × × 

 MgO a a a × × 

 Green synthesis CuO × × × × × 

 MgO × × × × × 
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Table 4.9 Continued 

Bacteria Fabric Method Solution 
Washing cycles 

1 2 3 4 5 

C. acnes Polyester Sol-gel CuO a a a × × 

   MgO a a a × × 

  Green synthesis CuO × × × × × 

   MgO × × × × × 

 Blend wool Sol-gel CuO a a a × × 

MgO a a a × × 

Green synthesis CuO × × × × × 

MgO × × × × × 

S. epidermidis Cotton Sol-gel CuO a a a × × 

MgO a a a × × 

Green synthesis CuO × × × × × 

MgO × × × × × 

Polyester Sol-gel CuO a a a × × 

MgO a a a × × 

Green synthesis CuO × × × × × 

MgO × × × × × 

Blend wool Sol-gel CuO a a a × × 

MgO a a a × × 

Green synthesis CuO × × × × × 

MgO × × × × × 

Note: The symbol indicates; no antibacterial activity observed (×), presences of 

antibacterial activity (a). 

4.13 GC-MS Analysis 

Fabric can develop unpleasant odours due to both internal and external factors 

related to the human body. Odour issues in fabrics arise from the presence of volatile 

organic compounds (VOCs) produced by bacterial metabolism of sweat compounds and 

fabric fibres. Secondary odours, which develop from either biotic or abiotic processes 
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within the fabric, are often more intense than primary odours originating from the 

adjacent axilla (Broadhead et al., 2021). In order to confirm the success of this research 

in preventing secondary odours, GC-MS analysis was conducted to characterize the 

volatile profile of both uncoated and coated fabrics. The GC-MS results revealed the 

identification of a total of 5 VOCs, including short-chain fatty acids (SCFAs), medium-

chain fatty acids (MCFAs), and an ester in the uncoated fabric. In contrast, none of 

these VOCs were detected in the coated fabrics (Table 4.10). Acetic acid, a SCFA, was 

detected in uncoated blend wool fabric, while ethyl carbamate (ester) was detected in 

uncoated polyester fabric (Appendix E, and Appendix F). Additionally, three VOCs 

detected in uncoated cotton fabric comprises of phosphoric acid (fatty acid), hexanoic 

acid (SCFA), and octanoic acid (MCFA) (Appendix G). These findings confirmed that 

the use of CuO and MgO particles as coating solutions for fabrics effectively prevents 

body odour. This efficacy is evident from their ability to inhibit the growth of gram-

positive bacteria, as demonstrated in the antibacterial test.  

The breakdown of branched amino acids, such as leucine, isoleucine, and valine, 

by S. epidermidis could generate volatile fatty acids (VFAs) (Wang et al., 2022). The 

oxidation of saturated aliphatic alcohols to VFAs occurs through the formation of 

saturated aliphatic aldehydes in the presence of Nicotinamide adenine dinucleotide 

(NAD+) (Kaskow et al., 2020). S. epidermidis, C. acnes, and B. linens are responsible 

for the production of SCFAs, the most abundant compounds responsible for body 

odour, as they metabolize skin lipids into long-chain fatty acids, which are then 

converted into highly volatile SCFAs (Rankin-Turner & McMeniman, 2022). Notably, 

acetic acid has an intense odour with vinegar-like aroma, while hexanoic acid emits a 

goat-like aroma (Tian et al., 2020; Cha et al., 2019). Octanoic acid has a mild odour 

with a sweat-like aroma (Carunchiawhetstine et al., 2003). Phosphoric acid, despite 

being a fatty acid, does not contribute to any specific aroma or in other word it is 

odourless (Li et al., 2006). According to Roslund (2023), SCFAs and MCFAs are 

cytotoxic by-products released by bacterial cells during their metabolism. Volatile 

esters produced by lactic acid bacteria (LAB) such as B. linens could impart a sweet and 

fruity odour when present in low concentrations. However, at high concentrations, an 

off-odour may arise (Kruis et al., 2019). As reported by Park et al. (2009), most esters 
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have a low odour threshold, typically found in the range of part per million (ppm). 

Ethyl carbamate, which was identified in uncoated polyester fabric has almost no odour 

(Zou et al., 2022). Esters are produced through the oxidation of hemiacetal hydroxyl 

groups by alcohol and aldehyde mixtures, requiring Nicotinamide adenine dinucleotide 

phosphate (NADP+) as a hydrogen acceptor (Lai et al., 2022). In addition, bacteria can 

utilize ketones as a carbon source to form esters and the presence of ethyl carbamate in 

polyester fabric probably generated from the degradation of arge by B. linens (Natsch & 

Emter, (2020); Tian et al., (2022).  

The types of fabric and the presence of bacteria have a significant influence on 

the formation of malodour. The surface properties and functional groups of the yarn 

fibres has impacted the attachment and growth of bacteria, which indirectly affects the 

adsorption and retention of VOCs (Van Herreweghen et al., 2020). Cotton and blend 

wool fibers consist of cellulose and keratin, respectively, and these compounds promote 

the growth of bacteria. S. epidermidis, C. acnes, and B. linens have a high affinity for 

both cotton and blend wool fabrics (Yan et al., 2022; Syafiuddin, 2019), while B. linens 

and C. acnes prefer to grow on polyester, a petroleum-based synthetic fibre (Dehari et 

al., 2023). The presence of reactive sites such as hydroxyl groups in cellulose (cotton 

fabric), amino acid chains (blend wool fabric) and esters (polyester fabric) provide 

adsorption sites for volatile compounds and affect the odour profile of the fabric (Van 

Herreweghen et al., 2020). The polarity and hydrophobicity of the fabric also play 

important roles in the formation of odorant compounds. Fabrics with higher polarity can 

adsorb more moisture, while fabrics with lower polarity adsorb less moisture (Yu et al., 

2022). Both cotton and blend wool fabrics have higher polarity but less hydrophobic 

than polyester fabric, resulting in more intense odours due to increased absorption of 

odorous volatiles (Siddique et al., 2021; Wang et al., 2019). Despite its hydrophobicity 

feature, polyester fabric has a strong adherence to fatty acids and aromatic compounds, 

as reported by Prada et al. (2011). 
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Table 4.10 The volatile organic compounds detected in coated and uncoated fabrics. 

Fabric Method Solution VOCs 

Uncoated cotton   Phosphoric acid 

Hexanoic acid 

Octanoic acid 

Coated cotton Sol-gel CuO None 

  MgO None 

 Green synthesis CuO None 

  MgO None 

Uncoated polyester   Ethyl carbamate 

Coated polyester Sol-gel CuO None 

  MgO None 

 Green synthesis CuO None 

  MgO None 

Uncoated blend wool   Acetic acid 

Coated blend wool Sol-gel CuO None 

  MgO None 

 Green synthesis CuO None 

  MgO None 
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CHAPTER 5 

 

 

CONCLUSION AND RECOMMENDATIONS 

5.1 Introduction 

This chapter wraps up the study by presenting the key findings and 

consequences of the study on antibacterial coating of fabrics. The objective was to 

fabricate antibacterial coatings capable of effectively inhibiting the growth of gram-

positive bacteria across various types of fabric using CuO and MgO particles as coating 

materials, thereby minimizing, or eliminating body odour. The chapter begins with a 

summary of the research objectives and methodologies, followed by a discussion of the 

key results, and highlights the main conclusions and contributions of the study. Finally, 

it provides recommendations for future research in the field of antibacterial coating for 

fabrics.  

5.2 Conclusion 

The present study successfully fabricated environmentally friendly and low-cost 

antibacterial coatings for cotton, polyester, and blend wool fabrics using CuO particles 

and MgO particles as coating materials. The particles were synthesized via sol-gel 

synthesis and green synthesis methods, with PRE serving as antibacterial agent. The 

extraction parameters of PRE and synthesis parameters of particles solutions were 

optimized and characterized prior to coating the fabric samples to ensure their 

antibacterial properties. Various parameters of the coated and uncoated fabrics, 

including morphology and elemental compositions, antibacterial activity, tensile 

strength, air permeability, and odorous compounds were analysed in order to validate 

the success of this research. The durability of the coated fabrics was also assessed to 

evaluate the quality and suitability of the coating materials.  

The UPLC-QTOF-MS analysis confirmed the presence of wide variety of 

natural compounds in the optimized PRE, including alkaloids, phenolics and 
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polyphenols compounds. These compounds contribute to the antibacterial properties of 

the particle solutions. Moreover, the XRF analysis confirmed the formation of CuO and 

MgO particles with the presence of both elements in their respective particle solutions. 

The average particle sizes observed for both CuO and MgO particles were less than 400 

nm. The EDX analysis verified the deposition of the coatings by detecting the presence 

of copper and magnesium elements in the respective coated fabrics. The SEM images 

revealed that only MgO particles coated onto the cotton fabric produced a uniform and 

smooth coating surface without cracking. Despite the agglomeration and non-uniform 

deposition of particles coatings, the coated blend wool fabric showed higher 

antibacterial efficiency against all tested species of gram-positive bacteria compared to 

the coated cotton and polyester fabrics. The cotton fabric coated with CuO particles 

synthesized via the green synthesis method showed the highest percentage increments 

in tongue tear strength (warp direction) and breaking load (warp and weft directions). 

However, all the coated cotton and coated blend wool fabrics showed a reduction in air 

permeability compared to the uncoated fabrics. The highest increment of air 

permeability was observed in the polyester fabric coated with CuO particles synthesized 

through sol-gel method. Crucially, GC-MS analysis revealed that none of the VOCs 

were identified in any of the coated fabrics, confirming that the use of CuO particles 

and MgO particles effectively inhibited the growth of gram-positive bacteria 

responsible for body odour. The durability analysis showed that fabrics coated with 

CuO particles and MgO particles synthesized using sol-gel method maintained their 

antibacterial properties for up to three washing cycles, while fabrics coated with 

particles synthesized via the green synthesis method did not exhibit durable 

antibacterial properties. Although all the coated fabrics demonstrated good antibacterial 

efficiency, the cotton fabric coated with MgO particles synthesized via sol-gel method 

was selected as the best antibacterial coated fabric due to its uniformity in coating, 

washing durability and the increase in air permeability and tensile strength. Meanwhile, 

the best method and formulation selected in this study was MgO particles synthesized 

via so-gel, while the least effective method was green synthesis method used to 

synthesis CuO particles. The selections were made based on the antibacterial properties, 

and the characterization of the particles. 
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In conclusion, this research has effectively showcased the feasibility and 

efficiency of utilizing plant extracts (PRE) in the synthesis of antibacterial particles for 

fabric coatings. Key insights from this study include the effectiveness of PRE in the 

synthesis process, the crucial role of the synthesis method in determining the 

antibacterial properties and durability of the coatings, and the influence of fabric types 

on the effectiveness of the antibacterial coating. These findings have significant real-

world applications, particularly in the textile industry, paving the way for the 

manufacture of antibacterial fabrics. The eco-friendly and cost-efficient nature of these 

antibacterial coatings makes them a promising solution for sustainable textile 

production. Moreover, this study provides a guide for further enhancement of 

antibacterial coatings, potentially leading to the creation of more potent, sustainable, 

and economically viable antibacterial fabrics. This research could add substantial 

knowledge to the domain of antibacterial fabric production and hold the potential to 

stimulate innovation in this field. 

5.3 Recommendations 

The findings of this study can be used to improve the synthesis methods of CuO 

particles and MgO particles in order to produce stable and durable coating materials 

with high antibacterial efficiency. Future research could explore the use of coupling 

agents, such as silane, in sol-gel synthesis to modify the surface of particles and 

increase the durability of the coated fabric (Aziz et al., 2021). Additionally, combining 

coating methods, such as padding and treating with microwave irradiation or 

ultrasound, is recommended to enhance the washing durability by achieving a uniform 

distribution and high stability of particles (Zhang et al., 2016). The microwave or 

ultrasound treatment generates heat or cavitation, which enhances the penetration and 

fixation of particles into the fabric (Vernès et al., 2020). Substituting water with ethanol 

as a solvent is also suggested, as it possesses different dielectric constants, polarity, 

viscosity, and solubility, which may influence the nucleation, growth, and aggregations 

of particles during synthesis process, thereby affecting the morphology, size, adhesion 

of particles to the fabric, and resistance to washing (Bari et al., 2020). Study on the 

dispersion of particles also could be considered as it affects their reactivity, toxicity, 

transport, and bioavailability (Mourdikoudis et al., 2018). Further studies could 
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investigate the effects of MgO particles and CuO particles coatings on gram-negative 

bacteria, fungi, and viruses to develop antimicrobial fabrics. The investigation of the 

mechanisms underlying the anti-inflammatory properties of MgO particles and CuO 

particles, which contribute to accelerated wound healing and enhanced its antimicrobial 

activity, could give positive impact to the healthcare industry. Moreover, it is crucial to 

determine the effects of MgO particles and CuO particles coatings on human skin, as 

both precursors exhibit beneficial effects that could lead to the production of cosmo-

textiles. 
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Appendix A: The flowchart of the experimental design. 
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Appendix B: The UPLC spectra of pomegranate rind extract.
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Appendix C: The XRF spectra of CuO and MgO particles synthesized via sol-gel and 

green synthesis method.  

 



 

 199 

Appendix D: Size distribution of CuO and MgO particles synthesized via sol-gel and 

green synthesis method. 
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Appendix E: The GC-MS spectra of uncoated cotton fabric, CuO particles and MgO 

particles coated cotton fabric using sol-gel and green synthesis process. 
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Appendix F: The GC-MS spectra of uncoated polyester fabric, CuO particles and 

MgO particles coated polyester fabric using sol-gel and green synthesis process. 
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Appendix G: The GC-MS spectra of uncoated blend wool fabric, CuO particles and 

MgO particles coated blend wool fabric using sol-gel and green synthesis process. 
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Appendix I: List of awards from this study. 

1. Bronze medal at 13th Creation. Innovation. Technology & Research Exposition 

(CITREX, 2023), Universiti Malaysia Pahang, 12th -14th March 2023. Invention: 

“Antibacterial Coating for Fabric”. Inventors: Wan Norfazilah Wan Ismail, 

Hartina Mohd Yusop, Nurul Hidayah Abu Bakar. 

2. Post-Graduate Research Scheme (PGRS) for PhD Study (2021). Grant amount: 

RM4200.00 for invention entitled “Synthesis and Fabrication of Antibacterial 

Nanoparticle for Fabrics to Prevent Odour”. Awarded by Universiti Malaysia 

Pahang. 

3. Malaysia Toray Science Foundation (MTSF) Science & Technology Research 

Grant (2020). Grant amount RM 20,000.00 for invention entitled “Antimicrobial 

Encapsulated Nanoparticles for Socks to Prevent Bromodosis (Foot Odour)”. 

Awarded by Toray Science Foundation, Japan. 
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Appendix J: List of conferences. 
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World. Malaysia, January 2021. Paper presented: A review on biosynthesis of 

nanoparticles for fabric coatings. 

2. 4th Symposium on Industrial Science and Technology (SISTEC 2022). Malaysia,  

November 2022. Paper presented: Synthesis of Magnesium Oxide Nanoparticles 

for Fabric Coating and Its Antibacterial Activities.




