
1 
 

CLINIC MANAGEMENT SYSTEM 

WITH NOTIFICATION USING GSM MODEM 

 

 

 

CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Introduction 

Clinic is an organization that is responsible in providing a health medication and 

treatment for all types of peoples. Surely, everyday there are people that need to use the 

clinic services. But how can clinic provide a faster and efficient services if they are still 

using the traditional method on their daily operation? The traditional method means the 

customers need to fill in their detail in registration form manually and the information 

will only keep in files. After the registration, the files will be place in the rack and this 

will cause problems like taking a longer time to retrieve the information, make mistakes 

during writing or misplaced the files. 

As a result, one system called Clinic Management System with Notification 

using GSM Modem will be develop to resolve all the current problems at clinic. Clinic 

Management System with Notification using GSM Modem is specially designed to let 

the clinic staff has a high efficiency management tools, computerized and systematic 

patients record, and detail of treatment records. This system also provide appointment 

feature, which allow staffs to view the appointment that already made by doctors and 



2 
 

process it by sending a notification to patients. Patients will receive the notification 

about their appointment details on their mobile phone.  

This new system will replace the current system that is used in clinic and surely this 

system will improve the clinic services and make their daily operation running 

smoothly. 

1.2 Problem Statements 

a) Traditional method, which is the information about patients that is kept on 

file and back into the rack, has caused problems for the clinic staffsto 

retrieve the information and this might take a longer time. 

b) The traditional method indeed caused too many usage of paper. For that 

reason, inventing an Eco-friendly product is necessary to save the natural 

resources. 

c) Patient tends to forget their appointment with the doctor, as there is no 

reminder from the clinic itself. 

1.3 Objectives 

a) To computerized and centralized all the information in order to reduce the 

time in retrieving all the data and information. 

b) To promote Eco-friendly software that will reduce the usage of paper.  

c) To facilitate patients, so that we can notify the patients using SMS 

notification, so they can be on time for their appointment. 

1.4 Scope 

a) This system will replace the old system that is currently used in most clinic 

in Malaysia. 

b) This environment of this system is based on Java programming language. 

c) This system will divide to three users, which are for the clinic staff, doctors 

and administrator. Each of these users has their own permitted area in order 

to access this system. 



3 
 

1.5 Thesis Organization 

This thesis consists of six (6) chapters.  

 

Chapter 1 is an introduction of the system. This introduction consists of system 

overview. Problem statement has been discussed on the problem that faced by the 

current system. As for the objectives, the reasons of the development of the project are 

listed. Scope of the project is discussed on project and user limitation. 

 Chapter 2 is the literature review, which consists of the current system and the 

technique or software that is used on it.  

 Chapter 3 is about the system methodology. It will be on the method that is used to 

develop the system and project planning. On this chapter, there will be an overview of 

the project planning such as the creating of the software and the device that helps to 

develop the system. 

 Chapter 4 is the elaboration of project implementation. This chapter is more or less 

on the design of the project development. 

 Chapter 5 will be based on the discussion and result that was received from the data 

and data analysis, project constrain, and fix and suggestion of the system. Project 

analysis is the discourse on the project objective, which is the continuation of the 

project problem. 

 Chapter 6 is the conclusion of the project. This includes the conclusion of the data 

that were received, the methodology, and the used research implementation. 

 

 

 

 

 

 

 

 



4 
 

 

 

 

 

CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 

2.1 Introduction 

This chapter will focus on the literature review. It will cover a period of 1997 to 

2011 and will discuss about the concept of the management system, which is the most 

common problem relating to the system, techniques and basic requirement for this 

system.  

This chapter introduces the definition of computerized system, the GSM modem 

and also factors that cause the management systems to fail and explain the similar 

systems. 

The developed system is Clinic Management System with Notification Using 

GSM Modem. These systems are responsible to store patients’ data and notify them for 

their appointment. Before this, most clinics usually used the traditional methods that are 

quite unsatisfactory. The traditional system used by the staffs is exposed to common 

mistakes while writing and the probability of having lost document or being misplaced 

is quite high. Knowing that the document cannot keep as many data as they could about 

the patient, thus the other important information about them may not be included in that 

form. Besides that, the patient may have forgotten their appointment with the doctor. 



5 
 

2.2 Definition Management System  

Management system actually has been used long time ago. Every organization 

needs a system that can manage their data and process. Normally they used a 

conventional method to manage and store their data. 

Management system is management documented and tested step-by-step method 

aimed at smooth functioning through standard practices. Used primarily in franchising 

industry, management systems generally include detailed information on topics such as 

("Businessdictionary.com - online,”) 

i. organizing an enterprise,  

ii. setting and implementing corporate policies, 

iii. establishing accounts, monitoring, and quality control procedures,  

iv. choosing and training employees,  

v. choosing suppliers and getting best value from them, and  

vi. marketing and distribution. 

2.3 Advantages Computerized System Over The Manual System  

A system is an arrangement of elements that when it is put together it becomes 

an organized and established procedure. A system typically consists of components 

connected together in order to facilitate the flow of information, matter or energy. A 

computer system consists of a set of hardware and software, which processes data in a 

meaningful way. 

In every company, keeping record are very important. For the clinic, it is very 

important to keep the patient record for any reference. There is some method in keeping 

the record such as using the manual method or the computerized method. The 

computerized system is better than manual system in keeping record (Egwunyenga, 

2009) of the patients. Hence, using the computerized system has so many advantages 

than the manual system. 

One of the advantages using a computerized system is that it is not only easy, 

but it also saves the time to search the patient record. If they use the manual keeping 



6 
 

record, they have a hard time to find for it. The computerized system will give the 

opportunity for the companies to do work more effective and efficiently if the company 

use it (Dalcı & Tanış). 

The next advantage is that the staff can update the patient record easily. If the 

costumers come to the same clinic more than a time, the staffs could find the patient 

record without any difficulty. If the searching record is easy, the update task is easy as 

well. The update task is faster and more efficient compared to the manual system. 

Another advantage is having this computerized keeping record system, 

information for a particular period of time can be compiled quickly. With the manual 

system, it takes time to locate the information from each file and compile it into a 

report. 

Besides that, computerized system can save paper and space. If the clinic is 

using the manual system, at least a few papers from each file will be used for the 

keeping record for individual patient. If there are thousands of patients in a clinic, 

obviously it will need as many papers and files as they could in keeping their record. 

Doubtlessly, the clinic needs more space to keep the entire file in place. Thus, by using 

the computerized system, the staffs can store as much details of the patient information 

in the database given. From this statement, the computerized system also helps in saving 

cost from buying papers and files for the documentation of patients. By using the 

computerized system, the target is to create a paperless office, which will turn into 

reality (Dalcı & Tanış). Obviously the computerized system is better than the manual 

ones. 

2.4 Technique 

This section is the review on the current technique on the programming 

language, in-system programming, database language and methodology. 

 

 

 



7 
 

2.4.1 Programming Language 

There are many tools can be used to develop dynamic and interactive 

system. Java and Visual Basic are the most popular programming tools for 

graphical user interface (GUI). 

a) Java 

The Java programming language has been widely accepted as a 

general purpose language for developing portable applications, toolkits, and 

applets (Ritchie, 1997).  

Java is a programming language originally developed by James 

Gosling at Sun Microsystems (now part of Oracle Corporation) and released 

in 1995 as a core component of Sun Microsystems' Java platform. The 

language derives much of its syntax from C and C++ but has a 

simpler object model and fewer low-level facilities. Java is currently one of 

the most popular programming languages in use, particularly for client-

server web applications (Wikipedia). 

Programs written in Java have a reputation for being slower and 

requiring more memory than those written in C(Dejan). However, Java 

programs' execution speed has improved significantly with the introduction 

of Java 2.0 code has approximately half the performance of C code. 

b) Visual Basic (VB) 

Visual Basic (VB) is the third-generation event-driven programming 

language and integrated development environment (IDE) from Microsoft for 

its COM programming model. Visual Basic is designed to be relatively easy 

to learn and use (Wikipedia).  

Microsoft claims that Visual Basic is the quickest and easiest way to 

create applications for Microsoft Windows [Microsoft 921.  Microsoft 

Windows is one of the fastest selling software packages in history:  

3,000,000 copies were sold in the first nine months (Dukovic & Joyce, 

1995). 



8 
 

Microsoft Visual Basic is designed for graphical user interface (GUI) 

programming.  It is not a general purpose programming language. 

2.4.2 GSM Modem 

In cellular service there are two main competing network technologies, 

it’s Global System for Mobile Communications (GSM) and Code Division 

Multiple Access (CDMA) (Constantin, 2011). Since it started in the '80s, GSM 

telephone system was developed using cell concept for the network topology. 

Each cell corresponds to a specific antenna (base station), which is placed on 

towers or tall buildings. The GSM standard has been an advantage to both 

consumers, who may benefit from the ability to roam and switch carriers without 

replacing phones, and also to network operators.  

GSM also has low-cost implementation of the short message services 

(SMS), also called astext messaging, which has been supported on other mobile 

phone standards as well. In view of the fact that there is huge coverage of 

distance, the GSM infrastructure can be an alternative to transmit or receive data 

from or to a device like sensor, actuator and complex device near or remotely. 

Compared to analogue transmission systems, GSM system provides narrowest 

bandwidth for the channel, through the use of voice compression algorithm; 

improving the quality of transmission by using detection and correction codes of 

errors; digital signal encryption to ensure security and protection against 

unwanted interception. 

2.4.2.1  Architecture of the GSM network 

A GSM network is composed of several functional entities, whose 

functions and interfaces are specified. Figure 1 shows the layout of a 

generic GSM network. The GSM network can be divided into three broad 

parts. The Mobile Station is carried by the subscriber. The Base Station 

Subsystem controls the radio link with the Mobile Station. The Network 

Subsystem, the main part of which is the Mobile services Switching Center 

(MSC), performs the switching of calls between the mobile users, and 

between mobile and fixed network users.  



9 
 

The MSC also handles the mobility management operations. Not 

shown is the Operations and Maintenance Center, which oversees the 

proper operation and setup of the network. The Mobile Station and the 

Base Station Subsystem communicate across the Um interface, also known 

as the air interface or radio link. The Base Station Subsystem 

communicates with the Mobile services Switching Center across the A 

interface. 

 

Figure 1.1 General architecture of a GSM network 

Source: "Information on mobile" 

2.4.3 Similar System 

Nowadays, there are many systems that similar to the Clinic Management 

System with Notification Using GSM Modem. 

Based on the research that has done, the developer found the differences 

and similarities between the three of existing system with the system that will be 

developing later. Besides the differences and similarities, the research about 

existing system also was helping the developer to get more idea to develop the 

system. This table below will explain about all the differences between all the 

systems. 

 



10 
 

Description Generic 

Notification 

System for 

Internet 

Information 

Web based Long-

Distance 

Appointment 

Registered System 

Clinic Management 

System with 

Notification Using 

GSM Modem. 

Purpose To provide a 

mechanism of 

delivering a 

notification 

messages to a single 

or multiple 

recipients based on 

request by the 

recipients. 

To provide a system 

for hospital 

management that 

allow user to make 

online appointment. 

To computerize and 

centralized the system 

of with the addition of 

appointment elements. 

Module Available to anyone 

that are browsing 

the internet. 

Consist four layer of 

module: 

management view, 

medical 

management, 

patients view and 

data management 

view. 

Three layer of 

module: Doctor view, 

clinic staff view and 

administrator view. 

Implementation This system by 

combination of 

Internet browser, 

dynamic HTML 

and GSM modem 

and XML 

document. 

The implementation 

of this system by 

using the ASP 

programming 

language with 

addition of remote 

registration system. 

 

The implementation 

of this system by 

using a Java 

programming 

language. Besides 

that, using the GSM 

modem. 

Database design The database of this 

system was 

The database of this 

system based on the 

The databases for this 

system will be 



11 
 

designed based on 

generally, which 

means there use the 

internet browser 

database and the 

user information. 

information of the 

patient, doctor and 

reservation tables. 

designed based on the 

criteria of patient, 

appointment and other 

else. 

Advantages   This system allow 

user to make an 

appointment without 

come to hospital, 

cancel and update 

their information and 

appointment. 

Can computerize the 

patient information 

and user will get the 

notification about 

their appointment 

through mobile 

phone. 

Limitation The system 

limitation was 

found that the 

environment of this 

system is still 

restricted for some 

types of basic 

notifications. 

Before the user want 

use this system, they 

must register 

manually with 

hospital and deposit 

money. If not, they 

not allowed to using 

this system. 

The limitation might 

be in this system is 

the user cannot make 

the appointment by 

online. 

Availability of 

user 

Large scale of user. User consists of 

patient and doctor at 

the hospital that 

implement this 

system. 

User consists of staff 

and doctor at the 

clinic that implement 

this system. 

Figure 2.1 Comparison between existing systems 

 

2.4.3 Base64 Encoding 

This system Base64 content-transfer-encoding or called Base64 

encoding, is defined in RFC 2045 .It is a method designed to represent an 



12 
 

arbitrary sequence of octets (8-bit) in a printable text form that allows passing 

binary data through channels that are designed for flat ASCII text such as 

SMTP(Postel, 1982). It also allows embedding of binary data in media 

supporting ASCII text only such as XML files. 

 

Figure 2.2 Base64 alphabets. 

2.4.3.1 Encoding 

The process consists in representing groups of 3 octets (24 bits) of input 

bits as output strings of 4 encoded characters and the input as a linear stream of 

octets. Arranged from left to right, the input is divided into 24-bit groups, each 

formed by 3 consecutive octets of the input stream. These 24-bit groups are then 

treated as groups of 4 concatenated 6-bit groups. Each 6-bit group is a binary 

number, representing a decimal value between 0 and 63. That value is used as an 

index into the array of the Base64 alphabet. The corresponding encoded character 

is placed in the output string. 

2.4.3.2 Padding 

The input ends with a whole 24-bit group. The output is a multiple of 4 

Base64 encoded characters. No special action is needed. The input ends with two 

octets or a 16-bit group. Two zero bits need to be added to form a whole 3 6-bit 

group, which translates into 3 Base64 encoded characters. A padding character '=' 

is needed to make the output a multiple of 4 characters. The input ends with an 

octet or an 8-bit group. Four zero bits need to be added to have 2 encoded 

characters. And two padding characters are added. 

2.4.3.3 Decoding 

The process of decoding works in opposite to the encoding process. That is 

24-bit groups of 4 6-bit groups are translated into groups of 3 octets.All line 

breaks or other characters not in the Base64 alphabet are to be ignored by the 



13 
 

decoding software and also any illegal sequences of characters in the Base64 

encoding, such as "====". 

2.5 Summary 

Clinic Management System was developed using Netbeans that used Java as the 

main language. This system also used MySQL as their database that store all the 

information and data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 
 

 

 

 

CHAPTER 3 

 

 

 

METHODOLOGY 

 

 

 

In this chapter will discuss about the methodology that will be using in the 

development of Clinic Management System with Notification Using GSM Modem. The 

fundamental for this project is to develop a management system that can be 

implemented and integrated in clinics. This project will be conducted based on the 

Iterative and Incremental Development method. From the beginning, this project will be 

developed based on the methodology choose. 

3.1 Introduction 

Iterative and Incremental development is at the liver of a cyclic software 

development process developed in response to the weaknesses of the waterfall model. It 

starts with an initial planning and ends with deployment with the cyclic interactions in 

between (Wikipedia). Iterative or incremental methodologies provide a cyclical 

approach to software development, which is especially useful for environments where 

requirements change often and response need to be quick. 

 

 

 



15 
 

 

Figure 3.1 Iterative and Incremental Development Method 

3.1.1 The Justification of Iterative and Incremental Development 

Methodology 

There are many reasons why we use Iterative and Incremental 

Development Method for this project. Iterative and Incremental Development 

Method is very efficient to deal with a project that change often and response 

need to be quick. It also can deal with a project that the budget didn’t cover the 

costs of the project because change control procedures gobbled up additional 

funds (Steigjer, 2008). When using Iterative and Incremental Development 

Method, the development cost of change is more efficient than conventional 

software development process. 

 

 

Figure 3.2   Comparison Iterative and Incremental Development Method    

Source: Pressman, 2010 

 



16 
 

 

3.2 Iterative and Incremental Development Method 

The model or approach here are used in developing this project 

 

3.2.1 Planning Stage 

In this phase, the most important business function or the goal is 

identified. Through the process of gathering requirement, it is found out that the 

system will be develop using NetBeans IDE 6.9.1 technology and interact with 

My SQL Database Server. The following figure 3.2 is the system’s context 

diagram which shows flow of data between the users and the system. 

The scopes of project are specified and a schedule has been design as 

guidance throughout the system development process to make sure the delivery 

of it on timely mannered. This has been done with the help of Gantt chart 

produced through Microsoft Project. 

3.2.2 System Requirement 

One of the most important tasks in the development of software using the 

Iterative and Incremental Development Method is gathering and defining the 

requirements for the project.  In order to arrange requirement to develop 

management system, a research and analysis on existing system has been done. 

Information gathered during the research gives clearer overview on the flow of 

the process while answering the question on how to achieve the main goal of the 

system which is to reengineering the current system with the addition of GSM 

Modem for notification. 

Then from the data, I need to analysis it and choose the all of the 

requirement that I need to include in the software. I need to understand the flow 

of management system.  

The outcomes from requirement phase are: 

•  A vision document as general vision of the core project's  

• Requirements, key features and main constraints.  



17 
 

• A project plan, showing phases, iterations and major milestones.  

• An initial use-case model 

 

3.2.3 Hardware Requirements 

The hardware requirement here are used in developing this project 

 

I. Workstation 

In this system development, a workstation is the most important hardware. 

Table below explain the minimum requirements 

 

Table 3.1     Workstation requirements 

Hardware Minimum Specification 

Central Processing Unit (CPU) Intel Pentium IV or higher 

Memory Cache 3MB 

Random Access Memory (RAM) 1GB 

Hard Disk Space 80GB 

Network Transmission Speed 100Mbps 

 

II. GSM Modem 

A GSM modem is a specialized type of modem which accepts a SIM card, 

and operates over a subscription to a mobile operator, just like a mobile phone. 

From the mobile operator perspective, a GSM modem looks just like a mobile 

phone.  

When a GSM modem is connected to a computer, this allows the computer 

to use the GSM modem to communicate over the mobile network.  While these 

GSM modems are most frequently used to provide mobile internet connectivity, 

many of them can also be used for sending and receiving SMS and MMS 

messages (NowSMS | SMS Gateway, SMS Server Software, MMS Gateway & 

MMSC). 



18 
 

A GSM modem can be a dedicated modem device with a serial, USB or 

Bluetooth connection, or it can be a mobile phone that provides GSM modem 

capabilities 

3.2.4 Software Requirements  

The development tool specified here is software to use in developing this 

project.  

 

a. NetBeans IDE 6.9.1 

NetBeans refers to both a platform framework for Java desktop applications, 

and an integrated development environment (IDE) for developing with Java, 

JavaScript, PHP, Python, Groovy, C, C++, Scala, Clojure, and others.The 

NetBeans IDE is written in Java and can run anywhere a compatible JVM is 

installed, including Windows, Mac OS, Linux, and Solaris. 

b. Java Runtime Environment 

The Java Runtime Environment (JRE) provides the libraries, the Java 

Virtual Machine, and other components to run applets and applications written in 

the Java programming language.A Java virtual machine (JVM) is a virtual 

machine that can execute Java bytecode. It is the code execution component of the 

Java software platform. 

c. My SQL Database System 

MySQL nowadays widely use as database platform. There are many reasons 

why we choose MySQL. This is some of the reason: 

 

• Speed.  

MySQL is fast compared to others.  

 

• Ease of use.  

MySQL is a high-performance but relatively simple database system and 

is much less complex to set up and administer than larger systems.  

 

• Query language support 



19 
 

It is also understands SQL (Structured Query Language), the standard 

language of choice for all modern database systems. 

• Capability.  

The MySQL server is multi-threaded; so many clients can connect to it at 

the same time. Each client can use multiple databases simultaneously.  

 

• Connectivity and security 

Besides that, it is fully networked, and databases can be accessed from 

anywhere on the Internet, so user can share your data with anyone, 

anywhere. But MySQL has access control so that one person who 

shouldn't see another's data cannot. To provide additional security, 

MySQL supports encrypted connections using the Secure Sockets Layer 

(SSL) protocol. This is will provide to the administrator of this system 

later. 

 

• Availability and cost.  

MySQL is an Open Source project with dual licensing. First, it is 

available under the terms of the GNU General Public License (GPL). 

This means that MySQL is available without cost for most in-house uses. 

Second, for organizations that prefer or require formal arrangements or 

that do not want to be bound by the conditions of the GPL, commercial 

licenses are available.  

3.3 Analysis and Design  

In this system analysis phase, I need to define the requirement from previous 

phase. Process analysis can be by observation, interview and many more. For Clinic 

Management System with Notification Using GSM Modem, I decided to observe and 

analysis of the similar system. By this I can get most recent and updated problem in 

existing system. So I can avoid the same problem. 

The important thing for make sure my project running smoothly is study for the 

current process because the system must follow the requirements .The problems and 



20 
 

constraints also defined by me in this phase. The new system must overcome a problem 

in current system. 

3.3.1 Flowchart 

 

Figure 3.3 Flowchart in the Main Menu 

 



21 
 

 

Figure 3.4 Flowchart in the Staff Menu 

 

 

 



22 
 

 

Figure 3.5 Flowchart in the Staff Menu (Continue) 

 

 



23 
 

 

Figure 3.6 Flowchart in the Doctor Menu 

 

 



24 
 

 

Figure 3.7 Flowchart in the Doctor Menu (Continue) 

 



25 
 

 

Figure 3.8 Flowchart in the Admin Menu 

 

 

 

 

 

 

 

 

 

 



26 
 

3.3.2 Entity Relational Diagram Design 

 

 

Figure 3.9 Entity Relationship Diagram 

 

Figure 3.8 illustrate on the database flows of the system. There will be 

seven tables in the database. First table is for Admin which contains AID, 

Username, Password, and Port for modem communication port, Name for 

modem’s name, and SMSCenter. Admin table will use AID as a primary key. 

Second table is for Patient. This table contains patient data which are PID, 

Name, Phone, Email, Address, NearestContact, NCPhone and NCAddress. This 

table will use PID as a primary key which will use a unique id for connecting 

between Treatment and Appointment table.  

Treatment table will contain treatment data for patient and a patient can 

have many treatment same with Appointment table. Appointment table contain 

appointment detail for Patient and Doctor which connected using UID and PID. 

There also have three others table for system’s user. User table will contain all 



27 
 

the detail about user and will connecting with Staff and Doctor table for their 

login information. 

 

3.3.3 Use Case Diagram Design 

 

 

Figure 3.10 Use Case Diagram 

 

Figure 3.9 illustrate on the flows of the system. Admin can configure the 

system setting, add user and delete user which is doctor or staff. While staff can 



28 
 

add remove new patient. Staff also can view all the created appointment and 

send the SMS to notify the patient about their appointment and so on delete the 

expired appointments. Doctor and Patient together will make an appointment 

and treatment. 

 

3.4 Implementation 

During this phase, implement database system with java application are needed.  

System will connect the database that host at local host. System also need to completely 

integrated with the GSM modem to make sure the system can send the notification. 

3.5 Testing 

 After the implementation is done, any error and problem which were not 

discovered in earlier phase will be corrected. Inevitably the system will need 

maintenance. Besides that, the application is developed to accommodate changes that 

could happen during the implementation period.  

 There are many reasons for the changes. Changes could happen because of some 

unexpected input values into the system. In addition, the changes in the system could 

directly affect the software operation.  

3.6 Evaluation and Maintenance 

Once the coding for system is generated, the software program testing begins. 

This is a phase for evaluation and maintenance. GSM Modem can communicate with 

the application. All the data have been load into the database. Its include test the 

database performance, integrity, and concurrent access and security constraints. The test 

conditions conducted by comparing expected outcomes to actual outcomes. 

   

 

 

 



29 
 

 

 

 

CHAPTER 4 

 

 

 

IMPLEMENTATION 

 

 

 

 System development is including the user interface design (UI), database design 

and the engine program which is the programming codes. Implementation involves 

those three criteria so that a system is preformed effectively and efficiently. So, in this 

chapter the system design and programming codes will be discussed as much as useful 

for better understanding about Clinic Management System with Notification Using 

GSM Modem.  

The main purpose of this chapter is to deliver brief explanations and shows the 

important control in this system. Generally, this chapter is about to give details 

explanations to more about the design that were applied in this project. Basically, this 

system was developed by using NetBeans as the platform that used programming 

language in Java together with MySQL as the database platform. 

 This chapter is divided into two parts. First part will explains about database 

configuration and implementation for Clinic Management System with Notification 

Using GSM Modem while another part will explain on system codes/programming and 

interface for system functionalities/modules. 

 

 

 

 



30 
 

4.1 Database configuration and Implementation 

PhpMyAdmin, MySQL database platform must be connected with the system 

engine before any programming codes involving database could be run properly.    

 

Figure 4.1 Database Properties 

 

Figure 4.1 shows the table properties that have been added into PhpMyAdmin in 

order to create the database connection with the system engine according to figure 4.2 

database design in entity relationship below. 

 



31 
 

 

Figure 4.2 Entity Relationship 

 

First table is for Admin which contains AID, Username, Password, Port for 

modem communication port, Name for modem’s name, and SMSCenter. Admin table 

will use AID as a primary key.  

Second table is for Patient that contains patient data which are PID, Name, 

Phone, Email, Address, NearestContact, NCPhone and NCAddress. This table will use 

PID as a primary key which will use a unique id for connecting between Treatment and 

Appointment table. Treatment table will contain treatment data for patient and a patient 

can have many treatment same with Appointment table. Appointment table contain 

appointment detail for Patient and Doctor which connected using UID and PID.  

There also have three others table for system’s user. User table will contain all 

the detail about user and will connecting with Staff and Doctor table for their login 

information. 

 

 

 



32 
 

4.2 System User Interfaces 

4.2.1 Main Menu 

 

Figure 4.3 Main Menu 

 

In Figure 4.3 above shows the main form for this system. This form will 

appear when the system is executed.  

/* 

 * MainMenu.java 

 * 

 * Created on May 13, 2012, 5:23:38 PM 

 */ 

 

package clinicmanagementsystem; 

 

import java.sql.Connection; 

import java.sql.Statement; 

import java.sql.DriverManager; 



33 
 

import java.sql.ResultSet; 

import javax.swing.JOptionPane; 

/** 

 * 

 * @author areMaL 

 */ 

public class MainMenu extends javax.swing.JFrame { 

    /** Creates new form MainMenu */ 

    public MainMenu() { 

        initComponents(); 

    } 

     private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {                                          

        new LogDoctor().setVisible(true); 

        this.setVisible(false); 

    }                                         

    private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {                                          

        new LogStaff().setVisible(true); 

        this.setVisible(false); 

    }                                         

    private void jMenuItem1ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        new LogAdmin().setVisible(true); 

        this.setVisible(false); 

    }                                           

    private void jMenuItem2ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        new Console().setVisible(true); 

    }                                           

    private void jMenuItem3ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        System.exit(0); 

    }                                           

    private void jMenuItem4ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        new About().setVisible(true); 

    }                                           

    private void formWindowOpened(java.awt.event.WindowEvent evt) {                                   

        try{ 

            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

            Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

            String StatusS = null; 

            Statement stmt2 = connection.createStatement(); 



34 
 

            String queryString2 = "SELECT * FROM admin" ; 

            ResultSet rset2 = stmt2.executeQuery(queryString2); 

            if(rset2.next()){ 

                StatusS = rset2.getString("STATUS"); 

             } 

             if(StatusS.equals("1")){ 

                 SystemStatusLabel1.setText("System is Online"); 

                 SystemStatusLabel.setEnabled(true); 

             }else{ 

                 SystemStatusLabel1.setText("System is Offline"); 

                 SystemStatusLabel.setEnabled(false); 

             } 

        } 

            catch(Exception ex) 

           { 

            JOptionPane.showMessageDialog(null,ex.getMessage()); 

        } 

    }                                  

    /** 

    * @param args the command line arguments 

    */ 

    public static void main(String args[]) { 

        java.awt.EventQueue.invokeLater(new Runnable() { 

            public void run() { 

                new MainMenu().setVisible(true); 

            } 

        }); 

    }} 

 

 

 

 

 

 

 



35 
 

4.2.2 Login 

 

Figure 4.4 Doctor Log In Form 

 

In Figure 4.4 above shows the login form for this system. This form will 

appear when the users (Admin, Staff and Doctor) want to use the system. 

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {                                          

         try{ 

            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

            Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

            Statement stmt = connection.createStatement(); 

            String username = UsernameField.getText(); 

            String password = PassField.getText(); 

            String queryString = "SELECT * FROM doctor WHERE USERNAME = '" + username + "'" ; 

            ResultSet rset = stmt.executeQuery(queryString); 

            String user = ""; 

            String pass = ""; 

            if(rset.next()){ 

                user = rset.getString("USERNAME"); 

                pass = rset.getString("PASSWORD"); 

            } 

            String passwordDec = Crypt.decrypt(pass); 

            if(username.equals(user) && password.equals(passwordDec)){ 

                new DoctorMenu(username).setVisible(true); 

 



36 
 

                setVisible(false); 

                dispose(); 

            } 

            else{ 

                JOptionPane.showMessageDialog(null,"Please Try Again","Authetication 

Failed",JOptionPane.WARNING_MESSAGE); 

        }     } 

        catch(Exception exception){ 

        }   } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 
 

4.2.3 Doctor Menu  

 

Figure 4.5 Doctor Menu 

In Figure 4.5 above shows the Doctor Menu for this system. This form 

will appear when doctor successfully log in to the system. Doctor can access the 

Treat Patient Menu or View Appointment Menu. 

public class DoctorMenu extends javax.swing.JFrame { 

    String username2; 

    String DID; 

    /** Creates new form DoctorMenu */ 

    public DoctorMenu(String username) { 

        initComponents(); 

        UsernameLabel.setText(username); 

        username2 = username; 

    } 

    private void jButton3ActionPerformed(java.awt.event.ActionEvent evt) {                                          

        dispose(); 

        new MainMenu().setVisible(true); 

}                                   

    private void jMenuItem3ActionPerformed(java.awt.event.ActionEvent evt) {                                            



38 
 

        System.exit(0); 

}                                           

    private void jMenuItem1ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        new ProfileMenu(username2).setVisible(true); 

}                                          

    private void jMenuItem2ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        new Console().setVisible(true); 

    }                                           

    private void jMenuItem4ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        new About().setVisible(true); 

}                                           

    private void formWindowOpened(java.awt.event.WindowEvent evt) {                                   

        try{ 

            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

            Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

            Statement stmt2 = connection.createStatement(); 

            String queryString2 = "SELECT * FROM user WHERE USERNAME = '" + username2 + "'" ; 

            ResultSet rset2 = stmt2.executeQuery(queryString2); 

            if(rset2.next()){ 

            IDLabel.setText(rset2.getString("UID")); 

            NameLabel.setText(rset2.getString("NAME")); 

           }} 

            catch(Exception ex) 

           { 

            JOptionPane.showMessageDialog(null,ex.getMessage()); 

        }   }                                  

    private void TreatButtonActionPerformed(java.awt.event.ActionEvent evt) {                                             

        new TreatPatientS(username2).setVisible(true); 

    }                                            

    private void ViewApButtonActionPerformed(java.awt.event.ActionEvent evt) {                                              

         DID = IDLabel.getText(); 

         new ViewAp(DID).setVisible(true); 

    }                                            

    /** 

    * @param args the command line arguments 

    */ 

    public static void main(String args[]) { 

        java.awt.EventQueue.invokeLater(new Runnable() { 

            private String username; 



39 
 

            public void run() { 

                new DoctorMenu(username).setVisible(true); 

            }  });    } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



40 
 

4.2.4 Edit Profile 

 

Figure 4.6 Edit Profile Form 

 

In Figure 4.6 above shows the Edit Profile form. The users can edit their 

own profile by accessing this form from the menu bar. 

public class ProfileMenu extends javax.swing.JFrame { 

    private int Edit = 0; 

    /** Creates new form ProfileMenu */ 

    public ProfileMenu(String username) { 

        initComponents(); 

        UsernameField.setText(username); 

    } 

    private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {                                          

       dispose(); 

    }                                         



41 
 

    private void ConfirmButtonActionPerformed(java.awt.event.ActionEvent evt) {                                               

         if (TypeField.getText().equalsIgnoreCase("doctor")){ 

        try{ 

            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

            Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

            Statement stmt = connection.createStatement(); 

            String username = UsernameField.getText(); 

            String password = PassField.getText(); 

            String queryString = "SELECT * FROM doctor WHERE USERNAME = '" + username + "'" ; 

            ResultSet rset = stmt.executeQuery(queryString); 

            String user=null,pass=null; 

            if(rset.next()){ 

                user = rset.getString("USERNAME"); 

                pass = rset.getString("PASSWORD"); 

            } 

            String passwordDec = Crypt.decrypt(pass); 

            if(username.equals(user) && password.equals(passwordDec)){ 

                if (Edit == 0) { 

            SaveButton.setEnabled(true); 

            ConfirmButton.setEnabled(false); 

            NameField.setEditable(true); 

            PhoneField.setEditable(true); 

            EmailField.setEditable(true); 

            AddressArea.setEditable(true); 

            PassField.setEditable(true); 

            Pass2Field.setEditable(true); 

            PositionField.setEditable(true); 

            TypeField.setEditable(false); 

            Edit = 1; 

            } 

            Edit = 0; 

            } 

        } 

        catch(Exception ex) 

           { 

            JOptionPane.showMessageDialog(null,ex.getMessage()); 

        }} 

     else if (TypeField.getText().equalsIgnoreCase("staff")){ 

            try{ 



42 
 

            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

            Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

            Statement stmt = connection.createStatement(); 

            String username = UsernameField.getText(); 

            String password = PassField.getText(); 

            String queryString = "SELECT * FROM staff WHERE USERNAME = '" + username + "'"; 

            ResultSet rset = stmt.executeQuery(queryString); 

            String user=null,pass=null; 

            if(rset.next()){ 

                user = rset.getString("USERNAME"); 

                pass = rset.getString("PASSWORD"); 

            } 

            String passwordDec = Crypt.decrypt(pass); 

            if(username.equals(user) && password.equals(passwordDec)){ 

                if (Edit == 0) { 

            SaveButton.setEnabled(true); 

            ConfirmButton.setEnabled(false); 

            NameField.setEditable(true); 

            PhoneField.setEditable(true); 

            EmailField.setEditable(true); 

            AddressArea.setEditable(true); 

            PassField.setEditable(true); 

            Pass2Field.setEditable(true); 

            PositionField.setEditable(true); 

            TypeField.setEditable(false); 

            Edit = 1; 

            } 

            Edit = 0; 

            } 

        } 

        catch(Exception ex) 

           { 

            JOptionPane.showMessageDialog(null,ex.getMessage()); 

        }} 

     else{ 

            JOptionPane.showMessageDialog(null,"Please Try Again","Authetication 

Failed",JOptionPane.WARNING_MESSAGE); 

    }   }                                              

    private void SaveButtonActionPerformed(java.awt.event.ActionEvent evt) {                                            



43 
 

        String pass1; 

    String pass2; 

    pass1 = PassField.getText(); 

    pass2 = Pass2Field.getText(); 

    if(!(pass1.equalsIgnoreCase(pass2))){ 

     JOptionPane.showMessageDialog(null,"Password does not 

match","Error",JOptionPane.WARNING_MESSAGE); 

    }else{ 

    if (! (TypeField.getText().equalsIgnoreCase("doctor")) & 

!((TypeField.getText().equalsIgnoreCase("staff")))){ 

        JOptionPane.showMessageDialog(null,"Please fill the Type Field corectly (Doctor / 

Staff)","Error",JOptionPane.WARNING_MESSAGE); 

    }else{ 

            try{ 

                Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

                Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

                Statement stmt = connection.createStatement(); 

                Statement stmt1 = connection.createStatement(); 

                String Name = NameField.getText(); 

                String Phone = PhoneField.getText(); 

                String Address = AddressArea.getText(); 

                String Email = EmailField.getText(); 

                String Position = PositionField.getText(); 

                String Username = UsernameField.getText(); 

                String Password = PassField.getText(); 

                String passwordEnc = Crypt.encrypt(Password); 

                String Type = TypeField.getText(); 

                if (Name.equals("")| Phone.equals("")| Address.equals("")| Email.equals("")| 

Position.equals("")){ 

                JOptionPane.showMessageDialog(null,"Please fill all the 

field","Error",JOptionPane.WARNING_MESSAGE); 

                } 

                else{ 

                if (Type.equalsIgnoreCase("Doctor")){ 

                stmt1.executeUpdate("UPDATE doctor SET PASSWORD = '" + passwordEnc + "'  WHERE 

USERNAME = '" + Username + "'") ; 

                stmt.executeUpdate("UPDATE user SET NAME = '" + Name + "' , PHONE = '" + Phone + "' , 

ADDRESS = '" + Address + "' , EMAIL = '" + Email + "' , POSITION = '" + Position +"'  WHERE 

USERNAME = '" + Username + "'"); 



44 
 

                } 

                else if (Type.equalsIgnoreCase("Staff")){ 

                stmt1.executeUpdate("UPDATE staff SET PASSWORD = '" + passwordEnc + "'   WHERE 

USERNAME = '" + Username + "'") ; 

                stmt.executeUpdate("UPDATE  user SET Name = '" + Name + "' , PHONE = '" + Phone + "' 

,ADDRESS = '" + Address + "' ,EMAIL = '" + Email + "' ,  POSITION = '" + Position +"'   WHERE 

USERNAME = '" + Username + "'"); 

                } 

                 JOptionPane.showMessageDialog(null,"User "+Username+" have been successfully 

saved","Success",JOptionPane.INFORMATION_MESSAGE); 

                }    } 

            catch(Exception ex) 

           { 

            JOptionPane.showMessageDialog(null,ex.getMessage()); 

            NameField.setEditable(false); 

            PhoneField.setEditable(false); 

            EmailField.setEditable(false); 

            AddressArea.setEditable(false); 

            PositionField.setEditable(false); 

            UsernameField.setEditable(false); 

            PassField.setEditable(false); 

            Pass2Field.setEditable(false); 

            TypeField.setEditable(false); 

            Edit = 0; 

         }   }    }    }                                           

    private void formWindowIconified(java.awt.event.WindowEvent evt) {                                      

        // TODO add your handling code here: 

    }                                     

    private void formWindowOpened(java.awt.event.WindowEvent evt) {                                   

        try{ 

            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

            Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

            String username = UsernameField.getText(); 

            Statement stmt2 = connection.createStatement(); 

            String queryString2 = "SELECT * FROM user WHERE USERNAME = '" + username + "'" ; 

            ResultSet rset2 = stmt2.executeQuery(queryString2); 

            if(rset2.next()){ 

            IDField.setText(rset2.getString("UID")); 

            NameField.setText(rset2.getString("NAME")); 



45 
 

            PhoneField.setText(rset2.getString("PHONE")); 

            EmailField.setText(rset2.getString("EMAIL")); 

            AddressArea.setText(rset2.getString("ADDRESS")); 

            PositionField.setText(rset2.getString("POSITION")); 

                }} 

            catch(Exception ex) 

           { 

            JOptionPane.showMessageDialog(null,ex.getMessage()); 

        }   }                                  

    /** 

    * @param args the command line arguments 

    */ 

    public static void main(String args[]) { 

        java.awt.EventQueue.invokeLater(new Runnable() { 

            private String username; 

            public void run() { 

                new ProfileMenu(username).setVisible(true); 

            }      });    } 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 
 

4.2.5 Treatment Form 

 

Figure 4.7 Treatment Form 

 

In Figure 4.7 shows the Treat Patient Menu for this system which only 

can be access by doctor. This form will appear when doctors want to serve their 

patient. 

public class TreatPatientS extends javax.swing.JFrame { 

    int AddUser ; 

    /** Creates new form TreatPatientS */ 

    public TreatPatientS(String username2) { 

        initComponents(); 

        UserLabel.setText(username2); 

    } 

    private void RetriveButtonActionPerformed(java.awt.event.ActionEvent evt) {                                               



47 
 

        try{ 

            String Value = HComboBox.getSelectedItem().toString(); 

            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

            Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

            Statement stmt = connection.createStatement(); 

            String queryString = "SELECT * FROM treatment WHERE TIME = '" + Value + "'" ; 

            ResultSet rset = stmt.executeQuery(queryString); 

            if(rset.next()){ 

                TArea.setText(rset.getString("TREATMENT")); 

                MArea.setText(rset.getString("MEDICINE")); 

                NoteArea.setText(rset.getString("NOTE")); 

            } 

        } catch(Exception e){ 

        } 

}                                              

    private void SearchButtonActionPerformed(java.awt.event.ActionEvent evt) {                                              

        try{ 

            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

            Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

            Statement stmt = connection.createStatement(); 

            String ID = IDField.getText(); 

            String username = UserLabel.getText(); 

            Statement stmt2 = connection.createStatement(); 

            String queryString2 = "SELECT * FROM user WHERE USERNAME = '" + username + "'" ; 

            ResultSet rset2 = stmt2.executeQuery(queryString2); 

            if(rset2.next()){ 

                DoctorIDLabel.setText(rset2.getString("UID")); 

            } 

            String queryString = "SELECT * FROM patient WHERE PID = '" + ID + "'" ; 

            ResultSet rset = stmt.executeQuery(queryString); 

            if(rset.next()){ 

                NameField.setText(rset.getString("NAME")); 

                PhoneField.setText(rset.getString("PHONE")); 

                EmailField.setText(rset.getString("EMAIL")); 

                AddressArea.setText(rset.getString("ADDRESS")); 

 

                SearchButton.setEnabled(false); 

                SaveButton.setEnabled(true); 



48 
 

                MakeApButton.setEnabled(true); 

                RefreshApButton.setEnabled(true); 

                CancelApButton.setEnabled(true); 

                IDField.setEditable(false); 

                AddUser = 0; 

                Statement st=connection.createStatement(); 

                ResultSet rs=st.executeQuery("SELECT * from treatment WHERE PID = ('" + ID + "')"); 

                while(rs.next()){ 

                 HComboBox.addItem(rs.getTimestamp("TIME")); 

                } 

                ResultSet rset3 = null; 

                PreparedStatement pst = null; 

                String sql = "SELECT * FROM appointment WHERE PID = '" + ID + "'"; 

                pst = connection.prepareStatement(sql); 

                rset3 = pst.executeQuery(); 

                jTable1.setModel(DbUtils.resultSetToTableModel(rset3)); 

                JOptionPane.showMessageDialog(null,"User 

Found","Done",JOptionPane.INFORMATION_MESSAGE); 

            } 

        } catch(Exception ex) 

        { 

            JOptionPane.showMessageDialog(null,ex.getMessage()); 

        } 

}                                             

    private void BackButtonActionPerformed(java.awt.event.ActionEvent evt) {                                            

        dispose(); 

}                                           

    private void SaveButtonActionPerformed(java.awt.event.ActionEvent evt) {                                            

        try{ 

            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

            Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

            Statement stmt = connection.createStatement(); 

            String Medicine = MArea.getText(); 

            String Treatment = TArea.getText(); 

            String Note = NoteArea.getText(); 

            String ID = IDField.getText(); 

            stmt.executeUpdate("INSERT INTO treatment (TREATMENT,MEDICINE,NOTE,PID) 

VALUES ('" + Treatment + "' , '" + Medicine + "', '" + Note + "', '" + ID + "')"); 



49 
 

            JOptionPane.showMessageDialog(null,"Treatment record have been successfully 

saved","Success",JOptionPane.INFORMATION_MESSAGE); 

        } 

        catch(Exception ex) 

        {          { 

                JOptionPane.showMessageDialog(null,ex.getMessage()); 

            }        }}                                           

    private void RefreshApButtonActionPerformed(java.awt.event.ActionEvent evt) {                                                 

        String ID = IDField.getText(); 

        try{ 

            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

            Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

            Statement stmt = connection.createStatement(); 

            ResultSet rset3 = null; 

            PreparedStatement pst = null; 

            String sql = "SELECT * FROM appointment WHERE PID = '" + ID + "'"; 

            pst = connection.prepareStatement(sql); 

            rset3 = pst.executeQuery(); 

            jTable1.setModel(DbUtils.resultSetToTableModel(rset3)); 

        } catch(Exception exception){ 

        }}                                                

    private void CancelApButtonActionPerformed(java.awt.event.ActionEvent evt) {                                                

        int option = JOptionPane.showConfirmDialog((Component) 

                null, "Are you sure want to cancel the appointment", "Alert", 

JOptionPane.OK_CANCEL_OPTION); 

        if (option == JOptionPane.OK_OPTION ) { 

            String ApID=""; 

            int row = jTable1.getSelectedRow(); 

            ApID = jTable1.getModel().getValueAt(row, 0).toString(); 

            if(ApID.equals("")){ 

                JOptionPane.showMessageDialog(null,"Please select the appointment first"); 

            }else{ 

                try{ 

                    Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

                    Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

                    Statement stmt = connection.createStatement(); 

                    String queryString = "DELETE FROM appointment WHERE ID = '" + ApID + "'" ; 

                    stmt.executeUpdate(queryString); 



50 
 

                    ResultSet rset3 = null; 

                    PreparedStatement pst = null; 

                    String sql = "SELECT * FROM appointment WHERE PID = '" + ApID + "'"; 

                    pst = connection.prepareStatement(sql); 

                    rset3 = pst.executeQuery(); 

                    jTable1.setModel(DbUtils.resultSetToTableModel(rset3)); 

                    JOptionPane.showMessageDialog(null,"Appointment data have been 

deleted.","Success",JOptionPane.INFORMATION_MESSAGE); 

                } catch(Exception exception){ 

                }            }        } else if (option == JOptionPane.CANCEL_OPTION) { 

            }    }                                               

    private void ClearButtonActionPerformed(java.awt.event.ActionEvent evt) {                                             

        IDField.setText(""); 

        NameField.setText(""); 

        PhoneField.setText(""); 

        EmailField.setText(""); 

        AddressArea.setText(""); 

        NoteArea.setText(""); 

        MArea.setText(""); 

        TArea.setText(""); 

        DateTextField.setText(""); 

        HComboBox.removeAllItems(); 

        IDField.setEditable(true); 

        SearchButton.setEnabled(true); 

        MakeApButton.setEnabled(false); 

        RefreshApButton.setEnabled(false); 

        CancelApButton.setEnabled(false); 

        SaveButton.setEnabled(false); 

        AddUser = 0; 

    }                                            

    private void MakeApButtonActionPerformed(java.awt.event.ActionEvent evt) {                                              

            if(DateTextField.getText().equalsIgnoreCase("")){ 

                JOptionPane.showMessageDialog(null,"Please select the appointment date first"); 

        }else{ 

        try{ 

            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

            Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

            Statement stmt = connection.createStatement(); 

            String uid = DoctorIDLabel.getText(); 



51 
 

            String pid = IDField.getText(); 

            String date =  DateTextField.getText(); 

            String time = TimeComboBox.getSelectedItem().toString(); 

            String SMS = "Draft"; 

            stmt.executeUpdate("INSERT INTO appointment (UID,PID,DATE,TIME,SMS) VALUES ('" + 

uid + "' , '" + pid + "', '" + date + "', '" + time + "', '" + SMS + "')"); 

            JOptionPane.showMessageDialog(null,"Appointment has been booked 

successfully","Success",JOptionPane.INFORMATION_MESSAGE); 

        } 

        catch(Exception ex) 

        {            {                JOptionPane.showMessageDialog(null,ex.getMessage()); 

            }        }        }}                                             

    private void jMenuItem3ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        System.exit(0); 

}                                              private void jMenuItem2ActionPerformed(java.awt.event.ActionEvent evt) 

{                                            

        new Console().setVisible(true); 

}                                           

    private void jMenuItem4ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        new About().setVisible(true); 

}                                           

    private void dateFocusLost(java.awt.event.FocusEvent evt) { 

        String date = DateTextField.getText(); 

        setDate(date); 

    } 

        private void dateOnlyPopupChanged(java.beans.PropertyChangeEvent evt) { 

        if (evt.getNewValue() instanceof Date) 

            setDate((Date)evt.getNewValue()); 

    } 

        public void setDate(String dateString) 

    { 

  Date date = null; 

  try { 

            if ((dateString != null) && (dateString.length() > 0)) 

                date = dateFormat.parse(dateString); 

  } catch (Exception e) { 

            date = null; 

  } 

        this.setDate(date); 

    } 



52 
 

        public void setDate(Date date) 

    { 

        String dateString = ""; 

        if (date != null) 

  dateString = dateFormat.format(date); 

        DateTextField.setText(dateString); 

        jCalendarButton1.setTargetDate(date); 

    } 

    /** 

    * @param args the command line arguments 

    */ 

    public static void main(String args[]) { 

        java.awt.EventQueue.invokeLater(new Runnable() { 

            public void run() { 

                String username2=null; 

                new TreatPatientS(username2).setVisible(true); 

            } 

        }); 

    } 

 

 

 

 

 

 

 

 

 

 

 

 



53 
 

4.2.6 Doctor’s Appointment View 

 

Figure 4.8 Appointment View for Doctor 

 

In Figure 4.8 above shows the view of Doctor. The doctor will see only 

his appointment only. 

public class ViewAp extends javax.swing.JFrame { 

    /** Creates new form ViewAp */ 

    public ViewAp(String DID) { 

        initComponents(); 

        DoctorIDLabel.setText(DID); 

    } 

private void formWindowOpened(java.awt.event.WindowEvent evt) {                                   

         try{ 

                String DID = DoctorIDLabel.getText(); 

                Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

                Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

                ResultSet rset = null; 

                PreparedStatement pst = null; 

                String sql = "SELECT * FROM appointment WHERE UID = '" + DID + "'"; 



54 
 

                pst = connection.prepareStatement(sql); 

                rset = pst.executeQuery(); 

                jTable1.setModel(DbUtils.resultSetToTableModel(rset)); 

                } 

                 catch(Exception ex){ 

                 JOptionPane.showMessageDialog(null,ex.getMessage()); 

        } 

    }                                  

    private void BackButtonActionPerformed(java.awt.event.ActionEvent evt) {                                            

        dispose(); 

    }                                           

    private void jMenuItem3ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        System.exit(0); 

}                                          

    private void jMenuItem2ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        new Console().setVisible(true); 

}                                           

    private void jMenuItem4ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        new About().setVisible(true); 

}                                           

    /** 

    * @param args the command line arguments 

    */ 

    public static void main(String args[]) { 

        java.awt.EventQueue.invokeLater(new Runnable() { 

            public void run() { 

                String DID = null; 

                new ViewAp(DID).setVisible(true); 

            } 

        }); 

    } 

 

 

 

 

 



55 
 

4.2.7 Staff Menu 

 

Figure 4.9 Staff Menu 

 

In Figure 4.9 above shows the view of Staff Menu. This form will appear 

when staff successfully log in to the system. 

public class StaffMenu extends javax.swing.JFrame { 

    String username2; 

    /** Creates new form DoctorMenu */ 

    public StaffMenu(String username) { 

        initComponents(); 

        UsernameLabel.setText(username); 

        username2 = username; 

    } private void jButton3ActionPerformed(java.awt.event.ActionEvent evt) {                                          

        dispose(); 

        new MainMenu().setVisible(true); 

}                                         

    private void jMenuItem3ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        System.exit(0); 



56 
 

}                                           

    private void jMenuItem1ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        new ProfileMenu(username2).setVisible(true); 

}                                           

    private void jMenuItem2ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        new Console().setVisible(true); 

    }                                           

    private void jMenuItem4ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        new About().setVisible(true); 

}                                           

    private void formWindowOpened(java.awt.event.WindowEvent evt) {                                   

        try{ 

            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

            Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

            Statement stmt2 = connection.createStatement(); 

            String queryString2 = "SELECT * FROM user WHERE USERNAME = '" + username2 + "'" ; 

            ResultSet rset2 = stmt2.executeQuery(queryString2); 

            if(rset2.next()){ 

            IDLabel.setText(rset2.getString("UID")); 

            NameLabel.setText(rset2.getString("NAME")); 

           }} 

            catch(Exception ex) 

           {            JOptionPane.showMessageDialog(null,ex.getMessage()); 

        } 

    }                                  

    private void SearchPatientButtonActionPerformed(java.awt.event.ActionEvent evt) {                                                     

        new EditPatient().setVisible(true); 

    }                                                    

    private void AddPatientButtonActionPerformed(java.awt.event.ActionEvent evt) {                                                  

        new AddPatient().setVisible(true); 

    }                                                 

    private void ViewApButtonActionPerformed(java.awt.event.ActionEvent evt) {                                              

        new SMSAP().setVisible(true); 

    }                                             

    /** 

    * @param args the command line arguments 

    */ 

    public static void main(String args[]) { 

        java.awt.EventQueue.invokeLater(new Runnable() { 



57 
 

            private String username; 

            public void run() { 

                new StaffMenu(username).setVisible(true);           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



58 
 

4.2.8 Add New Patient 

 

Figure 4.10 Add New Patient Form 

 

In Figure 4.10 above shows the Add New Patient. This form will appear 

when staffs want to register or add new patient to the system. 

public class AddPatient extends javax.swing.JFrame { 

    private int AddUser; 

    /** Creates new form AddPatient */ 

    public AddPatient() { 

        initComponents(); 

    } private void BackButtonActionPerformed(java.awt.event.ActionEvent evt) {                                            

        dispose(); 

    }                                           

    private void ClearButtonActionPerformed(java.awt.event.ActionEvent evt) {                                             

        IDField.setText(""); 

        NameField.setText(""); 

        PhoneField.setText(""); 

        EmailField.setText(""); 

        AddressArea.setText(""); 

        NContactField.setText(""); 

        NCPhoneField.setText(""); 

        NCAddressArea.setText(""); 

        IDField.setEnabled(true); 

 



59 
 

        SearchButton.setEnabled(true); 

        SaveButton.setEnabled(false); 

        AddButton.setEnabled(true); 

       AddUser = 0; 

    }                                            

    private void SearchButtonActionPerformed(java.awt.event.ActionEvent evt) {                                              

        try{ 

            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

            Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

            Statement stmt = connection.createStatement(); 

            String ID = IDField.getText(); 

            String queryString = "SELECT * FROM patient WHERE PID = '" + ID + "'" ; 

            ResultSet rset = stmt.executeQuery(queryString); 

            if(rset.next()){ 

                NameField.setText(rset.getString("NAME")); 

                PhoneField.setText(rset.getString("PHONE")); 

                EmailField.setText(rset.getString("EMAIL")); 

                AddressArea.setText(rset.getString("ADDRESS")); 

                NContactField.setText(rset.getString("NEARESTCONTACT")); 

                NCPhoneField.setText(rset.getString("NCPHONE")); 

                NCAddressArea.setText(rset.getString("NCADDRESS")); 

                JOptionPane.showMessageDialog(null,"Patient 

Found","Done",JOptionPane.INFORMATION_MESSAGE); 

                SaveButton.setEnabled(false); 

                AddButton.setEnabled(false); 

            } 

        } 

        catch(Exception ex) 

        { 

            JOptionPane.showMessageDialog(null,ex.getMessage()); 

           }  

    }                                             

    private void AddButtonActionPerformed(java.awt.event.ActionEvent evt) {                                           

        if (IDField.getText().equalsIgnoreCase("")){ 

            JOptionPane.showMessageDialog(null,"Please fill the ID"); 

        }else{ 

        IDField.setEnabled(false); 

        NameField.setEditable(true); 

        PhoneField.setEditable(true); 



60 
 

        EmailField.setEditable(true); 

        AddressArea.setEditable(true); 

        NContactField.setEditable(true); 

        NCPhoneField.setEditable(true); 

        NCAddressArea.setEditable(true); 

        IDField.setEditable(true); 

        SearchButton.setEnabled(false); 

        SaveButton.setEnabled(true); 

        AddButton.setEnabled(true); 

        AddUser = 1; 

                } 

   }                                          

 

    private void SaveButtonActionPerformed(java.awt.event.ActionEvent evt) {                                            

        try{ 

            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

            Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

            Statement stmt = connection.createStatement(); 

            Statement stmt1 = connection.createStatement(); 

            String ID = IDField.getText(); 

            String Name = NameField.getText(); 

            String Phone = PhoneField.getText(); 

            String Address = AddressArea.getText(); 

            String Email = EmailField.getText(); 

            String NContact = NContactField.getText(); 

            String NCPhone = NCPhoneField.getText(); 

            String NCAddress = NCAddressArea.getText(); 

            if (ID.equals("") | Name.equals("")| Phone.equals("")| Address.equals("")| Email.equals("")| 

NContact.equals("")|NCPhone.equals("")| NCAddress.equals("")){ 

                JOptionPane.showMessageDialog(null,"Please fill the data 

corectly","Error",JOptionPane.WARNING_MESSAGE); 

            } 

            else{ 

            stmt.executeUpdate("INSERT INTO patient 

(PID,NAME,EMAIL,PHONE,ADDRESS,NEARESTCONTACT,NCPHONE,NCADDRESS) VALUES 

('" + ID + "' , '" + Name + "', '" + Email + "', '" + Phone + "', '" + Address + "', '" + NContact + "', '" + 

NCPhone + "' , '" + NCAddress + "')"); 

                IDField.setText(""); 

                NameField.setText(""); 



61 
 

                PhoneField.setText(""); 

                EmailField.setText(""); 

                AddressArea.setText(""); 

                NContactField.setText(""); 

                NCPhoneField.setText(""); 

                NCAddressArea.setText(""); 

                IDField.setEnabled(true); 

                SearchButton.setEnabled(true); 

                SaveButton.setEnabled(false); 

                AddUser = 0; 

                JOptionPane.showMessageDialog(null,"Patient "+Name+" have been added 

successfully","Success",JOptionPane.INFORMATION_MESSAGE); 

            } 

             } 

         catch(Exception ex) 

        { 

            JOptionPane.showMessageDialog(null,ex.getMessage()); 

        } 

    }                                           

    private void jMenuItem3ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        System.exit(0); 

}                                           

    private void jMenuItem2ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        new Console().setVisible(true); 

}                                           

    private void jMenuItem4ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        new About().setVisible(true); 

}                                           

    /** 

    * @param args the command line arguments 

    */ 

    public static void main(String args[]) { 

        java.awt.EventQueue.invokeLater(new Runnable() { 

            public void run() { 

                new AddPatient().setVisible(true); 

            } 

        });    } 

 



62 
 

4.2.9 View Patient Detail 

 

Figure 4.11 View Patient Detail Form 

In Figure 4.11 shows the View Patient Detail form which only can be 

access by staff. Staff can view the detail of patient information including the 

treatment that has been made by doctor. 

public class EditPatient extends javax.swing.JFrame { 

     int AddUser ; 

    /** Creates new form EditPatient */ 

    public EditPatient() { 

        initComponents(); 

    } private void RetriveButtonActionPerformed(java.awt.event.ActionEvent evt) {                                               

        try{ 

       String Value = HComboBox2.getSelectedItem().toString(); 

        Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

        Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

        Statement stmt = connection.createStatement(); 

            String queryString = "SELECT * FROM treatment WHERE TIME = '" + Value + "'" ; 

            ResultSet rset = stmt.executeQuery(queryString); 



63 
 

            if(rset.next()){ 

                TArea.setText(rset.getString("TREATMENT")); 

                MArea.setText(rset.getString("MEDICINE")); 

           }        } 

        catch(Exception e){} 

    }                                             

    private void SearchButtonActionPerformed(java.awt.event.ActionEvent evt) {                                              

        if (IDField.getText().equalsIgnoreCase("")){ 

            JOptionPane.showMessageDialog(null,"Please fill the ID"); 

        }else{ 

            try{ 

            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

            Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

            Statement stmt = connection.createStatement(); 

            String ID = IDField.getText(); 

            String queryString = "SELECT * FROM patient WHERE PID = '" + ID + "'" ; 

            ResultSet rset = stmt.executeQuery(queryString); 

            if(rset.next()){ 

                NameField.setText(rset.getString("NAME")); 

                PhoneField.setText(rset.getString("PHONE")); 

                EmailField.setText(rset.getString("EMAIL")); 

                AddressArea.setText(rset.getString("ADDRESS")); 

                NearContactField.setText(rset.getString("NEARESTCONTACT")); 

                NCPhoneField.setText(rset.getString("NCPHONE")); 

                NCAddressArea.setText(rset.getString("NCADDRESS")); 

                Statement st=connection.createStatement(); 

                ResultSet rs=st.executeQuery("SELECT * from treatment WHERE PID = ('" + ID + "')"); 

                while(rs.next()){ 

                HComboBox2.addItem(rs.getTimestamp("TIME"));} 

                SearchButton.setEnabled(false); 

                SaveButton.setEnabled(true); 

                IDField.setEditable(false); 

                JOptionPane.showMessageDialog(null,"User 

Found","Done",JOptionPane.INFORMATION_MESSAGE); 

            } 

 

        } 

        catch(Exception ex) 

           { 



64 
 

            JOptionPane.showMessageDialog(null,ex.getMessage()); 

        }        }    }                                             

    private void SaveButtonActionPerformed(java.awt.event.ActionEvent evt) {                                            

       try{ 

                Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

                Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

                Statement stmt = connection.createStatement(); 

                String ID = IDField.getText(); 

                String Name = NameField.getText(); 

                String Phone = PhoneField.getText(); 

                String Address = AddressArea.getText(); 

                String Email = EmailField.getText(); 

                String NContact = NearContactField.getText(); 

                String NCPhone = NCPhoneField.getText(); 

                String NCAddress = NCAddressArea.getText(); 

                stmt.executeUpdate("UPDATE patient SET NAME = '" + Name + "' , PHONE = '" + Phone + "' 

, ADDRESS = '" + Address + "' , EMAIL = '" + Email + "' , NEARESTCONTACT = '" + NContact +"' , 

NCPHONE = '" + NCPhone +"', NCADDRESS = '" + NCAddress +"'  WHERE PID = '" + ID + "'"); 

                 JOptionPane.showMessageDialog(null,"Patient "+Name+" data have been successfully 

saved","Success",JOptionPane.INFORMATION_MESSAGE); 

                } 

            catch(Exception ex) 

           {{ 

            JOptionPane.showMessageDialog(null,ex.getMessage()); 

         }    }    }                                           

    private void BackButtonActionPerformed(java.awt.event.ActionEvent evt) {                                            

        dispose(); 

    }                                           

    private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {                                          

        IDField.setText(""); 

        NameField.setText(""); 

        PhoneField.setText(""); 

        EmailField.setText(""); 

        AddressArea.setText(""); 

        MArea.setText(""); 

        TArea.setText(""); 

        NearContactField.setText(""); 

        NCPhoneField.setText(""); 

        NCAddressArea.setText(""); 



65 
 

        HComboBox2.removeAllItems(); 

        IDField.setEditable(true); 

        SearchButton.setEnabled(true); 

        SaveButton.setEnabled(false); 

        AddUser = 0; 

    }                                         

    private void jMenuItem3ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        System.exit(0); 

}                                          

    private void jMenuItem2ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        new Console().setVisible(true); 

}                                           

    private void jMenuItem4ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        new About().setVisible(true); 

}                                          

    /** 

    * @param args the command line arguments 

    */ 

    public static void main(String args[]) { 

        java.awt.EventQueue.invokeLater(new Runnable() { 

            public void run() { 

                new EditPatient().setVisible(true); 

            } 

        }); 

    

 

 

 

 

 

 

 

 

 



66 
 

4.2.10 View Appointment 

 

Figure 4.12 View Appointment Form 

 

In Figure 4.12 shows the View Appointment form, which only can be 

access by staff. Staff can view the detail of every appointment that has been 

made by every registered doctor in the system. Staff also can notify the patient 

for the appointment by accessing a send SMS button in this form. 

 

 

 

 



67 
 

public class SMSAP extends javax.swing.JFrame { 

    String Phone; 

    String SMS; 

    String SMSID; 

    String MName; 

    String MModel; 

    String MPort; 

    String SMSNo; 

    String PrintDetail = "test print"; 

    private static Font fnt = new Font("Tahoma",Font.PLAIN,15); 

    /** Creates new form SMSAP */ 

    public SMSAP() { 

        initComponents(); 

    } private void jTable1MouseClicked(java.awt.event.MouseEvent evt) {                                      

        int row = jTable1.getSelectedRow(); 

        try{ 

            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

            Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

            Statement stmt = connection.createStatement(); 

            Statement stmt2 = connection.createStatement(); 

            String queryString2 = "SELECT * FROM user WHERE UID = '" + 

jTable1.getModel().getValueAt(row, 1).toString() + "'" ; 

            ResultSet rset2 = stmt2.executeQuery(queryString2); 

            if(rset2.next()){ 

                DNameField.setText(rset2.getString("NAME")); 

            } 

            String queryString = "SELECT * FROM patient WHERE PID = '" + 

jTable1.getModel().getValueAt(row, 2).toString() + "'" ; 

            ResultSet rset = stmt.executeQuery(queryString); 

            if(rset.next()){ 

                PNameField.setText(rset.getString("NAME")); 

                Phone = rset.getString("PHONE"); 

            } 

            String queryString3 = "SELECT * FROM appointment WHERE PID = '" + 

jTable1.getModel().getValueAt(row, 2).toString() + "'" ; 

            ResultSet rset3 = stmt.executeQuery(queryString3); 

            if(rset3.next()){ 

                SMSID = rset3.getString("SMS"); 

            }        } 



68 
 

        catch(Exception ex) 

 

        { 

            JOptionPane.showMessageDialog(null,ex.getMessage()); 

        } 

        PIDField.setText(jTable1.getModel().getValueAt(row, 2).toString()); 

        SMS = jTable1.getModel().getValueAt(row, 5).toString(); 

        SMSArea.setText("Salam Sejahtera " + PNameField.getText()+ ".\nThis is a remainder \nfor your 

appointment with Dr." 

                + DNameField.getText() +"\nat " +jTable1.getModel().getValueAt(row, 3).toString()+" "+ 

jTable1.getModel().getValueAt(row, 4).toString()+ 

                "\nPlease be on time."); 

        if(SMSID.equals("Sent")){ 

            SendLabel.setText("Sent"); 

            SendGLabel2.setEnabled(true); 

        }else if(SMSID.equals("Draft")){ 

            SendLabel.setText("Draft"); 

            SendGLabel2.setEnabled(false); 

        }    }                                     

 

    private void formWindowOpened(java.awt.event.WindowEvent evt) {                                   

        UpdateTable(); 

        try{ 

            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

            Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

            Statement stmt2 = connection.createStatement(); 

            String queryString2 = "SELECT * FROM admin" ; 

            ResultSet rset2 = stmt2.executeQuery(queryString2); 

            if(rset2.next()){ 

            MName = (rset2.getString("NAME")); 

            MModel = (rset2.getString("MODEL")); 

            MPort = (rset2.getString("PORT")); 

            SMSNo = (rset2.getString("SMSCENTER")); 

             }} 

            catch(Exception ex) 

           { 

            JOptionPane.showMessageDialog(null,ex.getMessage()); 

        } 

    }                                  



69 
 

 

    private void BackButtonActionPerformed(java.awt.event.ActionEvent evt) {                                            

        dispose(); 

    }                                           

    private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {                                          

        if(PIDField.getText().equals("")){ 

        JOptionPane.showMessageDialog (null,"Please select the appointment first"); 

        }else{ 

        int option = JOptionPane.showConfirmDialog((Component) 

        null, "Are you sure want to send a SMS using this setting :" 

                + "\nModem Name : " +MName+ "   Modem Port  :" + MPort+ "   Center No : " + SMSNo+ 

"\n" 

                + "\n         SMS Process will take some time to be done. Please wait patiently.          ", "Alert", 

JOptionPane.OK_CANCEL_OPTION); 

 

         if (option == JOptionPane.OK_OPTION ) { 

                try 

  {  doIt();                 } 

  catch (Exception e) 

  {}       } 

        else if (option == JOptionPane.CANCEL_OPTION) { 

         JOptionPane.showMessageDialog (null,"The operation has been cancelled"); 

        }        }    }                                         

    private void ClearButtonActionPerformed(java.awt.event.ActionEvent evt) {                                             

            PIDField.setText(""); 

            DNameField.setText(""); 

            PNameField.setText(""); 

            SMSArea.setText(""); 

            SendGLabel2.setEnabled(false); 

    }                                            

    private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {                                          

        int row = jTable1.getSelectedRow(); 

       String ApID = jTable1.getModel().getValueAt(row, 0).toString(); 

        if(PIDField.getText().equals("")){ 

            JOptionPane.showMessageDialog (null,"Please select the appointment first"); 

        }else{ 

        int option = JOptionPane.showConfirmDialog((Component) 

                null, "Are you sure want to deletel the appointment", "Alert", 

JOptionPane.OK_CANCEL_OPTION); 

        if (option == JOptionPane.YES_OPTION ) { 



70 
 

        try{ 

            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

            Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

            Statement stmt = connection.createStatement(); 

                String queryString = "DELETE FROM appointment WHERE ID = '" + ApID + "'" ; 

                stmt.executeUpdate(queryString); 

                ResultSet rset3 = null; 

                PreparedStatement pst = null; 

                String sql = "SELECT * FROM appointment WHERE PID = '" + ApID + "'"; 

                pst = connection.prepareStatement(sql); 

                rset3 = pst.executeQuery(); 

                jTable1.setModel(DbUtils.resultSetToTableModel(rset3)); 

        JOptionPane.showMessageDialog(null,"Appointment data have been 

deleted.","Success",JOptionPane.INFORMATION_MESSAGE); 

        }        catch(Exception exception){ 

        }        }        else if (option == JOptionPane.CANCEL_OPTION) { 

        }        }    }                                         

    private void jButton3ActionPerformed(java.awt.event.ActionEvent evt) {                                          

       try{ 

            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

            Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

                ResultSet rset3 = null; 

                PreparedStatement pst = null; 

                String sql = "SELECT * FROM appointment"; 

                pst = connection.prepareStatement(sql); 

                rset3 = pst.executeQuery(); 

                jTable1.setModel(DbUtils.resultSetToTableModel(rset3)); 

                SendGLabel2.setEnabled(false); 

        } 

        catch(Exception exception){ 

        }    }                                         

    private void jMenuItem3ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        System.exit(0); 

}                                           

    private void jMenuItem2ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        new Console().setVisible(true); 

}                                           

    private void jMenuItem4ActionPerformed(java.awt.event.ActionEvent evt) {                                            



71 
 

        new About().setVisible(true); public static void main(String args[]) { 

        java.awt.EventQueue.invokeLater(new Runnable() { 

            public void run() { 

                new SMSAP().setVisible(true); 

            }        });    } 

    private void UpdateTable(){ 

                try{ 

                Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

                Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

                ResultSet rset = null; 

                PreparedStatement pst = null; 

                String sql = "SELECT * FROM appointment"; 

                pst = connection.prepareStatement(sql); 

                rset = pst.executeQuery(); 

                jTable1.setModel(DbUtils.resultSetToTableModel(rset)); 

                } 

                 catch(Exception ex) 

           {{ 

            JOptionPane.showMessageDialog(null,ex.getMessage()); 

         }    }    } 

     public void doIt() throws Exception 

 { 

                OutboundNotification outboundNotification = new OutboundNotification(); 

  System.out.println("Sending message from a serial gsm modem."); 

  SerialModemGateway gateway = new SerialModemGateway("MODEM", MPort , 

115200,MName,MModel); 

  gateway.setInbound(true); 

  gateway.setOutbound(true); 

  gateway.setSimPin("0000"); 

  // Explicit SMSC address set is required for some modems. 

  // Below is for VODAFONE GREECE - be sure to set your own! 

  gateway.setSmscNumber(SMSNo); 

  Service.getInstance().setOutboundMessageNotification(outboundNotification); 

  Service.getInstance().addGateway(gateway); 

  Service.getInstance().startService(); 

                JOptionPane.showMessageDialog (null, "Modem Information:\n" 

                 +"Manufacturer: " + gateway.getManufacturer()+"\n" 

                 +"Model: " + gateway.getModel()+"\n" 

                 +"Serial No: " + gateway.getSerialNo()+"\n" 



72 
 

                 //+"SIM IMSI: " + gateway.getImsi()+"\n" 

                 +"Signal Level: " + gateway.getSignalLevel() + " dBm\n" 

                 + "\n         PLEASE WAIT UNTIL A MESSAGE STATUS DIALOG BOX APPEAR.         " 

                 ); 

  System.out.println("Modem Information:"); 

  System.out.println("  Manufacturer: " + gateway.getManufacturer()); 

  System.out.println("  Model: " + gateway.getModel()); 

  System.out.println("  Serial No: " + gateway.getSerialNo()); 

  System.out.println("  SIM IMSI: " + gateway.getImsi()); 

  System.out.println("  Signal Level: " + gateway.getSignalLevel() + " dBm"); 

  System.out.println("  Battery Level: " + gateway.getBatteryLevel() + "%"); 

  System.out.println(); 

  // Send a message synchronously. 

  OutboundMessage msg = new OutboundMessage(Phone, SMSArea.getText()); 

  Service.getInstance().sendMessage(msg); 

                JOptionPane.showMessageDialog (null,"SMS to :" + Phone 

                        +"\nStatus Report : " + msg.getMessageStatus() 

                        +"\nError Message : " + msg.getErrorMessage() 

                        + "\nRetry :" + msg.getRetryCount() 

                        ); 

                if (msg.getMessageStatus().toString().equalsIgnoreCase("SENT")){ 

                    SMS = "Sent"; 

                    Service.getInstance().stopService(); 

                }else if (msg.getMessageStatus().toString().equalsIgnoreCase("FAILED")){ 

                    SMS = "Draft"; 

                    Service.getInstance().stopService(); 

                } 

         try{ 

            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

            Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

            Statement stmt = connection.createStatement(); 

            stmt.executeUpdate("UPDATE appointment SET SMS = '" + SMS + "'  WHERE PID = '" + 

PIDField.getText() + "'"); 

         } 

            catch(Exception ex) 

           { 

            JOptionPane.showMessageDialog(null,ex.getMessage()); 

        } 

throw new RuntimeException("Compiled Code"); 



73 
 

} 

public class OutboundNotification implements IOutboundMessageNotification 

 {  public void process(AGateway gateway, OutboundMessage msg) 

  { 

   JOptionPane.showMessageDialog (null,"Outbound handler called from 

Gateway: " + gateway.getGatewayId()); 

                        //System.out.println("Outbound handler called from Gateway: " + 

gateway.getGatewayId()); 

   //System.out.println(msg); 

  } } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



74 
 

4.2.11 Admin Menu 

 

Figure 4.13 Admin Menu 

 

In Figure 4.13 shows the Admin Menu which appear when administrator 

successfully log in to the system. Administrator can have three options in this 

menu. 

public class AdminMenu extends javax.swing.JFrame { 

 

    /** Creates new form AdminMenu */ 

    public AdminMenu() { 

        initComponents(); 

    } private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {                                          

        dispose(); 

        new MainMenu().setVisible(true); 

    }                                         

 

    private void jButton3ActionPerformed(java.awt.event.ActionEvent evt) {                                          

        new AddUser().setVisible(true); 

        this.setVisible(false); 

    }                                         

 

    private void jButton4ActionPerformed(java.awt.event.ActionEvent evt) {                                          



75 
 

       new UsList().setVisible(true); 

 

    }                                         

 

    private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {                                          

        new SystemConf().setVisible(true); 

        this.setVisible(false); 

    }                                         

 

    private void jMenuItem6ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        System.exit(0); 

}                                           

 

    private void jMenuItem2ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        new Console().setVisible(true); 

}                                           

 

    private void jMenuItem7ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        new About().setVisible(true); 

}                                           

 

    /** 

    * @param args the command line arguments 

    */ 

    public static void main(String args[]) { 

        java.awt.EventQueue.invokeLater(new Runnable() { 

            public void run() { 

                new AdminMenu().setVisible(true); 

            } 

        });    } 

 

 

 

 

 

 



76 
 

4.2.12 System Configuration 

 

Figure 4.14 System Configuration Form 

 

In Figure 4.14 shows the System Configuration form. Administrator can 

edit the configuration setting in this form. 

public class SystemConf extends javax.swing.JFrame { 

    /** Creates new form SystemConf */ 

    public SystemConf() { 

        initComponents(); 

    } private void formWindowOpened(java.awt.event.WindowEvent evt) {                                   

        try{ 

            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

            Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

            Statement stmt2 = connection.createStatement(); 

            String queryString2 = "SELECT * FROM admin" ; 

            ResultSet rset2 = stmt2.executeQuery(queryString2); 

            if(rset2.next()){ 

            AdminPassField.setText(rset2.getString("PASSWORD")); 

            MNameField.setText(rset2.getString("NAME")); 

            MModelField.setText(rset2.getString("MODEL")); 

            MPortField.setText(rset2.getString("PORT")); 

            SMSNoField.setText(rset2.getString("SMSCENTER")); 

             }} 



77 
 

            catch(Exception ex) 

           { 

            JOptionPane.showMessageDialog(null,ex.getMessage()); 

        } 

    }                                  

    private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {                                          

       int option = JOptionPane.showConfirmDialog((Component) 

        null, "Are you sure want to change the settings", "Alert", JOptionPane.OK_CANCEL_OPTION); 

         if (option == JOptionPane.OK_OPTION ) { 

            try{ 

                Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

                Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

                Statement stmt = connection.createStatement(); 

                String Pass = AdminPassField.getText(); 

                String MName = MNameField.getText(); 

                String MModel = MModelField.getText(); 

                String MPort = MPortField.getText(); 

                String SMSNo = SMSNoField.getText(); 

                if (MPort.equals("")){ 

                JOptionPane.showMessageDialog(null,"Please fill all the Modem Port 

field","Error",JOptionPane.WARNING_MESSAGE); 

                } 

                else{ 

                stmt.executeUpdate("UPDATE  admin SET Password = '" + Pass + "' , Name = '" + MName + 

"' ,Model = '" + MModel + "' ,Port = '" + MPort + "' ,SMSCENTER = '" + SMSNo + "' "); 

                } 

                 JOptionPane.showMessageDialog(null,"System Setting have been successfully 

saved","Success",JOptionPane.INFORMATION_MESSAGE); 

                 new AdminMenu().setVisible(true); 

                 dispose(); 

           } 

            catch(Exception ex){ 

            JOptionPane.showMessageDialog(null,ex.getMessage()); 

         } 

    }else if (option == JOptionPane.CANCEL_OPTION) { 

        } 

    }                                         

    private void BackButtonActionPerformed(java.awt.event.ActionEvent evt) {                                            

        dispose(); 



78 
 

        new AdminMenu().setVisible(true); 

    }                                           

    private void jMenuItem3ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        System.exit(0); 

}                                           

    private void jMenuItem2ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        new Console().setVisible(true); 

}                                           

    private void jMenuItem4ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        new About().setVisible(true); 

}                                 

 

 

           

    /** 

    * @param args the command line arguments 

    */ 

    public static void main(String args[]) { 

        java.awt.EventQueue.invokeLater(new Runnable() { 

            public void run() { 

                new SystemConf().setVisible(true); 

            } 

        }); 

    } 

 

 

 

 

 

 

 

 

 



79 
 

4.2.13 Add Remove User 

 

Figure 4.15 Add / Remove User Form 

In Figure 4.15 shows the Add/Remove User form which only can be 

access by Administrator. 

public class AddUser extends javax.swing.JFrame { 

 

    private int AddUser; 

    private int Add = 0; 

    /** Creates new form AddUser */ 

    public AddUser() { 

        initComponents(); 

    } private void SearchButtonActionPerformed(java.awt.event.ActionEvent evt) {                                              

        try{ 

            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

            Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

            Statement stmt = connection.createStatement(); 

            String ID = IDField.getText(); 

            String queryString = "SELECT * FROM user WHERE UID = '" + ID + "'" ; 

            ResultSet rset = stmt.executeQuery(queryString); 

            if(rset.next()){ 

                NameField.setText(rset.getString("NAME")); 

                PhoneField.setText(rset.getString("PHONE")); 

                EmailField.setText(rset.getString("EMAIL")); 

                AddressArea.setText(rset.getString("ADDRESS")); 



80 
 

                PositionField.setText(rset.getString("POSITION")); 

                UsernameField.setText(rset.getString("USERNAME")); 

                TComboBox.setSelectedItem(rset.getString("TYPE")); 

                JOptionPane.showMessageDialog(null,"User 

Found","Done",JOptionPane.INFORMATION_MESSAGE); 

                DeleteButton.setEnabled(true); 

                SaveButton.setEnabled(false); 

            } 

        } catch(Exception ex) 

        { 

            JOptionPane.showMessageDialog(null,ex.getMessage()); 

        } 

}                                             

    private void UsernameFieldActionPerformed(java.awt.event.ActionEvent evt) {                                               

        // TODO add your handling code here: 

}                                              

    private void UsernameButtonActionPerformed(java.awt.event.ActionEvent evt) {                                                

        if( AddUser == 0) { 

            NameField.setEditable(true); 

            PhoneField.setEditable(true); 

            EmailField.setEditable(true); 

            PositionField.setEditable(true); 

            AddressArea.setEditable(true); 

            PasswordField.setEditable(true); 

            AddUser = 1; 

        } 

        try{ 

            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

            Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

            Statement stmt = connection.createStatement(); 

            String Username = UsernameField.getText(); 

            ResultSet rset = stmt.executeQuery("SELECT USERNAME FROM user WHERE USERNAME 

= '" + Username + "'"); 

            if(rset.next()){ 

                String name = (rset.getString("USERNAME")); 

                if(Username.equalsIgnoreCase(name)){ 

                    JOptionPane.showMessageDialog(null,"Username already 

used","Done",JOptionPane.INFORMATION_MESSAGE); 

                    NameField.setEditable(false); 



81 
 

                    PhoneField.setEditable(false); 

                    EmailField.setEditable(false); 

                    PositionField.setEditable(false); 

                    AddressArea.setEditable(false); 

                    PasswordField.setEditable(false); 

                    AddUser = 0; 

                } 

            } 

        } catch(Exception ex) { 

            JOptionPane.showMessageDialog(null,ex.getMessage()); 

        } 

    }                                               

    private void AddButtonActionPerformed(java.awt.event.ActionEvent evt) {                                           

        if (Add == 0) { 

            UsernameField.setEditable(true); 

            UsernameButton.setEnabled(true); 

            Add = 1; 

        } 

        Add = 0; 

        AddUser = 0; 

}                                          

    private void SaveButtonActionPerformed(java.awt.event.ActionEvent evt) {                                            

        try{ 

            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

            Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

            Statement stmt = connection.createStatement(); 

            Statement stmt1 = connection.createStatement(); 

            String ID = IDField.getText(); 

            String Name = NameField.getText(); 

            String Phone = PhoneField.getText(); 

            String Address = AddressArea.getText(); 

            String Email = EmailField.getText(); 

            String Position = PositionField.getText(); 

            String Username = UsernameField.getText(); 

            String Password = PasswordField.getText(); 

            String passwordEnc = Crypt.encrypt(Password); 

            String Type = TComboBox.getSelectedItem().toString(); 

            if (ID.equals("") | Name.equals("")| Phone.equals("")| Address.equals("")| Email.equals("")| 

Position.equals("")|Password.equals("")){ 



82 
 

                JOptionPane.showMessageDialog(null,"Please fill the data 

corectly","Error",JOptionPane.WARNING_MESSAGE); 

            } else{ 

                if (Type.equalsIgnoreCase("Doctor")){ 

                    stmt1.executeUpdate("INSERT INTO doctor (USERNAME,PASSWORD) VALUES ('" + 

Username + "' , '" + passwordEnc + "')"); 

                    stmt.executeUpdate("INSERT INTO user 

(UID,NAME,PHONE,ADDRESS,EMAIL,POSITION,USERNAME,TYPE) VALUES ('" + ID + "' , '" + 

Name + "', '" + Phone + "', '" + Address + "', '" + Email + "', '" + Position + "', '" + Username + "' , '" + 

Type + "')"); 

                } else if (Type.equalsIgnoreCase("Staff")){ 

                    stmt1.executeUpdate("INSERT INTO staff VALUES ('" + Username + "' , '" + passwordEnc 

+ "')"); 

                    stmt.executeUpdate("INSERT INTO user 

(UID,NAME,PHONE,ADDRESS,EMAIL,POSITION,USERNAME,TYPE) VALUES ('" + ID + "' , '" + 

Name + "', '" + Phone + "', '" + Address + "', '" + Email + "', '" + Position + "', '" + Username + "', '" + 

Type + "')"); 

                } 

                NameField.setEditable(false); 

                PhoneField.setEditable(false); 

                EmailField.setEditable(false); 

                PositionField.setEditable(false); 

                AddressArea.setEditable(false); 

                PasswordField.setEditable(false); 

                UsernameButton.setEnabled(false); 

                SaveButton.setEnabled(false); 

                AddUser = 0; 

                JOptionPane.showMessageDialog(null,"User "+Username+" have been added 

successfully","Success",JOptionPane.INFORMATION_MESSAGE); 

            } 

        } catch(Exception ex) 

        { 

            JOptionPane.showMessageDialog(null,ex.getMessage()); 

            NameField.setEditable(false); 

            PhoneField.setEditable(false); 

            EmailField.setEditable(false); 

            AddressArea.setEditable(false); 

            PositionField.setEditable(false); 

            UsernameField.setEditable(false); 

            PasswordField.setEditable(false); 



83 
 

            Add = 0; 

            AddUser = 0; 

        }}                                           

    private void DeleteButtonActionPerformed(java.awt.event.ActionEvent evt) {                                              

        int option = JOptionPane.showConfirmDialog((Component) 

                null, "Are you sure want to delete the user", "Alert", JOptionPane.OK_CANCEL_OPTION); 

        if (option == JOptionPane.OK_OPTION ) { 

            try{ 

                Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

                Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

                Statement stmt = connection.createStatement(); 

                String ID = IDField.getText(); 

                String Position = TComboBox.getSelectedItem().toString(); 

                String Username = UsernameField.getText(); 

                if (Position.equalsIgnoreCase("doctor")){ 

                    String queryString = "DELETE FROM user WHERE UID = '" + ID + "'" ; 

                    String queryString2 = "DELETE FROM doctor WHERE USERNAME = '" + Username + "'" 

;                    stmt.executeUpdate(queryString); 

                    stmt.executeUpdate(queryString2); 

                }else if (Position.equalsIgnoreCase("staff")){ 

                    String queryString = "DELETE FROM user WHERE UID = '" + ID + "'" ; 

                    String queryString2 = "DELETE FROM doctor WHERE USERNAME = '" + Username + "'" 

;                    stmt.executeUpdate(queryString); 

                    stmt.executeUpdate(queryString2); 

                } 

                IDField.setText(""); 

                NameField.setText(""); 

                PhoneField.setText(""); 

                EmailField.setText(""); 

                AddressArea.setText(""); 

                PositionField.setText(""); 

                UsernameField.setText(""); 

                PasswordField.setText(""); 

                JOptionPane.showMessageDialog(null,"User data have been 

deleted.","Success",JOptionPane.INFORMATION_MESSAGE); 

            } catch(Exception exception){ 

            } 

        } else if (option == JOptionPane.CANCEL_OPTION) { 

        }}                                             



84 
 

    private void ClearButtonActionPerformed(java.awt.event.ActionEvent evt) {                                             

        IDField.setText(""); 

        NameField.setText(""); 

        PhoneField.setText(""); 

        EmailField.setText(""); 

        PositionField.setText(""); 

        AddressArea.setText(""); 

        UsernameField.setText(""); 

        PasswordField.setText(""); 

        NameField.setEditable(false); 

        PhoneField.setEditable(false); 

        EmailField.setEditable(false); 

        PositionField.setEditable(false); 

        AddressArea.setEditable(false); 

        PasswordField.setEditable(false); 

        UsernameButton.setEnabled(false); 

        SaveButton.setEnabled(true); 

        AddUser = 0; 

}                                            

    private void BackButtonActionPerformed(java.awt.event.ActionEvent evt) {                                            

         dispose(); 

        new AdminMenu().setVisible(true); 

}                                           

    private void jMenuItem3ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        System.exit(0); 

}                                           

    private void jMenuItem2ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        new Console().setVisible(true); 

}                                           

    private void jMenuItem4ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        new About().setVisible(true); 

}                                           

 

 

 

 

    /** 

    * @param args the command line arguments 

    */ 

    public static void main(String args[]) { 



85 
 

        java.awt.EventQueue.invokeLater(new Runnable() { 

            public void run() { 

                new AddUser().setVisible(true); 

            }   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



86 
 

4.2.14 User List 

 

Figure 4.16 User List View for Admin 

In Figure 4.16 shows the User List form which only can be access by 

Administrator. 

public class UsList extends javax.swing.JFrame { 

    /** Creates new form UsList */ 

    public UsList() { 

        initComponents(); 

    } private void BackButtonActionPerformed(java.awt.event.ActionEvent evt) {                                            

        dispose(); 

}                                           

    private void formWindowOpened(java.awt.event.WindowEvent evt) {                                   

        UpdateTable(); 

    }                                  

    private void jMenuItem3ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        System.exit(0); 

}                                           

    private void jMenuItem2ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        new Console().setVisible(true); 

}                                           

    private void jMenuItem4ActionPerformed(java.awt.event.ActionEvent evt) {                                            

        new About().setVisible(true); 

}                                           

 

    /** 



87 
 

    * @param args the command line arguments 

    */ 

    public static void main(String args[]) { 

        java.awt.EventQueue.invokeLater(new Runnable() { 

            public void run() { 

                new UsList().setVisible(true); 

            } 

        }); 

    } 

 

    private void UpdateTable(){ 

 

                try{ 

 

                Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

                Connection connection = 

DriverManager.getConnection("jdbc:mysql://localhost:3306/clinic","kamal","kamal123"); 

                ResultSet rset = null; 

                PreparedStatement pst = null; 

                String sql = "SELECT * FROM user"; 

                pst = connection.prepareStatement(sql); 

                rset = pst.executeQuery(); 

                jTable1.setModel(DbUtils.resultSetToTableModel(rset)); 

 

                } 

                 catch(Exception ex) 

 

           {{ 

            JOptionPane.showMessageDialog(null,ex.getMessage()); 

 

         } 

 

    } 

    } 

 

 

  



88 
 

 

 

 

CHAPTER 5 

 

 

 

RESULT AND DISCUSSION 

 

 

 

5.1 Introduction 

 This chapter discuss about the result after the testing, the development of Clinic 

Management System with Notification using GSM Modem, advantages and 

disadvantages and the assumption for future development of the system. Hopefully, the 

discussion would bring out some benefits and ideas for the future developer to upgrade 

and enhance the performance, functionality of this system and the user interface (UI) 

design so that it will be more interactive and user friendly. 

 

5.2 Result and Discussion 

 With the successful development of this system prototype, it has met its 

objectives stated in Chapter 1 which are: 

i. To computerized and centralized all the information in order to reduce the time 

in retrieving all the data and information. 

ii. To promote Eco-friendly software that will reduce the usage of paper.  

iii. To facilitate patients, so that we can notify the patients using SMS notification, 

so they can be on time for their appointment. 



89 
 

5.3 Lesson Learnt 

i. Skill 

All related skills are needed in order to success in developing Clinic 

Management System with Notification using GSM Modem. This is proven when 

doing research that requires interaction with other people. 

ii. Project Planning 

Planning is a critical part, so this part must give more attention in the 

beginning of the project. So this project takes much time to develop and not a 

perfect one. Therefore, debugging is required while running. In the future, this 

project should have more details in a proper project planning before started any 

project. 

5.4 Advantages and Disadvantages 

 In any system developed, there are some advantages and disadvantages in them. 

So, in this section is a brief explanation to the advantages and disadvantages of Clinic 

Management System with Notification using GSM Modem. 

5.4.1 Advantages 

Clinic Management System with Notification using GSM Modem has 

many advantages than the disadvantages. With this application, business 

activities would run smoothly and efficiently. Plus the history of patient can be 

trigger easily. To enable this function is not as simplistic as thought because the 

data has to be manipulated properly and tested gradually so that the output is 

satisfy. The advantages of PRMS are as below: 

i. The patient record can be updated in real-time uses. The patient has its own 

unique identical ID so that there would not have redundancies. By this way a 

search to the menu could be attempt smoothly and precisely. 

 

ii. Patient Record Management System are managed safely and interactively 

which the flow of the system navigates the user properly. 

 



90 
 

iii. Clinic Management System with Notification using GSM Modem is a secure 

enough from any unauthorized access. The entire doctors and staffs 

password is encrypted using Base64 algorithm. 

 

iv. Doctor can make their appointment with patient base on their free time. 

 

v. Staff can send a SMS to patients to notify their appointment. 

 

vi. The error handling has been included to minimize user mistake while key in 

the data information so this will make the data information become more 

trustworthy. 

5.4.2 Disadvantages 

Although this system has fulfilled the user requirement but it also has 

some disadvantages. The disadvantages of this system are: 

i. Patients cannot make their appointment without going to the clinic. Patients 

must have seen the doctor first before make any appointment. 

5.5 Conclusion   

The main purpose of developing Clinic Management System with Notification 

using GSM Modem is to help any clinic or hospital to manage patient record in the 

premise. This system is able to manage patients’ data effectively and easily. In the other 

words, this system helps the staff to work easily when they want to record about patient 

information and details. 

This system is developed based in the problems and situations (scenarios) that 

occur in that clinic premise. Clinic Management System with Notification using GSM 

Modem is developed based on interactive methodology. The system development are 

Netbeans and PhpmyAdmin. It used the Java as the programming language and MySQL 

as the database platform and data connection between the system and the database. 



91 
 

There are three distinct types of users. The three different types of user that are admin, 

staffs and doctors have their own functionalities and each of them have also have own 

specialties in this Clinic Management System with Notification using GSM Modem.  

 

 

 

 

 

 

  



92 
 

6.0 Reference 

Ritchie, S., (1997). Systems programming in java. 17(3), 30-32. 

Dejan, J. (n.d.). Why java will always be slower than c . Retrieved November 22, 2011, 

from http://www.jelovic.com/articles/why_java_is_slow.htm 

Wikipedia. (n.d.). Retrieved October 5, 2011, from Visual Basic: 

http://en.wikipedia.org/wiki/Visual_Basic 

Wikipedia. (n.d.). Retrieved October 5, 2011, from Java (programming language): 

http://en.wikipedia.org/wiki/Java_(programming_language) 

Dukovic, J. M., & Joyce, D. T., (1995). An evaluation of object-based programming 

with visual basic. 

Businessdictionary.com - online business dictionary. (n.d.). Retrieved from 

http://www.businessdictionary.com/definition/management-system.html 

Egwunyenga, E. J., (2009). A Record Keeping in Universities: Associated Problems and 

Management Options in South West Geo-Political Zone of Nigeria. Int J Edu Sci, 1(2), 

109-113. 

 

Dalcı, I. & Tanış, V. N., (n.d.). Benefits of Computerized AccountingInformation 

Systems on the JIT Production Systems. Review of Social, Economic & Business 

Studies, 2, 45-64 

 

Fredrick, K., (2009). A Web-Based blood donor management information system for 

the Red Cross Society, Uganda (WBBDMI). 

 

Shigeta. A, Suto. & Nosu. K., (2008). Development of Management System for Electric 

Referral Documents and Healthcare Information Exchanging Based on Standardization 

Protocols. 227. 

 

Constantin, D. O., (2011). GSM infrastructure used for data transimission.IEEE 

publishing. 



93 
 

Wikipedia. (n.d.). Retrieved December 4, 2011, from Iterative and incremental 

development: http://en.wikipedia.org/wiki/Iterative_and_incremental_development 

 

NowSMS | SMS Gateway, SMS Server Software, MMS Gateway & MMSC (n.d.). 

Retrieved December 10, 2011, from What is a GSM Modem? | NowSMS: 

http://www.nowsms.com/faq/what-is-a-gsm-mode 

 

Steigjer, M. (2008). Traditional versus iterative development method, and when to use 

which. Retrieved from http://www.silvercrestconsulting.com/gui/pdf/1237375021.pdf 

 

Pressman, R. S. (2010). Software engineering, a practitioner's approach. (7th ed. ed.). 

McGraw-Hill Science/Engineering/Math. 

 

Information on mobile industry!. (n.d.). Retrieved from 

http://www.mobileisgood.com/ArchitectureOfTheGSMNetwork.php 

 

Postel, J. (1982). Simple mail transfer protocol. Retrieved from 

http://www.faqs.org/rfcs/rfc821.html 

  

http://www.faqs.org/rfcs/rfc821.html


94 
 

 

 

 

 

 

 

 

 

 

APPENDICES 

  



95 
 

APPENDIX A 

Gant chart PSM I 

 

  



96 
 

APPENDIX B 

Gant chart PSM II 

 


	INTRODUCTION
	1.1 Introduction
	1.2 Problem Statements
	1.3 Objectives
	1.4 Scope
	1.5 Thesis Organization

	LITERATURE REVIEW
	2.1 Introduction
	2.2 Definition Management System
	2.3 Advantages Computerized System Over The Manual System
	2.4 Technique
	2.4.1 Programming Language
	2.4.2 GSM Modem
	2.4.2.1  Architecture of the GSM network
	Figure 1.1 General architecture of a GSM network
	Source: "Information on mobile"


	2.4.3 Similar System
	Figure 2.1 Comparison between existing systems

	2.4.3 Base64 Encoding
	Figure 2.2 Base64 alphabets.
	2.4.3.1 Encoding
	2.4.3.2 Padding
	2.4.3.3 Decoding


	2.5 Summary

	METHODOLOGY
	3.1 Introduction
	Figure 3.1 Iterative and Incremental Development Method
	3.1.1 The Justification of Iterative and Incremental Development Methodology

	3.2 Iterative and Incremental Development Method
	3.2.1 Planning Stage
	3.2.2 System Requirement
	3.2.3 Hardware Requirements
	3.2.4 Software Requirements

	3.3 Analysis and Design
	3.3.1 Flowchart
	Figure 3.3 Flowchart in the Main Menu
	Figure 3.4 Flowchart in the Staff Menu
	Figure 3.5 Flowchart in the Staff Menu (Continue)
	Figure 3.6 Flowchart in the Doctor Menu
	Figure 3.7 Flowchart in the Doctor Menu (Continue)
	Figure 3.8 Flowchart in the Admin Menu

	3.3.2 Entity Relational Diagram Design
	Figure 3.9 Entity Relationship Diagram

	3.3.3 Use Case Diagram Design
	Figure 3.10 Use Case Diagram


	3.4 Implementation
	3.5 Testing
	3.6 Evaluation and Maintenance

	IMPLEMENTATION
	4.1 Database configuration and Implementation
	Figure 4.1 Database Properties
	Figure 4.2 Entity Relationship

	4.2 System User Interfaces
	4.2.1 Main Menu
	Figure 4.3 Main Menu

	4.2.2 Login
	Figure 4.4 Doctor Log In Form

	4.2.3 Doctor Menu
	Figure 4.5 Doctor Menu

	4.2.4 Edit Profile
	Figure 4.6 Edit Profile Form

	4.2.5 Treatment Form
	Figure 4.7 Treatment Form

	4.2.6 Doctor’s Appointment View
	Figure 4.8 Appointment View for Doctor

	4.2.7 Staff Menu
	Figure 4.9 Staff Menu

	4.2.8 Add New Patient
	Figure 4.10 Add New Patient Form

	4.2.9 View Patient Detail
	Figure 4.11 View Patient Detail Form

	4.2.10 View Appointment
	/
	Figure 4.12 View Appointment Form

	4.2.11 Admin Menu
	Figure 4.13 Admin Menu

	4.2.12 System Configuration
	Figure 4.14 System Configuration Form

	4.2.13 Add Remove User
	Figure 4.15 Add / Remove User Form

	4.2.14 User List
	Figure 4.16 User List View for Admin



	RESULT AND DISCUSSION
	5.1 Introduction
	5.2 Result and Discussion
	5.3 Lesson Learnt
	5.4 Advantages and Disadvantages
	5.4.1 Advantages
	5.4.2 Disadvantages


	5.5 Conclusion
	6.0 Reference

	APPENDICES
	APPENDIX A
	APPENDIX B


