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ABSTRAK 

Tesis ini mengkaji klasifikasi teks kontekstual, yang merupakan proses mengkategorikan 
data teks ke dalam kelas atau kategori yang berbeza berdasarkan maknanya dalam 
konteks yang diberikan. Komponen utama dalam proses ini adalah representasi perkataan 
melalui vektor untuk interpretasi pengkomputeran. Praktis semasa ialah menggunakan 
Model Bahasa Besar atau Large Language Model (LLM) untuk menghasilkan vektor 
representasi perkataan yang terkontekstual. Penghasilan ini diperolehi melalui pra-latihan 
LLM pada korpora yang luas bagi membolehkannya memahami corak bahasa dan 
konteks yang rumit. Untuk klasifikasi teks kontekstual, LLM pra-latihan tersebut akan 
melalui satu lagi proses latihan menggunakan data yang diberi label khusus untuk 
klasifikasi. Proses latihan kedua ini dipanggil penalaan halus. Walaupun pendekatan pra-
latihan dan penalaan halus pada ketika ini dianggap yang paling optimal dalam bidang 
ini, ia berhadapan cabaran yang besar dari segi kos pengkomputeran yang diperlukan. Ini 
adalah kerana jumlah parameter yang perlu dilatih di dalam LLM adalah sangat besar, 
menyebabkan kos latihan menjadi sangat tinggi. Tambahan lagi, walaupun LLM pra-
latihan boleh menghasilkan vektor representasi perkataan yang terkontekstual, ia tidak 
mempunyai fleksibiliti untuk mengubah nilai semantik vektor-vektor tersebut di luar 
LLM. Untuk menutup jurang ini, kajian ini menyusun metodologi penyelidikan lima fasa 
bagi mencadang dan menilai algoritma yang membolehkan modifikasi luaran vektor 
perkataan yang dihasilkan oleh LLM menggunakan nilai skalar sebagai faktor tumpuan. 
Untuk menilai algoritma ini, vektor perkataan yang telah diubahsuai dibandingkan 
dengan vektor perkataan asal yang dihasilkan oleh LLM bagi menganalisis kesan 
modifikasi berkenaan dalam konteks yang difokuskan. Selain itu, eksperimen klasifikasi 
teks kontekstual juga dijalankan bagi menilai prestasi vektor perkataan yang telah 
diubahsuai tersebut dalam proses klasifikasi yang diperlukan. Untuk eksperimen ini, 
vektor perkataan yang telah diubahsuai akan digunakan sebagai input untuk melatih 
model Pembelajaran Mesin atau Machine Learning (ML) bagi tugas klasifikasi teks 
dengan matlamat untuk membangunkan model ML yang mempunyai bilangan parameter 
yang jauh lebih kecil dari LLM. Eksperimen ini bertujuan untuk menilai keberkesanan 
vektor perkataan yang telah diubahsuai dalam tugas klasifikasi teks kontekstual dengan 
menggunakan pendekatan pengkomputeran yang lebih efisien. Berdasarkan hasil 
eksperimen yang diperolehi, ia menunjukkan bahawa algoritma yang dibangunkan dapat 
mengubah vektor perkataan asal yang dihasilkan oleh LLM bagi mencerminkan konteks 
yang dikehendaki dalam proses klasifikasi teks kontekstual yang berkenaan. Ini dapat 
dilihat melalui hasil eksperimen yang memperolehi skor lebih tinggi daripada skor 
rujukan. Metrik penilaian yang digunakan dalam eksperimen berkenaan ialah Ketepatan, 
Kejituan, Kecetusan, dan Skor F1, dengan Ketepatan dan Skor F1 berfungsi sebagai 
metrik utama. Hasil penilaian metrik berkenaan menunjukkan peningkatan yang ketara, 
dengan model ML ujian mencapai skor ketepatan terbaik sebanyak 0.571, peningkatan 
sebanyak 46% dari skor rujukan, dan skor F1 terbaik sebanyak 0.727, peningkatan 
sebanyak 30% dari skor rujukan. Secara keseluruhan, tesis ini membentangkan lima 
sumbangan utama dalam bidang kajian iaitu algoritma bagi mengubahsuai vektor 
perkataan, set data klasifikasi kontekstual baharu bernama QCoC, pengelas soalan yang 
efisien berdasarkan algoritma feed-forward neural network, potensi untuk memindahkan 
kerja yang dibentangkan kepada domain lain, dan implikasi praktikal kerja yang 
dibentangkan kepada kes-kes di mana sumber pengkomputeran adalah terhad atau mahal. 
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ABSTRACT 

This thesis investigates contextual text classification, which is the process of categorising 
textual data into different classes or categories based on its meaning within a given 
context. Central to this process is the representation of words through vectors for 
computational interpretation. Current practices employ Large Language Models (LLMs) 
to generate contextualised word representation vectors, achieved through pre-training the 
LLM on vast corpora that enables it to grasp intricate language patterns and context. For 
contextual text classification, the pre-trained LLM is further train on classification-
specific labeled data in a process called fine-tuning. Although this approach is currently 
considered the most optimal in the field, it poses a notable challenge due to the substantial 
demand for computing resources stemming from the vast number of trainable parameters 
in LLMs. Furthermore, although pre-trained LLMs can generate contextualised word 
representation vectors, they lack the flexibility to modify the semantic significance of 
these vectors outside of the LLM, necessitating fine-tuning for the modification of word 
vectors. To bridge this gap, a five-phase research methodology is structured to propose 
and evaluate an algorithm enabling the external modification of LLM-generated word 
vectors using scalar values as the focus weightage. To validate this algorithm, the 
modified word vectors are compared with original LLM-generated word vectors to 
evaluate their reflection of the intended context. In addition, a contextual text 
classification experiment is conducted using benchmarked datasets to assess the 
performance of the modified word vectors in the targeted classification task. For this 
experiment, the modified word vectors serve as input to train a Machine Learning (ML) 
model for the text classification process, aiming for the developed ML model to have a 
significantly smaller parameter count. This experiment aims to determine the 
effectiveness of the modified word vectors in contextual text classification tasks, utilizing 
a more computationally efficient approach. Based on the acquired results, the 
experiments reveal that the modified word vectors algorithm can effectively alter original 
LLM-generated word vectors to reflect intended contexts and can outperform baseline 
scores in contextual text classification tasks. Evaluation metrics including Accuracy, 
Precision, Recall, and F1 score are employed in the evaluation process, with Accuracy 
and F1 score serving as primary metrics. The evaluation showcases significant 
improvements, with the test ML model achieving a best accuracy score of 0.571, a 46% 
increase from the baseline, and a best F1 score of 0.727, a 30% increment from the 
baseline. Overall, this thesis presents five contributions: the proposed modified word 
vectors algorithm, the new contextual classification dataset named QCoC, the efficient 
question-type classifier based on the feed-forward neural network algorithm, the potential 
transferability of the presented work to other domains, and the practical implications of 
the presented work towards cases where computational resources are limited or costly. 
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CHAPTER 1 
 
 

INTRODUCTION 

1.1 Background 

Natural Language Processing (NLP) is a branch of artificial intelligence that 

focuses on the interaction between humans and computers using natural human language 

(Khurana et al., 2023). Its primary goal is to enable machines to understand, interpret, 

and generate human language in a way that is both meaningful and contextually relevant. 

NLP encompasses a wide range of tasks, including language translation, sentiment 

analysis, text summarisation, text classification, and information retrieval, among others 

(Qin et al., 2023).  

One crucial aspect of NLP is the representation of words in a form that computers 

can understand and process (Naseem et al., 2021). Traditional methods often represented 

words as discrete symbols, but more recent approaches employ word vectors, which 

capture semantic relationships and contextual information (Jiao & Zhang, 2021; Sezerer 

& Tekir, 2021; Uymaz & Metin, 2022; Patil et al, 2023). Word representation vectors 

transform words into high-dimensional numerical vectors, positioning them in a multi-

dimensional space based on their meaning and context (Salim & Mustafa, 2022; Wadud 

et al., 2022). Weightage in word representation vectors refers to the significance assigned 

to each dimension within the vector space. This significance reflects the importance of 

certain semantic features or contextual nuances associated with a word (Mundotiya et al., 

2022; Ghosal & Jain, 2022). The process of learning these vectors involves training 

models on large corpora of text, where words with similar meanings or contexts end up 

being closer together in the vector space (Liu et al., 2023). 
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In NLP, classification is a common problem where the goal is to categorize text 

data into predefined classes or categories (Gasparetto et al., 2022; Li et al., 2022a). Word 

representation vectors play a crucial role in solving classification problems by capturing 

the semantic meaning of words and their relationships. These vectors allow NLP models 

to understand the context and nuances within a text, enabling more accurate and context-

aware predictions (Abubakar et al., 2022; Dogra et al., 2022). Classification models often 

utilize machine learning algorithms such as support vector machines, decision trees, or 

neural networks (Wahba et al., 2023). The input to these models is typically the word 

representation vectors derived from the text data. The model learns to associate certain 

patterns in the vector space with specific classes, enabling it to make predictions on new, 

unseen text data (Allammary, 2022; Li et al., 2022a; Pham et al., 2023). In essence, the 

interplay between word representation vectors and machine learning algorithms forms 

the backbone of effective text classification, enabling systems to navigate the intricacies 

of language and derive meaningful insights from diverse textual contexts (Da Costa et 

al., 2023). 

New approaches to text classification have shifted towards the fine-tuning of 

Large Language Model (LLM) (Dogra et al., 2022; Qassim et al., 2022; Bilal & Almazroi, 

2023; Zhang et al., 2024). This approach involves using advanced models like BERT 

(Devlin et al., 2018) and GPT (Brown et al., 2020), pre-trained on vast datasets to 

understand complex language patterns and context (pre-training is a process before fine-

tuning). In fine-tuning, these LLMs are exposed to task-specific labeled data, allowing 

them to adapt to specific tasks while retaining their broader linguistic knowledge. This 

method has proven effective not only in various natural language understanding 

applications but also in achieving good performance in text classification tasks (Min at 

al., 2023). The key idea behind fine-tuning LLMs is the smart use of transfer learning 

principles (Azunre, 2021; Bharadiya, 2023). This approach leverages the intrinsic 

linguistic knowledge already embedded in the LLMs through pre-training, significantly 

diminishing the requirement for extensive amounts of task-specific labeled data. In 

essence, this methodology compliment the strengths of pre-training with the fine-tuning 

process, resulting in a framework that exhibits good performance in various text 

classification tasks such as sentiment analysis, document categorization, and others (Kici 

et al., 2021; Qasim et. Al, 2022; Ameer et al., 2023; Onita, 2023; Wadud et al., 2023).  
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1.2 Problem Statement and Research Gap 

Leveraging the fine-tuning of LLMs for text classification presents a promising 

path to attain state-of-the-art results in this NLP downstream task (Dogra et al., 2022; 

Mars, 2022). However, this approach comes with a notable challenge that is the demand 

for substantial computing resources (Sharir et al., 2020; Church et al., 2021; Fernandez 

et al., 2023). Fine-tuning process entails adjusting the pre-trained LLM parameters on 

task-specific data, necessitating extensive computational power and storage capabilities 

due to the vast numbers of parameters in LLM. This poses a significant hurdle for smaller 

research teams, educational institutions, or others with limited access to high-

performance computing resources, hindering their ability to leverage the benefits of fine-

tuned LLMs for text classification. 

While the demand for computational resources presents a significant challenge, 

an additional research gap exists in the inflexibility to externally modifying the weight of 

word vectors without the necessity to modify, re-train, or fine-tune the original word 

embeddings model such as the LLM (Dogra et al., 2022; Incitti et al., 2023; Patil et al., 

2023; Worth, 2023). In many instances, word vectors from the embeddings model are 

directly used without any modification for the NLP downstream tasks, including text 

classification. Examples of such cases include Sabri et al. (2022), who directly employs 

word vectors generated from TF-IDF (Jalilifard et al., 2021), word count (Kowsari et al., 

2019), and Word2Vec (Mikolov et al., 2013; Church, 2016) embeddings models to 

compare results for Arabic text classification; Zhou, who utilizes a TF-IDF embeddings 

model to extract words with sufficient weight, then generates word vectors using 

Word2Vec embeddings model, and feeds the word vectors into a Convolutional Neural 

Network – Long-Short Term Memory (CNN-LSTM) model for text classification (Zhou, 

2022a); Soni et al., who uses the Word2Vec embeddings model to generate word vectors 

from multiple n-grams tokens, which are later fed into a CNN model for the text 

classification process (Soni et al., 2023); Umer et al., who generated the word vectors 

using FastText embeddings model (Joulin et al., 2016; Dharma et al., 2022) for their text 

classificatiom problem (Umer et al., 2023); and Hossain et al., who propose a text 

classification framework that takes word vectors from various embedding models, 

compares them, and selects the best one for input in the machine learning model for the 

text classification process (Hossain et al., 2023).  
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As mentioned, a research gap exists in the inflexibility of externally modifying 

the weight of word vectors without the necessity to modify, re-train, or fine-tune the 

original word embeddings model. Despite this limitation, several attempts to externally 

modify the word vector exist, typically involving weightage in vector format (usually 

concatenating both vectors to produce the final word vector value). In practical terms, 

although the original embeddings model remains unaltered, a new model is required to 

generate the weightage, constituting another word vector value and incurring additional 

computing resources, which are relatively similar to re-training the base model. Examples 

of this practice within text classification tasks include Badri et al., who combine FastText 

(Joulin et al., 2016) and GloVe (Pennington et al., 2014) embeddings models for 

classifying hate speech text (Badri et al., 2022); Zhou et al., who combine GloVe and 

Word2Vec (Mikolov et al., 2013) for text sentiment classification (Zhou et al., 2022b); 

and Liu et al., who concatenate BERT (Devlin et al., 2018) and LDA (Blei et al., 2003) 

embeddings models to produce word vectors containing both word and topic contextual 

information for text classification tasks (Liu et al., 2023). 

Modifying the weight of word vectors using a singular scalar value presents a 

notable challenge in NLP field (Apidianaki, 2023). The inherent difficulty arises from 

the intricate and multifaceted nature of representing words with vector values. Word 

vectors encapsulate complex semantic relationships, capturing the contextual nuances 

and intricacies of language usage. Attempting to uniformly modify these vectors with a 

scalar value encounters challenges due to the varying importance of individual words in 

different contexts (Bollegala & O'Neill, 2022; Xu et al., 2023). Words may carry diverse 

connotations, dependencies, and degrees of importance depending on their usage within 

sentences or documents. Consequently, a uniform scalar modification may overlook these 

subtleties, potentially leading to oversimplification or distortion of the original semantic 

information encoded in the word vectors. Moreover, the intricate interplay between words 

in a given context makes it challenging to devise a universal scalar adjustment that 

equally and meaningfully impacts all word vectors. In essence, the challenge lies in 

finding a balance that allows for meaningful modification of word vector weights while 

respecting the nuanced and context-dependent nature of language. Researchers and 

practitioners in NLP are continually exploring innovative approaches to address this 

challenge and enhance the adaptability of word vectors to better suit specific tasks and 

contexts (Patil et al., 2023; Incitti et al., 2023; Johnson et al., 2024). 
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1.3 Aim, Hypothesis and Research Questions 

This research aims to bridge the identified research gap by proposing a new 

algorithm capable of modifying the weight of a word representation vector through an 

external scalar weight value. The resulting output from this algorithm will subsequently 

serve as input for a Machine Learning (ML) model, facilitating the execution of text 

classification task. In the context of a case study, this research aims to construct a new 

text classification dataset that highlights distinctions in contextual representation. 

Overall, this research hypothesizes that the word representation vector derived from the 

LLM can be altered using an external scalar weight, which can later be used as input for 

an ML model to perform text classification task.  

To test the formulated hypothesis and address the research aim, the following 

research questions and objectives are defined: 

1. How can an algorithm effectively incorporate external scalar weights into word 

representation vectors to enhance context understanding in a contextual text 

classification problem? 

2. What criteria should be considered in the creation of a text classification dataset 

to emphasise differences in context representation? 

3. How does the developed algorithm, incorporating external scalar weights, 

perform when applied to contextual text classification task? 

1.4 Research Objectives  

1. To develop a new algorithm that incorporate an external scalar weight into the 

word representation vector. 

2. To develop a new text classification dataset that emphasises differences in context 

representation.  

3. To evaluate the developed algorithm using a Machine Learning (ML) model in 

the contextual text classification problem. 
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1.5 Research Scopes 

The scope of this research is delimited by the following constraints: 

1. The proposed algorithm will only be tested in the English language. Other natural 

human languages might produce different results. 

2. The proposed algorithm will only be tested using specific hardware and software 

setup. Different setups might produce different results. 

3. Based on the literature, specific LLM, case study and ML model will be selected 

for this study. Implementing the proposed method with different LLMs, case 

studies and ML models might produce different results. 

1.6 Thesis Organisation 

1. Chapter 1 presents the background of this research, including a brief discussion 

on word representation and text classification in Natural Language Processing 

(NLP), the problem statement and research gap, and finally the aim, hypothesis, 

research questions, research objectives and research scopes, forming the 

foundation for this study. 

2. Chapter 2 provides a comprehensive review of the existing literature surrounding 

contextual text classification, focusing on key areas defined in the problem 

statement and research gap for this study. A gap analysis is also provided at the 

beginning of this chapter to guide the flow of the literature topics. Additionally, 

the direction of this research is discussed at the end of this chapter to guide the 

structuring of the research methodology in the next chapter. 

3. Chapter 3 outlines and discusses the methodology of this research, consisting of 

five interconnected phases. Within these phases, several design approaches are 

explained and several algorithms are proposed, accompanied by discussions on 

the expected results from each phase leading towards the next. Overall, this 

chapter outlines the five-phase research methodology through a flowchart and 

general descriptions, then delves into detailed discussions on the activities 

undertaken for each phase. 
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4. Chapter 4 discuss in details the results gathered from all experiments and testings 

that have been explained in the previous chapter. Before discussing the results, 

each phases in the research methodology is being recap with their respective 

expected results are explained. Then each phase’s result is being discussed in 

details with discussion of overall findings towards this research objectives as the 

final analysis towards the overall results of the undergo research methodology. 

5. Chapter 4 discusses in detail the results gathered from all experiments and tests 

explained in the previous chapter. Before delving into the results, each phase of 

the research methodology is briefly reviewed, along with explanations of their 

respective expected outcomes. Subsequently, the results of each phase are 

thoroughly examined, with an overarching discussion of the findings pertaining 

to the research objectives and research questions, serving as the final analysis of 

the overall results of the research methodology undertaken. 

6. Chapter 5 concludes this thesis with a discussion on constraints and limitations, 

contributions, threats to validity, and future works for this research. In the section 

on constraints and limitations, the bounds within which this research is conducted 

are acknowledged, recognizing its limited scope. The section on contributions 

outlines five major contributions from this research, including a new algorithm, a 

new dataset, and other related implementations in other domains. The threats to 

validity section then discusses potential challenges to the validity of this research. 

Lastly, the section on future works outlines five potential avenues for further 

expansion of this research beyond its defined scopes 
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CHAPTER 2 
 
 

LITERATURE REVIEW 

2.1 Introduction 

This chapter aims to provide a comprehensive review of the existing literature 

related to contextual text classification, with a particular focus on addressing key gaps 

and challenges mentioned in previous chapter. In essence, leveraging fine-tuned Large 

Language Models (LLMs) has emerged as a promising approach to achieve state-of-the-

art results in contextual text classification tasks, yet significant hurdles exist, particularly 

concerning accessibility and flexibility. The demand for substantial computational 

resources poses a barrier to the widespread adoption of fine-tuned LLMs, limiting their 

utilization by smaller research teams and educational institutions. Furthermore, a critical 

gap persists in the inflexibility to externally modify the weight of word vectors without 

necessitating modifications to the original embeddings model such as the LLM, hindering 

the customization and adaptability of models for specific tasks and contexts. 

Additionally, challenges in uniformly modifying word vector weights with scalar values 

highlight the intricate and context-dependent nature of language representation. Overall, 

this literature review seeks to explore these gaps in the existing research landscape and 

lay the groundwork for addressing them through the proposed research framework. 

Ultimately, the goal is to devise methods and algorithms that enhance the accessibility, 

flexibility, and effectiveness of LLM-based text classification systems. 

2.2 Gap Analysis 

Building upon the problem statement and research gap discussed in the previous 

Chapter 1, this section will delineate the identified gaps into three main areas, each 

corresponding to the defined research questions and objectives 1, 2, and 3, respectively. 
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GAP 1: Incorporating external scalar weights into word representation 
vectors. Addressing the research question of how algorithms can effectively incorporate 

external scalar weights into word representation vectors to enhance context 

understanding in contextual text classification requires overcoming existing limitations 

in modifying word vector weights. Current literature highlights a gap in methods that 

enable seamless integration of external scalar weights into word vectors without 

necessitating modification, re-training, or fine-tuning of the original embeddings model. 

Existing approaches often involve computationally intensive processes or fail to 

adequately capture the nuanced contextual information required for accurate text 

classification. To explore this area further, this chapter will discuss literature surrounding 

word representations in vector space, particularly focusing on the weight calculation 

method and LLM, which is the current predominant word representation generation 

method. 

GAP 2: Defining criteria for creating text classification datasets emphasising 
context representation differences. To meet the objective of developing a new text 

classification dataset emphasising differences in context representation, it is essential to 

establish criteria for dataset creation that effectively capture the diverse contextual 

nuances present in real-world text data. However, existing datasets may not fully address 

the need for nuanced contextual variations, thereby limiting the effectiveness of 

algorithms trained on them. This particularly evident in question classification datasets, 

where question text is classified based on its possible or expected answer, presenting a 

multiclass classification problem. To further explore this area, this chapter will discuss 

literature related to question classification, focusing on methods and datasets to define 

the suitable criteria that best showcase the contextual differences in questions. 

GAP 3: Evaluating the developed algorithm in the contextual text 
classification problem. Evaluating the developed modified word vectors algorithm 

(from Objective 1) in solving the contextual text classification problem necessitates 

benchmarking its performance against existing approaches. However, the literature lacks 

comprehensive studies assessing the effectiveness of algorithms that modify word vector 

weights in enhancing context understanding for text classification. Given this gap, this 

chapter aims to identify ways in which such evaluation can be performed, starting with 

fundamental literature of Machine Learning (ML) where classification problems have 
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been a major area upon which the entire ML field is structured. Through this literature, 

the ML model, method, or algorithm best suited to this research's case, which involves 

multiclass classification of contextual text data, will be selected as the implementation 

approach. The developed ML system for the multiclass text classification problem will 

then be evaluated based on the baseline score value using various evaluation metrics. 

Based on these three main areas, the following sections will sequentially explore 

the detailed literature, covering all required areas. Before summarizing this chapter, a 

Direction of this Research section will discuss the literature findings pertaining to these 

three main gap areas. These findings will then guide the structuring of the research 

methodology for the entire study. 

2.3 Word Representations in Vector Space 

Word Representation (WR), also known as word embedding or vector 

representation of words, refers to a technique that represents words as real numbers in a 

multidimensional vector space (Naseem et al., 2021; Jiao & Zhang, 2021; Patil et al., 

2023, Incitti et al., 2023). The purpose of WR is to enable computers to interpret human 

language meaningfully by incorporating semantic metadata. Before WR, computers 

could only syntactically interpret words, based on factors such as capitalization and 

character length. For instance, the words “Morning,” “Afternoon,” and “Night” might be 

treated as three separate words with seven, nine, and five characters, respectively. 

However, with WR, these words can be represented using semantical metadata, such as 

their association with the category “Time of the day,” which can be encoded as real 

numbers. As a result, computers can process the meaning of these words more accurately. 

WR encodes the meaning of a word based on its relationship with other words. 

This method is originally derived from fundamental linguistic theories, such as the 

distributional hypothesis, which states that “Words that occur in the same contexts tend 

to have similar meanings” (Harris, 1954; Weaver, 1955), and the principle that “A word 

is characterised by the company it keeps” (Firth, 1957). Generally, WR represents a target 

word based on its relations with other words. For example, “Cat” might be represented 

as “Fur,” “Meow,” and “Pet”; “Dog” as “Fur,” “Woof,” and “Pet”; and “Car” as 

“Vehicle,” “Move,” and “Fast.” With these representations, WR can interpret “Cat” and 
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“Dog” as semantically more similar than “Cat” and “Car,” even though syntactically 

“Cat” and “Car” are more similar than “Cat” and “Dog.” 

Currently, there are two types of WR methods: Static (the older method) and 

Dynamic (the newer method). The Static method assigns a fixed vector to each word in 

the vocabulary (also known as the Word Embedding method) (Mikolov et al., 2013; 

Pennington et al., 2014), while the Dynamic method assigns an interchangeable vector to 

each word in the vocabulary (also known as the Contextualised Embedding method) 

(Devlin et al., 2018; Peters et al., 2018; Incitti et al., 2023). The Dynamic method was 

proposed to solve the polysemy problem faced by the Static/fixed representation. With 

the Dynamic method, polysemy can be solved using machine learning algorithms, as WR 

is calculated based on the currently processed sentence (Fodor et al., 2023). For instance, 

consider the word "Apple" in the sentences "I like eating Apple" and "I love Apple 

computers." These sentences provide distinct contexts for the word, with one referring to 

"Apple" as a type of fruit and the other as a brand name. Given the variability in meaning 

based on context, the representation of a specific word is contingent on the entire sentence 

provided as input. As a consequence of this requirement, a single word can be represented 

by an infinite number of embedding variations, given the limitless sentence variations in 

natural language. The achievement of contextualised word embeddings or vectors is 

facilitated through the implementation of Machine Learning (ML) algorithms, 

specifically computational statistical Language Models (LMs) (Asudani et al., 2023; 

Nandanwar & Choudhary, 2023; Worth, 2023).  

In essence, a statistical Language Model (LM) functions as a probability 

distribution over a sequence of words, spanning phrases, sentences, paragraphs, and 

eventually entire text corpora. By incorporating this probability function into the 

parameters of ML, the model can dynamically calculate word embeddings during the 

inference process. To generate WR using ML, the algorithm doesn't store embeddings for 

individual words. Instead, it captures the patterns in which each word associates with 

others. Through extensive training on numerous natural language sentences, the 

algorithm learns and retains this pattern as its parameters (Elnagar et al., 2023). In live 

embedding calculation, the same word can possess different meanings based on its 

current context or sentence, effectively addressing the polysemy issue. In contrast, a pre-
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calculated embedding assigns the same meaning to a word unless the entire dictionary 

undergoes recalculation. Figures 2.1 and 2.2 visually depict this scenario. 

 

Figure 2.1 Transformer’s self-attention mechanism (live calculation) 

Source: Uszkoreit (2017).  
 

 

Figure 2.2 2D t-SNE projection of static word embedding (pre-calculated) 
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Figures 2.1 and 2.2 provide a visual comparison between live calculation and pre-

calculated word representation/embeddings, respectively. In Figure 2.1, the illustration 

showcases the application of an attention mechanism, derived from the Transformer 

architecture (Vaswani et al., 2017), commonly employed in modern computational 

language models or Large Language Models (LLMs). This attention mechanism projects 

the semantic probability of each word towards other words in a given sentence. For 

example, the word "it" in the left sentence refers to "animal," while the same word "it" in 

the right sentence refers to "street," as depicted by the high contrast of the blue color. 

Despite being the same word, the differing contexts in the left and right sentences, such 

as "... it was too tired." and "... it was too wide.," lead the algorithm to calculate it 

differently, illustrating dynamic calculation. In contrast, Figure 2.2 illustrates all words 

in the given dictionary projected into a 2D embedding space using t-SNE algorithm 

(Arora et al., 2018). In this static calculation method, the probability distribution of all 

words in the dictionary is calculated against each other, resulting in the embedding for 

all those calculated words. Consequently, for this method, the word "it" will always have 

the same embedding unless the entire dictionary is recalculated with additional texts. This 

static approach contrasts with the dynamic nature of live calculation, highlighting how 

context-dependent meanings are captured in real-time during language processing tasks. 

2.3.1 Word Weightage in Word Representation 

In the process of word representation, the weighting of a word plays a crucial role 

in capturing its significance within a given context. This involves assigning numerical 

values, commonly referred to as weights, to individual words based on their contextual 

importance (Naseem et al., 2021). These weights signify the semantic relevance and 

influence of a word within the broader context of a sentence, paragraph, or document. 

Various approaches are employed to determine the weight of a word in word 

representation. Most of these approaches can be classified into two major categories: 

statistical encoding based on a word’s frequency and neural network encoding based on 

contextual relationship (Patil et al., 2023).  

Statistical encoding methods, fundamental to word representation, analyse word 

frequencies within a corpus to assign numerical values, forming vectors that encapsulate 

the statistical distribution of words. The utility of these vector representations lies in their 

facilitation of linear algebra operations, allowing the manipulation of vectors, compute 
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distances, and assess similarities. Example of such methods are Bag of Words (BOW) 

(Harris, 1954), N-gram (Katz, 1987), Term Frequency (TF) Embedding (Salton & Lesk, 

1968), Hyperspace Analogue to Language (HAL) (Lund & Burgess, 1996), and Term 

Frequency-Inverse Document Frequency (TF-IDF) Embedding (Jones, 2004). While 

these methods effectively capture word distributions, they may face challenges in 

capturing intricate semantic relationships compared to more recent neural network-based 

approaches. 

Neural network encoding methods represent a significant advancement in the 

field of word representation, particularly in capturing complex semantic relationships 

within natural language. These methods leverage the power of deep learning architectures 

to embed words into continuous vector spaces, allowing for a more dynamic and nuanced 

understanding of contextual meanings. One prominent neural encoding method is 

Word2Vec, introduced by Mikolov et al. (2013). Word2Vec operates on the principle of 

learning word embeddings by predicting a word's context in a given sentence. It captures 

relationships between words based on their co-occurrence patterns, producing 

embeddings that encapsulate semantic similarities. Global Vectors for Word 

Representation (GloVE), developed by Pennington et al. (2014), is another notable neural 

encoding method. GloVE combines both global statistics of word co-occurrence and local 

context window information to generate word embeddings. This method emphasises 

capturing not only direct relationships but also the global semantic structure within a 

corpus. Bidirectional Encoder Representations from Transformers (BERT), introduced 

by Devlin et al. (2018), represents a breakthrough in contextualised word embeddings. 

BERT employs a transformer architecture to consider the entire context of a word within 

a sentence, allowing for a more fine-grained representation that considers the specific 

ordering of words. These neural network encoding methods depart from fixed-length 

representations found in statistical methods. Instead, they adapt dynamically to the 

contextual nuances of language, enabling a more accurate portrayal of word meanings.  

In summarizing this literature, Table 2.1 presents notable word encoding 

methods, categorising them into statistical and neural network types, and outlining their 

corresponding weight calculation methods. This table serves as a comprehensive 

overview of the evolution and variations within word encoding techniques over time, 

providing insights into the progression of methodologies in the NLP field.  
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Table 2.1 Notable word encoding methods 

Method Type Weight calculation method 
Bag of Words (BOW) (Harris, 1954) Statistical Frequency-based 

N-gram (Katz, 1987)  Statistical Frequency-based 

Latent Semantic Analysis (LSA) 
(Evangelopoulos, 2013) 

Statistical Singular Value 
Decomposition (SVD) 

Latent Dirichlet Allocation (LDA) 
(Blei et al., 2003) 

Statistical Probabilistic model, 
Generative 

Hyperspace Analogue to Language 
(HAL) (Lund & Burgess, 1996) 

Statistical Context-based, Co-
occurrence 

Term Frequency (TF) Embedding 
(Salton & Lesk, 1968) 

Statistical Frequency-based 

Term Frequency-Inverse Document 
Frequency (TF-IDF) Embedding 
(Jones, 2004) 

Statistical Frequency and Inverse 
Document Frequency 

Word2Vec (Mikolov et al. 2013) Neural  Context-based, Co-
occurrence 

Continuous Bag of Words (CBOW) 
(Mikolov et al. 2013) 

Neural Context-based, Co-
occurrence 

Skip-Gram (Mikolov et al. 2013) Neural Context-based, Co-
occurrence 

Doc2Vec (Le & Mikolov, 2014) Neural Context-based, Distributed 
Memory 

Paragraph Vector (PV-DM) (Le & 
Mikolov, 2014) 

Neural Context-based, Distributed 
Memory 

Paragraph Vector (PV-Dbow) (Le & 
Mikolov, 2014) 

Neural Context-based, Distributed 
Bag of Words 

GloVE (Pennington et al. 2014) Neural Global statistics and local 
context window information 

ELMo (Embeddings from Language 
Models) (Peters et al., 2018) 

Neural Contextualised embeddings, 
Bi-directional LSTM 

FastText (Bojanowski et al., 2017) Neural Subword embeddings, 
CBOW  

BERT (Devlin et al. 2018) Neural Contextualised embeddings, 
Transformer architecture 

Universal Sentence Encoder (USE) 
(Cer et al., 2018) 

Neural Contextualised embeddings, 
Transformer architecture 

GPT (Generative Pre-trained 
Transformer) (Radford et al., 2018) 

Neural Contextualised embeddings, 
Transformer architecture 
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Table 2.1 Continued 

Method Type Weight calculation method 
GPT-2 (Radford et al., 2019) Neural Contextualised embeddings, 

Transformer architecture 

GPT-3 (Brown et al., 2020) Neural Contextualised embeddings, 
Transformer architecture 

XLNet (Yang et al., 2019) Neural Contextualised embeddings, 
Transformer architecture 

RoBERTa (Y. Liu et al., 2019) Neural Contextualised embeddings, 
Transformer architecture 

ALBERT (Lan et al., 2019) Neural Contextualised embeddings, 
Transformer architecture 

T5 (Raffel et al., 2019) Neural  Text-to-text approach, 
Transformer architecture 

From the listed methods in Table 2.1, the bottom nine methods, namely BERT, 

USE, GPT, GPT-2, GPT-3, XLNet, RoBERTa, ALBERT, and T5, can be classified as 

Large Language Models or LLMs. To further elaborate on this, the next section will 

discuss the literature of LLMs. 

2.4 Large Language Model 

Modern NLP programs typically consist of a specific type of computational 

Language Model (LM) called the Large Language Model (LLM). LLMs utilize deep 

learning techniques, specifically Neural Networks (NNs) with a large number of 

parameters in their architecture (also known as Deep Neural Language Models or 

DNLMs). In general, a word encoding/embedding method is considered to be an LLM 

when the trainable parameter size is large (the smallest LLM being BERT with 340 

trainable parameters (Devlin et al., 2018)), is pre-trained using large corpora (billions of 

words or more), can demonstrate contextual understanding of natural language words 

(able to produce contextualised word vectors or embeddings), can be fine-tuned for 

specific NLP tasks, and historically implements the Transformer architecture (as 

demonstrated in previous Table 2.1). Despite its specific architecture, LLMs are still 

fundamentally a type of LM, a statistical model that learns patterns and relationships 

between words, phrases, and sentences in a given language. However, LLMs are trained 

on much larger datasets and use much more complex algorithms than traditional LMs, 

allowing them to perform more complex NLP tasks with greater accuracy.  
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Overall, the development of modern NLP systems consists of two main 

components: converting input text into numerical format (WR) and designing models to 

process this numerical data for solving practical problems in NLP. These practical 

problems are called downstream tasks, and contextualised embeddings play a crucial role 

in solving them. This claim is supported by the implementation of dynamic WR methods 

in many state-of-the-art LLMs for downstream tasks (Naseem et al., 2021; Singh & 

Mahmood, 2021; X. Liu et al., 2022; Incitti et al., 2023). Through publicly published 

leaderboards, some models even surpass human benchmarking performance. For 

example, the widely used SQuAD 2.0 QA dataset (Rajpurkar et al., 2018) currently has 

a state-of-the-art model that scored 93.214 in the F1 metric compared to 89.452 for human 

performance (https://rajpurkar.github.io/SQuAD-explorer/). Similarly, the CoQA QA 

dataset (Reddy et al., 2019) currently has a state-of-the-art model that scored 90.7 for 

overall F1 metric (Ju et al., 2019) compared to 88.8 for human performance 

(https://stanfordnlp.github.io/coqa/).  

Apart from QA downstream tasks, these contextualised embedding LLMs have 

also achieved state-of-the-art in various other downstream tasks, such as Neural Machine 

Translation (NMT), Reading Comprehension, Text Summarisation, Common Sense 

Reasoning, Zero-Shot, Natural Language Inference (NLI), Sentiment Analysis, Co-

reference Resolution, Document Classification, Sentence Classification, Semantic 

Textual Similarity, and Semantic Relevance. Table 2.2 lists some models that have 

achieved state-of-the-art results in various downstream NLP tasks.  

Table 2.2 State-of-the-art LLMs in various downstream NLP tasks 

Model name Downstream NLP task 

GPT- 1, 2 and 3  QA, NMT, Reading Comprehension, Text Summarisation, 
Common Sense Reasoning, Zero-Shot  

XLNET  Reading Comprehension, NLI, Sentiment Analysis, QA 

BERT Sentence Classification, QA, NLI 

RoBERTa Sentiment Analysis, QA, NLI 

ALBERT Reading Comprehension, Semantic Textual Similarity, QA, 
Language Inference 

T5/mT5  More diverse and challenging Coreference, Entailment, QA 

Source: (Singh & Mahmood, 2021). 
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As mentioned in Chapter 1, Large Language Models (LLMs) are typically trained 

in two stages: pre-training for language understanding using large corpora, such as news 

articles and Wikipedia pages, and fine-tuning for specific downstream tasks, such as 

question answering and sentence classification, using task-specific datasets. During pre-

training, the model is trained on a large amount of text to learn the general patterns and 

meanings of words in context. This process is usually unsupervised and focuses on 

optimizing the objective of predicting masked or next-word tokens based on their 

surrounding context. Pre-training can be done on the original model structure, such as the 

bidirectional language model used in BERT (Devlin et al., 2018), or on modified 

architectures, such as the encoder-decoder structure used in GPT-2 (Radford et al., 2019). 

Once the model has been pre-trained, it can be fine-tuned for specific downstream tasks 

by training on task-specific datasets with labelled examples. Fine-tuning requires 

modification and/or additional components to the pre-trained model, such as adding task-

specific output layers or input embeddings. Fine-tuning is supervised and focuses on 

optimizing the objective of the downstream task, such as predicting the correct answer to 

a given question or classifying the sentiment of a sentence. Figure 2.3 provides an 

overview of the pre-training and fine-tuning process for LLMs, which results in a ready-

to-use NLP model for downstream tasks. 

 

Figure 2.3 LLM transfer learning process 

 

LLMGeneral corpora 
(News, Wikepedia, etc.)

pre-trained


LLM
Specific corpora 

(QA, Sentence classification, etc.)

Transfer 

learning

1

2

PRE-TRAINING

FINE-TUNING

fine-tuned


LLM
fine-tuned


LLM
fine-tuned


LLM
QA Sentence 

Classification
…

Additional component



19 
 

To better illustrate the pre-training and fine-tuning processes, let's consider the 

task of classifying English film reviews as either positive or negative. In this scenario, an 

LLM would be pre-trained using general English corpora (unsupervised pre-training on 

large datasets). After pre-training, a binary classification component would be added to 

the LLM, and the entire model would be retrained (with previously learned weights) on 

a dataset of English film reviews labelled as positive or negative (supervised fine-tuning 

using a smaller dataset). Once both the pre-training and fine-tuning processes are 

complete, this NLP model can be used to classify new film review comments as either 

positive or negative, effectively solving the task at hand.  

While the transfer learning approach with pre-trained LLM is versatile, it can be 

expensive from an economic perspective. This is because the fine-tuning process requires 

the entire LLM to be trained on the task-specific dataset, even if the needed task is 

relatively simple, such as binary classification. LLM require an enormous number of 

parameters, ranging from millions to billions, to understand natural human language, 

which makes them computationally expensive to train. To further analyse this, the next 

subsection will discuss the literature surrounding the economics of LLMs. 

2.4.1 The Economics of Large Language Models 

The economics of LLMs are heavily influenced by their parameter size. Although 

the architectural complexity of each model may vary, the number of parameters is the 

main factor determining the amount of computing power required for training and 

inference. This claim is supported by Sharir's study, which calculated the cost (in USD) 

of model training based on parameter counts. Table 2.3 summarizes the reported costs 

for training the BERT models. 

Table 2.3 The cost to train the different sizes of BERT models 

Single run cost (in USD) Fully loaded cost (in USD) Parameter counts 
2,500 50,000  110 million 

10,000 200,000 340 million 

80,000 1,600,000 1.5 billion 

Source: Sharir et al. (2020). 
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Table 2.3 demonstrates the exponential increase in the cost of training BERT 

(Devlin et al., 2018) as the model size grows. The “Fully loaded” column in the table 

represents multiple training runs with hyperparameter tuning, which contributes to the 

overall cost of training the model. BERT is one of the most popular LLMs and is based 

on the Transformer architecture (Vaswani et al., 2017), which is a powerful machine-

learning architecture for natural language processing tasks. Although LLMs based on the 

Transformer architecture can accumulate a large number of parameters, this architecture 

has been proven to be highly effective for various NLP tasks, leading to its widespread 

implementation in modern LLMs.  

The next Table 2.4 lists several notable recent LLMs that are based on the 

Transformer architecture, sorted from smallest to largest in terms of parameter counts 

(which can also be translated as cheapest to most expensive in terms of training cost). 

The table includes information about the size (in terms of parameter counts), base 

architecture, and developer of each LLM. By examining the parameter counts and 

developers of these LLMs, insights into the economics of LLMs can be gained. 

Specifically, the development of LLMs is dominated by large tech companies such as 

Google, OpenAI, Microsoft, Nvidia and Facebook, which have the resources to fund the 

training and development of these large models. This suggests that the economics of 

LLMs are heavily influenced by the resources available to large tech companies and that 

smaller companies, institutes or individuals may struggle to compete in this space. 

From Tables 2.3 and 2.4, it can be concluded that LLMs are extremely expensive 

to train. To provide a different perspective of the cost involved; it takes 4 days to train 

BERT (Large) (340 million parameters on 16 GB of training data) with 64 TPU chips (or 

approximately 1 day with 280 Tesla V100 GPU), 1 day to train Roberta (355 million 

parameters on 160 GB of training data) with 1024 Tesla V100 GPU, and 2.5 days to train 

XLNET (340 million parameters on 113 GB of training data) with 512 TPU chips. From 

a dollar perspective, training the BERT model with 16 GB data can cost anywhere 

between $50k and $1.6m (depending on the chosen model size and training procedure) 

and training the T5 model for a single run cost well above $1.3m (Sharir et al., 2020). 
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Table 2.4 Notable recent LLM size, architecture and developer 

Model name Parameter counts Base 
architecture 

Developer 

ELMo (Peters et al., 
2018) 

94 million LSTM AllenNLP 

BERT (Large) 
(Devlin et al., 2018)  

340 million Transformer Google 

XLNET (Yang et 
al., 2019) 

340 million Transformer Google Brain + 
CMU 

RoBERTa (Y. Liu 
et al., 2019) 

355 million Transformer Facebook 

GPT-2 (Radford et 
al., 2019) 

1.5 billion Transformer OpenAI 

Megatron-lm 
(Shoeybi et al., 
2019) 

8.3 billion Transformer Nvidia 

T5 (Raffel et al., 
2020) 

11 billion Transformer Google 

Turing-NLG 
(Rosset, 2020) 

17 billion Transformer Microsoft 

GPT-3 (Brown et 
al., 2020) 

175 billion Transformer OpenAI 

As mentioned before, the current trend in emerging NLP models is versatility. 

LLMs transfer learning through pre-training and fine-tuning is currently the preferred 

method for solving downstream NLP tasks. While pre-training LLM requires 

significantly large computing resources, fine-tuning is more economically accessible as 

the required dataset for fine-tuning is much smaller than what is needed for pre-training 

(Megabyte for fine-tuning versus Gigabyte for pre-training). Nevertheless, fine-tuning is 

still relatively expensive due to the size of the chosen LLM. As previously mentioned, 

the fine-tuning process still needs to go through the whole LLM parameters despite the 

small dataset input and uncomplex pattern to be learned. Therefore, performing specific 

text classification (or other downstream tasks) through fine-tuning is still costly by model 

size metric and perhaps there are more economical approaches for this endeavour. To 

further narrow down the case study for this research, the question classification literature 

will be explored as the contextual text classification problem to be solved. The next 

section will further discuss the literature surrounding this area. 
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2.5 Contextual Text Classification  

Contextual text classification is a dynamic approach to categorising text data 

based on its surrounding context and content. Unlike traditional text classification methos 

that rely solely on the text itself, contextual classification considers the broader context 

in which the text is situated, such as the user's intent, historical interactions, and the 

environment in which the text was generated. By leveraging modern word representation 

vectors through the LLM, contextual text classification systems can capture nuances in 

language, disambiguate meanings, and adapt to changing contexts in real-time (Dogra et 

al., 2022; Qassim et al., 2022; Bilal & Almazroi, 2023; Zhang et al., 2024). This enables 

more accurate and nuanced classification results, making contextual text classification 

invaluable for various applications such as sentiment analysis, topic modeling, and more. 

One domain that can greatly benefit from this approach is question classification. To 

further explore the literature surrounding contextual text classification, the following 

subsections will utilize question classification as a case study domain in which contextual 

text classification and dynamic word representation vectors can be implemented to 

further demonstrate its effectiveness and applicability across different contexts and 

domains. 

2.5.1 Question Classification 

Question classification in NLP is an area of study that focuses on categorising 

questions based on their intended meaning or purpose. It plays a fundamental role in 

various applications, including information retrieval, dialogue systems, and virtual 

assistants. The goal of question classification is to automatically assign a category, label 

or class to a given question, enabling systems to understand user queries and provide 

appropriate responses. Additionally, question classification encompasses different levels 

of granularity, ranging from simple binary classifications (e.g., yes/no questions) to more 

complex categorisations based on the type of information sought or the intent behind the 

question. For example, the question “Where is the Eiffel Tower located?” expects an 

answer such as “Paris,” “City of Paris,” or “France,” therefore the question classification 

system categorises this question under a “location” class. Similarly, “What is the capital 

city of Malaysia?” and “Where is the highest point in Japan?” also fall under the 

“location” class based on their expected answers. 
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In practical applications, question classification methods (i.e., question 

classifiers) are often implemented in Question-Answering (QA) and Information 

Retrieval (IR) systems. To retrieve the correct answer, the QA system needs to know 

what to look for in the given context. With the output from the question classifier, the 

QA system can eliminate the need to search for unrelated contexts, reducing the 

processing time (e.g., by only searching for “location” related information instead of all 

possible information). However, this type of question classifier has become less relevant 

with current QA system methods. To elaborate further on this, the next subsection will 

discuss the literature surrounding question classification methods, their related datasets, 

and the current landscape about the relevance of such methods. 

2.5.2 Question Classification Methods and Datasets 

Question classification methods aim to semantically classify questions based on 

a defined taxonomy (Gupta et al., 2021). One of the most widely used question 

taxonomies to date is from the work of Li and Roth (Li & Roth, 2002) known as The Text 

Retrieval Conference (TREC) dataset. This dataset includes a total of six coarse classes 

and 50 fine classes, which are listed in the following Table 2.5. 

Table 2.5 Coarse and fine classes for 500 questions in the TREC dataset 

Coarse class Associated fine class 

ABBREV.  abb, exp  

ENTITY  animal, body, colour, creative, currency, dis.med., event, food, 
instrument, lang, letter, other, plant, product, religion, sport, 
substance, technique, term, vehicle, word 

DESCRIPTION definition, description, manner, reason 

HUMAN group, individual, title, description 

LOCATION city, country, mountain, other, state 

NUMERIC  code, count, date, distance, money, order, other, period, per 
cent, speed, temp, size, weight 

Source: Li & Roth (2002). 
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Table 2.5 provides a list of question taxonomy classes for 500 sampled questions 

from the TREC dataset (Li & Roth, 2002). This dataset has been publicly available and 

has been used by many researchers for developing various question classification (and 

other sentence classification) methods. Recent studies that used the TREC dataset include 

Zhong et al.'s GPT-3 based method for classifying sentence descriptions based on 

taxonomy (Zhong et al., 2022), Chen et al.'s Dual Contrastive Learning (DualCL) method 

for classifying sentences through label-aware data augmentation (Chen et al., 2022), 

Jardim et al.'s CNN method for classifying questions in Portuguese (Jardim et al., 2022), 

Hamza et al.'s TF-IDF weighting method for classifying Arabic language question text 

(Hamza et al., 2021), Chotirat and Meesad's method based on Part-of-Speech (POS) for 

question classification of Thai language wh-question text (Chotirat & Meesad, 2021), 

Sangodiah et al.'s Term Weighting method (E-TFIDF and TFPOS-IDF) for classifying 

exam questions (Sangodiah et al., 2021), Golzari et al.'s question classification method 

based on Differential Evolution (DE) and Gravitational Search Algorithm (GSA) 

(Golzari et al., 2022), and Weerakoon and Ranathunga's fine-tuned BERT model for 

question classification in the travel domain (Weerakoon & Ranathunga, 2021). 

Although still an active research area, methods for taxonomy-based question 

classification for QA systems have become increasingly irrelevant in recent years. This 

is mainly due to advancements in modern QA systems that have made the taxonomy 

identification process for question text classification an unnecessary function. As 

mentioned in subsection 2.4.1 QA System Methods and Datasets, modern QA systems 

are capable of learning the semantic relationship between QA pair text directly within 

their core Language Model (LM) architecture (through the fine-tuning process) (Ju et al., 

2019; Yamada et al., 2020; Zhang et al., 2021). With these types of LM embedded in QA 

systems, identifying 'location' as the intent of the “Where is the Eiffel Tower located?” 

question has become an automated process without the need for an additional classifier. 

To provide further evidence for this argument, Table 2.6 compares the coarse classes 

from Li and Roth's taxonomy with the answer types from benchmark QA datasets as 

defined by Yatskar (2019). 
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Table 2.6 Taxonomy class against answer types from QA datasets 

Li and Roth Coarse class Yatskar answer type 

ABBREV.  Extractive or Abstractive answer (Fluency/ 
Coreference) 

ENTITY  Extractive answer 

DESCRIPTION Extractive or Abstractive answer (Fluency/ 
Coreference) 

HUMAN Extractive answer 

LOCATION Extractive answer 

NUMERIC Abstractive answer (Counting) 

Not available Unanswerable  

Not available  Abstractive answer (Yes/No and Picking) 

Table 2.6 presents a comparison between Li and Roth's question taxonomy coarse 

class with Yatskar’s answer types for SQuAD 2.0, CoQA, and QuAC datasets. The 

comparison shows that three taxonomy classes correspond to extractive answers, two 

classes correspond to extractive or abstractive answers (Fluency or Coreference) 

depending on the context, and one taxonomy class corresponds to abstractive answer 

(Counting). However, two of Yatskar's answer types are missing from Li and Roth's 

question taxonomy course class, namely Unanswerable questions and abstractive 

answers related to Yes/No and Picking phenomena. This comparison further justifies that 

taxonomy classes for modern QA systems are not required as most of them are for 

extractive-type answers. However, modern QA systems do not cater to question text 

classification based on question and general word occurrences (referred to as Question 

Type Classification in this document). Figure 2.4 depicts a scenario where this type of 

classification is needed to assist the QA system in handling abstractive-type answers. 
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Figure 2.4 Question word role in question classification  

Figure 2.4 illustrates a scenario where a question-type classifier based on question 

words is necessary to assist the QA system. The context in this simplified example is 

“Currently shampoo, soap and conditioner are on sale.…” and the question is “How many 

items are on sale?” Using a modern QA system, the keywords extracted from the question 

text would be “items are on sale,” leading the system to retrieve “Shampoo, soap and 

conditioner are on sale” as the answer. However, this answer is not the correct answer, 

instead, should be “Three” (a counting phenomenon under the abstractive answer 

feature). On the other hand, the retrieved answer from the system could be the answer to 

the question “What items are on sale?”. The difference between the two questions lies in 

the question word “How many” and “What,” not in the keywords/function words. To 

address this issue, it is desirable to have a classifier that can classify question text that 

focus on both extractive type answers and abstractive answers phenomenon. This 

problem can be classified as a multiclass classification problem, where the input (question 

text) needs to be classified into one of multiple classes (one of abstractive answer 

phenomena or extractive type answer). 

Solving this type of multiclass classification problem can be challenging, 

particularly due to the requirement that the classifier must be able to capture the 

contextual semantics of the question. With such complexity, there are currently no 

methods that surpass machine learning in dealing with such intricacies. Moving forward, 
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the following section will explore the machine learning literature, focusing on multiclass 

classification of natural language text data. 

2.6 Machine Learning 

Machine Learning (ML) refers to a computerised system that automatically learns 

patterns from data. Unlike traditional computer systems, where logic is manually encoded 

into the algorithm, ML systems learn from patterns in the given training data and encode 

the logic into the algorithm automatically. This process allows ML systems to grasp 

complex underlying patterns that are impossible to be manually encoded by human 

programmers. There are three ways to ‘teach’ the ML algorithms: Supervised, 

Unsupervised, and Reinforcement learning. Supervised learning involves the algorithm 

learning from labelled examples, while Unsupervised learning involves the algorithm 

discovering patterns in the data on its own. Reinforcement learning, on the other hand, 

learns by following a guideline that provides rewards or punishments. Figure 2.5 

illustrates the most common ML algorithms under Supervised and Unsupervised 

learning. It's worth noting that Reinforcement learning is not included as it is in a far-off 

domain from this research’s aim.  

As shown in Figure 2.5, ML algorithms can be further categorised into three 

subcategories: Classification, Regression, and Clustering. These subcategories 

correspond to the types of problems that these algorithms are capable of solving. In 

Classification, the algorithm is tasked with classifying the input into one of two 

classes/labels (binary classification) or more than two classes/labels (multiclass 

classification). An example of a classification problem is identifying whether an input 

image is a cat or a dog. In Regression, the algorithm needs to predict continuous output 

based on given input features. An example of a regression problem is predicting the value 

of a house based on features such as year of construction, location, and size. In Clustering, 

the algorithm learns to categorize input data into a certain number of groups based on 

input features. An example of a clustering problem is dividing a group of people into two 

subgroups based on their family, education, and work background. Figure 2.6 visualizes 

the concepts of classification, regression, and clustering in their simplest forms. 
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Figure 2.5 Classification of the most common machine learning algorithms 

Source: Duc et al. (2019).  

 

Figure 2.6 Simple visualization of Classification, Regression and Clustering 

Referring back to Figure 2.5, one of the most versatile ML algorithms is the 

Neural Network (NN). It is capable of solving all three types of problems (classification, 

regression, and clustering), making it a dominant algorithm in the field. Unlike other 

algorithms that are relatively rigid and unable to be expanded, NN is highly flexible. This 

flexibility is demonstrated by its ability to be used as the basis for many other algorithms 

with different capabilities and architectures. Following Figure 2.7 highlights various NN 

algorithms that fall under Supervised, Unsupervised, and a combination of both learning 

methods. 
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Figure 2.7 Supervised and unsupervised neural network models 

To recap, the case study of this research is to solve a multiclass classification 

problem. Therefore, the following discussion will focus solely on ML algorithms within 

this domain. As shown in previous Figure 2.5, five ML algorithms can be used for 

classification: Support Vector Machines (SVM), Discriminant Analysis (DA), Naïve 

Bayes (NB), k-Nearest Neighbour (kNN), Neural Network (NN). In recent years, SVM 

and NN have been the most widely used algorithms, as evidenced by the number of 

publications between 2019 and 2024 found through a Google Scholar search. Table 2.7 

provides an overview of this finding, although it should be noted that NN may have even 

more usage due to the various names under which NN implementations can be found, as 

shown in previous Figure 2.7. 

Table 2.7 Google Scholar search results for publication year 2019 to 2024 

Search keywords Result counts 
support vector machine classification  278,000 

neural network classification 347,000 

k-nearest neighbour classification 17,300 

naive bayes classification 18,200 

discriminant analysis classification 16,100 
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Due to their relatively low usage in recent years compared to SVM and NN, DA, 

NB, and kNN algorithms will not be discussed further in this section. Instead, the focus 

will be on SVM and NN algorithms, which are both capable of solving multiclass 

classification problems. As discussed in Chapter 1, this research aims to address an issue 

in downstream NLP tasks through multiclass classification. Table 2.8 provides further 

evidence for the suitability of SVM and NN algorithms for this task, based on Google 

Scholar search results. 

Table 2.8 Google Scholar search results for publication year 2019 to 2024 

Search keywords Result counts 
support vector machine multiclass classification  17,900 

neural network multiclass classification 17,000 

Although both SVM and NN can perform multiclass classification, they do so in 

different ways. SVM is a binary classifier, so to perform multiclass classification, it 

breaks down the problem into several binary classification problems, with one binary 

classifier per pair of classes. This approach leads to shorter training time but longer 

inference time due to the hierarchy of classification processes. In contrast, multiclass 

classification is natively supported by NN. By making the number of classes as NN output 

nodes, multiclass classification can be performed using the softmax function. The 

softmax function produces a sum of 1 output, and the highest value denotes the selected 

class. While NN takes longer to train, as each data point is compared to all classes in 

every iteration, it takes less time for inference compared to SVM, which requires multiple 

binary classifiers to run the whole classification process multiple times. 

As previously mentioned, the case study of this research is to solve a multiclass 

classification problem on high-dimensional text data (word representation vectors or 

word embeddings). Therefore, the NN algorithm is selected for this research, as it is 

known to be highly effective in discovering intricate structures within high-dimensional 

data, such as vector data that contains contextual text information (LeCun et al., 2015). 

This is also the reason why modern LLMs use Transformer-based ML models, which are 

largely based on NN algorithms. With NN as the selected algorithm, further literature 

will focus on understanding this algorithm in an attempt to use it to design a multiclass 

classifier with a small parameter count. 
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2.6.1 Artificial Neural Network 

An Artificial Neural Network (ANN/NN) is a computational model that is loosely 

inspired by a biological neuron (Lippmann, 1994). A single artificial neuron (unit) can 

receive multiple scalar values as its input and produce a single scalar value as an output. 

Figure 2.8 visualizes one unit of an artificial neuron, where {x1,…, xn} are inputs, {w1,…, 

wn} are weights, b is biased, and y is output (all values are in scalar unit). Each artificial 

neuron also consists of one activation function (also called link/decision/transfer 

function) denoted as ". Depending on the desired output, the activation function can be 

Sigmoid, Tanh, ReLU, and so on. Equation 2.1 represents an artificial neuron in 

mathematical form. 

 

Figure 2.8 One unit of artificial neuron 
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From a single artificial neuron, it is possible to create an expandable system by 

interconnecting multiple artificial neurons through a series of layers, forming an Artificial 

Neural Network (ANN) or simply Neural Network (NN). The most basic construction of 

a NN consists of three layers: the Input layer, the Hidden layer, and the Output layer. 

Figure 2.9 visualizes this basic three-layer NN model where x represents the input neuron, 

h represents the hidden neuron, and y represents the output neuron. In terms of 

connectivity, all neurons in the prior layer are connected to all neurons in the subsequent 

layer, forming a Dense or Fully Connected layer. This form of NN is also known as a 

vanilla form of NN (NN's most basic form). In addition to the basic three layers, the 

hidden layers of an NN can be indefinitely expanded, as illustrated in Figure 2.10. 
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Figure 2.9 Basic/shallow Artificial Neural Network model (one hidden layer) 

 

 

Figure 2.10 Deep Artificial Neural Network model (multiple hidden layers) 

Previous Figures 2.9 and 2.10 showcase two forms of vanilla NN: Shallow NN 

(three layers) and Deep NN (more than three layers). In addition to these vanilla forms, a 

vast number of other NN models have been proposed over the years. As previously 

illustrated in Figure 2.7, these models are an expansion of vanilla NN with additional 

components, such as additional specific nodes/layers or specific mechanisms. These 

models, mainly of the Deep NN type, can be utilised using the previously discussed two 

ML training methods: Supervised and Unsupervised. To design a machine learning 

classifier to solve a multiclass classification problem, the next subsection will further 

discuss NN models under the Supervised category (the training method for solving 

classification problems as shown in the previous Figure 2.5). 
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2.6.2 Supervised NN 

Like other supervised ML algorithms, supervised NN can be used to solve 

Classification and Regression problems. In general, a supervised NN Classification 

model will predict discrete values/classes/labels, while a supervised NN Regression 

model will predict continuous values/quantities. For example, consider a weather 

prediction ML model. The question to be answered for the Classification model is “Will 

it be cold or hot?”, while for the Regression model, it is “What will be the temperature?”. 

To visualize this example, the following Figure 2.11 illustrates the graph for 

Classification and Regression results.  

 

Figure 2.11 Classification versus Regression 

As illustrated in Figure 2.11, the Classification model will predict whether it's 

going to be cold (Class A: blue-coloured dots) or hot (Class B: red-coloured dots), while 

the Regression model will predict the temperature value (continuous temperature values 

- green dots). For both models, the prediction will be made towards the black line in the 

graph. For Classification, the black line will decide whether it's cold or hot, while for 

Regression, the temperature will be predicted as a value as close as possible to the black 

line. This black line symbolizes what the model has learned after going through the 

training process, which involves analysing the given input and output data repeatedly. 

Note that in practice, the line would not be as linear as in the given figure, and the 

dimensions could also be more than two, depending on the dataset.  

For classification, there are two types of problems: Binary and Multiclass. The 

previous example of predicting cold or hot weather is a Binary classification problem 

(predicting one from two classes). If the number of classes is more than two, it is called 
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a Multiclass classification problem. An example of a Multiclass classification problem is 

predicting a student's grade in a computer science subject, where the grade can be from 

A+ to F (predicting one from more than two classes). Referring back to Figure 2.7, all 

the listed NN-supervised models can be used to solve both Binary and Multiclass 

classification problems. To recap, the four supervised-only NN models are Feed-forward 

NN, Recurrent NN, Convolutional NN and Transformer. 

From an architectural perspective, the three bottom models (Convolutional NN, 

Recurrent NN, and Transformer) are extensions of the Feed-forward NN. Starting with 

the base/vanilla deep Feed-forward NN, these three models then implement several 

additional components to suit each respective architectural purpose. Figure 2.12 

illustrates the general differences between the Feed-forward, Recurrent, and 

Convolutional NN model architecture (the Transformer will be illustrated later as its 

architecture is vastly different and more complex than the others). 

 

Figure 2.12 Feed-forward, Recurrent and Convolutional NN model architecture 
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Referring to Figure 2.12, the vanilla Feed-forward architecture (with input-

hidden-output layers denoted by ‘I’, ‘H’, and ‘O’) can be seen implemented in both 

Recurrent and Convolutional NN. In Recurrent NN, the additional component added is 

the recurrent mechanism, which allows the hidden layer's nodes to calculate output based 

on both the current and previous inputs using the Hidden State mechanism (unlike vanilla 

Feed-forward NN, which only considers the current input) In the given figure, these nodes 

are denoted by the circled ‘R’ (Recurrent) with a looped link to itself, representing the 

recurrent calculation/mechanism. Recurrent NN is suitable for sequential data, and there 

are three commonly used variants of Recurrent NN: Vanilla RNN, LSTM (Long-Short 

Term Memory), and GRU (Gated Recurrent Unit). While vanilla RNN can only 

remember recent previous inputs in its hidden state, LSTM and GRU have an additional 

component called Memory Cell, which enables them to remember not only the recent 

previous inputs but also all previous inputs starting from the first item in the input 

sequence. 

While Recurrent NN transforms vanilla hidden layers into recurrent hidden layers, 

Convolutional NN adds more layers while maintaining the vanilla hidden layers. Denoted 

as ‘K’ and circled ‘C’ in Figure 2.12, these additional layers contain nodes that are known 

as the Kernel and Convolution nodes. From input nodes, kernel nodes filter the input into 

a two-dimensional weight array before passing the value into convolutional nodes. 

Within convolutional nodes, the two-dimensional weight array is multiplied several times 

until just two values remain. This process narrows the dimension of the original input, 

allowing the model to focus on a certain input. The two convoluted values then pass to 

dense vanilla NN hidden layers for regular NN processing. As per its intended design, 

Convolutional NN is very good at classifying image data. This is because Convolutional 

NN focuses on certain image areas (multiple times) that are ultimately the key points in 

classifying the image, such as whether it is a ‘Dog’ or a ‘Cat’ image. Although Recurrent 

and Convolutional NN added more components into vanilla/Feed-forward NN, the main 

overall model is relatively similar. The Transformer model, on the other hand, is vastly 

bigger and different. The following Figure 2.13 illustrates the Transformer model 

architecture. 
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Figure 2.13 Transformer model architecture  

Source: Vaswani et al. (2017).  

Referring to Figure 2.13, two Feed-forward NN models can be seen being 

implemented in the Transformer model. Coloured blue in the figure, the two 

implementations shown are not two separate counts of Feed-forward models, but rather 

two locations or segments in which a Feed-forward NN is being implemented in the 

Transformer (one in the Encoder block on the left side of the Transformer and one in the 

Decoder block on the right side of the Transformer). The number of Feed-forward models 

in each implementation location depends on the implemented Transformer's input size. 

For example, BERT Language Model (Devlin et al., 2018) uses a 512 input size for its 

Encoder-only Transformer implementation, and therefore, there are 512 Feed-forward 

models in one BERT's Encoder block. It is important to note that BERT uses 12 blocks 

for its base model and 24 blocks for its large model. Therefore, for the BERT base model, 

there will be a total of 6144 Feed-forward models in the whole architecture (512 Feed-

forward models in each of the 12 Encoder blocks). 

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3
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Referring to the previously discussed NN models, namely Recurrent NN, 

Convolutional NN, Transformer, and Feed-forward NN, it is important to note that all of 

these models incorporated a Feed-forward NN component. As the original and simplest 

form of NN architecture, the Feed-forward is also the most economical in terms of the 

number of components and parameters compared to the other models. Table 2.9 below 

provides a comparison of the four supervised NN models and their implemented 

components. 

Table 2.9 Supervised NN model’s components comparison 

 Components 
Feed-forward  Input, hidden and output layers (vanilla) 

Recurrent - Vanilla + recurrent mechanism on hidden layers (base 
RNN) 

- Vanilla + recurrent + memory cell (LSTM) 

- Vanilla + recurrent + different memory cell (GRU) 

Convolutional Vanilla + kernel + convolutional cell 

Transformer Vanilla (multiple) + positional encoding + attention mechanism 

With this literature on ML, this chapter is concluding its literature sections, and 

to concatenate and align all findings throughout the discussed topics, the next section will 

discuss the direction of this research. 

2.7 Direction of this Research 

The previous sections aimed to analyse and explore the current literature 

concerning the identified research gap, which surround three main areas defined in the 

gap analysis section. The following are the summarised findings for each gap area: 

GAP 1: Incorporating external scalar weights into word representation 
vectors. From the discussed literature, it is evident that contextualised word 

representation vectors can only be generated using LLMs. Additionally, it is apparent that 

the word vectors generated by LLMs cannot be externally modified by incorporating 

external values. This limitation arises from the design of such models, which utilize a 

Transformer architecture consisting of multiple stacked encoder blocks. This complex 

structure results in the word vectors' trainable parameters being highly interconnected 

and dependent on each other. Given this situation, a new method for modifying the high-
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dimensional contextualised word vectors needs to be proposed to address this gap. For 

generating the word vectors in this research, the Universal Sentence Encoder (USE) (Cer 

et al., 2018) has been selected. This choice is based on two rationales: 

1. USE is the only LLM that can generate small-sized word embeddings (100 

dimensions), while the smallest embedding size for other LLMs is 512 

dimensions. This embedding size is crucial in this research as it attempts to 

minimize costs as opposed to fine-tuning LLMs, which are high in cost. 

2. As per its name, USE by default is an LLM designed to encode sentences (not 

words) into embeddings. Given that this research focuses on the question 

classification problem, where questions are essentially sentences comprised of 

multiple words, comparing the developed algorithm's performance using the 

original USE sentence embedding against modified word embeddings could offer 

a more insightful evaluation of the modified embedding vector's effectiveness 

(raw sentence embedding compared to modified word embeddings for generating 

the sentence embedding). 

GAP 2: Defining criteria for creating text classification datasets emphasising 
context representation differences. When establishing criteria for the new contextual 

text classification dataset, the Question Classification research area has been chosen, 

particularly due to its intricacies in defining the question context not only within its own 

words but also by considering its possible or expected answer. Literature in this area has 

shown that current taxonomy-based datasets have become increasingly irrelevant in 

recent years due to advancements in modern QA systems based on fine-tuned LLMs. 

With this in mind, this research intends to use QA datasets as a benchmark for creating a 

new dataset for question classification, where the main goal is to identify whether the 

question expects an extractive-type answer or one of various abstractive-type answers. In 

contrast to current taxonomy-based question classification datasets, this new proposed 

dataset will focus on emphasising differences in the context or type represented by the 

questions, rather than creating detailed coarse and fine classes that can become very 

complex and numerous. With this focus, the question classification classes can be low in 

number and only require one level instead of two levels (coarse and fine) for the current 

taxonomy-based classes. 
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GAP 3: Evaluating the developed algorithm in the contextual text 
classification problem. To evaluate the algorithm developed to address the first 

identified gap, the literature review in this area explores text classification methods, with 

a specific focus on multiclass classification techniques based on machine learning as a 

benchmark for resolving high-dimensional data classification challenges. The ability to 

handle high-dimensional data is crucial due to the embedding size of LLM-generated 

word representation vectors. According to the literature, the vanilla feed-forward Neural 

Network (FF-NN) emerges as the optimal choice for this research. This selection is driven 

by two key factors: its cost-effectiveness and suitability for multiclass classification of 

high-dimensional data. Among the four NN architectures considered; vanilla Feed-

forward, Convolutional, Recurrent, and Transformer, vanilla Feed-forward is identified 

as the most economical option, attributed to its simplicity and minimal number of 

components. Figure 2.14 illustrates the literature's path towards selecting the Vanilla 

Feed-forward NN as the ML model for this research. 

 

Figure 2.14 Literature path towards selecting the vanilla Feed-forward Neural 
Network (FF-NN) for this research  
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2.8 Summary 

This chapter presents a literature review surrounding contextual text 

classification, aiming to gather information to address the three defined research 

questions: 1) How can an algorithm effectively incorporate external scalar weights into 

word representation vectors to enhance context understanding in a contextual text 

classification problem?, 2) What criteria should be considered in the creation of a text 

classification dataset to emphasise differences in context representation? and 3) How 

does the developed algorithm, incorporating external scalar weights, perform when 

applied to contextual text classification task? Three gap areas are defined for this research 

and based on the literature, several findings are outlined and discussed in previous 

Direction of this Research section. With this defined research direction, the next chapter 

will discuss the structured research methodology aimed at justifying the defined 

hypotheses for this entire study, ultimately closing the identified gaps and achieving the 

stated objectives while answering the research questions. 
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CHAPTER 3 
 
 

METHODOLOGY 

3.1 Introduction 

This study aims to justify the hypothesis that the word representation vector 

derived from the LLM can be altered using an external scalar weight, which can later be 

used as input for a ML model to perform text classification task. To test this hypothesis, 

three research objectives and their corresponding research questions were outlined in 

Chapter 1. To recap, the objectives and research questions are as follows:   

1. To develop a new algorithm that incorporate an external scalar weight into the 

word representation vector. Research Question 1 (RQ1): How can an algorithm 

effectively incorporate external scalar weights into word representation vectors to 

enhance context understanding in a contextual text classification problem? 

2. To develop a new text classification dataset that emphasises differences in context 

representation. Research Question 2 (RQ2): What criteria should be considered 

in the creation of a text classification dataset to emphasise differences in context 

representation? 

3. To evaluate the developed algorithm using a Machine Learning (ML) model in 

the contextual text classification problem. Research Question 3 (RQ3): How does 

the developed algorithm, incorporating external scalar weights, perform when 

applied to contextual text classification task? 

Based on these objectives, a research methodology  consisting of five main phases 

is structured. The next section 3.2 will elaborate on this research methodology  in detail. 
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3.2 Research Methodology  

A five-phase methodology is structured for this research, comprising 1) Base Data 

Preparation, 2) Dataset Development, 3) Modified Word Vectors Method Development, 

4) Machine Learning Classifier Development, and 5) Methods Evaluation. Following 

Figure 3.1 visualizes this methodology  in a flowchart format. 

 

Figure 3.1 Research methodology flowchart 
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Referring to Figure 3.1, the purpose of Phase 1, the Base Data Preparation phase, 

is to clean and organise the initial/raw data. In Phase 2, the Dataset Development phase 

involves developing a new dataset using a new algorithm. Moving on to Phase 3, the 

Modified Word Vectors Method Development phase, the focus is on developing a new 

algorithm that can incorporate a scalar weight value into a vector representation of words 

to produce a weighted word vector of a fixed dimension size. In Phase 4, the Machine 

Learning (ML) Classifier Development phase, an ML classifier is created to perform the 

question type classification process based on the previously developed dataset and the 

modified word vectors. Finally, in Phase 5, the overall proposed methods within this 

research are assessed, with a focus on evaluating their effectiveness by comparing the 

produced results against the baseline score. To provide further elaboration, the following 

is a general summary of the planned activities for each phase. 

¡ Phase 1: Base Data Preparation 

As mentioned in Chapter 1, this research aims to construct a new multiclass text 

classification dataset that highlights distinctions in contextual representation, which will 

serve as the case study for this research. Furthermore, in Chapter 2, Question 

Classification literature is explored, and a gap within question classification datasets is 

identified, specifically the irrelevancy of taxonomy-based datasets and the lack of an 

alternative dataset that can address the question type classification problem (a multiclass 

classification problem that classifies question text as needing extractive or abstractive 

type answers). Given this gap, this research intends to develop a new question 

classification dataset emphasising differences in the context or type that the questions 

represent. Therefore, the initial phase of the research is dedicated to analysing and 

selecting a benchmarked Question-Answering or QA dataset as the foundation for 

developing the required dataset. To determine the most suitable dataset, a comprehensive 

comparative analysis will be conducted, with a specific focus on the distribution of 

abstractive answers. This analysis aims to assess the quality and diversity of answer types 

in each dataset. Considering the characteristics and requirements of the proposed 

research, one dataset will be selected as the base dataset to proceed with the subsequent 

phases. Before advancing to the next phase, the selected base dataset will undergo a 

cleaning process to remove unnecessary data and noise. Eliminating unwanted elements, 

the final output from this phase will be a cleaned QA dataset, ready for use in the 

subsequent phases of the research. 
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¡ Phase 2: Dataset Development 

Based on the output of the previous phase, this phase takes a cleaned QA dataset 

as input. From this dataset, the research aims to identify and define several classes related 

to abstractive answers. The class encoding process will then be performed on the dataset. 

Each data point will be assigned a single class that best represents it. The determination 

of the best class representation for each data point will be done using a specific and 

justifiable algorithm. The proposed algorithm will utilize one-hot encoding as the format 

for class encoding. This process assigns a unique binary code to each class, with a value 

of 1 for the corresponding class and 0 for all other classes. By using one-hot encoding, 

the resulting output of this phase will be a Question Type Classification dataset, or QTC, 

where each data point is associated with its corresponding class encoded in a one-hot 

vector format. This dataset will then be used for all further phases in this research 

methodology . 

¡ Phase 3: Modified Word Vectors Method Development 

Before developing a new algorithm that can incorporate an external or 

independent scalar weight into the word representation vector, effectively modifying the 

word vectors' context, the scalar weight values need to be produced. Therefore, this phase 

will start by generating the scalar weight value that effectively signifies the general and 

question words within the question texts of the QTC dataset. From another perspective, 

this scalar weight will effectively group similar question types into the same defined class 

within the QTC dataset. After completing this process, word vectors will be generated 

for each word within the required dataset using a pre-trained LLM, and the development 

of the modified word vectors algorithm will commence. To recap, this research intends 

to develop a vanilla feed-forward Neural Network (FF-NN) model for the question-type 

classification process (a question-type classifier) as a means to evaluate the modified 

word vectors algorithm. The architecture of the vanilla FF-NN requires a fixed-length 

vector as its input format. Therefore, the developed modified word vectors algorithm 

needs to strictly adhere to this requirement, indirectly necessitating an algorithm capable 

of handling variable-length sentences to produce a fixed-length vector size format for the 

final word representation value. By the end of this phase, fixed-length weighted word 

vectors will have been generated for each question text in the QTC dataset, and these 

vectors must demonstrate improved representation of required contexts (based on a small-

scale experiment) before being used to train the FF-NN model in the next phase.  
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¡ Phase 4: Machine Learning Classifier Development phase 

This phase focuses on building and training the question-type classifier using a 

machine learning algorithm, i.e., the Feed-Forward Neural Network (FF-NN) algorithm. 

Based on the output from the previous phases, a modified FF-NN model will be designed, 

taking into consideration an economical approach, to address the multiclass classification 

problem within the QTC dataset. Once the base model is constructed, the next step is to 

train the model using the QTC dataset defined classes, with the question text being the 

word vectors generated using the modified word vectors algorithm developed in the 

previous Phase 3. This question-type classifier model design and training will be done 

iteratively, ensuring that all hyperparameters are tested to obtain the best ratio of 

economy to performance results. Overall, the outcome of this phase will be a trained 

question-type classifier, ready for further testing and evaluation. 

¡ Phase 5: Methods Evaluation 

The final phase of this research methodology  focuses on validating and 

evaluating the overall proposed methods developed in the previous four phases. While 

each method has been individually validated in its respective phase, this phase aims to 

assess the collective contribution of each method towards achieving the end result, which 

is the QTC dataset classification results. There are four evaluation metrics to be analysed: 

Accuracy, Precision, Recall, and F1 score. To recap, this research hypothesizes that the 

word representation vector derived from the LLM can be altered using an external scalar 

weight, which can later be used as input for an ML model to perform a text classification 

task. By evaluating these four metrics, it is hoped that this hypothesis can be substantiated 

and provide insights into the effectiveness of the modified word vectors and the 

developed FF-NN model for question-type classification within the QTC dataset. This 

phase will involve a thorough examination of the obtained results, comparing them 

against baseline scores, and conducting a detailed analysis of the performance metrics. 

The findings will contribute to the validation of the research hypothesis and the overall 

success of the proposed methods for contextual text classification. 

The preceding general summary for all five phases has outlined the fundamental 

tasks that will be undertaken for each of the defined phases in the research methodology. 

For a detailed implementation of this research methodology , the next subsections will 

explain in detail all processes carried out within each of the identified phases. 
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3.2.1 Phase 1: Base Data Preparation 

The aim of this phase is to analyse and selects a benchmarked QA dataset to be 

the foundation for developing the required dataset for this research. Four benchmarked 

QA datasets have been selected for analysis: The Stanford Question Answering Dataset 

or SQuAD (Rajpurkar et al., 2016), SQuAD version 2.0 or SQuAD 2.0 (Rajpurkar et al., 

2018), A Conversational Question Answering Challenge or CoQA (Reddy et al., 2019), 

and Question Answering in Context or QuAC (Choi et al., 2018). Overall, the creation of 

these datasets involved human crowd workers who were asked to produce questions 

based on a given context (a paragraph of text) and to produce replies by either indicating 

that there is no answer or by extracting an answer from the context by highlighting one 

continuous text span. In addition, QuAC and CoQA require workers to produce questions 

in the form of a dialogue where co-referencing previous interactions is possible, allowing 

for a conversational type of QA. QuAC and CoQA also allow direct “Yes” or “No” 

answers without additional explanation. Furtheremore, only in CoQA are workers 

allowed to edit text spans to produce abstractive answers. 

The Stanford Question Answering Dataset (SQuAD) is a widely used dataset for 

QA systems, which contains more than 100,000 question-answer pairs, derived from 

Wikipedia articles. It focuses on answer extraction, where the answer to a question is a 

span of text within the context paragraph (Rajpurkar et al., 2016). SQuAD 2.0 is an 

extension of SQuAD, which includes unanswerable questions in addition to answerable 

ones. This dataset requires QA systems to not only extract answers from the text but also 

identify questions that have no answer within the given context (Rajpurkar et al., 2018). 

Question Answering in Context (QuAC) is a dataset that focuses on answering questions 

that require reasoning and context understanding. It consists of more than 14,000 

information-seeking QA dialogues, where each dialogue has a context paragraph and a 

set of questions that follow the context (Choi et al., 2018). A Conversational Question 

Answering Challenge (CoQA) is a dataset that involves answering questions based on a 

passage of text in a conversational setting. It contains more than 127,000 questions, which 

are collected from more than 8,000 conversations between two crowd workers, where 

one worker plays the role of a “questioner” and the other plays the role of a “answerer” 

(Reddy et al., 2019). Overall, these datasets offer three features that make them good 
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benchmarks for QA research: unanswerable questions, multi-turn interactions, and 

abstractive answers (Yatskar, 2019).  

Abstractive answers are a relatively new feature in recent QA datasets, along with 

unanswerable questions (questions that cannot be answered due to missing or conflicting 

information in the context passage) and multi-turn interactions (conversational QA 

features). The following Figure 3.2 illustrates the distribution of QA dataset features. 

  

Figure 3.2 Features in QA Datasets 

As depicted in Figure 3.2, there are five phenomena associated with abstractive 

answers: Yes/No, Coreference, Counting, Picking, and Fluency (S. Liu et al., 2019; Storks 

et al., 2019; Yatskar, 2019). For each phenomenon, Yes/No provides an answer to a yes 

or no question (e.g., Question: “Do humans need oxygen to live?”, Answer: “Yes”), 

Coreference refers to an entity/object mentioned in the question or context passage (e.g., 

Question: “What does a lung need as an input?”, Answer: “It needs oxygen”), Counting 

requires counting entities/objects in the context passage (e.g., Question: “How many 

main organs are in the human body?”, Context: “The main organs in the human body are 

brain, lungs, liver, bladder, kidneys, heart, stomach, and intestines”, Answer: “Eight”), 

Picking requires selecting an answer from a set defined in the question (e.g., Question: 

“Do humans think with their brain or heart?”, Answer: “Brain”), and Fluency requires 
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rephrasing the answer to be highly relevant (e.g., Question: “How do humans breathe?”, 

Context: “The nose and mouth are two organs within the human respiratory system”, 

Answer: “Using a respiratory system”). 

Based on these abstractive answer features, an analysis of the selected 

benchmarked QA datasets will be performed, and the best dataset with the most coverage 

of abstractive answers will be selected as the basis dataset to be used in the next phase of 

this methodology, which is the development of the new QTC dataset. 

3.2.2 Phase 2: Dataset Development 

The aim of this phase is to develop a Question Type Classification (QTC) dataset 

that classifies question text based on its paired answer text, with a focus on abstractive 

answer phenomena as defined in the Question-Answering (QA) NLP domain. The QTC 

dataset will be developed based on the benchmarked QA dataset; therefore, the analysis 

needed for Phase 1 needs to be completed before this Phase 2 can be started. Four 

benchmarked QA datasets have been selected for analysis in the previous phase: SQuAD, 

SQuAD 2.0, CoQA, and QuAC. Based on the conducted analysis, the CoQA dataset has 

been chosen as the basis for the QTC dataset to be developed in this phase. With that, the 

QTC dataset that will be developed in this phase will be named QCoC or Question 
Classification of CoQA dataset. It is to be noted that the detailed analysis result 

justifying the choice of CoQA to be the base for the QTC dataset will be presented in the 

next Chapter 4 (Results and Discussion) of this thesis. 

Working with the cleaned (removed metadata dan data noise) CoQA dataset from 

the prior phase, the first step in this phase is to identify the classes for the QCoC dataset. 

Based on the distribution in the CoQA dataset, five classes have been identified for 

QCoC. These classes are as follows: 

1. Yes/No: This class is intended for questions with a ground truth answer of 'yes' 

or 'no'. In CoQA, some yes/no answers are accompanied by additional text (e.g., 

“Yes, shampoo is on sale today”). Such answers will also be categorised under 

this class since the ground truth is still either 'yes' or 'no' (similarly for cases where 

the yes or no keyword appears at the end of the sentence). 
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2. Unknown: This class represents unanswerable questions based on the features of 

CoQA answers. Some questions in CoQA do not have a factual answer in the 

given context. Instead of fabricating answers, a good QA system should recognise 

when a question is unanswerable. Providing a made-up answer in the absence of 

the fact would be incorrect. 

3. Picking: This class involves selecting one answer from multiple choices in the 

extracted span of the context text. Picking is similar to the Factual class (next 

class), but it refines the output by eliminating incorrect selections. Thus, a 

separate class is required for this category. 

4. Factual: This class is intended for questions where a direct span answer can be 

extracted directly from the context text. It falls under the non-abstractive answer 

type, but since QCoC is constructed using CoQA, this class is needed to group all 

factual answers under one label. Additionally, the Factual class can also serve as 

a binary classifier, classifying answers as either extractive (factual class) or 

abstractive (other classes). 

5. Counting/Fluency: This class includes answers that require counting 

entities/objects in the context text and answers that need to be rephrased to be 

highly relevant or natural. Counting and Fluency are grouped in QCoC because, 

syntactically, counting answers are essentially a rephrase of a text span from the 

context text. By merging these two phenomena, QCoC can minimize the potential 

for false-positive results in the classification process. Since Counting is also 

Fluency, falsely classifying a counting answer as a fluency answer is highly 

possible and should be avoided. 

Based on these identified five QCoC classes, a classification algorithm is 

formulated. In general, this algorithm will take question text from QCoC as input, 

determine its class based on various conditions, and ouput the question’s classified class 

in one-hot encoding format. The class determination conditions will also taken into 

accounts the original CoQA distribution of question-and-answer types which categorizes 

each data points into three main groups which are: 

 



50 
 

i. Whether the question is answerable or not (Answerable or Unanswerable) 

ii. Whether the span (answer) is found in the context text or not (Span found or 
Span not found) 

iii. The answer's semantic or syntactic type in one of seven categories (Named 
Entity, Noun Phrase, Yes, No, Number, Date/Time, Other) 

 
To outline these distributions, Table 3.2 presents the CoQA distribution as 

reported by the original authors (Reddy et al., 2019). This table categorizes all items 

within the three main groups, separated by a row line. The first row group represents the 

Answerable or Unanswerable group, the second row group represents the Span found or 

Span not found, and the last row group represents the seven categories of semantic or 

syntactic types. 

Table 3.1 Distribution of question and answer types in CoQA  

Item Distribution 
Answerable  98.7% 

Unanswerable  1.3% 

Span found  66.8% 

Span not found  33.2% 

Named Entity 28.7% 

Noun Phrase 19.6% 

Yes 11.1% 

No 8.7% 

Number 9.8% 

Date/Time 3.9% 

Other 18.1% 

Based on identified five classes and the distribution of question and answer types 

shown in Table 3.2, the following Algorithm 1 is formulated to classify question texts in 

CoQA into QCoC classes. 
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ALGORITHM 1 : ALGORITHM TO CLASSIFY QCOC CLASSES 

 Input: All question texts from the dataset 

 Output: One-hot enconding for selected QCoC class  

 Initialisation: Retrieve all question texts from raw QA dataset 

1 foreach question text do 

2  if contains ‘yes’/‘Yes’/‘yes’/‘Yes.’/‘no’/‘No’/‘no.’/‘No.’ then 

3   QCoC class = [1,0,0,0,0] (the Yes/No class)   

4  else if contains ‘unknown’/‘Unknown’/‘unknown.’/‘Unknown.’ then 

5   QCoC class = [0,1,0,0,0] (the Unknown class)   

6  else if contains ‘or’ and not contains ‘what’/‘where’ then 

7   QCoC class = [0,0,1,0,0] (the Picking class) 

8  end if 

9 end foreach 

10 foreach question text without QCoC class do 

11  get answer and span_text from original QA dataset 

12  produce word vectors for both answer (A) and span_text (B) 

13  calculate dot product for 3 ∙ 5 = ‖3‖5‖ cos :	
14  if 3 ∙ 5 > threshold then 

 15   QCoC class = [0,0,0,1,0] (the Factual class) 

16  else 

17   QCoC class = [0,0,0,0,1] (the Counting/Fluency class) 

18  end if 

19 end foreach 

20 return QCoC class (one-hot encoding) for each question text 

Algorithm 1 is designed to classify each question text in CoQA into one of the 

five QCoC classes. Examining the algorithm steps, steps 1 to 9 are a straighforward 

process, as written, to classify question text into Yes/No, Unknown and Picking  classes. 

For the other two classes (Factual and Counting/Fluency) in steps 10 through 19, a more 

in-depth semantical analysis is conducted. Specifically, the answer and span_text corpus 

from CoQA are retrieved, and word vector embeddings are produced for both corpuses 

using the Universal Sentence Encoder (USE) (Cer at al., 2018) LLM. To elaborate, 

span_text in CoQA is a piece of text from a long story/context paragraph, representing 
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the information used to generate the paired answer text. After the embeddings are 

generated, the dot product for both the answer and span_text vector values is calculated 

using the following Equation 3.1:  

 3 ∙ 5 = ‖3‖5‖ cos : 3.1 

In Equation 3.1, A and B are word embeddings of the answer and span_text in a 

100-dimensional vector format. The dot product (using cosine similarity) of A and B will 

provide an indicator of how similar both sentences are in terms of their semantic 

representation (higher dot product signifies higher similarity). Based on the calculated 

dot product values, the balanced question text that hasn’t been assigned a QCoC class 

will be distributed between the Factual and Counting/Fluency classes using a threshold 

value defined based on the overall distribution of the dot product and the original CoQA’s 

question text distribution, showcased in the following Table 3.2 and the previous Table 

3.1, respectively. 

Table 3.2 The USE dot product distribution result  

Item Result 
Maximum 125.44 

Minimum 89.52 

Overall percentage distribution 

*Dividing the maximum and 
minumum values into 20 segments 

>= 123.64 (31.335%) 

121.85 − 123.63 (12.547%) 

120.05 − 121.84 (11.497%)  

118.26 − 120.04 (8.438%)  

116.46 − 118.25 (5.740%)  

114.66 − 116.45 (3.713%)  

112.87 − 114.65 (2.366%) 

111.07 − 112.86 (1.374%) 

109.28 − 111.06 (0.839%) 

107.48 − 109.27 (0.458%) 

105.68 − 107.47 (0.247%) 

103.89 − 105.67 (0.132%) 

102.09 − 103.88 (0.080%) 

100.30 − 102.08 (0.031%) 

98.50 − 100.29 (0.023%) 
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96.71 − 98.49 (0.009%) 

94.91 − 96.70 (0.009%) 

93.11 − 94.90 (0.002%) 

91.32 − 93.10 (0.000%) 

< 91.31 (0.002%) 

As mentioned, the classification of the Yes/No, Unknown, and Picking classes 

is relatively straightforward using steps 1 to 9 in the presented Algorithm 1. However, 

for the Factual and Counting/Fluency classes, the classification is determined based on 

the USE dot product distribution. This distribution is obtained by analysing the minimum 

and maximum dot product values (89.52 minimum and 125.44 maximum, as presented 

in Table 3.2), which then allows the data to be divided into 20 range segments. Based on 

these 20 segments and the CoQA question-answer distribution presented in Table 3.1, 

64,589 (55.38%) data points are classified as Factual (the sum of the three highest 

segments), while 27,364 (23.47%) data points are classified as Counting/Fluency (the 

sum of the 17 lowest segments).  

As previously mentioned, a higher value of the USE dot product signifies a higher 

semantic similarity between the answer and the span_text. Factual answers in a QA 

dataset (i.e., the CoQA dataset) are highly extractive, meaning that the answer to a Factual 

question is likely to be similar in terms of both semantic and syntactic aspects to the span 

text retrieved from the context text. This scenario results in a higher USE dot product 

value when calculated between the answer and the span_answer text. Regarding the 

justification for “the sum of the three highest segments and the sum of the 17 lowest 

segments in Table 3.2,” this action is based on the distribution of CoQA answer types 

presented in Table 3.1. Detailed analysis regarding this action will be further presented 

in the next chapter of this thesis (Chapter 4: Results and Discussion). 

Using the proposed Algorithm 1, a new dataset named QCoC (Question 

Classification of CoQA) will be developed. This dataset will later be used to evaluate the 

modified word vectors method (which will be developed in the next phase of this research 

methodology) through a machine learning classifier that will be developed in further 

Phase 4 of this research methodology. Because the classifier will be developed using the 

Feed-Forward Neural Network (FF-NN) algorithm, its inputs need to be in numerical 

format, which for the QCoC dataset is the word embeddings/vectors for each question 
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text. Directly using word vectors for the training of the classifier seems to produce 

inconclusive results due to high similarities between each vector. To visualize this 

problem using a smaller case study, five semantically close questions are defined, and 

word vectors using USE are generated for each question. Following Figure 3.3 visualizes 

those generated vectors (100-dimensional) in a 3D line graph format. 

 

Figure 3.3 Line graph for five questions of USE-generated vectors 

Referring to Figure 3.3, the generated word vectors from USE LLM are shown to 

be closely similar, justifying the need to fine-tune the LLM parameters to modify the 

contextual weight of each vector for the text classification process. With such being the 

case, the next Phase 3 of this research will propose a modified word vectors method that 

is able to adjust the weight of the LLM-generated vectors using an external scalar value. 

This method is required in order to prepare the word vectors as input to the FF-NN 

classifier that will be developed in the next Phase 4 of this research methodology. 
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3.2.3 Phase 3: Modified Word Vectors Method Development 

The aim of this phase is to develop a method that can modify the LLM-generated 

word vectors into vector values that signify the desired weight target. In this research, the 

desired weight target is words that are able to differentiate question texts, enabling proper 

classification into one of the QCoC classes. Overall, Phase 3 will involve two main 

activities: 1) Developing an algorithm to produce scalar weight that signifies the 

occurrences of question/general words, and 2) Developing an algorithm to take the scalar 

weight value and modify the LLM-generated word vectors to produce vectors that are 

weighted towards the scalar weight. 

Regarding the first activity, the generated scalar weight value should emphasise 

the question words, which are key weighting factors in differentiating question types. To 

generalize this process, activity 1 should also consider other words used in the question 

texts. As mentioned in the literature of this research, identifying question/general word 

occurrences in question texts is useful for determining whether a question requires a 

direct factual answer or an indirect abstractive answer. Therefore, the first activity will 

focus on developing an algorithm that can represent the usage of general words in the 

question text within the benchmarked QA datasets. 

For the second activity, the focus will be on developing an algorithm to modify 

LLM-generated word vectors into weighted fixed-length vector values. Weighted in this 

case is towards the embedded scalar value, and fixed-length in this case refers to the same 

length vector values for sentences with varying word counts. As mentioned, the 

architecture of the vanilla FF-NN requires a fixed-length vector as its input format, 

indirectly necessitating an algorithm capable of handling variable-length sentences to 

produce a fixed-length vector size format for the final word representation value. 

¡ Activity 1: Development of general word weighting algorithm 

This activity aims to develop an algorithm that can generate a scalar weight value 

capable of effectively emphasising the usage of general or question words in a sentence. 

This algorithm will utilize the Term Frequency (TF) formulation as the base formula, 

which calculates the frequency or usage of general/question words in the given dataset. 

To further validate this algorithm’s result, the produced scalar weight value must also be 

scalable to any document or library size. With this generalization, other cases can also 
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implement this method by synchronising it with the selected domain's corpus, such as 

using medical-specific words instead of question words for the medical domain dataset. 

The algorithm designed for this purpose is outlined in the following Algorithm 2. 

ALGORITHM 2 : ALGORITHM TO GENERATE WORD’S SCALAR WEIGHT 

 Input: All question texts from the dataset 

 Output: token-weight pair  

 Initialisation: Retrieve all question texts from raw QA dataset 

1 Combine all question text into one long word sequence 

2 Tokenise the long sequnece using WordPiece tokeniser 

3 foreach token in the long sequence do 

4  if token = ‘?’ or ‘’’ or ‘,’ or ‘.’ then 

5   remove token 

6  else if token ≠ alphabets (i.e. number only) then 

7   remove token 

8  else if token = previous tokens (duplicate) then 

9   remove token 

10  else 

11   token += Unique Token (UT) 

12  end if 

13 end foreach 

14 foreach UT do 

15  Term Frequency (TF) = UT counts in long sequence 

16  weight (i.e. TF percentage) = (TF / UT) × 100 

17 end foreach 

18 return list of token-weight pair 

As mentioned, this algorithm will be validated by its capability to produced 

weight values that are scalable to any document or library size. To demonstrate this 

capability, two separate but interconnected experiments will be conducted. The first 

experiment, denoted as “experiment A,” will solely use the CoQA dataset, while the 

second experiment, “experiment B,” will involve the combination of CoQA, SQUAD, 

and QuAC datasets. Both experiments will exclusively use the Question texts from each 
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dataset, comprising a combination of the Question texts from the training and validation 

datasets. The primary distinction between these two experiments lies in the scale of the 

datasets. Experiment A uses only the CoQA dataset, which has a total of 662,607 tokens 

(17,404 unique tokens), while experiment B involves a combination of the CoQA, 

SQUAD, and QuAC datasets, resulting in a total of 2,833,785 tokens (24,837 unique 

tokens). The difference between the total tokens in experiment A and experiment B is 

2,171,178, while the difference in unique tokens is 7,433. These differences in dataset 

sizes will enable the assessment of the proposed algorithm’s scalability across various 

document or library sizes. 

Referring to the Algorithm 2, the WordPiece tokeniser (Devlin et al., 2018) is 

used to segregate the tokens from the original input text (step 2 of the algorithm). 

Tokenising the question text is a necessary process as the weight will be associated with 

each token, where one sentence (question texts) may have multiple tokens. After the 

tokenization process is completed, several irrelevant tokens, such as symbols and 

numbers, will be deleted before proceeding with the TF calculation. Upon executing the 

whole algorithm, the Term Frequency (TF) percentage value is calculated for each 

Unique Token (UT), referring to tokens that are not symbols, numbers, or duplications of 

other tokens. This TF percentage value is denoted as the 'weight' value (step 16 in the 

algorithm) and is incorporated into the token-weight pair data, which constitutes the 

algorithm's output.  

This Activity 1: Development of general word weighting algorithm, aims to 

develop an algorithm capable of calculating and producing scalar weight values to 

emphasise general/question words in a given text. The motivation behind this algorithm 

is to address the issue where the weight of general/question words is overshadowed by 

the weight of context words in the contextualised word vectors produced by the pre-

trained LLM. To generate the necessary scalar weight value, this algorithm employs the 

UT distribution percentage, which is expected to emphasise the weightage of 

general/question words without overshadowing the overall contextual semantics of the 

given text. To thoroughly evaluate this expectation, these scalar weight values will be 

incorporated into the LLM-generated word vectors, a task which will be performed in the 

next activity (Activity 2) within Phase 3 of this research methodology. 
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¡ Activity 2: Development of modified word vectors algorithm 

This activity aims to develop an algorithm that can incorporate an external scalar 

weight into the word representation vector generated from the LLM. The scalar vector 

from previous Activity 1 will be used together with LLM-generated word vectors from 

USE LLM as inputs to this algorithm. The output of this algorithm is a set of weighted 

fixed-length word representation vectors for question texts, which will later serve as input 

to the FF-NN question type classifier in Phase 4 of this research methodology. To produce 

the fixed-length vector, original 100-dimensional USE LLM word vectors for each word 

in a sentence (question text) will be utilised to represent the entire sentence. Maintaining 

this fixed-length vector will be challenging due to the varying length of sentences 

(different word counts). Therefore, four algorithms are proposed for the experiment to 

achieve the aim of this Phase 3. The four algorithms are presented in mathematical form 

as follows: 

1. '* = 	 <=>*! ∙ &'!?>*!%$ ∙ &'!%$?&@ >*!%' ∙ &'!%'?&A… (*" ∙ &'")& 

2. '* = 	*+ ∙ ∏ &'!"
!#$  

3. '* = *+ ∙ [&'$, &'', &'(…	&'"], where &'! = 1 if &'! = no value 

4. '* = 	∑ *+!∙-.!/"
!#$

"  

where: 
• '* = weighted fixed-length vector 
• * = vector embedding for each token 
• ( = token’s index 
• &' = general weight or g-weight value for each token (in scalar format) 

• J = total token counts in the question text 

• *+ = vector embedding for the input sentence 

Given equation one to four above represent different proposal to calculate the 

weighted fixed-length vector, denoted as '* , where *  is the vector 

embedding/representation for each token produced by the USE LLM, at the token's index 

(. The variable &' denotes the general weight or g-weight value associated with each 

token, which is the result of Algorihtm 2 in Activity 1 of this Phase 3. In cases where a 

token/word lacks a corresponding g-weight value, the algorithm will assign &' =
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0.00001, which is lower than the lowest g-weight value observed in previous experiment 

(0.00015 for Experiment A and 0.00018 for Experiment B). The variable J represents the 

total token count in the question text, which serves as the input for this algorithm. Lastly 

the variable *+ denotes the vector embedding for the entire input sentence or question 

text, where the USE LLM is used to produce the whole sentence embedding as opposed 

to embedding for each token. To further interpret these four algorithms, Algorithm 3 to 

6 will outline these algorihtms in pseudocode format.  

ALGORITHM 3 : ALGORITHM TO GENERATE WEIGHTED FIXED-LENGTH VECTOR – V1 

 Input: All question texts from the dataset 

 Output: Weighted fixed-length vector for each question text  

 Initialisation: Retrieve all question texts from classification dataset 

1 foreach question text do 

2  tokenise using WordPiece tokeniser 

3  foreach token do 

4   generate * (vector embedding) using USE LLM  

5   get &' (g-weight) scalar value from g-weight lookup table 

6   calculate 'M! (weighted token for each token i) as * ∙ &' 

7   if the first token or ( = 1 then 

8   '* is equal to 'M! 
9   else  

10   calculate '* as '*	multiply by 'M! 
11  end foreach 

12 end foreach 

13 return '* for each question text 

Algorihtm 3 showcases Variation 1 (V1) of the proposed algorihtm to generate 

the weighted fixed-length vector. In summary, this algorithm will take all question texts 

from the given dataset, tokenise them using WordPiece tokeniser (Devlin et al., 2018), 

and loop through each segmented token to perform several processes sequentially: 

generate the vector embedding (*) of that token using USE LLM in 100-dimensional 

format, obtain the g-weight (&') value for that token from the lookup table, calculate the 

weighted token ('M!) as * ∙ &', and finally calculate the weighted fixed-length vector 
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('*) as '* ∙ 'M!. These processes will be performed iteratively until all tokens within 

the question text are processed, then the algorithm moves on to the next question text in 

the given dataset. Ultimately, '* for all question texts will be generated. 

ALGORITHM 4 : ALGORITHM TO GENERATE WEIGHTED FIXED-LENGTH VECTOR – V2 

 Input: All question texts from the dataset 

 Output: Weighted fixed-length vector for each question text  

 Initialisation: Retrieve all question texts from classification dataset 

1 foreach question text do 

2  g-weightSum = 1 

3  tokenise question text using WordPiece tokeniser 

4  foreach token do 

5   get &' (g-weight) scalar value from g-weight lookup table 

6   g-weightSum = g-weightSum ∙ &' 

7  end foreach 

8  generate *+ (vector sentence embedding) using USE LLM 

9  calculate '* as *+ ∙ g-weightSum 

10 end foreach 

11 return '* for each question text 

Algorihtm 4 showcases the Variation 2 (V2) of the proposed algorihtm to generate 

the weighted fixed-length vector. Initially similar to V1, this algorithm will take all 

question texts from the given dataset, tokenise them using WordPiece tokeniser (Devlin 

et al., 2018), and loop through each segmented token to perform several processes 

sequentially. Within this loop, the g-weight (&') value for each token will be obtained 

from the lookup table, and the sum of &'  will be calculated as g-weightSum = g-

weightSum ∙ &'. After all tokens have been processed, a vector sentence embedding (*+) 

is generated using USE LLM in 100-dimensional format, and the weighted fixed-length 

vector ('*) is calculated as *+ ∙ g-weightSum.These processes will then be repeated for 

the next question text untill all question texts within the given dataset are processed and 

'* for all question texts have been generated. 
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ALGORITHM 5 : ALGORITHM TO GENERATE WEIGHTED FIXED-LENGTH VECTOR – V3 

 Input: All question texts from the dataset 

 Output: Weighted fixed-length vector for each question text  

 Initialisation: Retrieve all question texts from classification dataset 

1 foreach question text do 

2  set g-weightEmbedding[n] = [1,1,1, … ,1] 

3  tokenise question text using WordPiece tokeniser 

4  i = 0 

4  foreach token do 

5   get &' (g-weight) scalar value from g-weight lookup table 

6   set g-weightEmbedding[i] = &' 

   i++ 

7  end foreach 

8  generate *+ (vector sentence embedding) using USE LLM 

9  calculate '* as *+ ∙ g-weightEmbedding[n] 

10 end foreach 

11 return '* for each question text 

Algorihtm 5 showcases the Variation 3 (V3) of the proposed algorihtm to generate 

the weighted fixed-length vector. Also initially similar to V1 and V2, this algorithm will 

take all question texts from the given dataset, tokenise them using WordPiece tokeniser 

(Devlin et al., 2018), and loop through each segmented token to perform several 

processes sequentially. But before entering the tokens loop, a g-weightEmbedding[n] for 

each n question text will be initialised as a vector of 100-dimensional space with an 

integer value of ‘1’ for each space. Then for each token, the g-weight (&') value will be 

obtained from the lookup table, and directly the &' scalar value will be placed on the g-

weightEmbedding[n][i], with i being the index of the token in the question text. This 

process will be performed iteratively until all tokens within the question text are 

processed. Then, a vector sentence embedding (*+) is generated using USE LLM in 100-

dimensional format, and the weighted fixed-length vector ('*) is calculated as *+ ∙ g- 

weightEmbedding[n].These processes will then be repeated for the next question text 

untill all question texts within the given dataset are processed and '* for all question 

texts have been generated. 
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ALGORITHM 6 : ALGORITHM TO GENERATE WEIGHTED FIXED-LENGTH VECTOR – V4 

 Input: All question texts from the dataset 

 Output: Weighted fixed-length vector for each question text  

 Initialisation: Retrieve all question texts from classification dataset 

1 foreach question text do 

2  set total_wt[n] = [0,0,0, … ,0]  

3  tokenise using WordPiece tokeniser 

4  foreach token do 

5   generate * (vector embedding) using USE LLM  

6   get &' (g-weight) scalar value from g-weight lookup table 

7   calculate 'M! (weighted token for each token i) as * ∙ &' 

8   calculate total_wt[n] = total_wt[n-1] + 'M! 
9  end foreach 

10  calculate '* as total_wt[n] divided by token counts (average of 'M) 
11 end foreach 

12 return '* for each question text 

The last Variation 4 (V4) of the proposed algorihtm to generate the weighted 

fixed-length vector is showcases as Algorithm 6. Also initially similar to previous 

variations, this algorithm will take all question texts from the given dataset, tokenise them 

using WordPiece tokeniser (Devlin et al., 2018), and loop through each segmented token 

to perform several processes sequentially. Before entering the tokens loop, a total_wt[n] 

for each n question text will be initialised as a vector of 100-dimensional space with an 

integer value of ‘0’ for each space. Then for each token, the vector embedding (*) of that 

token will be generated using USE LLM in 100-dimensional format, and the g-weight 

(&') value for that token will be obtained from the lookup table. Next, the weighted 

token for each token i ('M!) is calculated as * ∙ &', and subsequently the total_wt is 

calculated as total_wt[n] = total_wt[n-1] + 'M!. After all tokens have been processed, 

the weighted fixed-length vector () will be calculated as total_wt[n] divided by the token 

count for the current question	'* text, which is basically an average of all 'M!. These 

processes will then be repeated for the next question text untill all question texts within 

the given dataset are processed and '* for all question texts have been generated. 
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To validate the results of all proposed algorithms, the weighted fixed-length 

vectors ('*) for five question texts are compared. The purpose of this process is to verify 

the accuracy with which each proposed algorithm weights the word vectors using the 

given external scalar weight value. Table 3.3 outlines the five question texts that will 

serve as test cases for this experiment. For all five cases, two types of word vectors are 

calculated: those with the g-weight implementation (type A with four variations: A-V1, 

A-V2, A-V3, and A-V4) and those without the g-weight implementation (type B). For 

type A (A-V1 to A-V4), the produced word vectors are the '*  from the previously 

presented four algorithms, and for type B, the produced word vectors are the original 

outputs from USE LLM. 

Table 3.3 Five test cases for the word weighting method experiment 

No Question text General words Context words 
1 how many items are on sale? how, many, are, on items, sale 

2 what items are on sale? what, are, on items, sale 

3 how many people is allowed? how, many, is people, allowed 

4 who is allowed? who, is allowed 

5 where are the items for sale? where, are, the, for items, sale 

To validate whether the proposed algorithm has successfully transformed the 

original USE LLM word vectors into weighted fixed-length vectors, two comparisons 

will be conducted for types A and B. The first comparison involves measuring sentence 

similarity through dot product calculations, while the second comparison involves 

measuring vector differences (in real numbers) through direct matrix subtraction. Based 

on these comparisons, one of the variations of algorithm A (A-V1, A-V2, A-V3, or A-

V4) that is capable of highlighting the weightage of the general words will be selected as 

the algorithm that will be used in the overall modified word vectors method. As a whole 

process, this modified word vectors method will use the pre-trained LLM to generate 

word vectors, obtain the general weight or g-weight scalar value from the precalculated 

lookup table (precalculated using Algorithm 2 in this phase's Activity 1), and finally 

modify the original LLM-generated word vectors using one of the modified word vectors 

algorithms (Algorithm 3 or A-V1, Algorithm 4 or A-V2, Algorithm 5 or A-V3, or 

Algorithm 6 or A-V4) proposed in this phase's Activity 2. The result from this method, 
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which is the weighted fixed-length vector, will then be used as input to the FF-NN that 

will be developed in the next Phase 4 of this research methodology. 

3.2.4 Phase 4: Machine Learning Classifier Development phase 

The aim of this phase is to build and train a Machine Learning (ML) classifier for 

a question-type classification task. As mentioned before, the ML classifier will be built 

using a vanilla/base feed-forward Neural Network (FF-NN) algorithm, aiming for the 

most economical or least computing resource model that suits multiclass classification 

problems. Given this aim, this phase will involve sequentially building the classifier, 

starting from the most basic setup or minimum parameter count towards the most 

advanced setup or maximum parameter count, attempting to achieve the best ratio of 

economy to performance results. 

Starting with the most basic FF-NN setup (one input, one hidden, and one output 

layer), this experiment will test various setups to find the best balance between economy 

and performance. To achieve this, various variables, including the FF-NN setup and 

hyperparameters, will be experimented with. The following is a list of those setups and 

hyperparameters to be explored: 

• Hidden layer size 
• Activation function 
• Gradient descent type 
• Loss function 
• Optimizer function 
• Learning rate 
• Batch size 
• Epoch size 
• Dropout usage 

The primary objective of this experiment is to find the most efficient and 

economical configuration for the question-type classifier ML model, while still ensuring 

satisfactory classification accuracy for the given contextual text data. This will be 

achieved by systematically varying the parameters and analysing the resulting 

performance through a set of sequential experiments. To ensure fair and consistent 

comparisons, all experiments will be conducted using the same hardware and software 

setup. Table 3.9 provides an overview of the specific details of this setup. 
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Table 3.4 Hardware and software setup for ML classifer experiment 

Hardware Software 
- CPU: 2.3GHz Quad-Core 

Intel Core i7 

- Memory: 32GB 3733MHz 

- GPU: Intel Iris Plus Graphics 
1536MB 

- Tensorflow Javascript (TFJS) 

- WebGL runtime through  
 Google Chrome 

- macOS version 11.2.3 

Although multiple experimental setups will be conducted for this experiment, the 

base feed-forward Neural Network (NN) architecture for the multiclass classification 

problem will remain consistent. Figure 3.5 illustrates this base model architecture. 

 

Figure 3.4 Base feed-forward NN model design for ML classifier experiment  

Referring to Figure 3.5, the model's main constant design consists of the input and 

output layer sizes, which comprise 100 nodes and four nodes, respectively. As mentioned 

earlier, the input size is determined by the vector embedding produced by USE LLM (Cer 

et al., 2018), while the output size corresponds to the four QCoC classes, as this is a 

supervised ML model. Notably, the original QCoC class includes five categories; 

however, this experiment only employs four classes, excluding the “Unknown” class. 

The rationale behind this decision will be provided in the next paragraph. Additionally, 

the usage of the softmax activation function for the output layer remains consistent 

throughout the experiments. This choice is well-suited for performing the multiclass 

classification process involving the four QCoC classes. The softmax function is denoted 

by following Equation 3.2. 
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 +N"MOP,(Q⃗)! =	 0%!
∑ 0%&'
&#$

 3.2 

where: 

• #⃗ = input vector from previous NN nodes 

• !!! = exponential function for an input vector  

• " = number of classes (four QCoC classes for this experiment)  

• !!" = exponential function for output vector  

For all experimental setups, 98.76% of the QCoC dataset will be used. As a recap, 

the QCoC dataset comprises five classes, namely Yes/No (19.27% of the total data 

points), Unknown (1.24%), Picking (0.64%), Factual (55.38%), and Counting/Fluency 

(23.47%). For this experiment, the Unknown class (1.24% or 1450 out of the total 116630 

QCoC data points) will not be utilised, leaving only four classes with 98.76% or 115180 

QCoC data points. The reason for disregarding the Unknown class is that the classifier's 

objective is to classify question text based on general and question words. Since the 

Unknown class's answer does not correlate with its question type (any question type can 

be classified as Unknown if the required answer is not presented in the given context), 

including this class in the classifier training dataset would introduce an outlier that could 

hinder the classifier from learning the pattern of other classes effectively. 

To reiterate, the problem being addressed in this research is the multiclass 

classification of the QCoC dataset. To assess the performance of the classifier, the F1 

score is chosen as the primary metric. The F1 score is a well-established and widely used 

metric for multiclass classification tasks, especially in scenarios with imbalanced class 

distributions such as the QCoC dataset. With the general target of achieving the highest 

F1 score in the shortest possible training duration, the following sequential experiments 

are conducted. These experiments are sorted in ascending order, starting from the first 

experiment and progressing towards the last. 

i. Determining hidden layer node counts for one hidden layer 

ii. Determining the best combination of hidden layer and epoch size 

iii. Determining the best activation function 

iv. Determining the best optimizer function 

v. Determining the best combination of batch and epoch size 
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vi. Determining the best loss function 

vii. Determining the best combination of the loss function and epoch size 

viii. Determining the best learning rate 

In all experiments, a 0.2 validation split is performed for the training dataset, 

which means 80% of the QCoC data points are used for training, and the remaining 20% 

are used for validation. Once the training and validation process is completed, the trained 

model will be evaluated using precision, recall, and F1 metrics on the entire QCoC 

dataset, which comprises a total of 115,180 data points.  

The baseline F1 score for the QCoC dataset is 0.561, which is calculated based 

on the highest F1 score obtained from the “Factual” class, considering true positive, true 

negative, and false negative values. With this defined baseline F1 score, sequential 

experiments will be conducted, where each setup will be evaluated based on its F1 score. 

The setup that achieves the highest F1 score will be selected as the base setup for 

subsequent experiments. To further elaborate on the evaluation methods for this research, 

Phase 5 will explain in detail all evaluation metrics that will be used in evaluating the 

trained ML classifier developed from this phase. 

3.2.5 Phase 5: Methods Evaluation 

The aim of this final phase is to validate and evaluate all proposed and developed 

methods from the previous four phases. While each method has been individually 

validated in its respective phase, this phase aims to assess the collective contribution of 

each method towards achieving the end result, which is the classification of the QCoC 

dataset using the developed ML classifier from Phase 4. Specifically, the evaluation will 

focus on the classifier's ability to predict classes for the QCoC dataset, aiming to justify 

the research hypothesis, which posits that the word representation vector derived from 

the LLM can be altered using an external scalar weight, which can later be used as input 

for an ML model to perform a text classification task. 

Overall, there are four evaluation metrics to be analysed: Accuracy, Precision, 

Recall, and F1 score. The mathematical forms of these metrics are as follows: 
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PSSTUPS- = )% + )$
)% + )$ + #% + #$	 

3.3 

VUWS(+(NJ = 	 )%
)% + #%	

3.4 

UWSPXX = 	 )%
)% + #$	

3.5 

#1 = 	2 × VUWS(+(NJ × UWSPXXVUWS(+(NJ + UWSPXX	
3.6 

 
where: 

• )% = True Positive value (correct prediction of positive/truth class) 
• )$ = True Negative value (correct prediction of negative/false class). In this 

experiment, TN is always 0 because there is no binary negative class. After all, 
multiclass classification makes other not-positive classes as FP (False Positive). 

• #% =  False Positive value (wrong prediction of other classes). The system 
predicted other class while it should be the truth class. 

• #$ =  False Negative value (wrong prediction of truth class). The system 
predicted truth class while it should be in another class. 

In general, the accuracy metric measures the overall performance of the model 

(correct predictions divided by all predictions). The precision metric evaluates the 

model's ability to predict the true class (correct predictions of the true class divided by all 

predictions of that class). The recall metric assesses the model's capability to identify the 

wrong prediction of the true class (correct predictions of the true class divided by all 

actual instances of that class). The F1 metric produces a harmonic mean of precision and 

recall, providing a balanced measure of both metrics. 

To recap, the QCoC dataset is imbalanced, with the following class distribution: 

Yes/No class: 22,478 data points (19.27% of the total), Unknown class: 1,450 data points 

(1.24%), Picking class: 749 data points (0.64%), Factual class: 64,589 data points 

(55.38%), and Counting/Fluency class: 27,364 data points (23.47%). As mentioned in the 

previous Phase 4 of this research methodology , the Unknown class is disregarded in this 

experiment due to the ambiguous structure of its questions (any question type can be 

classified as Unknown if the required answer is not presented in the given context). 

Consequently, the total number of data points to be tested for this experiment is 115,180, 

which accounts for 98.76% of the total 116,630 QCoC data points. Based on the 

distribution of the four remaining classes (Yes/No, Picking, Factual, and 
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Counting/Fluency), the baseline accuracy and F1 score can be calculated using the 

highest element in one class, which is the Factual class with 64,589 or 56.08% of the 

total 115,180 data points. Therefore, the baseline accuracy and F1 score for this model 

are 0.390 and 0.561, respectively (assuming the model predicted all data points as the 

Factual class). 

After the completion of this final phase, the research methodology will be 

concluded, and the result for tasks and experiements within all phases will be presented 

and discussed. All expected results and discussion will be summarised in the next section 

of this chapter. 

3.3 Summary 

This chapter presented a five-phase research methodology structured for this 

study, comprising 1) Base Data Preparation, 2) Dataset Development, 3) Modified Word 

Vectors Method Development, 4) Machine Learning Classifier Development, and 5) 

Methods Evaluation. Phase 1 focuses on cleaning and organising raw data, which begins 

with selecting a benchmarked Question-Answering (QA) dataset. In Phase 2, a cleaned 

QA dataset from phase 1 is used to identify and define classes related to abstractive 

answers, developing a Question Type Classification (QTC) dataset named QCoC or 

Question Classification of CoQA. Phase 3 involves generating scalar weight values to 

group similar question types, then developing an algorithm to modify word vectors for 

each question in the QCoC dataset. Phase 4 builds and trains a Feed-Forward Neural 

Network (FF-NN) model for question-type classification using the QCoC dataset and 

modified word vectors as inputs to the training process. Finally, Phase 5 evaluates the 

overall methods by comparing classification results against baseline scores using 

evaluation metrics Accuracy, Precision, Recall, and F1 score. With this presented 

research methodology, this study aims to justify and substantiate the hypothesis that 

altering word representation vectors using external scalar weights can enhance the 

contextual text classification tasks. 
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CHAPTER 4 
 
 

RESULTS AND DISCUSSION 

4.1 Introduction 

This chapter aims to provide a comprehensive analysis and interpretation of the 

results obtained from tasks and experiments conducted throughout the five-phase 

research methodology. To summarise, the expected results for each phase of the research 

methodology are as follows: 

¡ Phase 1: Base Data Preparation. A cleaned and organised dataset derived from 

one of multiple benchmarked QA dataset. This dataset will later be used as the 

basis for dataset development in the next phase of the methodology. 

¡ Phase 2: Dataset Development. A Question Type Classification (QTC) dataset, 

which is a multiclass classification dataset with classes related to abstractive 

answers phenomena in QA datasets. 

¡ Phase 3: Modified Word Vectors Method Development. Two results are 

expected from this phase, which comprises two main activities. The first result is 

a general word weighting algorithm, and the second result is a modified word 

vectors algorithm. Combining both algorithms, experiments conducted in this 

phase will produce a uniform method for modifying LLM-generated word 

vectors. 

¡ Phase 4: Machine Learning Classifier Development. A machine learning 

classifier developed using the Feed-Forward Neural Network (FF-NN) algorithm 

for the multiclass classification of the QCoC dataset. This classifier should be 

iteratively trained with different setups and hypeparameter tuning to achieve the 

best ratio of economy to performance results.  
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¡ Phase 5: Methods Evaluation. An evaluation of previously developed ML 

classifier using Accuracy, Precision, Recall, and F1 score. The findings will 

contribute to the validation of the research hypothesis and the overall success of 

the proposed methods for contextual text classification. 

Based on these expected results, the following section will present a result 

analysis for each of the methodology phases, followed by a discussion of findings in the 

subsequent section that will relate the overall outcomes of those results to the defined 

objectives of this study. 

4.2 Results Analysis 

As a general recap of the five-phase methodology used in this study: the first 

phase involves identifying the best dataset to be used as the basis for dataset development 

in the second phase. The third phase entails developing algorithms to produce scalar 

weight values that best represent the selected case study, followed by developing 

algorithms to modify the raw LLM-generated word vectors to embed the scalar weight 

values. The fourth phase focuses on developing an ML model for text classification of 

the developed dataset, and finally, the fifth phase evaluates the performance of the ML 

model to reflect the effectiveness of the developed algorithms in the third phase of the 

research methodology. 

4.2.1 Phase 1: Base Data Preparation 

The aim of this phase is to analyse and select a benchmarked QA dataset to serve 

as the foundation for developing the required dataset for this research. Initially, four 

benchmarked QA datasets have been selected for analysis: The Stanford Question 

Answering Dataset or SQuAD (Rajpurkar et al., 2016), SQuAD version 2.0 or SQuAD 

2.0 (Rajpurkar et al., 2018), A Conversational Question Answering Challenge or CoQA 

(Reddy et al., 2019), and Question Answering in Context or QuAC (Choi et al., 2018). 

Later in the deeper analysis, SQuAD is neglected as its contents are also within the 

SQuAD 2.0 dataset. An overview analysis demonstrated that these datasets are primarily 

structured around the Factual answer feature, where the answer can be directly extracted 

from the given context. For the Unknown answer feature, only SQuAD 2.0 and QuAC 

contain a significant amount of it, with SQuAD 2.0 simulating questioner confusion and 



72 
 

QuAC focusing on missing information (Yatskar, 2019). In regards to the Multi-turn 

interactions feature, only QuAC and CoQA are presented with this feature, as both 

datasets are structured around conversational QA interactions. Regarding the Abstractive 

answer feature, only QuAC and CoQA include it, with most of it being the Yes/No 

phenomenon. However, QuAC does not include other phenomena, while CoQA also 

includes Coreference and Fluency (Yatskar, 2019). The coverage of abstractive answer 

phenomena in these datasets is outlined in Table 4.1. 

Table 4.1 Abstractive answer implementation in SQuAD 2.0, CoQA and QuAC  

Abstractive answer phenomena SQuAD 2.0 CoQA QuAC 
Yes/No No Yes Yes 

Coreference No Yes No 

Counting No Yes No 

Picking No Yes No 

Fluency No Yes No 

Source: Yatskar (2019). 

Based on this analysis, the CoQA dataset has been chosen as the basis for 

developing the QTC dataset for this research, primarily due to its wide coverage of 

abstractive-type answers. Henceforth, the QTC dataset will be referred to as the QCoC 

(Question Classification of CoQA) dataset to reflect CoQA as the foundational dataset 

for the QTC dataset. Before delving into the QCoC dataset development process (Phase 

2 of this research), the CoQA dataset will be cleaned, with metadata and data noise 

removed. The result of this Phase 1 (Base Data Preparation) will be the cleaned CoQA 

dataset, which will then serve as the input for the subsequent Phase 2 of this research 

methodology . 

4.2.2 Phase 2: Dataset Development 

Using the cleaned CoQA dataset from the previous phase as a foundation, the 

QCoC dataset is being developed in this phase. Five QCoC classes have been defined: 

Yes/No, Unknown, Picking, Factual, and Counting/Fluency. Based on these defined 

classes, Algorithm 1: Algorithm to classify QCoC classes is executed with the original 

CoQA distribution as a point of reference. The output from this algorithm is a one-hot 

encoding value for each data point in the QCoC dataset, corresponding to the class for 
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the question text in the data point. The overall result from the QCoC classification process 

is outlined in the following Table 4.2 

Table 4.2 QCoC classification result 

Item Result 
Total data point 116630 

Class distribution Yes/No: 22478 data points (19.27%) 

Unknown: 1450 data points (1.24%) 

Picking: 749 data points (0.64%) 

Factual: 64589 data points (55.38%) 

Counting/Fluency: 27364 (23.47%) 

Referring to Table 4.2, the total number of data points for QCoC is 116,630. This 

total comprises the combined data points from the CoQA training and evaluation datasets. 

As mentioned in the previous Chapter 3, the classification of the Yes/No, Unknown, and 

Picking classes is relatively straightforward through the proposed Algorithm 1. However, 

the Factual and Counting/Fluency classes require additional processing involving dot 

product using cosine similarity calculation. Ultimately, the algorithm classifies the 

Factual class to represent 55.38% of all QCoC data points, while Counting/Fluency 

accounts for 23.47%. This classification is in accordance with the original CoQA 

distribution reported by the author (Reddy et al., 2019). To further illustrate the 

correlation between QCoC and CoQA distributions, Table 4.3 showcases the mapping 

between the distribution of QCoC and CoQA. 

Table 4.3 QCoC classification result against CoQA 

QCoC CoQA 
Yes/No, Picking, Factual and 
Counting/Fluency (98.76%) 

Unknown (1.24%) 

Answerable (98.7%) 
 

Unanswerable (1.3%) 

Yes/No (19.27%) 
 

Factual (55.38%) 
 
 

Unknown, Picking and  
Counting/Fluency (25.35%) 

Yes and No (19.8%) 
 

Named Entity, Noun Phrase, and 
Date/Time (52.2%) 

 

Number and Other (27.9%) 



74 
 

Referring to Table 4.3, four out of the five QCoC classes are mapped with the 

CoQA Answerable type questions, with fairly similar percentages (98.76% for QCoC and 

98.7% for CoQA). A closer examination of the distribution reveals the following: 

¡ For the QCoC Yes/No class, it is matched with CoQA Yes (11.1%) and No (8.7%) 

type answers, resulting in 19.27% for QCoC and 19.8% for CoQA. This 

represents a straightforward matching between the Yes/No class and the Yes and 

No type answers. 

¡ Regarding the QCoC Factual class, it is matched with CoQA Named Entity 

(28.7%), Noun Phrase (19.6%), and Date/Time (3.9%) type answers, yielding 

55.38% for QCoC and 52.2% for CoQA.  

¡ Lastly, the QCoC Unknown (1.24%), Picking (0.64%), and Counting/Fluency 

(23.47%) classes are matched with CoQA Number (9.8%) and Other (18.1%) type 

answers, resulting in 25.35% for QCoC and 27.9% for CoQA. This matching 

accounts for CoQA Unknown and abstractive type answers. 

By completing this phase, a new dataset for the question classification process, 

named Question Classification of CoQA (QCoC), has been developed. This dataset 

differs from previous works in two significant aspects: 

ii. The class is based on the answer's features, rather than the answer's context. 

iii. The dataset focuses on the conversational Question-Answering (QA) domain, 
rather than the direct Machine Reading Comprehension (MRC) domain. 

The unique class structure of QCoC has been designed to tackle the challenges 

faced by QA systems dealing with abstractive answers. Among the five phenomena 

associated with abstractive answers (Yes/No, Coreference, Counting, Picking, and 

Fluency), QCoC delineates five corresponding classes: Yes/No, Unknown, Picking, 

Factual, and Counting/Fluency. The identification of these classes is rooted in the original 

CoQA distribution categories upon which this dataset is built. In essence, QCoC can be 

defined as a multiclass text classification dataset that accentuates variations in a 

question's context through its answer's features, diverging from the approach of directly 

classifying questions based on the context of the answer, as seen in previous works in 

this field. 
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With the completion of this dataset, the subsequent phase of this research 

methodology involves the development of a modified word vectors method. This method 

is essential for altering the raw LLM-generated vector of the question to represent the 

question’s context without necessitating modifications, re-training, or fine-tuning of the 

LLM, which can be costly. Two main algorithms are proposed for this method: 1) The 

general word weighting algorithm, which generates scalar values to emphasise the 

importance of general/question words within the question text, and 2) The modified word 

vectors algorithm, which embeds the produced scalar values into the LLM-generated 

word vectors to highlight the general/question words. Overall, this method will serve as 

a preprocessing stage, taking the raw LLM-generated vector as input and producing a 

weighted vector of the same dimension length as output.  

4.2.3 Phase 3: Modified Word Vectors Method Development 

In this phase, a method for modifying the LLM-generated word vectors into 

weighted word vectors is developed. This method aims to assign desired weight targets 

to the input word vectors, particularly focusing on words that can differentiate question 

texts (i.e., the general/question words). Two activities are executed in this phase: activity 

one involves the development of a general word weighting algorithm, and activity two 

focuses on the development of a modified word vectors algorithm. 

¡ Activity 1: Development of general word weighting algorithm 

Two experiments are conducted to assess the proposed Algorithm 2: Algorithm to 

generate word’s scalar weight. The first experiment, denoted “experiment A,” 

exclusively utilizes the CoQA dataset, while the second experiment, “experiment B,” 

incorporates a combination of CoQA, SQUAD, and QuAC datasets. These experiments 

aim to evaluate the scalability of Algorithm 2. The difference between the total tokens in 

Experiment A and Experiment B is 2,171,178, with a variance of 7,433 unique tokens. 

Upon executing Algorithm 2 for both experiment A and B, a scalar weight value 

is produced for each unique token/word in the dataset. This weight value is represented 

as the TF percentage, calculated based on the total unique tokens present in the given 

dataset. To outline the key findings from both experiments, Table 4.4 showcases the 

overall results for these experiments. 
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Table 4.4 Overall results of general word weighting algorithm 

Items Experiment A Experiment B 
Dataset CoQA CoQA, SQUAD and 

QuAC 

Total Token (TT) 662607 2833785 

Total Unique Token (UT) 17404 24455 

Maximum TF percentage 5.92% 5.55% 

Minimum TF percentage 0.00015% 0.00018% 

In Table 4.4, the total number of tokens (TT) for experiments A and B are 662,607 

and 2,833,785, respectively. This indicates a scale-up of more than 300% for experiment 

B compared to experiment A. On the other hand, the difference in unique tokens (UT) is 

only 7,051 tokens, which represents a scale-up of around 40% for experiment B from 

experiment A. Furthermore, the maximum and minimum TF percentage values show only 

slight differences, with a margin of 0.37% for the maximum and 0.00003% for the 

minimum. For a more detailed analysis, the TF percentage values for each token are 

segmented into ten clusters. It is worth noting that a higher percentage value implies that 

the token is highly general or common, as justified by its frequent usage in the given 

dataset. Conversely, a lower percentage value suggests that the token is highly specific 

or uncommon, as justified by its limited usage in the dataset. The distribution of UT 

regarding the ten clusters is visually represented in the following Figure 4.1. 

 

Figure 4.1 Distribution of Unique Token (UT) TF percentage 
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Referring to Figure 4.1, a significant portion of each experiment is dominated by 

the lowest cluster of TF percentage (53% for experiment A and 61% for experiment B). 

This observation suggests that the disparity in usage between general and specific words 

is considerable, as lower TF percentage values indicate lower token/word usage in the 

dataset. To conduct a more in-depth analysis of the ten segmented clusters, subsequent 

Tables 4.5 and 4.6 present the TF percentage clusters' range, total TF percentage for each 

cluster, TF count for each cluster, UT counts for each cluster and a Sum value in a specific 

column.  

Table 4.5 Detail TF percentage distribution over ten clusters (experiment A) 

Cluster Total % in cluster TF count UT count Sum 
Min – 0.58 52.90 350,519 17,379 N/A 
0.59 – 1.17 9.45 62,616 11 11 
1.18 – 1.76 5.53 36,642 4 15 
1.77 – 2.36 5.72 37,901 3 18 
2.37 – 2.95 8.19 54,268 3 21 
2.96 – 3.54 3.48 23,059 1 22 
3.55 – 4.13 3.99 26,438 1 23 
4.14 – 4.72 4.56 30,215 1 24 
4.73 – 5.31 0.00 0 0 24 
5.32 – Max 5.92 39,226 1 25 

Total 100 662,607 17,404 25 
 

Table 4.6 Detail TF percentage distribution over ten clusters (experiment B) 

Cluster Total % in cluster TF count UT count Sum 
Min – 0.55 60.54 1,715,573 24,430 N/A 
0.56 – 1.10 9.36 265,242 14 14 
1.11 – 1.66 4.11 116,469 3 17 
1.67 – 2.21 5.74 162,659 3 20 
2.22 – 2.77 5.08 143,956 2 22 
2.78 – 3.32 3.26 92,381 1 23 
3.33 – 3.88 0.00 0 0 23 
3.89 – 4.43 0.00 0 0 23 
4.44 – 4.99 0.00 0 0 23 
5.00 – Max 11.11 314,834 2 25 

Total 100 2,833,785 24,455 25 
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Referring to Tables 4.5 and 4.6, the Sum column is included to showcase that for 

both experiments, the sum of UT count for the nine highest clusters is the same (25 UT 

count, as shown in the Total row for the Sum column). Despite the vast difference in total 

TT and UT count for each experiment (with a difference of 2,171,178 TT and 7,433 UT 

count between experiments A and B), this result indicates that the total number of majorly 

used words is similar. It suggests that although the dataset is scaled up (with around 300% 

more text/tokens), the amount of unique general/question words that are used remains 

immensely similar. Upon examining this claim, the following are the 25 UT words for 

each experiment, listed in sequence from highest to lowest TF percentage: 

¡ Experiment A: [what] [the] [did] [was] [he] [who] [is] [to] [how] [it] [of] [in] 

[they] [where] [a] [does] [she] [do] [when] [his] [for] [many] [that] [s] [were] 

¡ Experiment B: [the] [what] [did] [of] [was] [in] [is] [to] [he] [who] [how] [a] 

[when] [for] [s] [are] [do] [it] [where] [they] [does] [were] [any] [and] [that] 

From the listed 25 UT words for both experiments, only three words are not 

similar between the two sets (denoted by underlined text in the list). Although not 100% 

similar, this result shows that common general word usage is highly similar despite being 

measured from different dictionaries or document sizes. This finding further supports the 

generalizability of the proposed algorithm, indicating its ability to consistently capture 

and emphasise common general/question words, regardless of the dataset's scale or size. 

With the completion of this activity, a list of token-weight pairs is produced. The 

weight value in this pair corresponds to the TF percentage value (a scalar value), which 

signifies the weightage of its paired token. Notably, from both experiments, the maximum 

TF percentage value does not exceed a single-digit integer, indicating that the TF 

percentage is expected to effectively emphasise the weightage of general words without 

overshadowing the overall contextual semantics of the given text. To further validate this 

expectation, activity two in this phase involves developing an algorithm to embed this 

scalar value into the raw LLM-generated word vectors, and analysis regarding its 

contextual representation is performed. 
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¡ Activity 2: Development of modified word vectors algorithm 

Two comparison experiments are conducted to assess the proposed 'Algorithm to 

generate weighted fixed-length vectors.' Experiment one involves sentence similarity 

measurement, and experiment two focuses on vector differences measurement. For both 

experiments, five test cases are compared. Additionally, two types of word vectors are 

calculated for both experiments: those with the g-weight implementation (type A with 

four variations: A-V1, A-V2, A-V3, and A-V4) and those without the g-weight 

implementation (type B). The four variations for type A are as follows: Algorithm 3 for 

variation 1 (A-V1), Algorithm 4 (A-V2), Algorithm 5 (A-V3), and Algorithm 6 (A-V4). 

For type A (A-V1 to A-V4), the produced word vectors are derived from the four 

algorithms presented in Chapter 3, while for type B, the produced word vectors are the 

original outputs from USE LLM. The following subsections will present the results of 

the experiments, starting with experiment one and followed by experiment two. 

Experiment 1: Sentence Similarity Measurement 

For the sentence similarity measurement, the dot product is calculated for each 

test case against each other. The results for type A (g-weight implementation) and type 

B (original USE LLM word vectors) are presented in Tables 4.7 to 4.11, respectively. It 

should be noted that some values are high in decimal-point and require a scalable factor 

to produce values that are readable and suitable for the presented table formats. A caption 

indicating this has been included in the relevant tables. 

Table 4.7 Dot product between test cases for type A-V1 (g-weight) 

No 1 2 3 4 5 
1 0.006 (5) 0.014 (5) 1.799 (5) 2.747 (5) 0.045 (5) 

2 0.014 (4) 0.051 (4) 4.411 (4) 6.717 (4) 0.115 (4) 

3 1.799 (2) 4.412 (2) 595.904 (2) 916.585 (2) 14.722 (2) 

4 2.747 (1) 6.717 (1) 916.585 (1) 1425.34 (1) 22.481 (1) 

5 0.045 (3) 0.115 (3) 14.722 (3) 22.481 (3) 0.369 (3) 

*Result is multiplied by 100 to scale into a readable format 
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Table 4.8 Dot product between test cases for type A-V2 (g-weight) 

No 1 2 3 4 5 
1 0.00001 (5) 0.0001 (5) 0.054 (5) 0.664 (5) 0.0001 (5) 

2 0.00017 (3) 0.0016 (3) 0.475 (3) 5.993 (3) 0.0014 (3) 

3 0.054 (2) 0.475 (2) 157.328 (2) 1939.72 (2) 0.428 (2) 

4 0.664 (1) 5.993 (1) 1939.72 (1) 25392.6 (1) 5.457 (1) 

5 0.00016 (4) 0.0014 (4) 0.428 (4) 5.457 (4) 0.0013 (4) 

*Result is multiplied by 100000 to scale into a readable format 

 

Table 4.9 Dot product between test cases for type A-V3 (g-weight) 

No 1 2 3 4 5 
1 123.714 (4) 169.746 (2) 127.207 (4) 118.623 (4) 109.117 (3) 

2 169.747 (1) 368.139 (1) 167.080 (1) 162.402 (1) 132.942 (1) 

3 127.207 (2) 167.080 (3) 154.438 (2) 134.677 (2) 106.047 (5) 

4 118.623 (3) 162.402 (4) 134.677 (3) 130.702 (3) 107.309 (4) 

5 109.117 (5) 132.942 (5) 106.047 (5) 107.309 (5) 114.366 (2) 

 

Table 4.10 Dot product between test cases for type A-V4 (g-weight) 

No 1 2 3 4 5 
1 32.405 (5) 77.871 (5) 46.595 (5) 65.427 (5) 74.312 (5) 

2 77.871 (1) 189.435 (1) 112.224 (1) 158.306 (1) 178.094 (1) 

3 46.595 (4) 112.224 (4) 67.325 (4) 94.757 (4) 107.080 (4) 

4 65.427 (3) 158.306 (3) 94.757 (3) 135.203 (3) 151.243 (3) 

5 74.312 (2) 178.094 (2) 107.080 (2) 151.243 (2) 172.938 (2) 

 

Table 4.11 Dot product between test cases for type B (original USE) 

No 1 2 3 4 5 
1 125.440 (1) 123.421 (3) 121.252 (3) 117.420 (5) 122.683 (3) 

2 123.421 (2) 125.440 (1) 119.181 (5) 118.338 (4) 124.132 (2) 

3 121.252 (4) 119.181 (4) 125.440 (1) 121.736 (2) 119.504 (5) 

4 117.420 (5) 118.338 (5) 121.736 (2) 125.440 (1) 119.982 (4) 

5 122.683 (3) 124.132 (2) 119.504 (4) 119.982 (3) 125.440 (1) 
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The previously presented Tables 4.7 to 4.11 offer the results from the dot product 

values obtained from the sentence similarity comparison process for both type of word 

vectors: those with and without g-weight implementation. Each table includes rankings 

denoted by numbers in brackets, indicating the level of semantic similarity between pairs 

of questions. Higher dot product values signify closer semantic similarity, while lower 

values indicate greater dissimilarity. Notably, Table 4.11, which represents the original 

USE LLM word vectors without g-weight implementation, consistently shows the first 

ranking to be when a sentence is compared to itself. This is expected because the 

magnitude of USE LLM word vectors lies within the same dimensional radius, leading 

to dot products not exceeding the value obtained when the sentence is compared to itself 

(due to the dot product of a vector with itself being the squared magnitude of the vector). 

On the other hand, the introduction of g-weight as an external value towards the original 

USE LLM word vectors significantly alters the dimensional radius for each sentence 

based on its associated g-weight value.  

Upon observation of the g-weight implementation cases (Tables 4.7, 4.8, and 

4.10), the dot product values exhibit a noticeable pattern, consistently increasing in 

parallel with the corresponding g-weight value, except for type A-V3 (Table 4.9). Despite 

this anomaly in variation 3, the rankings for all test cases tend to be relatively identical, 

even when a question is compared against itself. This suggests that the g-weight 

implementation contributes to the increased dot product values and reinforces the 

semantic similarity between questions, aligning with the intended aims of this algorithm, 

which is to modify the LLM-generated word vectors to emphasise general words as the 

external weight factor for the question texts. 

To provide a different perspective on the findings, Table 4.12 presents the 

rankings for the five test cases in type A variations A-V1, A-V2, and A-V4, along with 

their corresponding general words and total g-weight values (the sum of all g-weight 

values in each test case). Variation A-V3 is excluded from the table as this specific 

algorithm doesn’t produce the expected result, hence being concluded as ineffective in 

emphasising the general words. 
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Table 4.12 The ranking of the four variations in type A with total g-weight values 

No Question text General words Total g-weight  
1 how many items are on sale? 

A-V1 (5), A-V2 (5) and A-V4 (5) 

how, many, are, 
on 

2.909 

2 what items are on sale? 

A-V1 (4), A-V2 (3) and A-V4 (1) 

what, are, on 6.731 

3 how many people is allowed? 

A-V1 (2), A-V2 (2) and A-V4 (4) 

how, many, is 3.515 

4 who is allowed? 

A-V1 (1), A-V2 (1) and A-V4 (3) 

who, is 3.132 

5 where are the items for sale? 

A-V1 (3), A-V2 (4) and A-V4 (2) 

where, are, the, 
for 

7.578 

Referring to Table 4.12, it can be observed that variation A-V4 appears to closely 

approximate the correct ranking, showing a tendency to ascend towards higher total g-

weight values. However, it should be noted that the ranking is not entirely precise, as 

expected due to the presence of both positive and negative numbers in the word vectors. 

To elaborate, multiplying vectors with a scalar (g-weight value) may amplify negative 

values, resulting in larger negative numbers, and vice versa. Despite this imprecision, the 

overall perspective of variation A-V4's results can be viewed favorably in justifying the 

significance of general words after being weighted using the proposed algorithm. 

In contrast, for type B (original USE embeddings without g-weight 

implementation), the sentence similarity favours context words, as presented in Table 

4.11. Without considering general words, questions containing the words ‘items’ and 

‘sale’ are calculated to be similar to each other, and questions with the word ‘allowed’ 

are also found to be similar to one another. This aligns with the main purpose of USE or 

any other LLM, which is to emphasise context words.  

To summarise the results from both type A and B, it can be concluded that with 

the correct algorithm, the g-weight implementation can impact the original LLM-

generated word vectors, specifically in emphasising the usage of general words. In 

broader generalisation, this finding supports the hypothesis that an external scalar weight 

value can be used to modify or alter the original LLM-generated word vectors without 

modifying, retraining, or fine-tuning the pretrained LLM. 
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Experiment 2: Vector Differences Measurement 

To further analyse the significance of the g-weight implementation's impact on 

the original LLM-generated word vectors, a comparison of vector value differences is 

conducted for similar test cases and word vector types (A and B). As previously 

mentioned, the vector difference is calculated using direct matrix subtraction, where the 

first matrix is subtracted from the second matrix, and then the sum of all differences is 

computed to produce the final reported value. This raw vector value is crucial because it 

will serve as the input features for the vanilla feed-forward Neural Network (FF-NN) 

model in the next phase of this research methodology. Consequently, the most similar 

input features will be classified as similar, and vice versa. The results of this vector value 

difference comparison for type A (g-weight implementation) and type B (original USE 

embeddings) are presented in Tables 4.13 to 4.17. 

Table 4.13 Vector value difference for type A-V1 (g-weight) 

No 1 2 3 4 5 
1 0 (1) 0. 057 (2) 5.368 (5) 8.191 (5) 0.128 (3) 

2 0.057 (2) 0 (1) 5.312 (4) 8.134 (4) 0.071 (2) 

3 5.368 (4) 5.312 (4) 0 (1) 2.822 (2) 5.240 (4) 

4 8.191 (5) 8.134 (5) 2.822 (2) 0 (1) 8.062 (5) 

5 0.128 (3) 0.071 (3) 5.240 (3) 8.063 (3) 0 (1) 

 

Table 4.14 Vector value difference for type A-V2 (g-weight) 

No 1 2 3 4 5 
1 0 (1) 0.00023 (3) 0.08909 (4) 1.027 (5) 0.00021 (3) 

2 0.00023 (3) 0 (1) 0.08886 (2) 1.02641 (3) 0.00001 (2) 

3 0.089 (4) 0.0889 (4) 0 (1) 0.938 (2) 0.088 (4) 

4 1.027 (5) 1.026 (5) 0.938 (5) 0 (1) 1.026 (5) 

5 0.00021 (2) 0.00001 (2) 0.08888 (3) 1.02644 (4) 0 (1) 
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Table 4.15 Vector value difference for type A-V3 (g-weight) 

No 1 2 3 4 5 
1 0 (1) 11.339 (4) 3.970 (2) 0.0443 (2) 2.825 (3) 

2 11.339 (5) 0 (1) 7.369 (5) 11.384 (5) 14.164 (5) 

3 3.970 (4) 7.369 (2) 0 (1) 4.015 (4) 6.795 (4) 

4 0.044 (2) 11.384 (3) 4.015 (3) 0 (1) 2.780 (2) 

5 2.825 (3) 14.164 (5) 6.795 (4) 2.780 (3) 0 (1) 

 

Table 4.16 Vector value difference for type A-V4 (g-weight) 

No 1 2 3 4 5 
1 0 (1) 12.981 (5) 4.402 (2) 13.916 (5) 13.787 (5) 

2 12.981 (3) 0 (1) 8.579 (3) 0.935 (3) 0.806 (3) 

3 4.402 (2) 8.579 (4) 0 (1) 9.514 (4) 9.385 (4) 

4 13.916 (5) 0.935 (3) 9.514 (5) 0 (1) 0.130 (2) 

5 13.787 (4) 0.806 (2) 9.385 (4) 0.130 (2) 0 (1) 

 

Table 4.17 Vector value difference for type B (original USE) 

No 1 2 3 4 5 
1 0 (1) 1.892 (5) 0.199 (2) 2.548 (5) 0.975 (4) 

2 1.892 (4) 0 (1) 1.692 (4) 0.656 (2) 0.916 (3) 

3 0.199 (2) 1.692 (4) 0 (1) 2.348 (4) 0.776 (2) 

4 2.548 (5) 0.656 (2) 2.348 (5) 0 (1) 1.572 (5) 

5 0.975 (3) 0.916 (3) 0.776 (3) 1.572 (3) 0 (1) 

Tables 4.13 to 4.17 provide the vector value differences (in real numbers) for both 

type of word vectors: those with and without g-weight implementation. Similar to 

previous comparison tables, the rankings (smallest to highest difference) are included in 

the tables. The goal of this vector value comparison is to obtain smaller differences 

between vectors of similar question types, indicating closer similarity between their 

vector values. As these vectors are intended to serve as input features for question type 

classification ML model, a smaller difference signifies a higher level of similarity 

between the vectors of questions of the same type. 
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Upon examining the five test cases, it is expected that the vector for question 

number (1) “How many items are on sale?” should closely resemble the vector for 

question number (3) “How many people is allowed?” (both are ‘how many’ type 

questions). Similarly, the vectors for question number “What items are on sale?”, (4) 

“Who is allowed?”, and (5) “Where are the items for sale?” should all closely resemble 

each other, as they are factual-type questions. The smaller the differences between these 

vector pairs, the more effectively the proposed method is emphasising general words and 

reinforcing the semantic similarity between questions of the same type. 

Referring to Tables 4.13 to 4.17, only Table 4.16 (type A-V4) and Table 4.17 

(type B) satisfy the requirement that “question number (1) and (3) should be closely 

similar to one another”. Upon further comparison of these two tables, question number 

(1) and (3) are ranked last and second last (rank 4 and 5) in the type A-V4 result. In 

contrast, type B’s result is also close, but it mistakenly ranks question number (5) closely 

similar to question number (3). The favorable outcome in type A-V4 is attributed to the 

fact that questions (2), (4), and (5) fall under the factual/extractive type questions 

(“what,” “who,” and “where” questions), while question (1) and (3) belong to the 

abstractive type questions (“how many” questions, which fall under the Counting 

phenomenon). This shows that the proposed method, particularly in variation 4 (A-V4), 

effectively emphasises general words by embedding their scalar weight value into the 

original LLM-generated word vectors. As a result, the modified word vectors produced 

by the algorihtm reinforce the similarity between questions of the same types.  

Further examining the values in Table 4.16 (type A-V4), it becomes evident that 

there is a substantial gap between the abstractive and factual question types. This gap can 

be identified by analysing each difference value, whereby a significant difference is 

observed when comparing questions with different types. For example, in column 1 for 

question 1, the difference between this question and questions 2, 4, and 5 (which are 

different in type) is relatively higher than between question 3 (which is the same type). 

To further illustrate this gap, Figures 4.2 and 4.3 visualize the vector values in 3-

dimensional line graph format for both type A-V4 and type B, respectively. 
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Figure 4.2 Vector graph for type A-V4 (g-weight implementation) 

 

 

Figure 4.3 Vector graph for type B (original USE embedding) 
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The previous Figures 4.2 and 4.3 visually represent the 100-dimensional vector 

values for all test cases in both type A-V4 and type B using 3-dimensional line graphs. A 

bird's-eye view comparison of both figures reveals that type A-V4 (with g-weight 

implementation) exhibits a noticeable difference between the vectors, whereas type B 

(original USE embedding without g-weight implementation) shows relatively little 

difference. Specifically, the difference in type A-V4 is depicted by the blue and grey 

lines, which exhibit dissimilar spikes compared to the other lines. This difference aligns 

with the aim of this proposed method, which is to generate a weighted fixed-length vector 

capable of representing question-type features using both general and question words. As 

previously mentioned, the question number (1) “How many items are on sale?” vector 

should closely resemble question number (3) “How many people are allowed?” vector 

(both being ‘how many’ type questions). In the presented Figure 4.2 for type A-V4, this 

similarity is evident, with the blue line representing question number (1) and the grey line 

representing question number (3) showing a close resemblance to each other compared 

to other question lines. 

This Phase 3 has showcased the successful method of modifying LLM-generated 

word vectors using an external scalar weight value. This method was achieved by 

implementing two algorithms, namely: 1) General weight weighting algorithm and 2) 

Modified word vectors algorithm. For the second algorithm, four variations are proposed, 

namely A-V1, A-V2, A-V3, and A-V4. Based on the previously discussed results, 

variation A-V4 has showcased the best result, which aligns with the overall aims of this 

proposed modified word vectors method. In summary, this method implements 

Algorithm 2 and Algorithm 6 (A-V4) to achieve the intended result. 

With the completion of this phase, the next phase of this research methodology 

will involve the development of a machine learning classifier using a vanilla/base feed-

forward Neural Network (FF-NN) algorithm for the question-type classification task of 

the QCoC dataset, developed in Phase 2 of this research. The developed modified word 

vectors method in this phase will serve as a preprocessing module before the word vectors 

data are used to train and evaluate the machine learning classifier. In the overall flow, the 

pre-trained LLM will be used to generate raw contextualised word vectors for QCoC 

datapoints, which will then undergo modification using Algorithm 6 before being fed into 

the machine learning classifier for further analysis. 
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4.2.4 Phase 4: Machine Learning Classifier Development 

In this phase, eight sequential experiments are conducted to develop a Machine 

Learning (ML) classifier for the question-type classification task of the QCoC dataset. 

As mentioned, this ML classifier will be built using a vanilla/base feed-forward Neural 

Network (FF-NN) algorithm, aiming for the most economical (least computationally 

intensive) model suitable for multiclass classification problems. The eight sequential 

experiments are designed and conducted to gradually build the ML classifier, starting 

from the most basic setup (minimum parameter count) and progressing towards the most 

advanced setup (maximum parameter count), in an attempt to achieve the best balance of 

economy and performance. To recap, the eight sequential experiments are as follows: 

i. Determining hidden layer node counts for one hidden layer 

ii. Determining the best combination of hidden layer and epoch size 

iii. Determining the best activation function 

iv. Determining the best optimizer function 

v. Determining the best combination of batch and epoch size 

vi. Determining the best loss function 

vii. Determining the best combination of the loss function and epoch size 

viii. Determining the best learning rate 

Following the execution of these experiments, Table 4.18 presents the results. 

Table 4.18 Results for the eight sequential experiments process 

No Setup Result 
1 Determining hidden layer node counts for one hidden layer   

 Default setup: ELU activation, Adamax optimizer, Categorical 
Cross Entropy loss, 10 epochs, 10% batch size (11518) 

 

  

 i. 52 nodes (mean for input + output size) 

ii. 100 nodes (input size) 

F1 = 0.606 

F1 = 0.662 
 

2 Determining the best combination of hidden layer and epoch 
size 

 

 Default setup: ELU activation, Adamax optimizer, Categorical 
Cross Entropy loss, 10% batch size (11518) 
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 i. One hidden layer (100 nodes), 10 epochs 

ii. One hidden layer (100 nodes), 50 epochs 

iii. One hidden layer (100 nodes), 100 epochs 

iv. One hidden layer (150 nodes), 10 epochs 

v. Two hidden layers (100 nodes each), 10 epochs 

vi. Two hidden layers (100 nodes each), 50 epochs 

vii. Two hidden layers (100 nodes each), 100 epochs 

viii. Two hidden layers (100 nodes each), 150 epochs 

ix. Three hidden layers (100 nodes each), 10 epochs 

x. Three hidden layers (100 nodes each), 50 epochs 

xi. Three hidden layers (100 nodes each), 100 epochs 

xii. Four hidden layers (100 nodes each), 50 epochs 

xiii. Four hidden layers (100 nodes each), 100 epochs 

xiv. Five hidden layers (100 nodes each), 100 epochs 

xv. Six hidden layers (100 nodes each), 100 epochs 

F1 = 0.662 

F1 = 0.706 

F1 = 0.710 

F1 = 0.633 

F1 = 0.668 

F1 = 0.714 

F1 = 0.720 

F1 = 0.723 

F1 = 0.698 

F1 = 0.718 

F1 = 0.723 

F1 = 0.721 

F1 = 0.723 

F1 = 0.726 

F1 = 72.517 

 

3 Determining the best activation function  

 Default setup: Adamax optimizer, Categorical Cross Entropy 
loss, 10% batch size (11518), five hidden layers (100 nodes 
each), 100 epochs 

 

 i. ELU 

 

ii. ReLU 

 

iii. Leaky ReLU 

 

iv. PReLU 

 

v. Linear 5 

F1 = 0.726 

273829ms 

F1 = 0.726 
187079ms 
F1 = 0.725 

294017ms 

F1 = 0.727 

194507ms 

F1 = 0.724 

162263ms 

 

4 Determining the best optimizer function  

 Default setup: Categorical Cross Entropy loss, 10% batch size 
(11518), five hidden layers (100 nodes each), 100 epochs, 
ReLU activation 
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 i. Adam 

 

ii. Adamax 

 

iii. Momentum (0.001 learning rate) 

 

iv. RMSProp 

 

v. SGD (0.001 learning rate) 

 

F1 = 0.725 

280892ms 

F1 = 0.726 
187079ms 
F1 = 0.701 

272572ms 

F1 = 0.675 

235543ms 

F1 = 0.561 

240339ms 

 

5 Determining the best combination of batch and epoch size  

 Default setup: Categorical Cross Entropy loss, five hidden 
layers (100 nodes each), ReLU activation, Adamax optimizer 

 

 i. 1% batch size (1151), 10 epochs 

 

ii. 1% batch size (1151), 20 epochs 
 

iii. 1% batch size (1151), more than 20 epochs 
 
 

iv. 10% batch size (11518), 100 epochs 

 

F1 = 0.720 

138268ms 

F1 = 0.726 

354546ms 

System 
couldn’t 
handle 
F1 = 0.726 
187079ms 
 

6 Determining the best loss function  

 Default setup: five hidden layers (100 nodes each), ReLU 
activation, Adamax optimizer, 10% batch size (11518), 100 
epochs 

 

 i. Categorical Cross Entropy 

 

ii. Cosine Distance 

 

iii. Hinge Loss 

 

iv. Mean Squared Error 

 

F1 = 0.726 
187079ms 
F1 = 56.077 

285750ms 

F1 = 56.077 

218393ms 

F1 = 0.726 
170880ms 
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v. Sigmoid Cross Entropy 

 

vi. Softmax Cross Entropy 

 

F1 = 70.735 

185137ms 

F1 = 72.209 

195235ms 

 

7 Determining the best combination of the loss function and 
epoch size 

 

 Default setup: five hidden layers (100 nodes each), ReLU 
activation, Adamax optimizer, 10% batch size (11518) 

 

 i. Categorical Cross Entropy loss, 50 epochs 

 

ii. Categorical Cross Entropy loss, 70 epochs 

 

iii. Categorical Cross Entropy loss, 100 epochs 

 

iv. Mean Squared Error loss, 50 epochs 

 

v. Mean Squared Error loss, 70 epochs 

 

vi. Mean Squared Error loss, 100 epochs 

 

F1 = 0.724 

77308ms 

F1 = 0.725 
155977ms 
F1 = 0.726 
187079ms 
F1 = 0.723 

75415ms 

F1 = 0.725 

1522118ms 

F1 = 0.726 

170880ms 

 

8 Determining the best learning rate  

 Default setup: five hidden layers (100 nodes each), ReLU 
activation, Adamax optimizer, 10% batch size (11518), 
Categorical Cross Entropy loss, 70 epochs 

 

 i. Adamax 0.1 learning rate 

 

ii. Adamax 0.01 learning rate  

 

iii. Adamax 0.001 learning rate  

 

iv. Adamax 0.0001 learning rate 

 

F1 = 0.561 

112125ms 

F1 = 0.727 
111482ms 
F1 = 0.725 

155977ms 

F1 = 0.682 

111377ms 

*ms = miliseconds 
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Table 4.18 presents the results for various FF-NN setups in this phase. A total of 

47 NN setups have been tested, and from this sequential experiment, the highest-scoring 

F1 score is achieved using the following setup: five hidden layers, each with 100 nodes, 

ReLU activation function for all nodes in the input and hidden layers, a batch size of 10% 

or 11518 datapoints (mini-batch gradient descent), Adamax optimizer function with a 

learning rate of 0.01 for reducing loss generated by the Categorical Cross Entropy 

function, and 70 training epochs. Using this setup, an F1 score of 0.727 is achieved 

(approximately 30% higher than the baseline score) in just 111482 milliseconds (1 minute 

and 52 seconds) of training time using the hardware setup specified in Table 3.4.  

From an economic perspective, the total parameter count of the produced FF-NN 

ML classifier model is only 51,604. This count is achieved through five hidden layers, 

each consisting of 100 nodes' weights and biases (10,200 parameters for one hidden 

layer), and one output layer with 100 nodes' weights and biases multiplied by 4 output 

nodes (404 parameters). The reduction in the number of training parameters is substantial 

compared to state-of-the-art methodology, which involves fine-tuning a Large Language 

Model (LLM). Fine-tuning LLM models for multiclass classification involves adding 

task-specific layers and may also include the base parameters of the pre-trained LLM for 

the training process. For reference, the parameter counts for various LLM models are as 

follows: 94 million for ELMo, 340 million for BERT (Large), 340 million for XLNET, 

355 million for RoBERTa, 1.5 billion for GPT-2, 8.3 billion for Megatron-lm, 11 billion 

for T5, 17 billion for Turing-NLG, and a staggering 175 billion for GPT-3. 

With the completion of this phase, the final step/phase in this research 

methodology is to validate and evaluate the ML classifier developed in this phase, 

incorporating  additional evaluation metrics to analyse its correlation with the achieved 

F1 score. Specifically, the evaluation will concentrate on the classifier's capacity to 

predict classes for the QCoC dataset, with the aim of validating the research hypothesis: 

the word representation vector derived from the LLM can be altered using an external 

scalar weight, which can later be used as input for an ML model to perform a text 

classification task. 
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4.2.5 Phase 5: Methods Evaluation 

In this final phase, all previously proposed methods will be collectively evaluated 

through the performance of the developed ML classifier on the QCoC dataset. Four 

evaluation metrics will be used: Accuracy, Precision, Recall, and F1 score. It is a well-

known fact that NN models sometimes exhibit different results if not optimally trained. 

This is due to the nature of the NN training process, which assigns random weights to its 

nodes before starting the training process. Therefore, to ensure a comprehensive 

assessment, the classifier will undergo multiple testing iterations (three times each) to 

determine its stability and consistency. 

To recap, the final classifier produced in the previous phase is a FF-NN model 

with the following setup: five hidden layers, each comprising 100 nodes, ReLU activation 

function applied to all nodes in the input and hidden layers, a 10% batch size (equivalent 

to 11518 datapoints) for mini-batch gradient descent, Adamax optimizer function with a 

learning rate of 0.01 to reduce loss generated by the Categorical Cross Entropy function, 

and 70 training epochs. As demonstrated in the previous phase, this particular setup 

achieved the highest F1 score, thus solidifying its status as the most optimal configuration 

for the classifier. However, in the interest of providing a comprehensive analysis, another 

setup will also be evaluated and reported. This alternative setup may exhibit higher 

generalization capabilities but result in a lower F1 score. The comparison of both setups 

will shed light on the trade-offs between generalization and performance, contributing to 

a more nuanced understanding of the model's behaviour. 

As mentioned, the baseline accuracy for QCoC is 0.390, and the corresponding 

baseline F1 score is 0.561. This baseline value is obtained under the assumption that the 

classifier classifies all 115180 datapoints into the Factual class, which represents the 

highest number of data points in a single class (64589 out of 115180 or 56.08% of the 

overall dataset). Visual representation of the detailed accuracy per class and the confusion 

matrix for the baseline scenario is presented in the following Figure 4.4. 
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Figure 4.4 Baseline prediction for the four QCoC classes 

Referring to Figure 4.4, the per-class accuracy for the Factual class is one 

(indicating the maximum accuracy), while the accuracy for other classes is zero 

(indicating the minimum accuracy). The confusion matrix displays the following values: 

true positives (TP) as 64589, false positives (FP) as 50591, and false negatives (FN) as 

50591. Using these values, the baseline accuracy can be calculated using Equation 3.3 

(accuracy), resulting in 0.390, and the baseline F1 score can be calculated using 

Equations 3.4 (precision), 3.5 (recall), and 3.6 (F1 score), resulting in 0.561. Table 4.19 

outlines these baseline values. 
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Table 4.19 Baseline values for accuracy and F1 score 

Metric Baseline value 
Accuracy (equation 3.3) 0.390 

F1 score (equation 3.6) 0.561 

Based on the baseline scores, two setups, namely Setup A and Setup B, are 

evaluated in this experiment. Setup A includes five hidden layers with 100 nodes in each 

layer, ReLU activation function for all nodes in the input and hidden layers, a batch size 

of 10% or 11518 data points for mini-batch gradient descent, Adamax optimizer function 

with a learning rate of 0.01, Categorical Cross Entropy loss function, and 70 training 

epochs. On the other hand, Setup B consists of three hidden layers with 100 nodes in each 

layer, ELU activation function for all nodes in the input and hidden layers, a batch size 

of 10% or 11518 data points for mini-batch gradient descent, Momentum optimizer 

function with a learning rate of 0.01, Categorical Cross Entropy loss function, and 10 

training epochs. Table 4.20 outlines these setups parameters. 

Table 4.20 Configuration parameters for setup A and setup B 

Setup Configuration parameters 
A 5 hidden layers (100 nodes in each layer) 

ReLU activation function for all nodes (input and hidden layers) 

10% batch size (11518 data points for mini-batch gradient descent) 

Adamax optimizer function (0.01 learning rate) 

Categorical Cross Entropy loss function 

70 training epochs 

B 3 hidden layers (100 nodes in each layer) 

ELU activation function for all nodes (input and hidden layers) 

10% batch size (11518 data points for mini-batch gradient descent) 

Momentum optimizer function (0.01 learning rate) 

Categorical Cross Entropy loss function 

10 training epochs 

The training graphs for both setups are illustrated in following Figure 4.5 for 

Setup A and Figure 4.6 for Setup B, each showing three iterations. These graphs depict 

the training process and the model's performance during training for each iteration of the 

respective setups. 
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Figure 4.5 Training loss, validation loss, accuracy, and validation accuracy for setup A 

 

Figure 4.6 Training loss, validation loss, accuracy, and validation accuracy for setup B 
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Figure 4.7 Accuracy and confusion matrix tables for setup A  
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Figure 4.8 Accuracy and confusion matrix tables for setup B  
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Figures 4.5 and 4.6 illustrate the training graphs, displaying the values of loss, 

validation loss, accuracy, and validation accuracy for each training. Overall, Setup A 

demonstrates more consistent training progress compared to Setup B. Despite their 

differences in consistency, both setups ultimately converge towards similar results. To 

further evaluate the performance of the models, accuracy and confusion matrix tables for 

both setups are also provided in Figures 4.7 and 4.8. These tables are generated after the 

evaluation process, which is conducted immediately after the completion of training for 

each iteration. By analysing these tables, a comprehensive assessment of the classifiers' 

predictive capabilities and their ability to classify the classes in the QCoC dataset can be 

made. 

Referring to Figures 4.7 and 4.8, accuracy scores for each of the four QCoC 

classes and the corresponding confusion matrix tables for each evaluation iteration are 

presented. Overall, Setup A demonstrates more consistency in accuracy scores and True 

Positive (TP) values for each class compared to Setup B. For both setups, the Picking 

class consistently achieves a zero accuracy score. This is expected since the total number 

of data points for the Picking class is only 0.65% (749 out of the overall 115,180 data 

points), making it challenging for the classifier to accurately learn patterns for this class. 

Among all classes, the Factual class consistently performs the best in both setups, with 

consistently high accuracy scores. The Yes/No class also exhibits good performance in 

Setup A, but its performance is less consistent in Setup B. On the other hand, the 

Counting/Fluency class shows poor performance in both setups, with zero accuracy 

scores in all iterations for Setup A, and only small accuracy scores (less than 10%) in all 

iterations for Setup B. This indicates that the classifier struggles to correctly classify 

instances from the Counting/Fluency class in both setups. 

Looking at the overall performance in comparison to the baseline accuracy and 

F1 score, the classifier demonstrates a significant improvement against the baseline 

scores. To recap, the baseline scores for QCoC classification are 0.390 for accuracy and 

0.561 for the F1 score. Tables 4.21 and 4.22 present the accuracy and F1 score for all 

iterations in Setup A and Setup B, respectively. 
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Table 4.21 Accuracy and F1 score for setup A 

Metric Iteration 1 Iteration 2 Iteration 3 
Accuracy 0.571 0.571 0.570 

F1 0.727 0.727 0.726 

Average accuracy 0.571 
Average F1 0.727 

 

Table 4.22 Accuracy and F1 score for setup B 

Metric Iteration 1 Iteration 2 Iteration 3 
Accuracy 0.498 0.443 0.489 

F1 0.665 0.614 0.657 

Average accuracy 0.477 
Average F1 0.645 

Referring to Table 4.21, Setup A has shown an increase of 0.181 (0.571 minus 

0.390) or 18% in accuracy and 0.166 (0.727 minus 0.561) or 17% in F1 score, while 

Table 4.22 demonstrates that Setup B has an increase of 0.087 (0.477 minus 0.390) or 

9% in accuracy and 0.084 (0.645 minus 0.561) or 8% in F1 score (calculated from average 

accuracy and F1).  

From another perspective, Setup A has achieved a 46% increment from the 

baseline accuracy score (the percentage of 0.181/0.390) and a 30% increment from the 

baseline F1 score (the percentage of 0.166/0.561), whereas Setup B has achieved a 22% 

increment from the baseline accuracy score (the percentage of 0.087/0.390) and a 15% 

increment from the baseline F1 score (the percentage of 0.084/0.561). To visualize these 

information, Figure 4.9 presents a bar chart depicting the baseline accuracy and F1 scores, 

along with the accuracy and F1 scores for setups A and B. In the chart, the light green 

bars represent the baseline values, while the dark green bars represent the actual results 

for both experimental setups. Referring to this chart, it is evident that both setups 

significantly improved the evaluated scores, albeit with different parameter 

configurations. From an overall perspective, these results justify the proposed modified 

word vectors algorithm's success in incorporating external weights into the original word 

representation vector, with the objective of modifying its weightage to lean towards the 

intended contextual value. 
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Figure 4.9 Baseline and result values for accuracy and F1 score 

 

4.3 Discussion of Findings 

The previous Result Analysis section has presented and discussed all results 

within the conducted five-phase research methodology. The overall findings derived from 

this result analysis has generally addressed the defined research objectives and offered 

valuable insights into the research hypothesis that the word representation vector derived 

from the LLM can be altered using an external scalar weight, which can later be used as 

input for an ML model to perform text classification task. To elaborate, the following are 

the discussion of findings from the presented results in relation to their contribution to 

achieving the three defined research objectives.   

1. Objective 1: To develop a new algorithm that incorporate an external scalar 

weight into the word representation vector. 

The results from phase 3 of the research methodology have demonstrated the 

achievement of this objective through the proposed modified word vectors 

algorithm, Algorithm 6, as presented in Chapter 3. The results for the proposed 

algorithm have shown that by incorporating an external scalar weight value, the 

word representation vector can be semantically or contextually modified 

according to its importance. To recap, the research question posed for this 

Setup A: Accuracy

Setup A: F1

Setup B: Accuracy

Setup B: F1
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objective is (RQ1): How can an algorithm effectively incorporate external scalar 

weights into word representation vectors to enhance context understanding in a 

contextual text classification problem? In proposing the algorithm to achieve this 

objective, two effectiveness merits are targeted: accuracy and adaptability. In 

terms of accuracy, the proposed algorithm should enhance the contextual value of 

the original word vector with respect to the targeted text classification problem, 

as mentioned in RQ1. Regarding adaptability, the proposed algorithm should 

maintain the original word vector’s dimension, enabling it to be adaptable to 

different dimensions of the word vector. For both effectiveness merits, the results 

presented for Algorithm 6 have demonstrated its capability to satisfy both criteria, 

thus justifying the achievement of defined Objective 1 of this study. Zooming 

back into the broader aims, the proposed algorithm addresses the gap stated in the 

problem statement of this study, namely the inflexibility of externally modifying 

the weight of LLM-generated word vectors without modifying, re-training, or 

fine-tuning the LLM model. With the proposed algorithm, the computationally 

expensive LLM will only be used to generate the raw word vectors, while the 

modification of weights to suit the intended case study can be performed 

externally using a much less computationally expensive method. 

2. Objective 2: To develop a new text classification dataset that emphasises 

differences in context representation. 

The attainment of this objective occurred during phase 2 of the research 

methodology through the development of the QCoC dataset. While not as 

prominent as the primary objective 1, this objective holds significance within the 

selected case study field, particularly in the realm of multiclass classification of 

question text within the Question-Answering (QA) and question classification 

domain, as extensively discussed in the Literature Review chapter of this thesis. 

The research question posed for this objective is (RQ2): What criteria should be 

considered in the creation of a text classification dataset to emphasise differences 

in context representation? As previously outlined, the chosen domain for the 

creation of the new text classification dataset is the QA system. Consequently, 

three benchmarked QA datasets were analysed in phase 1, and an algorithm was 

proposed in phase 2 to create the new dataset. In terms of the criteria outlined in 
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RQ2, the focal point in developing the QCoC dataset was the significance of both 

the question and general words within a question text, which are crucial factors 

in accentuating differences in the context representation of a question texts. To 

effectively represent this context, the QCoC dataset was created using Algorithm 

1, which is defined as the algorithm for classifying the QCoC classes. The 

outcome of this algorithm is a question text classification dataset that underscores 

variations in how question text is classified based on its expected answer 

3. Objective 3: To evaluate the developed algorithm using a Machine Learning 

(ML) model in the contextual text classification problem. 

The posed research question for this objective is (RQ3): How does the developed 

algorithm, incorporating external scalar weights, perform when applied to a 

contextual text classification task? In addressing this question, phase 5 of the 

research methodology evaluates the developed machine learning classifier using 

four evaluation metrics, namely Accuracy, Precision, Recall, and F1 score. In 

retrospect, all previously proposed methods in prior methodology phases are 

collectively assessed in this final phase. Two setups were evaluated, with one 

aiming for the highest accuracy performance, and another focusing on 

generalising the classifier's performance (increasing the precision score). Overall, 

when compared to the baseline values, the classifier’s results exhibit significant 

improvements, justifying the contribution of the previously developed modified 

word vectors algorithm in incorporating external scalar weight values to enhance 

the performance of the machine learning classifier. Looking back, this overall 

result suggests that the hypothesis “the word representation vector derived from 

the LLM can be altered using an external scalar weight, which can later be used 

as input for an ML model to perform text classification tasks”, can be validated 

with the proposed algorithm for Objective 1 of this study. With these findings, it 

can be concluded that the overall aims of this study to provide an alternative 

method to modify word representation vector weight, requiring fewer 

computational resources, have been achieved. 
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4.4 Summary 

This chapter explores the results and findings obtained through the structured 

five-phase research methodology employed in this study. The chapter comprises two 

main sections: result analysis and discussion of findings. In the result analysis section, 

the results presented for each phase are discussed cohesively, as the outcomes of prior 

phases influence subsequent activities and processes in the following phases. Despite this 

interdependency, each phase's results are thoroughly analysed and presented to showcase 

all outcomes from the activities outlined in Chapter 3 (Methodology) of this thesis. To 

further contextualize the analysis in relation to the defined objectives of this study, the 

subsequent discussion of findings section provides broad perspectives into the 

implications of the results, aligning them with the general aims and hypothesis of the 

study. By elaborating on the findings for each objective, this section specifically 

addresses the contributions of each phase in the research methodology towards achieving 

the study's objectives, thereby providing clear indications of which methods or algorithms 

contributed to each objective. Overall, this chapter offers a focused discussion on the 

results and findings of this study, excluding external factors that influenced it. These 

external factors will be cumulatively addressed in the next and final chapter of this thesis 

as part of the conclusion to this study. 
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CHAPTER 5 
 
 

CONCLUSION 

5.1 Introduction 

This chapter serves as the conclusion to the thesis, encompassing discussions on 

constraints and limitations, contributions, threats to validity, and avenues for future work. 

Firstly, constraints and limitations will be addressed to provide insight into the scope of 

this study. This acknowledgment is essential for understanding the boundaries within 

which the research was conducted. Following this, the chapter will outline the 

contributions made by the study, emphasising the areas where it has had the most 

significant impact. By highlighting these contributions, the chapter aims to underscore 

the value and relevance of the research findings. Subsequently, threats to validity will be 

discussed, focusing on factors that may compromise the study's results. Finally, the 

chapter will explore several potential paths for future research, suggesting areas where 

further investigation could expand upon the findings of this study. 

5.2 Constraints and Limitations  

As with any research, there are both constraints and limitations to acknowledge. 

One main constraint of this study is the narrow focus of the experiments conducted, which 

centered on a specific contextual text data classification task which is the question type 

classification using the QCoC dataset. While the proposed method exhibited promising 

results within this scope, its applicability to other types of text data classification tasks 

warrants further exploration and validation. Moreover, although the size and diversity of 

the QCoC dataset sufficed for the current study, it may not fully represent the breadth of 

question types and contexts encountered in real-world applications, necessitating the 

assessment of the proposed method's generalizability with more extensive and diverse 

datasets. 
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Next, it's essential to recognise that the experiments were conducted using a 

consumer-grade computer with specific hardware and software configurations. 

Therefore, the performance and efficiency of the proposed method may vary across 

different computing systems, particularly when dealing with larger datasets or more 

complex models. Thus, considerations regarding the scalability and generalizability of 

the proposed method become imperative when applying it to diverse settings and 

configurations. Lastly, while the proposed modified word vector method demonstrated 

success in this study, its effectiveness might be influenced by very specific or domain-

specific vocabularies. Variations in corpus and language use could impact its efficacy, 

necessitating further investigation to identify potential limitations and avenues for 

improvement. 

5.3 Contributions   

Overall, this study makes several significant contributions to the field of 

contextual text data classification within the NLP research domain: 

1. Proposed modified word vectors algorithm: The development of the modified 

word vectors algorithm stands out as the main contribution of this study. This 

algorithm enables the modification of LLM-generated word representation 

vectors externally, eliminating the need to modify, retrain, or fine-tune the 

original pretrained LLM. This contribution is particularly valuable in contexts 

where computing resources are scarce, such as smaller research teams or 

educational institutions with limited access to high-performance computing 

resources. By showcasing the effectiveness of this algorithm, it becomes evident 

that word representation vectors can be modified externally. This facilitates 

machine learning classification algorithms with fewer parameters, significantly 

reducing the demand for extensive computing resources during training. 

2. The QCoC dataset: This study leverages the benchmarked QA dataset named 

CoQA to develop a new multiclass text classification dataset known as QCoC 

(Question Classification of CoQA). Unlike existing taxonomy-based datasets, 

QCoC is specifically designed to address a gap identified in the literature 

surrounding Question Type Classification (QTC) datasets. Specifically, QCoC 

focuses on mitigating the limitation of current QTC datasets, which overlook the 
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phenomenon of abstractive answers in QA datasets. This unique feature of QCoC 

aims to enhance the relevance and applicability of the dataset, particularly in 

contexts where more nuanced and abstract responses are common. By filling this 

gap, QCoC contributes to advancing the field of question classification by 

providing a dataset that better reflects the complexities and nuances of real-world 

question-answering scenarios. 

3. Efficient question-type classifier: The research successfully developed an 

efficient question type classifier using a vanilla feed-forward neural network 

(NN). The classifier achieved significantly higher accuracy and F1 scores 

compared to baseline scores, while maintaining a small number of trainable 

parameters. This economical question-type classifier has the potential to be 

deployed in various applications where computational resources are limited or 

costly, without compromising performance. However, it is important to 

acknowledge that such a classifier will not work solely on LLM-generated word 

embeddings/vectors as input. This is showcased in the results of Activity 2 within 

Phase 3 of the research methodology, where the original LLM-generated 

embeddings demonstrated a very minuscule scale of vector differences between 

one sentence and another. In other words, without an external weight and a 

method to incorporate that weight into the vector embeddings, such a classifier 

may not yield good results if based solely on the original LLM-generated word 

representation vectors/embeddings. 

4. Transferability to other domains: The proposed modified word vectors method 

demonstrated high transferability to other domains of contextual text data 

classification beyond question type classification. This is primarily attributed to 

the external component of this method, which is the scalar weight values. As 

demonstrated in Activity 1 within Phase 3 of the research methodology, these 

scalar weight values can be derived from a simple mathematical calculation, such 

as the term frequency percentage. Therefore, theoretically, utilising the same 

modified word vectors method with different scalar weights will yield similar 

results. Moreover, the method's capability to maintain fixed-length vector 

embeddings despite varying sentence lengths enhances its versatility in handling 

diverse NLP tasks. 
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5. Practical implications: The research findings have practical implications for 

various NLP applications, particularly in scenarios where computational 

resources are limited or costly. By offering a cost-effective alternative to fine-

tuning LLMs, the proposed methods opens up opportunities for efficient and 

economical text classification solutions across other NLP domains such as 

sentiment analysis, topic categorization, and intent recognition. 

5.4 Threats to Validity   

The validity of any research is crucial to ensure the credibility and reliability of 

the findings. In this study, several threats to validity need to be addressed to ensure the 

robustness of the proposed methods and algorithms for the contextual text classification 

process. 

1. Internal Validity: One potential threat to internal validity is related to the 

experimental setup and the choice of hyperparameters during the experiments. To 

mitigate this, the experiments were conducted multiple times, and the results were 

analysed for consistency. Additionally, the random initialization of the neural 

network weights was performed to minimize bias. 

2. External Validity: Generalization of the findings to other datasets and domains 

could be a potential external validity threat. Although the proposed methods and 

algorithms demonstrated promising results on the QCoC dataset, its performance 

on different datasets needs to be explored to establish its broader applicability. 

3. Construct Validity: Ensuring that the proposed modified word vectors method 

accurately reflects the semantic significance of words is essential. To address this 

concern, the method was first evaluated on a sample case study before being 

applied to the QCoC dataset. However, it is important to note that both cases 

involved question text data. Therefore, for application in other contexts, further 

investigation is necessary to validate the method's effectiveness and 

generalizability. 

4. Conclusion Validity: The sample size for the conducted experiments in this study 

may be limited or insufficient  in certain cases, and thus, the conclusions derived 

from these experiments should be interpreted with caution. Conducting 



109 
 

experiments on larger datasets and using more diverse question types could 

enhance the generalizability of the findings. 

5. Reproducibility: To ensure the reproducibility of the results, all experimental 

setups, hyperparameters, and model architectures have been thoroughly 

documented. The pseudocode and datasets used in the research will be made 

available for public access. 

Despite these potential threats, the research design, thorough experimentation, 

and detailed analysis contribute to the robustness of the proposed methodology. 

Additionally, future studies should explore further validation of different datasets and 

domains to strengthen the overall validity of the research findings. 

5.5 Future Works 

Though this research has showcased a notable contribution in the field of NLP, 

there are several potential avenues for future work and improvement. This section 

outlines potential directions for further research and development, building upon the 

foundations laid by this study.  

1. Fine-tuning on larger datasets: Experimenting with fine-tuning the proposed 

methods on larger datasets could provide deeper insights into its scalability and 

robustness. Evaluating the classifier's performance on diverse and more extensive 

datasets will help assess its generalization capabilities and potential for wider 

applications. 

2. Comparison with state-of-the-art ML models: Conducting a thorough 

comparison between the proposed methods and state-of-the-art ML models on 

various benchmark datasets will offer a comprehensive understanding of its 

competitive advantage. This evaluation will allow researchers and practitioners 

to identify the contexts in which the proposed methodology excels and areas that 

might need further improvement. 

3. Exploration of other weighting methods: Investigating alternative word vector 

weighting methods could enhance the performance and flexibility of the proposed 

methodology. Exploring different weighting techniques and experimenting with 



110 
 

various scalar weight values may yield more optimal results for specific NLP 

downstream tasks. 

4. Application to domain-specific classification: Applying the developed methods 

to domain-specific text classification tasks, such as medical or financial text data, 

could demonstrate its adaptability and efficacy in specialised contexts. These 

domain-specific applications will help uncover the methodology's strengths and 

limitations in real-world scenarios. 

5. Deployment in practical applications: Deploying the developed question-type 

classifier in practical applications, such as chatbots or virtual assistants, will offer 

insights into its real-world usability and impact of the developed methods. 

Evaluating its performance in real-time scenarios will be crucial for assessing its 

practicality and user experience. 

5.6 Summary 

This chapter serves as the concluding remarks for this thesis, encompassing 

discussions on constraints and limitations, contributions, threats to validity, and future 

works. Building upon the proposed methods and algorithms, along with the thoroughly 

discussed results and findings in prior sections, it addresses constraints and limitations 

that should be acknowledged for future research within the field. Despite its limitations, 

this study contributes valuable knowledge to the field, particularly in word representation 

vector modification and contextual text classification. Through thorough discussion, 

these contributions are poised to advance the field and pave the way for new research 

paths. Additionally, various threats to validity are examined, including internal, external, 

construct, conclusion, and reproducibility concerns. Lastly, avenues for future works are 

discussed to suggest potential paths for further exploration and investigation, with the 

hope of contributing to the identification of potential gaps within the field. 
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