

MODIFIED WORD REPRESENTATION
VECTOR BASED SCALAR WEIGHT FOR
CONTEXTUAL TEXT CLASSIFICATION

ABBAS SALIIMI LOKMAN

DOCTOR OF PHILOSOPHY

UNIVERSITI MALAYSIA PAHANG
AL-SULTAN ABDULLAH

UNIVERSITI MALAYSIA PAHANG AL-SULTAN ABDULLAH

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : ABBAS SALIIMI BIN LOKMAN

Date of Birth : 13 JANUARY 1984

Title : MODIFIED WORD REPRESENTATION VECTOR BASED
 SCALAR WEIGHT FOR CONTEXTUAL TEXT
 CLASSIFICATION

Academic Session : SEMESTER II 2023/2024

I declare that this thesis is classified as:

¨ CONFIDENTIAL (Contains confidential information under the Official
Secret Act 1997)*

¨ RESTRICTED (Contains restricted information as specified by the
organization where research was done)*

þ OPEN ACCESS I agree that my thesis to be published as online open access
(Full Text)

I acknowledge that Universiti Malaysia Pahang Al-Sultan Abdullah reserves the following
rights:

1. The Thesis is the Property of Universiti Malaysia Pahang Al-Sultan Abdullah
2. The Library of Universiti Malaysia Pahang Al-Sultan Abdullah has the right to make

copies of the thesis for the purpose of research only.
3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student’s Signature)

New IC/Passport Number
Date: 24 June 2024

 (Supervisor’s Signature)

Mohamed Ariff bin Ameedeen
Name of Supervisor
Date: 24 June 2024

Mobile User

MAKLUMAT PANEL PEMERIKSA PEPERIKSAAN LISAN

(for Faculty of Computing student only)

Tesis ini telah diperiksa dan diakui oleh
This thesis has been checked and verified by

Nama dan Alamat Pemeriksa Dalam
Name and Address Internal Examiner

: Profesor Madya Dr. Mohd Nizam Bin
Mohmad Kahar
Faculty of Computing
Universiti Malaysia Pahang Al-Sultan
Abdullah

Nama dan Alamat Pemeriksa Luar
Name and Address External Examiner

: Prof. Ts. Dr. Ali Bin Selamat
Malaysia – Japan International Institution of
Technology
Universiti Teknologi Malaysia

Nama dan Alamat Pemeriksa Luar
Name and Address External Examiner

: Prof. Dr. Salwani Binti Abdullah
Faculty of Information Science and
Technology
Universiti Kebangsaan Malaysia

Disahkan oleh Penolong Pendaftar IPS
Verified by Assistant Registrar IPS

Tandatangan:
Signature

Tarikh:
Date

Nama:
Name

SUPERVISOR’S DECLARATION

We hereby declare that We have checked this thesis and in our opinion, this thesis is

adequate in terms of scope and quality for the award of the degree of Doctor of

Philosophy in Computer Science.

(Supervisor’s Signature)

Full Name : Dr. Mohamed Ariff bin Ameedeen

Position : Associate Professor

Date : 24 June 2024

(Co-supervisor’s Signature)

Full Name : Ts. Sr Dr. Ngahzaifa binti Ab. Ghani

Position : Senior Lecturer

Date : 24 June 2024

Mobile User

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti Malaysia

Pahang Al-Sultan Abdullah or any other institutions.

(Student’s Signature)

Full Name : Abbas Saliimi bin Lokman

ID Number : PCC17013

Date : 24 June 2024

MODIFIED WORD REPRESENTATION VECTOR BASED SCALAR WEIGHT
FOR CONTEXTUAL TEXT CLASSIFICATION

ABBAS SALIIMI LOKMAN

Thesis submitted in fulfillment of the requirements

for the award of the degree of

Doctor of Philosophy

Faculty of Computing

UNIVERSITI MALAYSIA PAHANG AL-SULTAN ABDULLAH

JUNE 2024

ii

ACKNOWLEDGEMENTS

Alhamdulillah, I am grateful to God Almighty, for without His blessings and guidance,
this study would not have been completed.

Next, I would like to express my heartfelt gratitude to my supervisors, Associate
Professor Dr. Mohamed Ariff Ameedeen and Sr Dr. Ngahzaifa Ab. Ghani, for their
invaluable insights, guidance, comments, and patience throughout my journey in
completing this study. I would also like to extend my thanks to all the funders: Skim
Latihan Akademik Bumiputra (SLAB) and Fundamental Research Grant Scheme (FRGS
No. FRGS/1/2018/ICT02/UMP/02/12) from Ministry of Higher Education, as well as the
Fundamental Research Grant (RDU No. RDU220315) from Universiti Malaysia Pahang
Al-Sultan Abdullah (UMPSA), for their unwavering financial support for this study and
research.

To my beloved wife, Nurliyana Mohd Johari, I am deeply grateful for your constant
presence through both hardships and moments of joy. This study would not have been
completed without your steadfast support by my side. To my cherished children, Abdul
Muhaimin ‘Adnin and Awfa Tasnim, you are the light of my soul. Thank you for being
the source of joy in my everyday life. To my dear mother, Mariani Mat, your unwavering
strength has been a constant anchor in my universe. I am truly thankful for your enduring
support. Also, to all my family members, thank you for your dua and well wishes.

Last but not least, I would like to express my heartfelt appreciation to all my friends and
colleagues who have stood by me, no matter how small the matter. Your presence has
enriched my life in ways beyond measure, and I cherish every second of it.

Thank you all.

iii

ABSTRAK

Tesis ini mengkaji klasifikasi teks kontekstual, yang merupakan proses mengkategorikan
data teks ke dalam kelas atau kategori yang berbeza berdasarkan maknanya dalam
konteks yang diberikan. Komponen utama dalam proses ini adalah representasi perkataan
melalui vektor untuk interpretasi pengkomputeran. Praktis semasa ialah menggunakan
Model Bahasa Besar atau Large Language Model (LLM) untuk menghasilkan vektor
representasi perkataan yang terkontekstual. Penghasilan ini diperolehi melalui pra-latihan
LLM pada korpora yang luas bagi membolehkannya memahami corak bahasa dan
konteks yang rumit. Untuk klasifikasi teks kontekstual, LLM pra-latihan tersebut akan
melalui satu lagi proses latihan menggunakan data yang diberi label khusus untuk
klasifikasi. Proses latihan kedua ini dipanggil penalaan halus. Walaupun pendekatan pra-
latihan dan penalaan halus pada ketika ini dianggap yang paling optimal dalam bidang
ini, ia berhadapan cabaran yang besar dari segi kos pengkomputeran yang diperlukan. Ini
adalah kerana jumlah parameter yang perlu dilatih di dalam LLM adalah sangat besar,
menyebabkan kos latihan menjadi sangat tinggi. Tambahan lagi, walaupun LLM pra-
latihan boleh menghasilkan vektor representasi perkataan yang terkontekstual, ia tidak
mempunyai fleksibiliti untuk mengubah nilai semantik vektor-vektor tersebut di luar
LLM. Untuk menutup jurang ini, kajian ini menyusun metodologi penyelidikan lima fasa
bagi mencadang dan menilai algoritma yang membolehkan modifikasi luaran vektor
perkataan yang dihasilkan oleh LLM menggunakan nilai skalar sebagai faktor tumpuan.
Untuk menilai algoritma ini, vektor perkataan yang telah diubahsuai dibandingkan
dengan vektor perkataan asal yang dihasilkan oleh LLM bagi menganalisis kesan
modifikasi berkenaan dalam konteks yang difokuskan. Selain itu, eksperimen klasifikasi
teks kontekstual juga dijalankan bagi menilai prestasi vektor perkataan yang telah
diubahsuai tersebut dalam proses klasifikasi yang diperlukan. Untuk eksperimen ini,
vektor perkataan yang telah diubahsuai akan digunakan sebagai input untuk melatih
model Pembelajaran Mesin atau Machine Learning (ML) bagi tugas klasifikasi teks
dengan matlamat untuk membangunkan model ML yang mempunyai bilangan parameter
yang jauh lebih kecil dari LLM. Eksperimen ini bertujuan untuk menilai keberkesanan
vektor perkataan yang telah diubahsuai dalam tugas klasifikasi teks kontekstual dengan
menggunakan pendekatan pengkomputeran yang lebih efisien. Berdasarkan hasil
eksperimen yang diperolehi, ia menunjukkan bahawa algoritma yang dibangunkan dapat
mengubah vektor perkataan asal yang dihasilkan oleh LLM bagi mencerminkan konteks
yang dikehendaki dalam proses klasifikasi teks kontekstual yang berkenaan. Ini dapat
dilihat melalui hasil eksperimen yang memperolehi skor lebih tinggi daripada skor
rujukan. Metrik penilaian yang digunakan dalam eksperimen berkenaan ialah Ketepatan,
Kejituan, Kecetusan, dan Skor F1, dengan Ketepatan dan Skor F1 berfungsi sebagai
metrik utama. Hasil penilaian metrik berkenaan menunjukkan peningkatan yang ketara,
dengan model ML ujian mencapai skor ketepatan terbaik sebanyak 0.571, peningkatan
sebanyak 46% dari skor rujukan, dan skor F1 terbaik sebanyak 0.727, peningkatan
sebanyak 30% dari skor rujukan. Secara keseluruhan, tesis ini membentangkan lima
sumbangan utama dalam bidang kajian iaitu algoritma bagi mengubahsuai vektor
perkataan, set data klasifikasi kontekstual baharu bernama QCoC, pengelas soalan yang
efisien berdasarkan algoritma feed-forward neural network, potensi untuk memindahkan
kerja yang dibentangkan kepada domain lain, dan implikasi praktikal kerja yang
dibentangkan kepada kes-kes di mana sumber pengkomputeran adalah terhad atau mahal.

iv

ABSTRACT

This thesis investigates contextual text classification, which is the process of categorising
textual data into different classes or categories based on its meaning within a given
context. Central to this process is the representation of words through vectors for
computational interpretation. Current practices employ Large Language Models (LLMs)
to generate contextualised word representation vectors, achieved through pre-training the
LLM on vast corpora that enables it to grasp intricate language patterns and context. For
contextual text classification, the pre-trained LLM is further train on classification-
specific labeled data in a process called fine-tuning. Although this approach is currently
considered the most optimal in the field, it poses a notable challenge due to the substantial
demand for computing resources stemming from the vast number of trainable parameters
in LLMs. Furthermore, although pre-trained LLMs can generate contextualised word
representation vectors, they lack the flexibility to modify the semantic significance of
these vectors outside of the LLM, necessitating fine-tuning for the modification of word
vectors. To bridge this gap, a five-phase research methodology is structured to propose
and evaluate an algorithm enabling the external modification of LLM-generated word
vectors using scalar values as the focus weightage. To validate this algorithm, the
modified word vectors are compared with original LLM-generated word vectors to
evaluate their reflection of the intended context. In addition, a contextual text
classification experiment is conducted using benchmarked datasets to assess the
performance of the modified word vectors in the targeted classification task. For this
experiment, the modified word vectors serve as input to train a Machine Learning (ML)
model for the text classification process, aiming for the developed ML model to have a
significantly smaller parameter count. This experiment aims to determine the
effectiveness of the modified word vectors in contextual text classification tasks, utilizing
a more computationally efficient approach. Based on the acquired results, the
experiments reveal that the modified word vectors algorithm can effectively alter original
LLM-generated word vectors to reflect intended contexts and can outperform baseline
scores in contextual text classification tasks. Evaluation metrics including Accuracy,
Precision, Recall, and F1 score are employed in the evaluation process, with Accuracy
and F1 score serving as primary metrics. The evaluation showcases significant
improvements, with the test ML model achieving a best accuracy score of 0.571, a 46%
increase from the baseline, and a best F1 score of 0.727, a 30% increment from the
baseline. Overall, this thesis presents five contributions: the proposed modified word
vectors algorithm, the new contextual classification dataset named QCoC, the efficient
question-type classifier based on the feed-forward neural network algorithm, the potential
transferability of the presented work to other domains, and the practical implications of
the presented work towards cases where computational resources are limited or costly.

v

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES x

LIST OF SYMBOLS xi

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement and Research Gap 3

1.3 Aim, Hypothesis and Research Questions 5

1.4 Research Objectives 5

1.5 Research Scopes 6

1.6 Thesis Organisation 6

CHAPTER 2 LITERATURE REVIEW 8

2.1 Introduction 8

2.2 Gap Analysis 8

2.3 Word Representations in Vector Space 10

vi

2.3.1 Word Weightage in Word Representation 13

2.4 Large Language Model 16

2.4.1 The Economics of Large Language Models 19

2.5 Contextual Text Classification 22

2.5.1 Question Classification 22

2.5.2 Question Classification Methods and Datasets 23

2.6 Machine Learning 27

2.6.1 Artificial Neural Network 31

2.6.2 Supervised NN 33

2.7 Direction of this Research 37

2.8 Summary 40

CHAPTER 3 METHODOLOGY 41

3.1 Introduction 41

3.2 Research Methodology 42

3.2.1 Phase 1: Base Data Preparation 46

3.2.2 Phase 2: Dataset Development 48

3.2.3 Phase 3: Modified Word Vectors Method Development 55

3.2.4 Phase 4: Machine Learning Classifier Development phase 64

3.2.5 Phase 5: Methods Evaluation 67

3.3 Summary 69

CHAPTER 4 RESULTS AND DISCUSSION 70

4.1 Introduction 70

4.2 Results Analysis 71

4.2.1 Phase 1: Base Data Preparation 71

vii

4.2.2 Phase 2: Dataset Development 72

4.2.3 Phase 3: Modified Word Vectors Method Development 75

4.2.4 Phase 4: Machine Learning Classifier Development 88

4.2.5 Phase 5: Methods Evaluation 93

4.3 Discussion of Findings 101

4.4 Summary 104

CHAPTER 5 CONCLUSION 105

5.1 Introduction 105

5.2 Constraints and Limitations 105

5.3 Contributions 106

5.4 Threats to Validity 108

5.5 Future Works 109

5.6 Summary 110

REFERENCES 111

viii

LIST OF TABLES

Table 2.1 Notable word encoding methods 15

Table 2.2 State-of-the-art LLMs in various downstream NLP tasks 17

Table 2.3 The cost to train the different sizes of BERT models 19

Table 2.4 Notable recent LLM size, architecture and developer 21

Table 2.5 Coarse and fine classes for 500 questions in the TREC dataset 23

Table 2.6 Taxonomy class against answer types from QA datasets 25

Table 2.7 Google Scholar search results for publication year 2019 to 2024 29

Table 2.8 Google Scholar search results for publication year 2019 to 2024 30

Table 2.9 Supervised NN model’s components comparison 37

Table 3.1 Distribution of question and answer types in CoQA 50

Table 3.2 The USE dot product distribution result 52

Table 3.3 Five test cases for the word weighting method experiment 63

Table 3.4 Hardware and software setup for ML classifer experiment 65

Table 4.1 Abstractive answer implementation in SQuAD 2.0, CoQA and
QuAC 72

Table 4.2 QCoC classification result 73

Table 4.3 QCoC classification result against CoQA 73

Table 4.4 Overall results of general word weighting algorithm 76

Table 4.5 Detail TF percentage distribution over ten clusters (experiment A) 77

Table 4.6 Detail TF percentage distribution over ten clusters (experiment B) 77

Table 4.7 Dot product between test cases for type A-V1 (g-weight) 79

Table 4.8 Dot product between test cases for type A-V2 (g-weight) 80

Table 4.9 Dot product between test cases for type A-V3 (g-weight) 80

Table 4.10 Dot product between test cases for type A-V4 (g-weight) 80

Table 4.11 Dot product between test cases for type B (original USE) 80

Table 4.12 The ranking of the four variations in type A with total g-weight
values 82

Table 4.13 Vector value difference for type A-V1 (g-weight) 83

Table 4.14 Vector value difference for type A-V2 (g-weight) 83

Table 4.15 Vector value difference for type A-V3 (g-weight) 84

Table 4.16 Vector value difference for type A-V4 (g-weight) 84

Table 4.17 Vector value difference for type B (original USE) 84

Table 4.18 Results for the eight sequential experiments process 88

Table 4.19 Baseline values for accuracy and F1 score 95

ix

Table 4.20 Configuration parameters for setup A and setup B 95

Table 4.21 Accuracy and F1 score for setup A 100

Table 4.22 Accuracy and F1 score for setup B 100

x

LIST OF FIGURES

Figure 2.1 Transformer’s self-attention mechanism (live calculation) 12

Figure 2.2 2D t-SNE projection of static word embedding (pre-calculated) 12

Figure 2.3 LLM transfer learning process 18

Figure 2.4 Question word role in question classification 26

Figure 2.5 Classification of the most common machine learning algorithms 28

Figure 2.6 Simple visualization of Classification, Regression and Clustering 28

Figure 2.7 Supervised and unsupervised neural network models 29

Figure 2.8 One unit of artificial neuron 31

Figure 2.9 Basic/shallow Artificial Neural Network model (one hidden layer) 32

Figure 2.10 Deep Artificial Neural Network model (multiple hidden layers) 32

Figure 2.11 Classification versus Regression 33

Figure 2.12 Feed-forward, Recurrent and Convolutional NN model architecture 34

Figure 2.13 Transformer model architecture 36

Figure 2.14 Literature path towards selecting the vanilla Feed-forward Neural
Network (FF-NN) for this research 39

Figure 3.1 Research methodology flowchart 42

Figure 3.2 Features in QA Datasets 47

Figure 3.3 Line graph for five questions of USE-generated vectors 54

Figure 3.4 Base feed-forward NN model design for ML classifier experiment 65

Figure 4.1 Distribution of Unique Token (UT) TF percentage 76

Figure 4.2 Vector graph for type A-V4 (g-weight implementation) 86

Figure 4.3 Vector graph for type B (original USE embedding) 86

Figure 4.4 Baseline prediction for the four QCoC classes 94

Figure 4.5 Training loss, validation loss, accuracy, and validation accuracy for
setup A 96

Figure 4.6 Training loss, validation loss, accuracy, and validation accuracy for
setup B 96

Figure 4.7 Accuracy and confusion matrix tables for setup A 97

Figure 4.8 Accuracy and confusion matrix tables for setup B 98

Figure 4.9 Baseline and result values for accuracy and F1 score 101

xi

LIST OF SYMBOLS

! neural network’s bias

!!! exponential function for an input vector

!!" exponential function for an output vector

" neural network’s activation function

#$ False Negative (wrong prediction of the truth class)

#% False Positive (wrong prediction of other than the truth class)

&' general g-weight value for each token (in scalar format)

(index for any given array

" number of classes in the given classification dataset

)$ True Negative (correct prediction of the negative/false class)

)% True Positive (correct prediction of the positive/truth class)

* vector embedding for each token/word

*+ vector embedding for the input sentence

'! neural network’s weight

'* Weighted fixed-length vector

,! neural network’s input

#⃗ input vector from previous neural network’s nodes

xii

LIST OF ABBREVIATIONS

CoQA

DA

DNLM

FF-NN

GRU

IR

kNN

LLM

LM

LSTM

ML

MRC

NB

NLI

NLP

NMT

A Conversational Question Answering Challenge

Discriminant Analysis

Deep Neural Language Model

Feed-Forward Neural Network

Gated Recurrent Unit

Information Retrieval

k-Nearest Neighbours

Large Language Model

Language Model

Long-Short Term Memory

Machine Learning

Machine Reading Comprehension

Naïve Bayes

Natural Language Inference

Natural Language Processing

Neural Machine Translation

NN

QA

QCoC

QuAC

QTC

RNN

RQ

Neural Network

Question-Answering

Question Classification of CoQA

Question Answering in Context

Question Type Classification

Recurrent Neural Network

Research Question

SQuAD

SVM

TF

TREC

TT

UT

USE

WR

The Stanford Question Answering Dataset

Support Vector Machines

Term Frequency

The Text Retrieval Conference

Total Token

Unique Token

Universal Sentence Encoder

Word Representation

1

CHAPTER 1

INTRODUCTION

1.1 Background

Natural Language Processing (NLP) is a branch of artificial intelligence that

focuses on the interaction between humans and computers using natural human language

(Khurana et al., 2023). Its primary goal is to enable machines to understand, interpret,

and generate human language in a way that is both meaningful and contextually relevant.

NLP encompasses a wide range of tasks, including language translation, sentiment

analysis, text summarisation, text classification, and information retrieval, among others

(Qin et al., 2023).

One crucial aspect of NLP is the representation of words in a form that computers

can understand and process (Naseem et al., 2021). Traditional methods often represented

words as discrete symbols, but more recent approaches employ word vectors, which

capture semantic relationships and contextual information (Jiao & Zhang, 2021; Sezerer

& Tekir, 2021; Uymaz & Metin, 2022; Patil et al, 2023). Word representation vectors

transform words into high-dimensional numerical vectors, positioning them in a multi-

dimensional space based on their meaning and context (Salim & Mustafa, 2022; Wadud

et al., 2022). Weightage in word representation vectors refers to the significance assigned

to each dimension within the vector space. This significance reflects the importance of

certain semantic features or contextual nuances associated with a word (Mundotiya et al.,

2022; Ghosal & Jain, 2022). The process of learning these vectors involves training

models on large corpora of text, where words with similar meanings or contexts end up

being closer together in the vector space (Liu et al., 2023).

2

In NLP, classification is a common problem where the goal is to categorize text

data into predefined classes or categories (Gasparetto et al., 2022; Li et al., 2022a). Word

representation vectors play a crucial role in solving classification problems by capturing

the semantic meaning of words and their relationships. These vectors allow NLP models

to understand the context and nuances within a text, enabling more accurate and context-

aware predictions (Abubakar et al., 2022; Dogra et al., 2022). Classification models often

utilize machine learning algorithms such as support vector machines, decision trees, or

neural networks (Wahba et al., 2023). The input to these models is typically the word

representation vectors derived from the text data. The model learns to associate certain

patterns in the vector space with specific classes, enabling it to make predictions on new,

unseen text data (Allammary, 2022; Li et al., 2022a; Pham et al., 2023). In essence, the

interplay between word representation vectors and machine learning algorithms forms

the backbone of effective text classification, enabling systems to navigate the intricacies

of language and derive meaningful insights from diverse textual contexts (Da Costa et

al., 2023).

New approaches to text classification have shifted towards the fine-tuning of

Large Language Model (LLM) (Dogra et al., 2022; Qassim et al., 2022; Bilal & Almazroi,

2023; Zhang et al., 2024). This approach involves using advanced models like BERT

(Devlin et al., 2018) and GPT (Brown et al., 2020), pre-trained on vast datasets to

understand complex language patterns and context (pre-training is a process before fine-

tuning). In fine-tuning, these LLMs are exposed to task-specific labeled data, allowing

them to adapt to specific tasks while retaining their broader linguistic knowledge. This

method has proven effective not only in various natural language understanding

applications but also in achieving good performance in text classification tasks (Min at

al., 2023). The key idea behind fine-tuning LLMs is the smart use of transfer learning

principles (Azunre, 2021; Bharadiya, 2023). This approach leverages the intrinsic

linguistic knowledge already embedded in the LLMs through pre-training, significantly

diminishing the requirement for extensive amounts of task-specific labeled data. In

essence, this methodology compliment the strengths of pre-training with the fine-tuning

process, resulting in a framework that exhibits good performance in various text

classification tasks such as sentiment analysis, document categorization, and others (Kici

et al., 2021; Qasim et. Al, 2022; Ameer et al., 2023; Onita, 2023; Wadud et al., 2023).

3

1.2 Problem Statement and Research Gap

Leveraging the fine-tuning of LLMs for text classification presents a promising

path to attain state-of-the-art results in this NLP downstream task (Dogra et al., 2022;

Mars, 2022). However, this approach comes with a notable challenge that is the demand

for substantial computing resources (Sharir et al., 2020; Church et al., 2021; Fernandez

et al., 2023). Fine-tuning process entails adjusting the pre-trained LLM parameters on

task-specific data, necessitating extensive computational power and storage capabilities

due to the vast numbers of parameters in LLM. This poses a significant hurdle for smaller

research teams, educational institutions, or others with limited access to high-

performance computing resources, hindering their ability to leverage the benefits of fine-

tuned LLMs for text classification.

While the demand for computational resources presents a significant challenge,

an additional research gap exists in the inflexibility to externally modifying the weight of

word vectors without the necessity to modify, re-train, or fine-tune the original word

embeddings model such as the LLM (Dogra et al., 2022; Incitti et al., 2023; Patil et al.,

2023; Worth, 2023). In many instances, word vectors from the embeddings model are

directly used without any modification for the NLP downstream tasks, including text

classification. Examples of such cases include Sabri et al. (2022), who directly employs

word vectors generated from TF-IDF (Jalilifard et al., 2021), word count (Kowsari et al.,

2019), and Word2Vec (Mikolov et al., 2013; Church, 2016) embeddings models to

compare results for Arabic text classification; Zhou, who utilizes a TF-IDF embeddings

model to extract words with sufficient weight, then generates word vectors using

Word2Vec embeddings model, and feeds the word vectors into a Convolutional Neural

Network – Long-Short Term Memory (CNN-LSTM) model for text classification (Zhou,

2022a); Soni et al., who uses the Word2Vec embeddings model to generate word vectors

from multiple n-grams tokens, which are later fed into a CNN model for the text

classification process (Soni et al., 2023); Umer et al., who generated the word vectors

using FastText embeddings model (Joulin et al., 2016; Dharma et al., 2022) for their text

classificatiom problem (Umer et al., 2023); and Hossain et al., who propose a text

classification framework that takes word vectors from various embedding models,

compares them, and selects the best one for input in the machine learning model for the

text classification process (Hossain et al., 2023).

4

As mentioned, a research gap exists in the inflexibility of externally modifying

the weight of word vectors without the necessity to modify, re-train, or fine-tune the

original word embeddings model. Despite this limitation, several attempts to externally

modify the word vector exist, typically involving weightage in vector format (usually

concatenating both vectors to produce the final word vector value). In practical terms,

although the original embeddings model remains unaltered, a new model is required to

generate the weightage, constituting another word vector value and incurring additional

computing resources, which are relatively similar to re-training the base model. Examples

of this practice within text classification tasks include Badri et al., who combine FastText

(Joulin et al., 2016) and GloVe (Pennington et al., 2014) embeddings models for

classifying hate speech text (Badri et al., 2022); Zhou et al., who combine GloVe and

Word2Vec (Mikolov et al., 2013) for text sentiment classification (Zhou et al., 2022b);

and Liu et al., who concatenate BERT (Devlin et al., 2018) and LDA (Blei et al., 2003)

embeddings models to produce word vectors containing both word and topic contextual

information for text classification tasks (Liu et al., 2023).

Modifying the weight of word vectors using a singular scalar value presents a

notable challenge in NLP field (Apidianaki, 2023). The inherent difficulty arises from

the intricate and multifaceted nature of representing words with vector values. Word

vectors encapsulate complex semantic relationships, capturing the contextual nuances

and intricacies of language usage. Attempting to uniformly modify these vectors with a

scalar value encounters challenges due to the varying importance of individual words in

different contexts (Bollegala & O'Neill, 2022; Xu et al., 2023). Words may carry diverse

connotations, dependencies, and degrees of importance depending on their usage within

sentences or documents. Consequently, a uniform scalar modification may overlook these

subtleties, potentially leading to oversimplification or distortion of the original semantic

information encoded in the word vectors. Moreover, the intricate interplay between words

in a given context makes it challenging to devise a universal scalar adjustment that

equally and meaningfully impacts all word vectors. In essence, the challenge lies in

finding a balance that allows for meaningful modification of word vector weights while

respecting the nuanced and context-dependent nature of language. Researchers and

practitioners in NLP are continually exploring innovative approaches to address this

challenge and enhance the adaptability of word vectors to better suit specific tasks and

contexts (Patil et al., 2023; Incitti et al., 2023; Johnson et al., 2024).

5

1.3 Aim, Hypothesis and Research Questions

This research aims to bridge the identified research gap by proposing a new

algorithm capable of modifying the weight of a word representation vector through an

external scalar weight value. The resulting output from this algorithm will subsequently

serve as input for a Machine Learning (ML) model, facilitating the execution of text

classification task. In the context of a case study, this research aims to construct a new

text classification dataset that highlights distinctions in contextual representation.

Overall, this research hypothesizes that the word representation vector derived from the

LLM can be altered using an external scalar weight, which can later be used as input for

an ML model to perform text classification task.

To test the formulated hypothesis and address the research aim, the following

research questions and objectives are defined:

1. How can an algorithm effectively incorporate external scalar weights into word

representation vectors to enhance context understanding in a contextual text

classification problem?

2. What criteria should be considered in the creation of a text classification dataset

to emphasise differences in context representation?

3. How does the developed algorithm, incorporating external scalar weights,

perform when applied to contextual text classification task?

1.4 Research Objectives

1. To develop a new algorithm that incorporate an external scalar weight into the

word representation vector.

2. To develop a new text classification dataset that emphasises differences in context

representation.

3. To evaluate the developed algorithm using a Machine Learning (ML) model in

the contextual text classification problem.

6

1.5 Research Scopes

The scope of this research is delimited by the following constraints:

1. The proposed algorithm will only be tested in the English language. Other natural

human languages might produce different results.

2. The proposed algorithm will only be tested using specific hardware and software

setup. Different setups might produce different results.

3. Based on the literature, specific LLM, case study and ML model will be selected

for this study. Implementing the proposed method with different LLMs, case

studies and ML models might produce different results.

1.6 Thesis Organisation

1. Chapter 1 presents the background of this research, including a brief discussion

on word representation and text classification in Natural Language Processing

(NLP), the problem statement and research gap, and finally the aim, hypothesis,

research questions, research objectives and research scopes, forming the

foundation for this study.

2. Chapter 2 provides a comprehensive review of the existing literature surrounding

contextual text classification, focusing on key areas defined in the problem

statement and research gap for this study. A gap analysis is also provided at the

beginning of this chapter to guide the flow of the literature topics. Additionally,

the direction of this research is discussed at the end of this chapter to guide the

structuring of the research methodology in the next chapter.

3. Chapter 3 outlines and discusses the methodology of this research, consisting of

five interconnected phases. Within these phases, several design approaches are

explained and several algorithms are proposed, accompanied by discussions on

the expected results from each phase leading towards the next. Overall, this

chapter outlines the five-phase research methodology through a flowchart and

general descriptions, then delves into detailed discussions on the activities

undertaken for each phase.

7

4. Chapter 4 discuss in details the results gathered from all experiments and testings

that have been explained in the previous chapter. Before discussing the results,

each phases in the research methodology is being recap with their respective

expected results are explained. Then each phase’s result is being discussed in

details with discussion of overall findings towards this research objectives as the

final analysis towards the overall results of the undergo research methodology.

5. Chapter 4 discusses in detail the results gathered from all experiments and tests

explained in the previous chapter. Before delving into the results, each phase of

the research methodology is briefly reviewed, along with explanations of their

respective expected outcomes. Subsequently, the results of each phase are

thoroughly examined, with an overarching discussion of the findings pertaining

to the research objectives and research questions, serving as the final analysis of

the overall results of the research methodology undertaken.

6. Chapter 5 concludes this thesis with a discussion on constraints and limitations,

contributions, threats to validity, and future works for this research. In the section

on constraints and limitations, the bounds within which this research is conducted

are acknowledged, recognizing its limited scope. The section on contributions

outlines five major contributions from this research, including a new algorithm, a

new dataset, and other related implementations in other domains. The threats to

validity section then discusses potential challenges to the validity of this research.

Lastly, the section on future works outlines five potential avenues for further

expansion of this research beyond its defined scopes

8

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter aims to provide a comprehensive review of the existing literature

related to contextual text classification, with a particular focus on addressing key gaps

and challenges mentioned in previous chapter. In essence, leveraging fine-tuned Large

Language Models (LLMs) has emerged as a promising approach to achieve state-of-the-

art results in contextual text classification tasks, yet significant hurdles exist, particularly

concerning accessibility and flexibility. The demand for substantial computational

resources poses a barrier to the widespread adoption of fine-tuned LLMs, limiting their

utilization by smaller research teams and educational institutions. Furthermore, a critical

gap persists in the inflexibility to externally modify the weight of word vectors without

necessitating modifications to the original embeddings model such as the LLM, hindering

the customization and adaptability of models for specific tasks and contexts.

Additionally, challenges in uniformly modifying word vector weights with scalar values

highlight the intricate and context-dependent nature of language representation. Overall,

this literature review seeks to explore these gaps in the existing research landscape and

lay the groundwork for addressing them through the proposed research framework.

Ultimately, the goal is to devise methods and algorithms that enhance the accessibility,

flexibility, and effectiveness of LLM-based text classification systems.

2.2 Gap Analysis

Building upon the problem statement and research gap discussed in the previous

Chapter 1, this section will delineate the identified gaps into three main areas, each

corresponding to the defined research questions and objectives 1, 2, and 3, respectively.

9

GAP 1: Incorporating external scalar weights into word representation
vectors. Addressing the research question of how algorithms can effectively incorporate

external scalar weights into word representation vectors to enhance context

understanding in contextual text classification requires overcoming existing limitations

in modifying word vector weights. Current literature highlights a gap in methods that

enable seamless integration of external scalar weights into word vectors without

necessitating modification, re-training, or fine-tuning of the original embeddings model.

Existing approaches often involve computationally intensive processes or fail to

adequately capture the nuanced contextual information required for accurate text

classification. To explore this area further, this chapter will discuss literature surrounding

word representations in vector space, particularly focusing on the weight calculation

method and LLM, which is the current predominant word representation generation

method.

GAP 2: Defining criteria for creating text classification datasets emphasising
context representation differences. To meet the objective of developing a new text

classification dataset emphasising differences in context representation, it is essential to

establish criteria for dataset creation that effectively capture the diverse contextual

nuances present in real-world text data. However, existing datasets may not fully address

the need for nuanced contextual variations, thereby limiting the effectiveness of

algorithms trained on them. This particularly evident in question classification datasets,

where question text is classified based on its possible or expected answer, presenting a

multiclass classification problem. To further explore this area, this chapter will discuss

literature related to question classification, focusing on methods and datasets to define

the suitable criteria that best showcase the contextual differences in questions.

GAP 3: Evaluating the developed algorithm in the contextual text
classification problem. Evaluating the developed modified word vectors algorithm

(from Objective 1) in solving the contextual text classification problem necessitates

benchmarking its performance against existing approaches. However, the literature lacks

comprehensive studies assessing the effectiveness of algorithms that modify word vector

weights in enhancing context understanding for text classification. Given this gap, this

chapter aims to identify ways in which such evaluation can be performed, starting with

fundamental literature of Machine Learning (ML) where classification problems have

10

been a major area upon which the entire ML field is structured. Through this literature,

the ML model, method, or algorithm best suited to this research's case, which involves

multiclass classification of contextual text data, will be selected as the implementation

approach. The developed ML system for the multiclass text classification problem will

then be evaluated based on the baseline score value using various evaluation metrics.

Based on these three main areas, the following sections will sequentially explore

the detailed literature, covering all required areas. Before summarizing this chapter, a

Direction of this Research section will discuss the literature findings pertaining to these

three main gap areas. These findings will then guide the structuring of the research

methodology for the entire study.

2.3 Word Representations in Vector Space

Word Representation (WR), also known as word embedding or vector

representation of words, refers to a technique that represents words as real numbers in a

multidimensional vector space (Naseem et al., 2021; Jiao & Zhang, 2021; Patil et al.,

2023, Incitti et al., 2023). The purpose of WR is to enable computers to interpret human

language meaningfully by incorporating semantic metadata. Before WR, computers

could only syntactically interpret words, based on factors such as capitalization and

character length. For instance, the words “Morning,” “Afternoon,” and “Night” might be

treated as three separate words with seven, nine, and five characters, respectively.

However, with WR, these words can be represented using semantical metadata, such as

their association with the category “Time of the day,” which can be encoded as real

numbers. As a result, computers can process the meaning of these words more accurately.

WR encodes the meaning of a word based on its relationship with other words.

This method is originally derived from fundamental linguistic theories, such as the

distributional hypothesis, which states that “Words that occur in the same contexts tend

to have similar meanings” (Harris, 1954; Weaver, 1955), and the principle that “A word

is characterised by the company it keeps” (Firth, 1957). Generally, WR represents a target

word based on its relations with other words. For example, “Cat” might be represented

as “Fur,” “Meow,” and “Pet”; “Dog” as “Fur,” “Woof,” and “Pet”; and “Car” as

“Vehicle,” “Move,” and “Fast.” With these representations, WR can interpret “Cat” and

11

“Dog” as semantically more similar than “Cat” and “Car,” even though syntactically

“Cat” and “Car” are more similar than “Cat” and “Dog.”

Currently, there are two types of WR methods: Static (the older method) and

Dynamic (the newer method). The Static method assigns a fixed vector to each word in

the vocabulary (also known as the Word Embedding method) (Mikolov et al., 2013;

Pennington et al., 2014), while the Dynamic method assigns an interchangeable vector to

each word in the vocabulary (also known as the Contextualised Embedding method)

(Devlin et al., 2018; Peters et al., 2018; Incitti et al., 2023). The Dynamic method was

proposed to solve the polysemy problem faced by the Static/fixed representation. With

the Dynamic method, polysemy can be solved using machine learning algorithms, as WR

is calculated based on the currently processed sentence (Fodor et al., 2023). For instance,

consider the word "Apple" in the sentences "I like eating Apple" and "I love Apple

computers." These sentences provide distinct contexts for the word, with one referring to

"Apple" as a type of fruit and the other as a brand name. Given the variability in meaning

based on context, the representation of a specific word is contingent on the entire sentence

provided as input. As a consequence of this requirement, a single word can be represented

by an infinite number of embedding variations, given the limitless sentence variations in

natural language. The achievement of contextualised word embeddings or vectors is

facilitated through the implementation of Machine Learning (ML) algorithms,

specifically computational statistical Language Models (LMs) (Asudani et al., 2023;

Nandanwar & Choudhary, 2023; Worth, 2023).

In essence, a statistical Language Model (LM) functions as a probability

distribution over a sequence of words, spanning phrases, sentences, paragraphs, and

eventually entire text corpora. By incorporating this probability function into the

parameters of ML, the model can dynamically calculate word embeddings during the

inference process. To generate WR using ML, the algorithm doesn't store embeddings for

individual words. Instead, it captures the patterns in which each word associates with

others. Through extensive training on numerous natural language sentences, the

algorithm learns and retains this pattern as its parameters (Elnagar et al., 2023). In live

embedding calculation, the same word can possess different meanings based on its

current context or sentence, effectively addressing the polysemy issue. In contrast, a pre-

12

calculated embedding assigns the same meaning to a word unless the entire dictionary

undergoes recalculation. Figures 2.1 and 2.2 visually depict this scenario.

Figure 2.1 Transformer’s self-attention mechanism (live calculation)

Source: Uszkoreit (2017).

Figure 2.2 2D t-SNE projection of static word embedding (pre-calculated)

13

Figures 2.1 and 2.2 provide a visual comparison between live calculation and pre-

calculated word representation/embeddings, respectively. In Figure 2.1, the illustration

showcases the application of an attention mechanism, derived from the Transformer

architecture (Vaswani et al., 2017), commonly employed in modern computational

language models or Large Language Models (LLMs). This attention mechanism projects

the semantic probability of each word towards other words in a given sentence. For

example, the word "it" in the left sentence refers to "animal," while the same word "it" in

the right sentence refers to "street," as depicted by the high contrast of the blue color.

Despite being the same word, the differing contexts in the left and right sentences, such

as "... it was too tired." and "... it was too wide.," lead the algorithm to calculate it

differently, illustrating dynamic calculation. In contrast, Figure 2.2 illustrates all words

in the given dictionary projected into a 2D embedding space using t-SNE algorithm

(Arora et al., 2018). In this static calculation method, the probability distribution of all

words in the dictionary is calculated against each other, resulting in the embedding for

all those calculated words. Consequently, for this method, the word "it" will always have

the same embedding unless the entire dictionary is recalculated with additional texts. This

static approach contrasts with the dynamic nature of live calculation, highlighting how

context-dependent meanings are captured in real-time during language processing tasks.

2.3.1 Word Weightage in Word Representation

In the process of word representation, the weighting of a word plays a crucial role

in capturing its significance within a given context. This involves assigning numerical

values, commonly referred to as weights, to individual words based on their contextual

importance (Naseem et al., 2021). These weights signify the semantic relevance and

influence of a word within the broader context of a sentence, paragraph, or document.

Various approaches are employed to determine the weight of a word in word

representation. Most of these approaches can be classified into two major categories:

statistical encoding based on a word’s frequency and neural network encoding based on

contextual relationship (Patil et al., 2023).

Statistical encoding methods, fundamental to word representation, analyse word

frequencies within a corpus to assign numerical values, forming vectors that encapsulate

the statistical distribution of words. The utility of these vector representations lies in their

facilitation of linear algebra operations, allowing the manipulation of vectors, compute

14

distances, and assess similarities. Example of such methods are Bag of Words (BOW)

(Harris, 1954), N-gram (Katz, 1987), Term Frequency (TF) Embedding (Salton & Lesk,

1968), Hyperspace Analogue to Language (HAL) (Lund & Burgess, 1996), and Term

Frequency-Inverse Document Frequency (TF-IDF) Embedding (Jones, 2004). While

these methods effectively capture word distributions, they may face challenges in

capturing intricate semantic relationships compared to more recent neural network-based

approaches.

Neural network encoding methods represent a significant advancement in the

field of word representation, particularly in capturing complex semantic relationships

within natural language. These methods leverage the power of deep learning architectures

to embed words into continuous vector spaces, allowing for a more dynamic and nuanced

understanding of contextual meanings. One prominent neural encoding method is

Word2Vec, introduced by Mikolov et al. (2013). Word2Vec operates on the principle of

learning word embeddings by predicting a word's context in a given sentence. It captures

relationships between words based on their co-occurrence patterns, producing

embeddings that encapsulate semantic similarities. Global Vectors for Word

Representation (GloVE), developed by Pennington et al. (2014), is another notable neural

encoding method. GloVE combines both global statistics of word co-occurrence and local

context window information to generate word embeddings. This method emphasises

capturing not only direct relationships but also the global semantic structure within a

corpus. Bidirectional Encoder Representations from Transformers (BERT), introduced

by Devlin et al. (2018), represents a breakthrough in contextualised word embeddings.

BERT employs a transformer architecture to consider the entire context of a word within

a sentence, allowing for a more fine-grained representation that considers the specific

ordering of words. These neural network encoding methods depart from fixed-length

representations found in statistical methods. Instead, they adapt dynamically to the

contextual nuances of language, enabling a more accurate portrayal of word meanings.

In summarizing this literature, Table 2.1 presents notable word encoding

methods, categorising them into statistical and neural network types, and outlining their

corresponding weight calculation methods. This table serves as a comprehensive

overview of the evolution and variations within word encoding techniques over time,

providing insights into the progression of methodologies in the NLP field.

15

Table 2.1 Notable word encoding methods

Method Type Weight calculation method
Bag of Words (BOW) (Harris, 1954) Statistical Frequency-based

N-gram (Katz, 1987) Statistical Frequency-based

Latent Semantic Analysis (LSA)
(Evangelopoulos, 2013)

Statistical Singular Value
Decomposition (SVD)

Latent Dirichlet Allocation (LDA)
(Blei et al., 2003)

Statistical Probabilistic model,
Generative

Hyperspace Analogue to Language
(HAL) (Lund & Burgess, 1996)

Statistical Context-based, Co-
occurrence

Term Frequency (TF) Embedding
(Salton & Lesk, 1968)

Statistical Frequency-based

Term Frequency-Inverse Document
Frequency (TF-IDF) Embedding
(Jones, 2004)

Statistical Frequency and Inverse
Document Frequency

Word2Vec (Mikolov et al. 2013) Neural Context-based, Co-
occurrence

Continuous Bag of Words (CBOW)
(Mikolov et al. 2013)

Neural Context-based, Co-
occurrence

Skip-Gram (Mikolov et al. 2013) Neural Context-based, Co-
occurrence

Doc2Vec (Le & Mikolov, 2014) Neural Context-based, Distributed
Memory

Paragraph Vector (PV-DM) (Le &
Mikolov, 2014)

Neural Context-based, Distributed
Memory

Paragraph Vector (PV-Dbow) (Le &
Mikolov, 2014)

Neural Context-based, Distributed
Bag of Words

GloVE (Pennington et al. 2014) Neural Global statistics and local
context window information

ELMo (Embeddings from Language
Models) (Peters et al., 2018)

Neural Contextualised embeddings,
Bi-directional LSTM

FastText (Bojanowski et al., 2017) Neural Subword embeddings,
CBOW

BERT (Devlin et al. 2018) Neural Contextualised embeddings,
Transformer architecture

Universal Sentence Encoder (USE)
(Cer et al., 2018)

Neural Contextualised embeddings,
Transformer architecture

GPT (Generative Pre-trained
Transformer) (Radford et al., 2018)

Neural Contextualised embeddings,
Transformer architecture

16

Table 2.1 Continued

Method Type Weight calculation method
GPT-2 (Radford et al., 2019) Neural Contextualised embeddings,

Transformer architecture

GPT-3 (Brown et al., 2020) Neural Contextualised embeddings,
Transformer architecture

XLNet (Yang et al., 2019) Neural Contextualised embeddings,
Transformer architecture

RoBERTa (Y. Liu et al., 2019) Neural Contextualised embeddings,
Transformer architecture

ALBERT (Lan et al., 2019) Neural Contextualised embeddings,
Transformer architecture

T5 (Raffel et al., 2019) Neural Text-to-text approach,
Transformer architecture

From the listed methods in Table 2.1, the bottom nine methods, namely BERT,

USE, GPT, GPT-2, GPT-3, XLNet, RoBERTa, ALBERT, and T5, can be classified as

Large Language Models or LLMs. To further elaborate on this, the next section will

discuss the literature of LLMs.

2.4 Large Language Model

Modern NLP programs typically consist of a specific type of computational

Language Model (LM) called the Large Language Model (LLM). LLMs utilize deep

learning techniques, specifically Neural Networks (NNs) with a large number of

parameters in their architecture (also known as Deep Neural Language Models or

DNLMs). In general, a word encoding/embedding method is considered to be an LLM

when the trainable parameter size is large (the smallest LLM being BERT with 340

trainable parameters (Devlin et al., 2018)), is pre-trained using large corpora (billions of

words or more), can demonstrate contextual understanding of natural language words

(able to produce contextualised word vectors or embeddings), can be fine-tuned for

specific NLP tasks, and historically implements the Transformer architecture (as

demonstrated in previous Table 2.1). Despite its specific architecture, LLMs are still

fundamentally a type of LM, a statistical model that learns patterns and relationships

between words, phrases, and sentences in a given language. However, LLMs are trained

on much larger datasets and use much more complex algorithms than traditional LMs,

allowing them to perform more complex NLP tasks with greater accuracy.

17

Overall, the development of modern NLP systems consists of two main

components: converting input text into numerical format (WR) and designing models to

process this numerical data for solving practical problems in NLP. These practical

problems are called downstream tasks, and contextualised embeddings play a crucial role

in solving them. This claim is supported by the implementation of dynamic WR methods

in many state-of-the-art LLMs for downstream tasks (Naseem et al., 2021; Singh &

Mahmood, 2021; X. Liu et al., 2022; Incitti et al., 2023). Through publicly published

leaderboards, some models even surpass human benchmarking performance. For

example, the widely used SQuAD 2.0 QA dataset (Rajpurkar et al., 2018) currently has

a state-of-the-art model that scored 93.214 in the F1 metric compared to 89.452 for human

performance (https://rajpurkar.github.io/SQuAD-explorer/). Similarly, the CoQA QA

dataset (Reddy et al., 2019) currently has a state-of-the-art model that scored 90.7 for

overall F1 metric (Ju et al., 2019) compared to 88.8 for human performance

(https://stanfordnlp.github.io/coqa/).

Apart from QA downstream tasks, these contextualised embedding LLMs have

also achieved state-of-the-art in various other downstream tasks, such as Neural Machine

Translation (NMT), Reading Comprehension, Text Summarisation, Common Sense

Reasoning, Zero-Shot, Natural Language Inference (NLI), Sentiment Analysis, Co-

reference Resolution, Document Classification, Sentence Classification, Semantic

Textual Similarity, and Semantic Relevance. Table 2.2 lists some models that have

achieved state-of-the-art results in various downstream NLP tasks.

Table 2.2 State-of-the-art LLMs in various downstream NLP tasks

Model name Downstream NLP task

GPT- 1, 2 and 3 QA, NMT, Reading Comprehension, Text Summarisation,
Common Sense Reasoning, Zero-Shot

XLNET Reading Comprehension, NLI, Sentiment Analysis, QA

BERT Sentence Classification, QA, NLI

RoBERTa Sentiment Analysis, QA, NLI

ALBERT Reading Comprehension, Semantic Textual Similarity, QA,
Language Inference

T5/mT5 More diverse and challenging Coreference, Entailment, QA

Source: (Singh & Mahmood, 2021).

18

As mentioned in Chapter 1, Large Language Models (LLMs) are typically trained

in two stages: pre-training for language understanding using large corpora, such as news

articles and Wikipedia pages, and fine-tuning for specific downstream tasks, such as

question answering and sentence classification, using task-specific datasets. During pre-

training, the model is trained on a large amount of text to learn the general patterns and

meanings of words in context. This process is usually unsupervised and focuses on

optimizing the objective of predicting masked or next-word tokens based on their

surrounding context. Pre-training can be done on the original model structure, such as the

bidirectional language model used in BERT (Devlin et al., 2018), or on modified

architectures, such as the encoder-decoder structure used in GPT-2 (Radford et al., 2019).

Once the model has been pre-trained, it can be fine-tuned for specific downstream tasks

by training on task-specific datasets with labelled examples. Fine-tuning requires

modification and/or additional components to the pre-trained model, such as adding task-

specific output layers or input embeddings. Fine-tuning is supervised and focuses on

optimizing the objective of the downstream task, such as predicting the correct answer to

a given question or classifying the sentiment of a sentence. Figure 2.3 provides an

overview of the pre-training and fine-tuning process for LLMs, which results in a ready-

to-use NLP model for downstream tasks.

Figure 2.3 LLM transfer learning process

LLMGeneral corpora
(News, Wikepedia, etc.)

pre-trained

LLM
Specific corpora

(QA, Sentence classification, etc.)

Transfer

learning

1

2

PRE-TRAINING

FINE-TUNING

fine-tuned

LLM
fine-tuned

LLM
fine-tuned

LLM
QA Sentence

Classification
…

Additional component

19

To better illustrate the pre-training and fine-tuning processes, let's consider the

task of classifying English film reviews as either positive or negative. In this scenario, an

LLM would be pre-trained using general English corpora (unsupervised pre-training on

large datasets). After pre-training, a binary classification component would be added to

the LLM, and the entire model would be retrained (with previously learned weights) on

a dataset of English film reviews labelled as positive or negative (supervised fine-tuning

using a smaller dataset). Once both the pre-training and fine-tuning processes are

complete, this NLP model can be used to classify new film review comments as either

positive or negative, effectively solving the task at hand.

While the transfer learning approach with pre-trained LLM is versatile, it can be

expensive from an economic perspective. This is because the fine-tuning process requires

the entire LLM to be trained on the task-specific dataset, even if the needed task is

relatively simple, such as binary classification. LLM require an enormous number of

parameters, ranging from millions to billions, to understand natural human language,

which makes them computationally expensive to train. To further analyse this, the next

subsection will discuss the literature surrounding the economics of LLMs.

2.4.1 The Economics of Large Language Models

The economics of LLMs are heavily influenced by their parameter size. Although

the architectural complexity of each model may vary, the number of parameters is the

main factor determining the amount of computing power required for training and

inference. This claim is supported by Sharir's study, which calculated the cost (in USD)

of model training based on parameter counts. Table 2.3 summarizes the reported costs

for training the BERT models.

Table 2.3 The cost to train the different sizes of BERT models

Single run cost (in USD) Fully loaded cost (in USD) Parameter counts
2,500 50,000 110 million

10,000 200,000 340 million

80,000 1,600,000 1.5 billion

Source: Sharir et al. (2020).

20

Table 2.3 demonstrates the exponential increase in the cost of training BERT

(Devlin et al., 2018) as the model size grows. The “Fully loaded” column in the table

represents multiple training runs with hyperparameter tuning, which contributes to the

overall cost of training the model. BERT is one of the most popular LLMs and is based

on the Transformer architecture (Vaswani et al., 2017), which is a powerful machine-

learning architecture for natural language processing tasks. Although LLMs based on the

Transformer architecture can accumulate a large number of parameters, this architecture

has been proven to be highly effective for various NLP tasks, leading to its widespread

implementation in modern LLMs.

The next Table 2.4 lists several notable recent LLMs that are based on the

Transformer architecture, sorted from smallest to largest in terms of parameter counts

(which can also be translated as cheapest to most expensive in terms of training cost).

The table includes information about the size (in terms of parameter counts), base

architecture, and developer of each LLM. By examining the parameter counts and

developers of these LLMs, insights into the economics of LLMs can be gained.

Specifically, the development of LLMs is dominated by large tech companies such as

Google, OpenAI, Microsoft, Nvidia and Facebook, which have the resources to fund the

training and development of these large models. This suggests that the economics of

LLMs are heavily influenced by the resources available to large tech companies and that

smaller companies, institutes or individuals may struggle to compete in this space.

From Tables 2.3 and 2.4, it can be concluded that LLMs are extremely expensive

to train. To provide a different perspective of the cost involved; it takes 4 days to train

BERT (Large) (340 million parameters on 16 GB of training data) with 64 TPU chips (or

approximately 1 day with 280 Tesla V100 GPU), 1 day to train Roberta (355 million

parameters on 160 GB of training data) with 1024 Tesla V100 GPU, and 2.5 days to train

XLNET (340 million parameters on 113 GB of training data) with 512 TPU chips. From

a dollar perspective, training the BERT model with 16 GB data can cost anywhere

between $50k and $1.6m (depending on the chosen model size and training procedure)

and training the T5 model for a single run cost well above $1.3m (Sharir et al., 2020).

21

Table 2.4 Notable recent LLM size, architecture and developer

Model name Parameter counts Base
architecture

Developer

ELMo (Peters et al.,
2018)

94 million LSTM AllenNLP

BERT (Large)
(Devlin et al., 2018)

340 million Transformer Google

XLNET (Yang et
al., 2019)

340 million Transformer Google Brain +
CMU

RoBERTa (Y. Liu
et al., 2019)

355 million Transformer Facebook

GPT-2 (Radford et
al., 2019)

1.5 billion Transformer OpenAI

Megatron-lm
(Shoeybi et al.,
2019)

8.3 billion Transformer Nvidia

T5 (Raffel et al.,
2020)

11 billion Transformer Google

Turing-NLG
(Rosset, 2020)

17 billion Transformer Microsoft

GPT-3 (Brown et
al., 2020)

175 billion Transformer OpenAI

As mentioned before, the current trend in emerging NLP models is versatility.

LLMs transfer learning through pre-training and fine-tuning is currently the preferred

method for solving downstream NLP tasks. While pre-training LLM requires

significantly large computing resources, fine-tuning is more economically accessible as

the required dataset for fine-tuning is much smaller than what is needed for pre-training

(Megabyte for fine-tuning versus Gigabyte for pre-training). Nevertheless, fine-tuning is

still relatively expensive due to the size of the chosen LLM. As previously mentioned,

the fine-tuning process still needs to go through the whole LLM parameters despite the

small dataset input and uncomplex pattern to be learned. Therefore, performing specific

text classification (or other downstream tasks) through fine-tuning is still costly by model

size metric and perhaps there are more economical approaches for this endeavour. To

further narrow down the case study for this research, the question classification literature

will be explored as the contextual text classification problem to be solved. The next

section will further discuss the literature surrounding this area.

22

2.5 Contextual Text Classification

Contextual text classification is a dynamic approach to categorising text data

based on its surrounding context and content. Unlike traditional text classification methos

that rely solely on the text itself, contextual classification considers the broader context

in which the text is situated, such as the user's intent, historical interactions, and the

environment in which the text was generated. By leveraging modern word representation

vectors through the LLM, contextual text classification systems can capture nuances in

language, disambiguate meanings, and adapt to changing contexts in real-time (Dogra et

al., 2022; Qassim et al., 2022; Bilal & Almazroi, 2023; Zhang et al., 2024). This enables

more accurate and nuanced classification results, making contextual text classification

invaluable for various applications such as sentiment analysis, topic modeling, and more.

One domain that can greatly benefit from this approach is question classification. To

further explore the literature surrounding contextual text classification, the following

subsections will utilize question classification as a case study domain in which contextual

text classification and dynamic word representation vectors can be implemented to

further demonstrate its effectiveness and applicability across different contexts and

domains.

2.5.1 Question Classification

Question classification in NLP is an area of study that focuses on categorising

questions based on their intended meaning or purpose. It plays a fundamental role in

various applications, including information retrieval, dialogue systems, and virtual

assistants. The goal of question classification is to automatically assign a category, label

or class to a given question, enabling systems to understand user queries and provide

appropriate responses. Additionally, question classification encompasses different levels

of granularity, ranging from simple binary classifications (e.g., yes/no questions) to more

complex categorisations based on the type of information sought or the intent behind the

question. For example, the question “Where is the Eiffel Tower located?” expects an

answer such as “Paris,” “City of Paris,” or “France,” therefore the question classification

system categorises this question under a “location” class. Similarly, “What is the capital

city of Malaysia?” and “Where is the highest point in Japan?” also fall under the

“location” class based on their expected answers.

23

In practical applications, question classification methods (i.e., question

classifiers) are often implemented in Question-Answering (QA) and Information

Retrieval (IR) systems. To retrieve the correct answer, the QA system needs to know

what to look for in the given context. With the output from the question classifier, the

QA system can eliminate the need to search for unrelated contexts, reducing the

processing time (e.g., by only searching for “location” related information instead of all

possible information). However, this type of question classifier has become less relevant

with current QA system methods. To elaborate further on this, the next subsection will

discuss the literature surrounding question classification methods, their related datasets,

and the current landscape about the relevance of such methods.

2.5.2 Question Classification Methods and Datasets

Question classification methods aim to semantically classify questions based on

a defined taxonomy (Gupta et al., 2021). One of the most widely used question

taxonomies to date is from the work of Li and Roth (Li & Roth, 2002) known as The Text

Retrieval Conference (TREC) dataset. This dataset includes a total of six coarse classes

and 50 fine classes, which are listed in the following Table 2.5.

Table 2.5 Coarse and fine classes for 500 questions in the TREC dataset

Coarse class Associated fine class

ABBREV. abb, exp

ENTITY animal, body, colour, creative, currency, dis.med., event, food,
instrument, lang, letter, other, plant, product, religion, sport,
substance, technique, term, vehicle, word

DESCRIPTION definition, description, manner, reason

HUMAN group, individual, title, description

LOCATION city, country, mountain, other, state

NUMERIC code, count, date, distance, money, order, other, period, per
cent, speed, temp, size, weight

Source: Li & Roth (2002).

24

Table 2.5 provides a list of question taxonomy classes for 500 sampled questions

from the TREC dataset (Li & Roth, 2002). This dataset has been publicly available and

has been used by many researchers for developing various question classification (and

other sentence classification) methods. Recent studies that used the TREC dataset include

Zhong et al.'s GPT-3 based method for classifying sentence descriptions based on

taxonomy (Zhong et al., 2022), Chen et al.'s Dual Contrastive Learning (DualCL) method

for classifying sentences through label-aware data augmentation (Chen et al., 2022),

Jardim et al.'s CNN method for classifying questions in Portuguese (Jardim et al., 2022),

Hamza et al.'s TF-IDF weighting method for classifying Arabic language question text

(Hamza et al., 2021), Chotirat and Meesad's method based on Part-of-Speech (POS) for

question classification of Thai language wh-question text (Chotirat & Meesad, 2021),

Sangodiah et al.'s Term Weighting method (E-TFIDF and TFPOS-IDF) for classifying

exam questions (Sangodiah et al., 2021), Golzari et al.'s question classification method

based on Differential Evolution (DE) and Gravitational Search Algorithm (GSA)

(Golzari et al., 2022), and Weerakoon and Ranathunga's fine-tuned BERT model for

question classification in the travel domain (Weerakoon & Ranathunga, 2021).

Although still an active research area, methods for taxonomy-based question

classification for QA systems have become increasingly irrelevant in recent years. This

is mainly due to advancements in modern QA systems that have made the taxonomy

identification process for question text classification an unnecessary function. As

mentioned in subsection 2.4.1 QA System Methods and Datasets, modern QA systems

are capable of learning the semantic relationship between QA pair text directly within

their core Language Model (LM) architecture (through the fine-tuning process) (Ju et al.,

2019; Yamada et al., 2020; Zhang et al., 2021). With these types of LM embedded in QA

systems, identifying 'location' as the intent of the “Where is the Eiffel Tower located?”

question has become an automated process without the need for an additional classifier.

To provide further evidence for this argument, Table 2.6 compares the coarse classes

from Li and Roth's taxonomy with the answer types from benchmark QA datasets as

defined by Yatskar (2019).

25

Table 2.6 Taxonomy class against answer types from QA datasets

Li and Roth Coarse class Yatskar answer type

ABBREV. Extractive or Abstractive answer (Fluency/
Coreference)

ENTITY Extractive answer

DESCRIPTION Extractive or Abstractive answer (Fluency/
Coreference)

HUMAN Extractive answer

LOCATION Extractive answer

NUMERIC Abstractive answer (Counting)

Not available Unanswerable

Not available Abstractive answer (Yes/No and Picking)

Table 2.6 presents a comparison between Li and Roth's question taxonomy coarse

class with Yatskar’s answer types for SQuAD 2.0, CoQA, and QuAC datasets. The

comparison shows that three taxonomy classes correspond to extractive answers, two

classes correspond to extractive or abstractive answers (Fluency or Coreference)

depending on the context, and one taxonomy class corresponds to abstractive answer

(Counting). However, two of Yatskar's answer types are missing from Li and Roth's

question taxonomy course class, namely Unanswerable questions and abstractive

answers related to Yes/No and Picking phenomena. This comparison further justifies that

taxonomy classes for modern QA systems are not required as most of them are for

extractive-type answers. However, modern QA systems do not cater to question text

classification based on question and general word occurrences (referred to as Question

Type Classification in this document). Figure 2.4 depicts a scenario where this type of

classification is needed to assist the QA system in handling abstractive-type answers.

26

Figure 2.4 Question word role in question classification

Figure 2.4 illustrates a scenario where a question-type classifier based on question

words is necessary to assist the QA system. The context in this simplified example is

“Currently shampoo, soap and conditioner are on sale.…” and the question is “How many

items are on sale?” Using a modern QA system, the keywords extracted from the question

text would be “items are on sale,” leading the system to retrieve “Shampoo, soap and

conditioner are on sale” as the answer. However, this answer is not the correct answer,

instead, should be “Three” (a counting phenomenon under the abstractive answer

feature). On the other hand, the retrieved answer from the system could be the answer to

the question “What items are on sale?”. The difference between the two questions lies in

the question word “How many” and “What,” not in the keywords/function words. To

address this issue, it is desirable to have a classifier that can classify question text that

focus on both extractive type answers and abstractive answers phenomenon. This

problem can be classified as a multiclass classification problem, where the input (question

text) needs to be classified into one of multiple classes (one of abstractive answer

phenomena or extractive type answer).

Solving this type of multiclass classification problem can be challenging,

particularly due to the requirement that the classifier must be able to capture the

contextual semantics of the question. With such complexity, there are currently no

methods that surpass machine learning in dealing with such intricacies. Moving forward,

27

the following section will explore the machine learning literature, focusing on multiclass

classification of natural language text data.

2.6 Machine Learning

Machine Learning (ML) refers to a computerised system that automatically learns

patterns from data. Unlike traditional computer systems, where logic is manually encoded

into the algorithm, ML systems learn from patterns in the given training data and encode

the logic into the algorithm automatically. This process allows ML systems to grasp

complex underlying patterns that are impossible to be manually encoded by human

programmers. There are three ways to ‘teach’ the ML algorithms: Supervised,

Unsupervised, and Reinforcement learning. Supervised learning involves the algorithm

learning from labelled examples, while Unsupervised learning involves the algorithm

discovering patterns in the data on its own. Reinforcement learning, on the other hand,

learns by following a guideline that provides rewards or punishments. Figure 2.5

illustrates the most common ML algorithms under Supervised and Unsupervised

learning. It's worth noting that Reinforcement learning is not included as it is in a far-off

domain from this research’s aim.

As shown in Figure 2.5, ML algorithms can be further categorised into three

subcategories: Classification, Regression, and Clustering. These subcategories

correspond to the types of problems that these algorithms are capable of solving. In

Classification, the algorithm is tasked with classifying the input into one of two

classes/labels (binary classification) or more than two classes/labels (multiclass

classification). An example of a classification problem is identifying whether an input

image is a cat or a dog. In Regression, the algorithm needs to predict continuous output

based on given input features. An example of a regression problem is predicting the value

of a house based on features such as year of construction, location, and size. In Clustering,

the algorithm learns to categorize input data into a certain number of groups based on

input features. An example of a clustering problem is dividing a group of people into two

subgroups based on their family, education, and work background. Figure 2.6 visualizes

the concepts of classification, regression, and clustering in their simplest forms.

28

Figure 2.5 Classification of the most common machine learning algorithms

Source: Duc et al. (2019).

Figure 2.6 Simple visualization of Classification, Regression and Clustering

Referring back to Figure 2.5, one of the most versatile ML algorithms is the

Neural Network (NN). It is capable of solving all three types of problems (classification,

regression, and clustering), making it a dominant algorithm in the field. Unlike other

algorithms that are relatively rigid and unable to be expanded, NN is highly flexible. This

flexibility is demonstrated by its ability to be used as the basis for many other algorithms

with different capabilities and architectures. Following Figure 2.7 highlights various NN

algorithms that fall under Supervised, Unsupervised, and a combination of both learning

methods.

Supervised Unsupervised

MACHINE LEARNING

Classification Regression Clustering

Discriminant
Analysis

Naive Bayes

Support Vector
Machines

k-Nearest

Neighbors

Neural Network

Linear

Regression

Hierarchical

Ensembles

Decision Trees

Neural Network

K-Means

Hierarchical

Gaussian

Mixture

Hidden

Markov

Neural Network

Classification Regression Clustering

29

Figure 2.7 Supervised and unsupervised neural network models

To recap, the case study of this research is to solve a multiclass classification

problem. Therefore, the following discussion will focus solely on ML algorithms within

this domain. As shown in previous Figure 2.5, five ML algorithms can be used for

classification: Support Vector Machines (SVM), Discriminant Analysis (DA), Naïve

Bayes (NB), k-Nearest Neighbour (kNN), Neural Network (NN). In recent years, SVM

and NN have been the most widely used algorithms, as evidenced by the number of

publications between 2019 and 2024 found through a Google Scholar search. Table 2.7

provides an overview of this finding, although it should be noted that NN may have even

more usage due to the various names under which NN implementations can be found, as

shown in previous Figure 2.7.

Table 2.7 Google Scholar search results for publication year 2019 to 2024

Search keywords Result counts
support vector machine classification 278,000

neural network classification 347,000

k-nearest neighbour classification 17,300

naive bayes classification 18,200

discriminant analysis classification 16,100

30

Due to their relatively low usage in recent years compared to SVM and NN, DA,

NB, and kNN algorithms will not be discussed further in this section. Instead, the focus

will be on SVM and NN algorithms, which are both capable of solving multiclass

classification problems. As discussed in Chapter 1, this research aims to address an issue

in downstream NLP tasks through multiclass classification. Table 2.8 provides further

evidence for the suitability of SVM and NN algorithms for this task, based on Google

Scholar search results.

Table 2.8 Google Scholar search results for publication year 2019 to 2024

Search keywords Result counts
support vector machine multiclass classification 17,900

neural network multiclass classification 17,000

Although both SVM and NN can perform multiclass classification, they do so in

different ways. SVM is a binary classifier, so to perform multiclass classification, it

breaks down the problem into several binary classification problems, with one binary

classifier per pair of classes. This approach leads to shorter training time but longer

inference time due to the hierarchy of classification processes. In contrast, multiclass

classification is natively supported by NN. By making the number of classes as NN output

nodes, multiclass classification can be performed using the softmax function. The

softmax function produces a sum of 1 output, and the highest value denotes the selected

class. While NN takes longer to train, as each data point is compared to all classes in

every iteration, it takes less time for inference compared to SVM, which requires multiple

binary classifiers to run the whole classification process multiple times.

As previously mentioned, the case study of this research is to solve a multiclass

classification problem on high-dimensional text data (word representation vectors or

word embeddings). Therefore, the NN algorithm is selected for this research, as it is

known to be highly effective in discovering intricate structures within high-dimensional

data, such as vector data that contains contextual text information (LeCun et al., 2015).

This is also the reason why modern LLMs use Transformer-based ML models, which are

largely based on NN algorithms. With NN as the selected algorithm, further literature

will focus on understanding this algorithm in an attempt to use it to design a multiclass

classifier with a small parameter count.

31

2.6.1 Artificial Neural Network

An Artificial Neural Network (ANN/NN) is a computational model that is loosely

inspired by a biological neuron (Lippmann, 1994). A single artificial neuron (unit) can

receive multiple scalar values as its input and produce a single scalar value as an output.

Figure 2.8 visualizes one unit of an artificial neuron, where {x1,…, xn} are inputs, {w1,…,

wn} are weights, b is biased, and y is output (all values are in scalar unit). Each artificial

neuron also consists of one activation function (also called link/decision/transfer

function) denoted as ". Depending on the desired output, the activation function can be

Sigmoid, Tanh, ReLU, and so on. Equation 2.1 represents an artificial neuron in

mathematical form.

Figure 2.8 One unit of artificial neuron

- = " /0'!,! + !
"

!#$
2

2.1

From a single artificial neuron, it is possible to create an expandable system by

interconnecting multiple artificial neurons through a series of layers, forming an Artificial

Neural Network (ANN) or simply Neural Network (NN). The most basic construction of

a NN consists of three layers: the Input layer, the Hidden layer, and the Output layer.

Figure 2.9 visualizes this basic three-layer NN model where x represents the input neuron,

h represents the hidden neuron, and y represents the output neuron. In terms of

connectivity, all neurons in the prior layer are connected to all neurons in the subsequent

layer, forming a Dense or Fully Connected layer. This form of NN is also known as a

vanilla form of NN (NN's most basic form). In addition to the basic three layers, the

hidden layers of an NN can be indefinitely expanded, as illustrated in Figure 2.10.

32

Figure 2.9 Basic/shallow Artificial Neural Network model (one hidden layer)

Figure 2.10 Deep Artificial Neural Network model (multiple hidden layers)

Previous Figures 2.9 and 2.10 showcase two forms of vanilla NN: Shallow NN

(three layers) and Deep NN (more than three layers). In addition to these vanilla forms, a

vast number of other NN models have been proposed over the years. As previously

illustrated in Figure 2.7, these models are an expansion of vanilla NN with additional

components, such as additional specific nodes/layers or specific mechanisms. These

models, mainly of the Deep NN type, can be utilised using the previously discussed two

ML training methods: Supervised and Unsupervised. To design a machine learning

classifier to solve a multiclass classification problem, the next subsection will further

discuss NN models under the Supervised category (the training method for solving

classification problems as shown in the previous Figure 2.5).

33

2.6.2 Supervised NN

Like other supervised ML algorithms, supervised NN can be used to solve

Classification and Regression problems. In general, a supervised NN Classification

model will predict discrete values/classes/labels, while a supervised NN Regression

model will predict continuous values/quantities. For example, consider a weather

prediction ML model. The question to be answered for the Classification model is “Will

it be cold or hot?”, while for the Regression model, it is “What will be the temperature?”.

To visualize this example, the following Figure 2.11 illustrates the graph for

Classification and Regression results.

Figure 2.11 Classification versus Regression

As illustrated in Figure 2.11, the Classification model will predict whether it's

going to be cold (Class A: blue-coloured dots) or hot (Class B: red-coloured dots), while

the Regression model will predict the temperature value (continuous temperature values

- green dots). For both models, the prediction will be made towards the black line in the

graph. For Classification, the black line will decide whether it's cold or hot, while for

Regression, the temperature will be predicted as a value as close as possible to the black

line. This black line symbolizes what the model has learned after going through the

training process, which involves analysing the given input and output data repeatedly.

Note that in practice, the line would not be as linear as in the given figure, and the

dimensions could also be more than two, depending on the dataset.

For classification, there are two types of problems: Binary and Multiclass. The

previous example of predicting cold or hot weather is a Binary classification problem

(predicting one from two classes). If the number of classes is more than two, it is called

RegressionClassification

Class A

Class B
Contin

uous v
alu

es

34

a Multiclass classification problem. An example of a Multiclass classification problem is

predicting a student's grade in a computer science subject, where the grade can be from

A+ to F (predicting one from more than two classes). Referring back to Figure 2.7, all

the listed NN-supervised models can be used to solve both Binary and Multiclass

classification problems. To recap, the four supervised-only NN models are Feed-forward

NN, Recurrent NN, Convolutional NN and Transformer.

From an architectural perspective, the three bottom models (Convolutional NN,

Recurrent NN, and Transformer) are extensions of the Feed-forward NN. Starting with

the base/vanilla deep Feed-forward NN, these three models then implement several

additional components to suit each respective architectural purpose. Figure 2.12

illustrates the general differences between the Feed-forward, Recurrent, and

Convolutional NN model architecture (the Transformer will be illustrated later as its

architecture is vastly different and more complex than the others).

Figure 2.12 Feed-forward, Recurrent and Convolutional NN model architecture

I

I

I

H

H

H

H

O

O

O

H

H

H

H

O

O

O

H

H

H

H

H

H

H

H

C

C

I

I

I

I

I

K

K

K

K

K

C

C

C

C

C

C

C

Feed-forward NN Recurrent NN

Convolutional NN

I

I

I

R

R

R

R

O

O

O

R

R

R

R

35

Referring to Figure 2.12, the vanilla Feed-forward architecture (with input-

hidden-output layers denoted by ‘I’, ‘H’, and ‘O’) can be seen implemented in both

Recurrent and Convolutional NN. In Recurrent NN, the additional component added is

the recurrent mechanism, which allows the hidden layer's nodes to calculate output based

on both the current and previous inputs using the Hidden State mechanism (unlike vanilla

Feed-forward NN, which only considers the current input) In the given figure, these nodes

are denoted by the circled ‘R’ (Recurrent) with a looped link to itself, representing the

recurrent calculation/mechanism. Recurrent NN is suitable for sequential data, and there

are three commonly used variants of Recurrent NN: Vanilla RNN, LSTM (Long-Short

Term Memory), and GRU (Gated Recurrent Unit). While vanilla RNN can only

remember recent previous inputs in its hidden state, LSTM and GRU have an additional

component called Memory Cell, which enables them to remember not only the recent

previous inputs but also all previous inputs starting from the first item in the input

sequence.

While Recurrent NN transforms vanilla hidden layers into recurrent hidden layers,

Convolutional NN adds more layers while maintaining the vanilla hidden layers. Denoted

as ‘K’ and circled ‘C’ in Figure 2.12, these additional layers contain nodes that are known

as the Kernel and Convolution nodes. From input nodes, kernel nodes filter the input into

a two-dimensional weight array before passing the value into convolutional nodes.

Within convolutional nodes, the two-dimensional weight array is multiplied several times

until just two values remain. This process narrows the dimension of the original input,

allowing the model to focus on a certain input. The two convoluted values then pass to

dense vanilla NN hidden layers for regular NN processing. As per its intended design,

Convolutional NN is very good at classifying image data. This is because Convolutional

NN focuses on certain image areas (multiple times) that are ultimately the key points in

classifying the image, such as whether it is a ‘Dog’ or a ‘Cat’ image. Although Recurrent

and Convolutional NN added more components into vanilla/Feed-forward NN, the main

overall model is relatively similar. The Transformer model, on the other hand, is vastly

bigger and different. The following Figure 2.13 illustrates the Transformer model

architecture.

36

Figure 2.13 Transformer model architecture

Source: Vaswani et al. (2017).

Referring to Figure 2.13, two Feed-forward NN models can be seen being

implemented in the Transformer model. Coloured blue in the figure, the two

implementations shown are not two separate counts of Feed-forward models, but rather

two locations or segments in which a Feed-forward NN is being implemented in the

Transformer (one in the Encoder block on the left side of the Transformer and one in the

Decoder block on the right side of the Transformer). The number of Feed-forward models

in each implementation location depends on the implemented Transformer's input size.

For example, BERT Language Model (Devlin et al., 2018) uses a 512 input size for its

Encoder-only Transformer implementation, and therefore, there are 512 Feed-forward

models in one BERT's Encoder block. It is important to note that BERT uses 12 blocks

for its base model and 24 blocks for its large model. Therefore, for the BERT base model,

there will be a total of 6144 Feed-forward models in the whole architecture (512 Feed-

forward models in each of the 12 Encoder blocks).

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

37

Referring to the previously discussed NN models, namely Recurrent NN,

Convolutional NN, Transformer, and Feed-forward NN, it is important to note that all of

these models incorporated a Feed-forward NN component. As the original and simplest

form of NN architecture, the Feed-forward is also the most economical in terms of the

number of components and parameters compared to the other models. Table 2.9 below

provides a comparison of the four supervised NN models and their implemented

components.

Table 2.9 Supervised NN model’s components comparison

 Components
Feed-forward Input, hidden and output layers (vanilla)

Recurrent - Vanilla + recurrent mechanism on hidden layers (base
RNN)

- Vanilla + recurrent + memory cell (LSTM)

- Vanilla + recurrent + different memory cell (GRU)

Convolutional Vanilla + kernel + convolutional cell

Transformer Vanilla (multiple) + positional encoding + attention mechanism

With this literature on ML, this chapter is concluding its literature sections, and

to concatenate and align all findings throughout the discussed topics, the next section will

discuss the direction of this research.

2.7 Direction of this Research

The previous sections aimed to analyse and explore the current literature

concerning the identified research gap, which surround three main areas defined in the

gap analysis section. The following are the summarised findings for each gap area:

GAP 1: Incorporating external scalar weights into word representation
vectors. From the discussed literature, it is evident that contextualised word

representation vectors can only be generated using LLMs. Additionally, it is apparent that

the word vectors generated by LLMs cannot be externally modified by incorporating

external values. This limitation arises from the design of such models, which utilize a

Transformer architecture consisting of multiple stacked encoder blocks. This complex

structure results in the word vectors' trainable parameters being highly interconnected

and dependent on each other. Given this situation, a new method for modifying the high-

38

dimensional contextualised word vectors needs to be proposed to address this gap. For

generating the word vectors in this research, the Universal Sentence Encoder (USE) (Cer

et al., 2018) has been selected. This choice is based on two rationales:

1. USE is the only LLM that can generate small-sized word embeddings (100

dimensions), while the smallest embedding size for other LLMs is 512

dimensions. This embedding size is crucial in this research as it attempts to

minimize costs as opposed to fine-tuning LLMs, which are high in cost.

2. As per its name, USE by default is an LLM designed to encode sentences (not

words) into embeddings. Given that this research focuses on the question

classification problem, where questions are essentially sentences comprised of

multiple words, comparing the developed algorithm's performance using the

original USE sentence embedding against modified word embeddings could offer

a more insightful evaluation of the modified embedding vector's effectiveness

(raw sentence embedding compared to modified word embeddings for generating

the sentence embedding).

GAP 2: Defining criteria for creating text classification datasets emphasising
context representation differences. When establishing criteria for the new contextual

text classification dataset, the Question Classification research area has been chosen,

particularly due to its intricacies in defining the question context not only within its own

words but also by considering its possible or expected answer. Literature in this area has

shown that current taxonomy-based datasets have become increasingly irrelevant in

recent years due to advancements in modern QA systems based on fine-tuned LLMs.

With this in mind, this research intends to use QA datasets as a benchmark for creating a

new dataset for question classification, where the main goal is to identify whether the

question expects an extractive-type answer or one of various abstractive-type answers. In

contrast to current taxonomy-based question classification datasets, this new proposed

dataset will focus on emphasising differences in the context or type represented by the

questions, rather than creating detailed coarse and fine classes that can become very

complex and numerous. With this focus, the question classification classes can be low in

number and only require one level instead of two levels (coarse and fine) for the current

taxonomy-based classes.

39

GAP 3: Evaluating the developed algorithm in the contextual text
classification problem. To evaluate the algorithm developed to address the first

identified gap, the literature review in this area explores text classification methods, with

a specific focus on multiclass classification techniques based on machine learning as a

benchmark for resolving high-dimensional data classification challenges. The ability to

handle high-dimensional data is crucial due to the embedding size of LLM-generated

word representation vectors. According to the literature, the vanilla feed-forward Neural

Network (FF-NN) emerges as the optimal choice for this research. This selection is driven

by two key factors: its cost-effectiveness and suitability for multiclass classification of

high-dimensional data. Among the four NN architectures considered; vanilla Feed-

forward, Convolutional, Recurrent, and Transformer, vanilla Feed-forward is identified

as the most economical option, attributed to its simplicity and minimal number of

components. Figure 2.14 illustrates the literature's path towards selecting the Vanilla

Feed-forward NN as the ML model for this research.

Figure 2.14 Literature path towards selecting the vanilla Feed-forward Neural
Network (FF-NN) for this research

MACHINE LEARNING

Supervised

Unsupervised

Classification

Regression

Clustering

Support Vector
Machine

Discriminant
Analysis

Naive Bayes

k-Nearest
Neighbors

Neural
Network

Linear
Regression

Hierarchical

Ensembles

Decision
Tress

Neural
Network

K-Means

Hierarchical

Gaussian
Mixture

Hidden
Markov

Neural
Network

Feed-forward
NN

Convolutional
NN

Recurrent NN

Transformer

Autoencoders

Generative
Adversarial
Networks

Deep
Recommender

Systems

Self Organizing
Maps

40

2.8 Summary

This chapter presents a literature review surrounding contextual text

classification, aiming to gather information to address the three defined research

questions: 1) How can an algorithm effectively incorporate external scalar weights into

word representation vectors to enhance context understanding in a contextual text

classification problem?, 2) What criteria should be considered in the creation of a text

classification dataset to emphasise differences in context representation? and 3) How

does the developed algorithm, incorporating external scalar weights, perform when

applied to contextual text classification task? Three gap areas are defined for this research

and based on the literature, several findings are outlined and discussed in previous

Direction of this Research section. With this defined research direction, the next chapter

will discuss the structured research methodology aimed at justifying the defined

hypotheses for this entire study, ultimately closing the identified gaps and achieving the

stated objectives while answering the research questions.

41

CHAPTER 3

METHODOLOGY

3.1 Introduction

This study aims to justify the hypothesis that the word representation vector

derived from the LLM can be altered using an external scalar weight, which can later be

used as input for a ML model to perform text classification task. To test this hypothesis,

three research objectives and their corresponding research questions were outlined in

Chapter 1. To recap, the objectives and research questions are as follows:

1. To develop a new algorithm that incorporate an external scalar weight into the

word representation vector. Research Question 1 (RQ1): How can an algorithm

effectively incorporate external scalar weights into word representation vectors to

enhance context understanding in a contextual text classification problem?

2. To develop a new text classification dataset that emphasises differences in context

representation. Research Question 2 (RQ2): What criteria should be considered

in the creation of a text classification dataset to emphasise differences in context

representation?

3. To evaluate the developed algorithm using a Machine Learning (ML) model in

the contextual text classification problem. Research Question 3 (RQ3): How does

the developed algorithm, incorporating external scalar weights, perform when

applied to contextual text classification task?

Based on these objectives, a research methodology consisting of five main phases

is structured. The next section 3.2 will elaborate on this research methodology in detail.

42

3.2 Research Methodology

A five-phase methodology is structured for this research, comprising 1) Base Data

Preparation, 2) Dataset Development, 3) Modified Word Vectors Method Development,

4) Machine Learning Classifier Development, and 5) Methods Evaluation. Following

Figure 3.1 visualizes this methodology in a flowchart format.

Figure 3.1 Research methodology flowchart

START

Benchmark
QA datasets

Datasets analysis,
selection & cleaning:

1. Abstractive answer
distribution comparison

2. Dataset selection
3. Dataset cleaning

Cleaned
QA dataset

PHASE 1:
BASE DATA

PREPARATION

Development of
question type classification

dataset:

1. Class identification
and definition

2. Class encoding (one-hot)

Question Type Classification
(QTC) dataset

PHASE 2:
DATASET

DEVELOPMENT

Word representation
vector generation

using pre-trained LLM

Word vectors

PHASE 3:
MODIFIED

WORD
VECTORS
METHOD

DEVELOPMENT

PHASE 4:
MACHINE
LEARNING

CLASSIFIER
DEVELOPMENT

Machine Learning (ML)
classifier (model)

development

ML model

Model training &
hyperparameter tuning

Development of general
word weighting algorithm

Scalar word's
weight value

Development of modified
word vectors algorithm

Modified
word vectors

Modified
word vectors

> original
word vectors

No

Yes

1. Completed ML
classifier (the best

economy:performance
ratio)

2. QTC classification
results

Evaluation of QTC
classification results:

1. Accuracy
2. Precision

3. Recall
4. F1 score

Results analysis
& discussion

END

PHASE 5:
METHDOS

EVALUATION

Comparison between
original word vectors

& modified word vectors:

1. Sentence similarity
2. Vector differences

PHASE 3:
Cont.

43

Referring to Figure 3.1, the purpose of Phase 1, the Base Data Preparation phase,

is to clean and organise the initial/raw data. In Phase 2, the Dataset Development phase

involves developing a new dataset using a new algorithm. Moving on to Phase 3, the

Modified Word Vectors Method Development phase, the focus is on developing a new

algorithm that can incorporate a scalar weight value into a vector representation of words

to produce a weighted word vector of a fixed dimension size. In Phase 4, the Machine

Learning (ML) Classifier Development phase, an ML classifier is created to perform the

question type classification process based on the previously developed dataset and the

modified word vectors. Finally, in Phase 5, the overall proposed methods within this

research are assessed, with a focus on evaluating their effectiveness by comparing the

produced results against the baseline score. To provide further elaboration, the following

is a general summary of the planned activities for each phase.

¡ Phase 1: Base Data Preparation

As mentioned in Chapter 1, this research aims to construct a new multiclass text

classification dataset that highlights distinctions in contextual representation, which will

serve as the case study for this research. Furthermore, in Chapter 2, Question

Classification literature is explored, and a gap within question classification datasets is

identified, specifically the irrelevancy of taxonomy-based datasets and the lack of an

alternative dataset that can address the question type classification problem (a multiclass

classification problem that classifies question text as needing extractive or abstractive

type answers). Given this gap, this research intends to develop a new question

classification dataset emphasising differences in the context or type that the questions

represent. Therefore, the initial phase of the research is dedicated to analysing and

selecting a benchmarked Question-Answering or QA dataset as the foundation for

developing the required dataset. To determine the most suitable dataset, a comprehensive

comparative analysis will be conducted, with a specific focus on the distribution of

abstractive answers. This analysis aims to assess the quality and diversity of answer types

in each dataset. Considering the characteristics and requirements of the proposed

research, one dataset will be selected as the base dataset to proceed with the subsequent

phases. Before advancing to the next phase, the selected base dataset will undergo a

cleaning process to remove unnecessary data and noise. Eliminating unwanted elements,

the final output from this phase will be a cleaned QA dataset, ready for use in the

subsequent phases of the research.

44

¡ Phase 2: Dataset Development

Based on the output of the previous phase, this phase takes a cleaned QA dataset

as input. From this dataset, the research aims to identify and define several classes related

to abstractive answers. The class encoding process will then be performed on the dataset.

Each data point will be assigned a single class that best represents it. The determination

of the best class representation for each data point will be done using a specific and

justifiable algorithm. The proposed algorithm will utilize one-hot encoding as the format

for class encoding. This process assigns a unique binary code to each class, with a value

of 1 for the corresponding class and 0 for all other classes. By using one-hot encoding,

the resulting output of this phase will be a Question Type Classification dataset, or QTC,

where each data point is associated with its corresponding class encoded in a one-hot

vector format. This dataset will then be used for all further phases in this research

methodology .

¡ Phase 3: Modified Word Vectors Method Development

Before developing a new algorithm that can incorporate an external or

independent scalar weight into the word representation vector, effectively modifying the

word vectors' context, the scalar weight values need to be produced. Therefore, this phase

will start by generating the scalar weight value that effectively signifies the general and

question words within the question texts of the QTC dataset. From another perspective,

this scalar weight will effectively group similar question types into the same defined class

within the QTC dataset. After completing this process, word vectors will be generated

for each word within the required dataset using a pre-trained LLM, and the development

of the modified word vectors algorithm will commence. To recap, this research intends

to develop a vanilla feed-forward Neural Network (FF-NN) model for the question-type

classification process (a question-type classifier) as a means to evaluate the modified

word vectors algorithm. The architecture of the vanilla FF-NN requires a fixed-length

vector as its input format. Therefore, the developed modified word vectors algorithm

needs to strictly adhere to this requirement, indirectly necessitating an algorithm capable

of handling variable-length sentences to produce a fixed-length vector size format for the

final word representation value. By the end of this phase, fixed-length weighted word

vectors will have been generated for each question text in the QTC dataset, and these

vectors must demonstrate improved representation of required contexts (based on a small-

scale experiment) before being used to train the FF-NN model in the next phase.

45

¡ Phase 4: Machine Learning Classifier Development phase

This phase focuses on building and training the question-type classifier using a

machine learning algorithm, i.e., the Feed-Forward Neural Network (FF-NN) algorithm.

Based on the output from the previous phases, a modified FF-NN model will be designed,

taking into consideration an economical approach, to address the multiclass classification

problem within the QTC dataset. Once the base model is constructed, the next step is to

train the model using the QTC dataset defined classes, with the question text being the

word vectors generated using the modified word vectors algorithm developed in the

previous Phase 3. This question-type classifier model design and training will be done

iteratively, ensuring that all hyperparameters are tested to obtain the best ratio of

economy to performance results. Overall, the outcome of this phase will be a trained

question-type classifier, ready for further testing and evaluation.

¡ Phase 5: Methods Evaluation

The final phase of this research methodology focuses on validating and

evaluating the overall proposed methods developed in the previous four phases. While

each method has been individually validated in its respective phase, this phase aims to

assess the collective contribution of each method towards achieving the end result, which

is the QTC dataset classification results. There are four evaluation metrics to be analysed:

Accuracy, Precision, Recall, and F1 score. To recap, this research hypothesizes that the

word representation vector derived from the LLM can be altered using an external scalar

weight, which can later be used as input for an ML model to perform a text classification

task. By evaluating these four metrics, it is hoped that this hypothesis can be substantiated

and provide insights into the effectiveness of the modified word vectors and the

developed FF-NN model for question-type classification within the QTC dataset. This

phase will involve a thorough examination of the obtained results, comparing them

against baseline scores, and conducting a detailed analysis of the performance metrics.

The findings will contribute to the validation of the research hypothesis and the overall

success of the proposed methods for contextual text classification.

The preceding general summary for all five phases has outlined the fundamental

tasks that will be undertaken for each of the defined phases in the research methodology.

For a detailed implementation of this research methodology , the next subsections will

explain in detail all processes carried out within each of the identified phases.

46

3.2.1 Phase 1: Base Data Preparation

The aim of this phase is to analyse and selects a benchmarked QA dataset to be

the foundation for developing the required dataset for this research. Four benchmarked

QA datasets have been selected for analysis: The Stanford Question Answering Dataset

or SQuAD (Rajpurkar et al., 2016), SQuAD version 2.0 or SQuAD 2.0 (Rajpurkar et al.,

2018), A Conversational Question Answering Challenge or CoQA (Reddy et al., 2019),

and Question Answering in Context or QuAC (Choi et al., 2018). Overall, the creation of

these datasets involved human crowd workers who were asked to produce questions

based on a given context (a paragraph of text) and to produce replies by either indicating

that there is no answer or by extracting an answer from the context by highlighting one

continuous text span. In addition, QuAC and CoQA require workers to produce questions

in the form of a dialogue where co-referencing previous interactions is possible, allowing

for a conversational type of QA. QuAC and CoQA also allow direct “Yes” or “No”

answers without additional explanation. Furtheremore, only in CoQA are workers

allowed to edit text spans to produce abstractive answers.

The Stanford Question Answering Dataset (SQuAD) is a widely used dataset for

QA systems, which contains more than 100,000 question-answer pairs, derived from

Wikipedia articles. It focuses on answer extraction, where the answer to a question is a

span of text within the context paragraph (Rajpurkar et al., 2016). SQuAD 2.0 is an

extension of SQuAD, which includes unanswerable questions in addition to answerable

ones. This dataset requires QA systems to not only extract answers from the text but also

identify questions that have no answer within the given context (Rajpurkar et al., 2018).

Question Answering in Context (QuAC) is a dataset that focuses on answering questions

that require reasoning and context understanding. It consists of more than 14,000

information-seeking QA dialogues, where each dialogue has a context paragraph and a

set of questions that follow the context (Choi et al., 2018). A Conversational Question

Answering Challenge (CoQA) is a dataset that involves answering questions based on a

passage of text in a conversational setting. It contains more than 127,000 questions, which

are collected from more than 8,000 conversations between two crowd workers, where

one worker plays the role of a “questioner” and the other plays the role of a “answerer”

(Reddy et al., 2019). Overall, these datasets offer three features that make them good

47

benchmarks for QA research: unanswerable questions, multi-turn interactions, and

abstractive answers (Yatskar, 2019).

Abstractive answers are a relatively new feature in recent QA datasets, along with

unanswerable questions (questions that cannot be answered due to missing or conflicting

information in the context passage) and multi-turn interactions (conversational QA

features). The following Figure 3.2 illustrates the distribution of QA dataset features.

Figure 3.2 Features in QA Datasets

As depicted in Figure 3.2, there are five phenomena associated with abstractive

answers: Yes/No, Coreference, Counting, Picking, and Fluency (S. Liu et al., 2019; Storks

et al., 2019; Yatskar, 2019). For each phenomenon, Yes/No provides an answer to a yes

or no question (e.g., Question: “Do humans need oxygen to live?”, Answer: “Yes”),

Coreference refers to an entity/object mentioned in the question or context passage (e.g.,

Question: “What does a lung need as an input?”, Answer: “It needs oxygen”), Counting

requires counting entities/objects in the context passage (e.g., Question: “How many

main organs are in the human body?”, Context: “The main organs in the human body are

brain, lungs, liver, bladder, kidneys, heart, stomach, and intestines”, Answer: “Eight”),

Picking requires selecting an answer from a set defined in the question (e.g., Question:

“Do humans think with their brain or heart?”, Answer: “Brain”), and Fluency requires

QA DATASET
features

Factual answer
< Extractive >

Unknown answer
< Unanswerable >

Abstractive answer
< Non-direct >

Multi-turn
interactions

< Conversational >

1. Yes/No

2. Coreference

3. Counting

4. Picking

5. Fluency

48

rephrasing the answer to be highly relevant (e.g., Question: “How do humans breathe?”,

Context: “The nose and mouth are two organs within the human respiratory system”,

Answer: “Using a respiratory system”).

Based on these abstractive answer features, an analysis of the selected

benchmarked QA datasets will be performed, and the best dataset with the most coverage

of abstractive answers will be selected as the basis dataset to be used in the next phase of

this methodology, which is the development of the new QTC dataset.

3.2.2 Phase 2: Dataset Development

The aim of this phase is to develop a Question Type Classification (QTC) dataset

that classifies question text based on its paired answer text, with a focus on abstractive

answer phenomena as defined in the Question-Answering (QA) NLP domain. The QTC

dataset will be developed based on the benchmarked QA dataset; therefore, the analysis

needed for Phase 1 needs to be completed before this Phase 2 can be started. Four

benchmarked QA datasets have been selected for analysis in the previous phase: SQuAD,

SQuAD 2.0, CoQA, and QuAC. Based on the conducted analysis, the CoQA dataset has

been chosen as the basis for the QTC dataset to be developed in this phase. With that, the

QTC dataset that will be developed in this phase will be named QCoC or Question
Classification of CoQA dataset. It is to be noted that the detailed analysis result

justifying the choice of CoQA to be the base for the QTC dataset will be presented in the

next Chapter 4 (Results and Discussion) of this thesis.

Working with the cleaned (removed metadata dan data noise) CoQA dataset from

the prior phase, the first step in this phase is to identify the classes for the QCoC dataset.

Based on the distribution in the CoQA dataset, five classes have been identified for

QCoC. These classes are as follows:

1. Yes/No: This class is intended for questions with a ground truth answer of 'yes'

or 'no'. In CoQA, some yes/no answers are accompanied by additional text (e.g.,

“Yes, shampoo is on sale today”). Such answers will also be categorised under

this class since the ground truth is still either 'yes' or 'no' (similarly for cases where

the yes or no keyword appears at the end of the sentence).

49

2. Unknown: This class represents unanswerable questions based on the features of

CoQA answers. Some questions in CoQA do not have a factual answer in the

given context. Instead of fabricating answers, a good QA system should recognise

when a question is unanswerable. Providing a made-up answer in the absence of

the fact would be incorrect.

3. Picking: This class involves selecting one answer from multiple choices in the

extracted span of the context text. Picking is similar to the Factual class (next

class), but it refines the output by eliminating incorrect selections. Thus, a

separate class is required for this category.

4. Factual: This class is intended for questions where a direct span answer can be

extracted directly from the context text. It falls under the non-abstractive answer

type, but since QCoC is constructed using CoQA, this class is needed to group all

factual answers under one label. Additionally, the Factual class can also serve as

a binary classifier, classifying answers as either extractive (factual class) or

abstractive (other classes).

5. Counting/Fluency: This class includes answers that require counting

entities/objects in the context text and answers that need to be rephrased to be

highly relevant or natural. Counting and Fluency are grouped in QCoC because,

syntactically, counting answers are essentially a rephrase of a text span from the

context text. By merging these two phenomena, QCoC can minimize the potential

for false-positive results in the classification process. Since Counting is also

Fluency, falsely classifying a counting answer as a fluency answer is highly

possible and should be avoided.

Based on these identified five QCoC classes, a classification algorithm is

formulated. In general, this algorithm will take question text from QCoC as input,

determine its class based on various conditions, and ouput the question’s classified class

in one-hot encoding format. The class determination conditions will also taken into

accounts the original CoQA distribution of question-and-answer types which categorizes

each data points into three main groups which are:

50

i. Whether the question is answerable or not (Answerable or Unanswerable)

ii. Whether the span (answer) is found in the context text or not (Span found or
Span not found)

iii. The answer's semantic or syntactic type in one of seven categories (Named
Entity, Noun Phrase, Yes, No, Number, Date/Time, Other)

To outline these distributions, Table 3.2 presents the CoQA distribution as

reported by the original authors (Reddy et al., 2019). This table categorizes all items

within the three main groups, separated by a row line. The first row group represents the

Answerable or Unanswerable group, the second row group represents the Span found or

Span not found, and the last row group represents the seven categories of semantic or

syntactic types.

Table 3.1 Distribution of question and answer types in CoQA

Item Distribution
Answerable 98.7%

Unanswerable 1.3%

Span found 66.8%

Span not found 33.2%

Named Entity 28.7%

Noun Phrase 19.6%

Yes 11.1%

No 8.7%

Number 9.8%

Date/Time 3.9%

Other 18.1%

Based on identified five classes and the distribution of question and answer types

shown in Table 3.2, the following Algorithm 1 is formulated to classify question texts in

CoQA into QCoC classes.

51

ALGORITHM 1 : ALGORITHM TO CLASSIFY QCOC CLASSES

 Input: All question texts from the dataset

 Output: One-hot enconding for selected QCoC class

 Initialisation: Retrieve all question texts from raw QA dataset

1 foreach question text do

2 if contains ‘yes’/‘Yes’/‘yes’/‘Yes.’/‘no’/‘No’/‘no.’/‘No.’ then

3 QCoC class = [1,0,0,0,0] (the Yes/No class)

4 else if contains ‘unknown’/‘Unknown’/‘unknown.’/‘Unknown.’ then

5 QCoC class = [0,1,0,0,0] (the Unknown class)

6 else if contains ‘or’ and not contains ‘what’/‘where’ then

7 QCoC class = [0,0,1,0,0] (the Picking class)

8 end if

9 end foreach

10 foreach question text without QCoC class do

11 get answer and span_text from original QA dataset

12 produce word vectors for both answer (A) and span_text (B)

13 calculate dot product for 3 ∙ 5 = ‖3‖5‖ cos :	
14 if 3 ∙ 5 > threshold then

 15 QCoC class = [0,0,0,1,0] (the Factual class)

16 else

17 QCoC class = [0,0,0,0,1] (the Counting/Fluency class)

18 end if

19 end foreach

20 return QCoC class (one-hot encoding) for each question text

Algorithm 1 is designed to classify each question text in CoQA into one of the

five QCoC classes. Examining the algorithm steps, steps 1 to 9 are a straighforward

process, as written, to classify question text into Yes/No, Unknown and Picking classes.

For the other two classes (Factual and Counting/Fluency) in steps 10 through 19, a more

in-depth semantical analysis is conducted. Specifically, the answer and span_text corpus

from CoQA are retrieved, and word vector embeddings are produced for both corpuses

using the Universal Sentence Encoder (USE) (Cer at al., 2018) LLM. To elaborate,

span_text in CoQA is a piece of text from a long story/context paragraph, representing

52

the information used to generate the paired answer text. After the embeddings are

generated, the dot product for both the answer and span_text vector values is calculated

using the following Equation 3.1:

 3 ∙ 5 = ‖3‖5‖ cos : 3.1

In Equation 3.1, A and B are word embeddings of the answer and span_text in a

100-dimensional vector format. The dot product (using cosine similarity) of A and B will

provide an indicator of how similar both sentences are in terms of their semantic

representation (higher dot product signifies higher similarity). Based on the calculated

dot product values, the balanced question text that hasn’t been assigned a QCoC class

will be distributed between the Factual and Counting/Fluency classes using a threshold

value defined based on the overall distribution of the dot product and the original CoQA’s

question text distribution, showcased in the following Table 3.2 and the previous Table

3.1, respectively.

Table 3.2 The USE dot product distribution result

Item Result
Maximum 125.44

Minimum 89.52

Overall percentage distribution

*Dividing the maximum and
minumum values into 20 segments

>= 123.64 (31.335%)

121.85 − 123.63 (12.547%)

120.05 − 121.84 (11.497%)

118.26 − 120.04 (8.438%)

116.46 − 118.25 (5.740%)

114.66 − 116.45 (3.713%)

112.87 − 114.65 (2.366%)

111.07 − 112.86 (1.374%)

109.28 − 111.06 (0.839%)

107.48 − 109.27 (0.458%)

105.68 − 107.47 (0.247%)

103.89 − 105.67 (0.132%)

102.09 − 103.88 (0.080%)

100.30 − 102.08 (0.031%)

98.50 − 100.29 (0.023%)

53

96.71 − 98.49 (0.009%)

94.91 − 96.70 (0.009%)

93.11 − 94.90 (0.002%)

91.32 − 93.10 (0.000%)

< 91.31 (0.002%)

As mentioned, the classification of the Yes/No, Unknown, and Picking classes

is relatively straightforward using steps 1 to 9 in the presented Algorithm 1. However,

for the Factual and Counting/Fluency classes, the classification is determined based on

the USE dot product distribution. This distribution is obtained by analysing the minimum

and maximum dot product values (89.52 minimum and 125.44 maximum, as presented

in Table 3.2), which then allows the data to be divided into 20 range segments. Based on

these 20 segments and the CoQA question-answer distribution presented in Table 3.1,

64,589 (55.38%) data points are classified as Factual (the sum of the three highest

segments), while 27,364 (23.47%) data points are classified as Counting/Fluency (the

sum of the 17 lowest segments).

As previously mentioned, a higher value of the USE dot product signifies a higher

semantic similarity between the answer and the span_text. Factual answers in a QA

dataset (i.e., the CoQA dataset) are highly extractive, meaning that the answer to a Factual

question is likely to be similar in terms of both semantic and syntactic aspects to the span

text retrieved from the context text. This scenario results in a higher USE dot product

value when calculated between the answer and the span_answer text. Regarding the

justification for “the sum of the three highest segments and the sum of the 17 lowest

segments in Table 3.2,” this action is based on the distribution of CoQA answer types

presented in Table 3.1. Detailed analysis regarding this action will be further presented

in the next chapter of this thesis (Chapter 4: Results and Discussion).

Using the proposed Algorithm 1, a new dataset named QCoC (Question

Classification of CoQA) will be developed. This dataset will later be used to evaluate the

modified word vectors method (which will be developed in the next phase of this research

methodology) through a machine learning classifier that will be developed in further

Phase 4 of this research methodology. Because the classifier will be developed using the

Feed-Forward Neural Network (FF-NN) algorithm, its inputs need to be in numerical

format, which for the QCoC dataset is the word embeddings/vectors for each question

54

text. Directly using word vectors for the training of the classifier seems to produce

inconclusive results due to high similarities between each vector. To visualize this

problem using a smaller case study, five semantically close questions are defined, and

word vectors using USE are generated for each question. Following Figure 3.3 visualizes

those generated vectors (100-dimensional) in a 3D line graph format.

Figure 3.3 Line graph for five questions of USE-generated vectors

Referring to Figure 3.3, the generated word vectors from USE LLM are shown to

be closely similar, justifying the need to fine-tune the LLM parameters to modify the

contextual weight of each vector for the text classification process. With such being the

case, the next Phase 3 of this research will propose a modified word vectors method that

is able to adjust the weight of the LLM-generated vectors using an external scalar value.

This method is required in order to prepare the word vectors as input to the FF-NN

classifier that will be developed in the next Phase 4 of this research methodology.

55

3.2.3 Phase 3: Modified Word Vectors Method Development

The aim of this phase is to develop a method that can modify the LLM-generated

word vectors into vector values that signify the desired weight target. In this research, the

desired weight target is words that are able to differentiate question texts, enabling proper

classification into one of the QCoC classes. Overall, Phase 3 will involve two main

activities: 1) Developing an algorithm to produce scalar weight that signifies the

occurrences of question/general words, and 2) Developing an algorithm to take the scalar

weight value and modify the LLM-generated word vectors to produce vectors that are

weighted towards the scalar weight.

Regarding the first activity, the generated scalar weight value should emphasise

the question words, which are key weighting factors in differentiating question types. To

generalize this process, activity 1 should also consider other words used in the question

texts. As mentioned in the literature of this research, identifying question/general word

occurrences in question texts is useful for determining whether a question requires a

direct factual answer or an indirect abstractive answer. Therefore, the first activity will

focus on developing an algorithm that can represent the usage of general words in the

question text within the benchmarked QA datasets.

For the second activity, the focus will be on developing an algorithm to modify

LLM-generated word vectors into weighted fixed-length vector values. Weighted in this

case is towards the embedded scalar value, and fixed-length in this case refers to the same

length vector values for sentences with varying word counts. As mentioned, the

architecture of the vanilla FF-NN requires a fixed-length vector as its input format,

indirectly necessitating an algorithm capable of handling variable-length sentences to

produce a fixed-length vector size format for the final word representation value.

¡ Activity 1: Development of general word weighting algorithm

This activity aims to develop an algorithm that can generate a scalar weight value

capable of effectively emphasising the usage of general or question words in a sentence.

This algorithm will utilize the Term Frequency (TF) formulation as the base formula,

which calculates the frequency or usage of general/question words in the given dataset.

To further validate this algorithm’s result, the produced scalar weight value must also be

scalable to any document or library size. With this generalization, other cases can also

56

implement this method by synchronising it with the selected domain's corpus, such as

using medical-specific words instead of question words for the medical domain dataset.

The algorithm designed for this purpose is outlined in the following Algorithm 2.

ALGORITHM 2 : ALGORITHM TO GENERATE WORD’S SCALAR WEIGHT

 Input: All question texts from the dataset

 Output: token-weight pair

 Initialisation: Retrieve all question texts from raw QA dataset

1 Combine all question text into one long word sequence

2 Tokenise the long sequnece using WordPiece tokeniser

3 foreach token in the long sequence do

4 if token = ‘?’ or ‘’’ or ‘,’ or ‘.’ then

5 remove token

6 else if token ≠ alphabets (i.e. number only) then

7 remove token

8 else if token = previous tokens (duplicate) then

9 remove token

10 else

11 token += Unique Token (UT)

12 end if

13 end foreach

14 foreach UT do

15 Term Frequency (TF) = UT counts in long sequence

16 weight (i.e. TF percentage) = (TF / UT) × 100

17 end foreach

18 return list of token-weight pair

As mentioned, this algorithm will be validated by its capability to produced

weight values that are scalable to any document or library size. To demonstrate this

capability, two separate but interconnected experiments will be conducted. The first

experiment, denoted as “experiment A,” will solely use the CoQA dataset, while the

second experiment, “experiment B,” will involve the combination of CoQA, SQUAD,

and QuAC datasets. Both experiments will exclusively use the Question texts from each

57

dataset, comprising a combination of the Question texts from the training and validation

datasets. The primary distinction between these two experiments lies in the scale of the

datasets. Experiment A uses only the CoQA dataset, which has a total of 662,607 tokens

(17,404 unique tokens), while experiment B involves a combination of the CoQA,

SQUAD, and QuAC datasets, resulting in a total of 2,833,785 tokens (24,837 unique

tokens). The difference between the total tokens in experiment A and experiment B is

2,171,178, while the difference in unique tokens is 7,433. These differences in dataset

sizes will enable the assessment of the proposed algorithm’s scalability across various

document or library sizes.

Referring to the Algorithm 2, the WordPiece tokeniser (Devlin et al., 2018) is

used to segregate the tokens from the original input text (step 2 of the algorithm).

Tokenising the question text is a necessary process as the weight will be associated with

each token, where one sentence (question texts) may have multiple tokens. After the

tokenization process is completed, several irrelevant tokens, such as symbols and

numbers, will be deleted before proceeding with the TF calculation. Upon executing the

whole algorithm, the Term Frequency (TF) percentage value is calculated for each

Unique Token (UT), referring to tokens that are not symbols, numbers, or duplications of

other tokens. This TF percentage value is denoted as the 'weight' value (step 16 in the

algorithm) and is incorporated into the token-weight pair data, which constitutes the

algorithm's output.

This Activity 1: Development of general word weighting algorithm, aims to

develop an algorithm capable of calculating and producing scalar weight values to

emphasise general/question words in a given text. The motivation behind this algorithm

is to address the issue where the weight of general/question words is overshadowed by

the weight of context words in the contextualised word vectors produced by the pre-

trained LLM. To generate the necessary scalar weight value, this algorithm employs the

UT distribution percentage, which is expected to emphasise the weightage of

general/question words without overshadowing the overall contextual semantics of the

given text. To thoroughly evaluate this expectation, these scalar weight values will be

incorporated into the LLM-generated word vectors, a task which will be performed in the

next activity (Activity 2) within Phase 3 of this research methodology.

58

¡ Activity 2: Development of modified word vectors algorithm

This activity aims to develop an algorithm that can incorporate an external scalar

weight into the word representation vector generated from the LLM. The scalar vector

from previous Activity 1 will be used together with LLM-generated word vectors from

USE LLM as inputs to this algorithm. The output of this algorithm is a set of weighted

fixed-length word representation vectors for question texts, which will later serve as input

to the FF-NN question type classifier in Phase 4 of this research methodology. To produce

the fixed-length vector, original 100-dimensional USE LLM word vectors for each word

in a sentence (question text) will be utilised to represent the entire sentence. Maintaining

this fixed-length vector will be challenging due to the varying length of sentences

(different word counts). Therefore, four algorithms are proposed for the experiment to

achieve the aim of this Phase 3. The four algorithms are presented in mathematical form

as follows:

1. '* = 	 <=>*! ∙ &'!?>*!%$ ∙ &'!%$?&@ >*!%' ∙ &'!%'?&A… (*" ∙ &'")&

2. '* = 	*+ ∙ ∏ &'!"
!#$

3. '* = *+ ∙ [&'$, &'', &'(…	&'"], where &'! = 1 if &'! = no value

4. '* = 	∑ *+!∙-.!/"
!#$

"

where:
• '* = weighted fixed-length vector
• * = vector embedding for each token
• (= token’s index
• &' = general weight or g-weight value for each token (in scalar format)

• J = total token counts in the question text

• *+ = vector embedding for the input sentence

Given equation one to four above represent different proposal to calculate the

weighted fixed-length vector, denoted as '* , where * is the vector

embedding/representation for each token produced by the USE LLM, at the token's index

(. The variable &' denotes the general weight or g-weight value associated with each

token, which is the result of Algorihtm 2 in Activity 1 of this Phase 3. In cases where a

token/word lacks a corresponding g-weight value, the algorithm will assign &' =

59

0.00001, which is lower than the lowest g-weight value observed in previous experiment

(0.00015 for Experiment A and 0.00018 for Experiment B). The variable J represents the

total token count in the question text, which serves as the input for this algorithm. Lastly

the variable *+ denotes the vector embedding for the entire input sentence or question

text, where the USE LLM is used to produce the whole sentence embedding as opposed

to embedding for each token. To further interpret these four algorithms, Algorithm 3 to

6 will outline these algorihtms in pseudocode format.

ALGORITHM 3 : ALGORITHM TO GENERATE WEIGHTED FIXED-LENGTH VECTOR – V1

 Input: All question texts from the dataset

 Output: Weighted fixed-length vector for each question text

 Initialisation: Retrieve all question texts from classification dataset

1 foreach question text do

2 tokenise using WordPiece tokeniser

3 foreach token do

4 generate * (vector embedding) using USE LLM

5 get &' (g-weight) scalar value from g-weight lookup table

6 calculate 'M! (weighted token for each token i) as * ∙ &'

7 if the first token or (= 1 then

8 '* is equal to 'M!
9 else

10 calculate '* as '*	multiply by 'M!
11 end foreach

12 end foreach

13 return '* for each question text

Algorihtm 3 showcases Variation 1 (V1) of the proposed algorihtm to generate

the weighted fixed-length vector. In summary, this algorithm will take all question texts

from the given dataset, tokenise them using WordPiece tokeniser (Devlin et al., 2018),

and loop through each segmented token to perform several processes sequentially:

generate the vector embedding (*) of that token using USE LLM in 100-dimensional

format, obtain the g-weight (&') value for that token from the lookup table, calculate the

weighted token ('M!) as * ∙ &', and finally calculate the weighted fixed-length vector

60

('*) as '* ∙ 'M!. These processes will be performed iteratively until all tokens within

the question text are processed, then the algorithm moves on to the next question text in

the given dataset. Ultimately, '* for all question texts will be generated.

ALGORITHM 4 : ALGORITHM TO GENERATE WEIGHTED FIXED-LENGTH VECTOR – V2

 Input: All question texts from the dataset

 Output: Weighted fixed-length vector for each question text

 Initialisation: Retrieve all question texts from classification dataset

1 foreach question text do

2 g-weightSum = 1

3 tokenise question text using WordPiece tokeniser

4 foreach token do

5 get &' (g-weight) scalar value from g-weight lookup table

6 g-weightSum = g-weightSum ∙ &'

7 end foreach

8 generate *+ (vector sentence embedding) using USE LLM

9 calculate '* as *+ ∙ g-weightSum

10 end foreach

11 return '* for each question text

Algorihtm 4 showcases the Variation 2 (V2) of the proposed algorihtm to generate

the weighted fixed-length vector. Initially similar to V1, this algorithm will take all

question texts from the given dataset, tokenise them using WordPiece tokeniser (Devlin

et al., 2018), and loop through each segmented token to perform several processes

sequentially. Within this loop, the g-weight (&') value for each token will be obtained

from the lookup table, and the sum of &' will be calculated as g-weightSum = g-

weightSum ∙ &'. After all tokens have been processed, a vector sentence embedding (*+)

is generated using USE LLM in 100-dimensional format, and the weighted fixed-length

vector ('*) is calculated as *+ ∙ g-weightSum.These processes will then be repeated for

the next question text untill all question texts within the given dataset are processed and

'* for all question texts have been generated.

61

ALGORITHM 5 : ALGORITHM TO GENERATE WEIGHTED FIXED-LENGTH VECTOR – V3

 Input: All question texts from the dataset

 Output: Weighted fixed-length vector for each question text

 Initialisation: Retrieve all question texts from classification dataset

1 foreach question text do

2 set g-weightEmbedding[n] = [1,1,1, … ,1]

3 tokenise question text using WordPiece tokeniser

4 i = 0

4 foreach token do

5 get &' (g-weight) scalar value from g-weight lookup table

6 set g-weightEmbedding[i] = &'

 i++

7 end foreach

8 generate *+ (vector sentence embedding) using USE LLM

9 calculate '* as *+ ∙ g-weightEmbedding[n]

10 end foreach

11 return '* for each question text

Algorihtm 5 showcases the Variation 3 (V3) of the proposed algorihtm to generate

the weighted fixed-length vector. Also initially similar to V1 and V2, this algorithm will

take all question texts from the given dataset, tokenise them using WordPiece tokeniser

(Devlin et al., 2018), and loop through each segmented token to perform several

processes sequentially. But before entering the tokens loop, a g-weightEmbedding[n] for

each n question text will be initialised as a vector of 100-dimensional space with an

integer value of ‘1’ for each space. Then for each token, the g-weight (&') value will be

obtained from the lookup table, and directly the &' scalar value will be placed on the g-

weightEmbedding[n][i], with i being the index of the token in the question text. This

process will be performed iteratively until all tokens within the question text are

processed. Then, a vector sentence embedding (*+) is generated using USE LLM in 100-

dimensional format, and the weighted fixed-length vector ('*) is calculated as *+ ∙ g-

weightEmbedding[n].These processes will then be repeated for the next question text

untill all question texts within the given dataset are processed and '* for all question

texts have been generated.

62

ALGORITHM 6 : ALGORITHM TO GENERATE WEIGHTED FIXED-LENGTH VECTOR – V4

 Input: All question texts from the dataset

 Output: Weighted fixed-length vector for each question text

 Initialisation: Retrieve all question texts from classification dataset

1 foreach question text do

2 set total_wt[n] = [0,0,0, … ,0]

3 tokenise using WordPiece tokeniser

4 foreach token do

5 generate * (vector embedding) using USE LLM

6 get &' (g-weight) scalar value from g-weight lookup table

7 calculate 'M! (weighted token for each token i) as * ∙ &'

8 calculate total_wt[n] = total_wt[n-1] + 'M!
9 end foreach

10 calculate '* as total_wt[n] divided by token counts (average of 'M)
11 end foreach

12 return '* for each question text

The last Variation 4 (V4) of the proposed algorihtm to generate the weighted

fixed-length vector is showcases as Algorithm 6. Also initially similar to previous

variations, this algorithm will take all question texts from the given dataset, tokenise them

using WordPiece tokeniser (Devlin et al., 2018), and loop through each segmented token

to perform several processes sequentially. Before entering the tokens loop, a total_wt[n]

for each n question text will be initialised as a vector of 100-dimensional space with an

integer value of ‘0’ for each space. Then for each token, the vector embedding (*) of that

token will be generated using USE LLM in 100-dimensional format, and the g-weight

(&') value for that token will be obtained from the lookup table. Next, the weighted

token for each token i ('M!) is calculated as * ∙ &', and subsequently the total_wt is

calculated as total_wt[n] = total_wt[n-1] + 'M!. After all tokens have been processed,

the weighted fixed-length vector () will be calculated as total_wt[n] divided by the token

count for the current question	'* text, which is basically an average of all 'M!. These

processes will then be repeated for the next question text untill all question texts within

the given dataset are processed and '* for all question texts have been generated.

63

To validate the results of all proposed algorithms, the weighted fixed-length

vectors ('*) for five question texts are compared. The purpose of this process is to verify

the accuracy with which each proposed algorithm weights the word vectors using the

given external scalar weight value. Table 3.3 outlines the five question texts that will

serve as test cases for this experiment. For all five cases, two types of word vectors are

calculated: those with the g-weight implementation (type A with four variations: A-V1,

A-V2, A-V3, and A-V4) and those without the g-weight implementation (type B). For

type A (A-V1 to A-V4), the produced word vectors are the '* from the previously

presented four algorithms, and for type B, the produced word vectors are the original

outputs from USE LLM.

Table 3.3 Five test cases for the word weighting method experiment

No Question text General words Context words
1 how many items are on sale? how, many, are, on items, sale

2 what items are on sale? what, are, on items, sale

3 how many people is allowed? how, many, is people, allowed

4 who is allowed? who, is allowed

5 where are the items for sale? where, are, the, for items, sale

To validate whether the proposed algorithm has successfully transformed the

original USE LLM word vectors into weighted fixed-length vectors, two comparisons

will be conducted for types A and B. The first comparison involves measuring sentence

similarity through dot product calculations, while the second comparison involves

measuring vector differences (in real numbers) through direct matrix subtraction. Based

on these comparisons, one of the variations of algorithm A (A-V1, A-V2, A-V3, or A-

V4) that is capable of highlighting the weightage of the general words will be selected as

the algorithm that will be used in the overall modified word vectors method. As a whole

process, this modified word vectors method will use the pre-trained LLM to generate

word vectors, obtain the general weight or g-weight scalar value from the precalculated

lookup table (precalculated using Algorithm 2 in this phase's Activity 1), and finally

modify the original LLM-generated word vectors using one of the modified word vectors

algorithms (Algorithm 3 or A-V1, Algorithm 4 or A-V2, Algorithm 5 or A-V3, or

Algorithm 6 or A-V4) proposed in this phase's Activity 2. The result from this method,

64

which is the weighted fixed-length vector, will then be used as input to the FF-NN that

will be developed in the next Phase 4 of this research methodology.

3.2.4 Phase 4: Machine Learning Classifier Development phase

The aim of this phase is to build and train a Machine Learning (ML) classifier for

a question-type classification task. As mentioned before, the ML classifier will be built

using a vanilla/base feed-forward Neural Network (FF-NN) algorithm, aiming for the

most economical or least computing resource model that suits multiclass classification

problems. Given this aim, this phase will involve sequentially building the classifier,

starting from the most basic setup or minimum parameter count towards the most

advanced setup or maximum parameter count, attempting to achieve the best ratio of

economy to performance results.

Starting with the most basic FF-NN setup (one input, one hidden, and one output

layer), this experiment will test various setups to find the best balance between economy

and performance. To achieve this, various variables, including the FF-NN setup and

hyperparameters, will be experimented with. The following is a list of those setups and

hyperparameters to be explored:

• Hidden layer size
• Activation function
• Gradient descent type
• Loss function
• Optimizer function
• Learning rate
• Batch size
• Epoch size
• Dropout usage

The primary objective of this experiment is to find the most efficient and

economical configuration for the question-type classifier ML model, while still ensuring

satisfactory classification accuracy for the given contextual text data. This will be

achieved by systematically varying the parameters and analysing the resulting

performance through a set of sequential experiments. To ensure fair and consistent

comparisons, all experiments will be conducted using the same hardware and software

setup. Table 3.9 provides an overview of the specific details of this setup.

65

Table 3.4 Hardware and software setup for ML classifer experiment

Hardware Software
- CPU: 2.3GHz Quad-Core

Intel Core i7

- Memory: 32GB 3733MHz

- GPU: Intel Iris Plus Graphics
1536MB

- Tensorflow Javascript (TFJS)

- WebGL runtime through
 Google Chrome

- macOS version 11.2.3

Although multiple experimental setups will be conducted for this experiment, the

base feed-forward Neural Network (NN) architecture for the multiclass classification

problem will remain consistent. Figure 3.5 illustrates this base model architecture.

Figure 3.4 Base feed-forward NN model design for ML classifier experiment

Referring to Figure 3.5, the model's main constant design consists of the input and

output layer sizes, which comprise 100 nodes and four nodes, respectively. As mentioned

earlier, the input size is determined by the vector embedding produced by USE LLM (Cer

et al., 2018), while the output size corresponds to the four QCoC classes, as this is a

supervised ML model. Notably, the original QCoC class includes five categories;

however, this experiment only employs four classes, excluding the “Unknown” class.

The rationale behind this decision will be provided in the next paragraph. Additionally,

the usage of the softmax activation function for the output layer remains consistent

throughout the experiments. This choice is well-suited for performing the multiclass

classification process involving the four QCoC classes. The softmax function is denoted

by following Equation 3.2.

66

 +N"MOP,(Q⃗)! =	 0%!
∑ 0%&'
&#$

 3.2

where:

• #⃗ = input vector from previous NN nodes

• !!! = exponential function for an input vector

• " = number of classes (four QCoC classes for this experiment)

• !!" = exponential function for output vector

For all experimental setups, 98.76% of the QCoC dataset will be used. As a recap,

the QCoC dataset comprises five classes, namely Yes/No (19.27% of the total data

points), Unknown (1.24%), Picking (0.64%), Factual (55.38%), and Counting/Fluency

(23.47%). For this experiment, the Unknown class (1.24% or 1450 out of the total 116630

QCoC data points) will not be utilised, leaving only four classes with 98.76% or 115180

QCoC data points. The reason for disregarding the Unknown class is that the classifier's

objective is to classify question text based on general and question words. Since the

Unknown class's answer does not correlate with its question type (any question type can

be classified as Unknown if the required answer is not presented in the given context),

including this class in the classifier training dataset would introduce an outlier that could

hinder the classifier from learning the pattern of other classes effectively.

To reiterate, the problem being addressed in this research is the multiclass

classification of the QCoC dataset. To assess the performance of the classifier, the F1

score is chosen as the primary metric. The F1 score is a well-established and widely used

metric for multiclass classification tasks, especially in scenarios with imbalanced class

distributions such as the QCoC dataset. With the general target of achieving the highest

F1 score in the shortest possible training duration, the following sequential experiments

are conducted. These experiments are sorted in ascending order, starting from the first

experiment and progressing towards the last.

i. Determining hidden layer node counts for one hidden layer

ii. Determining the best combination of hidden layer and epoch size

iii. Determining the best activation function

iv. Determining the best optimizer function

v. Determining the best combination of batch and epoch size

67

vi. Determining the best loss function

vii. Determining the best combination of the loss function and epoch size

viii. Determining the best learning rate

In all experiments, a 0.2 validation split is performed for the training dataset,

which means 80% of the QCoC data points are used for training, and the remaining 20%

are used for validation. Once the training and validation process is completed, the trained

model will be evaluated using precision, recall, and F1 metrics on the entire QCoC

dataset, which comprises a total of 115,180 data points.

The baseline F1 score for the QCoC dataset is 0.561, which is calculated based

on the highest F1 score obtained from the “Factual” class, considering true positive, true

negative, and false negative values. With this defined baseline F1 score, sequential

experiments will be conducted, where each setup will be evaluated based on its F1 score.

The setup that achieves the highest F1 score will be selected as the base setup for

subsequent experiments. To further elaborate on the evaluation methods for this research,

Phase 5 will explain in detail all evaluation metrics that will be used in evaluating the

trained ML classifier developed from this phase.

3.2.5 Phase 5: Methods Evaluation

The aim of this final phase is to validate and evaluate all proposed and developed

methods from the previous four phases. While each method has been individually

validated in its respective phase, this phase aims to assess the collective contribution of

each method towards achieving the end result, which is the classification of the QCoC

dataset using the developed ML classifier from Phase 4. Specifically, the evaluation will

focus on the classifier's ability to predict classes for the QCoC dataset, aiming to justify

the research hypothesis, which posits that the word representation vector derived from

the LLM can be altered using an external scalar weight, which can later be used as input

for an ML model to perform a text classification task.

Overall, there are four evaluation metrics to be analysed: Accuracy, Precision,

Recall, and F1 score. The mathematical forms of these metrics are as follows:

68

PSSTUPS- =)% +)$
)% +)$ + #% + #$	

3.3

VUWS(+(NJ =)%
)% + #%	

3.4

UWSPXX =)%
)% + #$	

3.5

#1 = 	2 × VUWS(+(NJ × UWSPXXVUWS(+(NJ + UWSPXX	
3.6

where:

•)% = True Positive value (correct prediction of positive/truth class)
•)$ = True Negative value (correct prediction of negative/false class). In this

experiment, TN is always 0 because there is no binary negative class. After all,
multiclass classification makes other not-positive classes as FP (False Positive).

• #% = False Positive value (wrong prediction of other classes). The system
predicted other class while it should be the truth class.

• #$ = False Negative value (wrong prediction of truth class). The system
predicted truth class while it should be in another class.

In general, the accuracy metric measures the overall performance of the model

(correct predictions divided by all predictions). The precision metric evaluates the

model's ability to predict the true class (correct predictions of the true class divided by all

predictions of that class). The recall metric assesses the model's capability to identify the

wrong prediction of the true class (correct predictions of the true class divided by all

actual instances of that class). The F1 metric produces a harmonic mean of precision and

recall, providing a balanced measure of both metrics.

To recap, the QCoC dataset is imbalanced, with the following class distribution:

Yes/No class: 22,478 data points (19.27% of the total), Unknown class: 1,450 data points

(1.24%), Picking class: 749 data points (0.64%), Factual class: 64,589 data points

(55.38%), and Counting/Fluency class: 27,364 data points (23.47%). As mentioned in the

previous Phase 4 of this research methodology , the Unknown class is disregarded in this

experiment due to the ambiguous structure of its questions (any question type can be

classified as Unknown if the required answer is not presented in the given context).

Consequently, the total number of data points to be tested for this experiment is 115,180,

which accounts for 98.76% of the total 116,630 QCoC data points. Based on the

distribution of the four remaining classes (Yes/No, Picking, Factual, and

69

Counting/Fluency), the baseline accuracy and F1 score can be calculated using the

highest element in one class, which is the Factual class with 64,589 or 56.08% of the

total 115,180 data points. Therefore, the baseline accuracy and F1 score for this model

are 0.390 and 0.561, respectively (assuming the model predicted all data points as the

Factual class).

After the completion of this final phase, the research methodology will be

concluded, and the result for tasks and experiements within all phases will be presented

and discussed. All expected results and discussion will be summarised in the next section

of this chapter.

3.3 Summary

This chapter presented a five-phase research methodology structured for this

study, comprising 1) Base Data Preparation, 2) Dataset Development, 3) Modified Word

Vectors Method Development, 4) Machine Learning Classifier Development, and 5)

Methods Evaluation. Phase 1 focuses on cleaning and organising raw data, which begins

with selecting a benchmarked Question-Answering (QA) dataset. In Phase 2, a cleaned

QA dataset from phase 1 is used to identify and define classes related to abstractive

answers, developing a Question Type Classification (QTC) dataset named QCoC or

Question Classification of CoQA. Phase 3 involves generating scalar weight values to

group similar question types, then developing an algorithm to modify word vectors for

each question in the QCoC dataset. Phase 4 builds and trains a Feed-Forward Neural

Network (FF-NN) model for question-type classification using the QCoC dataset and

modified word vectors as inputs to the training process. Finally, Phase 5 evaluates the

overall methods by comparing classification results against baseline scores using

evaluation metrics Accuracy, Precision, Recall, and F1 score. With this presented

research methodology, this study aims to justify and substantiate the hypothesis that

altering word representation vectors using external scalar weights can enhance the

contextual text classification tasks.

70

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

This chapter aims to provide a comprehensive analysis and interpretation of the

results obtained from tasks and experiments conducted throughout the five-phase

research methodology. To summarise, the expected results for each phase of the research

methodology are as follows:

¡ Phase 1: Base Data Preparation. A cleaned and organised dataset derived from

one of multiple benchmarked QA dataset. This dataset will later be used as the

basis for dataset development in the next phase of the methodology.

¡ Phase 2: Dataset Development. A Question Type Classification (QTC) dataset,

which is a multiclass classification dataset with classes related to abstractive

answers phenomena in QA datasets.

¡ Phase 3: Modified Word Vectors Method Development. Two results are

expected from this phase, which comprises two main activities. The first result is

a general word weighting algorithm, and the second result is a modified word

vectors algorithm. Combining both algorithms, experiments conducted in this

phase will produce a uniform method for modifying LLM-generated word

vectors.

¡ Phase 4: Machine Learning Classifier Development. A machine learning

classifier developed using the Feed-Forward Neural Network (FF-NN) algorithm

for the multiclass classification of the QCoC dataset. This classifier should be

iteratively trained with different setups and hypeparameter tuning to achieve the

best ratio of economy to performance results.

71

¡ Phase 5: Methods Evaluation. An evaluation of previously developed ML

classifier using Accuracy, Precision, Recall, and F1 score. The findings will

contribute to the validation of the research hypothesis and the overall success of

the proposed methods for contextual text classification.

Based on these expected results, the following section will present a result

analysis for each of the methodology phases, followed by a discussion of findings in the

subsequent section that will relate the overall outcomes of those results to the defined

objectives of this study.

4.2 Results Analysis

As a general recap of the five-phase methodology used in this study: the first

phase involves identifying the best dataset to be used as the basis for dataset development

in the second phase. The third phase entails developing algorithms to produce scalar

weight values that best represent the selected case study, followed by developing

algorithms to modify the raw LLM-generated word vectors to embed the scalar weight

values. The fourth phase focuses on developing an ML model for text classification of

the developed dataset, and finally, the fifth phase evaluates the performance of the ML

model to reflect the effectiveness of the developed algorithms in the third phase of the

research methodology.

4.2.1 Phase 1: Base Data Preparation

The aim of this phase is to analyse and select a benchmarked QA dataset to serve

as the foundation for developing the required dataset for this research. Initially, four

benchmarked QA datasets have been selected for analysis: The Stanford Question

Answering Dataset or SQuAD (Rajpurkar et al., 2016), SQuAD version 2.0 or SQuAD

2.0 (Rajpurkar et al., 2018), A Conversational Question Answering Challenge or CoQA

(Reddy et al., 2019), and Question Answering in Context or QuAC (Choi et al., 2018).

Later in the deeper analysis, SQuAD is neglected as its contents are also within the

SQuAD 2.0 dataset. An overview analysis demonstrated that these datasets are primarily

structured around the Factual answer feature, where the answer can be directly extracted

from the given context. For the Unknown answer feature, only SQuAD 2.0 and QuAC

contain a significant amount of it, with SQuAD 2.0 simulating questioner confusion and

72

QuAC focusing on missing information (Yatskar, 2019). In regards to the Multi-turn

interactions feature, only QuAC and CoQA are presented with this feature, as both

datasets are structured around conversational QA interactions. Regarding the Abstractive

answer feature, only QuAC and CoQA include it, with most of it being the Yes/No

phenomenon. However, QuAC does not include other phenomena, while CoQA also

includes Coreference and Fluency (Yatskar, 2019). The coverage of abstractive answer

phenomena in these datasets is outlined in Table 4.1.

Table 4.1 Abstractive answer implementation in SQuAD 2.0, CoQA and QuAC

Abstractive answer phenomena SQuAD 2.0 CoQA QuAC
Yes/No No Yes Yes

Coreference No Yes No

Counting No Yes No

Picking No Yes No

Fluency No Yes No

Source: Yatskar (2019).

Based on this analysis, the CoQA dataset has been chosen as the basis for

developing the QTC dataset for this research, primarily due to its wide coverage of

abstractive-type answers. Henceforth, the QTC dataset will be referred to as the QCoC

(Question Classification of CoQA) dataset to reflect CoQA as the foundational dataset

for the QTC dataset. Before delving into the QCoC dataset development process (Phase

2 of this research), the CoQA dataset will be cleaned, with metadata and data noise

removed. The result of this Phase 1 (Base Data Preparation) will be the cleaned CoQA

dataset, which will then serve as the input for the subsequent Phase 2 of this research

methodology .

4.2.2 Phase 2: Dataset Development

Using the cleaned CoQA dataset from the previous phase as a foundation, the

QCoC dataset is being developed in this phase. Five QCoC classes have been defined:

Yes/No, Unknown, Picking, Factual, and Counting/Fluency. Based on these defined

classes, Algorithm 1: Algorithm to classify QCoC classes is executed with the original

CoQA distribution as a point of reference. The output from this algorithm is a one-hot

encoding value for each data point in the QCoC dataset, corresponding to the class for

73

the question text in the data point. The overall result from the QCoC classification process

is outlined in the following Table 4.2

Table 4.2 QCoC classification result

Item Result
Total data point 116630

Class distribution Yes/No: 22478 data points (19.27%)

Unknown: 1450 data points (1.24%)

Picking: 749 data points (0.64%)

Factual: 64589 data points (55.38%)

Counting/Fluency: 27364 (23.47%)

Referring to Table 4.2, the total number of data points for QCoC is 116,630. This

total comprises the combined data points from the CoQA training and evaluation datasets.

As mentioned in the previous Chapter 3, the classification of the Yes/No, Unknown, and

Picking classes is relatively straightforward through the proposed Algorithm 1. However,

the Factual and Counting/Fluency classes require additional processing involving dot

product using cosine similarity calculation. Ultimately, the algorithm classifies the

Factual class to represent 55.38% of all QCoC data points, while Counting/Fluency

accounts for 23.47%. This classification is in accordance with the original CoQA

distribution reported by the author (Reddy et al., 2019). To further illustrate the

correlation between QCoC and CoQA distributions, Table 4.3 showcases the mapping

between the distribution of QCoC and CoQA.

Table 4.3 QCoC classification result against CoQA

QCoC CoQA
Yes/No, Picking, Factual and
Counting/Fluency (98.76%)

Unknown (1.24%)

Answerable (98.7%)

Unanswerable (1.3%)

Yes/No (19.27%)

Factual (55.38%)

Unknown, Picking and
Counting/Fluency (25.35%)

Yes and No (19.8%)

Named Entity, Noun Phrase, and
Date/Time (52.2%)

Number and Other (27.9%)

74

Referring to Table 4.3, four out of the five QCoC classes are mapped with the

CoQA Answerable type questions, with fairly similar percentages (98.76% for QCoC and

98.7% for CoQA). A closer examination of the distribution reveals the following:

¡ For the QCoC Yes/No class, it is matched with CoQA Yes (11.1%) and No (8.7%)

type answers, resulting in 19.27% for QCoC and 19.8% for CoQA. This

represents a straightforward matching between the Yes/No class and the Yes and

No type answers.

¡ Regarding the QCoC Factual class, it is matched with CoQA Named Entity

(28.7%), Noun Phrase (19.6%), and Date/Time (3.9%) type answers, yielding

55.38% for QCoC and 52.2% for CoQA.

¡ Lastly, the QCoC Unknown (1.24%), Picking (0.64%), and Counting/Fluency

(23.47%) classes are matched with CoQA Number (9.8%) and Other (18.1%) type

answers, resulting in 25.35% for QCoC and 27.9% for CoQA. This matching

accounts for CoQA Unknown and abstractive type answers.

By completing this phase, a new dataset for the question classification process,

named Question Classification of CoQA (QCoC), has been developed. This dataset

differs from previous works in two significant aspects:

ii. The class is based on the answer's features, rather than the answer's context.

iii. The dataset focuses on the conversational Question-Answering (QA) domain,
rather than the direct Machine Reading Comprehension (MRC) domain.

The unique class structure of QCoC has been designed to tackle the challenges

faced by QA systems dealing with abstractive answers. Among the five phenomena

associated with abstractive answers (Yes/No, Coreference, Counting, Picking, and

Fluency), QCoC delineates five corresponding classes: Yes/No, Unknown, Picking,

Factual, and Counting/Fluency. The identification of these classes is rooted in the original

CoQA distribution categories upon which this dataset is built. In essence, QCoC can be

defined as a multiclass text classification dataset that accentuates variations in a

question's context through its answer's features, diverging from the approach of directly

classifying questions based on the context of the answer, as seen in previous works in

this field.

75

With the completion of this dataset, the subsequent phase of this research

methodology involves the development of a modified word vectors method. This method

is essential for altering the raw LLM-generated vector of the question to represent the

question’s context without necessitating modifications, re-training, or fine-tuning of the

LLM, which can be costly. Two main algorithms are proposed for this method: 1) The

general word weighting algorithm, which generates scalar values to emphasise the

importance of general/question words within the question text, and 2) The modified word

vectors algorithm, which embeds the produced scalar values into the LLM-generated

word vectors to highlight the general/question words. Overall, this method will serve as

a preprocessing stage, taking the raw LLM-generated vector as input and producing a

weighted vector of the same dimension length as output.

4.2.3 Phase 3: Modified Word Vectors Method Development

In this phase, a method for modifying the LLM-generated word vectors into

weighted word vectors is developed. This method aims to assign desired weight targets

to the input word vectors, particularly focusing on words that can differentiate question

texts (i.e., the general/question words). Two activities are executed in this phase: activity

one involves the development of a general word weighting algorithm, and activity two

focuses on the development of a modified word vectors algorithm.

¡ Activity 1: Development of general word weighting algorithm

Two experiments are conducted to assess the proposed Algorithm 2: Algorithm to

generate word’s scalar weight. The first experiment, denoted “experiment A,”

exclusively utilizes the CoQA dataset, while the second experiment, “experiment B,”

incorporates a combination of CoQA, SQUAD, and QuAC datasets. These experiments

aim to evaluate the scalability of Algorithm 2. The difference between the total tokens in

Experiment A and Experiment B is 2,171,178, with a variance of 7,433 unique tokens.

Upon executing Algorithm 2 for both experiment A and B, a scalar weight value

is produced for each unique token/word in the dataset. This weight value is represented

as the TF percentage, calculated based on the total unique tokens present in the given

dataset. To outline the key findings from both experiments, Table 4.4 showcases the

overall results for these experiments.

76

Table 4.4 Overall results of general word weighting algorithm

Items Experiment A Experiment B
Dataset CoQA CoQA, SQUAD and

QuAC

Total Token (TT) 662607 2833785

Total Unique Token (UT) 17404 24455

Maximum TF percentage 5.92% 5.55%

Minimum TF percentage 0.00015% 0.00018%

In Table 4.4, the total number of tokens (TT) for experiments A and B are 662,607

and 2,833,785, respectively. This indicates a scale-up of more than 300% for experiment

B compared to experiment A. On the other hand, the difference in unique tokens (UT) is

only 7,051 tokens, which represents a scale-up of around 40% for experiment B from

experiment A. Furthermore, the maximum and minimum TF percentage values show only

slight differences, with a margin of 0.37% for the maximum and 0.00003% for the

minimum. For a more detailed analysis, the TF percentage values for each token are

segmented into ten clusters. It is worth noting that a higher percentage value implies that

the token is highly general or common, as justified by its frequent usage in the given

dataset. Conversely, a lower percentage value suggests that the token is highly specific

or uncommon, as justified by its limited usage in the dataset. The distribution of UT

regarding the ten clusters is visually represented in the following Figure 4.1.

Figure 4.1 Distribution of Unique Token (UT) TF percentage

77

Referring to Figure 4.1, a significant portion of each experiment is dominated by

the lowest cluster of TF percentage (53% for experiment A and 61% for experiment B).

This observation suggests that the disparity in usage between general and specific words

is considerable, as lower TF percentage values indicate lower token/word usage in the

dataset. To conduct a more in-depth analysis of the ten segmented clusters, subsequent

Tables 4.5 and 4.6 present the TF percentage clusters' range, total TF percentage for each

cluster, TF count for each cluster, UT counts for each cluster and a Sum value in a specific

column.

Table 4.5 Detail TF percentage distribution over ten clusters (experiment A)

Cluster Total % in cluster TF count UT count Sum
Min – 0.58 52.90 350,519 17,379 N/A
0.59 – 1.17 9.45 62,616 11 11
1.18 – 1.76 5.53 36,642 4 15
1.77 – 2.36 5.72 37,901 3 18
2.37 – 2.95 8.19 54,268 3 21
2.96 – 3.54 3.48 23,059 1 22
3.55 – 4.13 3.99 26,438 1 23
4.14 – 4.72 4.56 30,215 1 24
4.73 – 5.31 0.00 0 0 24
5.32 – Max 5.92 39,226 1 25

Total 100 662,607 17,404 25

Table 4.6 Detail TF percentage distribution over ten clusters (experiment B)

Cluster Total % in cluster TF count UT count Sum
Min – 0.55 60.54 1,715,573 24,430 N/A
0.56 – 1.10 9.36 265,242 14 14
1.11 – 1.66 4.11 116,469 3 17
1.67 – 2.21 5.74 162,659 3 20
2.22 – 2.77 5.08 143,956 2 22
2.78 – 3.32 3.26 92,381 1 23
3.33 – 3.88 0.00 0 0 23
3.89 – 4.43 0.00 0 0 23
4.44 – 4.99 0.00 0 0 23
5.00 – Max 11.11 314,834 2 25

Total 100 2,833,785 24,455 25

78

Referring to Tables 4.5 and 4.6, the Sum column is included to showcase that for

both experiments, the sum of UT count for the nine highest clusters is the same (25 UT

count, as shown in the Total row for the Sum column). Despite the vast difference in total

TT and UT count for each experiment (with a difference of 2,171,178 TT and 7,433 UT

count between experiments A and B), this result indicates that the total number of majorly

used words is similar. It suggests that although the dataset is scaled up (with around 300%

more text/tokens), the amount of unique general/question words that are used remains

immensely similar. Upon examining this claim, the following are the 25 UT words for

each experiment, listed in sequence from highest to lowest TF percentage:

¡ Experiment A: [what] [the] [did] [was] [he] [who] [is] [to] [how] [it] [of] [in]

[they] [where] [a] [does] [she] [do] [when] [his] [for] [many] [that] [s] [were]

¡ Experiment B: [the] [what] [did] [of] [was] [in] [is] [to] [he] [who] [how] [a]

[when] [for] [s] [are] [do] [it] [where] [they] [does] [were] [any] [and] [that]

From the listed 25 UT words for both experiments, only three words are not

similar between the two sets (denoted by underlined text in the list). Although not 100%

similar, this result shows that common general word usage is highly similar despite being

measured from different dictionaries or document sizes. This finding further supports the

generalizability of the proposed algorithm, indicating its ability to consistently capture

and emphasise common general/question words, regardless of the dataset's scale or size.

With the completion of this activity, a list of token-weight pairs is produced. The

weight value in this pair corresponds to the TF percentage value (a scalar value), which

signifies the weightage of its paired token. Notably, from both experiments, the maximum

TF percentage value does not exceed a single-digit integer, indicating that the TF

percentage is expected to effectively emphasise the weightage of general words without

overshadowing the overall contextual semantics of the given text. To further validate this

expectation, activity two in this phase involves developing an algorithm to embed this

scalar value into the raw LLM-generated word vectors, and analysis regarding its

contextual representation is performed.

79

¡ Activity 2: Development of modified word vectors algorithm

Two comparison experiments are conducted to assess the proposed 'Algorithm to

generate weighted fixed-length vectors.' Experiment one involves sentence similarity

measurement, and experiment two focuses on vector differences measurement. For both

experiments, five test cases are compared. Additionally, two types of word vectors are

calculated for both experiments: those with the g-weight implementation (type A with

four variations: A-V1, A-V2, A-V3, and A-V4) and those without the g-weight

implementation (type B). The four variations for type A are as follows: Algorithm 3 for

variation 1 (A-V1), Algorithm 4 (A-V2), Algorithm 5 (A-V3), and Algorithm 6 (A-V4).

For type A (A-V1 to A-V4), the produced word vectors are derived from the four

algorithms presented in Chapter 3, while for type B, the produced word vectors are the

original outputs from USE LLM. The following subsections will present the results of

the experiments, starting with experiment one and followed by experiment two.

Experiment 1: Sentence Similarity Measurement

For the sentence similarity measurement, the dot product is calculated for each

test case against each other. The results for type A (g-weight implementation) and type

B (original USE LLM word vectors) are presented in Tables 4.7 to 4.11, respectively. It

should be noted that some values are high in decimal-point and require a scalable factor

to produce values that are readable and suitable for the presented table formats. A caption

indicating this has been included in the relevant tables.

Table 4.7 Dot product between test cases for type A-V1 (g-weight)

No 1 2 3 4 5
1 0.006 (5) 0.014 (5) 1.799 (5) 2.747 (5) 0.045 (5)

2 0.014 (4) 0.051 (4) 4.411 (4) 6.717 (4) 0.115 (4)

3 1.799 (2) 4.412 (2) 595.904 (2) 916.585 (2) 14.722 (2)

4 2.747 (1) 6.717 (1) 916.585 (1) 1425.34 (1) 22.481 (1)

5 0.045 (3) 0.115 (3) 14.722 (3) 22.481 (3) 0.369 (3)

*Result is multiplied by 100 to scale into a readable format

80

Table 4.8 Dot product between test cases for type A-V2 (g-weight)

No 1 2 3 4 5
1 0.00001 (5) 0.0001 (5) 0.054 (5) 0.664 (5) 0.0001 (5)

2 0.00017 (3) 0.0016 (3) 0.475 (3) 5.993 (3) 0.0014 (3)

3 0.054 (2) 0.475 (2) 157.328 (2) 1939.72 (2) 0.428 (2)

4 0.664 (1) 5.993 (1) 1939.72 (1) 25392.6 (1) 5.457 (1)

5 0.00016 (4) 0.0014 (4) 0.428 (4) 5.457 (4) 0.0013 (4)

*Result is multiplied by 100000 to scale into a readable format

Table 4.9 Dot product between test cases for type A-V3 (g-weight)

No 1 2 3 4 5
1 123.714 (4) 169.746 (2) 127.207 (4) 118.623 (4) 109.117 (3)

2 169.747 (1) 368.139 (1) 167.080 (1) 162.402 (1) 132.942 (1)

3 127.207 (2) 167.080 (3) 154.438 (2) 134.677 (2) 106.047 (5)

4 118.623 (3) 162.402 (4) 134.677 (3) 130.702 (3) 107.309 (4)

5 109.117 (5) 132.942 (5) 106.047 (5) 107.309 (5) 114.366 (2)

Table 4.10 Dot product between test cases for type A-V4 (g-weight)

No 1 2 3 4 5
1 32.405 (5) 77.871 (5) 46.595 (5) 65.427 (5) 74.312 (5)

2 77.871 (1) 189.435 (1) 112.224 (1) 158.306 (1) 178.094 (1)

3 46.595 (4) 112.224 (4) 67.325 (4) 94.757 (4) 107.080 (4)

4 65.427 (3) 158.306 (3) 94.757 (3) 135.203 (3) 151.243 (3)

5 74.312 (2) 178.094 (2) 107.080 (2) 151.243 (2) 172.938 (2)

Table 4.11 Dot product between test cases for type B (original USE)

No 1 2 3 4 5
1 125.440 (1) 123.421 (3) 121.252 (3) 117.420 (5) 122.683 (3)

2 123.421 (2) 125.440 (1) 119.181 (5) 118.338 (4) 124.132 (2)

3 121.252 (4) 119.181 (4) 125.440 (1) 121.736 (2) 119.504 (5)

4 117.420 (5) 118.338 (5) 121.736 (2) 125.440 (1) 119.982 (4)

5 122.683 (3) 124.132 (2) 119.504 (4) 119.982 (3) 125.440 (1)

81

The previously presented Tables 4.7 to 4.11 offer the results from the dot product

values obtained from the sentence similarity comparison process for both type of word

vectors: those with and without g-weight implementation. Each table includes rankings

denoted by numbers in brackets, indicating the level of semantic similarity between pairs

of questions. Higher dot product values signify closer semantic similarity, while lower

values indicate greater dissimilarity. Notably, Table 4.11, which represents the original

USE LLM word vectors without g-weight implementation, consistently shows the first

ranking to be when a sentence is compared to itself. This is expected because the

magnitude of USE LLM word vectors lies within the same dimensional radius, leading

to dot products not exceeding the value obtained when the sentence is compared to itself

(due to the dot product of a vector with itself being the squared magnitude of the vector).

On the other hand, the introduction of g-weight as an external value towards the original

USE LLM word vectors significantly alters the dimensional radius for each sentence

based on its associated g-weight value.

Upon observation of the g-weight implementation cases (Tables 4.7, 4.8, and

4.10), the dot product values exhibit a noticeable pattern, consistently increasing in

parallel with the corresponding g-weight value, except for type A-V3 (Table 4.9). Despite

this anomaly in variation 3, the rankings for all test cases tend to be relatively identical,

even when a question is compared against itself. This suggests that the g-weight

implementation contributes to the increased dot product values and reinforces the

semantic similarity between questions, aligning with the intended aims of this algorithm,

which is to modify the LLM-generated word vectors to emphasise general words as the

external weight factor for the question texts.

To provide a different perspective on the findings, Table 4.12 presents the

rankings for the five test cases in type A variations A-V1, A-V2, and A-V4, along with

their corresponding general words and total g-weight values (the sum of all g-weight

values in each test case). Variation A-V3 is excluded from the table as this specific

algorithm doesn’t produce the expected result, hence being concluded as ineffective in

emphasising the general words.

82

Table 4.12 The ranking of the four variations in type A with total g-weight values

No Question text General words Total g-weight
1 how many items are on sale?

A-V1 (5), A-V2 (5) and A-V4 (5)

how, many, are,
on

2.909

2 what items are on sale?

A-V1 (4), A-V2 (3) and A-V4 (1)

what, are, on 6.731

3 how many people is allowed?

A-V1 (2), A-V2 (2) and A-V4 (4)

how, many, is 3.515

4 who is allowed?

A-V1 (1), A-V2 (1) and A-V4 (3)

who, is 3.132

5 where are the items for sale?

A-V1 (3), A-V2 (4) and A-V4 (2)

where, are, the,
for

7.578

Referring to Table 4.12, it can be observed that variation A-V4 appears to closely

approximate the correct ranking, showing a tendency to ascend towards higher total g-

weight values. However, it should be noted that the ranking is not entirely precise, as

expected due to the presence of both positive and negative numbers in the word vectors.

To elaborate, multiplying vectors with a scalar (g-weight value) may amplify negative

values, resulting in larger negative numbers, and vice versa. Despite this imprecision, the

overall perspective of variation A-V4's results can be viewed favorably in justifying the

significance of general words after being weighted using the proposed algorithm.

In contrast, for type B (original USE embeddings without g-weight

implementation), the sentence similarity favours context words, as presented in Table

4.11. Without considering general words, questions containing the words ‘items’ and

‘sale’ are calculated to be similar to each other, and questions with the word ‘allowed’

are also found to be similar to one another. This aligns with the main purpose of USE or

any other LLM, which is to emphasise context words.

To summarise the results from both type A and B, it can be concluded that with

the correct algorithm, the g-weight implementation can impact the original LLM-

generated word vectors, specifically in emphasising the usage of general words. In

broader generalisation, this finding supports the hypothesis that an external scalar weight

value can be used to modify or alter the original LLM-generated word vectors without

modifying, retraining, or fine-tuning the pretrained LLM.

83

Experiment 2: Vector Differences Measurement

To further analyse the significance of the g-weight implementation's impact on

the original LLM-generated word vectors, a comparison of vector value differences is

conducted for similar test cases and word vector types (A and B). As previously

mentioned, the vector difference is calculated using direct matrix subtraction, where the

first matrix is subtracted from the second matrix, and then the sum of all differences is

computed to produce the final reported value. This raw vector value is crucial because it

will serve as the input features for the vanilla feed-forward Neural Network (FF-NN)

model in the next phase of this research methodology. Consequently, the most similar

input features will be classified as similar, and vice versa. The results of this vector value

difference comparison for type A (g-weight implementation) and type B (original USE

embeddings) are presented in Tables 4.13 to 4.17.

Table 4.13 Vector value difference for type A-V1 (g-weight)

No 1 2 3 4 5
1 0 (1) 0. 057 (2) 5.368 (5) 8.191 (5) 0.128 (3)

2 0.057 (2) 0 (1) 5.312 (4) 8.134 (4) 0.071 (2)

3 5.368 (4) 5.312 (4) 0 (1) 2.822 (2) 5.240 (4)

4 8.191 (5) 8.134 (5) 2.822 (2) 0 (1) 8.062 (5)

5 0.128 (3) 0.071 (3) 5.240 (3) 8.063 (3) 0 (1)

Table 4.14 Vector value difference for type A-V2 (g-weight)

No 1 2 3 4 5
1 0 (1) 0.00023 (3) 0.08909 (4) 1.027 (5) 0.00021 (3)

2 0.00023 (3) 0 (1) 0.08886 (2) 1.02641 (3) 0.00001 (2)

3 0.089 (4) 0.0889 (4) 0 (1) 0.938 (2) 0.088 (4)

4 1.027 (5) 1.026 (5) 0.938 (5) 0 (1) 1.026 (5)

5 0.00021 (2) 0.00001 (2) 0.08888 (3) 1.02644 (4) 0 (1)

84

Table 4.15 Vector value difference for type A-V3 (g-weight)

No 1 2 3 4 5
1 0 (1) 11.339 (4) 3.970 (2) 0.0443 (2) 2.825 (3)

2 11.339 (5) 0 (1) 7.369 (5) 11.384 (5) 14.164 (5)

3 3.970 (4) 7.369 (2) 0 (1) 4.015 (4) 6.795 (4)

4 0.044 (2) 11.384 (3) 4.015 (3) 0 (1) 2.780 (2)

5 2.825 (3) 14.164 (5) 6.795 (4) 2.780 (3) 0 (1)

Table 4.16 Vector value difference for type A-V4 (g-weight)

No 1 2 3 4 5
1 0 (1) 12.981 (5) 4.402 (2) 13.916 (5) 13.787 (5)

2 12.981 (3) 0 (1) 8.579 (3) 0.935 (3) 0.806 (3)

3 4.402 (2) 8.579 (4) 0 (1) 9.514 (4) 9.385 (4)

4 13.916 (5) 0.935 (3) 9.514 (5) 0 (1) 0.130 (2)

5 13.787 (4) 0.806 (2) 9.385 (4) 0.130 (2) 0 (1)

Table 4.17 Vector value difference for type B (original USE)

No 1 2 3 4 5
1 0 (1) 1.892 (5) 0.199 (2) 2.548 (5) 0.975 (4)

2 1.892 (4) 0 (1) 1.692 (4) 0.656 (2) 0.916 (3)

3 0.199 (2) 1.692 (4) 0 (1) 2.348 (4) 0.776 (2)

4 2.548 (5) 0.656 (2) 2.348 (5) 0 (1) 1.572 (5)

5 0.975 (3) 0.916 (3) 0.776 (3) 1.572 (3) 0 (1)

Tables 4.13 to 4.17 provide the vector value differences (in real numbers) for both

type of word vectors: those with and without g-weight implementation. Similar to

previous comparison tables, the rankings (smallest to highest difference) are included in

the tables. The goal of this vector value comparison is to obtain smaller differences

between vectors of similar question types, indicating closer similarity between their

vector values. As these vectors are intended to serve as input features for question type

classification ML model, a smaller difference signifies a higher level of similarity

between the vectors of questions of the same type.

85

Upon examining the five test cases, it is expected that the vector for question

number (1) “How many items are on sale?” should closely resemble the vector for

question number (3) “How many people is allowed?” (both are ‘how many’ type

questions). Similarly, the vectors for question number “What items are on sale?”, (4)

“Who is allowed?”, and (5) “Where are the items for sale?” should all closely resemble

each other, as they are factual-type questions. The smaller the differences between these

vector pairs, the more effectively the proposed method is emphasising general words and

reinforcing the semantic similarity between questions of the same type.

Referring to Tables 4.13 to 4.17, only Table 4.16 (type A-V4) and Table 4.17

(type B) satisfy the requirement that “question number (1) and (3) should be closely

similar to one another”. Upon further comparison of these two tables, question number

(1) and (3) are ranked last and second last (rank 4 and 5) in the type A-V4 result. In

contrast, type B’s result is also close, but it mistakenly ranks question number (5) closely

similar to question number (3). The favorable outcome in type A-V4 is attributed to the

fact that questions (2), (4), and (5) fall under the factual/extractive type questions

(“what,” “who,” and “where” questions), while question (1) and (3) belong to the

abstractive type questions (“how many” questions, which fall under the Counting

phenomenon). This shows that the proposed method, particularly in variation 4 (A-V4),

effectively emphasises general words by embedding their scalar weight value into the

original LLM-generated word vectors. As a result, the modified word vectors produced

by the algorihtm reinforce the similarity between questions of the same types.

Further examining the values in Table 4.16 (type A-V4), it becomes evident that

there is a substantial gap between the abstractive and factual question types. This gap can

be identified by analysing each difference value, whereby a significant difference is

observed when comparing questions with different types. For example, in column 1 for

question 1, the difference between this question and questions 2, 4, and 5 (which are

different in type) is relatively higher than between question 3 (which is the same type).

To further illustrate this gap, Figures 4.2 and 4.3 visualize the vector values in 3-

dimensional line graph format for both type A-V4 and type B, respectively.

86

Figure 4.2 Vector graph for type A-V4 (g-weight implementation)

Figure 4.3 Vector graph for type B (original USE embedding)

87

The previous Figures 4.2 and 4.3 visually represent the 100-dimensional vector

values for all test cases in both type A-V4 and type B using 3-dimensional line graphs. A

bird's-eye view comparison of both figures reveals that type A-V4 (with g-weight

implementation) exhibits a noticeable difference between the vectors, whereas type B

(original USE embedding without g-weight implementation) shows relatively little

difference. Specifically, the difference in type A-V4 is depicted by the blue and grey

lines, which exhibit dissimilar spikes compared to the other lines. This difference aligns

with the aim of this proposed method, which is to generate a weighted fixed-length vector

capable of representing question-type features using both general and question words. As

previously mentioned, the question number (1) “How many items are on sale?” vector

should closely resemble question number (3) “How many people are allowed?” vector

(both being ‘how many’ type questions). In the presented Figure 4.2 for type A-V4, this

similarity is evident, with the blue line representing question number (1) and the grey line

representing question number (3) showing a close resemblance to each other compared

to other question lines.

This Phase 3 has showcased the successful method of modifying LLM-generated

word vectors using an external scalar weight value. This method was achieved by

implementing two algorithms, namely: 1) General weight weighting algorithm and 2)

Modified word vectors algorithm. For the second algorithm, four variations are proposed,

namely A-V1, A-V2, A-V3, and A-V4. Based on the previously discussed results,

variation A-V4 has showcased the best result, which aligns with the overall aims of this

proposed modified word vectors method. In summary, this method implements

Algorithm 2 and Algorithm 6 (A-V4) to achieve the intended result.

With the completion of this phase, the next phase of this research methodology

will involve the development of a machine learning classifier using a vanilla/base feed-

forward Neural Network (FF-NN) algorithm for the question-type classification task of

the QCoC dataset, developed in Phase 2 of this research. The developed modified word

vectors method in this phase will serve as a preprocessing module before the word vectors

data are used to train and evaluate the machine learning classifier. In the overall flow, the

pre-trained LLM will be used to generate raw contextualised word vectors for QCoC

datapoints, which will then undergo modification using Algorithm 6 before being fed into

the machine learning classifier for further analysis.

88

4.2.4 Phase 4: Machine Learning Classifier Development

In this phase, eight sequential experiments are conducted to develop a Machine

Learning (ML) classifier for the question-type classification task of the QCoC dataset.

As mentioned, this ML classifier will be built using a vanilla/base feed-forward Neural

Network (FF-NN) algorithm, aiming for the most economical (least computationally

intensive) model suitable for multiclass classification problems. The eight sequential

experiments are designed and conducted to gradually build the ML classifier, starting

from the most basic setup (minimum parameter count) and progressing towards the most

advanced setup (maximum parameter count), in an attempt to achieve the best balance of

economy and performance. To recap, the eight sequential experiments are as follows:

i. Determining hidden layer node counts for one hidden layer

ii. Determining the best combination of hidden layer and epoch size

iii. Determining the best activation function

iv. Determining the best optimizer function

v. Determining the best combination of batch and epoch size

vi. Determining the best loss function

vii. Determining the best combination of the loss function and epoch size

viii. Determining the best learning rate

Following the execution of these experiments, Table 4.18 presents the results.

Table 4.18 Results for the eight sequential experiments process

No Setup Result
1 Determining hidden layer node counts for one hidden layer

 Default setup: ELU activation, Adamax optimizer, Categorical
Cross Entropy loss, 10 epochs, 10% batch size (11518)

 i. 52 nodes (mean for input + output size)

ii. 100 nodes (input size)

F1 = 0.606

F1 = 0.662

2 Determining the best combination of hidden layer and epoch
size

 Default setup: ELU activation, Adamax optimizer, Categorical
Cross Entropy loss, 10% batch size (11518)

89

 i. One hidden layer (100 nodes), 10 epochs

ii. One hidden layer (100 nodes), 50 epochs

iii. One hidden layer (100 nodes), 100 epochs

iv. One hidden layer (150 nodes), 10 epochs

v. Two hidden layers (100 nodes each), 10 epochs

vi. Two hidden layers (100 nodes each), 50 epochs

vii. Two hidden layers (100 nodes each), 100 epochs

viii. Two hidden layers (100 nodes each), 150 epochs

ix. Three hidden layers (100 nodes each), 10 epochs

x. Three hidden layers (100 nodes each), 50 epochs

xi. Three hidden layers (100 nodes each), 100 epochs

xii. Four hidden layers (100 nodes each), 50 epochs

xiii. Four hidden layers (100 nodes each), 100 epochs

xiv. Five hidden layers (100 nodes each), 100 epochs

xv. Six hidden layers (100 nodes each), 100 epochs

F1 = 0.662

F1 = 0.706

F1 = 0.710

F1 = 0.633

F1 = 0.668

F1 = 0.714

F1 = 0.720

F1 = 0.723

F1 = 0.698

F1 = 0.718

F1 = 0.723

F1 = 0.721

F1 = 0.723

F1 = 0.726

F1 = 72.517

3 Determining the best activation function

 Default setup: Adamax optimizer, Categorical Cross Entropy
loss, 10% batch size (11518), five hidden layers (100 nodes
each), 100 epochs

 i. ELU

ii. ReLU

iii. Leaky ReLU

iv. PReLU

v. Linear 5

F1 = 0.726

273829ms

F1 = 0.726
187079ms
F1 = 0.725

294017ms

F1 = 0.727

194507ms

F1 = 0.724

162263ms

4 Determining the best optimizer function

 Default setup: Categorical Cross Entropy loss, 10% batch size
(11518), five hidden layers (100 nodes each), 100 epochs,
ReLU activation

90

 i. Adam

ii. Adamax

iii. Momentum (0.001 learning rate)

iv. RMSProp

v. SGD (0.001 learning rate)

F1 = 0.725

280892ms

F1 = 0.726
187079ms
F1 = 0.701

272572ms

F1 = 0.675

235543ms

F1 = 0.561

240339ms

5 Determining the best combination of batch and epoch size

 Default setup: Categorical Cross Entropy loss, five hidden
layers (100 nodes each), ReLU activation, Adamax optimizer

 i. 1% batch size (1151), 10 epochs

ii. 1% batch size (1151), 20 epochs

iii. 1% batch size (1151), more than 20 epochs

iv. 10% batch size (11518), 100 epochs

F1 = 0.720

138268ms

F1 = 0.726

354546ms

System
couldn’t
handle
F1 = 0.726
187079ms

6 Determining the best loss function

 Default setup: five hidden layers (100 nodes each), ReLU
activation, Adamax optimizer, 10% batch size (11518), 100
epochs

 i. Categorical Cross Entropy

ii. Cosine Distance

iii. Hinge Loss

iv. Mean Squared Error

F1 = 0.726
187079ms
F1 = 56.077

285750ms

F1 = 56.077

218393ms

F1 = 0.726
170880ms

91

v. Sigmoid Cross Entropy

vi. Softmax Cross Entropy

F1 = 70.735

185137ms

F1 = 72.209

195235ms

7 Determining the best combination of the loss function and
epoch size

 Default setup: five hidden layers (100 nodes each), ReLU
activation, Adamax optimizer, 10% batch size (11518)

 i. Categorical Cross Entropy loss, 50 epochs

ii. Categorical Cross Entropy loss, 70 epochs

iii. Categorical Cross Entropy loss, 100 epochs

iv. Mean Squared Error loss, 50 epochs

v. Mean Squared Error loss, 70 epochs

vi. Mean Squared Error loss, 100 epochs

F1 = 0.724

77308ms

F1 = 0.725
155977ms
F1 = 0.726
187079ms
F1 = 0.723

75415ms

F1 = 0.725

1522118ms

F1 = 0.726

170880ms

8 Determining the best learning rate

 Default setup: five hidden layers (100 nodes each), ReLU
activation, Adamax optimizer, 10% batch size (11518),
Categorical Cross Entropy loss, 70 epochs

 i. Adamax 0.1 learning rate

ii. Adamax 0.01 learning rate

iii. Adamax 0.001 learning rate

iv. Adamax 0.0001 learning rate

F1 = 0.561

112125ms

F1 = 0.727
111482ms
F1 = 0.725

155977ms

F1 = 0.682

111377ms

*ms = miliseconds

92

Table 4.18 presents the results for various FF-NN setups in this phase. A total of

47 NN setups have been tested, and from this sequential experiment, the highest-scoring

F1 score is achieved using the following setup: five hidden layers, each with 100 nodes,

ReLU activation function for all nodes in the input and hidden layers, a batch size of 10%

or 11518 datapoints (mini-batch gradient descent), Adamax optimizer function with a

learning rate of 0.01 for reducing loss generated by the Categorical Cross Entropy

function, and 70 training epochs. Using this setup, an F1 score of 0.727 is achieved

(approximately 30% higher than the baseline score) in just 111482 milliseconds (1 minute

and 52 seconds) of training time using the hardware setup specified in Table 3.4.

From an economic perspective, the total parameter count of the produced FF-NN

ML classifier model is only 51,604. This count is achieved through five hidden layers,

each consisting of 100 nodes' weights and biases (10,200 parameters for one hidden

layer), and one output layer with 100 nodes' weights and biases multiplied by 4 output

nodes (404 parameters). The reduction in the number of training parameters is substantial

compared to state-of-the-art methodology, which involves fine-tuning a Large Language

Model (LLM). Fine-tuning LLM models for multiclass classification involves adding

task-specific layers and may also include the base parameters of the pre-trained LLM for

the training process. For reference, the parameter counts for various LLM models are as

follows: 94 million for ELMo, 340 million for BERT (Large), 340 million for XLNET,

355 million for RoBERTa, 1.5 billion for GPT-2, 8.3 billion for Megatron-lm, 11 billion

for T5, 17 billion for Turing-NLG, and a staggering 175 billion for GPT-3.

With the completion of this phase, the final step/phase in this research

methodology is to validate and evaluate the ML classifier developed in this phase,

incorporating additional evaluation metrics to analyse its correlation with the achieved

F1 score. Specifically, the evaluation will concentrate on the classifier's capacity to

predict classes for the QCoC dataset, with the aim of validating the research hypothesis:

the word representation vector derived from the LLM can be altered using an external

scalar weight, which can later be used as input for an ML model to perform a text

classification task.

93

4.2.5 Phase 5: Methods Evaluation

In this final phase, all previously proposed methods will be collectively evaluated

through the performance of the developed ML classifier on the QCoC dataset. Four

evaluation metrics will be used: Accuracy, Precision, Recall, and F1 score. It is a well-

known fact that NN models sometimes exhibit different results if not optimally trained.

This is due to the nature of the NN training process, which assigns random weights to its

nodes before starting the training process. Therefore, to ensure a comprehensive

assessment, the classifier will undergo multiple testing iterations (three times each) to

determine its stability and consistency.

To recap, the final classifier produced in the previous phase is a FF-NN model

with the following setup: five hidden layers, each comprising 100 nodes, ReLU activation

function applied to all nodes in the input and hidden layers, a 10% batch size (equivalent

to 11518 datapoints) for mini-batch gradient descent, Adamax optimizer function with a

learning rate of 0.01 to reduce loss generated by the Categorical Cross Entropy function,

and 70 training epochs. As demonstrated in the previous phase, this particular setup

achieved the highest F1 score, thus solidifying its status as the most optimal configuration

for the classifier. However, in the interest of providing a comprehensive analysis, another

setup will also be evaluated and reported. This alternative setup may exhibit higher

generalization capabilities but result in a lower F1 score. The comparison of both setups

will shed light on the trade-offs between generalization and performance, contributing to

a more nuanced understanding of the model's behaviour.

As mentioned, the baseline accuracy for QCoC is 0.390, and the corresponding

baseline F1 score is 0.561. This baseline value is obtained under the assumption that the

classifier classifies all 115180 datapoints into the Factual class, which represents the

highest number of data points in a single class (64589 out of 115180 or 56.08% of the

overall dataset). Visual representation of the detailed accuracy per class and the confusion

matrix for the baseline scenario is presented in the following Figure 4.4.

94

Figure 4.4 Baseline prediction for the four QCoC classes

Referring to Figure 4.4, the per-class accuracy for the Factual class is one

(indicating the maximum accuracy), while the accuracy for other classes is zero

(indicating the minimum accuracy). The confusion matrix displays the following values:

true positives (TP) as 64589, false positives (FP) as 50591, and false negatives (FN) as

50591. Using these values, the baseline accuracy can be calculated using Equation 3.3

(accuracy), resulting in 0.390, and the baseline F1 score can be calculated using

Equations 3.4 (precision), 3.5 (recall), and 3.6 (F1 score), resulting in 0.561. Table 4.19

outlines these baseline values.

95

Table 4.19 Baseline values for accuracy and F1 score

Metric Baseline value
Accuracy (equation 3.3) 0.390

F1 score (equation 3.6) 0.561

Based on the baseline scores, two setups, namely Setup A and Setup B, are

evaluated in this experiment. Setup A includes five hidden layers with 100 nodes in each

layer, ReLU activation function for all nodes in the input and hidden layers, a batch size

of 10% or 11518 data points for mini-batch gradient descent, Adamax optimizer function

with a learning rate of 0.01, Categorical Cross Entropy loss function, and 70 training

epochs. On the other hand, Setup B consists of three hidden layers with 100 nodes in each

layer, ELU activation function for all nodes in the input and hidden layers, a batch size

of 10% or 11518 data points for mini-batch gradient descent, Momentum optimizer

function with a learning rate of 0.01, Categorical Cross Entropy loss function, and 10

training epochs. Table 4.20 outlines these setups parameters.

Table 4.20 Configuration parameters for setup A and setup B

Setup Configuration parameters
A 5 hidden layers (100 nodes in each layer)

ReLU activation function for all nodes (input and hidden layers)

10% batch size (11518 data points for mini-batch gradient descent)

Adamax optimizer function (0.01 learning rate)

Categorical Cross Entropy loss function

70 training epochs

B 3 hidden layers (100 nodes in each layer)

ELU activation function for all nodes (input and hidden layers)

10% batch size (11518 data points for mini-batch gradient descent)

Momentum optimizer function (0.01 learning rate)

Categorical Cross Entropy loss function

10 training epochs

The training graphs for both setups are illustrated in following Figure 4.5 for

Setup A and Figure 4.6 for Setup B, each showing three iterations. These graphs depict

the training process and the model's performance during training for each iteration of the

respective setups.

96

Figure 4.5 Training loss, validation loss, accuracy, and validation accuracy for setup A

Figure 4.6 Training loss, validation loss, accuracy, and validation accuracy for setup B

97

Figure 4.7 Accuracy and confusion matrix tables for setup A

98

Figure 4.8 Accuracy and confusion matrix tables for setup B

99

Figures 4.5 and 4.6 illustrate the training graphs, displaying the values of loss,

validation loss, accuracy, and validation accuracy for each training. Overall, Setup A

demonstrates more consistent training progress compared to Setup B. Despite their

differences in consistency, both setups ultimately converge towards similar results. To

further evaluate the performance of the models, accuracy and confusion matrix tables for

both setups are also provided in Figures 4.7 and 4.8. These tables are generated after the

evaluation process, which is conducted immediately after the completion of training for

each iteration. By analysing these tables, a comprehensive assessment of the classifiers'

predictive capabilities and their ability to classify the classes in the QCoC dataset can be

made.

Referring to Figures 4.7 and 4.8, accuracy scores for each of the four QCoC

classes and the corresponding confusion matrix tables for each evaluation iteration are

presented. Overall, Setup A demonstrates more consistency in accuracy scores and True

Positive (TP) values for each class compared to Setup B. For both setups, the Picking

class consistently achieves a zero accuracy score. This is expected since the total number

of data points for the Picking class is only 0.65% (749 out of the overall 115,180 data

points), making it challenging for the classifier to accurately learn patterns for this class.

Among all classes, the Factual class consistently performs the best in both setups, with

consistently high accuracy scores. The Yes/No class also exhibits good performance in

Setup A, but its performance is less consistent in Setup B. On the other hand, the

Counting/Fluency class shows poor performance in both setups, with zero accuracy

scores in all iterations for Setup A, and only small accuracy scores (less than 10%) in all

iterations for Setup B. This indicates that the classifier struggles to correctly classify

instances from the Counting/Fluency class in both setups.

Looking at the overall performance in comparison to the baseline accuracy and

F1 score, the classifier demonstrates a significant improvement against the baseline

scores. To recap, the baseline scores for QCoC classification are 0.390 for accuracy and

0.561 for the F1 score. Tables 4.21 and 4.22 present the accuracy and F1 score for all

iterations in Setup A and Setup B, respectively.

100

Table 4.21 Accuracy and F1 score for setup A

Metric Iteration 1 Iteration 2 Iteration 3
Accuracy 0.571 0.571 0.570

F1 0.727 0.727 0.726

Average accuracy 0.571
Average F1 0.727

Table 4.22 Accuracy and F1 score for setup B

Metric Iteration 1 Iteration 2 Iteration 3
Accuracy 0.498 0.443 0.489

F1 0.665 0.614 0.657

Average accuracy 0.477
Average F1 0.645

Referring to Table 4.21, Setup A has shown an increase of 0.181 (0.571 minus

0.390) or 18% in accuracy and 0.166 (0.727 minus 0.561) or 17% in F1 score, while

Table 4.22 demonstrates that Setup B has an increase of 0.087 (0.477 minus 0.390) or

9% in accuracy and 0.084 (0.645 minus 0.561) or 8% in F1 score (calculated from average

accuracy and F1).

From another perspective, Setup A has achieved a 46% increment from the

baseline accuracy score (the percentage of 0.181/0.390) and a 30% increment from the

baseline F1 score (the percentage of 0.166/0.561), whereas Setup B has achieved a 22%

increment from the baseline accuracy score (the percentage of 0.087/0.390) and a 15%

increment from the baseline F1 score (the percentage of 0.084/0.561). To visualize these

information, Figure 4.9 presents a bar chart depicting the baseline accuracy and F1 scores,

along with the accuracy and F1 scores for setups A and B. In the chart, the light green

bars represent the baseline values, while the dark green bars represent the actual results

for both experimental setups. Referring to this chart, it is evident that both setups

significantly improved the evaluated scores, albeit with different parameter

configurations. From an overall perspective, these results justify the proposed modified

word vectors algorithm's success in incorporating external weights into the original word

representation vector, with the objective of modifying its weightage to lean towards the

intended contextual value.

101

Figure 4.9 Baseline and result values for accuracy and F1 score

4.3 Discussion of Findings

The previous Result Analysis section has presented and discussed all results

within the conducted five-phase research methodology. The overall findings derived from

this result analysis has generally addressed the defined research objectives and offered

valuable insights into the research hypothesis that the word representation vector derived

from the LLM can be altered using an external scalar weight, which can later be used as

input for an ML model to perform text classification task. To elaborate, the following are

the discussion of findings from the presented results in relation to their contribution to

achieving the three defined research objectives.

1. Objective 1: To develop a new algorithm that incorporate an external scalar

weight into the word representation vector.

The results from phase 3 of the research methodology have demonstrated the

achievement of this objective through the proposed modified word vectors

algorithm, Algorithm 6, as presented in Chapter 3. The results for the proposed

algorithm have shown that by incorporating an external scalar weight value, the

word representation vector can be semantically or contextually modified

according to its importance. To recap, the research question posed for this

Setup A: Accuracy

Setup A: F1

Setup B: Accuracy

Setup B: F1

0 0.2 0.4 0.6 0.8

0.390

0.390

0.571

0.561

0.561

0.727

0.645

0.477

102

objective is (RQ1): How can an algorithm effectively incorporate external scalar

weights into word representation vectors to enhance context understanding in a

contextual text classification problem? In proposing the algorithm to achieve this

objective, two effectiveness merits are targeted: accuracy and adaptability. In

terms of accuracy, the proposed algorithm should enhance the contextual value of

the original word vector with respect to the targeted text classification problem,

as mentioned in RQ1. Regarding adaptability, the proposed algorithm should

maintain the original word vector’s dimension, enabling it to be adaptable to

different dimensions of the word vector. For both effectiveness merits, the results

presented for Algorithm 6 have demonstrated its capability to satisfy both criteria,

thus justifying the achievement of defined Objective 1 of this study. Zooming

back into the broader aims, the proposed algorithm addresses the gap stated in the

problem statement of this study, namely the inflexibility of externally modifying

the weight of LLM-generated word vectors without modifying, re-training, or

fine-tuning the LLM model. With the proposed algorithm, the computationally

expensive LLM will only be used to generate the raw word vectors, while the

modification of weights to suit the intended case study can be performed

externally using a much less computationally expensive method.

2. Objective 2: To develop a new text classification dataset that emphasises

differences in context representation.

The attainment of this objective occurred during phase 2 of the research

methodology through the development of the QCoC dataset. While not as

prominent as the primary objective 1, this objective holds significance within the

selected case study field, particularly in the realm of multiclass classification of

question text within the Question-Answering (QA) and question classification

domain, as extensively discussed in the Literature Review chapter of this thesis.

The research question posed for this objective is (RQ2): What criteria should be

considered in the creation of a text classification dataset to emphasise differences

in context representation? As previously outlined, the chosen domain for the

creation of the new text classification dataset is the QA system. Consequently,

three benchmarked QA datasets were analysed in phase 1, and an algorithm was

proposed in phase 2 to create the new dataset. In terms of the criteria outlined in

103

RQ2, the focal point in developing the QCoC dataset was the significance of both

the question and general words within a question text, which are crucial factors

in accentuating differences in the context representation of a question texts. To

effectively represent this context, the QCoC dataset was created using Algorithm

1, which is defined as the algorithm for classifying the QCoC classes. The

outcome of this algorithm is a question text classification dataset that underscores

variations in how question text is classified based on its expected answer

3. Objective 3: To evaluate the developed algorithm using a Machine Learning

(ML) model in the contextual text classification problem.

The posed research question for this objective is (RQ3): How does the developed

algorithm, incorporating external scalar weights, perform when applied to a

contextual text classification task? In addressing this question, phase 5 of the

research methodology evaluates the developed machine learning classifier using

four evaluation metrics, namely Accuracy, Precision, Recall, and F1 score. In

retrospect, all previously proposed methods in prior methodology phases are

collectively assessed in this final phase. Two setups were evaluated, with one

aiming for the highest accuracy performance, and another focusing on

generalising the classifier's performance (increasing the precision score). Overall,

when compared to the baseline values, the classifier’s results exhibit significant

improvements, justifying the contribution of the previously developed modified

word vectors algorithm in incorporating external scalar weight values to enhance

the performance of the machine learning classifier. Looking back, this overall

result suggests that the hypothesis “the word representation vector derived from

the LLM can be altered using an external scalar weight, which can later be used

as input for an ML model to perform text classification tasks”, can be validated

with the proposed algorithm for Objective 1 of this study. With these findings, it

can be concluded that the overall aims of this study to provide an alternative

method to modify word representation vector weight, requiring fewer

computational resources, have been achieved.

104

4.4 Summary

This chapter explores the results and findings obtained through the structured

five-phase research methodology employed in this study. The chapter comprises two

main sections: result analysis and discussion of findings. In the result analysis section,

the results presented for each phase are discussed cohesively, as the outcomes of prior

phases influence subsequent activities and processes in the following phases. Despite this

interdependency, each phase's results are thoroughly analysed and presented to showcase

all outcomes from the activities outlined in Chapter 3 (Methodology) of this thesis. To

further contextualize the analysis in relation to the defined objectives of this study, the

subsequent discussion of findings section provides broad perspectives into the

implications of the results, aligning them with the general aims and hypothesis of the

study. By elaborating on the findings for each objective, this section specifically

addresses the contributions of each phase in the research methodology towards achieving

the study's objectives, thereby providing clear indications of which methods or algorithms

contributed to each objective. Overall, this chapter offers a focused discussion on the

results and findings of this study, excluding external factors that influenced it. These

external factors will be cumulatively addressed in the next and final chapter of this thesis

as part of the conclusion to this study.

105

CHAPTER 5

CONCLUSION

5.1 Introduction

This chapter serves as the conclusion to the thesis, encompassing discussions on

constraints and limitations, contributions, threats to validity, and avenues for future work.

Firstly, constraints and limitations will be addressed to provide insight into the scope of

this study. This acknowledgment is essential for understanding the boundaries within

which the research was conducted. Following this, the chapter will outline the

contributions made by the study, emphasising the areas where it has had the most

significant impact. By highlighting these contributions, the chapter aims to underscore

the value and relevance of the research findings. Subsequently, threats to validity will be

discussed, focusing on factors that may compromise the study's results. Finally, the

chapter will explore several potential paths for future research, suggesting areas where

further investigation could expand upon the findings of this study.

5.2 Constraints and Limitations

As with any research, there are both constraints and limitations to acknowledge.

One main constraint of this study is the narrow focus of the experiments conducted, which

centered on a specific contextual text data classification task which is the question type

classification using the QCoC dataset. While the proposed method exhibited promising

results within this scope, its applicability to other types of text data classification tasks

warrants further exploration and validation. Moreover, although the size and diversity of

the QCoC dataset sufficed for the current study, it may not fully represent the breadth of

question types and contexts encountered in real-world applications, necessitating the

assessment of the proposed method's generalizability with more extensive and diverse

datasets.

106

Next, it's essential to recognise that the experiments were conducted using a

consumer-grade computer with specific hardware and software configurations.

Therefore, the performance and efficiency of the proposed method may vary across

different computing systems, particularly when dealing with larger datasets or more

complex models. Thus, considerations regarding the scalability and generalizability of

the proposed method become imperative when applying it to diverse settings and

configurations. Lastly, while the proposed modified word vector method demonstrated

success in this study, its effectiveness might be influenced by very specific or domain-

specific vocabularies. Variations in corpus and language use could impact its efficacy,

necessitating further investigation to identify potential limitations and avenues for

improvement.

5.3 Contributions

Overall, this study makes several significant contributions to the field of

contextual text data classification within the NLP research domain:

1. Proposed modified word vectors algorithm: The development of the modified

word vectors algorithm stands out as the main contribution of this study. This

algorithm enables the modification of LLM-generated word representation

vectors externally, eliminating the need to modify, retrain, or fine-tune the

original pretrained LLM. This contribution is particularly valuable in contexts

where computing resources are scarce, such as smaller research teams or

educational institutions with limited access to high-performance computing

resources. By showcasing the effectiveness of this algorithm, it becomes evident

that word representation vectors can be modified externally. This facilitates

machine learning classification algorithms with fewer parameters, significantly

reducing the demand for extensive computing resources during training.

2. The QCoC dataset: This study leverages the benchmarked QA dataset named

CoQA to develop a new multiclass text classification dataset known as QCoC

(Question Classification of CoQA). Unlike existing taxonomy-based datasets,

QCoC is specifically designed to address a gap identified in the literature

surrounding Question Type Classification (QTC) datasets. Specifically, QCoC

focuses on mitigating the limitation of current QTC datasets, which overlook the

107

phenomenon of abstractive answers in QA datasets. This unique feature of QCoC

aims to enhance the relevance and applicability of the dataset, particularly in

contexts where more nuanced and abstract responses are common. By filling this

gap, QCoC contributes to advancing the field of question classification by

providing a dataset that better reflects the complexities and nuances of real-world

question-answering scenarios.

3. Efficient question-type classifier: The research successfully developed an

efficient question type classifier using a vanilla feed-forward neural network

(NN). The classifier achieved significantly higher accuracy and F1 scores

compared to baseline scores, while maintaining a small number of trainable

parameters. This economical question-type classifier has the potential to be

deployed in various applications where computational resources are limited or

costly, without compromising performance. However, it is important to

acknowledge that such a classifier will not work solely on LLM-generated word

embeddings/vectors as input. This is showcased in the results of Activity 2 within

Phase 3 of the research methodology, where the original LLM-generated

embeddings demonstrated a very minuscule scale of vector differences between

one sentence and another. In other words, without an external weight and a

method to incorporate that weight into the vector embeddings, such a classifier

may not yield good results if based solely on the original LLM-generated word

representation vectors/embeddings.

4. Transferability to other domains: The proposed modified word vectors method

demonstrated high transferability to other domains of contextual text data

classification beyond question type classification. This is primarily attributed to

the external component of this method, which is the scalar weight values. As

demonstrated in Activity 1 within Phase 3 of the research methodology, these

scalar weight values can be derived from a simple mathematical calculation, such

as the term frequency percentage. Therefore, theoretically, utilising the same

modified word vectors method with different scalar weights will yield similar

results. Moreover, the method's capability to maintain fixed-length vector

embeddings despite varying sentence lengths enhances its versatility in handling

diverse NLP tasks.

108

5. Practical implications: The research findings have practical implications for

various NLP applications, particularly in scenarios where computational

resources are limited or costly. By offering a cost-effective alternative to fine-

tuning LLMs, the proposed methods opens up opportunities for efficient and

economical text classification solutions across other NLP domains such as

sentiment analysis, topic categorization, and intent recognition.

5.4 Threats to Validity

The validity of any research is crucial to ensure the credibility and reliability of

the findings. In this study, several threats to validity need to be addressed to ensure the

robustness of the proposed methods and algorithms for the contextual text classification

process.

1. Internal Validity: One potential threat to internal validity is related to the

experimental setup and the choice of hyperparameters during the experiments. To

mitigate this, the experiments were conducted multiple times, and the results were

analysed for consistency. Additionally, the random initialization of the neural

network weights was performed to minimize bias.

2. External Validity: Generalization of the findings to other datasets and domains

could be a potential external validity threat. Although the proposed methods and

algorithms demonstrated promising results on the QCoC dataset, its performance

on different datasets needs to be explored to establish its broader applicability.

3. Construct Validity: Ensuring that the proposed modified word vectors method

accurately reflects the semantic significance of words is essential. To address this

concern, the method was first evaluated on a sample case study before being

applied to the QCoC dataset. However, it is important to note that both cases

involved question text data. Therefore, for application in other contexts, further

investigation is necessary to validate the method's effectiveness and

generalizability.

4. Conclusion Validity: The sample size for the conducted experiments in this study

may be limited or insufficient in certain cases, and thus, the conclusions derived

from these experiments should be interpreted with caution. Conducting

109

experiments on larger datasets and using more diverse question types could

enhance the generalizability of the findings.

5. Reproducibility: To ensure the reproducibility of the results, all experimental

setups, hyperparameters, and model architectures have been thoroughly

documented. The pseudocode and datasets used in the research will be made

available for public access.

Despite these potential threats, the research design, thorough experimentation,

and detailed analysis contribute to the robustness of the proposed methodology.

Additionally, future studies should explore further validation of different datasets and

domains to strengthen the overall validity of the research findings.

5.5 Future Works

Though this research has showcased a notable contribution in the field of NLP,

there are several potential avenues for future work and improvement. This section

outlines potential directions for further research and development, building upon the

foundations laid by this study.

1. Fine-tuning on larger datasets: Experimenting with fine-tuning the proposed

methods on larger datasets could provide deeper insights into its scalability and

robustness. Evaluating the classifier's performance on diverse and more extensive

datasets will help assess its generalization capabilities and potential for wider

applications.

2. Comparison with state-of-the-art ML models: Conducting a thorough

comparison between the proposed methods and state-of-the-art ML models on

various benchmark datasets will offer a comprehensive understanding of its

competitive advantage. This evaluation will allow researchers and practitioners

to identify the contexts in which the proposed methodology excels and areas that

might need further improvement.

3. Exploration of other weighting methods: Investigating alternative word vector

weighting methods could enhance the performance and flexibility of the proposed

methodology. Exploring different weighting techniques and experimenting with

110

various scalar weight values may yield more optimal results for specific NLP

downstream tasks.

4. Application to domain-specific classification: Applying the developed methods

to domain-specific text classification tasks, such as medical or financial text data,

could demonstrate its adaptability and efficacy in specialised contexts. These

domain-specific applications will help uncover the methodology's strengths and

limitations in real-world scenarios.

5. Deployment in practical applications: Deploying the developed question-type

classifier in practical applications, such as chatbots or virtual assistants, will offer

insights into its real-world usability and impact of the developed methods.

Evaluating its performance in real-time scenarios will be crucial for assessing its

practicality and user experience.

5.6 Summary

This chapter serves as the concluding remarks for this thesis, encompassing

discussions on constraints and limitations, contributions, threats to validity, and future

works. Building upon the proposed methods and algorithms, along with the thoroughly

discussed results and findings in prior sections, it addresses constraints and limitations

that should be acknowledged for future research within the field. Despite its limitations,

this study contributes valuable knowledge to the field, particularly in word representation

vector modification and contextual text classification. Through thorough discussion,

these contributions are poised to advance the field and pave the way for new research

paths. Additionally, various threats to validity are examined, including internal, external,

construct, conclusion, and reproducibility concerns. Lastly, avenues for future works are

discussed to suggest potential paths for further exploration and investigation, with the

hope of contributing to the identification of potential gaps within the field.

111

REFERENCES

Abubakar, H. D., Umar, M., & Bakale, M. A. (2022). Sentiment classification: Review
of text vectorization methods: Bag of words, Tf-Idf, Word2vec and Doc2vec. SLU
Journal of Science and Technology, 4(1 & 2), 27-33. doi:10.56471/slujst.v4i.266

Alammary, A. S. (2022). BERT models for Arabic text classification: a systematic

review. Applied Sciences, 12(11), 5720. doi:10.3390/app12115720

Ameer, I., Bölücü, N., Siddiqui, M. H. F., Can, B., Sidorov, G., & Gelbukh, A. (2023).

Multi-label emotion classification in texts using transfer learning. Expert Systems
with Applications, 213, 118534. doi:10.1016/j.eswa.2022.118534

Apidianaki, M. (2023). From word types to tokens and back: A survey of approaches to

word meaning representation and interpretation. Computational Linguistics, 49(2),
465-523.

Arora, S., Hu, W., & Kothari, P. K. (2018, July). An analysis of the t-sne algorithm for

data visualization. In Conference on learning theory (pp. 1455-1462). PMLR.

Asudani, D. S., Nagwani, N. K., & Singh, P. (2023). Impact of word embedding models

on text analytics in deep learning environment: a review. Artificial intelligence
review, 56(9), 10345-10425. doi:10.1007/s10462-023-10419-1

Azunre, P. (2021). Transfer Learning for Natural Language Processing. Manning.

Badri, N., Kboubi, F., & Chaïbi, A. H. (2022). Combining FastText and Glove Word

Embedding for Offensive and Hate speech Text Detection. Procedia Computer
Science, 207, 769–778. doi:10.1016/j.procs.2022.09.132

Bharadiya, J. P. (2023). Transfer Learning in Natural Language Processing

(NLP). European Journal of Technology, 7(2), 26–35. doi:10.47672/ejt.1490

Bilal, M., & Almazroi, A. A. (2022). Effectiveness of fine-tuned BERT model in

classification of helpful and unhelpful online customer reviews. Electronic
Commerce Research, 23(4), 2737–2757. doi:10.1007/s10660-022-09560-w

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of

Machine Learning Research, 3, 993–1022. doi:10.5555/944919.944937

Bojanowski, P., Grave, É., Joulin, A., & Mikolov, T. (2017). Enriching Word Vectors

with Subword Information. Transactions of the Association for Computational
Linguistics, 5, 135–146. doi:10.1162/tacl_a_00051

Bollegala, D., & O’Neill, J. (2022, April 25). A survey on Word Meta-Embedding

Learning. arXiv.org. https://arxiv.org/abs/2204.11660

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., … Amodei,

D. (2020). Language Models are Few-Shot Learners. In H. Larochelle, M.

112

Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), Advances in Neural
Information Processing Systems (Vol. 33, pp. 1877–1901). Retrieved from
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418b
fb8ac142f64a-Paper.pdf

Cer, D., Yang, Y., Kong, S., Hua, N., Limtiaco, N., St John, R., Constant, N., Guajardo-

Cespedes, M., Yuan, S., Tar, C., Sung, Y., Strope, B., & Kurzweil, R. (2018,
March 29). Universal Sentence Encoder.
arXiv.org. https://arxiv.org/abs/1803.11175

Chen, Q., Zhang, R., Zheng, Y., & Mao, Y. (2022, January 21). Dual Contrastive

Learning: text classification via Label-Aware data augmentation.
arXiv.org. http://arxiv.org/abs/2201.08702

Choi, E., He, H., Iyyer, M., Yatskar, M., Yih, W., Choi, Y., Liang, P., & Zettlemoyer,

L. (2018, August 21). QUAC : Question answering in context.
arXiv.org. https://arxiv.org/abs/1808.07036

Chotirat, S., & Meesad, P. (2021). Part-of-Speech tagging enhancement to natural

language processing for Thai wh-question classification with deep
learning. Heliyon, 7(10), e08216. doi:10.1016/j.heliyon.2021.e08216

Church, K. (2016). Word2Vec. Natural Language Engineering, 23(1), 155–

162. doi:10.1017/s1351324916000334

Church, K., Chen, Z., & Ma, Y. (2021). Emerging trends: A gentle introduction to fine-

tuning. Natural Language Engineering, 27(6), 763–
778. doi:10.1017/s1351324921000322

Da Costa, L. S., Oliveira, I. L., & Fileto, R. (2023). Text classification using

embeddings: a survey. Knowledge and Information Systems, 65(7), 2761–
2803. doi:10.1007/s10115-023-01856-z

Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2018, October 11). BERT: Pre-

training of Deep Bidirectional Transformers for Language Understanding.
arXiv.org. https://arxiv.org/abs/1810.04805

Dharma, E. M., Gaol, F. L., Warnars, H. L. H. S., & Soewito, B. (2022). The accuracy

comparison among word2vec, glove, and fasttext towards convolution neural
network (cnn) text classification. Journal of Theoretical and Applied Information
Technology, 100(2), 31.

Dogra, V., Verma, S., Kavita, K., Chatterjee, P., Shafi, J., Choi, J., & Ijaz, M. F. (2022).

A complete process of text classification system using State-of-the-Art NLP
models. Computational Intelligence and Neuroscience, 2022, 1–
26. doi:10.1155/2022/1883698

Duc, T. L., Leiva, R. G., Casari, P., & Östberg, P.-O. (2019). Machine Learning

Methods for Reliable Resource Provisioning in Edge-Cloud Computing: A
Survey. ACM Comput. Surv., 52(5). doi:10.1145/3341145

113

Elnagar, A., Yagi, S., Mansour, Y., Lulu, L., & Fareh, S. (2023). A benchmark for
evaluating Arabic contextualized word embedding models. Information Processing
& Management, 60(5), 103452. doi:10.1016/j.ipm.2023.103452

Evangelopoulos, N. (2013). Latent semantic analysis. Wiley Interdisciplinary Reviews.

Cognitive Science, 4(6), 683–692. doi:10.1002/wcs.1254

Fernandez, R. C., Elmore, A. J., Franklin, M. J., Krishnan, S., & Tan, C. (2023). How

large language models will disrupt data management. Proceedings of the VLDB
Endowment, 16(11), 3302–3309. doi:10.14778/3611479.3611527

Firth, J. R. (1957). A synopsis of linguistic theory 1930-55. Studies in Linguistic

Analysis (Special Volume of the Philological Society), 1952(59), 1–32.

Fodor, J., De Deyne, S., & Suzuki, S. (2023, June). The Importance of Context in the

Evaluation of Word Embeddings: The Effects of Antonymy and Polysemy.
Proceedings of the 15th International Conference on Computational
Semantics (pp. 155-172).

Gasparetto, A., Marcuzzo, M., Zangari, A., & Albarelli, A. (2022). A survey on Text

Classification Algorithms: From Text to Predictions. Information, 13(2),
83. doi:10.3390/info13020083

Ghosal, S., & Jain, A. (2022). Weighted aspect based sentiment analysis using extended

OWA operators and Word2Vec for tourism. Multimedia Tools and
Applications, 82(12), 18353–18380. doi:10.1007/s11042-022-13800-4

Golzari, S., Sanei, F., Saybani, M. R., Harifi, A., & Basir, M. A. (2021). Question

Classification in Question Answering System using Combination of Ensemble
Classification and Feature Selection. Journal of AI and Data
Mining. doi:10.22044/jadm.2021.10016.2142

Gupta, D., Pujari, R., Ekbal, A., Bhattacharyya, P., Maitra, A., Jain, T., & Sengupta, S.

(2021, January 20). Can Taxonomy Help? Improving Semantic Question Matching
using Question Taxonomy. arXiv.org. https://arxiv.org/abs/2101.08201

Hamza, A., En-Nahnahi, N., Zidani, K. A., & Ouatik, S. E. A. (2021). An arabic

question classification method based on new taxonomy and continuous distributed
representation of words. Journal of King Saud University-Computer and
Information Sciences, 33(2), 218-224. doi:10.1016/j.jksuci.2019.01.001

Harris, Z. S. (1954). Distributional Structure. Word, 10(2–3), 146–162.

doi:10.1080/00437956.1954.11659520

Hossain, M. R., Hoque, M. M., & Siddique, N. (2023). Leveraging the meta-embedding

for text classification in a resource-constrained language. Engineering
Applications of Artificial Intelligence, 124,
106586. doi:10.1016/j.engappai.2023.106586

114

Incitti, F., Urli, F., & Snidaro, L. (2023). Beyond word embeddings: A
survey. Information Fusion, 89, 418–436. doi:10.1016/j.inffus.2022.08.024

Jalilifard, A., Caridá, V. F., Mansano, A. F., Cristo, R. S., & da Fonseca, F. P. C.

(2021). Semantic Sensitive TF-IDF to Determine Word Relevance in
Documents. Advances in Computing and Network Communications, 327–337.
doi:10.1007/978-981-33-6987-0_27

Jardim, R., Delgado, C., & Schneider, D. (2022). Data science supporting a question

classifier model. Procedia Computer Science, 199, 1237–1243.
doi:10.1016/j.procs.2022.01.157

Jiao, Q., & Zhang, S. (2021). A Brief Survey of Word Embedding and Its Recent

Development. 2021 IEEE 5th Advanced Information Technology, Electronic and
Automation Control Conference (IAEAC), 5, 1697–1701.
doi:10.1109/IAEAC50856.2021.9390956

Johnson, S. J., Murty, M. R., & Navakanth, I. (2024). A detailed review on word

embedding techniques with emphasis on word2vec. Multimedia Tools and
Applications, 83(13), 37979–38007. doi:10.1007/s11042-023-17007-z

Jones, K. S. (2004). A statistical interpretation of term specificity and its application in

retrieval. Journal of documentation, 60(5), 493-502.
doi:10.1108/00220410410560573

Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., & Mikolov, T. (2016).

Fasttext. zip: Compressing text classification models.
arXiv.org. https://arxiv.org/abs/1612.03651

Ju, Y., Zhao, F., Chen, S., Zheng, B., Yang, X., & Liu, Y. (2019). Technical report on

conversational question answering. arXiv.org. https://arxiv.org/abs/1909.10772

Kanakarajan, K. R., Kundumani, B., & Sankarasubbu, M. (2021). Small-Bench NLP:

Benchmark for small single GPU trained models in Natural Language Processing.
arXiv.org. https://arxiv.org/abs/2109.10847

Katz, S. (1987). Estimation of probabilities from sparse data for the language model

component of a speech recognizer. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 35(3), 400–401. doi:10.1109/TASSP.1987.1165125

Khurana, D., Koli, A., Khatter, K., & Singh, S. (2023). Natural language processing:

state of the art, current trends and challenges. Multimedia Tools and
Applications, 82(3), 3713–3744. doi:10.1007/s11042-022-13428-4

Kici, D., Malik, G., Cevik, M., Parikh, D., & Basar, A. (2021, June). A BERT-based

transfer learning approach to text classification on software requirements
specifications. In Canadian Conference on AI (Vol. 1, p. 04207).

115

Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L., & Brown,
D. (2019). Text Classification Algorithms: A Survey. Information, 10(4).
doi:10.3390/info10040150

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert:

A lite bert for self-supervised learning of language representations. arXiv.org.
https://arxiv.org/abs/1909.11942.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–

444. doi:10.1038/nature14539

Le, Q., & Mikolov, T. (2014, June). Distributed representations of sentences and

documents. In Proceedings of the 31st International Conference on Machine
Learning (ICML 2014), (pp. 1188-1196). Retrieved from
https://proceedings.mlr.press/v32/le14.html

Li, Q., Peng, H., Li, J., Xia, C., Yang, R., Sun, L., ... & He, L. (2022a). A survey on text

classification: From traditional to deep learning. ACM Transactions on Intelligent
Systems and Technology (TIST), 13(2), 1-41. doi:10.1145/3495162

Li, X., & Roth, D. (2002b). Learning question classifiers. In COLING 2002: The 19th

International Conference on Computational Linguistics.
https://aclanthology.org/C02-1150.pdf

Lippmann, R. (1994). Book Review: ‘Neural Networks, A Comprehensive Foundation’,

by Simon Haykin. International Journal of Neural Systems, 05(04), 363–364.
doi:10.1142/S0129065794000372

Liu, S., Zhang, X., Zhang, S., Wang, H., & Zhang, W. (2019). Neural Machine Reading

Comprehension: Methods and Trends. Applied Sciences, 9(18), 3698.
doi:10.3390/app9183698

Liu, W., Pang, J., Li, N., Yue, F., & Liu, G. (2023). Few-shot short-text classification

with language representations and centroid similarity. Applied Intelligence, 53(7),
8061-8072.

Liu, X., Sun, T., He, J., Wu, J., Wu, L., Zhang, X., Jiang, H., Cao, Z., Huang, X., &

Qiu, X. (2022). Towards efficient NLP: A standard evaluation and A strong
baseline. Proceedings of the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
3288–3303. https://arxiv.org/abs/2110.07038

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,

Zettlemoyer, L., Stoyanov, V., & Allen, P. G. (2019). Roberta: A robustly
optimized bert pretraining approach. arXiv.org. https://arxiv.org/abs/1907.11692

Liu, Z., Lin, Y., & Sun, M. (2023). Representation Learning for Natural Language

Processing (p. 521). Springer Nature.

116

Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic spaces from
lexical co-occurrence. Behavior Research Methods, Instruments, &
Computers, 28(2), 203–208. doi:10.3758/BF03204766

Mars, M. (2022). From Word Embeddings to Pre-Trained Language Models: A State-

of-the-Art Walkthrough. Applied Sciences, 12(17). doi:10.3390/app12178805

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv.org. https://arxiv.org/abs/1301.3781

Min, B., Ross, H., Sulem, E., Veyseh, A. P. B., Nguyen, T. H., Sainz, O., … Roth, D.

(2023). Recent Advances in Natural Language Processing via Large Pre-trained
Language Models: A Survey. ACM Comput. Surv., 56(2). doi:10.1145/3605943

Mundotiya, R. K., Mehta, A., Baruah, R., & Singh, A. K. (2022). Integration of

morphological features and contextual weightage using monotonic chunk attention
for part of speech tagging. Journal of King Saud University - Computer and
Information Sciences, 34(9), 7324–7334. doi:10.1016/j.jksuci.2021.08.023

Nandanwar, A. K., & Choudhary, J. (2023). Contextual Embeddings-Based Web Page

Categorization Using the Fine-Tune BERT Model. Symmetry, 15(2).
doi:10.3390/sym15020395

Naseem, U., Razzak, I., Khan, S. K., & Prasad, M. (2021). A Comprehensive Survey on

Word Representation Models: From Classical to State-of-the-Art Word
Representation Language Models. ACM Trans. Asian Low-Resour. Lang. Inf.
Process., 20(5). doi:10.1145/3434237

Onita, D. (2023). Active Learning Based on Transfer Learning Techniques for Text

Classification. IEEE Access, 11, 28751–28761.
doi:10.1109/ACCESS.2023.3260771

Patil, R., Boit, S., Gudivada, V., & Nandigam, J. (2023). A Survey of Text

Representation and Embedding Techniques in NLP. IEEE Access, 11, 36120–
36146. doi:10.1109/ACCESS.2023.3266377

Pennington, J., Socher, R., & Manning, C. (2014, October). GloVe: Global Vectors for

Word Representation. In A. Moschitti, B. Pang, & W. Daelemans
(Eds.), Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP) (pp. 1532–1543). doi:10.3115/v1/D14-1162

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer,

L. (2018, June). Deep Contextualized Word Representations. In M. Walker, H. Ji,
& A. Stent (Eds.), Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers) (pp. 2227–2237). doi:10.18653/v1/N18-
1202

117

Pham, P., Nguyen, L. T., Pedrycz, W., & Vo, B. (2023). Deep learning, graph-based
text representation and classification: a survey, perspectives and
challenges. Artificial Intelligence Review, 56(6), 4893-4927. doi: 10.1007/s10462-
022-10265-7

Qasim, R., Bangyal, W. H., Alqarni, M. A., & Ali Almazroi, A. (2022). A Fine-Tuned

BERT-Based Transfer Learning Approach for Text Classification. Journal of
Healthcare Engineering, 2022(1), 3498123. doi:10.1155/2022/3498123

Qin, C., Zhang, A., Zhang, Z., Chen, J., Yasunaga, M., & Yang, D. (2023). Is ChatGPT

a general-purpose natural language processing task solver?
arXiv.org. https://arxiv.org/abs/2302.06476

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving

Language Understanding by Generative Pre-Training. Preprint. 1-12. Retrieved
from https://www.mikecaptain.com/resources/pdf/GPT-1.pdf

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language

models are unsupervised multitask learners. OpenAI Blog, 1(8). Retrieved from
https://openai.com/blog/better-language-models/

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., … Liu, P. J.

(2020). Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. Journal of Machine Learning Research, 21(140), 1–67. Retrieved
from http://jmlr.org/papers/v21/20-074.html

Rajpurkar, P., Jia, R., & Liang, P. (2018, July). Know What You Don’t Know:

Unanswerable Questions for SQuAD. In I. Gurevych & Y. Miyao (Eds.),
Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers) (pp. 784–789). doi:10.18653/v1/P18-2124

Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016, November). SQuAD:

100,000+ Questions for Machine Comprehension of Text. In J. Su, K. Duh, & X.
Carreras (Eds.), Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing (pp. 2383–2392). doi:10.18653/v1/D16-1264

Reddy, S., Chen, D., & Manning, C. D. (2019). CoQA: A Conversational Question

Answering Challenge. Transactions of the Association for Computational
Linguistics, 7, 249–266. doi:10.1162/tacl_a_00266

Rosset, C. (2020). Turing-NLG: A 17-billion-parameter language model by Microsoft -

Microsoft Research. Retrieved from https://www.microsoft.com/en-
us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

Sabri, T., Beggar, O. E., & Kissi, M. (2022). Comparative study of Arabic text

classification using feature vectorization methods. Procedia Computer
Science, 198, 269–275. doi:10.1016/j.procs.2021.12.239

118

Salim, M. N., & Mustafa, B. S. (2022, November). A survey on word representation in
natural language processing. In AIP Conference Proceedings (Vol. 2394, No. 1).
AIP Publishing.

Salton, G., & Lesk, M. E. (1968). Computer Evaluation of Indexing and Text

Processing. Journal of the ACM (JACM), 15(1), 8–36. doi:10.1145/321439.321441

Sangodiah, A., Fui, Y. T., Heng, L. E., Jalil, N. A., Ayyasamy, R. K., & Meian, K. H.

(2021). A Comparative Analysis On Term Weighting In Exam Question
Classification. 2021 5th International Symposium on Multidisciplinary Studies and
Innovative Technologies (ISMSIT), 199–206.
doi:10.1109/ISMSIT52890.2021.9604639

Sezerer, E., & Tekir, S. (2021). A Survey On Neural Word Embeddings. arXiv.org.

https://arxiv.org/abs/2110.01804

Sharir, O., Peleg, B., & Shoham, Y. (2020). The cost of training nlp models: A concise

overview. arXiv.org. https://arxiv.org/abs/2004.08900

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019).

Megatron-lm: Training multi-billion parameter language models using model
parallelism. arXiv.org. https://arxiv.org/abs/1909.08053

Singh, S., & Mahmood, A. (2021). The NLP Cookbook: Modern Recipes for

Transformer Based Deep Learning Architectures. IEEE Access, 9, 68675–68702.
doi:10.1109/ACCESS.2021.3077350

Soni, S., Chouhan, S. S., & Rathore, S. S. (2023). TextConvoNet: a convolutional

neural network based architecture for text classification. Applied
Intelligence, 53(11), 14249–14268. doi:10.1007/s10489-022-04221-9

Storks, S., Gao, Q., & Chai, J. Y. (2019). Recent Advances in Natural Language

Inference: A Survey of Benchmarks, Resources, and Approaches. arXiv.org.
https://arxiv.org/abs/1904.01172

Umer, M., Imtiaz, Z., Ahmad, M., Nappi, M., Medaglia, C., Choi, G. S., & Mehmood,

A. (2023). Impact of convolutional neural network and FastText embedding on
text classification. Multimedia Tools and Applications, 82(4), 5569–5585.
doi:10.1007/s11042-022-13459-x

Uszkoreit, J. (2017). Transformer: A Novel Neural Network Architecture for Language

Understanding. Retrieved from https://ai.googleblog.com/2017/08/transformer-
novel-neural-network.html

Uymaz, H. A., & Metin, S. K. (2022). Vector based sentiment and emotion analysis

from text: A survey. Engineering Applications of Artificial Intelligence, 113,
104922. doi:10.1016/j.engappai.2022.104922

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., …

Polosukhin, I. (2017). Attention is All you Need. In I. Guyon, U. V. Luxburg, S.

119

Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in
Neural Information Processing Systems (Vol. 30). Retrieved from
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd05
3c1c4a845aa-Paper.pdf

Wadud, M. A. H., Mridha, M. F., & Rahman, M. M. (2022). Word embedding methods

for word representation in deep learning for natural language processing. Iraqi
Journal of Science, 63(3), 1349-1361. doi: 10.24996/ijs.2022.63.3.37

Wadud, M.A.H., Mridha, M.F., Shin, J., Nur, K., Saha, A.K. (2023). Deep-BERT:

Transfer Learning for Classifying Multilingual Offensive Texts on Social
Media. Computer Systems Science and Engineering, 44(2), 1775-1791.
doi: 10.32604/csse.2023.027841

Wahba, Y., Madhavji, N., & Steinbacher, J. (2023). A Comparison of SVM Against

Pre-trained Language Models (PLMs) for Text Classification Tasks. Machine
Learning, Optimization, and Data Science: 8th International Conference, LOD
2022, Certosa Di Pontignano, Italy, September 18–22, 2022, Revised Selected
Papers, Part II, 304–313. Presented at the Certosa di Pontignano, Italy.
doi:10.1007/978-3-031-25891-6_23

Weaver, W. (1955). Translation. Machine Translation of Languages, 14, 15–23.

Retrieved from https://aclanthology.org/1952.earlymt-1.1.pdf

Weerakoon, C., & Ranathunga, S. (2021). Question Classification for the Travel

Domain using Deep Contextualized Word Embedding Models. 2021 Moratuwa
Engineering Research Conference (MERCon), 573–578.
doi:10.1109/MERCon52712.2021.9525789

Worth, P. J. (2023). Word embeddings and semantic spaces in natural language

processing. International Journal of Intelligence Science, 13(1), 1–21.
doi: 10.4236/ijis.2023.131001

Xu, J., Xie, J., Cai, Y., Lin, Z., Leung, H.-F., Li, Q., & Chua, T.-S. (2024). Context-

Aware Dynamic Word Embeddings for Aspect Term Extraction. IEEE
Transactions on Affective Computing, 15(1), 144–156.
doi:10.1109/TAFFC.2023.3262941

Yamada, I., Asai, A., Shindo, H., Takeda, H., & Matsumoto, Y. (2020). LUKE: deep

contextualized entity representations with entity-aware self-attention. arXiv.org.
https://arxiv.org/abs/2010.01057

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019).

XLNet: Generalized Autoregressive Pretraining for Language Understanding. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle Alché-Buc, E.
Fox, & R. Garnett (Eds.), Advances in Neural Information Processing
Systems (Vol. 32). Retrieved from
https://proceedings.neurips.cc/paper_files/paper/2019/file/dc6a7e655d7e5840e667
33e9ee67cc69-Paper.pdf

120

Yatskar, M. (2019, June). A Qualitative Comparison of CoQA, SQuAD 2.0 and QuAC.
In J. Burstein, C. Doran, & T. Solorio (Eds.), Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers) (pp. 2318–
2323). doi:10.18653/v1/N19-1241

Zhang, Y., Wang, M., Ren, C., Li, Q., Tiwari, P., Wang, B., & Qin, J. (2024,

February). Pushing the limit of LLM capacity for text classification. arXiv.org.
https://arxiv.org/abs/2402.07470

Zhang, Z., Yang, J., & Zhao, H. (2021). Retrospective Reader for Machine Reading

Comprehension. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(16), 14506–14514. doi:10.1609/aaai.v35i16.17705

Zhao, J., Bao, J., Wang, Y., Zhou, Y., Wu, Y., He, X., & Zhou, B. (2021, November).

RoR: Read-over-Read for Long Document Machine Reading Comprehension. In
M.-F. Moens, X. Huang, L. Specia, & S. W.-T. Yih (Eds.), Findings of the
Association for Computational Linguistics: EMNLP 2021 (pp. 1862–1872).
doi:10.18653/v1/2021.findings-emnlp.160

Zhong, R., Snell, C., Klein, D., & Steinhardt, J. (2022). Summarizing Differences

between Text Distributions with Natural Language. arXiv.org.
https://arxiv.org/abs/2201.12323

Zhou, H. (2022a). Research of Text Classification Based on TF-IDF and CNN-

LSTM. Journal of Physics: Conference Series, 2171(1), 012021.
doi:10.1088/1742-6596/2171/1/012021

Zhou, M., Liu, D., Zheng, Y., Zhu, Q., & Guo, P. (2022b). A text sentiment

classification model using double word embedding methods. Multimedia Tools
and Applications, 81(14), 18993–19012. doi:10.1007/s11042-020-09846-x

