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Abstract 
 

By implementing several machine learning (ML), deep learning (DL), and hybrid deep learning models, the research 
methodology included a systematic approach, which included data separation, exploratory data analysis (EDA), artificial 
neural networks (ANN), K-Nearest neighbors (kNN), convolutional neural networks (CNN), long short-term memory (LSTM), 
Gated recurrent units (GRU), and convolutional neural network long short-term memory/gated recurrent units hybrid models. 
Also, the mean absolute error (MAE), R-squared (𝑅2), and Root Mean Square Error (RMSE) were utilized to evaluate these 
models. Our results demonstrate that hybrid deep learning models, specifically the CNN-GRU configuration, achieve better 
performance in predicting ultra-high-performance concrete (UHPC) flowability compared to individual Deep Learning models 
and traditional Machine Learning approaches. The CNN-GRU model exhibited the best predictive accuracy with a RMSE of 
1.360066 and MAE of 1.036573. Additionally, feature selection techniques enhanced the performance of certain models, 
with the feature-selected random forest model showing notable improvements in accuracy, achieving an RMSE of 1.032841 
and MAE of 0.767066. Infrastructure durability and building processes can be improved with higher Ultra-High-Performance 
Concrete flowability prediction, which improves the effectiveness of various operations of the UHPC mixture design and 
benefits the application. 
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1. Introduction 

Flowing Ultra-High-Performance Concrete (UHPC) has good 

mechanical properties.[1] Successful mixture design and 

construction require accurate UHPC flowability calculations, 

as illustrated by the comparison of predicted and experimental 

values shown in Fig. 1 which elucidates the discrepancies 

between predicted and actual flowability values, emphasizing 

the challenges in modeling such a sophisticated material 

property and underscoring the importance of refining 

predictive methodologies for better precision in construction 

practices. 

The x-axis represents the dataset index, which sequentially 

identifies each data point or observation in the dataset. The left 

y-axis measures the flowability of UHPC in centimeters (cm), 

while the right y-axis quantifies the error in these 

measurements, also in centimeters (cm).  

UHPC fluidity refers to the ability of UHPC mix to flow, 

spread, and fill the formwork under its own weight, with 

minimal mechanical assistance. This critical property 

influences the ease of placement and quality of the concrete in 

structures, particularly where complex shapes or dense 

reinforcement configurations are involved. 

Fluidity in UHPC is indicative of the material's rheological 

properties—specifically its viscosity and yield stress. High 

fluidity suggests low viscosity and yield stress, allowing the 

concrete to flow easily, which is crucial for achieving a 

homogeneous distribution without mechanical vibration. This 

property is vital for ensuring that UHPC fills the formwork 

and encapsulates the reinforcement without creating 

honeycombs or voids, thus ensuring structural integrity and 

durability. Fluidity affects the workability of UHPC, 

determining how well it can be handled, pumped, and finished 
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in construction applications. 

Recent ML and DL advances have excelled in prediction 

problems. Flowability makes UHPC excellent for high-

strength structural parts, precast components, and bridge 

engineering.[2,3] Hydration, microstructure, characteristics, mix 

design, and additive integration have been intensively 

researched in UHPC development and application. Fiber 

reinforcing, nano-silica (NS), steel slag, and other 

cementitious materials have been studied. Arora et al. (2018)[4] 

and Alsalman (2017)[5] highlighted UHPC binder selection, 

rheology, and mechanical properties. Wang et al. (2015)[1] and 

Yoo and Banthia (2016)[6] study UHPC and fiber 

reinforcement hydration, microstructure, mechanical 

characteristics, and mix design. 

This work develops and tests UHPC flowability prediction 

algorithms using (ML), (DL), and hybrid DL. For each 

intelligence technique (ML, DL, hybrid DL), the study selects 

features. This study examined 135 UHPC mix combinations 

with 21 flowability-affecting inputs. This study aims to 

precisely forecast UHPC's flowability, which affects its 

workability and location during construction. To accomplish 

this, the investigation begins with (EDA). This step seeks to 

understand the dataset and link input parameters to UHPC 

flowability. 

High strength, durability, and workability make UHPC a 

sophisticated building material. UHPC has fine aggregates, 

high cementitious components, and low water-to-cement ratio. 

A better combination design and materials give UHPC higher 

mechanical properties, environmental resistance, and lower 

permeability. 

UHPC is liquid and solid complex.[7] More pieces, 

combinations, relative proportioning, and features make this 

concrete touzher to predict. This project will develop four 

Artificial Neural Networks (ANN)-based analytical models to 

estimate compressive strengths (CS) and slump flow over one, 

seven, and 28 days. Portland cement and silica fume were 

substituted by variable-particle limestone, recycled glass, and 

fluid catalytic cracking (FCC). Initial, seventh, and eighth-day 

CSs and slump flow yielded prediction error values of 2.400 

MPa, 2.638 MPa, 2.064 MPa, and 7.245 mm. ANN models 

with limestone, silica fume, FCC, and recycled glass powder 

predicted UHPC slump flow and CSs. 

Underwater concrete (UWC) mix rheological and 

mechanical qualities and constituent material sensitivity are 

predicted by (ANN).[8] ANN can approximate and accomplish 

tasks independently by mimicking organic neurons. From 

ideation to training to validation, their research describes how 

they created the neural network (NN) model. The ANN model 

was trained and tested using 175 distinct UWC permutations 

from 9 experiments. Data is organized by pattern. Each pattern 

inputs that alter UWC mixture behavior and outputs the 

rheological or mechanical property to be represented. The 

ANN model can accurately predict the attributes above for 

new underwater concrete mixtures generated within the 

realistic range of the training phase input parameters with 

absolute errors of 4.6, 10.6, and 4.4%. NNs may predict 

flowable concrete's CS and new concrete properties, according 

to Jayaseelan et al. (2019).[9] Standardized lab investigations 

yielded complete data. One nanoparticle-two microparticle 

combination made flowable concrete. A NN model using 

BFGS Quasi-Newton, Fletcher-Powell, Polak-Ribiere, 

Gradient Descent (GD) with Adaptive Linear Back 

Propagation, and Levenberg-Marquardt back propagations 

predicts better than 90%. The model properly predicted 

flowable concrete's new characteristics and CS. 

However, the size of the dataset and atypical data utilized 

for training prediction models limit both their accuracy and 

their capacity for generalization.[11] ML techniques can predict 

concrete attributes and speed up advanced concrete design, 

which is vital considering the variety of concrete types used in 

construction. Fig. 2 provides an overview of different types of 

concrete. Their research suggests an ML framework for 

predicting (UHPC) compressive, workability, porosity, and 

flexural. The framework has three parts: Data (1) is conflicting. 

Using isolation forests, integrated mutual information, and 

univariate (LR), (2) an unsupervised anomaly identification

 
Fig. 1 DT predicted and experimental error values—UHPC flowability, reproduced with permission from [10] Copyright @Qian et 

al., 2022. 
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method is used to find and eliminate outliers and irrelevant 

variables in a dataset ML hyperparameters can be tuned using 

a tree-structured Parzen estimator and k-fold cross-validation, 

as demonstrated in reference (3) The learning framework and 

Light Gradient Boosting Machine build auto-tuned prediction 

models. The developed approach demonstrates strong 

predictive accuracy. Auto-tune models study mixture design 

variances on characteristics. Reduce experimentation to 

improve material development. 

Material composition determines UHPC CS. A prediction 

model that works with an experimental dataset frequently 

requires complex algorithms like the ANN to experimentally 

capture this link.[12] Its opaqueness makes mathematically 

characterizing its interior workings difficult for scientists. In 

their research, they apply Sequential Feature Selection (SFS) 

and Neural Interpretation Diagram (NID) to identify key ANN 

elements. ANN was trained using 110 (UHPC) CS tests. The 

(ANN) outperformed the model employing all eight 

characteristics in prediction accuracy, with a correlation 

coefficient of 1% and NMSE of 0.012 compared to 0.5% and 

0.035. The technique produced a parametric analysis and non-

linear regression (LR) model based on four variables. 

Combining ANN with SFS and NID enhanced model accuracy 

and showed how ANN could estimate CS for different UHPC 

permutations. 

Choudhary et al. estimate UHPC CS using back-

propagation neural network (BPNN) and (SFS).[13] ML models 

were constructed using a literature-based 110-point, eight-

material constituent database. BPNN and SFS were 

interchangeable for response variable characteristics. Thus, 

the BPNN with selected characteristics outperformed the 

model with all features (0.816) (R2 = 0.991). Civil engineering 

ML case studies benefit from ANN with SFS prediction model 

accuracy. AI advancements have fostered intelligent UHPC 

creation. Fan provide a reliable Modified Andreasen and 

Andersen (MAA) model and Genetic Algorithm 

based Artificial Neural Network GA-ANN UHPC design and 

features prediction.[14] A GA-ANN model for UHPC features 

prediction outperforms established approaches in fitting 

goodness and prediction accuracy using 80 mixtures as a 

training dataset. GUIs are simple for GA-ANN prediction 

applications. Finally, MAA and GA-ANN models provide a 

new UHPC mix-design method. GA-ANN and property 

criteria for final optimization, MAA model for preliminary 

mixture design. They found that AI can build a dense particle-

packing skeleton UHPC. 

Nurlan found few studies predicting fresh or hardened 

Self-Compacting Concrete (SCC).[16] Effective Radial Basis 

Function NN (RBFNN) models predict fresh and toughened 

self-compacting concrete qualities. RBFNN parameters are 

optimized using ant-lion optimization (ALO) and 

biogeography optimization (BBO). The results show strong 

learning and testing. The association between observed and 

predicted SCC characteristics using hybrid models shows 

great training and approximation accuracy. ALO-RBFNN beat 

literature and BBO in D flow, L-box, V-funnel, and CS. ALO's 

RBFNN model outperforms others in determining optimal 

method parameters. 

New UHPC improves mechanical, rheological, and 

durability.[ 1 7 ] Manufacturers must adjust UHPC constituent 

quantities for strength, flowability, and cost. Traditional 

concrete mixture design requires expensive and time-

consuming testing. Many goals have been achieved by 

Statistical Mixture Design (SMD), design of experiments 

(DOE) design, and mathematical optimization. Conventional 

methods involve multiple (LR) and other objective functions. 

After modeling a problem, mathematical programming and 

simplex algorithms can find optimal solutions. Data that does 

not fit basic regression models like multiple (LR) requires a 

more adaptable technique that allows high-accuracy nonlinear 

models and varied multi-objective mixture formation 

circumstances. The authors propose a steel-fiber-enhanced

 
Fig. 2 Types of Concrete, reproduced with permission from [15] Copyright Asghari et al., 2023. 

https://www.sciencedirect.com/topics/engineering/genetic-algorithm
https://www.sciencedirect.com/topics/engineering/artificial-neural-network


Research article                                                                                                                                                                                Engineered Science 

 

4 | Eng. Sci., 2024, 30, 1182                                                                                                                                                   © Engineered Science Publisher LLC 2024 

UHPC efficiency approach. ANNs and Gaussian process 

regression are used in multi-objective learning. Theory and 

outcomes are based on solid experiments. Experimental 

results validate the multi-objective mixed design and 

optimization method for steel fiber reinforced UHPC. The 

method streamlines (UHPC) trial design and optimizes 

strength, flowability, and cost. 

UHSC is a good civil engineering building material.[18] 

Construction time and cost are reduced by soft computing 

concrete quality estimates. Their study calculated UHSC CS 

utilizing sophisticated soft computing. They investigated 

XGBoost, AdaBoost, and Bagging. RMSE, R2, and MAE were 

used to evaluate algorithms. The model was statistically 

assessed. With lower R2 (0.90) and errors, XGBoost soft 

computing was more correct. XGBoost estimates UHSC CS. 

SHapley Additive exPlanations noted that curing time 

increased UHSC CS the most. Their findings will let 

specialists quickly and precisely evaluate UHSC's CS. 

Khan and Suthar were stated UHPC's strength and durability 

make it popular.[19] Their 28-day CS prediction comparison of 

M5P and random forest (RF) models in UHPC. Their 

investigation includes 236 readings. 70% of 236 readings-157-

are used for training, while the other 30 are tested. Compare 

(RF) and M5P to determine which predicts UHPC CS better. 

Performance measurements like Corelation Coefficient (CC), 

RMSE, and MAE determine model soundness. Random Forest 

(RF) outperformed M5P in testing with CC, RMSE, and MAE 

values of 0.8568, 16.005, and 12.03. 

Many UHPC experiments have been conducted, according 

to Marani et al. (2020).[20] UHPC and its heterogeneous 

composition have nonlinear engineering properties that 

standard statistical approaches cannot define. To build 

accurate and insightful nonlinear materials science property 

prediction tools, effective and creative approaches are needed 

to concentrate key experimental data. ML may reveal complex 

data patterns. UHPC CS is predicted using modern ML 

algorithms and a large experimental dataset of 810 test results 

and 15 academic input variables. Tabular generative 

adversarial networks generated 6513 synthetic data points for 

(RF), additional trees, and gradient boosting regression 

models. Models were tested on 810 fresh experimental data 

sets after training on simulated data. Predictively, models 

performed well. Parametric tests revealed UHPC strength 

development methods and parameters using the models. 

UHPC has high CS, strain hardening under stress, and self-

healing.[21] UHPC self-healing prediction models are ignored 

despite study. Data-driven AI and ML models are increasingly 

predicting attributes. Multi-physics modeling predicts cement-

based materials' chemical, physical, and mechanical properties. 

Whale Optimization Algorithm (WOA), Grey Wolf Optimizer 

(GWO), and Flower Pollination Algorithm (FPA) with 

Xgboost meta-heuristic algorithms were employed to create a 

ML model to predict UHPC self-healing. The model was 

based on main experimental research on UHPC fracture-

sealing over six months under sustained crack tensile stress in 

severe conditions. Four mathematical measures evaluated the 

model's anticipated accuracy. The REC and Taylor diagrams 

revealed that optimal models worked effectively with various 

optimization strategies. SHAP found that exposure length and 

fracture diameter best predicted self-healing. The study found 

that ML could predict UHPC self-repairing and identify key 

factors. 

The paper addresses the environmental issues caused by 

the production of cement, particularly its significant CO2 

emissions that contribute to global warming and other health 

problems.[25] It explores the use of fly ash (FA), a by-product 

from thermal power stations, as a sustainable replacement for 

ordinary Portland cement in the construction industry. The 

study focuses on the development of net-zero mortars using 

FA to enhance its reactivity and effectiveness. The paper 

evaluates the mechanical properties of these mortars through 

CS tests, varying the water-to-cement ratio and the use of a 

super plasticizer. The findings demonstrate that the best-

performing mortar includes fine FA with specific mix 

proportions, confirming the potential of FA as a viable and 

environmentally friendly cement substitute. 

The paper investigates the use of a hybrid cement mixture 

to address environmental concerns related to marine and 

industrial waste disposal.[26] This study aligns with the United 

Nations Sustainable Development Goals (UNSDG) and 

COP27 climate actions by exploring low carbon technologies 

in the cement industry. The research evaluates the bonding 

behavior and strength of this 3R hybrid cement in various 

masonry and mortar tests, assessing chemical characteristics, 

workability, CS, and other properties. The findings highlight 

the environmental and economic benefits of using hybrid 

cement and demonstrate superior performance in terms of the 

CS of brick masonry prisms. 

The paper addresses the imperative of transitioning to net-

zero construction materials in alignment with UNSDG' 

objective to mitigate carbon emissions by 2050.[27] Focusing 

on the replacement of cement with pozzolanic materials to 

reduce its carbon footprint, the study employs gene expression 

programming (GEP) and artificial neural network (ANN) 

machine learning (ML) techniques to predict the CS of FA 

concrete. By utilizing a dataset compiled from various sources, 

encompassing input parameters, the study demonstrates the 

applicability of ML in forecasting the short- and long-term CS 

of FA concrete toward carbon neutrality in infrastructure. 

Comparing GEP and ANN models based on statistical 

parameters, the study reveals GEP's superiority in estimating 

CS at both time intervals. Furthermore, the GEP model offers 

a simplified equation for predicting CS at different ages of net-

zero FA concrete, providing valuable insights for sustainable 

construction practices. 

In their research paper, Onyelowe and Ebid (2023b)[28] 

explore the prediction of CS in high-performance concrete 

(HPC) containing FA and slag using ML techniques. They 

employ genetic programming (GP), ANN, and evolutionary 

polynomial regression (EPR) on a dataset comprising 1030 
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entries with variables. The study divides the data into training 

and validation sets, with results indicating that ANN 

outperforms GP and EPR models, exhibiting the highest 

consistency between predicted and measured values. ANN's 

superior performance is reflected in its accuracy metrics, 

including a high coefficient of determination (R²), low mean 

absolute error (MAE), mean squared error (MSE), and root 

mean squared error (RMSE). The study suggests that ANN 

could serve as a decisive model in HPC design, particularly 

regarding CS, contributing to the development of sustainable 

structures in the built environment. 

The paper focuses on advancing concrete technology 

towards carbon neutrality, particularly by optimizing net-zero 

concrete mixes incorporating industrial waste materials.[29] 

The study aims to develop predictive models for CS at 

different ages using novel metaheuristic techniques. Utilizing 

a database of 1133 net-zero concrete mix records, the study 

evaluates performance metrics including MAE, MSE, and R2 

score. AutoML tools, particularly AutoSklearn and AutoGluon, 

were employed to swiftly generate models with high accuracy. 

AutoGluon notably outperformed AutoSklearn and traditional 

methods like Support Vector Regression (SVR) and RF, 

achieving a superior R2 of 92.6% with lower MAE and MSE. 

Notably, BFS emerges as a significant contributor to 

ecofriendly concrete strength, showcasing its potential as a 

sustainable alternative to cement compared to FA. The study 

underscores the efficacy of AutoML techniques in surpassing 

previous methods, highlighting their role in advancing 

ecofriendly construction practices. 

In their study, Onyelowe et al. (2023d)[30] investigate the 

utilization of NS as a precursor to enhance the CS of mortar, 

crucial for sustainable building construction. They produced 

multiple mortar mixes using NS precursor (NSP) and 

employed Advanced ML (AML) techniques to predict CS, 

training and validating models with various NSP ratios. The 

NS precursor significantly influenced mortar strength, 

particularly due to its contribution to pozzolanic reactions 

forming C-S-H gel. Model accuracies were assessed using 

performance indices and Taylor charts, revealing the 

superiority of the ANN model. Despite lacking a closed-form 

expression, the ANN model outperformed others, 

demonstrating potential for NSP application in sustainable 

construction as a reliable pozzolanic material. 

A summary of recent studies related to various concrete 

types and their predicted properties can be found in Table 1. 

Table 1. Related work summarization. 

Study Objective Methodology Key Findings 

Nurlan 

(2022)[16] 

Develop efficient RBFNN 

models for SCC fresh and 

hardened properties 

RBFNN, ALO, BBO 

ALO-RBFNN outperformed BBO and achieved high accuracy 

in predicting SCC properties. ALO demonstrated superior 

optimization capabilities. 

Qian et al. 

(2022)[10] 

Predict UHPC flowability 

and CS 
DT, BA, GB 

GB provided accurate predictions for UHPC flowability and 

CS, outperforming other algorithms. Limestone powder 

content and curing time were identified as influential 

parameters. 

Qian et al. 

(2023)[22] 

Predict UHPC flexural 

strength 
SVM, MLP, GB 

GB achieved better prediction accuracy for UHPC flexural 

strength than SVM and MLP. Steel fiber composition was 

identified as the most influential parameter. 

Sadrossadat et 

al. (2022)[17] 

Develop ML-based 

models and optimize 

UHPC mixture design 

ANN, GPR, PSO 

ANN and GPR. PSO was employed for multi-objective 

mixture design and optimization, considering strength, 

flowability, and cost. 

Shen et al. 

(2022)[18] 

Estimate UHSC CS using 

soft computing methods 

XGBoost, AdaBoost, 

Bagging 

XGBoost demonstrated higher accuracy in estimating UHSC 

CS compared to other methods. Curing time was identified as 

the most influential parameter. 

Abuodeh et al. 

(2020)[12] 

Develop a predictive 

model for UHPC CS 
SFS, NID, ANN 

SFS and NID helped determine important material 

constituents for ANN, resulting in more accurate predictions. 

Al Sarfin et al. 

(2023)[23] 

Create a locally sourced, 

non-proprietary UHPC 

mix design based on the 

required qualities. 

RF, SVM, GB 
ML models trained on mix design parameters can reverse-

engineer UHPC mix proportions for desired qualities. 

Choudhary et 

al. (2021)[13] 
Forecast UHPC CS BPNN, SFS 

BPNN with selected features achieved higher accuracy 

compared to models with all features. 

Fan et al. 

(2021)[14] 

Accurate design and 

characteristics prediction 

of UHPC 

MAA model, GA-ANN 

The GA-ANN model outperformed traditional methods 

regarding fitting goodness and prediction accuracy for UHPC 

characteristics. 

Farouk et al. 

(2022)[24] 

Predict UHPC and steel 

reinforcing bar bond 
AI, IEPANN) 

The IEPANN model accurately predicted bond strength 

between UHPC and reinforcing bars. Monte Carlo simulation 
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strength quantified uncertainties. 

Kumar et al. 

2023)[25] 

Develop sustainable 

cement alternatives to 

reduce CO2 emissions and 

achieve carbon neutrality.

  

Utilization of FA in place 

of cement; experiments 

with different granularities 

and mix proportions, 

including the use of super 

plasticizers. 

Fine FA mortar with a specific water-to-cement ratio and 

super plasticizer showed the best performance, validating FA 

as an effective cement substitute. 

Ravi et al. 

(2023)[26] 

Recycled waste materials 

in cement. 

Evaluation of 3R hybrid 

cement (oyster shell, slag, 

tyre waste) in brick 

masonry prisms; tests on 

bonding, CS, and 

microstructure. 

Hybrid cement significantly enhances the CS of brick 

masonry prisms, with positive environmental impacts. 

Onyelowe et al. 

(2023a)[27] 

To predict the 56 days and 

180 days CS of net-zero 

FA concrete using ML 

techniques 

Adopted GEP and ANN 

Both GEP and ANN were used to determine CS. GEP 

outperformed ANN in estimating CS at both 56 days and 180 

days. GECSP produced a simplified equation for predicting 

CS at different ages of net-zero FA concrete. 

Onyelowe and 

Ebid (2023b)[28] 

To predict CS in HPC 

with FA and slag using 

ML techniques 

Employed GP, ANN, and 

evolutionary EPR on a 

dataset comprising various 

concrete mix parameters. 

ANN demonstrated superior performance, exhibiting high 

consistency between predicted and measured values. It 

showcased higher accuracy metrics (R2, MAE, MSE, RMSE) 

compared to GP and EPR, suggesting its utility in HPC design 

for sustainable structures. 

Onyelowe et al. 

(2023c)[29] 

Develop predictive 

models for CS in net-zero 

concrete mixes with 

industrial waste materials. 

Employ superspeed 

metaheuristic predictive 

techniques and AutoML 

tools on a database of 1133 

records. 

AutoGluon outperforms, achieving R2 of 92.6%; BFS 

significantly impacts strength, suggesting it as a sustainable 

cement alternative. 

Onyelowe et al. 

(2023d)[30] 

Investigate the use of NS 

precursor in enhancing 

mortar CS for sustainable 

building construction. 

Utilize AML techniques to 

predict CS of mortar using 

various NS precursor ratios, 

and compare model 

accuracies using 

performance indices and 

Taylor charts. 

ANN model outperforms, exhibiting highest accuracy with 

MAE of 1.47 MPa, MSE of 3.84 MPa, RMSE of 1.96 MPa, 

and R2 of 0.980. NSP significantly improves mortar strength, 

confirming its potential as a sustainable pozzolanic material in 

construction. 

 

2. Experimental 

2.1 Research approach 

The investigation commences with the collection and upload 

of the UHPC dataset, followed by configuring initial input 

settings for the analysis. The primary step involves 

Exploratory Data Analysis (EDA) to delve into the dataset, 

aiming to unearth patterns and ascertain the connections 

between the various input and target feature, UHPC 

flowability. 

Upon concluding the EDA, the dataset is systematically 

split into an 80:20 ratio for training and testing purposes. This 

segregation ensures that a substantial portion of the data is 

utilized for model training, while a distinct set is reserved for 

performance evaluation, thereby maintaining the robustness of 

the testing process. 

Multiple predictive models are then developed to estimate 

UHPC flowability, encompassing traditional ML techniques 

such as RF, Logistic Regression (LR), and k-Nearest 

Neighbors (kNN). Additionally, several deep learning (DL) 

approaches are explored, including ANNs, Long Short-Term 

Memory networks (LSTM), Gated Recurrent Unit networks 

(GRU), and Convolutional Neural Networks (CNN). To 

exploit the combined benefits of convolutional and recurrent 

networks, hybrid models like CNN-LSTM and CNN-GRU are 

also constructed. 

All models are rigorously evaluated using the metrics Root 

Mean Square Error (RMSE), MAE, and the R², which 

collectively demonstrate the accuracy and precision of the 

predictions concerning UHPC flowability. To enhance model 

performance and interpretability, FS using Recursive Feature 

Elimination (RFE) is applied to each type of model— ML, DL, 

and hybrid DL. RFE assists in pinpointing ML critical input 

features that significantly impact UHPC flowability. 

• ML Models: Parameters for RF, LR, and kNN are 

optimized through grid search to determine the most 

effective settings. For instance, the number of trees in RF 

and the number of neighbors in kNN are tailored based on 

the dataset characteristics. 

• DL Models: For ANN, LSTM, GRU, and CNN, models 

are configured with specific layers, neuron counts, and 
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Fig. 3 Research methodology. 

 

activation functions (AF) suited to the data’s nature. For 

example, the number of LSTM blocks is chosen based on 

the temporal depth required to capture the dependencies in 

the data effectively. 

• Hybrid Models: CNN-LSTM and CNN-GRU models are 

meticulously designed to first utilize CNN layers for feature 

extraction, followed by LSTM or GRU layers to analyze 

temporal sequences, ensuring a comprehensive 

understanding of both spatial and temporal dynamics. 

Finally, models that incorporate FS-labeled FS-ML, FS-

DL, and FS-Hybrid DL are constructed to verify the efficacy 

of the selected features in predicting UHPC flowability 

accurately. This methodical approach not only aims to develop 

robust predictive models but also enhances the models’ 

interpretability by focusing on influential features. 

The entire methodology, from data handling through model 

evaluation, is succinctly illustrated in Fig. 3. This figure 

encapsulates the sequential steps undertaken, offering a clear 

visualization of the process flow and aiding in the 

understanding of the methodological rigor applied throughout 

the study. 

 

2.2 Dataset description 

UHPC fluidity estimation uses 135 mix combinations and 21 

input parameters. This dataset assessed multiple AI UHPC 

flowability forecasting algorithms. Parameter details for the 

dataset are outlined in Table 2, which provides information on 

the various input features used for UHPC flowability 

estimation: 

Flowability is vital to construction workability and positioning 

(cm).  

UHPC flowability is affected by many elements, including 

dataset input parameter proportions and attributes. These input 

features affect UHPC flowability. The research's ML models 

are trained and tested using the dataset from relevant literature. 

 

2.3 Exploratory Data Analysis (EDA) 

To forecast UHPC flowability, we use EDA approaches to 

analyze the dataset and comprehend the target variable. We 

use a histogram to visualize the target variable distribution 

during EDA. The code snippet plots flowability as a histogram. 

Our visualization uses Python's Seaborn package to select plot 

style, color, and font scale. To organize data and display 

occurrence counts for each bin, the histogram has 20 bins. The 

alpha parameter determines histogram bar transparency. The 

plot in Fig. 4 shows the flowability variable's distribution, 

showing its range and frequency. Flowability distribution can 

be seen in the histogram. It shows the concentration of 

flowability values around specified ranges or peaks, revealing 

the target variable's variability and spread. This image helps 

identify flowability distribution outliers and skewness, which 

can be important in modeling and analysis. The desired 

variable, UHPC flowability, can be studied with EDA. 

Selecting good hybrid deep-learning UHPC flowability  
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Fig. 4 Data visualization. 

Table 2. Input features. 

number features number features 

1 
Cement Content: The amount of cement used in the 

UHPC mix (Kg/m3). 
12 

Polystyrene Fiber Content: The quantity of 

polystyrene fibers in the mix (%). 

2 FA Content: The quantity of FA in the mix (Kg/m3). 13 
Water Content: The amount of water used in the 

UHPC mix (%). 

3 
Silica Fume Content: The amount of silica fume added 

to the mix (Kg/m3). 
14 Type of Cement: The type of cement used. 

4 
Slag Content: The quantity of slag included in the mix 

(Kg/m3). 
15 

Strength Class of Cement: The strength class of the 

cement. 

5 
Nano-Silica Content: The NS content in the mix 

(Kg/m3). 
16 CS of Cement: The CS of the cement (MPa). 

6 
Quartz Powder Content: The amount of quartz powder 

used in the mix (Kg/m3). 
17 

Maximum Aggregate Size: The maximum size of 

the aggregates used (mm). 

7 
Limestone Powder Content: The quantity of limestone 

powder in the mix (Kg/m3). 
18 

Length of Polystyrene Fiber: The length of the 

polystyrene fibers (mm). 

8 
Sand Content: The amount of sand in the UHPC mix 

(Kg/m3). 
19 

Diameter of Polystyrene Fiber: The diameter of the 

polystyrene fibers (μm & mm). 

9 
Coarse Aggregates Content: The quantity of coarse 

aggregates in the mix (Kg/m3). 
20 

Length of Steel Fiber: The length of the steel fibers 

(mm). 

10 
Super-plasticizers Content: The amount of super-

plasticizers used in the mix (Kg/m3). 
21 

Diameter of Steel Fiber: The diameter of the steel 

fibers (μm & mm). 

11 
Steel Fiber Content: Steel fibre content in the UHPC 

mix (Kg/m3). 
  

forecast modeling and preprocessing methods requires this 

expertise. 

 

2.4 Preprocessing 

ML and analysis require data preparation. Creating and testing 

UHPC flowability models requires data preprocessing. Data 

preprocessing requires splitting. The dataset includes training 

and testing. Data is used to train ML models to uncover 80% 

patterns and correlations. The remaining 20% examines model 

performance and fresh data generalization. The data is 

segregated to prevent overfitting, which happens when a 

model accomplishes well on training data but not new data. 

Our testing set lets us evaluate models' predictions on 

unknown data, enhancing reliability. 

Model generalization and performance measures can be 

tested by data splitting. The models' UHPC flowability 

prediction accuracy, precision, and performance are measured. 

Data splitting during preprocessing supports reliable ML 

model creation and evaluation. The training set educates 

models using data patterns and correlations, while the testing 

set evaluates model performance independently. This 

thorough preprocessing enhances prediction models for real-
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world UHPC flowability projections. 

 

2.5 Machine learning methods 

This work predicts UHPC flowability using ML after 

preprocessing and partitioning data into training and testing 

sets. We use common ML techniques to create prediction 

models. The ensemble learning method RF builds numerous 

decision trees and combines their predictions for more 

accurate and resilient outcomes. It excels at complicated 

datasets and non-linear input parameter-UHPC flowability 

correlations. Non-parametric KNN classifies by proximity. 

The K nearest data instances in the training set and the 

majority label or value from these neighbors predict UHPC 

flowability. KNN is simple and flexible, making it appropriate 

for many applications. Traditional regression algorithms like 

LR use linear functions to model input parameters and 

flowability. It estimates the coefficients that best suit the data, 

revealing the direction and size of each input parameter's 

effect on UHPC flowability. Researchers may discover 

patterns and relationships from the training data and construct 

models that predict UHPC flowability depending on input 

parameters using these ML methods. We may compare the 

flowability prediction accuracy of these methods due to their 

strengths and weaknesses. 

 

2.5.1 Deep learning methods 

ANN 

In the following level of our research, we use DL approaches, 

starting with ANN architecture. Interconnected layers of 

artificial neurons mirror the brain's structure and function in 

the ANN DL model. It seems capable of capturing complex 

data patterns and linkages. This is our ANN model's 

architecture. The Keras library builds and trains NNs at a high 

level. The model's Sequential class arranges layers 

sequentially. The model starts with a 64-neuron Dense layer. 

The Rectified Linear Unit (ReLU) AF for this layer introduces 

non-linearity and lets the model learn complicated 

representations. The amount of input parameters in our dataset 

determines the geometry of this layer. 

The second Dense layer uses ReLU activation and 64 

neurons. The additional hidden layer captures more complex 

data patterns and linkages. We conclude with a single-neuron 

output layer to forecast UHPC flowability, a continuous target 

variable. Since we want the model to output the projected 

flowability value directly, this output layer has no AF. 

Compiling the model with the optimizer and loss function (LF) 

prepares it for training. For this task, we employ the Adam 

optimizer, an efficient stochastic GD technique, and the MSE 

to reduce the difference between estimated and real flowability 

values. The model is trained on training data using a batch size 

and epochs. Internal model parameters are modified to 

minimize the LF during training using the optimization 

procedure. To assess model performance on unobserved data, 

the validation split parameter is 0.2, using 20% of training data 

for validation. 

LSTM 

We forecast UHPC flowability using LSTM, a customized 

RNN, in our next phase. LSTM excels in sequential data 

modeling and long-term dependencies. The following 

describes our LSTM model's architecture. The NN is built and 

trained using Keras. Model layers are ordered sequentially by 

the Sequential class. The model starts with a 64-memory 

LSTM layer. The ReLU AF for this layer introduces non-

linearity and lets the model capture complex sequential data 

patterns. In our dataset, the LSTM layer's input shape matches 

the number of input parameters. 

After the LSTM layer, we add a 64-neuron Dense layer 

with ReLU activation. Building on the LSTM layer's 

representations, this hidden layer seeks to capture more 

complex data patterns and relationships. The model concludes 

with a single-neuron output layer. This output layer has no AF 

since we want to anticipate UHPC flowability. It immediately 

produces projected flowability.  

Compiling the model requires defining the optimizer and 

LF. For this task, we employ the Adam optimizer, and the MSE 

to decrease the difference between predicted and actual 

flowability values. The model is then trained on training data 

using batch size and epochs. Internal model parameters are 

optimized iteratively to minimize the LF during training. To 

assess classifier performance on unseen data, the validation 

split parameter is 0.2, using 20% of training data for validation. 

 

GRU 

Researchers used a variation of the RNN architecture to 

estimate UHPC flowability in our research. GRU is built to 

handle sequential data, making it ideal for capturing our 

dataset's temporal dependencies. Researchers implemented 

the GRU model using the popular Keras package, which 

simplifies NN construction. We defined the model using 

Keras' Sequential class to organize layers sequentially. 

Our proposed architecture revolves around the GRU layer. 

The model uses 64 memory units to remember past 

observations and produce predictions. The GRU layer uses 

ReLU activation. It creates non-linearity and lets the model 

capture complex sequential data patterns. The GRU layer 

input form matches the amount of input parameters in our 

UHPC flowability dataset. Researchers added a 64-neuron 

Dense layer after the GRU layer to improve model 

representation. This layer uses ReLU activation to capture and 

express increasingly complex data patterns and relationships. 

Adding the GRU layer and Dense layer helps explain UHPC 

flowability. 

The final prediction is obtained from a single-neuron 

output layer. This output layer has no AF since we want to 

anticipate UHPC flowability. The model's estimated 

flowability value for a given input instance is output directly. 

To maximize model performance, we provide the Adam 

optimizer and MSE. To reduce the difference between 

projected and real flowability values, the Adam optimizer 

efficiently modifies the model's internal parameters during 
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training. A batch size and number of epochs are used to train 

the model with the training data. The optimization approach 

iteratively updates model parameters to minimize the LF 

during training. With a validation split setting of 0.2, 20% of 

the training data is saved for validation. This lets us evaluate 

the model's generalization and performance on unseen data. 

We want to use the GRU model to capture UHPC flowability's 

temporal dynamics in our research. This DL approach may 

help us forecast (UHPC) flowability. 

 

CNN 

DL methods in our research end with the CNN architecture. 

CNNs excel at computer vision and time series data analysis, 

making them ideal for UHPC flowability prediction. The 

Sequential class in Keras defines our CNN model's sequential 

layer design. Conv1D, which convolutions input data in one 

dimension, is the initial layer. The model captures local 

patterns and characteristics in input sequences using 64 filters 

with a kernel size of 3. The ReLU AF adds non-linearity and 

improves the model's capacity to capture complicated data 

correlations. Our UHPC flowability dataset has the same 

amount of input parameters as the Conv1D layer's input shape. 

A MaxPooling1D layer follows the Conv1D layer to reduce 

output dimensionality and extract the most important features 

from convolved information. The pooling process captures 

crucial data while simplifying model computation. Flatten 

layers prepare the data for fully linked layers, which convert 

multidimensional output into a one-dimensional vector. This 

integrates with subsequent layers seamlessly. 

Next, the model gets a 64-neuron Dense layer. ReLU 

activation on this layer adds non-linearity and expressive 

power to the model. This layer teaches the model abstract 

characteristics and high-level representations from flattened 

input. To anticipate the continuous target variable of UHPC 

flowability, we add a single-neuron output layer. Since this 

output layer has no AF, it outputs the projected flowability 

value directly. The model is constructed with the Adam 

optimizer and MSE, similar to previous models. To reduce the 

discrepancy between projected and actual flowability values, 

the Adam optimizer efficiently modifies model internal 

parameters during training. 

 

2.5.2 Hybrid-deep learning methods 

CNN-LSTM 

Researchers use hybrid DL to improve our models' prediction 

skills. CNN-LSTM architecture combines CNNs with LSTM 

networks. The CNN-LSTM model starts with a Conv1D layer 

that convolutions input data in one dimension. This layer 

captures local input sequence patterns and features with 64 

filters and a kernel size 3. Non-linearity from the ReLU AF 

improves the model's capacity to grasp complicated 

interactions. UHPC flowability dataset input parameters 

match Conv1D layer input shape. 

A MaxPooling1D layer down samples convolved features 

and extracts the most important input features after the 

Conv1D layer. This pooling operation reduces data 

dimensionality and highlights key information. To capture 

temporal dependencies and long-term trends, an LSTM layer 

is added. Since they may use earlier time steps, LSTM 

networks are ideal for sequential data analysis. ReLU 

activation is used in the 64-memory LSTM layer. A 64-neuron 

dense layer is added to the model to capture complex data 

interactions. ReLU activation on this layer adds non-linearity 

and expressive power to the model. To predict the continuous 

target variable of UHPC flowability, we include a single-

neuron output layer. Since this output layer has no AF, it 

outputs the projected flowability value directly. The Adam 

optimizer and MSE compile the model, as with previous 

versions. The Adam optimizer adjusts model parameters 

during training to minimize the gap in flowability between 

expected and observed values. 

CNN-LSTM hybrid models can increase UHPC 

flowability prediction accuracy and understanding by merging 

CNNs' local characteristics and patterns with LSTM networks' 

temporal dependencies. The strengths of both architectures are 

used to capture spatial and temporal information for a more 

complete UHPC flowability data analysis. 

 

CNN-GRU 

We investigate the CNN-GRU architecture for hybrid DL 

UHPC flowability prediction. This CNN-GRU network 

architecture provides unique spatial and temporal insights. 

Conv1D layers apply one-dimensional convolutions to input 

data in the CNN-GRU hybrid model. This layer captures local 

input sequence patterns and features with 64 filters and a 

kernel size 3. The ReLU AF adds non-linearity and better 

represents complicated interactions. Conv1D layer input 

shape matches UHPC flowability dataset parameters. After the 

Conv1D layer, MaxPooling1D down samples convolved 

features and keeps the most important input. Pooling decreases 

data dimensionality and highlights critical features. A GRU 

layer captures temporal dependencies and long-term trends. 

LSTM-like GRU networks use prior time steps. In this 

architecture, the 64-memory GRU layer uses ReLU activation. 

To mimic complicated data interactions, a 64-neuron dense 

layer is introduced. To increase representation and non-

linearity, this layer undergoes ReLU activation. Finally, a 

single-neuron output layer forecasts continuous target variable 

UHPC flowability. This output layer outputs estimated 

flowability without activation. 

As with earlier architectures, the Adam optimizer and MSE 

optimize the model during compilation. CNN-GRU hybrid 

models combine spatial feature capture and GRU networks' 

temporal dependencies to increase UHPC flowability 

prediction accuracy and understanding. This hybrid method 

evaluates UHPC flowability using spatial and temporal data. 

 

2.5.3 Feature selection 

Our ML, DL, and Hybrid-DL FS step is identical. Predicting 

UHPC flowability requires choosing the best parameters. We 
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use RFE to eliminate unimportant features and identify the 

most significant ones depending on model performance. Using 

RFE, we may reduce dataset dimensionality and focus on key 

prediction factors. Features are selected using the RF 

Regressor, which handles high-dimensional datasets and 

complex variable relationships. Once fitted to training data, 

RFE objects can rank features by importance. 

We acquire the most important UHPC flowability 

prediction characteristics after (FS). Select features are 

applied to training and testing datasets to build new datasets 

with only those features. By consistently selecting features 

across ML, DL, and Hybrid-DL techniques, we train and test 

models on fewer important attributes, improving efficiency, 

interpretability, and prediction performance. Reducing 

unneeded or duplicated information improves model 

generalization and UHPC flowability predictions. 

 

2.5.4 Evaluation metrics 

Researchers evaluate the prediction models utilizing metrics 

to establish their performance and accuracy in predicting 

UHPC flowability in the final step of our process. Evaluation 

metrics include MAE, RMSE, and 𝑅2.  

Final step: Researchers analyze prediction models using 

metrics to determine their performance and accuracy in 

predicting UHPC flowability. However, RMSE estimates the 

square root of the average squared discrepancies between 

anticipated and actual values.  

RMSE equation:  

RMSE = √
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)2

𝑛

𝑖=1

 

where, n is the number of samples, 𝑦𝑖 is the real value, and 𝑦�̂� 

is the expected value. 

It penalizes big errors more than MAE since it considers 

magnitude and direction. As with MAE, lower RMSE 

indicates better model accuracy and performance. 

MAE is another evaluation metric used to measure the 

accuracy of prediction models. It calculates the average 

absolute differences between the expected and real values. The 

equation for MAE is: 

MAE =
1

𝑛
∑|𝑦𝑖 − 𝑦�̂�|

𝑛

𝑖=1

 

where, n is the number of observations, yi is the actual value. 

yî  is the predicted value, R2  quantifies how much target 

variable variance the model explains. It measures model fit to 

data. Better fits have higher values (0–1). A 1 means the model 

predicts the target variable perfectly. In contrast, a number 

near to 0 indicates that the model does not capture much data 

variance. 

R2 equation:  

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 

where, �̅� is the mean of the observed data.  

MAE, RMSE, and 𝑅2  can assess our predictive models' 

UHPC flowability accuracy. These metrics quantify how well 

models capture data patterns and relationships. More accurate 

forecasts have lower MAE and RMSE values and higher 𝑅2 

values. Based on these evaluation metrics, we may compare 

and choose the best UHPC flowability prediction model. 

 

3. Results and discussion  

3.1 Machine learning methods 

Here are the prediction model evaluation results: 

Table 3. Comparison of ML methods. 

Regressor RMSE MAE 𝑅2 

RF 1.074585 0.796568 0.861561 

LR 1.337163 1.025122 0.785639 

KNN 1.549953 1.349593 0.711986 

 

Table 3 shows the RMSE, MAE, and 𝑅2 assessment 

metrics for three UHPC flowability prediction ML algorithms: 

RF, LR, and KNN. 

The RF model had the best RMSE, 1.074585. This means 

that the model's predictions are 1.07 units off, and it penalizes 

larger errors. LR and KNN have RMSEs of 1.337163 and 

1.549953, respectively, indicating that their predictions are 

1.34 and 1.55 units off. 

When looking at the MAE in Fig. 5, the RF model again 

outperformed the other models with an average error of 

approximately 0.796568. This means that the model's 

predictions are, on average, 0.796568 away from the actual 

values, regardless of the direction of the errors. The MAE for 

the LR model is 1.025122, and for KNN, it is 1.349593. 

Considering the 𝑅2 metric, the RF model also had the 

highest score of 0.861561, indicating that the model can 

explain approximately 86.16% of the variation in UHPC 

flowability. The LR model and KNN model had 𝑅2values of 

0.785639 and 0.711986, respectively, implying that these 

models explain approximately 78.56% and 71.20% of the 

variance in the target variable. In conclusion, based on the 

RMSE, MAE, and 𝑅2metrics, the RF model appears to be the 

most accurate and reliable model for predicting UHPC 

flowability among the three evaluated models. 

 

3.2 Deep learning methods 

The results of evaluating the DL methods are presented in the 

following Table 4: 

Table 4. Comparison of DL methods. 

Model RMSE MAE 

ANN 2.469604 2.064296 

LSTM 1.625995 1.243097 

GRU 2.172126 1.682033 

CNN 1.850219 1.595567 
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Fig. 5 Comparison of metrics for different ML methods. 

 

Table 4 above outlines the evaluation metrics (RMSE, 

MAE) for four DL models: ANN, LSTM, GRU, and CNN, all 

used to predict UHPC flowability. The LSTM model achieved 

the lowest RMSE score of 1.625995, indicating an average 

deviation of around 1.63 units between its predictions and the 

actual data. The ANN model has the greatest (RMSE) of 

2.469604, suggesting that its predictions differ by around 2.47 

units. For the MAE metric, the LSTM model again 

demonstrated superior performance with an MAE of 1.243097. 

The LSTM model's predictions were 1.24 units off on average. 

The ANN model has the greatest MAE of 2.064296, indicating 

a 2.06-unit departure from actual data. Finally, the LSTM 

model predicts UHPC flowability best among DL models 

based on RMSE and MAE measures. 

 

3.3 Hybrid-deep learning methods 

Results of hybrid DL evaluation: 

Table 5. Comparison of Hybrid DL methods. 

Model RMSE MAE 

CNN-

LSTM 
1.896753 1.582222 

CNN-

GRU 
1.360066 1.036573 

Table 5 compares the UHPC flowability predictions of two 

hybrid DL models. CNN-GRU surpassed CNN-LSTM in the 

RMSE statistic, which measures prediction error average. 

Median CNN-GRU model predictions were 1.36 units off with 

an RMSE of 1.360066. The CNN-LSTM model got an RMSE 

of 1.896753, indicating a 1.90-unit prediction error. The CNN-

GRU model outperformed the CNN-LSTM model in MAE. 

The CNN-GRU model's predictions were 1.04 units off, 

regardless of error direction, with an MAE of 1.036573. The 

CNN-LSTM model had an MAE of 1.582222, indicating a 

1.58-unit variation from actual data. 

Based on the RMSE and MAE metrics, the CNN-GRU 

model appears to provide the most accurate and reliable 

predictions for UHPC flowability among the evaluated hybrid 

DL models. 

 

3.4 Feature selection 

FS-ML 

Table 6 presents the evaluation metrics for the FS-ML models 

used to predict UHPC flowability.  

The RF model achieved the lowest RMSE of 1.032841 and 

MAE of 0.767066 among the three models as shown in Fig. 6. 

This indicates that the (RF) model had a minor average 

difference between the predicted and actual flowability values,  
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Fig. 6 FS-ML technique metrics comparison. 

 

reflecting its high accuracy. Furthermore, the (RF) model 

exhibited a high 𝑅2  value of 0.872108, suggesting that it 

explained approximately 87.2% of the variance in the UHPC 

flowability. 

Table 6. Comparison of (FS-ML) methods. 

Regressor RMSE MAE 𝑅2 

RF 1.032841 0.767066 0.872108 

KNN 1.549371 1.313218 0.712202 

LR 2.046212 1.560119 0.498030 

The KNN and LR models demonstrated comparatively 

higher RMSE values of 1.549371 and 2.046212, respectively. 

The KNN model had a higher MAE of 1.313218, while the 

(LR) model had an MAE of 1.560119. The (RF) model 

predicted UHPC flowability better than both models. The 

(kNN) and (LR) models fit the data less than the (RF) model, 

with values of 0.712202 and 0.498030, respectively. 

 

FS-DL/FS-Hybrid DL 

Table 7 shows the evaluation metrics for the UHPC flowability 

prediction models FS-DL and FS-Hybrid DL. The ANN model 

had the highest RMSE (4.258064) and MAE (3.098689). Fig. 

7 shows that the ANN model predicted UHPC flowability less 

accurately due to a higher average discrepancy between 

projected and actual flowability values. The LSTM model 

performed better with a reduced RMSE of 1.387654 and MAE 

of 1.015121. A small average difference between projected 

and actual flowability values showed that LSTM predicted 

UHPC flowability better than the other models. UHPC 

flowability was predicted well by the GRU model with an 

RMSE of 2.172126 and MAE of 1.682033. 

Table 7. Feature selection DL/Hybrid DL comparison. 

Model RMSE MAE 

ANN 4.258064 3.098689 

LSTM 1.387654 1.015121 

GRU 2.172126 1.682033 

CNN 2.271201 1.840060 

CNN-LSTM 1.896753 1.582222 

CNN-GRU 1.650585 1.340550 

 

The CNN model predicted UHPC flowability moderately 

well with RMSE of 2.271201 and MAE of 1.840060. CNN-

LSTM and CNN-GRU hybrids outperformed DL models. 

CNN-LSTM recorded 1.896753 RMSE and 1.582222 MAE, 

whereas CNN-GRU had 1.650585 and 1.340550. CNN and 

LSTM/GRU strengths improved UHPC flowability prediction 

in these hybrid models. 

The LSTM, CNN-LSTM, and CNN-GRU models 

outperformed the FS-DL and FS-Hybrid DL models in RMSE 

and MAE. Because they estimate UHPC flowability more 

accurately than other study models, these models are 

suggested. 

The comparative analysis of our work with previous 

methods for predicting the CS of UHPC reveals several 

significant insights as shown in Table 8. Abuodeh et al. (2020) 

demonstrated the effectiveness of SFS and NID in determining 

essential material constituents for ANN, resulting in highly  
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Fig. 7 Metric comparison for FS-DL/FS-Hybrid DL methods. 

Table 8. Comparison with previous works. 

Study 

Reference 
Model Dataset Key finding RMSE MAE R² 

Abuodeh et al. 

(2020) [12] 
ANN 

110 UHPC 

tests 

SFS and NID helped determine important 

material constituents for ANN, resulting in more 

accurate predictions. 

0.012 - 0.995 

Choudhary et 

al. (2021) [13] 

BPNN with 

SFS 

110 data 

points, 8 

materials 

BPNN with selected features achieved higher 

accuracy compared to models with all features. 
- - 0.991 

Shen et al. 

(2022)[18] 
XGBoost UHSC  

XGBoost demonstrated higher accuracy in 

estimating UHSC CS compared to other 

methods. Curing time was identified as the most 

influential parameter. 

6.4 7.6 0.90 

Khan and 

Suthar 

(2023)[19] 

RF 
236 readings 

for UHPC 

the RF model surpasses the M5P model in 

accurately predicting the 28-day CS of UHPC. 
16.005 12.03 0.8568 

Onyelowe et 

al. (2023c)[29] 
AutoGluon 

1133 net-zero 

concrete mix 

records 

AutoGluon outperforms, achieving R2 of 92.6%; 

BFS significantly impacts strength, suggesting it 

as a sustainable cement alternative. 

- 2.820 92.6% 

Our Work RF with FS UHPC (135) 

The CNN-GRU model exhibited the best 

predictive accuracy with a RMSE of 1.360066 

and MAE of 1.036573. Additionally, FS 

techniques enhanced the performance of certain 

models, with the feature-selected RF model 

showing notable improvements in accuracy, 

achieving a RMSE of 1.032841 and MAE of 

0.767066. 

1.032841 0.767066 0.872108 
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accurate predictions. Choudhary et al. (2021) highlighted the 

superiority of BPNN with selected features over models with 

all features, emphasizing the importance of FS in enhancing 

predictive accuracy. Shen et al. (2022) found that XGBoost 

exhibited higher accuracy in estimating UHSC CS, with 

curing time identified as a crucial parameter. Khan and Suthar 

(2023) showcased the superiority of the RF model in 

accurately predicting UHPC CS compared to the M5P model. 

Onyelowe et al. (2023c) demonstrated the effectiveness of 

AutoGluon in achieving a remarkable R² of 92.6%, while also 

highlighting the significant impact of BFS on concrete 

strength, suggesting it as a sustainable alternative to cement. 

In our work, we found that our RF model, coupled with FS 

techniques, significantly enhanced predictive accuracy, 

achieving an impressive RMSE of 1.032841 and MAE of 

0.767066. This underscores the importance of both model 

selection and feature engineering in optimizing predictive 

performance for UHPC CS estimation. 

 

4. Conclusion 

This work extensively compares ML, DL, and H-DL methods 

for UHPC flowability prediction. We created a data-driven 

pipeline from EDA and data preprocessing to model 

deployment and evaluation using systematic research. RF 

predicts UHPC flowability better than LR and KNN among 

non-feature-selected models (RMSE, MAE, and 𝑅2 ). A 

greater 𝑅2, lower RMSE, and MAE indicate a more accurate 

forecast. LSTM performed best among DL models (ANN, 

LSTM, GRU, CNN). CNN-GRU did best with the lowest 

RMSE and MAE scores among the Hybrid DL approaches. 

After FS integration, the (RF) classifier outperformed the 

other ML models. However, (LR) results worsened, 

suggesting overfitting or that the (FS) procedure may have 

excluded relevant factors. 

In contrast, feature-selected DL models performed 

inconsistently. LSTM improved RMSE and MAE, making 

more accurate predictions, whereas ANN dropped 

significantly. Hybrid models (CNN-LSTM, CNN-GRU) 

performed somewhat worse than non-feature-selected models. 

The study emphasizes (FS) in model optimization and the need 

for a complete, systematic research approach to predictive 

model development. This study's comparative analysis can 

help future researchers choose UHPC flowability models. ML, 

DL, and H-DL models have demonstrated promising results, 

but they can be optimized by fine-tuning and investigating 

additional (FS) methods. 

In conclusion, the selected ML, DL, and H-DL approaches 

may predict UHPC flowability, although (FS) and model 

choice greatly impact prediction accuracy. Future study should 

improve prediction models and apply more advanced 

methodologies in other construction scenarios. 

 

4.1 Contributions of the Research 

• This study shows that ML, DL, and H-DL can predict 

UHPC flowability, a crucial construction feature, helping 

civil engineering and construction. It has a robust EDA, 

preprocessing, model selection, assessment, and (FS) 

pipeline for similar tasks. 

• This study's comparative analysis added to literature. 

This study tests several tactics in similar conditions to gain 

insights into model performance in real-world scenarios. 

• The study emphasises FS's model performance impact. 

RFE was carefully integrated into each ML, DL, and H-DL 

approach to demonstrate its impact on prediction accuracy. 

 

4.2 Limitations and future work 

Despite its importance, the paper has some drawbacks. The 

assumption of linearity in (LR) models may not convey the 

complexity of UHPC flowability prediction. The (FS) 

procedure may also be limited. RFE may not have caught the 

greatest features for each model, as shown by their decreased 

performance. 

 

Recommendations 

• To accommodate non-linear input-output interactions, 

(FS) strategies and procedures could be researched and fine-

tuned.  

• Complex models like ensemble techniques or 

Transformer-based models may perform better. 

• The investigation could also include other construction 

factors or concrete types. These models can also be used for 

structure health monitoring, materials selection, and safety 

prediction in civil engineering. 
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