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Activated carbon (AC) supported with titanium dioxide (TiO2) doped 
with nitrogen (N) and cerium (Ce), denoted as AC/TiO2 doped N-Ce was 
synthesized for adsorption and photodegradation of amoxicillin (AMX) 
antibiotic. Photocatalyst was prepared using sol-gel approach assisted 
by microwave irradiation. 30 experiment runs were generated for 
photocatalyst production and optimized via Central Composite Design-
Response Surface Methodology (CCD-RSM) with observation of four 
types of variable parameters. The experimental variables consisted of 
the quantities of urea (N) (𝑥𝑥𝑖𝑖 : 0.02–0.20 g), amount of cerium (III) 
nitrate hexahydrate (Ce) (𝑥𝑥𝑗𝑗: 0.02–0.20 g), amount of AC (𝑥𝑥𝑘𝑘: 0.10 –0.50 
g), and microwave power (𝑥𝑥𝑙𝑙: 600–800 W). The analysis revealed that 
AC/TiO2 doped N-Ce photocatalyst, which was prepared with 0.50 g AC, 
0.02 g N, and 0.20 g Ce, and activated with microwave power 600 W in 
15 min, achieved a 93.6% AMX removal under UV light irradiation. The 
photocatalyst was initially subjected to a concentration of 10 mg L-1 at 
30 ℃ for a duration of 60 min. 
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1. Introduction 
Widespread of emerging pollutants in water bodies have raised concern globally [1]. Failure to manage EPs 
properly can harm water ecology, wildlife, human health, and well-being. Common encountered EPs in water 
environment include pharmaceuticals product such as amoxicillin (AMX) and norfloxacin antibiotics [2], [3], non-
steroidal anti-inflammatory drug (NSAID) such as diclofenac and ibuprofen [4], veterinary medicine like 
tetracycline and triclosan [5], [6], [7], personal care products like perfumes or body washes [8], and industrial 
additive [9]. These compounds can be found in sediment or water surface [10]. Their widespread usually 
facilitated by pharmaceutical industry [11], the excretion of incomplete metabolism of antibiotics in animal or 
human from bodies after consumption [12], hospital waste [13], or industry [14].  

According to Hasni et al., [15] and Shamsudin et al., [16], antibiotics, analgesics, or hormonal contraceptives 
are pollutants that are often reported found in effluents in Malaysia. The common antibiotic found in water bodies 
is AMX (AMX). The use of AMX increased tremendously over the last decades to treat infections like bronchitis, 
pneumonia, or skin infections and prevention of animal disease in veterinary field [17]. After consumption, around 
50- 70 % of the medicine released into the environment unchanged from original form [18]. AMX enters water 
ecology and soils, reaching drinking water and groundwater which later consummated by well-being. In worse 
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case, due to prolonged released to environment causing the increased in antibiotic resistance which led to 
morbidity and mortality in animals and humans [19], [20].  

Due to this concerning, many technologies were reported for the elimination of AMX such as supercritical 
water gasification [21], advanced oxidation process [22], photocatalytic [23] and adsorption [24].  Adsorption and 
photocatalysis method among preferrable method for treating AMX due to its cost-effectiveness and non-
destructive [25]. Activated carbon (AC) often used as adsorbent material due to its ability to provide high surface 
area but the pores influenced the time taken of absorption process [26]. TiO2 is a promising photocatalyst due to 
its superiority in photocatalytic activity but have poor adsorption performance due to recovery treatment 
limitation [27]. The disadvantages of both methods may be solved by modifying AC-based TiO2 with dopants, 
which eliminates the drawbacks of these methods. In the present work, the aim was to optimize the synthesis 
process of modified photocatalyst (AC/TiO2) doped with N and Ce via Central Composite Design (CCD) in Response 
Surface Methodology (RSM), producing AC/TiO2 doped N-Ce in adsorption-photodegradation of AMX. 

2. Material and Methods 

2.1 Material 
Amoxicillin (AMX) antibiotics (C16H19N3O5S) were acquired from Santa Cruz, USA. Titanium (IV) isopropoxide 
(TTIP) and cerium (III) nitrate hexahydrate (CeH12N3O15)(Ce) were obtained via ACROS Organics, Belgium. 
Isopropanol (C3H8O), acetic acid (CH₃COOH), urea ((NH2)2CO)(N), and potassium hydroxide (KOH) potassium 
hydroxide (KOH) were purchased from HmbG Chemicals, Germany. Hydrochloric acid (HCl) was procured via 
Fisher Scientific, Germany. All reagents were analytical grade and used as received. 

2.2 Preparation of AC/TiO2 doped N-Ce 
Modified photocatalyst of AC/TiO2 doped N-Ce was prepared using sol-gel method like the one described in the 
previous study [28]. Solution A was prepared by diluting 5 mL TTIP in 15 mL of isopropanol and mixing for 10 
min. Next, solution B was prepared by diluting 5 mL acetic acid in 10 mL of distilled water where dopant (N and 
Ce) was added and stirred for 10 min. Subsequently, solution B was gradually introduced into solution A, one drop 
at a time, while maintaining continuous stirring for a duration of 60 min. Activated carbon (AC) was added into 
the mixture and agitated for additional duration of 5 min prior to dry in drying oven at 100 ℃ for 12 h, producing 
a solidified photocatalyst (AC/TiO2 doped N-Ce) followed by activation assisted by domestic microwave oven. The 
amount of N, Ce, AC and microwave power used was pre-determined by Central Composite Design (CCD) in 
Response Surface Methodology (RSM) and discussed in Section 2.3. 

2.3 Design of Experiment (DOE) in Preparing AC/TiO2 doped N-Ce 
Central Composite Design in response surface methodology (RSM) was chosen in the current work to optimize 
variable parameters in synthesis of photocatalyst, AC/TiO2 doped N-Ce for adsorption and photodegradation of 
AMX antibiotic. The parameters were AC, Ce, N dosage (g) and microwave power (W). Design Expert software 
version 7.0 was used to analyze the experiment data where variable parameters were varied at three levels. 30 
experiments in total were generated from CCD-RSM to optimize the synthesis of AC/TiO2 doped N-Ce 
photocatalyst and Table 1 shows the amount of parameter needed and photocatalyst was prepared according to 
the actual matrix design. 

2.4 Photocatalytic Study 
The photocatalytic study was evaluated with adsorption method where 0.20 g of synthesized photocatalyst was 
added into 100 mL of AMX solution (10 mg L-1) and agitated in the dark photoreactor for 15 min to allow 
interaction between photocatalyst and AMX solution. Later, in photodegradation method, UV light with 7 W was 
turned on after 15 min up to 60 min. The removal percentage of AMX was determined by measuring the 
absorbance at wavelength 337 nm [29], using UV-VIS spectrophotometer (Shimadzu UV-1800, Japan). The 
equation used to calculate AMX removal percentage as follows: 
 

Percentage removal (%) =  (Co− Ce)
Co

 x 100                  (1) 
 
where 𝐶𝐶𝑜𝑜 (mg L-1) and 𝐶𝐶𝑒𝑒  (mg L-1) were the concentration of AMX at initial and final irradiation time.  
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Table 1 Variable parameters CCD-RSM matrix and experimental data of AMX removal 

Run 
𝑥𝑥𝑖𝑖: 

Urea 

𝑥𝑥𝑗𝑗: 
Cerium (III) 

nitrate 
hexahydrate 

𝑥𝑥𝑘𝑘: 
Activated 

carbon 

𝑥𝑥𝑙𝑙: 
Microwave 

power 

AMX 
Removal 

(g) (g) (g) (W) (%) 

1 0.11 0.11 0.30 700 71.9 
2 0.20 0.20 0.50 800 92.3 
3 0.20 0.02 0.10 800 45.4 
4 0.11 0.02 0.30 700 86.0 
5 0.20 0.02 0.50 800 90.8 
6 0.20 0.20 0.10 800 47.4 
7 0.11 0.11 0.30 800 60.0 
8 0.20 0.02 0.10 600 47.2 
9 0.02 0.20 0.10 600 55.6 

10 0.11 0.20 0.30 700 92.1 
11 0.02 0.02 0.50 600 75.9 
12 0.11 0.11 0.30 700 73.0 
13 0.11 0.11 0.30 700 70.8 
14 0.20 0.02 0.50 600 92.6 
15 0.11 0.11 0.30 600 70.9 
16 0.02 0.20 0.10 800 52.7 
17 0.20 0.11 0.30 700 61.7 
18 0.02 0.20 0.50 800 82.7 
19 0.11 0.11 0.30 700 68.8 
20 0.11 0.11 0.50 700 91.3 
21 0.11 0.11 0.10 700 58.0 
22 0.02 0.02 0.10 600 46.8 
23 0.02 0.20 0.50 600 93.6 
24 0.02 0.11 0.30 700 63.1 
25 0.11 0.11 0.30 700 64.9 
26 0.02 0.02 0.10 800 43.4 
27 0.11 0.11 0.30 700 71.9 
28 0.20 0.20 0.50 800 92.3 
29 0.20 0.02 0.10 800 45.4 
30 0.11 0.02 0.30 700 86.0 

3. Results and Discussion 

3.1 CCD-RSM Model Analysis 
The synthesis of AC/TiO2 doped N-Ce using CCD-RSM was subjected to a total of 30 experiments. A quadratic 
model was generated to examine the interaction between both components and the resulting response. Table 2 
represents the ANOVA results of the regression model. The yielded p-value < 0.0001, which is lower than the 
significance level of 0.05. This indicates that the variable parameter utilized to develop the photocatalyst had a 
substantial impact on the observed response. The significant parameters established from ANOVA table after 
excluding the insignificant terms (p value < 0.05) for AMX removal were 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑙𝑙 , 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑖𝑖𝑥𝑥𝑘𝑘, 𝑥𝑥𝑖𝑖2, 𝑥𝑥𝑗𝑗2, and 𝑥𝑥𝑙𝑙2. In 
the empirical model, a negative sign indicates an antagonistic impact while a positive sign indicates a synergistic 
effect [30], [31]. The quadratic model employed in this experiment has a high level of significance, as confirmed 
by the low p-value and high R-value squared (R2 = 0.9767). The relationship between parameters and AMX 
removal response was presented as the following equation: 
 
AMX Removal, %       =  +71.89 + 1.97𝑥𝑥𝑖𝑖  + 3.35𝑥𝑥𝑗𝑗  + 18.55𝑥𝑥𝑘𝑘  – 2.20𝑥𝑥𝑙𝑙  – 2.61𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗  + 3.25𝑥𝑥𝑖𝑖𝑥𝑥𝑘𝑘                 (2) 

       – 11.49𝑥𝑥𝑖𝑖2+ 15.11𝑥𝑥𝑗𝑗2 – 8.50𝑥𝑥𝑙𝑙2 
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Table 2 Analysis of variance (ANOVA) of quadratic model for AMX removal 
Source Sum of Squares df Mean Square F Value p-value Prob > F 
Model 7806.15 14 557.58 44.82 < 0.0001 
  𝑥𝑥𝑖𝑖-Urea (N) 69.76 1 69.76 5.61 0.0317 
  𝑥𝑥𝑗𝑗-Cerium (III) nitrate hexahydrate (Ce) 201.66 1 201.66 16.21 0.0011 
  𝑥𝑥𝑘𝑘-Activated Carbon (AC) 6191.57 1 6191.57 497.68 < 0.0001 
  𝑥𝑥𝑙𝑙-Microwave Power (W) 87.13 1 87.13 7.00 0.0183 
  𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗  108.64 1 108.64 8.73 0.0098 
  𝑥𝑥𝑖𝑖𝑥𝑥𝑘𝑘  169.43 1 169.43 13.62 0.0022 
  𝑥𝑥𝑖𝑖𝑥𝑥𝑙𝑙  16.10 1 16.10 1.29 0.2731 
  𝑥𝑥𝑗𝑗𝑥𝑥𝑘𝑘  2.51 1 2.51 0.20 0.6599 
  𝑥𝑥𝑗𝑗  𝑥𝑥𝑙𝑙  1.15 1 1.15 0.093 0.7651 
  𝑥𝑥𝑘𝑘𝑥𝑥𝑙𝑙  1.83 1 1.83 0.15 0.7066 
  𝑥𝑥𝑖𝑖2 341.97 1 341.97 27.49 < 0.0001 
  𝑥𝑥𝑗𝑗2 591.41 1 591.41 47.54 < 0.0001 
  𝑥𝑥𝑘𝑘2 1.30 1 1.30 0.10 0.7505 
  𝑥𝑥𝑙𝑙2 187.13 1 187.13 15.04 0.0015 
Residual 186.61 15 12.44 

  

Lack of Fit 146.47 10 14.65 1.82 0.2630 
Pure Error 40.14 5 8.03 

  

Cor Total 7992.76 29 
   

3.2 Validation of Model and Normality Test 
Analysis on the residuals was performed to validate the normality in data set distribution for developed model of 
AMX removal and presented in Fig. 1(a). A linear pattern of residuals was observed between the straight red line 
which indicate the normal distribution for this model. Perturbation plot which illustrated in Fig. 1(b), help to 
explain the effect of 𝑥𝑥𝑖𝑖  (N), 𝑥𝑥𝑗𝑗  (Ce), 𝑥𝑥𝑘𝑘  (AC), and 𝑥𝑥𝑙𝑙  (W) as variables involve in AMX removal. The curvature of 
factor A shows a decrease in AMX removal when the dosage was increased. Similar pattern was observed in 
variable D where at lower microwave power, high AMX removal was reported. A sharp step was depicted by 
variable C in perturbation plot which shows a heavy influence of activated carbon in removal of AMX. An increase 
in C dosage also led to a high degradation percentage. When there is an increase of B dosage, the AMX removal 
also increases. The influence of each variable in antibiotic removal seen in perturbation plot is also like the ANOVA 
analysis denoted in Table 2 where variable C (p-value < 0.0001) has the highest influence followed by variable B 
(p-value = 0.0047), A (p-value = 0.0342) and D (p-value = 0.0360). 

3D surface plot and contour plot were used to further demonstrate the influence of variable in AMX removal 
where the blue area indicates the weakest relationship between the factors, whereas the red region indicates the 
strongest. Fig.  2(a) represents the 3D response that shows interaction between variable urea (A) and cerium (B). 
When both dopants impregnated into the AC-TiO2, higher AMX removal was observed when B dosage present 
more on the photocatalyst than A. The increasing trend can also be seen in Fig. 2(b) where the removal percentage 
increased when the activated carbon (AC) dosage increased. Moreover, it also appeared that the microwave power 
used to activate the photocatalyst shows great influence in the degradation of AMX. When preparing the 
photocatalyst at 800 W, the removal percentage was lower compared to the removal when photocatalyst was 
prepared at lower microwave power. This can be explained from higher power used in synthesis system can lead 
to photocatalyst overheating and reduce the grain size that reduce the photocatalyst efficiency [32], [33]. The 
removal rate revealed a pattern of increases as the AC dose increased, owing to the substantial availability of active 
sites over a broad surface area, facilitating photocatalytic activity [34]. AC based TiO2 prepared with low N and 
high Ce dosage allows high removal rate, aligning with the findings reported in the literature [35].  
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Fig. 1 (a) Normal probability plot for the developed quadratic model in CCD-RSM for AMX removal; (b) 
Perturbation curve on the influence of each variable in AMX removal 

Fig. 2 3D response surface plot the influence of (a) N versus Ce (𝒙𝒙𝒊𝒊 x 𝒙𝒙𝒋𝒋); (b) AC versus microwave power (𝒙𝒙𝒌𝒌 x 𝒙𝒙𝒍𝒍), 
in AMX removal 

3.3 Response Optimization 
To determine the optimum variables to synthesize AC/TiO2 doped N-Ce fitting in AMX removal, a suggested 
conditions of independent variables were chosen from the quadratic model generated in CCD-RSM as tabulated in 
Table 3. Since the degradation of AMX reported in Table 1 shows the highest removal when photocatalyst was 
synthesized with minimum variable urea dosage (N)(𝑥𝑥𝑖𝑖) and microwave power (W)(𝑥𝑥𝑙𝑙), maximum variable of 
cerium (III) nitrate hexahydrate (Ce)(𝑥𝑥𝑗𝑗) and AC (𝑥𝑥𝑘𝑘), thus the validation to find optimum condition in preparing 
the photocatalyst followed the same conditions. The prediction for photocatalyst prepared under same condition 
was 91.37%. The results from degradation of AMX from photocatalyst using new variable condition shows 
degradation up to 93.55%, giving 2.33% error percentage. A smaller percentage error in validation process means 
closer to the actual value and in good agreement. Thus, photocatalyst prepared using same condition is preferrable 
as optimum variables in preparing AC/TiO2 doped N-Ce as photocatalyst. 

 

  
(a) (b) 

  
(a) (b) 

A=𝑥𝑥𝑖𝑖 ; B=𝑥𝑥𝑗𝑗 ; C=𝑥𝑥𝑘𝑘 ; D=𝑥𝑥𝑙𝑙  
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Table 3 Validation of optimization for AMX adsorption and photodegradation activity 
Independent variables Conditions 
Urea (g) (𝑥𝑥𝑖𝑖) 0.02 
Cerium (III) nitrate hexahydrate (g) (𝑥𝑥𝑗𝑗) 0.20 
Activated carbon (g) (𝑥𝑥𝑘𝑘) 0.50 
Microwave power (W) (𝑥𝑥𝑙𝑙) 600 
Prediction 91.37% 
Experimental 93.55% 
Error percentage 2.33% 

4. Conclusion  
To achieve optimal results in the synthesis of a photocatalyst AC/TiO2-doped N-Ce, the current study utilized 
Central Composite Design (CCD) through Response Surface Methodology (RSM). The results of the analysis 
indicate that a TiO2-based photocatalyst, which was prepared using 0.02 g N, 0.20 g Ce, 0.50 g AC and activated 
using microwave irradiation (600 W) in 15 min, exhibited the highest removal rate of AMX (93.55%) within 60 
min when exposed to UV light. Therefore, the photocatalyst that was recently developed in this research study 
provides an effective alternative for the elimination of AMX from water bodies. 
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