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Genome-wide association study of  
long COVID
 

Infections can lead to persistent symptoms and diseases such as shingles after 
varicella zoster or rheumatic fever after streptococcal infections. Similarly, 
severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) infection can 
result in long coronavirus disease (COVID), typically manifesting as fatigue, 
pulmonary symptoms and cognitive dysfunction. The biological mechanisms 
behind long COVID remain unclear. We performed a genome‑wide association 
study for long COVID including up to 6,450 long COVID cases and 1,093,995 
population controls from 24 studies across 16 countries. We discovered 
an association of FOXP4 with long COVID, independent of its previously 
identified association with severe COVID‑19. The signal was replicated in 9,500 
long COVID cases and 798,835 population controls. Given the transcription 
factor FOXP4’s role in lung physiology and pathology, our findings highlight 
the importance of lung function in the pathophysiology of long COVID.

The coronavirus disease 2019 (COVID‑19) pandemic has led to the rec‑
ognition of a new condition known as postacute sequelae of COVID‑19 
(PASC), post‑COVID‑19 condition or long COVID. The World Health 
Organization’s definition includes any symptoms that present typically 
within three months after COVID‑19 and persist for at least two months1. 
Common symptoms include fatigue, pulmonary dysfunction, mus‑
cle and chest pain, dysautonomia and cognitive disturbances2–6. The 
incidence of long COVID varies widely, with estimates in severe acute 
respiratory syndrome coronavirus 2 (SARS‑CoV‑2)‑infected individuals 
ranging from 10% to 70%7. Long COVID is more common in individuals 
who have been hospitalized or treated at the intensive care unit due to 
COVID‑19 (refs. 7,8). However, long COVID can also occur in those with 
initially mild COVID‑19 symptoms9. Moreover, several mechanisms may 
contribute to long COVID, including alterations of the serotonin system 
that may be related to cognitive changes10, mitochondrial mechanisms 
to fatigue11 and mechanisms involving complement and platelet activa‑
tion to vascular disease observed in patients with long COVID12.

The COVID‑19 Host Genetics Initiative (COVID‑19 HGI) was 
launched to investigate host genetics in COVID‑19 susceptibility, hos‑
pitalization and critical illness13–16. These findings implicate canonical 
pathways involved in viral entry, mucosal airway defense and type I 
interferon response15–18.

To elucidate biological mechanisms behind long COVID, we con‑
ducted a genome‑wide association study (GWAS) and replication in 

33 cohorts across 19 countries, totaling 15,950 individuals with long 
COVID and 1,892,830 controls (Fig. 1).

Results
Genetic variants in FOXP4 locus associated with long COVID
We performed a meta‑analysis of 24 independent GWAS of long 
COVID using two case definitions and two control definitions. A strict 
long COVID case definition required having an earlier test‑verified 
SARS‑CoV‑2 infection (strict case definition), while a broader long 
COVID case definition also included self‑reported or clinician‑ 
diagnosed SARS‑CoV‑2 infection (broad case definition). The broad 
definition included all contributing studies, whereas the strict defini‑
tion included 11 studies (Supplementary Tables 11 and 12). Controls were 
either population controls, or participants that had recovered from 
SARS‑CoV‑2 infection without long COVID (strict control definition; 
Fig. 1 and Supplementary Tables 11 and 12). Data were obtained from 
16 countries, representing populations from six genetic ancestries. 
The most common symptoms in the questionnaire‑based studies were 
fatigue, shortness of breath and problems with memory and concen‑
tration. However, there was some heterogeneity in the frequency of 
symptoms (Supplementary Fig. 1).

The GWAS meta‑analysis using the strict case definition (n = 3,018) 
and the broad control definition (n = 994,582) identified a genome‑wide 
significant association within the FOXP4 locus (chr6: 41,515,652 G > C, 
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due to missingness, due to genotyping and imputation quality, and 
due to differences in allele frequency differences between popula‑
tions. Therefore, the genetic variant that was present in majority of 
the studies was the most statistically significant variant, not nec‑
essarily because it is the causal variant but because it had the best 
statistical power. We, therefore, examined the effect size of variants 
within 30 kb around the lead variant (rs9367106, r2 > 0.01 in individu‑
als of Europeans in the Human Genome Diversity Project19 and 1000 
Genomes Project20,21) and effective sample size of at least one‑third the 
sample size of the lead variant. Through this analysis, we identified a 
haplotype spanning the genomic region chr6:41,512,355–41,537,458 
located upstream of FOXP4 gene (Fig. 3d), for which variants had  
P values less than 5 × 10−7 (Fig. 3a) and effect sizes similar to the lead 
variant across ancestries (Fig. 3b,c). This analysis identified 15 variants 
(Supplementary Table 14). Relying on linkage disequilibrium (LD) 
in the 1000 Genomes Project across African, East Asian European, 
admixed American and South Asian populations, we found 18 variants 
cosegregating with the lead variant with tightest LD at the end of the 
haplotype (r2 > 0.5; Supplementary Table 15). Nine variants overlapped 
between these two analyses.

Frequency of long COVID variants varies across ancestries
The allele frequency of rs9367106‑C at the FOXP4 locus varied across 
the study populations ranging from 1.6% in non‑Finnish Europeans 
to 7.1% in Finnish, 19% in admixed Americans and 36% in East Asians 
(Supplementary Fig. 4; https://gnomad.broadinstitute.org/variant/ 
6‑41515652‑G‑C?dataset=gnomad_r3). Most of the contributing studies 
comprised individuals of European ancestry (Supplementary Fig. 5). 

Genome Reference Consortium Human Build 38 (GRCh38), rs9367106, 
as the lead variant; P = 1.8 × 10−10; Fig. 2 and Supplementary Table 13). 
The C allele at rs9367106 was associated with an increased risk of long 
COVID (odds ratio (OR) = 1.63, 95% confidence interval (CI) = 1.40–
1.89, risk allele frequency = 4.2%). The association replicated in an 
independent sample from eight additional contributing cohorts with 
5,226 individuals with long COVID and 260,036 population controls 
(P = 0.025, OR = 1.13, 95% CI = 1.02–1.25; Supplementary Fig. 3d).  
Furthermore, the lead variants rs9367106 and rs12660421 rep‑
licated in the VA Million Veteran Program (MVP) in the strict case 
analyses with the broad control definition (P = 1 × 10−4, OR = 1.21, 95% 
CI = 1.10–1.34, long COVID cases, n = 4,274 and controls, n = 538,799; 
Supplementary Fig. 3e,f ) and with the strict control definition 
(P = 0.0018, OR = 1.17, 95% CI = 1.06–1.29, long COVID cases, n = 4,274 
and controls, n = 73,739; Supplementary Fig. 3g,h).

We observed an association, albeit not genome‑wide significant, 
with rs9367106‑C and long COVID also in all other three meta‑analyses, 
including our largest meta‑analysis with the broad case definition 
(n = 6,450) and the broad control definition (n = 1,093,995) from 24 
studies (OR = 1.34, 95% CI = 1.20–1.49, P = 1.1 × 10−7; Supplementary 
Figs. 2 and 3). Analyses with the strict case definition (n = 2,964) and 
strict control definition (n = 37,935; OR = 1.30, 95% CI = 1.09–1.56, 
P = 3.8 × 10−3), and with the broad case definition (n = 6,396) and strict 
control definition (n = 46,208; OR = 1.16, 95% CI = 1.02–1.32, P = 0.023), 
further supported our findings (Supplementary Fig. 3).

To examine the consistency of the FOXP4 signal across the con‑
tributing studies, we investigated the effect in each study (Fig. 2b). 
Genetic variants in the meta‑analysis had varying statistical power 
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Fig. 1 | Geographic overview of studies contributing to the Long COVID HGI. 
The 24 studies contributing to the Long COVID HGI data freeze 4 served as the 
discovery cohorts for the GWAS meta‑analyses. Each color represents a meta‑
analysis with specific case and control definitions. Strict case definition, long 
COVID after test‑verified SARS‑CoV‑2 infection; broad case definition, long 
COVID after any SARS‑CoV‑2 infection; strict control definition, individuals 

that had SARS‑CoV‑2 but did not develop long COVID; broad control definition, 
population control, that is, all individuals in each study that did not meet 
the long COVID criteria. Effective sample sizes are shown as the size of each 
diamond shape, and locations of sample collection in (from left to right) North 
America, Europe, Middle East and Asia. For more detailed sample sizes, see 
Supplementary Table 11.
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Despite smaller sample sizes, we observed significant associations in 
admixed American, East Asian and Finnish ancestries (Fig. 2b), owing to 
the higher allele frequency, and thus larger statistical power to detect 
an association with the rs9367106 variant in these cohorts.

Risk variants, FOXP4 expression and COVID-19 severity
We next investigated whether the long COVID variants were associated 
with differential expression of any of the surrounding genes within a 
100‑kb window (FOXP4, FOXP4-AS1, LINC01276 and MIR4641). We found 
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Fig. 2 | Meta-analysis of 11 GWAS studies of long COVID shows an association at 
the FOXP4 locus. a, Manhattan plot of long COVID after test‑verified SARS‑CoV‑2 
infection (strict case definition, n = 3,018) compared to all other individuals 
in each dataset (population controls, broad control definition, n = 994,582). 
A genome‑wide significant association with long COVID was found in the 
chromosome 6, upstream of the FOXP4 gene (chr6: 41,515,652 G:C, GRCh38, 
rs9367106, as the lead variant; P = 1.76 × 10−10, Bonferroni P = 7.06 × 10−10, 
increased risk with the C allele, OR = 1.63, 95% CI = 1.40–1.89). Horizontal lines 
indicate genome‑wide significance thresholds for IVW meta‑analysis before 
(P < 5 × 10−8, dashed line) and after (1.25 × 10−8) Bonferroni correction over the 
four long COVID meta‑analyses (INCMNSZ = MexGen‑COVID Initiative).  

b, Chromosome 6 lead variant across the contributing studies and ancestries in 
GWAS meta‑analyses of long COVID with strict case definition and broad control 
definition. Lead variant rs9367106 (solid line) and if missing, imputed by the 
variant with the highest LD with the lead variant for illustrative purpose, that 
is, rs12660421 (r = 0.98 in European in 1,000 G + HGDP samples55, dotted lines). 
For the imputed variants, β was weighted by multiplying by the LD correlation 
coefficient (r = 0.98). Centre, OR; error bar, 95% CI. Genetic ancestries marked by 
colors. MAF varies across ancestries, ranging from 1% to 34% (Supplementary  
Fig. 4). AFR, African; AMR, Admixed American; EAS, East Asian; EUR, European; 
UKBB, UK Biobank. (Results for the other three GWAS meta‑analyses in 
Supplementary Figs. 2 and 3a–c).
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that rs12660421‑A is associated with an increase in FOXP4 expression 
in the lung (P = 5.3 × 10−9, normalized effect size (NES) = 0.56) and in 
the hypothalamus (P = 2.6 × 10−6, NES = 1.4; Fig. 4a and Supplementary 
Fig. 6; GTEx, https://gtexportal.org/home/snp/rs12660421). Further‑
more, there were no additional expression quantitative trait loci (eQTL) 
or colocalization with the expression of FOXP4-AS1 (Supplementary 
Table 16). FOXP4 (HUGO Gene Nomenclature Committee ID: 20842) is 
a transcription factor gene that has a broad tissue expression pattern 

and is expressed in nearly all tissues, with the highest expression in the 
cervix, the thyroid, the vasculature, the stomach and the testis22. The 
expression also spans a broad set of cell types, including endothelial 
lung cells, immune cells and myocytes23. A colocalization analysis sug‑
gested that the association signal of long COVID is the same signal 
that associates with the differential expression of FOXP4 in the lung 
(posterior probability = 0.91; Supplementary Fig. 7a,b and Supple‑
mentary Table 17).
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colored by statistical significance and showing effect sizes (center, coefficients; 
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correlation coefficient (r) with the long COVID lead variant on y axis. d, Ensembl 
genes in the region (FOXP4 not fully shown; www.ensembl.org)56.
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Furthermore, variants in the FOXP4 region have also been identi‑
fied as risk factors for COVID‑19 hospitalization, colocalizing with 
FOXP4 expression eQTL in the COVID‑19 HGI meta‑analyses and 
follow‑up studies16,24 (Supplementary Fig. 8 and Supplementary 
Table 18). Our colocalization analysis demonstrated the FOXP4 asso‑
ciation identified here as the same association identified for COVID‑19 
severity (posterior probability > 0.97; Supplementary Fig. 7e,f and 
Supplementary Table 17).

FOXP4 expression in blood is associated with long COVID
To understand whether higher FOXP4 expression was seen in long 
COVID, we collected blood samples from participants with or with‑
out active SARS‑CoV‑2 infection. We discovered that the higher FOXP4 
levels in nonacute COVID‑19 samples were associated with increased 
risk of long COVID (OR = 2.31 per 1 s.d. increase in FOXP4 expression, 
95% CI = 1.27–4.22, P = 0.0063; Supplementary Fig. 9), while FOXP4 
levels in acute COVID‑19 samples were not associated with long COVID 

(P = 0.62). This is orthogonal evidence to the genetic signal that higher 
FOXP4 levels may lead to long COVID.

FOXP4 expression in alveolar and immune cells in the lung
As lung tissue consists of several cell types, we wanted to elucidate the 
relevant cells that express FOXP4 and may contribute to long COVID. 
We analyzed single‑cell sequencing data from the Tabula Sapiens, a 
previously published atlas of single‑cell sequencing data in healthy 
individuals free of COVID‑1925. FOXP4 expression was the highest in type 
2 alveolar cells in individuals without SARS‑CoV‑2 infection (Fig. 4c) 
and during active infection (Supplementary Fig. 10), suggesting that 
SARS‑CoV‑2 infection was not required for FOXP4 expression. Fur‑
thermore, type 2 alveolar cells are capable of mounting robust innate 
immune responses, thus participating in the immune regulation in the 
lung. Additionally, type 2 alveolar cells secrete surfactant, keep the 
alveoli free from fluid, and serve as progenitor cells repopulating dam‑
aged epithelium after injury26. In addition, we observed nearly equally 
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Fig. 4 | FOXP4 expression in the lung. a, The lead variant rs9367106 was not 
found in the GTEx dataset, but a proxy variant (rs12660421, chr6: 41,520,640) 
in high LD (r2 = 0.97, rs12660421‑A allele is correlated with the long COVID risk 
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lung samples with GG genotype, n = 483, GA genotype, n = 32; https://gtexportal. 
org/home/snp/rs12660421). For other tissues, see multitissue eQTL plot 
in Supplementary Fig. 6. b, Colocalization analysis using eQTL data from 
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high expression of FOXP4 in granulocytes that similarly participate in 
the regulation of innate immune responses. Overall, the findings sug‑
gest a possible role of both immune and alveolar cells in the lung and 
higher expression of FOXP4 in long COVID.

FOXP4 variants located at active chromatin in the lung
To understand the possible causal variation at the FOXP4 locus, we 
performed statistical fine mapping using SLALOM27 (Supplementary 
Note). There were nine variants within the 95% credible set with the 
maximum posterior probability of 0.28 for rs9381074 (Supplementary 
Fig. 11). Given the strong LD pattern among the nine variants within 
the credible set, fine mapping alone might not be able to pinpoint a 
single causal variant in this locus. Therefore, to understand possible 
functional regulatory effects behind the variant association, we used 
the data from the Regulome database28,29, ENCODE30 and VannoPortal31. 
While the majority of the long COVID variants were at active enhancer 
or transcription factor binding sites, four variants had direct evidence 
of transcription factor binding based on chromatin immunoprecipita‑
tion sequencing experiments (Supplementary Tables 19 and 20). One 
of these variants (rs9381074) was directly located on a region that had 
DNA methylation marks across multiple tissues, including immune and 
lung cells (H3K27me3 and H3K4me1, H3K4me3, H3K27ac, H3K4me2 
and H3K4me3), and had evidence of transcriptional activity from 49 dif‑
ferent transcription factors, of which we saw the most consistent direct 
binding of FOXA1 across 55 experiments. Furthermore, we downloaded 
DNase sequencing data from the ENCODE project and observed that 
rs9381074 was directly positioned on a DNase hypersensitivity site in 
the lung (Supplementary Note). Finally, this variant is the same variant 
implicated by statistical fine mapping, suggesting the rs9381074 variant 
as the causal variant for association at the FOXP4 locus.

FOXP4 variant associated with lung cancer
To understand the role of FOXP4 and its associations across diseases, 
we performed phenome‑wide association analysis. We first focused 
on Biobank Japan32, as the long COVID risk allele frequency is high‑
est in East Asia. Phenome‑wide association study (PheWAS) between 
rs9367106 and all phenotypes in Biobank Japan (n = 262) revealed that 
long COVID risk allele was associated with lung cancer (P = 1.2 × 10−6, 
Bonferroni P = 3.1 × 10−4, OR = 1.13, 95% CI = 1.07–1.18; Supplementary 
Fig. 8 and Supplementary Table 18). Furthermore, the long COVID risk 
allele is in LD with the known risk variants for non‑small cell lung car‑
cinoma in Chinese and European populations33 (rs1853837, r2 = 0.88 
in East Asians34) and for lung cancer in never‑smoking Asian women35 
(rs7741164, r2 = 0.98 in East Asians34). Colocalization analysis supported 
that the associations in this locus (within 500 kb of rs9367106) for long 
COVID and lung cancer shared the same genetic signal (colocalization 
posterior probability = 0.98; Supplementary Fig. 7c,d). COVID‑19 phe‑
notypes and lung cancer traits were the only associations found with 
linked variants in the GWAS Catalog (Supplementary Table 21).

We then broadened the analysis to other cohorts. Using data from 
FinnGen and Open Targets, we observed a robust gene level PheWAS 
association with prostate cancer, immune traits including reticu‑
locytes and chronotype (Supplementary Tables 22–24). Moreover, 
colocalization analysis provided by Open Targets showed that FOXP4 
expression and FOXP4 splice QTLs colocalized with blood count traits 
specifically in the blood and the thyroid, but the blood count traits 
did not colocalize with the expression in the lung (Supplementary 
Table 25). These findings suggest that separate regulatory variation 
may contribute to tissue‑specific expression and the control of other‑
wise ubiquitously expressed FOXP4 and contribute to trait associations 
in a tissue‑specific manner.

Long COVID and other phenotypes
We investigated the relationship between long COVID and cardiometa‑
bolic, behavioral and psychiatric traits36 (Fig. 5 and Supplementary 

Table 26). We found positive genetic correlations between long COVID 
and insomnia symptoms, depression, risk tolerance, asthma, diabetes 
and SARS‑CoV‑2 infection, while we saw negative correlations with red 
and white blood cell counts (Fig. 5a). However, identified correlations 
were only nominally significant without multiple testing correction 
(P < 0.05; Supplementary Table 27). The observed scale heritability 
estimates of long COVID ranged from 0.97% to 12.36% (s.e. = 0.0362), 
with the highest heritability in the strict case and strict control defini‑
tions (Supplementary Table 28).

We used Mendelian randomization (MR) to estimate potential 
risk factors by analyzing the same traits mentioned above (Supple‑
mentary Table 26). Genetically predicted earlier smoking initiation 
(P = 0.022), more cigarettes consumed per day (P = 0.046), higher 
levels of high‑density lipoproteins (P = 0.029) and higher body mass 
index (P = 0.046) were nominally significant causal risk factors of long 
COVID (Fig. 5b and Supplementary Table 29). However, none of these 
associations survived correction for multiple comparisons.

FOXP4 signal not explained simply by COVID-19 severity
Earlier research has suggested that COVID‑19 severity is a risk fac‑
tor for long COVID8,37–39 and FOXP4 variants have earlier been impli‑
cated in COVID‑19 severity6. Our initial GWAS and robust replication 
across different cohorts show FOXP4 variants also associated with long 
COVID. However, the results pose an interesting question of whether 
the mechanism of FOXP4 association with long COVID is the same 
mechanism that contributes to COVID‑19 severity. We thus investigated 
the relationship between COVID‑19 hospitalization and long COVID by 
performing a two‑sample MR (Supplementary Table 30). In terms of 
causality, we caution that COVID‑19 hospitalization as causal exposure 
is difficult to interpret because both long COVID and COVID‑19 hospi‑
talization are two outcomes of the same underlying infection. Never‑
theless, the relationship between the effect size for long COVID versus 
the effect size for COVID‑19 severity can shed some light on the role of 
COVID‑19 severity in long COVID. To perform two‑sample MR without 
overlapping samples, we have excluded the studies that contributed 
to the current long COVID freeze 4 and computed a meta‑analysis of 
SARS‑CoV‑2 infection susceptibility and COVID‑19 hospitalization 
of the remaining cohorts in the COVID‑19 HGI. We observed a causal 
relationship of susceptibility and hospitalization on long COVID (strict 
case and broad control definition; inverse variance‑weighted (IVW) 
MR, P = 1.8 × 10−7 for infection and P = 4.8 × 10−8 for hospitalization) 
with no evidence of pleiotropy (MR–Egger intercept P = 0.47 and 0.83, 
respectively; Fig. 5c,d and Supplementary Table 30). Furthermore, sen‑
sitivity analysis by leaving one variant out (Supplementary Table 31), 
or by including long COVID cohorts with European‑ancestry only (Sup‑
plementary Table 32), both supported a robust causal association 
between COVID hospitalization and long COVID. Nevertheless, the 
Wald ratio of long COVID to COVID‑19 hospitalization for the FOXP4 
variant is 1.97 (95% CI = 1.36–2.57), which is significantly greater than 
the slope of the MR‑estimated relationship between COVID‑19 hos‑
pitalization and long COVID (0.35, 95% CI = 0.12–0.57). Furthermore, 
adjusting or stratifying the long COVID GWAS for hospitalization did 
not explain the association between FOXP4 and long COVID (Sup‑
plementary Table 33a).

Thus, the FOXP4 signal demonstrates a stronger association 
with long COVID than expected, meaning that it cannot simply be 
explained by its association with either susceptibility or severity 
of the acute disease alone (Fig. 5c,d). A recent systematic review 
of epidemiological data found a positive association between 
COVID‑19 hospitalization and long COVID with a relationship on 
a log‑odds scale of 0.91 (95% CI = 0.68–1.14)40. Even assuming this 
stronger relationship between COVID‑19 hospitalization and long 
COVID, the observed effect of the FOXP4 variant on long COVID 
still exceeds what would be expected based on the association with  
severity alone.
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Fig. 5 | Genetic correlations and MR causal estimates between long COVID and 
potential risk factors, biomarkers and diseases. a,b, LD score regression  
(a, LDSC, top; Supplementary Table 27) and IVW MR (b, fixed‑effects 
model,bottom; Supplementary Table 29 and Supplementary Data) were used 
for calculating two‑sided P values. The size of each colored square corresponds 
to statistical significance (***P < 0.0001, full‑sized square; **P < 0.01, full‑sized 
square; *P < 0.05, full‑sized square; P < 0.1, large square; P < 0.5, medium square 
and P > 0.5, small square; not corrected for multiple comparisons). A full list of 
traits is provided in Supplementary Table 26. For sample sizes in each long COVID 
GWAS meta‑analysis using strict (S) or broad (B) case and control definitions, 
see Supplementary Table 11. c, MR scatter plot with effect sizes (β ± s.e.) of each 
variant on COVID‑19 susceptibility (reported SARS‑CoV‑2 infection) as exposure 
and long COVID (strict case, broad control definition) as outcome (P (IVW, fixed 
effects) = 1.8 × 10−7, pleiotropy P = 0.47; Supplementary Table 30). d, Similarly, MR 

with COVID‑19 hospitalization as exposure and long COVID as outcome  
(P (IVW fixed effects) = 4.8 × 10−8, pleiotropy P = 0.83; Supplementary Table 30).  
e, Analysis of shared and unique effects between SARS‑CoV‑2 infection 
susceptibility and long COVID using a Bayesian mixture model showed ABO and 
3p21.31 rs73062389 as having shared effects (posterior probability > 0.99). FOXP4 
variant association was discovered in the long COVID meta‑analyses but showed 
also an effect on the susceptibility of the initial infection, though smaller than on 
long COVID (Supplementary Table 34). (Effects shown as β, error bars represent 
95% confidence intervals.) f, Similarly, analysis of shared and unique effects 
between COVID‑19 severity and long COVID using a Bayesian mixture model 
showed FOXP4 variant with a joint effect (posterior probability > 0.9), differing from 
the other severity variants due to its larger effect on long COVID (Supplementary 
Table 35). BMI, body mass index; CRP, C‑reactive protein; eGFR, estimated 
glomerular filtration rate; ADHD, attention‑deficit hyperactivity disorder.
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When SARS‑CoV‑2 infection is required for COVID‑19 disease, and 
for severe COVID‑19, an important question is whether all genetic vari‑
ants that increase COVID‑19 susceptibility or severity are equally large 
risk factors for long COVID. Bayesian methods provide an opportunity 
to estimate whether some variants that affect COVID‑19 susceptibility 
or severity systematically contribute to the risk of long COVID more 
than the other variants. To answer this question, we estimated the pos‑
terior probabilities for all susceptibility and severity variants for long 
COVID using four models—susceptibility/severity only, long COVID 
only and two models for joint effects that differed in their slopes. We 
observed that for COVID‑19 susceptibility, the 3p21.31 locus and the 
ABO locus contributed to both susceptibility and long COVID with 
a high posterior probability (Fig. 5e and Supplementary Table 34). 
Moreover, while many severity variants are also likely to contribute 
to long COVID, their slope between long COVID and severity effects 
was smaller than that of FOXP4 (Fig. 5f and Supplementary Table 35).

Finally, previous studies have shown a potential effect of vaccina‑
tion, strain and severity on long COVID5,7,41–44. To clarify these factors 
with long COVID, we used data from additional cohorts, including 
FinnGen. We observed that, while adjusting for severity or vaccina‑
tion status did not remove the signal, there was a possible stronger 
risk of FOXP4 risk alleles before vaccination and with wild‑type and 
Alpha strains (Supplementary Table 33b,c). A significant association 
of the FOXP4 locus with long COVID in individuals before vaccination 
was observed. Although the effect remained positive postvaccination 
(OR = 1.3), the lack of significant association in these cases may be 
influenced by the relatively small sample size of individuals diagnosed 
with long COVID after vaccination (n = 40; Supplementary Table 33b). 
Earlier epidemiological studies have shown that immunization against 
COVID‑19 is associated with a reduced risk of long COVID43–45. Our data 
are in line with these earlier observations. Furthermore, we sought 
replication for the strain association in the Estonian Biobank, where 
higher risk was also observed with earlier strains, particularly the Alpha 
strain (P = 0.0138).

The possible time‑dependent association with strain prompted us 
to explore the temporal relationship between FOXP4 and long COVID 
from the start of the year 2020 till the spring of 2023. Using data from 
3,684 individuals with long COVID from FinnGen, we observed a signifi‑
cant temporal association with the Cox proportional hazards model 
(HR = 1.3, 95% CI = 1.1–1.7, P = 0.005, npopulation controls = 496,664; Supple‑
mentary Fig. 12). Moreover, particularly homozygosity for the FOXP4 
risk allele increased the risk for long COVID (recessive P = 2.3 × 10−4, 
OR = 5.64, 95% CI = 2.25–14.17). Moreover, we observed a consistently 
higher risk allele homozygosity among long COVID cases in the Esto‑
nian Biobank and MexGene‑COVID (Supplementary Note). Overall, 
these results indicate a temporal relationship with FOXP4 risk variants 
on long COVID and higher risk with homozygosity and earlier viral 
strains. In all these analyses, FOXP4 stood out as an independent risk 
factor for long COVID.

FOXP4 associates with multiple symptoms of long COVID
We aimed to investigate the symptomatic associations between FOXP4 
and long COVID. We focused on well‑established components of long 
COVID as documented in earlier literature7. Using symptom data from 
the two largest cohorts, FinnGen and MVP, we re‑examined the associa‑
tion of FOXP4 with long COVID, requiring lifetime symptoms from any 
of the previously identified subtypes. Our analysis revealed consist‑
ent associations across both MVP and FinnGen cohorts, with fatigue 
and asthma diagnoses, and β‑adrenergic and proton pump inhibitor 
medication showing significant associations in the meta‑analysis of 
the two cohorts (Supplementary Fig. 13 and Supplementary Table 36). 
The replication of these associations in datasets from two different 
countries, with distinct healthcare settings and patient populations, 
strengthens the robustness of the link between FOXP4 and the plethora 
of manifestations of long COVID.

Discussion
In this study, we aimed to understand the host genetic factors that 
contribute to long COVID, using data from 24 studies across 16 coun‑
tries and replicating in independent cohorts. Our analysis identified 
genetic variants within the FOXP4 locus as a risk factor for long COVID. 
The FOXP4 gene is expressed in the lung and the genetic variants asso‑
ciated with long COVID are also associated with differential expression 
of FOXP4 and with lung cancer and COVID‑19 severity. Additionally, 
using MR, we characterized COVID‑19 severity as a causal risk fac‑
tor for long COVID. Overall, our findings provide genomic evidence 
consistent with previous epidemiological and clinical reports of 
long COVID, indicating that long COVID, similarly to other postviral 
conditions, is a heterogeneous disease entity where likely both indi‑
vidual genetic variants and the environmental risk factors contribute  
to disease risk.

Our analysis revealed a connection between long COVID and 
pulmonary endpoints through both individual variants at FOXP4, a 
transcription factor‑coding gene previously linked to lung cancer and 
COVID‑19 severity24, and MR analysis identifying smoking and COVID‑19 
severity as risk factors. Furthermore, expression analysis of the lung, 
and cell type‑specific single‑cell sequencing analysis, showed FOXP4 
expression in both alveolar cell types and immune cells of the lung.

FOXP4 belongs to the subfamily P of the forkhead box transcrip‑
tion factor family genes and is expressed in various tissues, includ‑
ing the lungs and the gut45,46. Moreover, it is highly expressed in 
mucus‑secreting cells of the stomach and intestines47, as well as in 
naïve B, natural killer and memory Treg cells48, and required for normal 
T cell memory function following infection49. FOXP1/FOXP2/FOXP4 are 
also required for promoting lung endoderm development by repress‑
ing expression of nonpulmonary transcription factors50, and the loss 
of FOXP1/FOXP4 adversely affects airway epithelial regeneration51. 
Furthermore, FOXP4 has been implicated in airway fibrosis52 and the 
promotion of lung cancer growth and invasion53. We find that the vari‑
ants associated with long COVID are also associated with lung cancer in 
Biobank Japan32. These observations together with the present study 
may suggest that the connection between FOXP4 and long COVID 
may be rooted in both lung function and immunology. Furthermore, 
FOXP4 expression in both alveolar and immune cells in the lung, and 
the association with severe COVID‑19 and pulmonary diseases such as 
cancer, suggests that FOXP4 may participate in local immune responses 
in the lung.

Our functional analysis further implicated FOXP4 as a risk factor for 
long COVID, irrespective of the genotype status of the here‑identified 
risk variant. FOXP4 expression levels were higher in individuals with 
long COVID than controls. Furthermore, we observed a consistent 
effect of FOXP4 risk variants across ancestries. Moreover, having 
multiple ancestries enabled us to fine‑map a likely causal variant at 
rs9381074, which was further supported by functional methylation 
and expression data.

We also discovered a causal relationship between SARS‑CoV‑2 
infection and long COVID, as expected, and an additional causal risk 
between severe, hospital treatment‑requiring COVID‑19 and long 
COVID. This finding is in agreement with earlier epidemiological 
observations8,37–39. The relationship between COVID‑19 severity and 
long COVID raises an interesting question—when SARS‑CoV‑2 infection 
is required for both COVID‑19 and severe COVID‑19, are all genetic vari‑
ants that increase COVID‑19 susceptibility or severity equally large risk 
factors for long COVID? In the present study, we aimed to answer this 
question by examining variant effect sizes between SARS‑CoV‑2 infec‑
tion susceptibility, COVID‑19 severity and long COVID using stratified 
and adjusted analyses, and by Bayesian modeling. Among the known 
SARS‑CoV‑2 susceptibility loci, ABO and 3p21.31 had a high probability 
of also contributing to long COVID. Moreover, the FOXP4 variants had 
higher effect sizes for long COVID than expected based on the other 
severity variants, suggesting an independent role of FOXP4 for long 
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COVID that was not observed among the other COVID‑19 severity 
variants. Such observation offers clues on biological mechanisms, 
such as FOXP4 affecting pulmonary function and immunity, which 
then contribute to the development of long COVID. Overall, our study 
elucidates genetic risk factors for long COVID, the relationship between 
long COVID and severe COVID‑19, and finally possible mechanisms of 
how FOXP4 contributes to the risk of long COVID.

Moreover, while several lines of evidence from the original GWAS 
association, replication, stratified analyses to Bayesian analysis and 
the significance of individual variants suggest that FOXP4 contributes 
to long COVID in a stronger way than expected, the mechanism that 
FOXP4 associates with long COVID may be the same mechanism that 
contributes to COVID‑19 severity. Future studies and iterations of this 
work will likely grow the number of observed genetic variants and 
further clarify the biological mechanisms underlying long COVID. We 
also caution that the genetic predisposition to long COVID might be 
dependent on SARS‑CoV‑2 variation and vaccination status, and that 
a large portion of our data was collected before the omicron wave and 
widespread vaccination (Supplementary Table 12), which might have 
an impact on the genetic associations.

The contribution of genetic factors to COVID‑19 phenotypes is 
intriguing. As heritability in general is defined as the proportion of 
phenotypic variation attributable to genetic differences within a spe‑
cific environment, in a hypothetical world where every environmental 
factor would be similar, heritability would theoretically approach 
100%. However, as the heritability in infections can be shaped by 
exposure, viral strain, prophylactics, earlier immunity, for example, 
through vaccination efforts, or differences in diagnostic criteria, 
reporting or local recommendations, estimating heritability requires 
relatively large samples for precise estimates. Similarly, heritability 
in earlier studies of COVID‑19 phenotypes was initially less than 1% 
for COVID‑19 susceptibility, severity and critical illness even with 
over 46,000 COVID‑19 cases and 2 million controls6. However, all 
COVID‑19 traits showed robust genetic correlations with the known 
COVID‑19 epidemiological risk factors. In our study, we similarly 
see low heritability with long COVID, which is a limitation in the cur‑
rent study. Nonetheless, the estimate provides a tool to understand 
between‑trait correlations and will likely become more precise with 
larger sample sizes.

We recognize that the symptomatology of long COVID is vari‑
able and includes, in addition to lung symptoms, also other symptom 
domains such as fatigue and cognitive dysfunction7,37,54. In addition, 
the long‑term effects of COVID‑19 are still being studied, and more 
research is needed to understand the full extent of the long‑term dam‑
age caused by SARS‑CoV‑2 and long COVID disease. We also recognize 
that the long COVID diagnosis is still evolving. Nevertheless, our study 
provides direct genetic evidence that lung pathophysiology can have 
an integral part in the development of long COVID.
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Methods
Contributing studies
Participants of each of the contributing 33 studies provided written 
informed consent to participate in each respective study, with recruit‑
ment and ethics following study‑specific protocols approved by their 
respective institutional review boards (details are provided in Sup‑
plementary Table 12).

For the initial discovery analysis, we used data from the follow‑
ing 24 studies: Avon Longitudinal Study of Parents and Children 
(ALSPAC), Bonn Study of COVID Genetics (BoSCO), Banque québé‑
coise de la COVID‑19 (BQC19), Danish Blood Donor Study (DBDS), 
Extended Cohort for E‑health, Environment and DNA (EXCEED), 
FinnGen, GCAT | Genomes for life, Genetic Bases of COVID‑19 Clinical 
Variability (GEN‑COVID), Genotek, Genetics of Long COVID (GOLD), 
Helix Exome+ and Healthy Nevada Project COVID‑19 Phenotypes 
(Helix), MexGen‑COVID Initiative, COVID‑19 Ioannina Biobank (Ioan‑
nina), Genome‑wide assessment of the gene variants associated with 
severe COVID‑19 phenotype in Iran (IrCovid), Japan COVID‑19 Task 
Force ( JapanTaskForce), Lifelines, Norwegian Mother, Father and Child 
Cohort Study (MoBa), Mount Sinai COVID Biobank (MSCIC), Penn Medi‑
cine BioBank (PMBB), Follow‑UP study of patients with critical COVID‑
19/COVID‑19 Cohort Study of the University Hospital of the Technical 
University Munich (SweCovid/COMRI), Tirschenreuth Study (TiKoCo), 
TwinsUK, UK Biobank and Understanding Society—UK Household 
Longitudinal Study. The total sample size of this Long COVID HGI 
data freeze 4 was 6,450 long COVID cases, 46,208 COVID‑19‑positive 
controls and 1,093,955 population controls (Supplementary Table 12). 
For the replication of the FOXP4 lead variants, we obtained data from 
the following nine additional studies: COVID‑19 cohort at LGDB (Lat‑
viaGDB), COVID‑19 Genomics Network (C19‑GenoNet), COVID‑19 Host 
Immune Response Pathogenesis Study (CHIRP), Estonian Biobank 
(EstBB), Fondazione Genomics SARS‑CoV‑2 Study (FoGS), GEN‑
COV Study (GENCOV), Mass General Brigham Biobank (MGB), The 
Post‑hospitalization COVID‑19 study (PHOSP‑COVID) and VA MVP. The 
replication datasets together comprised 9,500 individuals with long 
COVID and 798,835 population controls (Supplementary Fig. 3d,e and 
Supplementary Table 12).

The effective sample sizes for each study shown in Fig. 1 were  
calculated for display using the given formula: (4 × ncase × ncontrol)/
(ncase + ncontrol). The Long COVID HGI is a global and ongoing collabora‑
tion, open to all studies around the world that have data to run long 
COVID GWAS using our phenotypic criteria described below.

Phenotype definitions
We used the following criteria for assigning case–control status for 
long COVID aligning with the World Health Organization guidelines1 
(Supplementary Note; https://github.com/long‑covid‑hg/LongCovid 
Tools/blob/main/PhenotypeDefinitions_LongCOVID_v1.docx). Study  
participants were defined as long COVID cases if, at least three months 
since SARS‑CoV‑2 infection or COVID‑19 onset, they met any of the 
following criteria:

1. Presence of one or more self‑reported COVID‑19 symptoms 
that cannot be explained by an alternative diagnosis

2. Report of ongoing substantial impact on day‑to‑day activities
3. Any diagnosis codes of long COVID (for example, 

post‑COVID‑19 condition, ICD‑10 code U09(.9))

Criteria 1 and 2 were applied only to questionnaire‑based cohorts, 
whereas 3 was used in studies with electronic health records (EHR). 
Detailed phenotyping criteria and diagnosis codes of each study are 
provided in Supplementary Table 12.

We used two long COVID case definitions, a strict definition requir‑
ing a test‑verified SARS‑CoV‑2 infection and a broad definition includ‑
ing self‑reported or clinician‑diagnosed SARS‑CoV‑2 infection (any 
long COVID).

We applied two control definitions. First, we used population con‑
trols, that is, everybody that is not the case. Population controls were 
genetic ancestry‑matched individuals who were not defined as long 
COVID cases using the above‑mentioned questionnaire or EHR‑based 
definition. In the second analysis, we compared long COVID cases to 
individuals who had had SARS‑CoV‑2 infection but who did not meet 
the criteria of long COVID, that is, had fully recovered within three 
months from the infection.

We used in total four different case–control definitions to generate 
four GWASs as below:

1. Long COVID cases after test‑verified SARS‑CoV‑2 infection 
versus population controls (the strict case definition versus 
the broad control definition)

2. Long COVID within test‑verified SARS‑CoV‑2 infection  
(the strict case definition versus the strict control definition)

3. Any long COVID cases versus population controls (the broad 
case definition versus the broad control definition)

4. Long COVID within any SARS‑CoV‑2 infection (the broad case 
definition versus the strict control definition)

To further investigate the effect of FOXP4 locus on the different 
manifestations of long COVID7 in the FinnGen and MVP datasets, we 
used combined criteria of any long COVID diagnosis (BB: ICD‑10 diag‑
nosis code: U09* (where * can be empty or any string, referring to sub‑
diagnoses)) with lifetime occurrence of specific symptom diagnoses: 
diabetes (ICD‑10: E10*, E11*, E12*, E13*, E14*), fatigue and malaise (ICD‑
10: R53*, G93.3), asthma (ICD‑10: J45*), skin paresthesia (ICD‑10: R20.2), 
β‑adrenergic inhalants (Anatomical Therapeutic Chemical (ATC) drug 
code: R03AC*), headache (ICD‑10: R51*), proton pump inhibitors (ATC: 
A02BC*) or cardiac arrhythmia/abnormalities of heartbeat (ICD‑10: 
I49*, R00*; Supplementary Fig. 13 and Supplementary Table 36). The 
effect of the risk variant rs9367106‑C on long COVID with each symp‑
tom or medication was estimated separately using logistic regres‑
sion, adjusting for age, sex and ten principal components. Finnish 
ancestry from FinnGen and African, Admixed American and European 
ancestries from the MVP were first analyzed separately, followed by a 
meta‑analysis and test for heterogeneity.

GWAS
We largely applied the GWAS analysis plans used in the COVID‑19 
HGI6. Each study performed its own sample collection, genotyp‑
ing, genotype and sample quality control, imputation and asso‑
ciation analyses independently, according to our central analysis 
plan (https://github.com/long‑covid‑hg/LongCovidTools/blob/
main/COVID19HostGenetics_AnalysisPlan_LongCOVID_v1.docx), 
before submitting the GWAS summary statistic level results for 
meta‑analysis (details are provided in Supplementary Table 12). 
We recommended that GWASs were run using REGENIE57 on chro‑
mosomes 1–22 and X, although a minority of the contributing stud‑
ies used SAIGE58 or PLINK2 (ref. 59; Supplementary Table 12). The 
minimum set of covariates to be included at runtime were age, age2, 
sex, age × sex and the first ten genetic principal components. We 
advised studies to include any additional study‑specific covariates 
where needed, such as those related to genotype batches or other 
demographic and technical factors that could lead to stratification 
within the cohort. Studies (n = 2) performing the GWAS using soft‑
ware that does not account for sample relatedness (such as PLINK) 
were advised to exclude related individuals.

GWAS meta-analyses
The meta‑analysis pipeline was also adopted from the COVID‑19 HGI 
flagship paper16. The code is available at Long COVID HGI GitHub 
(https://github.com/long‑covid‑hg/META_ANALYSIS/) and is a modi‑
fied version of the pipeline developed for the COVID‑19 HGI (https://
github.com/covid19‑hg/META_ANALYSIS). To ensure that individual 
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study results did not suffer from excessive inflation, deflation and 
false positives, we manually investigated plots of the reported allele 
frequencies against aggregated gnomAD v3.0 (ref. 55) allele frequen‑
cies in the same population. We also evaluated whether the asso‑
ciation standard errors were excessively small, given the calculated 
effective sample size, to identify studies deviating from the expected 
trend. Where these issues were detected, the studies were contacted 
to reperform the association analysis, if needed, and resubmit  
their results.

Before the meta‑analysis itself, the summary statistics were stand‑
ardized, filtered (excluding variants with allele frequency <0.1% or 
imputation INFO score <0.6), lifted over to reference genome build 
GRCh38 (in studies imputed to GRCh37) and harmonized to gnomAD 
v3.0 through matching by chromosome, position and alleles (Sup‑
plementary Note).

The meta‑analysis was performed using a fixed‑effects IVW 
method on variants that were present in at least two studies con‑
tributing to the specific phenotype being analyzed. To assess 
whether one study was primarily driving any associations, we 
simultaneously ran a leave‑most‑significant‑study‑out (LMSSO) 
meta‑analysis for each variant (based on the variant’s study‑level 
P value). Heterogeneity between studies was estimated using 
Cochran’s Q test60. Each set of meta‑analysis results was then fil‑
tered to exclude variants whose total effective sample size (in the 
non‑LMSSO analysis) was less than one‑third of the total effective 
sample size of all studies contributing to that meta‑analysis. We 
report significant loci that pass the genome‑wide significance 
threshold (P ≤ 5 × 10−8/4 = 1.25 × 10−8) accounting for the number 
of GWAS meta‑analyses we performed.

Principal component projection
In a similar fashion to the COVID‑19 HGI, we asked each study to project 
their cohort onto a multiethnic genetic principal component space 
(Supplementary Fig. 5), by providing studies with precomputed PC 
loadings and reference allele frequencies from unrelated samples 
from the 1000 Genomes Project20,21 and the Human Genome Diver‑
sity Project. The loadings and frequencies were generated for a set of 
117,221 autosomal, common (minor allele frequency (MAF) ≥ 0.1%) and 
LD‑pruned (r2 < 0.8; 500‑kb window) SNPs that would be available in 
the imputed data of most studies. Access to the projecting and plot‑
ting scripts was made available to the studies at https://github.com/ 
long‑covid‑hg/pca_projection.

eQTL, PheWAS and colocalization
For the single (Bonferroni‑corrected) genome‑wide significant lead var‑
iant, rs9367106, we used the GTEx portal (https://gtexportal.org/)22,23 to 
understand whether this variant had any tissue‑specific effects on gene 
expression. As rs9367106 was not available in the GTEx database, we 
first identified a proxy variant, rs12660421 (r2 = 0.90) using all individu‑
als from the 1000 Genomes Project20,21 and then performed a lookup 
in the portal’s GTEx v8 dataset23.

To identify other phenotypes associated with rs9367106, we used 
the Biobank Japan PheWeb portal (https://pheweb.jp/)9 to perform a 
phenome‑wide association analysis, as the MAF of rs9367106 is highest 
in East Asia. Furthermore, we explored variant and locus‑level associa‑
tions in Estonian Biobank, FinnGen and Open Targets.

To assess whether the FOXP4 association is shared between 
long COVID, and tissue‑specific eQTLs, lung cancer and COVID‑19 
hospitalization, we extracted a 1‑Mb region centered on rs9367107 
(chr6: 41,015,652–42,015,652) from the lung cancer and COVID‑19 
hospitalization summary statistics and the GTEx v8 data and per‑
formed colocalization analyses using the R package coloc (v5.1.0.1)61,62 
in R v4.2.2. Colocalization locus zoom plots were created using the 
LocusCompareR R package v1.0.0 (ref. 63), with LD r2 estimated using 
1000 Genomes European‑ancestry individuals20,21.

Genetic correlation and MR
We assessed the genetic overlap and causal associations between long 
COVID outcomes and the same set of risk factors, biomarkers and 
disease liabilities as in the COVID‑19 HGI flagship paper16. Additionally, 
we tested the overlap and causal impact of COVID‑19 susceptibility 
and hospitalization risk. Genetic correlations were assessed using 
Linkage Disequilibrium Score Regression v1.0.1 (ref. 64). Where there 
were sufficient genome‑wide significant variants, the causal impact 
was tested in a two‑sample MR framework using the TwoSampleMR 
(v0.5.6) R package65 with R v4.0.3. To avoid sample overlap between 
exposure GWASs (here COVID‑19 hospitalization and SARS‑CoV‑2 
reported infection) and outcome GWASs (here long COVID pheno‑
types), we performed meta‑analyses of COVID‑19 hospitalization and 
SARS‑CoV‑2 reported infection using data freeze 7 of the COVID‑19 HGI 
by excluding studies that participated in the long COVID (data freeze 4) 
effort. Independent significant exposure variants with P ≤ 5 × 10−8 were 
identified by LD‑clumping the full set of summary statistics using an LD 
r2 threshold of 0.001 (based on the 1000 Genomes European‑ancestry 
reference samples20,21) and a 10‑Mb clumping window. For each expo‑
sure–outcome pair, these variants were then harmonized to remove 
variants with mismatched alleles and ambiguous palindromic variants 
(MAF > 45%). Fixed‑effects IVW meta‑analysis was used as the primary 
MR method, with MR–Egger, weighted median estimator, weighted 
mode‑based estimator and MR‑PRESSO used in sensitivity analyses. 
Heterogeneity was assessed using the MR‑PRESSO global test and plei‑
otropy using the MR–Egger intercept. The genetic correlation and MR 
analyses were implemented as a Snakemake Workflow made available 
at https://github.com/marcoralab/MRcovid. Leave‑one‑variant‑out‑MR 
and European‑only long COVID analyses were run as sensitivity analy‑
ses to test the robustness of MR results with COVID hospitalization as 
exposure and long COVID as outcome.

Summaries of the exposure GWAS are provided in Supplementary 
Table 26, and the association statistics for all exposure variants are 
provided in Supplementary Data.

Bayesian clustering of effects based on linear relationships
We compared effect size estimates between long COVID and COVID 
severity, and similarly, between long COVID and SARS‑CoV‑2 infec‑
tion. COVID‑19 hospitalization was used as a proxy for severity. For 
this purpose, we selected those variants that had earlier association 
evidence at the genome‑wide significant level for COVID‑19 severity or 
SARS‑CoV‑2 infection and examined whether these variants had joint or 
higher effect than expected for long COVID. The linemodels R package 
was utilized for comparing linear relationships (https://github.com/ 
mjpirinen/linemodels)66. This line model method performs probabil‑
istic clustering of variables based on their observed effect sizes on two 
outcomes (Supplementary Note).

Statistics and reproducibility
To maximize the statistical power for detecting genetic variants associ‑
ated with long COVID, we used data from as many cohorts as possible 
with information on long COVID and study participants without long 
COVID. Moreover, to ensure reproducibility, we examined the robust‑
ness and replication of the signal across nine independent cohorts that 
joined the Long COVID HGI after data freeze 4 where the association 
was initially discovered.

For additional methodological details, see Supplementary Note.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
We have made the results of these GWAS meta‑analyses publicly avail‑
able for variants passing post‑meta‑analysis filtering for MAF ≥ 1% 
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and effective sample size >1/3 of the maximum effective sample size 
for each meta‑analysis. The results from the four meta‑analyses have 
been deposited to GWAS Catalog67 and LocusZoom68, where the asso‑
ciations can be visually explored and the summary statistics exported 
for further scientific discovery.
Strict case definition (long COVID after test‑verified SARS‑CoV‑2 infec‑
tion) versus broad control definition (population control):
https://www.ebi.ac.uk/gwas/studies/GCST90454540
https://my.locuszoom.org/gwas/192226/
Broad case definition (long COVID after any SARS‑CoV‑2 infection) 
versus broad control definition:
https://www.ebi.ac.uk/gwas/studies/GCST90454541
https://my.locuszoom.org/gwas/826733/
Strict case definition versus strict control definition (individuals that 
had SARS‑CoV‑2 but did not develop long COVID):
https://www.ebi.ac.uk/gwas/studies/GCST90454542
https://my.locuszoom.org/gwas/793752/
Broad case definition versus strict control definition:
https://www.ebi.ac.uk/gwas/studies/GCST90454543
https://my.locuszoom.org/gwas/91854/

Code availability
Instructions and example code for phenotyping, sample collection, 
genotyping, genotype and sample quality control, imputation and 
association analyses are shared in our central analysis plan (https://
github.com/long‑covid‑hg/LongCovidTools/blob/main/COVID‑
19HostGenetics_AnalysisPlan_LongCOVID_v1.docx, https://github.
com/long‑covid‑hg/LongCovidTools/blob/main/PhenotypeDefini‑
tions_LongCOVID_v1.docx). Furthermore, we have used GitHub public 
repositories for providing code for GWAS summary statistics lift‑over 
and meta‑analyses (https://github.com/long‑covid‑hg/META_ANALY‑
SIS, modified from the previously published COVID‑19 HGI pipeline15,16), 
for PCA projecting and plotting (https://github.com/long‑covid‑hg/
pca_projection) and for MR and genetic correlation (https://github.
com/marcoralab/MRcovid). Code used for fine mapping (https://
github.com/mkanai/slalom)27 and Bayesian clustering of effects based 
on linear relationships (https://github.com/mjpirinen/linemodels)66  
is also publicly available and has been previously published.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Provided in the manuscript Methods section, Supplementary Table 12, and Supplementary Note.   
Instructions and example code for phenotyping, sample collection, genotyping, genotype and sample quality control, imputation, and 
association analyses shared in our central analysis plan.

Data analysis Provided in the manuscript Methods section, Supplementary Table 12, Supplementary Note, and in the Code Availability statement.  
Instructions and example code for phenotyping, sample collection, genotyping, genotype and sample quality control, imputation, and 
association analyses are shared in our central analysis plan (https://github.com/long-covid-hg/LongCovidTools/blob/main/
COVID19HostGenetics_AnalysisPlan_LongCOVID_v1.docx, https://github.com/long-covid-hg/LongCovidTools/blob/main/
PhenotypeDefinitions_LongCOVID_v1.docx). Furthermore, we have used GitHub public repositories for providing code for GWAS summary 
statistics lift-over and meta-analyses (https://github.com/long-covid-hg/META_ANALYSIS, modified from the previously published COVID-19 
HGI pipeline), for PCA projecting and plotting (https://github.com/long-covid-hg/pca_projection), and for Mendelian randomization and 
genetic correlation (https://github.com/marcoralab/MRcovid). Code used for fine-mapping (https://github.com/mkanai/slalom) and Bayesian 
clustering of effects based on linear relationships (https://github.com/mjpirinen/linemodels) is also publicly available and has been previously 
published.
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Data availability (as provided in the manuscript) 
We have made the results of these GWAS meta-analyses publicly available for variants passing post-meta-analysis filtering for minor allele frequency >=1% and 
effective sample size >1/3 of the maximum effective sample size for each meta-analysis. The results from the four meta-analyses have been deposited to GWAS 
Catalog and LocusZoom, where the associations can be visually explored and the summary statistics exported for further scientific discovery.  
Strict case definition (Long COVID after test-verified SARS-CoV-2 infection) vs broad control definition (population control):  
https://www.ebi.ac.uk/gwas/studies/GCST90454540 
https://my.locuszoom.org/gwas/192226/ 
Broad case definition (Long COVID after any SARS-CoV-2 infection) vs broad control definition:  
https://www.ebi.ac.uk/gwas/studies/GCST90454541 
https://my.locuszoom.org/gwas/826733/ 
Strict case definition vs strict control definition (individuals that had SARS-CoV-2 but did not develop Long COVID):  
https://www.ebi.ac.uk/gwas/studies/GCST90454542https://my.locuszoom.org/gwas/793752/ 
Broad case definition vs strict control definition:  
https://www.ebi.ac.uk/gwas/studies/GCST90454543https://my.locuszoom.org/gwas/91854/
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Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
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Reporting on sex and gender All GWASs were performed adjusting for sex. Sex-stratified analyses can be performed in future data freezes as the sample 
sizes grow.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Genetic ancestry was assessed in each contributing study by principal component projection to ensure robustness of our 
genetic association analyses. Each study ran GWAS within-ancestry, and our multi-ancestry meta-analyses combined all 
studies regardless of ancestry. More info provided in the Methods and Supplementary Methods.

Population characteristics Detailed information on the recruitment of study participants, phenotyping using diagnoses from electronic health records or 
questionnaire information on COVID symptoms and recovery, genetic ancestry, genotyping etc. is provided by each 
contributing study in the Supplementary Table 12.

Recruitment Each of the 24 initially contributing studies and 9 replication studies recruited their participants independently. Some of the 
studies (such as FinnGen and UK Biobank) were larger biobank-type data sets, whereas others were smaller clinical cohorts. 
Please see more detailed information in the Supplementary Table 12.

Ethics oversight Participants provided written informed consent to participate in each respective study, with recruitment and ethics following 
study-specific protocols approved by their respective Institutional Review Boards and studies performed in accordance with 
the Declaration of Helsinki. Details are provided in Supplementary Table 12 where we have now added the replication 
cohorts.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The Long COVID Host Genetics Initiative (HGI) is a global and ongoing collaboration project to study genetic factors associated with the risk for 
developing long-term health problems after SARS-CoV-2 infection. The initiative is open to all studies around the world that have data to run 
Long COVID genome-wide association study (GWAS). We have meta-analysed all Long COVID GWAS that contributing studies ran and shared 
to us. A total of 24 studies contributed to the analysis, with a total sample size of 6,450 Long COVID cases with 46,208 COVID-19 positive 
controls and 1,093,955 population controls from 6 ancestries. The finding was replicated in an independent dataset of nine additional cohorts 
with 9,500 Long COVID cases and 798,835 population controls.  
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To maximize statistical power for detecting genetic variants associated to Long COVID, we utilized data from as many cohorts as possible with 
information of Long COVID and study participants without Long COVID. Moreover, to ensure reproducibility, we examined the robustness and 
replication of the signal across nine independent cohorts that joined the Long COVID Host Genetics Initiative after the data freeze 4 where the 
initial association was discovered.

Data exclusions Genetic variants with allele frequency <0.1% or imputation INFO score <0.6 were excluded from the GWAS meta-analyses. Study-specific 
information on data collection and analysis is provided in the Supplementary Table 12.

Replication The association in FOXP4 locus was replicated using an independent dataset with nine additional cohorts with 9,500 Long COVID cases and 
798,835 controls.

Randomization The phenotype definitions were designed by our global Long COVID Host Genetics Initiative working group based on clinical information on 
Long COVID symptoms. Each study then defined the case and control groups based on observational data (either electronic health record 
diagnosis data, or questionnaire information on symptoms and recovery) within their data set. Randomization does not apply to this study 
design.

Blinding Our study was not a controlled trial but a genome-wide association study (GWAS) using genotypic information combined to questionnaire and 
electronic health record data to define case and control groups, and thus blinding and randomization do not apply.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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