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A B S T R A C T

A wide range of optimization methodologies have been introduced for identifying Hammerstein model systems, 
but existing approaches often face challenges such as convergence instability, computational inefficiency, and 
over-parameterization. These issues necessitate research into fast, stable, and precise identification methods. This 
study proposes the normalized simultaneous perturbation stochastic approximation (N-SPSA) to address the 
challenges mentioned earlier. The N-SPSA mitigates unstable convergence and excessive parameter growth of the 
conventional SPSA by normalizing objective functions to their highest value, ensuring stable convergence while 
maintaining the same number of coefficients. The effectiveness of the proposed method was validated by 
modeling the actual systems, which included the twin-rotor system (TRS) and the electro-mechanical positioning 
system (EMPS). Performance metrics such as the objective functions statistics, the number of function evalua
tions (NFE), and time- and frequency-domain responses were used for evaluation. For the TRS, the N-SPSA 
improved the mean objective function by 18.09 % compared to the average multi-verse optimizer sine-cosine 
algorithm (AMVO-SCA) and 3.42 % compared to the norm-limited (NL-SPSA), while reducing the computa
tional load by 60 % compared to the AMVO-SCA. Similarly, for the EMPS, the N-SPSA improved the mean 
objective function by 71.19 % over the NL-SPSA and 25.18 % over the AMVO-SCA, achieving a 50 % reduction in 
computational effort compared to the AMVO-SCA. Additionally, Wilcoxon’s rank-sum test results for both the 
TRS and EMPS confirmed the statistical superiority of the N-SPSA over the NL-SPSA. These findings demonstrate 
that the N-SPSA provides a fast and precise solution for the identification of continuous-time Hammerstein 
systems, overcoming the limitations of existing methods.

1. Introduction

System identification has been classified as a dynamic model esti
mation method for actual plants. Identification techniques also offer 
effective modeling of complex plants owing to their compatibility and 
robustness in addressing nonlinear systems such as Unmanned Aerial 
Vehicles (UAVs) (Ramachandran & Sangaiah, 2021), power distribution 
systems (Gogula & Vakula, 2024), and crane systems (Saat et al., 2025). 
There are five principal techniques comprising the modular layouts of 
state-space models (Haber & Verhaegen, 2020; X. Liu & Yang, 2022; 
Masti & Bemporad, 2021), neural networks (Aji et al., 2020; L. Liu et al., 
2023; Misyris et al., 2020), block-oriented models (Baldelli & Lind, 
2005; Gómez & Baeyens, 2004; Zimmerschied & Isermann, 2009), 
Volterra (Fard et al., 2005; Hacioǧlu & Williamson, 2001; Janjanam 
et al., 2021) series models, and structures that embedded the nonlinear 
autoregressive moving averages with exogenous input (NARMAX) (He 

et al., 2015; H. L. Shi et al., 2006; Yan & Deller, 2016). Among these, 
artificial neural networks (ANNs), are notable for their versatility and 
ability to handle noisy and complex datasets (Sharma et al., 2021) . 
Their adaptability makes them particularly suitable for system identi
fication, especially in addressing nonlinearities and challenging 
environments.

Block-oriented models, however, remain highly preferred by the 
research community because they have a simple structure that eases 
both apprehension and utilization (M. Schoukens & Tiels, 2017). They 
also provide a broad generalization of nonlinear systems, improving 
real-time applicability (J. Schoukens et al., 2015). Block-oriented 
models can be divided into Hammerstein, Wiener, and 
Hammerstein-Weiner. The Hammerstein model contains a sequential 
network of nonlinear functions and linear dynamic subsystems. In 
contrast, the Wiener model comprises a sequential network of linear 
dynamic and static nonlinear subsystems. Meanwhile, the 
Hammerstein-Weiner model centralizes a linear dynamic sub-plant 
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between a series of paired or multiple nonlinear subsystems. Compara
tively, the Hammerstein model is more popular than the others owing to 
its precise model estimation using fewer parametric elements. Apart 
from being more simplistic in actual application, the polynomial rep
resentation for nonlinear models is more flexible (Ozer et al., 2016). 
Moreover, the well-defined layout of a Hammerstein model renders it 
suitable to use varying estimation approaches throughout individual 
blocks (Mehmood et al., 2020). Recent advancements in the Hammer
stein model identifications, such as improved optimization techniques, 
have further enhanced its effectiveness in nonlinear system identifica
tion, making it an essential tool in modern applications.(Islam et al., 
2024).

On the other hand, simultaneous perturbation stochastic approxi
mation (SPSA) is a potential tool for identifying continuous-time Ham
merstein models due to its effectiveness in tuning high-dimensional 
problems with less computational time. Despite these significant merits, 
the standard SPSA still faces challenges of convergence instability and 
design parameter overgrowth when applied to continuous-time Ham
merstein models. These limitations hinder the accuracy and reliability of 
model identification for nonlinear dynamic systems, especially in real- 
world applications requiring robustness and efficiency. Addressing 
these challenges is essential for obtaining stable convergence, thus 
improving model precision. Motivated by these challenges, this research 
aims to overcome the inherent limitations of the conventional SPSA 
algorithm by introducing the normalized SPSA (N-SPSA).

The proposed N-SPSA algorithm offers significant advantages in 
addressing convergence instability issues, ensuring precise and reliable 
performance. By normalizing measured objective functions to their 
highest value, the gradient estimation process is computed based on two 
normalized objective functions. This approach effectively prevents 
excessive growth in updated design variables while maintaining the 
same number of coefficients as the standard SPSA. Hence, the ability of 
the N-SPSA to precisely estimate both linear and nonlinear subsystem 
structures of the continuous-time Hammerstein model is enhanced. 
Specifically, the incorporation of the normalized function improves the 
statistical performances of the objective function, the number of func
tion evaluations (NFE), Wilcoxon’s rank test, and the time and 
frequency-domain responses of the twin-rotor system (TRS) and the 
electro-mechanical positioning system (EMPS). Furthermore, this study 
also conducts a performance comparison between the proposed N-SPSA 

and other established algorithms, such as conventional SPSA, norm- 
limited SPSA (NL-SPSA), and the average multi-verse optimizer sine- 
cosine algorithm (AMVO-SCA). The key contributions of this study are 
outlined as follows: 

i. The proposed N-SPSA addresses the limitation of conventional 
SPSA in overcoming the unstable convergence issue by utilizing 
two normalized functions for gradient estimation, which can 
effectively control variable growth while maintaining the same 
number of coefficients

ii. The proposed N-SPSA algorithm achieves heightened accuracy in 
model identification with fewer function evaluations per itera
tion, reducing computational load. This efficiency supersedes the 
performance of multi-agent-based optimization techniques.

iii. This is the first time the N-SPSA was applied to a continuous-time 
Hammerstein model framework and compared with other recent 
algorithms. This comparison effectively demonstrated the algo
rithm’s precision in replicating the parametric components of an 
actual system.

iv. The Hammerstein model framework introduced in this study 
independently determines parametric components for nonlinear 
and linear subsystems. This approach mitigates over- 
parameterization issues, leading to a comparatively smaller 
computational load while ensuring robust model identification.

This paper is divided into six main sections. Following the intro
duction in Section 1, Section 2 presents an extensive literature review 
comprising a wide range of optimization methodologies employed for 
the identification of Hammerstein model systems. Section 3 describes 
the proposed formulation of the optimization problem according to the 
required model identification. Section 4 delineates the structural re
views between the conventional SPSA algorithm and the proposed N- 
SPSA algorithm. This section also explains in detail the layout and 
procedure for using the N-SPSA, addressing the formulated problem and 
identifying the Hammerstein model. In Section 5, the validity of the N- 
SPSA-based method is assessed against other preceding optimization 
approaches in terms of real-time identification of the practical plants. 
Finally, Section 6 concludes the study.

Nomenclature

UAVs Unmanned aerial vehicles
ANNs Artificial neural networks
SPSA Simultaneous perturbation stochastic approximation
N-SPSA Normalized SPSA
NL-SPSA Norm-limited SPSA
AMVO-SCA Average multi-verse optimizer sine-cosine algorithm
NFE Number of function evaluations
TRS Twin-rotor system
EMPS Electro-mechanical positioning system
PMAs Pneumatic muscle actuators
IRC Isometric recruitment curve
APAs Amplified piezoelectric actuators
GA Genetic algorithm
PSO Particle swarm optimization
ARMAX Autoregressive moving average with exogenous inputs
FLANN Functional link artificial neural network
IIR Infinite impulse response
CSA Cuckoo search algorithm
DE Differential evolution
FIR-MA Finite impulse moving average

DEA Differential evolution algorithm
BBO Biogeography-based optimization
BFO Bacterial foraging optimisation
BSA Backtracking search algorithm
OCBO Orthogonal colliding bodies optimisation
CRPSO Craziness based PSO
ABC Artificial ant colony
CSSA Chaotic salp swarm algorithm
RF Radio frequency
WSNs Wireless sensor networks
GK-SPSA Knowledge-informed historical gradient-based SPSA
ANN Artificial neural network
W-SPSA Weighted-SPSA
PCA Principal components analysis
PC-SPSA Principal components SPSA
c-SPSA Cluster-wide SPSA
OD Origin-destination
DTA Dynamic traffic assignments
SISO Single-input-single-output
PSD Power-spectral density
MIMO Multi-input multi-output
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2. Literature review

To date, various real-time applications that employ Hammerstein 
systems, such as the cascaded tank benchmark systems (Aljamaan et al., 
2021), are complicated due to many factors, such as voltage inputs to the 
pump and minor nonlinearities during measurements. These elements 
highly influence the nonlinear characteristics of such systems. Load 
dynamics in voltage management is also one of the issues of concern 
(Bao et al., 2018), where the slightest fluctuations in load dynamics can 
substantially affect voltage transient behavior. The study modeled both 
active and reactive power loads to determine their impact on voltage 
transients, demonstrating a highly nonlinear coupled dynamic system. 
Similar to many mechanical systems, the turntable servo system (Zhang 
et al., 2016) involves the influence of force (depending on both position 
and velocity) on mass movement. These forces behave nonlinearly in 
certain operational zones, such as Coulomb friction and dead zones. 
Such systems are also applied to regulating a quadratic DC/DC boost 
converter (Alonge et al., 2015). However, research has highlighted 
complicated calculations arising from the extra inductors and capacitors 
that increased the number of poles in the transfer function, resulting in 
nonlinear behavior concerning the duty cycle.

Pneumatic muscle actuators (PMAs) are widely utilized in the med
ical field, especially in robotic equipment for rehabilitation (X. Shi & 
Zhang, 2016). They exhibit substantial nonlinearity owing to their 
inherent features, including friction between the bladder and braid, 
slight deformation after each operation, and thermal effects. Many re
searchers have also explored electrically stimulated muscles (Le et al., 
2012) for motor control analysis and developed neuroprosthetic motor 
systems, particularly inpatient rehabilitation programs. The static 
nonlinearity imitates the isometric recruitment curve (IRC), which 
shows the consistent relationship between the stimulus activation level 
and the steady-state output torque when the length of the muscle is 
fixed. Moreover, there is growing interest in using Hammerstein struc
tures to mathematically model the hysteresis in amplified piezoelectric 
actuators (APAs) (Saleem et al., 2017). APAs have been applied in 
numerous control engineering disciplines, such as vibration suppression 
and precision positioning. Nevertheless, the main drawback of piezo
electric actuators is the nonlinear relationship between the applied 
voltage and the resulting displacement as a result of hysteresis and 
creep/drift effects.

Subsequent investigations in model identification have led to the 
rapid development of various methods, including iterative (Chidume & 
Djitté, 2013; G. Li & Wen, 2011; J. Li, 2013), over-parameterization 
(Jafari et al., 2014; Mao & Ding, 2016; Salhi & Kamoun, 2015), blind 
identification (Bai & Li, 2010), subspace (Hou et al., 2020), least square 
(F. Ding, X. Liu, 2013; D. Wang & Zhang, 2015), hierarchical identifi
cation (Ding et al., 2018; D. Wang, 2016; D. Q. Wang et al., 2015), and 
stochastic (Mao & Ding, 2014). Despite these new multimodal solutions, 
issues regarding the accuracy of the identified Hammerstein system 
remain unanswered as the operated process evolved into a complex 
multidimensional optimization problem (D et al., 2018). Biological- and 
nature-inspired metaheuristic approaches were then widely studied to 
resolve both restricted and non-restricted issues across multiple engi
neering and technological domains. Essentially, the metaheuristic 
category was favored for model identification of Hammerstein systems, 
given its superior efficacy, precision, and rate of convergence compared 
to those of deterministic approaches (Raja et al., 2018). For example, 
several studies preferred the genetic algorithm (GA) (Akramizadeh 
et al., 2002; Hatanaka, 2001; Kumon et al., 2000) as the conventional 
metaheuristic optimization approach to identify a Hammerstein system. 
However, the method was exposed to the potential limitation of 
over-parameterization resulting from redundant gains within the 
nonlinear and linear subsystems.

The particle swarm optimizer (PSO) technique was then proposed to 
identify Hammerstein systems (Hammar et al., 2017). This method 
employed an autoregressive moving average with exogenous inputs 

(ARMAX) model with a key term separation approach within a 
discrete-time transfer function to calculate the fractional order of 
nonlinear and linear subsystems. Further advancement in model esti
mation involved a functional link artificial neural network (FLANN) and 
an adaptive infinite impulse response (IIR) filter via the proposed 
implementation of the cuckoo search algorithm (CSA) (Gotmare et al., 
2015). Compared to both PSO and differential evolution (DE), the linear 
subsystem comprised discrete-time transfer functions and recorded 
overshadowing identifying precision. Likewise, the gravitational search 
algorithm (GSA) incorporated the finite impulse moving average 
(FIR-MA) as a linear subsystem in identifying Hammerstein models (Xu 
et al., 2020). While the statistical results of GSA showed superior esti
mation competence in parametric components compared to that of the 
PSO technique, the method still suffered from over-parameterization 
from existing redundant gains within both linear and nonlinear sub
systems. Other alternative metaheuristic algorithms have been simul
taneously exemplified to identify Hammerstein systems including 
differential evolution algorithm (DEA) (Mete et al., 2016), 
biogeography-based optimization (BBO) algorithm (Yang & Jin, 2017), 
bacterial foraging optimization (BFO) algorithm (Pal et al., 2016a), 
backtracking search algorithm (BSA) (Mehmood et al., 2019), orthog
onal colliding bodies optimization (OCBO) (Panda & Pani, 2016), 
craziness based PSO (CRPSO) algorithm (Pal et al., 2016b), artificial ant 
colony (ABC) (Zorlu et al., 2018), and chaotic salp swarm algorithm 
(CSSA) (Jin & Cui, 2020).

Many studies have also revealed other limitations that hamper the 
robustness of multi-agent-based optimization algorithms in Hammer
stein system identification. Primarily, scholastic assessments of discrete- 
time models are widespread compared to the majority of real-time sys
tems that instead advocate the continuous-time setting. Secondly, 
massive computation load is contributed by a multitude of unnecessary 
parametric components on the existence of redundant gains within the 
nonlinear subsystem. In regards to the propositioned composition of the 
computation interval for each iteration and the population size in most 
metaheuristic approaches, an extensive computation interval is required 
for convergence acquisition, describing the rigid nonlinear models with 
considerable dimensionality. Thus, ongoing research continues to 
explore the continuous-time Hammerstein system that fits parametric 
elements of a real-time structure. Further efforts were focused on pre
venting redundant nonlinear and linear parameters to control the 
computation weight in model identification. Researchers are more in
clined to apply single-agent-based optimization for a smaller number of 
function appraisals within each iteration compared to its multi-agent 
counterpart.

A recent study applied the SPSA, a well-established single-agent- 
based optimization method developed by (James C Spall, 1992), for the 
Hammerstein identification system. This technique was chosen for its 
shorter computational time, suitability for tuning high-dimensional 
design parameters, and effective gradient approximation using only 
two measurements within the objective function. Remarkably, research 
has demonstrated the reliable performance of SPSA in overcoming 
various optimization issues across different engineering fields, including 
servo motor systems (Rǎdac et al., 2011), coupled well placement 
optimization (Pouladi et al., 2020), transportation problems (Ros-Roca 
et al., 2018), digital predistortion of radio frequency (RF) amplifier 
(Kelly & Zhu, 2018), dynamic demand calibration (Kostic et al., 2017) 
and wireless sensor networks (WSNs) (Azim et al., 2012). The enhanced 
practical compatibility of SPSA in various optimization challenges is 
achieved by exploiting its simple structure and ability to calibrate design 
variables using a wide range of dimensions at lower computation loads. 
In fact, SPSA can be further modified and tailored to integrate specific 
optimization tasks, showcasing its versatility. For example, 
knowledge-informed historical gradient-based SPSA (GK-SPSA) was 
developed according to historical gradient approximations as an upda
ted SPSA variant to control the quality of medium voltage insulators 
(Kong et al., 2020). Other studies have assessed hybridization between 
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SPSA and artificial neural networks (ANN) to boost the search efficiency 
of conventional approaches (Abdulsadda & Iqbal, 2011). One study 
enhanced the weighted-SPSA (W-SPSA) to address extensive dimension 
problems and produced a marked performance in dynamic traffic as
signments (DTA) (Antoniou et al., 2015). In another study, a novel al
gorithm called PC-SPSA was developed by integrating SPSA with 
principal components analysis (PCA) to improve the DTA calibration 
algorithm (Qurashi et al., 2020). The objective of the integration process 
is to minimize search noise, thus enhancing the scalability of SPSA for 
DTA model calibration. Besides, cluster-wise SPSA (c-SPSA) was pro
posed by dividing gradient approximation via simultaneous perturba
tion with small step sizes and homogeneous clustering to solve 
estimation issues in dynamic origin-destination (OD) modeling 
(Tympakianaki et al., 2015). This model was further advanced by 
(Tympakianaki et al., 2018) through the implementation of a robust 
SPSA algorithm to improve OD estimation. Their recent work focused on 
three innovative approaches to enhance the performance of SPSA al
gorithms in optimization and estimation tasks for OD problems: scaling 
variable updates (a novel technique for OD estimation), hybridizing 
analytical and stochastic gradient data in hybrid SPSA and c-SPSA ver
sions, and evaluating new clustering criteria in c-SPSA.

Although SPSA-based methods are widely used to identify Ham
merstein models, they record equivalent performance with other met
aheuristic algorithms and suffer major operational limitations. In 
particular, the stability of yielded solutions from a conventional SPSA- 
based method may be compromised due to the continuous expansion 
of revised parameters throughout the parametric optimization of a 
Hammerstein system. An unclarified closed-form expression for the 
objective function in conventional algorithms was also identified to 
complicate the generation of a steady transfer function across all cir
cumstances. Subsequent research implemented an NL-SPSA-based 
method to achieve convergence stability and solve previous shortcom
ings by employing a saturation function that restricts the revised control 
parameter (Ahmad et al., 2016). Nevertheless, the modified SPSA 
variant uses a pre-determined coefficient that limits its search capacity 
of the optimal control parameter, consequently diminishing its 
compatibility with specific model-free control problems. Hence, this 
impediment warrants alternative improvements to the conventional 
SPSA-based method to ensure convergence stability and superior para
metric optimization.

Previous works (Ahmad et al., 2018; Mustapha et al., 2019) have 
expanded this framework and successfully applied N-SPSA to 
data-driven PID controllers for flexible joint manipulators and liquid 
slosh systems. Both studies found that model-free controller tuning using 
N-SPSA yielded more stable and greater control performance compared 
to other modified SPSA methods. Nevertheless, no studies have applied 
N-SPSA to identify continuous-time Hammerstein systems. Considering 
past literature studies, it is worth assessing the performance of N-SPSA in 
system identification for continuous-time Hammerstein systems.

3. Problem formulation

The undertaken procedure for model identification is described in 
this section. Fig. 1 comprises notations g, H and p := d

dt as the non-linear 
function, linear dynamic system and differential operator to collectively 
illustrate a single-input-single-output (SISO) continuous-time Hammer
stein system. Both the input signal and output signal are perturbed by 
the noise signal v(t), that are separately represented by notations z(t)
and ź (t). The equation for output ź (t) is conceivably expressed by: 

ź (t) = H(p)g(u(t)) + v(t) (1) 

where 

H(p) =
B(p)
A(p)

=
blpl + bl− 1pl + … + b0

pm + am− 1pm− 1 + … + a0
, (2) 

with the output for the non-linear function is further expressed by: 

g(u(t)) =
∑M

i=1
δiωi(u(t)) (3) 

where the notation ω(.) consists of a function of polynomial potential. 
The current procedure accounts for a set of pre-determined assumptions, 
including 

Assumption (1): m, l and M are known,
Assumption (2): ai(i = 0, 1, …, m − 1), bi(i= 0, 1,…, l − 1) and 
δi(i= 1,…,M) comprised of real numbers,
Assumption (3): Setting of bl = 1 to individually acquire the values 
of H(p) and g(u(t)),
Assumption (4): g(0) = 0.

The employed fitness function to appraise the proposed model is 
given by: 

J(H, g) =
∑N

j=0
(ź (jts) − z(jts))2 (4) 

where the sampling interval of ts is defined by j = 0, 1,…,N for (u(t),
ź (t))(t = 0, ts, 2ts,…,Nts). Founded by the quadratic output estimation 
error, both the determined layouts for linear dynamic system H and 
nonlinear function g are correspondingly represented by notations H and 
g, with z(t) = H(p)g(u(t)). Fabricating a robust continuous-time Ham
merstein model resulted in the formulation of the problem as Problem 
2.1:

Problem 2.1. Retrieve H and g for the continuous-time Hammerstein 
model from Fig. 1 to generate a minimized J(H, g) with respect to the 
input and output data of (u(t), ź (t))(0, ts,2ts,…,Nts).

Fig. 1. The system diagram of continuous-time Hammerstein for the SISO model.
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4. Identification method using normalized SPSA (N-SPSA)

An approach to resolve Problem 2.1 is hereby given. Following an 
initial evaluation of the conventional SPSA-based method from (James C 
Spall, 1992), the revised SPSA-based method has been detailed, as 
subsequently manifested within the N-SPSA algorithm. The procedure 
for implementing the N-SPSA technique to identify a continuous-time 
Hammerstein system is outlined.

4.1. Review of the conventional SPSA algorithm

Consider both the objective function and design variable as f : ℜn→ℜ

and θ ∈ ℜn, respectively. The expression for the generalized optimiza
tion problem is then written as: 

min
θ∈ℜn

f(θ). (5) 

The conventional SPSA algorithm updates Notation θ from the 
optimization problem shall be iteratively revised through implementa
tion of the conventional SPSA-based method by operationalization of the 
updated equation: 

θ(k+1) = θ(k) − a(k)η(θ(k),Δ(k)) (6) 

where θ(k) ∈ ℜn symbolises the design variable at k iteration and the 
gain sequence are correspondingly represented by notations θ(k) ∈ ℜn 

and a(k) ∈ ℜ+, with its gradient approximation of η(θ(k),Δ(k)) ∈ ℜn 

being further written as: 

η(θ(k),Δ(k)) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f(θ(k) + c(k)Δ(k)) − f(θ(k) − c(k)Δ(k))
2c(k)Δ1(k)

f(θ(k) + c(k)Δ(k)) − f(θ(k) − c(k)Δ(k))
2c(k)Δ2(k)

⋮
f(θ(k) + c(k)Δ(k)) − f(θ(k) − c(k)Δ(k))

2c(k)Δn(k)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7) 

As such, Eq. (7) specified an additional gain sequence of c(k) ∈ ℜ+, 
with both randomly perturbated vector and the corresponding i th 
element being independently denoted by notations Δ(k) ∈ ℜn and 
Δi(k) ∈ ℜ. A simplified explanation is concerted on the symbolising of 
the vector (k) ’s i-th element. Both expressions of a(k) = a /(k + 1 + A)α 

and c(k) = c/(k + 1)γreflectively describe the respective gain sequences 
of a(k) and c(k) which are the current approach that purposely antici
pates the close equivalence between both η(θ(k),Δ(k)) ∈ ℜn and 
gradient of objective function f, i.e. ∂f

∂θ (θ(k)), in which Eq. (6) prevails as 
a stochastic steepest descent.

The evaluation of performance conducted in (Tanaka et al., 2015) 
revealed an even greater likelihood of convergence instability arising 
from the conventional SPSA technique. Such deficiency is attributable to 
an excessively inflated value as excessively propelled by the gradient 
approximation vector from Eq. (7). The challenge is validated by using a 
simplified numerical example to illustrate unstable convergence via 
conventional SPSA technique control. Consider the objective function: 

f(θ) =
(
(θ − 1)T

(θ − 1)
)3 (8) 

where θi = 1 denotes the global minimum point for i = 1, 2, …, 10, 
a(k) = 0.05/(k + 200)0.602 is proposedly set, with c(k) =
0.01/(k + 1)0.101 and Δ(k) being further attained through the random 
Bernoulli vector for θi(0) = 0 at i = 1, 2, …, 10. The results in Fig. 2
exhibit the responded convergence for the objective function of the 
conventional SPSA-based method succeeding the 30th iteration, without 
apparent acquisition of the global minimum point ensuing operation of 
its maximum value. The recorded outcomes verified the technique’s 
failure to guarantee a stable convergence throughout conducted itera
tions in entirety. Such dissatisfactory performance initiated subsequent 
algorithmic betterment to the conventional SPSA-based approach.

4.2. Improved SPSA algorithm using normalized function

SPSA’s limited proficiency for stable convergence is overcome by 
algorithmic integration of normalized function. Tackling the over
reaching value of k = ∞the gradient approximation vector η(θ(k),Δ(k))
sees the appropriated restraint through the normalized function across 
conducted iterations in entirety. This is achievable by primarily delin
eating f(θ+) and f(θ− ) to the respective functions of f(θ(k) + c(k)Δ(k)) in 
simplifying the expressed equation. A performed revision to the original 
vector from Eq. (6) produced: θ(k+1) = θ(k) − a(k)η̃(θ(k),Δ(k)) (9) 
where 

η̃(θ(k),Δ(k)) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ℏ(̃f(θ+), f̃(θ− ))

2c(k)Δ1(k)

ℏ(̃f(θ+), f̃(θ− ))

2c(k)Δ2(k)
⋮

ℏ(̃f(θ+), f̃(θ− ))

2c(k)Δn(k)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (10) 

Notably, ℏ(̃f(θ+), f̃(θ− )) from Eq. (10) is a contemporary function 
with the expression of: 

Fig. 2. The f(θ)convergence response of the conventional SPSA.
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ℏ(̃f(θ+), f̃(θ− )) =

{
1 if f̃(θ+) = f̃(θ− ),

f̃(θ+) − f̃(θ− ) if f̃(θ+) ∕= f̃(θ− ),
(11) 

where f̃(θ±) represents a normalized objective function with the 
expression of: 

f̃(θ±) =
f(θ±)

max{f(θ+), f(θ− )}
. (12) 

Based on the modifications above, the large value produced by either 
one or both measurements of the objective function can be avoided prior 
to the performance of gradient approximation by adopting the normal
ized calculation in Eq. (12). Following this, the function in Eq. (11) is 
introduced to avoid zero perturbation to the updated design variable 
when an identical value is produced by both measurements of the 
objective function. Hence, it will result in the algorithm’s continuous 
search for an optimum design variable. Ultimately, gradient approxi
mation in Eq. (10) will still be performed by the enhanced algorithm off 
measurements of the normalized objective function. The detailed pro
cedure for the N-SPSA is presented in Algorithm 4.2 as follows:

Algorithm 4.2. Pseudocode of the N-SPSA algorithm.

1: Initialize values (a,A,α,c, γ, θ,kmax( ))

2: For k = 1to kmaxdo
3: Simulate Δn(k) ~{Bernoulli(− 1,+1)}nfor k = 1,…,kmax

4: a(k) =
a

(k + 1 + A)α

5: c(k) =
c

(k + 1)γ

6: f(θ±) = θ(k) ± c(k)Δ(k)
7:

f̃(θ±) =
f(θ±)

max{f(θ+), f(θ− )}
8: ℏ(̃f(θ+), f̃(θ− )) = f̃(θ+) − f̃(θ− )
9: if ℏ(̃f(θ+), f̃(θ− )) = 0
10: ℏ(̃f(θ+), f̃(θ− )) = 1
11: else
12: end if
13:

η̃(θ(k),Δ(k)) =

(
ℏ(̃f(θ+), f̃(θ− ))

2c(k)Δn(k)

)

14: θ(k + 1) = θ(k) − a(k)η̃(θ(k),Δ(k))
15: end for
16: end procedure

Regarding time complexity of N-SPSA, we consider the non-trivial 
steps in N-SPSA as presented in Algorithm 4.2 which includes Eq. (1)
updating design parameter and Eq. (2) objective function measure
ments. To update the design parameter, we multiply the constant a(k)
and η̃ which requires p multiplications. The complexity of the normal
ized objective function measurement is clearly equivalent to the 

complexity of the objective function measurement even if it is perturbed 
with noise. Thus, for a given dataset, the algorithmic complexity of the 
N-SPSA is linear with the complexity of the underlying identification 
problem used in the evaluation of the fitness function in Eq. (4), which is 
based on the error of the identified model output and the actual output 
data of the experiment. Then, for the maximum iterations kmax and 
dimensionality of the problem p, the time complexity of the NL-SPSA can 
be expressed as O(kmax × p).

Algorithm 4.2 was consecutively employed to resolve the arith
metical objective function from Eq. (8) towards efficacy appraisal of the 
N-SPSA-based method where the introduced approach from Eq. (9) was 
hereby implemented to achieve an unchanged setup of the previously 
explained conventional SPSA-based method with the exception a(k) =

1.2/(k + 200)0.602. The generated outcomes in Fig. 3 conclusively 
exhibited stable convergence from the proposed N-SPSA in Algorithm 
4.2 for the resolution of objective function within Eq. (8). It then laid far- 
reaching prospects for the integration of normalized function into the 
conventional SPSA to overcome the initially prevailed challenge of 
convergence instability.

4.3. Normalized SPSA (N-SPSA) algorithm for continuous-time 
Hammerstein model identification

The implementation of Algorithm 4.2 in estimating the continuous- 
time Hammerstein model is described. The issue is primarily addressed 
through the re-expressing of fitness function from Eq. (4) as follows: 

J(β) =
∑N

j=0
(ź (jts) − z(jts))2 (13) 

for the design variable 

β = [b0, b1, ..., bl− 1, a0, a1, ..., am− 1, δ0, δ1, ..., δM] ∈ ℜc (14) 

where c = l+ m+ M+ 1, with β being a formerly identified fixed design 
parameter. Magnitudes of both ź (jts) and z(jts) are further gauged using 
the predisposed action plan to acquire the required value of J(β). It in
volves the initial fabrication of input signal 
(u(t), ź (t))(t= 0, ts, 2ts,…….,Nts) prior the computation of 

z(t) =
blql + bl− 1ql− 1 + ...+ b0

qm + am− 1qm− 1 + ...+ a0
g(u(t)) (15) 

as comparably included within the continuous-time signal. A fixed 
sampling interval of j = 0,1,2,…,N, z(jts) is generated as the sample z(t)
before subsequent operationalization of N-SPSA for the identification of 
the continuous-time Hammerstein model. The systematic procedure of 

Fig. 3. The f(θ)convergence response of the N-SPSA.
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the current undertaking is summarised by:
Step 1: The value of maximum iterations kmax for the N-SPSA-based 

method from Eq. (9) is identified. The value of θ(0) is then initialized at 
βi = θi(i = 1,2,…, c).

Step 2: Algorithm 4.2 for the N-SPSA-based method is operated 
towards the objective function of J(β) = f(θ).

Step 3: θ∗ := θ(kmax()) is acquired upon achieving iteration kmax, 
with output β∗ := [θ∗1, θ∗2,…, θ∗c] as the solution to Problem 2.1.

5. Results and discussion

The effectiveness of the N-SPSA-based method in estimating the 
continuous-time Hammerstein system is hereby justified. Real-time 
experimentation data have been assumed to identify both the TRS and 
the EMPS by implementing the N-SPSA-based method. These systems 
were purposefully chosen for their ability to accurately replicate intri
cate real-world dynamics, ensuring a comprehensive assessment of the 
N-SPSA-based method’s efficiency in handling practical scenarios. Both 
systems have been successfully implemented (Brunot et al., 2015; 
Alexandre Janot et al., 2017; Jui & Ahmad, 2021; Mok & Ahmad, 2024), 
where the system’s nonlinearity is represented by the friction phenom
enon in both systems. In the TRS system, nonlinearity stems from the 
friction of the rotor shaft during vertical motion. While, in the EMPS, 
nonlinearity arises from Coulomb friction from the ball screw drive’s 
positioning unit. A comparative analysis was undertaken to examine the 
N-SPSA-based method and other algorithmic approaches, including the 
conventional SPSA (James C Spall, 1992), NL-SPSA (Ahmad et al., 
2016), and AMVO-SCA-based (Jui & Ahmad, 2021) methods. The se
lection of those algorithms allows for a comparative assessment between 
single-agent and multi-agent optimization methods as well as existing 
variants of SPSA in identifying Hammerstein systems. The aim is to 
explore how each approach addresses significant challenges in Ham
merstein system identification, encompassing constraints related to a 
significant range of design parameters in the continuous-time model, 
and the computational time evaluated based on the number of function 
evaluations.

The performance of the investigated approaches was measured in 
accordance with a series of pre-determined criteria. 

i. The analysis of the obtained response in the best fitness function 
of the identified TRS and EMPS models across 25 independent 
trials was based on both time and frequency domains.

ii. Recorded mean, best, worst, and standard deviation (Std.) values 
were utilized to appraise the statistical outcomes of fitness 
functions across 25 independent trials for the N-SPSA, the orig
inal SPSA (James C Spall, 1992), the NL-SPSA (Ahmad et al., 
2016), and the AMVO-SCA (Jui & Ahmad, 2021) methods.

iii. The NFE was evaluated for 25 independent trials.
iv. Wilcoxon’s rank test (Jui & Ahmad, 2021) was used as a 

non-parametric statistical test with a 5 % significance level to 
evaluate statistical differences between examined algorithms. 
The mean of the fitness function was computed across 25 inde
pendent trials, and the significance level was determined by 
analyzing the simulated results and determining the values for 
and employing two distinct algorithms. The performance 
robustness of analyzed algorithms would vary in the event, but it 
would remain constant if or not. The performance robustness of 
the examined algorithms would differ in the case where p = 0.05 
or h = 1, and similar in the case where p > 0.05 or h = 0.

5.1. Twin-rotor system (TRS)

This section specifies modeling the continuous-time Hammerstein 
system in the fabrication of a TRS through the proposed employment of 
N-SPSA. An experimental laboratory-sized helicopter structure with 

fundamental traits, including coupling and a high level of nonlinearity, 
was adopted by this study. The structure known as the TRS identifies a 
complicated hovering craft that necessitates intricate modeling, 
handling, and operation, similar to a real-time helicopter that experi
ences parametric alterations in response to shifts in flight conditions. As 
a result, the importance of system identification for improved modeling 
of aerial transportation in the face of varying flight conditions is prac
tically acknowledged.

The simulated settings of the TRS comprised the installation of the 
main and tail rotors with a mechanical capacity for unhindered rotations 
across vertical and horizontal planes. The rotors pivot on the structure’s 
base, as they were installed on both ends of the horizontal beam. The 
beam can be modified by manipulating the input voltage to administer 
both rotors’ rotational speed, with its rotation and maneuver moving 
towards the ends of spherical surfaces, further enabled by the joint. A 
pendulum was also linked to the beam to ensure steady angular motions. 
A TRS with a computerized interface has been developed, as illustrated 
in Fig. 4 (Toha et al., 2012). The blades for the primary and tail rotors 
are observably appropriated to the rotations around both yaw and pitch 
axes to enable the system’s vertical and horizontal maneuvers. However, 
such flexible rotations would result in vibrations amid commanded 
motions in light of an imbalanced mass distribution.

Regarding the direct causation between the input via the vertical 
channel and the TRS’s vibrational motions, primarily encountered at the 
pitch angle, the vertical channel defines the system’s output. Its input 
then adheres to an arbitrary signal of 1 V at a sample interval of 0.1 s. 
The system’s vertical channel is approached by gathering 600 s in 
simulated input-output data as the statistical basis for its modeling.

Fig. 5 systemizes the block diagram of the continuous-time Ham
merstein system that is used to validate the TRS model, with the esti
mated output, as well as the recorded output and input through modular 
experimentation, being separately represented by notations y(t), y(t), 
and u(t), respectively. The responses for both the input signal u(t) and 
vertical channel output y(t) are then independently portrayed in Figs. 6 
and 7 under presumed conditions where the measurement noise has 
been accounted for by the vertical channel output.

The experimentations were set to investigate both linear and 
nonlinear subsystems as configured by the description provided (Jui & 
Ahmad, 2021). The nonlinear subsystem is crucial in ascertaining 
nonlinear friction via the rotor shaft amid vertical motion. The currently 
investigated system’s nonlinear and linear modules were hereby 
modeled in accordance with the second-order continuous-time transfer 
function and the tangent hyperbolic function, respectively. They are 
then correspondingly expressed by: 

H(p) =
p + b0

p2 + a1p + a0
(16) 

g(u(t)) = δ0tanh(δ1u(t)) (17) 

The initial design variables have been notably shortlisted through 
several preliminary experimentations and primary investigations (Jui & 
Ahmad, 2021). Following the illustrated information in Table 1, a total 
of five initially unknown design variables for the TRS’s nonlinear and 
linear parameters are ascertained under the coefficient settings specified 
for the conventional SPSA, the NL-SPSA, and the N-SPSA from Table 2.

Table 3 outlined the most statistically preferred objective functions 
for the examined SPSA, NL-SPSA, AMVO-SCA, and N-SPSA-based 
methods across 25 independent trials. The conventional SPSA-based 
method has difficulties recognizing the Hammerstein-modeled TRS 
due to unstable convergence in the respective objective functions, 
leading to inconsistent results and higher variability. This instability 
highlights SPSA’s inherent challenge in achieving consistent and reliable 
parameter optimization for complex nonlinear systems.

In contrast, integrated algorithmic approaches such as the N-SPSA 
and the NL-SPSA effectively mitigated these issues during successive 
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model identifications. The N-SPSA, in particular, demonstrated the most 
consistent objective function measurements across trials, achieving the 
smallest standard deviation and the lowest mean value among all the 
methods. Specifically, the N-SPSA exhibited a 3.42 % improvement in 
mean objective function compared to the NL-SPSA and an 18.09 % 
improvement over the AMVO-SCA. The reductions in the mean high
lighted the N-SPSA’s superior reliability in successive model identifi
cations. Additionally, the N-SPSA standard deviation had improved by 
87.06 % compared to the NL-SPSA and an impressive 99.64 % compared 
to the AMVO-SCA, showcasing its robust ability to deliver accurate re
sults consistently. While the AMVO-SCA achieved a marginally better 
best value on the objective function (by approximately 0.3 %), N-SPSA’s 
overall consistency and reliability metrics were superior, making it a 
more competitive choice for Hammerstein system identification.

The NFE for the SPSA, the NL-SPSA, and the N-SPSA was consistently 
set at 2000, as shown in Table 3. Notwithstanding, the proposed N- 
SPSA-based method eclipsed the AMVO-SCA under a significantly 
reduced NFE condition, requiring only 2000 NFE compared to the 
AMVO-SCA’s 5000 NFE. This represents a substantial reduction of 60 % 
in computational effort. This demonstrates the superiority of the N- 

SPSA-based approach over the AMVO-SCA-based approach in terms of 
objective function optimization at lower functional evaluations. With 
the proposed method demonstrating promising robustness across all 
examined alternatives, Table 4 details the best design variable values for 
each of the 25 included methods. Current findings revealed a significant 
disparity in the best value between the conventional SPSA and its inte
grated NL-SPSA, N-SPSA, and AMVO-SCA counterparts, attributable to 
convergence instability limitations.

Building on the significant reduction in NFE discussed previously, 
Figs. 8, 10, and 12 separately outline the findings for the TRS’s vertical 
channel in terms of output and error responses, as well as power spec
trum density, using each of the methods examined. Detailed dissimi
larities of the generated results from the conventional SPSA, the NL- 
SPSA, the AMVO-SCA, and the N-SPSA-based methods are simulta
neously observed through the independently magnified layouts of the 
output and error responses in Fig. 9 and Fig. 11. The TRS responses from 
the vertical channel, shown in Fig. 9, indicate that the implementation of 
the N-SPSA closely matches the system’s actual signal, reflecting its 
ability to minimize deviations and achieve high fidelity.

In comparison, the responses from other methods, including the 

Fig. 4. The system diagram of the TRS (Toha et al., 2012).

Fig. 5. Block diagram to validate the TRS model using the Hammerstein model.
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SPSA, the NL-SPSA, and the AMVO-SCA, also aligned with the actual 
signal but showed slightly higher deviations, emphasizing N-SPSA’s 
superior accuracy and stability in system identification. These findings 
are further supported in Fig. 10, which illustrates that the proposed N- 
SPSA method produced significantly lower error compared to both the 
conventional SPSA and the NL-SPSA approaches. Furthermore, the N- 
SPSA demonstrated a performance level comparable to the AMVO-SCA- 

Fig. 6. Vertical input channel u(t).

Fig. 7. Vertical output channel y(t).

Table 1 
Initial values for the TRS model.

β Designed variables θ(0)

β1 b0 − 2.0000
β2 a0 0.0000
β3 a1 5.0000
β4 δ0 − 5.0000
β5 δ1 0.0000

Table 2 
Coefficient of the SPSA algorithms for the TRS.

SPSA NL-SPSA N-SPSA

kmax kmax kmax

a(k) = 0.02 
/(k + 10)0.9

a(k) = 800/(k + 10)0.9 a(k) = 0.025/(k + 11)0.3

c(k) = 0.1 /(k + 1)1/6 c(k) = 0.1/(k + 1)1/6 c(k) = 0.2/(k + 1)1/3

- satδ = 0.01 -

Table 3 
The statistical analysis of the objective function and corresponding NFE for the 
SPSA, NL-SPSA, AMVO-SCA, and N-SPSA.

Method SPSA (James C 
Spall, 1992)

NL-SPSA (
Ahmad et al., 
2016)

AMVO-SCA (Jui 
& Ahmad, 2021)

N-SPSA

Mean N/A 185.3377 218.5541 179.0082
Best 1.4100×1032 182.9412 177.9563 178.4851
Worst N/A 189.2094 339.1072 179.3974
Std. N/A 1.8982 69.0269 0.2457
NFE 2000 2000 5000 2000
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based approach but achieved this with 60 % fewer functional evalua
tions, as previously discussed, demonstrating its potential for more ac
curate and reliable system identification in TRS applications. A 
prominent resonance mode of 0.35 Hz exposed through the actual 
power-spectral density (PSD) were successively determined by the N- 
SPSA-based approach alongside the comparable efficacy of the other 

examined methods. These collective findings essentially validated the N- 
SPSA’s capacity to address the challenges of achieving accurate system 
identification with fewer computational resources, aligning with the 
results demonstrated in the Hammerstein-modeled TRS simulation. (Jui 
& Ahmad, 2021).

Generated objective functions for the conventional SPSA, the NL- 
SPSA, and the N-SPSA were sequentially appraised using Wilcoxon’s 
rank-sum test criteria. However, the unaltered SPSA-based method was 
excluded from this analysis due to its inherent constraint of convergence 
instability, which rendered its results inconsistent and unreliable. 
Consequently, the evaluation focused solely on the NL-SPSA and N-SPSA 
outcomes. The results demonstrated a p-value 5.08×10− 8 under a sig
nificance benchmark of 0.05, with a corresponding h-value of 1 for the 
proposed N-SPSA-based approach. These results underscore the statis
tically significant superiority of the N-SPSA-based method over the NL- 
SPSA-based approach in identifying the TRS. By producing a more 
robust and accurate objective function, the N-SPSA method effectively 
overcame the convergence instability inherent in traditional SPSA while 
providing improved system identification precision. These findings 

Table 4 
The best-identified value for design variables of the SPSA, NL-SPSA, AMVO-SCA, 
and N-SPSA.

Design 
variables

SPSA (James C 
Spall, 1992)

NL-SPSA (
Ahmad 
et al., 2016)

AMVO-SCA (
Jui & 
Ahmad, 
2021)

N-SPSA

θ∗1 b0 − 2.3635×1014 − 1.9500 − 1.9078 1.8160
θ∗2 a0 2.3635×1014 0.1100 4.7607 0.1180
θ∗3 a1 2.3635×1014 4.7500 0.1085 4.7681
θ∗4 δ0 2.3635×1014 − 1.1500 − 9.8045 − 4.7132
θ∗5 δ1 − 2.3635×1014 0.4900 0.0574 0.1229

Fig. 8. Identified vertical output channel of the TRS.

Fig. 9. Zoomed-in view of the output responses identified in Fig. 8.
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further validate the reliability and efficiency of the N-SPSA as a 
competitive alternative for optimizing complex nonlinear systems like 
the TRS.

5.2. Electro-mechanical positioning system (EMPS)

The current section evaluates the effectiveness of the N-SPSA-based 
method in identifying an EMPS by adopting continuous-time Hammer
stein modeling. A nominally configured drive structure employed within 
the prismatic joint in the robotic and mechanical applications is depicted 
in Fig. 13, with the primary inclusion of a controller and a DC motor 
under installation of a 12,500-counts-per-revolution encoder, observ
able via its left structure. The manipulated application is controlled by a 
star high-precision, low-friction ball screw coupled to a DC motor, with 
an additional encoder mounted on the ball screw’s outer edge for 
disposition locational measurement. As the object for positional mea
surement, a load in translation located in the middle of the EMPS with an 
affixed accelerometer is outfitted. Due to the inapplicability of 

numerical data, recorded by the encoder via the edge of the ball screw 
and the accelerometer, input and output data were utilized to assure 
data standardization and periodicity by employing the dSPACE digital 
control system. (A Janot et al., 2019). Input and output data for the 
EMPS analysis were sampled at a rate of 0.001 s per 12 s. Notably, the 
processing aspect was not evaluated, suggesting that the data involved 
may be in an unprocessed format. Fig. 14(a)–14(b), depict representa
tions of the input data based on force and the output data based on 
position, respectively. Fig. 15 illustrates the block diagram from vali
dating the EMPS’s estimated model using the continuous-time Ham
merstein model as its structural reference.

The linear and nonlinear elements of the EMPS were directly adopted 
(A Janot et al., 2019). The mathematical representations of both linear 
and nonlinear subsystems are expressed through the following formulas: 

H(p) =
1

p2 + a1p
(18) 

g(u(t)) = δ0u(t) + δ1sign(u(t)) + δ2 (19) 

Fig. 10. TRS error responses.

Fig. 11. Zoomed-in view of Fig. 10 corresponding to the error responses.
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Fig. 12. Power spectrum density of the vertical channel.

Fig. 13. Prototype of the EMPS. (A Janot et al., 2019).

Fig. 14. Input and output signals of the EMPS.
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The second-order transfer function in Eq. (18) represents the linear 
subsystem of the EMPS system. From Eq. (19), the nonlinear subsystem 
is derived to account for the effects of Coulomb friction and offset. The 
proposed N-SPSA-based method aims to optimize four unknown design 
variables based on this Hammerstein model. Primary design variables 
centering on nonlinear and linear parameters for the EMPS are outlined 
in Table 5, while coefficient settings corresponding to the conventional 
SPSA, the NL-SPSA, and the N-SPSA-based methods are tabulated in 
Table 6. These initial design variables has been selected based on 
extensive preliminary experiments and an initial study conducted within 
the reference (A Janot et al., 2019). To assess the statistical perfor
mance, 25 independent runs were conducted to evaluate the N-SPSA-
based method in comparison with the other methods.

Statistical findings of the objective function across separate trials for 
conventional SPSA, NL-SPSA, AMVO-SCA, and N-SPSA-based methods 
are presented in Table 7. The conventional SPSA-based method strug
gled to reliably identify the EMPS due to inconsistent convergence 
behavior, resulting in highly variable and unreliable outcomes. This 
limitation highlights the inherent challenges of the SPSA in achieving 
appropriate parameter identification for nonlinear systems. Conversely, 
integrated approaches such as the N-SPSA and NL-SPSA effectively 
resolved these issues during successive trials. Among these, the N-SPSA 
demonstrated exceptional performance, achieving the lowest average 
value and the most accurate results across trials. Specifically, the N- 
SPSA improved the mean objective function by 71.19 % compared to the 
NL-SPSA and by 25.18 % compared to the AMVO-SCA, underscoring its 
ability to deliver both accuracy and consistency. Furthermore, the 
standard deviation for the N-SPSA has improved by 87.72 % compared 
to the NL-SPSA and by 52.88 % compared to the AMVO-SCA, confirming 
its reliability in managing complex models. While the AMVO-SCA ach
ieved marginally better best values (approximately 1.54 %), the N-SPSA 
demonstrated superior overall effectiveness in modeling the EMPS, 
emphasizing its strengths across comprehensive performance metrics. 
The NFE for the SPSA, the NL-SPSA, and the N-SPSA was consistently 
maintained at 2500, as shown in Table 7. In contrast, the AMVO-SCA 
required a significantly higher computational effort, operating with 
5000 NFE, double the threshold of the other methods. This 50 % 
reduction in computational effort highlights the efficiency of the N- 
SPSA, which achieved comparable or superior results while utilizing 
fewer resources. Such efficiency makes the N-SPSA an ideal choice for 

real-time applications where precision must be balanced with compu
tational efforts. Table 8 provides further details on the best design 
parameter values obtained across 25 trials, highlighting that the N-SPSA 
consistently outperformed the SPSA, the NL-SPSA, and the AMVO-SCA 
in overall performance. These findings also emphasize the limitations 
of the SPSA in achieving stable convergence and reinforce the practi
cality of the N-SPSA as a robust and efficient solution for complex system 
modeling.

The responses for the time-domain position and its zoom-in views 
have been separately illustrated in Figs. 16–17, with obtained simula
tion outcomes on the responses of position error for the EMPS via 
respective optimization of the SPSA, the NL-SPSA, the AMVO-SCA, and 
the N-SPSA-based methods. The labeling in the current figures also de
notes underlined specifications related to the EMPS experimentation. As 
observed in Fig. 17, the position output obtained from the N-SPSA-based 
method closely resembled the actual position recorded from the EMPS 

Fig. 15. Block diagram to verify the EMPS model with the Hammerstein model.

Table 5 
Initial design variables of the EMPS.

β Designed variables θ(0)

β1 a1 − 1.0000
β2 δ0 0.5000
β3 δ1 − 0.4000
β4 δ2 0.0000

Table 6 
Coefficients of the SPSA, NL-SPSA, and N-SPSA algorithms for the EMPS.

SPSA NL-SPSA N-SPSA

kmax kmax kmax

a(k) = 2×

10− 4/(k + 24)0.9
a(k) = 9×

10− 4/(k + 24)0.9
a(k) = 6.6×

10− 1/(k + 24)0.9

c(k) = 0.2/(k + 1)1/3 c(k) = 0.2/(k + 1)1/3 c(k) = 0.2/(k + 1)1/3

- satδ = 0.1 -

Table 7 
The statistical analysis of the objective function and NFE for the SPSA, NL-SPSA, 
AMVO-SCA, and N-SPSA.

Method SPSA (James C 
Spall, 1992)

NL- SPSA (Ahmad 
et al., 2016)

AMVO-SCA (Jui & 
Ahmad, 2021)

N- 
SPSA

Mean N/A 1.8550 0.7151 0.5364
Best N/A 0.3022 0.2103 0.2444
Worst N/A 7.2260 1.6604 1.0023
Std. N/A 1.8067 0.4704 0.2217
NFE 2500 2500 5000 2500

Table 8 
The best value of design variables utilizing the SPSA, NL-SPSA, AMVO-SCA, and 
N-SPSA.

Design 
variables

SPSA (James C 
Spall, 1992)

NL-SPSA (
Ahmad 
et al., 2016)

AMVO-SCA (
Jui & Ahmad, 
2021)

N-SPSA

θ∗1 α1 − 1.5662×106 3.1102 3.1626 3.2870
θ∗2 δ0 − 1.5662×106 0.6361 0.5485 0.59130
θ∗3 δ1 1.5662×106 − 0.5352 − 0.4019 − 0.4448
θ∗4 δ2 − 1.5662×106 0.0552 0.0457 0.0486
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hardware, indicating its superior accuracy in capturing the system dy
namics. This established the N-SPSA as a robust choice for system 
identification and control tasks. The AMVO-SCA approach also per
formed competitively, with deviations slightly larger than those of the 
N-SPSA. In contrast, both SPSA and NL-SPSA exhibited significant de
viations from the actual position in the overall response (Fig. 16), 
particularly around the peaks, where they consistently produced lower 
values, indicating their inability to capture the system dynamics effec
tively. However, in the zoomed-in view (Fig. 17), NL-SPSA’s deviation 
became even more pronounced, while SPSA was less dominant in this 
region, further highlighting its failure to accurately track the actual 
response. These findings were consistently corroborated by the results 
shown in Fig. 18, where the proposed N-SPSA-based method demon
strates significantly lower error than the conventional SPSA and the NL- 
SPSA methods, underscoring its ability to effectively minimize system 
errors. Additionally, the AMVO-SCA approach exhibited competitive 
performance, with error amplitudes slightly higher than those of the N- 
SPSA. In contrast, the NL-SPSA and SPSA produced significantly larger 

errors, with the SPSA exhibited the highest error amplitudes. These re
sults confirmed the robustness of the N-SPSA in system identification 
tasks, consistently outperforming the other methods in accuracy and 
stability.

Additional efforts were made to differentiate the respective objective 
functions of the N-SPSA and the NL-SPSA-based methods through the 
implementation of Wilcoxon’s rank-sum test. The conventional SPSA 
approach was excluded from the EMPS experimentation due to its pre
vailing instability which rendered its result inconsistent and unreliable. 
The analysis yielded a p-value of 0.0015 at a significance benchmark of 
0.05, along with a corresponding h-value of 1, confirming the statistical 
superiority of the N-SPSA-based method over the NL-SPSA-based 
method. These findings demonstrate that the N-SPSA effectively re
solves the instability and variability observed in the traditional SPSA 
while achieving greater precision in developing an accurate EMPS 
Hammerstein model. The robustness and reliability of the N-SPSA-based 
method were further validated across the majority of trials, solidifying 
its position as an efficient solution for nonlinear system identification.

Fig. 16. Time domain position response (normal).

Fig. 17. Time domain position response (zoomed-in view of Fig. 16).
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6. Conclusion

A renewed algorithmic approach known as the N-SPSA is introduced 
to enhance the stability of the conventional SPSA approach. This novel 
strategy, achieved by controlling design variable updates through 
normalization, has demonstrated successful applications in determining 
continuous-time Hammerstein models. Specifically, the TRS and the 
EMPS served as real-world plants, showcasing the efficacy of the N-SPSA 
in minimizing objective functions with the lowest standard deviation as 
compared to other algorithms. Notably, both the N-SPSA and the NL- 
SPSA have exceeded the AMVO-SCA in the accurate modeling of the 
TRS and the EMPS under a smaller number of NFEs. Moreover, on ac
count of a lower mean and worst value, the N-SPSA further out
performed the NL-SPSA in Wilcoxon’s rank-sum test to establish precise 
response identification for the objective functions. The introduced 
algorithmic modifications through the N-SPSA offer promising prospects 
for mitigating limitations inherent in the conventional SPSA-based 
method.

While the proposed method offers numerous advantages, it’s 
important to note that selecting optimal values for the N-SPSA co
efficients can be challenging and may require considerable effort, 
despite the guidelines provided in the original SPSA research paper. The 
performance of the N-SPSA can be influenced by specific tuning pa
rameters, including step size and perturbation sizes, and these factors 
can significantly affect the algorithm’s effectiveness. Meanwhile, future 
research directions could explore the applicability of the N-SPSA in the 
parameter identification of diverse nonlinear block-oriented models 
such as Wiener models, Hammerstein-Wiener models, as well as multi- 
input multi-output (MIMO) variants. Furthermore, the N-SPSA could 
also be practically applied as a data-driven tool in fine-tuning various 
controllers, such as proportional-integral-derivative controllers, fuzzy 
logic controllers, neuro-fuzzy controllers and others.
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