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Abstract: This study provides a new perspective for xylose reductase enzyme separation from the
reaction mixtures—obtained in the production of xylitol—by means of machine learning technique
for large-scale production. Two types of machine learning models, including an adaptive neuro-fuzzy
inference system based on grid partitioning of the input space and a boosted regression tree were
developed, validated, and tested. The models’ inputs were cross-flow velocity, transmembrane
pressure, and filtration time, whereas the membrane permeability (called membrane flux) and xylitol
concentration were considered as the outputs. According to the results, the boosted regression tree
model demonstrated the highest predictive performance in forecasting the membrane flux and the
amount of xylitol produced with a coefficient of determination of 0.994 and 0.967, respectively, against
0.985 and 0.946 for the grid partitioning-based adaptive neuro-fuzzy inference system, 0.865 and 0.820
for the best nonlinear regression picked from among 143 different equations, and 0.815 and 0.752
for the linear regression. The boosted regression tree modeling approach demonstrated a superior
capability of predictive accuracy of the critical separation performances in the enzymatic-based
cross-flow ultrafiltration membrane for xylitol synthesis.

Keywords: adaptive neuro-fuzzy inference system; boosted regression trees; cross-flow ultrafiltration;
grid partitioning; (non)linear regression; xylitol; xylose reductase

1. Introduction

Xylose reductase (XR) is a member of the aldose reductase or aldehyde reductase
(ALR) family (EC 1.1.1.21), which belongs to the aldo-keto reductase (AKR) superfamily of
enzymes [1,2]. It catalyzes the reduction of xylose (found in hemicellulose hydrolysates
from lignocellulosic biomass) to xylitol [3], which has enormous applications in the pharma-
ceutical, food, and beverage industries [4] as its global market size is expected to increase
from USD 1 billion in 2022 [5] to USD 1.37 billion by 2025 [6].

XR has been reported to be found in the cytoplasm of a wide variety of microorgan-
isms, including bacteria, molds, algae, and yeasts [5,7,8]. However, as has appeared in the
literature, only yeast species have been extensively studied. Some examples of yeast XRs
include Candida shehatae [9], Candida tropicalis [10–12], Candida guilliermondii [13,14], Pichia
fermentans [6], Chaetomium themophilum [15], Spathaspora arborariae/passalidarum [16], Bar-
nettozyma populi/california/salicaria and Cyberlindnera mrakii [7], Neurospora crassa [17], and
Kluyveromyces sp. [18,19]. In general, XR prefers NADPH (reduced form of nicotinamide
adenine dinucleotide phosphate as a coenzyme (donor of hydrogen atoms)) to convert
xylose to xylitol. However, dual coenzyme specificity for NADPH and NADH has also
been reported [8,15,16].
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One of the major challenges associated with the enzymatic-based xylitol production
process is downstream processing. It is referred to further process the reaction mixture
for the recovery of the targeted component of interest; for example, the separation of the
XR enzyme, as it is not available commercially [14], is highly desired. With respect to
the fact that downstream processes are potential cost drivers [20], a proper design for
the downstream process is required to offer good purification yield for the component
of interest while being as simple as possible and cost-efficient to make their practical
application feasible for large-scale industrial processes. In this regard, membrane filters
have proven to be valuable tools because they are energy-efficient technologies, and their
scale-up is relatively easy [21–23]. Membrane filters are categorized in accordance with the
types of driving forces and the size of pores, among which the tangential-flow filtration
(more often known as cross-flow (CF) filtration) with an ultrafiltration (UF) membrane
has become the most attractive and promising technology [24] because it is economically
viable and offers high productivity along with good purity level for the targeted product
of interest. The performance of such a process is strongly influenced by several operating
parameters, most notably CF velocity, transmembrane pressure (i.e., the difference between
the applied and the osmotic pressure), and filtration time (referred to hereafter as CFV,
TMP, and FT, respectively) [20]. Hence, the development of a model to accurately predict
the performance of CF–UF membrane process is highly desired as it could help engineers
and asset managers to better control the operating parameters.

Background

Numerous mathematical models describing the mechanism of solute(s) transport
through the CF–UF membrane system are available in the literature. The first one—the
gel layer model—was introduced by Michaels [25]; however, this model does not take into
account the osmotic pressures of macromolecular solutes. Hence, such a model seems not
to be appropriate for ultrafiltration of protein solutions because Vilker et al. [26] observed
that the concentrated solutions of bovine serum albumin can exert osmotic pressure. Bellara
and Cui [27] proposed a nonparameterized model to predict the permeate flux for protein
(i.e., bovine serum albumin) solutions in CF–UF tubular membrane. The proposed model
was a combination of a hydrodynamic model to support the growth of boundary layer,
and Maxwell–Stefan equations [28] to describe electrostatic interactions generated through
filtration of charged molecules. The model was numerically solved with (and without)
taking into account viscose integrations within the concentration polarization layer, and
tested against data (TMP = 40 kPa, pH of 5.4 and 7.4). When the model considered viscous
integrations, an excellent correlation between the model predictions and measured data
was observed. One concern associated with Bellara and Cui’s model [27] is neglecting the
electro-viscous effects in order to keep the model simple. Ahmad et al. [29] developed a
model to predict the volume of permeate flux, gel layer resistance, and the rejection of each
solute in a multiple-solute solution using a pilot-scale CF–UF membrane, where the feed
was a complex biological solution (i.e., the pretreated palm oil mill effluent containing the
solutes of ammonical nitrogen, carbohydrate constituents, and crude protein). The model
was constructed based on osmotic pressure-/resistance-in-series-/gel-polarization-model
taking into account mass balance analysis. The authors estimated the model parameters
(e.g., membrane resistance, mass transfer and back transport coefficients of the solutes, and
permeating coefficient) by means of Levenberg–Marquardt and Gauss–Newton algorithms.
The model predictions were in a good agreement with the experimental results. In the study
conducted by Karasu et al. [30], a model was developed for separation of protein from a
synthetic whey concentrate suspension in a CF–UF system by modifying the compressive
yield stress model for permeate flux through a fouling layer on a dead-end UF membrane
that was introduced by [31–33]. In Karasu et al.’s model [30], it was assumed that (i) some
of the solid particles on the fouling layer surface are continuously detached by shear stress
created by the influent flow, and the rate of particle removal (volume per unit time and per
unit membrane area) is constant; (ii) the effect of the concentration polarization layer on
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the shear stress on the top part of the fouling layer is negligible; and (iii) shear stress and
cake compression are functions of CF velocity and TMP, respectively. The authors used the
removal rate of the fouling layer as a fitting factor, which was estimated by trial-and-error
method so that the model-predicted ratios of filtration time-to-volume of permeate per
unit membrane area best fitted the corresponding measured values. The results indicated
that permeate flux and filtration time predicted by the proposed model correlated well
with the measured data in steady-state condition. However, the model was not able to
adequately fit the experimental data in the beginning of the time course of permeate.
Nguyen et al. [34] modified Karasu et al.’s model [30] considering that membrane fouling
(using a pore blockage model) and the growth of the cake layer (using a compressive yield
stress model) take place simultaneously. Their results demonstrated that such a combined
model well described the entire time course of the permeate. Kirschner et al. [35] modified
Hermia’s models [36] (i.e., intermediate pore blocking and cake filtration models reported
for filtration and fouling in dead-end membrane under constant pressure) to describe
fouling during filtration using a polyether sulfone flat sheet UF membrane operated under
constant CF filtration; intermediate pore blocking refers to a phenomenon where solid
particles are allowed to either deposit onto an unobstructed membrane’s surface area or
on top of an early deposited solid particle, whereas, in cake formation, solid particles
fully cover the membrane’s surface area in some layers. The authors also used Field
et al.’s model [37] to take into account the CF filtration term in their model. A latex bead
suspension (200 ppm 0.22 µm) and a soybean oil emulsion (200 ppm) were separately
utilized as foulant. According to the simulation results, below the threshold flux (i.e., the
flux below which cake formation is insignificant and beyond which cake formation governs
the fouling mechanism), the intermediate pore blocking model fitted the experimental
values well. However, above the threshold flux, the combination of the intermediate pore
blocking model and the cake filtration model produced the best fit.

Even though various mathematical models have been developed to predict the ef-
ficiency of ultrafiltration of a complex mixture, they might not be able to successfully
model the permeation flux decline because of occurring a wide range of different and
complicated phenomena during fouling of the UF membrane, which could be associated
with (an unknown) interaction between feed compositions, the membrane itself (i.e., nature
and surface properties), and operating/hydrodynamic conditions [38,39]. In addition,
equations involved in the mathematical models may be complex and there may be a need
for simplifications by incorporating assumptions; in such case, if the assumptions are far
from reality, these could lead to an under/overestimation in the model-predicted values.
Furthermore, the mathematical models describing behavior of UF processes often suffer
from a number of limitations. For instance, they are not able to describe the flux-time behav-
ior under unsteady state conditions. Moreover, a given mathematical model can be applied
only for a particular feed under certain conditions [40]. For these reasons, alternative
methods (much simpler and more flexible in comparison with mathematically established
models, and with high prediction accuracy) for predicting UF process performance are
nowadays in high demand. In this context, one approach that can be recruited is machine
leaning (ML) modeling (known as an easy-to-use black-box technique). The ML models do
not require detailed/theoretical knowledge of mechanisms involved in the process or the
relationships between the parameters that govern it. They are constructed based on only a
measured input–output dataset. Such modeling approach is a robust and powerful tool
possessing high generalization ability [41].

Wei et al. [42] used a single hidden layer feedforward backpropagation neural network
(FBPNN) to predict the dynamic permeate flux of cross-flow ultrafiltration of colloidal
suspensions (i.e., spherical silica colloids with particle diameter of 65 nm) as a function of
TMP, FT, ionic strength, and zeta potential (data taken from Bowen et al. [43]). The results
showed that the FBPNN model satisfactory described the nonlinear behavior of permeate
flux, offering a training and testing R2 value of 0.997 and 0.914, respectively, against the
linear multiple regression (MR) and nonlinear MR with the training and testing R2 values
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of 0.752 and 0.800, and 0.809 and 0.848, respectively. In another study, Krippl et al. [39]
developed a single hidden layer FBPNN model and successfully predicted the permeate
flux of cross-flow ultrafiltration process as a function of CF (100–300 mL min−1), TMP
(1.3–2.5 bar), and the initial protein bulk concentration (1.9–23.2 g L−1) (i.e., bovine serum
albumin and lysozyme from chicken egg white), where two types of membranes were used
(i.e., hydrophobic polyether sulfone and hydrophilic stabilized cellulose-based membrane).
The authors further combined the FBPNN model with a mechanistic model such that the
hybrid model showed a high predictive accuracy in predicting the duration of filtration in
both batch and fed-batch continuous modes.

Yet, to the best of the authors’ knowledge, the application of machine learning models
in predicting the performance of CF–UF membrane process in XR enzyme purification has
never been explored. This inspired the authors to conduct this study aimed to develop,
validate, and test two different machine learning models, including an adaptive neuro-
fuzzy inference system based on grid partitioning of the input space (ANFIS-GP) (an
advanced ML model possessing the advantage of both numerical and linguistic knowledge,
which is more transparent to the user/reader compared to other neural network models),
and boosted regression trees (an easy-to-understand ML model even for people without
an analytical background) to predict the performance of a CF–UF membrane process in
the separation of XR as a function of the operating parameters CFV, TMP, and FT. The
predictive performances of these two models were compared with each other, and with that
of the best nonlinear MR picked from among 143 different regressions, and of a linear MR.

In this study, initially, the dataset is given followed by modeling approaches including
ANFIS-GP, boosted regression trees, and (non)linear regression. Next, the modeling results
are discussed and compared. Then, sensitivity analysis for the best predictive model is
provided. Finally, this study ends with conclusions.

2. Methodology

A diagram illustrating the workflow of this study is depicted in Figure 1; refer to text
for further details.
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Figure 1. A schematic illustration of the workflow of this study (Tr: training subset; Ts: testing subset;
ANFIS: adaptive neuro-fuzzy inference system; BRT: boosted regression tree; M(n)LR: multiple
(non)linear regression; see text for further details).

2.1. Dataset

The data used in this study were obtained from Krishnan et al. [20], who operated a
lab-scale CF–UF membrane for separation of XR enzyme from the reaction mixture (i.e., xylitol,
xylose, glucose, arabinose, acetic acid, and XR) during xylitol synthesis. The reaction mixture
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was subjected to ultrafiltration, where a filtration process was performed at TMP and CFV
values of 1.2 bar and 1.06 cm s−1, respectively, to assess how the filtration time—ranging from
10 min to 100 min—influenced the process performance (i.e., the membrane permeability—
called membrane flux—and the amount of xylitol produced). The authors also conducted
two other series of experiments for the purpose of investigating the effects of TMP and
CFV on the process performance: (i) TMP varied between 0.8 and 1.6 bar at a constant CFV
value of 1.06 cm s−1, and (ii) CFV varied between 0.58 and 1.2 cm s−1 while TMP was held
constant at 1.2 bar. The experimental conditions in all the runs are presented in Table 1.

Table 1. Operating conditions used in the experimental UF membrane runs [20].

CFV = 0.58 cm s−1 CFV = 0.70 cm s−1 CFV = 0.82 cm s−1

Exp.
code

TMP
(bar)

FT
(min) y1

y2
(g L−1)

Exp.
code

TMP
(bar)

FT
(min) y1

y2
(g L−1)

Exp.
code

TMP
(bar)

FT
(min) y1

y2
(g L−1)

E1 1.2 10 0.5321 15.51 E2 1.2 10 0.5976 15.66 E3 1.2 10 0.6397 15.80
20 0.4865 15.48 20 0.5439 15.61 20 0.5623 15.84
30 0.4586 15.34 30 0.4859 15.52 30 0.5157 15.70
40 0.4351 15.12 40 0.4553 15.36 40 0.4906 15.62
50 0.4232 15.00 50 0.4478 15.20 50 0.4940 15.45
60 0.4253 14.89 60 0.4497 15.07 60 0.4764 15.40
70 0.4054 14.56 70 0.4467 14.76 70 0.4781 15.37
80 0.3967 14.23 80 0.4397 14.50 80 0.4718 15.26
90 0.3932 14.00 90 0.4387 14.33 90 0.4684 15.20
100 0.3937 13.00 100 0.4365 14.30 100 0.4673 15.00

CFV = 1.20 cm s−1 CFV = 1.06 cm s−1 TMP = 0.8 bar

Exp.
code

TMP
(bar)

FT
(min) y1

y2
(g L−1)

Exp.
code

TMP
(bar)

FT
(min) y1

y2
(g L−1)

Exp.
code

CFV
(cm
s−1)

FT
(min) y1

y2
(g L−1)

E4 1.2 10 0.7643 16.27 E5 1.2 10 0.6639 15.97 E6 1.06 10 0.5296 15.40
20 0.6753 16.10 20 0.5572 15.71 20 0.4820 15.23
30 0.6381 16.00 30 0.5233 15.31 30 0.4570 15.00
40 0.5923 15.92 40 0.5018 15.14 40 0.4183 14.65
50 0.5529 15.85 50 0.4808 14.94 50 0.4176 14.60
60 0.5343 15.63 60 0.4674 14.63 60 0.3932 14.58
70 0.5319 15.55 70 0.4585 14.57 70 0.3723 14.56
80 0.5307 15.54 80 0.4634 14.34 80 0.3685 14.50
90 0.5318 15.40 90 0.4593 14.17 90 0.3652 14.20
100 0.5287 15.42 100 0.4572 13.95 100 0.3622 13.24

TMP = 1.0 bar TMP = 1.4 bar TMP = 1.6 cm s−1

Exp.
code

CFV
(cm
s−1)

FT
(min) y1

y2
(g L−1)

Exp.
code

CFV
(cm
s−1)

FT
(min) y1

y2
(g L−1)

Exp.
code

CFV
(cm
s−1)

FT
(min) y1

y2
(g L−1)

E7 1.06 10 0.5941 15.66 E8 1.06 10 0.7188 16.10 E9 1.06 10 0.7832 16.25
20 0.5412 15.61 20 0.6320 16.06 20 0.6732 16.00
30 0.5165 15.52 30 0.6072 15.89 30 0.6532 15.90
40 0.4953 15.36 40 0.5532 15.72 40 0.6238 15.76
50 0.4618 15.20 50 0.5395 15.60 50 0.5844 15.65
60 0.4482 15.07 60 0.5064 15.46 60 0.5583 15.63
70 0.4371 14.76 70 0.4841 15.55 70 0.5367 15.55
80 0.4382 14.50 80 0.4591 15.36 80 0.5347 15.54
90 0.4359 14.33 90 0.4586 15.20 90 0.5328 15.40
100 0.4382 14.30 100 0.4573 15.21 100 0.5320 15.42

TMP: transmembrane pressure, CFV: cross-flow velocity; FT: filtration time; y1: normalized flux (i.e., ratio of the
permeate flux to the pure water flux); y2: xylitol concentration.

2.2. Modeling Approaches

To construct predictive models (described in Sections 2.2.1–2.2.3), FT (x1), TMP (x2),
and CFV (x3) were considered as the inputs, while the normalized flux (y1), and xylitol
concentration (y2) were the outputs. As seen in Table 1, the raw dataset consists of a total
number of 90 input–output data pairs (referred to hereafter as observations). Before using
the raw dataset, it was randomized using Excel (version 2016, Microsoft Corp., Redmond,
WA, USA) and subsequently split into two disjoint subsets: training subset and testing
subset. Out of 90 observations, 70 observations (corresponding to about 78% of the dataset)
were used as training subset to develop the models, while the remaining 22% of the dataset
(i.e., 20 observations) was served as testing subset in order to evaluate the prediction power
of the trained (developed) models; note that the training subset was further divided into
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five subsets in order to perform a cross-validation (CV) technique to avoid the models from
overfitting the training data. The training and testing subsets were stored in the workspace
of MATLAB® (trial version, R2020a) (MathWorks Inc., Natick, MA, USA) in the form of
arrays, in which each row represented an observation.

The following subsections provide different modeling approaches used for predicting
the performance of the UF membrane process in the separation of XR from the reaction
mixture—obtained in xylitol synthesis—as a function of FT, TMP, and CFV.

2.2.1. ANFIS Model

ANFIS, a computational intelligence technique, integrates the learning ability of an
artificial neural network (ANN) with the ability of an FIS in knowledge interpretation. The
ANFIS modeling technique is used to model complex tasks with nonlinearity behavior,
which is not easy to be modeled mathematically. Such models are built based on if-then
rules and a collection of input–output data pairs [44,45].

Let us suppose that an FIS is composed of two inputs (xi; i = 1 and 2)—each character-
ized by two fuzzy sets Ai and Bi that are specified with an appropriate membership function
(MF)—and one output f (x1,x2). Furthermore, let us suppose that the FIS is in the form of
the first-order Takagi–Sugeno FIS [46]. The relationship between inputs and output can be
described in accordance with the following rule sets, each consists of an “if part” (called
premise or antecedent part) and a “then part” (called conclusion or consequent part):

Rule (1):

If (x1 is A1 and x2 is A2), then f1(x1, x2) = a1x1 + b1x2 + c1 (1)

Rule (2):

If (x1 is B1 and x2 is B2), then f2(x1, x2) = a2x1 + b2x2 + c2 (2)

where Ai and Bi denote the fuzzy sets pertaining to xi (i = 1 and 2), and each is specified
by an appropriate MF (note that parameters associated with Ai and Bi are referred to as
antecedent parameters); f (x1,x2) is the output function of the i-th rule (i = 1 and 2); ai, bi,
and ci are referred to as antecedent parameters, corresponding to the i-th output function
(i = 1 and 2).

A schematic representation of a two-input one-output first-order Takagi–Sugeno FIS
with two fuzzy rules is displayed in Figure 2.
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two fuzzy rules. x1 and x2 are the inputs, Ai and Bi are the fuzzy sets pertaining to the input xi (i = 1
and 2), µAi(xi) is the membership function of fuzzy set A associated with xi (i = 1 and 2), µBi(xi) is
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apply a product operation, the nodes marked as “N” normalize the firing strength wi (i = 1 and
2), the single node marked as ∑ performs a summation function, fi(x1, x2) represents the output
function of the i-th rule (i = 1 and 2), and a rectangle represents an adaptive node while a circle
represents a fixed node (an adaptive node has modifiable parameters while a fixed node does not
have modifiable parameters).
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It can be observed from Figure 2 that the ANFIS model is a six-layer feed-forward
neural network wherein each layer, except layer 1, consists of processing units (more often
called nodes) that perform particular functions on their incoming signals and generate
outputs, which are considered as inputs for the next layer; layer 1, called input layer, has
no processing units; in other words, the input layer nodes only transfer the input data to
the next layer. The reader is referred to [47,48] for a detailed description of each layer.

• ANFIS-GP

One of the most popular techniques developed to identify the structure of the ANFIS
model is based on grid partitioning (GP) of the input space. This technique—with respect
to the number/type of MFs assigned to each dimension of a given input space—splits the
input space into a number of subspaces (called fuzzy regions each characterized by a fuzzy
if-then rule) using an axis-paralleled partition. The total number of fuzzy rules equals the
number of all possible combinations of all the inputs [49]. Figure 3 illustrates an example
of grid partitioning of a two-dimensional input space with three triangular MFs assigned
to each dimension.
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Let us suppose that an input space contains a collection of n inputs {x1, x2, . . . , xn}.
Applying GP technique on such an input space yields m1 × m2 × . . . × mn fuzzy rules
where mi stands for MFs associated with the i-th input xi. It can be implied that the number
of fuzzy rules rapidly rises as the number of MFs increases. Therefore, training the ANFIS
model becomes computationally expensive because the number of fitting parameters
increases. According to Jang [50], GP is an appropriate technique only for problems with a
small number of input variables (e.g., smaller than six). In this study, the problem at hand
deals with three inputs. Hence, applying the ANFIS-GP is suitable.

• ANFIS Parameters

ANFIS models contain two parameter sets: (1) antecedent parameter set and
(2) consequent parameter set. Let us suppose an ANFIS is created based on the first-
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order Takagi–Sugeno FIS. The number of antecedent and consequent parameters can be
computed according to Equations (3) and (4).

NA = N × P×M (3)

Nc = NR = ×(N + 1) (4)

where NA is the number of antecedent parameters; N is the number of inputs to the ANFIS
model; P is the number of input MFs (for example, in the case of generalized bell-shaped
MF; P equals (3)); M is the number of MFs assigned to each input; NC is the number of
consequent parameters; and NR is the number of fuzzy rules.

A large body of literature has reported that a combination of the error backpropagation
(BP) and the least squares estimation (LSE) methods, called a hybrid algorithm, is very
efficient to optimize ANFIS parameters [50–53]. Each iteration of the hybrid algorithm
includes two passes as follows:

(1) Forward pass: The input signals go forward through the network, layer by layer,
until the defuzzification layer wherein the LSE method is applied to determine the
consequent parameters while the antecedent parameters remain constant.

(2) Backward pass: The error signals are back propagated from the output layer to the
input layer and gradient descent is used to adjust the antecedent parameters, while
the consequent parameters remain constant.

The ANFIS output is calculated using the consequent parameters determined in the
forward pass.

In this study, an ANFIS-GP model was implemented in MATLAB® (trial version,
R2020a) (MathWorks Inc., Natick, MA, USA) using ANFIS Editor GUI (graphical user
interface), which can be displayed by typing “anfisedit” in the MATLAB command window.
Initially, the training and testing subsets were loaded from the MTALAB workspace, and
then, an FIS in the form of the first-order Takagi–Sugeno FIS was created considering that a
five-fold CV technique was applied to secure the model against overfitting the data.

For the problem at hand, various ANFIS models were developed differing in the types
of input MFs to choose the best model as the one with minimum validation error. Six types
of input MFs, including Gaussian MF (gaussmf ), generalized bell-shaped MF (gbellmf ),
trapezoidal MF (trapmf ), triangular MF (trimf ), the product of two sigmoidal MFs (psigmf ),
and a combination of two Gaussian MFs (gauss2mf ) were examined (refer to the study of
Clemente [54] for the mathematical definition of these MFs). The number of MFs per input
was set to two; note that an increase beyond two was found to be inappropriate due to
the creation of an ANFIS model in which the total number of trainable parameters was
greater than the number of observations in the training subset. Each ANFIS-GP model
was trained using the hybrid algorithm, and the training error goal was set to zero. The
algorithm stopped learning when the training error reached zero. Otherwise, the algorithm
continued iterating up to a certain iteration beyond which the training error was not
further decreased. In case none of these two stopping criteria were satisfied, iterating was
progressed up the predetermined number of iterations (i.e., 100 iterations in this study).
Once the model training process was complete, the model was tested on the testing subset
(unseen during training process). The performance of the ANFIS-GP models was assessed
using three statistical indices, namely coefficient of determination (R2), root mean squared
error (RMSE), and Nash–Sutcliffe efficiency coefficient (NSE) defined by Equations (5), (6),
and (7), respectively [55–57].

R2 =

 ∑n
i=1(yi − y)

(
yp

i − yp
)

√
∑n

i=1 (yi − y)2
√

∑n
i=1 (y

p
i − yp)

2


2

0 ≤ R2 ≤ 1 (5)
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RMSE =

(
1
n ∑n

i=1 (yi − yp
i )

2
)0.5

0 ≤ RMSE ≤ ∞ (6)

NSE = 1− ∑n
i=1 (yi − yp

i )
2

∑n
i=1 (yi − y)2 −∞ ≤ NSE ≤ 1 (7)

where yi and yp
i prepresent the measured values of the output, and the model predicted

values for the i-th observations, respectively; y and (yp) represent the average value of
yi and yp

i , respectively (i = 1, 2, . . . , n); and n is the total number of observations (in the
training or testing subset), on which R2, RMSE, and NSE are calculated.

From Equations (5)–(7), a perfect model would expect to achieve R2 and NSE values
equal to unity, and an RMSE value of zero (i.e., yp

i = yi).

2.2.2. Boosted Regression Trees

Boosted regression trees is a modelling approach composed of two algorithms, in-
cluding regression trees (RT) and boosting [58]. The following subsections describe a brief
introduction to RT and boosting algorithms.

• RT Algorithm

RT, a decision support tool dealing with continuous (numeric) predictors [59,60],
is among the most common machine learning algorithms, which has been widely used
in various fields (e.g., engineering, science, finance, etc.) due to its simplicity and high
interpretability [61–63]. The RT algorithm was first introduced by Breiman et al. [64], and
it consists of a series of decision nodes on input variables called explanatory or predictor
variables. A decision node is represented by a conditional statement, i.e., a binary question
with the options of being “true” or “false”. This results in the creation of two arcs (branches)
from each node; note that if the conditional statement is true, the observations correspond
to the given predictor variable fall to the right branch, otherwise, they fall to the left branch.
Each branch may lead to a decision node, which is branched out again, or may end up in an
unsplit node called terminal (output) node or leaf depending on the minimum number of
data points that a node can take in order to be split. Since this approach forms a tree-shaped
structure, it is known as RT. Most RTs are drawn upside down, which means that the parent
node (called root node) is the topmost, and the leaves are at the bottom of the tree [65–67].
The algorithm examines binary splits for all predictors to find their corresponding cut-off
values that offer the best split. The best predictor, which is assigned to the root node, is
selected according to the sum of the squared residuals index after data splitting; this process
is repeated for new nodes (i.e., child nodes generated from the root node, grandchild nodes,
etc.) until a stopping condition is satisfied (for instance, minimum leaf size (mls) is used
as a stopping parameter); the splitting of nodes is terminated if the number of data points
per node becomes smaller than the mls. The mathematical background of the RT model is
given in detail below [65,68].

Let us suppose that a given system is described with a training dataset consisting of n
observations {xi, yi }n

1 with x ∈ Rm and y ∈ R, where x represents an m-element vector (m
denotes the number of predictor variables) and y is the corresponding output variable. The
objective is to use this dataset to find a function, f (x), mapping x into y, which minimizes
the expected value of a particular loss function L (y, f (x)) on the training dataset; an often
used L function is the sum of squared residuals (SSR), where residuals are the difference
between y and f (x). This function, f (x), can then be served to predict the output of query
observations where only predictor variables are known.

First, all observations are sorted according to the values of each predictor [69]. Let
us suppose that {x1, x2, . . . , xn} are the sorted values of a given predictor xj. Any value
between xi and xi+1 will split the set to the same two subsets, and thus, the possible number
of splits that needs to be tested is n-1. In general, the midpoint of each interval [xi, xi+1] is
considered the splitting point. Then, the algorithm starts with a root node where, for a given
predictor xj, we choose the cut-off point (c) such that the binary splitting of the observations
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into the right-hand node with xj ≥ c and the left-hand node with xj < c results in the greatest
possible reduction in the accumulative SSR on both the right- and left-hand nodes (SSR
index is used as a criterion to assess the quality of a given split). All predictors and all
possible c values that correspond to each of the predictors are examined. A particular
predictor with a c value that produces the overall minimal SSR is selected as the variable,
which should reside on the root node. Mathematically, it can be expressed as follows:

SSRj = ∑
i∈LN

(yi − y∗LN)
2 + ∑

i∈RN
(yi − y∗RN)

2 (8)

where SSRj is sum of squared residual correspond to the j-th predictor, and y∗LN and y∗RN
represent the averaged outputs of the series of observations corresponding to the left-hand
node and to the right-hand node, respectively.

This process is repeated to find the best predictor and c value to split the dataset further
so that the SSR in each of the prior created nodes is minimized. The process continues
until a stopping condition is satisfied. For example, it stops once the size of none of the
leaves is greater than mls, which is set by the user. When the tree is formed, the output of a
given observation, i.e., new (test) observation, is made by averaging the outputs of all the
training observations in the leaf where the test observation belongs.

• Boosting

Single RT-based models—despite widespread use due to their simplicity and high
interpretability, being able to deal with missing variables and to handle a mixture of contin-
uous and categorical predictor variables, and insensitive to outliers [58,67] —suffer from
low accuracy in term of prediction [60]. In addition, they are often unstable, which means
that small changes in a training dataset may lead to forming a tree with different series of
splits [70–73]. Hence, the boosting algorithm that was first proposed by Schapire [74]—later
developed by Freund [75] and Freund and Schapire [76]—can be served as a means to
enhance predictive performance of RT models [58,77]. Boosting of RT (referred to here-
after as BRT) employs an iterative algorithm to build a final model, sequentially adding
many—typically hundreds or thousands—single RTs; a single RT is referred to as a base
learner or weak learner due to having low prediction power [78]. The concept of the
BRT model, graphically shown in Figure 4, is that each additional RT further reduces the
prediction error [67].
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Figure 5 displays a general schematic diagram depicting how BRT works; note that
only two RTs are shown, and for simplicity, the RTs were supposed to be shallow with
only one internal node. In other words, the left- or right-hand node (here the left-hand
one) originating from the root node and the nodes from the single internal node are unsplit
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nodes (leaves). The output of a BRT model is calculated as the sum of the outputs of all
trees multiplied by a learning rate.
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Figure 5. A general schematic diagram depicting the components of a BDT. A black circle corresponds
to the root node of the tree, whereas a brown corresponds to the internal node. The green circles
represent unsplit nodes (leaves). A solid blue arrow indicates that the conditional statement in the
preceding node is satisfied, while a dashed blue arrow indicates that the conditional statement has
failed. The circle labeled as Σ applies a summation function on its incoming signals, where a signal is
defined as the weighted output of an RT (weighting coefficient known as learning rate (α) that take
values smaller than 1.0).

Mathematically, the BRT’s output (F) can be computed in accordance with Equation (8) [58].

F(x) =
Nt

∑
k=1

α fk(x) (9)

where fk(x) is the function of k-th RT built on the dataset {X, r} where X is the predictor
space and r is the vector of residuals produced from the previously grown RT. When k
equals one, r equals y, where y is the vector of outputs in the training observations. In other
words, the first RT is grown on the dataset {X, y}. It is worth mentioning that each tree
in a BRT model has a quite different structure compared with the others as they grow on
different datasets.

α is the learning rate.
Nt is the total number of RTs.

• BRT Tuning Parameters

The BRT model has several tuning parameters, which should be adjusted in order to
optimize the model accuracy. The key parameters are as follows [58,67,79]:

Number of trees (Ntr): In case of setting Ntr to small values, the model may be subject
to underfitting, which means that the model in unable to fit even the training dataset. In
contrast, the more trees, the better the model learns. However, the training time increases,
and the model would tend to overfitting. This means that the model learns noises (irregular
patterns) rather than relevant patterns; in other words, the model offers good predictions on
the training dataset; however, it produces a poor prediction performance on the test dataset.
Hence, this parameter should be carefully controlled. One of the possible solutions to avoid
under-/over-fitting is to use the CV technique, which allows selecting the optimum value
of Ntr according to the performance of CV. For a detailed description of the CV technique,
the reader is referred to the studies of Carslaw and Taylor [80], Fedotenkova [81], and
Salehi and Lestari [82].
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Depth of trees: The deeper the trees grow, the more the model is prone to overfitting.
Learning rate (α): It is often called step size or shrinkage factor, which takes a value in

the range (0,1]; α is a measure of how fast or slow the model converges. Note that in case
of setting α to a very small value (<<1), a very large value of Ntr is needed to attain high
performance; however, this comes at a cost, which means that training the model might
become computationally too expensive.

In this study, the BRT model was implemented in MATLAB using the Regression
Learner App, a subdivision of the Machine Learning and Deep Learning group, which can
be found by clicking on the Apps tab in the MATLAB toolbar. Initially, the training and
testing subsets were loaded from the MATLAB workspace, and then a five-fold CV was
selected as a preventative technique against overfitting.

There are some parameters, i.e., Ntr, mls and α, that are critical to the development of
an accurate BRT model. For the problem under consideration here, Ntr, mls, and α varied
in the following ranges: Ntr from 1 up to 600 (with a total number of 23 data points), mls
from 2 to 8 with an increment step size of 1, and α from 0.1 to 1.0 with an increment step
size of 0.1. It was assumed that only one of these three parameters varied at a time, and the
rest of the two parameters were held constant. This assumption resulted in the creation of
1610 different BRT models for each output (y1 and y2), among which the best model was
picked as the one that yielded the least validation error; the smaller the validation error, the
better the model generalization power. The performance of the BRT model was assessed
using the statistical indices (R2, NSE, and RMSE) given by Equations (5)–(7).

2.2.3. Multiple Regression Analysis

Multiple regression is a statistical technique that is widely used in numerous problems
to establish a relationship between a series of predictor variables and a dependent variable
called output variable. Consider output variable y, which depends on “m” predictor
variables (x1, x2, . . . , xm). For “n” observation, if the relationship between these variables is
given by Equation (10), it is called a multiple linear regression (MLR).

yi = a0 +
m

∑
j=1

ajxji i = 1, 2, . . . , n (10)

where xji denotes the i-th observation of xj; yi represents i-th observation of the response;
“a0” is a constant (the model intercept); and “aj’s” are the linear regression coefficients;
these coefficients can be estimated using the LSE method. The computational procedure to
determine the regression coefficients has been well described in [83,84].

An extended form of MLR is the multiple nonlinear regression (MnLR) in which an
output variable is described by a function that is a nonlinear combination of the predictors.
Though the MLR is often used, there are so many problems in which the application of
a MnLR is more suitable because the output behaves nonlinearly with changes in the
predictors. A challenge that is often associated with the use of MnLR is what type of
nonlinear function gives the best description of the relationship between predictors and
output, because MnLR can take many different functional forms.

In this study, MLR analysis was first performed to appraise the performance of the
conventional regression method for predicting the performance of the UF membrane
process in the separation of XR. The training subset was fitted to an MLR using MATLAB
to estimate the MLR coefficients. Then, the testing subset was used to assess the prediction
accuracy of the fitted MLR in terms of R2, RMSE, and NSE given by Equations (5) and (6).
Second, MnLR analysis was performed; to achieve this, the curve fitting in the DataFit
software (trial version 9.1.32, Copyright© 1995–2014, Oakdale Engineering, USA) was used.
The training subset was fitted to various MnLR models (a total number of 143 different
models) to estimate the MnLR models’ coefficients. The fitted models were then fed with
the testing subset to pick the best model as the one with the highest prediction accuracy
(the higher R2, NSE, and the smaller RMSE).
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2.2.4. Sensitivity Analysis

A sensitivity analysis was performed to investigate how the changes in input variables
influence the output of a given model. In this regard, a tornado chart (sometimes called
butterfly chart) was constructed, which is based on one-at-a-time input variation [85–87].
The tornado chart demonstrates the sensitivity of output in terms of “swings” displayed as
bars; a swing corresponding to the input variable Xi is defined as the absolute difference
between the output values (Yi) calculated at the values of Xi max and Xi min, while all
other input variables (Xj, j # i) are held at their median values. The created swings are
sorted horizontally in descending order of their width so that the overall chart (i.e., the
stacked horizontal bars) looks similar to the shape of a typical tornado. The wider the
swing, the higher the model sensitivity to the input variable tested; in other words, the
most important input variable that affects the model output is at the top of the chart, and
the least important is at the bottom. Figure 6 illustrates the procedure of building a tornado
chart for a given output variable (Y) as a function of input variables Xi (i =1 to n). The blue
and red bars—extended from the vertical dash line (Y value when medians are used for all
input variables)—represent the values of Yi|Xi, min and Yi|Xi,max , respectively. The green
bars represent swings, which are then categorized so that the widest bar is placed at the
top of the chart, followed by the second-widest bar, and so on.
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3. Results and Discussions
3.1. Evaluation of ANFIS-GP Model

Figure 7 shows the validation performance, in terms of R2 and RMSE, of the ANFIS-GP
when the model output was the normalized flux. It is clear from Figure 7 that changes in
the type of input MF influence the validation results. The best input MF, out of six MFs
(i.e., trimf, trapmf, gbellmf, gaussmf, gauss2mf, and psigmf ) examined to fit the training subset,
was selected as the one yielded the highest R2 and the least RMSE. As seen in Figure 7, the
use of trimf offered the best results (R2 = 0.9649, RMSE = 0.0154). Hereafter, the ANFIS-GP
model with normalized flux as the model output and trimf as the best input MF will be
referred to as ANFIS-GP1.
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The structure of the ANFIS-GP1 is graphically represented in Figure 8. There are three
nodes in the input layer, corresponding to the three inputs. In the second layer, two nodes
are connected to each input node (in total six nodes), which correspond to two MFs, in the
form of trimf, for each input. The third layer contains eight (i.e., 23) nodes equivalent to
eight if-then rules. The rules processing results are given by eight nodes in the next layer,
and then a weighted average method is applied in order to obtain the output. A detailed
description of the fuzzy if-then rules, and the optimal values of the input MFs’ parameters
(i.e., antecedent parameters) and output MFs’ parameters (i.e., consequent parameters) of
the ANFIS-GP1 are given in the Supplementary Material (Tables S1–S3).
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Regarding the ANFIS-GP model with xylitol concentration as the model output,
gaussmf was selected as the best input MF, which gave R2 and RMSE values equal 0.8366
and 0.2394, respectively (see Figure 9). Hereafter, the ANFIS-GP model with xylitol con-
centration as the model output and gaussmf as the best input MF will be referred to as
ANFIS-GP2. The structure of the ANFIS-GP2 is the same as the structure of the ANFIS-
GP1 shown in Figure 8, except that the input MFs were in the form of gaussmf instead
of trimf. A detailed description of the fuzzy if-then rules and the optimal values of the
input/output MFs’ parameters of the ANFIS-GP2 are given in the Supplementary Materials
(Tables S4–S6).
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To visualize the prediction accuracy of the ANFIS-GP1 and ANFIS-GP2 on the entire
dataset (i.e., both the training and testing subsets), the scattered diagram—in which the
measured data plotted against the models’ predicted values—was constructed (Figure 10);
a distinction first needs to be made between the 1:1 line and the line of best fit (regression
line). The 1:1 line (more often called the 45◦ line or 100% correlation line) is often used
as a reference when comparing two data sets in a two-dimensional scatter plot. If the
corresponding data points from the two data sets are equal to each other, the corresponding
scatters lie exactly on the 1:1 line. The line of best fit refers to a straight line through a
scatter plot of data points that best represents the relationship between the data points. The
equation for such a line is typically created using the least squares method.

It can be observed from Figure 10 that the data points on the plots have been dispersed
well enough around the 1:1 line with R2 and NSE values of 0.9845 and 0.9843 for ANFIS-
GP1 and of 0.9459 and 0.9453 for the ANFIS-GP2, respectively. These results indicate the
high prediction accuracy of the models as they can satisfactorily explain the variability
in outputs; the ANFIS-GP1 and ANFIS-GP2 do not explain only about 1.6% and 5.5%,
respectively, of the total variability in the outputs.

3.2. Evaluation of BRT Model

Figure 11 shows the validation error of the BRT model (with the normalized flux
as the output) as a function of mls and Ntr, while α was set to its optimal value (α = 0.3)
that was obtained via trial-and error-method. As seen in Figure 11, the smallest error
(RMSE = 0.0184) was achieved when mls = 5 and Ntr = 200 (note that further increase in Ntr,
beyond 200, showed a very little effect on the decrease in error); hereafter, the optimal BRT
model with the normalized flux as the output will be referred to as BRT1. As an example,
the structure of the tree no. 200 in the trained BRT1 is illustrated in Figure 12.
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Figure 12. Graphical representation of the structure of weak learner (tree) no. 200 in the trained BRT1.
(Notes: the total number of nodes in the tree equals 21; a brown circle indicates a node that can be
branched out, whereas a green circle indicates a terminal node (called unsplit node or leaf node) that
cannot be branched out; the number inside the nodes represent node number; the number under
the each node represents the size of the node (the number of observations that satisfy the condition
for the node); xi on the top of the nodes denotes the cut predictor; and the numbers in parentheses
represent the cut-off point (c) associated with xi (for each node, the right-hand branch is chosen if
xi ≥ c, and the left-hand branch is chosen if xi < c).

Figure 13 shows the validation error of the BRT model (with xylitol concentration as
the output) as a function of mls and Ntr, while α was set to its optimal value (α = 0.1). It
can be observed in Figure 13 that the smallest error (RMSE = 0.2566) was obtained when
mls = 2 and Ntr = 80; hereafter, the optimal BRT model with xylitol concentration as the
output will be referred to as BRT2. As an example, the structure of tree no. 80 in the trained
BRT2 is illustrated in Figure 14.
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Figure 14. Graphical representation of the structure of weak learner (tree) no. 80 in the trained BRT2
(see the notes in the caption of Figure 12).

Figure 15 shows the prediction accuracy of models BRT1 and BRT2 on the entire
dataset (i.e., both the training and testing subsets) as a scatter plot of the measured and the
model-predicted values. From Figure 15, the BRT1 and BRT2 offered an R2 value of 0.9944
and 0.9669, respectively, and an NSE value of 0.9937 and 0.9664, respectively, indicating
that the established models could predict the output variables well; the BRT1 and BRT2 do
not explain only about 0.6% and 3.3%, respectively, of the total variability in the outputs.

3.3. Evaluation of Regression Models

The MLR and MnLR equations obtained using the training subset have the following form:

MLR1:
y1 = −0.0019x1 + 0.2167x2 + 0.1745x3 + 0.1845

(11)

MLR2:
y2 = −0.0150x1 + 1.5183x2 + 0.9941x3 + 13.2684

(12)

MnLR1 :y1 = −0.1547 +
2.3579
ln(A)

− 16.0759
A2 A = 0.3905x1 − 35.6471x2 − 36.1295x3 + 92.6519 (13)

MnLR2 :y2 = 13.1374 +
7.0660× A

ln(A)
+

0.6351√
A

A = −0.1041x1 + 9.9640x2 + 8.2077x3 − 5.3888 (14)

where y1 and y2 represent the outputs (the normalized flux and xylitol concentration,
respectively); x1: FT; x2: TMP; and x3: CFV (refer to Table 1 for FT, TMP, and CFV values).
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concentration using the BRT2 on the entire dataset.

Figure 16 shows a scatter plot of the measured and the predicted values using the
MLR1, MLR2, MnLR1, and MnLR2 models on the entire dataset (i.e., both the training
and testing subsets). From this figure, the MLR 1 and MLR2 produced a relatively poor
linear correlation with R2value of 0.8149 and 0.7519, and NSE values of 0.8145 and 0.7507,
respectively. It can also be seen from Figure 16 that the MnLR1 and MnLR2 produced a
linear correlation with R2 value of 0.8653 and 0.8199, and NSE values of 0.8641 and 0.8190,
respectively. These findings indicate that (non)linear regression could not be accurate
enough to correctly predict the normalized flux and xylitol concentration for the system
under consideration in this study.
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3.4. Comparison of the Models

A performance comparison of the models developed (i.e., ANFIS-GP, BRT, and M(n)LR)
on the entire dataset is summarized in Table 2; three statistical indices (R2, NSE, and RMSE)
were used to make the comparison. It can be seen from Table 2, when the normalized flux
was used as the model’s output (called ANFIS-GP1 model), an R2 value of 0.9845 and an
NSE value of 0.9843—corresponding to an RMSE value of 0.0109—were obtained. In case of
using xylitol concentration as the model’s output (called ANFIS-GP2), R2, NSE, and RMSE
were found to be 0.9459, 0.9453, and 0.1494 g L−1, respectively. These findings demonstrate
that the ANFIS-GP model performs better than M(n)LR models, which yielded R2, NSE, and
RMSE values in the ranges of 0.7519–0.8653, 0.7507–0.8641, and 0.0319–0.3191, respectively.
In addition to high prediction accuracy of the ANFIS-GP model, its development was
straightforward because the number of input variables—for the problem presented in this
study—was as small as three inputs. However, in case of a given problem involving many
inputs, ANFIS-GP modeling could not be a feasible method because the number of fuzzy
rules increases exponentially with an increase in the number of inputs, and consequently,
this leads to an increase in the number of trainable parameters so that the model becomes
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computationally expensive. For instance, an ANFIS-GP model fed with n input variables
would generate Mn fuzzy rules, where M denotes the number of MFs for each input.

Table 2. Performance comparison of the developed models in this study.

Model Output Model R2 NSE Unit RMSE

Normalized flux BRT1 0.9944 0.9937 1 0.0069
ANFIS-GP1 0.9845 0.9843 1 0.0109

MnLR1 0.8653 0.8641 1 0.0319
MLR1 0.8149 0.8145 1 0.0373

Xylitol concentration BRT2 0.9669 0.9664 1 0.1171
ANFIS-GP2 0.9459 0.9453 1 0.1494

MnLR2 0.8199 0.8190 1 0.2719
MLR 2 0.7519 0.7507 1 0.3191

When comparing the performance of the developed ANFIS-GP and BRT models (see
Table 2), it can be observed that the BRT produced an R2 value of 0.9669–0.9944 and an NSE
value of 0.9664–0.9937, which are greater than those obtained using ANFIS-GP model. In
addition, the BRT model gave an RMSE value of 0.0069–0.1171, which is approximately
22–37% smaller than that produced by the ANFIS model.

Overall, it can be concluded that, among the models developed, the BRT model offered
the highest R2 and NSE values and produced the least error, and hence, it is the best
choice for predicting the normalized flux and xylitol concentration for the system under
consideration in this study. However, it should be noted that BRT models suffer from
two major limitations: (i) they are greatly unstable; a small change in the training dataset
can lead to form a completely different structure yielding different results, and (ii) such
models are prone to overfit the training data and to be computationally expensive. In order
to overcome this issue, caution must be taken to properly set the leaf node size (i.e., the
number of data points assigned to each leaf node) for any given problem.

3.5. Sensitivity Analysis for Model BRT

The sensitivity analysis, in the form of tornado chart, for a model BRT that produced a
smaller RMSE (higher R2) in comparison with models ANFIS-GP, MnLR, and MLR (see
Table 2) is shown in Figure 17. As seen in Figure 17a (tornado chart for model BRT1), the
widest swing is associated with input variable X1, which is 0.199. This implies that the high-
est impact on the model output comes from variable X1, followed by input variables X2 and
X3 showing a lower impact, with swing widths of 0.165 and 0.110, respectively. Figure 16b
(tornado chart for model BRT2), similar to Figure 16a, demonstrates that the input variable
X1 has the highest impact on the model output with a swing width of 1.60 g L−1 compared
to those of X2 and X3 with swing widths of 1.00 g L−1 and 0.77 g L−1, respectively.

3.6. Model Calibration and Validation Need

Although the modelling approaches and the models developed have demonstrated
such a meaningful predictive power, a need for model calibration and validation has to
be addressed. The machine learning models presented in this study were learned from
and used to make predictions on the data taken from the experimental runs conducted
by our previous work [20]. As the size of the original (raw) dataset was considered small
(only 90 observations, called patterns), the authors initially decided to randomly split the
raw dataset into only two disjoint subsets (i.e., training (Tr): 70 patterns, and testing (Ts):
20 patterns). Then, the cross validation (a very common, useful, and proven technique in
the field of data mining) was performed to avoid overfitting the training data and to tune
the models’ parameters. Then, the prediction accuracy of the developed (trained) model
was assessed on the Ts subset.
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the field of data mining) was performed to avoid overfitting the training data and to tune 
the models’ parameters. Then, the prediction accuracy of the developed (trained) model 
was assessed on the Ts subset.  

Each pattern in the Ts subset was never seen during the training phase. In other 
words, at least one of the data points (input variables in the pattern) of the j-th pattern (j 

Figure 17. Sensitivity analysis for the assessment of input variable importance on the estimation of
(a) y1 using model BRT1 and (b) y2 using model BRT2. (Notes: the minimum, median, and maximum
values of the input variables X1, X2, and X3 are (10, 55, and 100), (0.8, 1.2, and 1.6), and (0.58, 1.06,
and 1.20), respectively; X1: filtration time (min); X2: transmembrane pressure (bar); X3: cross-flow
velocity (cm s−1); y1: normalized flux (i.e., ratio of the permeate flux to the pure water flux); y2:
xylitol concentration (g L−1); vertical dash line: y1 (and y2) value at medians of all input variables.

Each pattern in the Ts subset was never seen during the training phase. In other words,
at least one of the data points (input variables in the pattern) of the j-th pattern (j = 1—20)
in the Ts subset had a different value compared to that of the i-th pattern (i =1–70) in the Tr
subset. By this, the authors mean that the Tr and Ts are composed of independent patterns.
In other words, a reasonable judgment on prediction capability of the trained model can be
made by testing the model on the Ts subset.

If any data point of the j-th pattern in the Ts does not have the same value as found for
that of i-th pattern in the Tr, the Tr and Ts subsets would be definitely independent, and
a better judgment can be made on the prediction accuracy of the model. Recognizing the
limited experimental runs in our work, we therefore recommend additional datasets of the
truly independent experiments be performed when the mathematical/statistical modeling
works are to be initiated by the existing data.

4. Conclusions

This study, for the first time, demonstrated the application of a machine learning
(ML) modeling approach to predict the performance of a cross-flow ultrafiltration (CF-UF)
membrane for the separation of xylose reductase (XR) from the reaction mixture obtained
in the production of xylitol, as a function of cross-flow velocity, transmembrane pressure,
and filtration time. Two types of ML-based models, including a grid partitioning-based
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adaptive neuro-fuzzy inference system (ANFIS-GP) and boosted regression trees (BRT)
were developed, validated, and tested. The prediction accuracy of the BRT and ANFIS-GP
models was compared as well as with that of the (non)linear regressions. The modeling
results clearly indicated the BRT model yielded a superior predictive performance on
membrane permeability with an excellent R2 value of 0.994 and on the amount of xylitol
produced with R2 value of 0.966. This implies that the BRT could be considered as a
valuable computational tool for predicting the performance of CF–UF membrane for
enzymatic production of xylitol. Future research needs to be directed towards other
types of commercial enzymes and on a scale-up study to determine the suitability of the
separation process in industrial applications, particularly for long-term usage with respect
to the production of high yield and productivity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su15054245/s1, Table S1: Fuzzy if-then rules for the ANFIS-GP1
used in this study; Table S2: Antecedent parameters of the ANFIS-GP1 used in this study; Table S3:
Consequent parameters of the ANFIS-GP1 used in this study; Table S4: Fuzzy if-then rules for the
ANFIS-GP2 used in this study; Table S5: Antecedent parameters of the ANFIS-GP xylitol model used
in this study; Table S6: Consequent parameters of the ANFIS-GP xylitol model used in this study.
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Nomenclature

AKR aldo-keto reductase
ALR aldehyde reductase
ANFIS-GP adaptive neuro-fuzzy inference system based on grid partitioning on the

input space
ANN artificial neural network
Ai, Bi fuzzy sets pertaining to input variable xi
ai, bi, ci antecedent parameters corresponding to the i-th output function
BP backpropagation
BRT boosted regression tree
c cut-off point
CF-UF cross-flow ultrafiltration
CV cross-validation
FBPNN feedforward backpropagation neural network
FIS fuzzy inference system
fi output function of the i-th fuzzy rule
GP grid partitioning
GUI graph user interface
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gaussmf Gaussian membership function
gauss2mf combination of two Gaussian membership function
gbellmf generalized bell-shaped membership function
LSE least squared estimation
M number of membership functions assigned to each input
MF membership function
MLR multiple linear regression
mls minimum leaf size
MnLR multiple nonlinear regression
N number of inputs to the ANFIS model
NA number of antecedent parameters
NC number of consequent parameters
NR number of fuzzy rules
n total number of observations
NADPH reduced form of nicotinamide adenine dinucleotide phosphate (donor

of hydrogen atoms)
NSE Nash–Sutcliffe efficiency coefficient
P number of input MFs
psigmf product of two sigmoidal membership function
R2 coefficient of determination
RMSE root mean squared error
r vector of residuals
RT regression tree
SSR sum of squared residuals
trapmf trapezoidal membership function
trimf triangular membership function
UF ultrafiltration
wi synaptic weight assigned to the signal leaving the i-th neuron with the

hid den layer
XR xylose reductase
x1 FT (filtration time; min)
x2 TMP (transmembrane pressure; bar)
x3 CFV (cross-flow velocity; cm s−1)
y1 normalized flux (i.e., ratio of the permeate flux to the pure water flux)
y2 xylitol concentration (g L−1)
yi

p model-predicted value for the i-th observation
y averaged value of yi
y|xi , min output value computed at xi set to its minimum value
y|xi , max output value computed at xi set to its maximum value
µji (xi) membership function of j-th fuzzy set associated with input variable xi
α learning rate (step size or shrinkage factor)
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