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1. Introduction  

A greenhouse, known as “rumah kaca” in Indonesia, is generally defined as a structure designed 

to manipulate the environmental conditions for desired plant growth [1], [2]. In its use, a greenhouse 

demonstrates that the environment becomes more controlled, leading to more optimal yields compared 

to crops grown without the use of a greenhouse [3], [4]. Environmental conditions within a 

greenhouse, such as temperature, humidity, and light, can be controlled according to the growth 
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affirming the system's alignment with desired specifications. Plant testing 

in different conditions showcases the effectiveness of the smart greenhouse 

in supporting plant growth and development.   
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requirements of the cultivated plants [5]-[8]. However, greenhouse construction has not yet fully 

adapted to the required climate due to the prevalence of manual controls, such as watering plants and 

humidity regulation [9]. This can result in quantity of production, accompanied by high costs. 

Considering the advancements in technology, particularly in the field of the Internet of Things (IoT) 

[10], [11], can be applied to greenhouses, enabling automatic control and remote monitoring [12], 

[13]. 

Numerous studies have been conducted by researchers related to the use of IoT to control 

environmental conditions in greenhouses, including research conducted by Sujin et al. (2021), 

discussing an IoT-based greenhouse control system. The system in this study monitors and controls 

environmental parameters in the greenhouse, such as temperature, humidity, and light intensity, 

through IoT [14]. NodeMCU esp8266 sends data to the cloud by activating actuators if parameters 

exceed set limits [15]. The research also includes mechanisms for managing soil humidity and 

controlling cooling and lighting systems. The results can be monitored through mobile phones and 

desktops. The system utilizes Arduino as the main controller with sensors like DHT11 [16] and LDR. 

In this research, it is concluded that the system is effective for monitoring and controlling the 

greenhouse, reducing physical activities and applicable in various locations. However, there are some 

shortcomings in this study, such as the use of on-off control in the system, leading to results that may 

not align with the desired set points. 

The study by Mohabuts et al. (2023) discusses an IoT model for monitoring plant growth in a 

greenhouse [17]. The research suggests that IoT can be effectively utilized as a tool for automatically 

monitoring and controlling plant growth in unstable climatic conditions [18]. Despite the prevalent 

use of traditional greenhouse systems, there is still a need for technological integration. Traditional 

systems are susceptible to manual intervention, pose risks, and require accurate data to maintain plant 

health. Thus, the study introduces an automated greenhouse model with a microcontroller as the main 

controller, sensors, fans, and pumps designed to enhance yields and reduce human intervention [19]. 

This model is applicable in real-world environments with 240V AC power and allows for remote 

monitoring. Future developments, including mobile application versions and advanced component 

integration, could enhance system functionality. However, the study does not delve into the specific 

controls used to monitor the greenhouse environment, potentially limiting the attainment of desired 

real-time conditions, even though the system can be implemented in real-time [20]. Additionally, the 

monitoring of this system cannot be conducted using mobile devices. 

The research conducted by Oguntosin et al. (2023) on an IoT-based Greenhouse Monitoring and 

Control System highlights a comparison between conventional farming and greenhouse farming [21]. 

Conventional farming requires high-frequency manual monitoring of various environmental 

parameters, often irregularly and less productively. In contrast, greenhouse farming integrates IoT 

technology for automatic monitoring and control, utilizing sensors such as temperature, humidity, 

light intensity, and soil moisture, along with an ESP32 development board with WiFi functionality 

[22]. With this automation, the greenhouse can be remotely controlled through the Internet of Things 

(IoT), providing an optimal environment for plant growth [23]. The study details the design and 

construction of a model greenhouse using wood and plastic film as covering, considering time 

efficiency and contributions to the Nigerian economy by ensuring year-round food availability. The 

data generated from this system can be used for further research to enhance the agricultural sector. 

However, the research conducted by Oguntosin et al. does not delve into the control mechanisms used, 

even though remote monitoring is possible, potentially limiting the effectiveness of the results. 

The research by Dubey et al. (2021), focuses on IoT-based monitoring and control of greenhouse 

environments using Arduino. According to their findings, a greenhouse is an area with a controlled 

climate for optimal plant growth [24]. The aim of this study is to design a simple and cost-effective 

Arduino-based system to monitor and control environmental parameters in the greenhouse, such as 

temperature, humidity, soil moisture, light intensity, and soil pH. Key sensors, including DHT11, soil 

moisture, LDR, and pH sensors, simultaneously provide these values [25], [26]. All environmental 

parameters are sent online to an Android phone via Ethernet, and SMS notifications through a GSM 

modem alert users when sensor values exceed predefined limits. Farmers can control the system and 
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actuators (fans, water pumps, lights, etc.) via SMS from anywhere. Ethernet is also utilized to send 

data to a server and store it in a database, enabling users to monitor and control parameters through a 

mobile application on Android using Blynk [27], [28]. The system does not discuss the use of control 

settings for greenhouse environmental conditions, indicating that optimization for desired set points 

has not been achieved yet. 

Yajie Liu's (2022) research focuses on monitoring and controlling a smart greenhouse based on 

NodeMCU, addressing issues of food security due to a large human population and limited agricultural 

land, especially in uncertain situations like the rapid spread of COVID-19 [29]. To overcome these 

challenges, the study proposes a smart and cost-effective greenhouse monitoring and control system, 

utilizing sensors, actuators, an LCD display, and a microcontroller. The DHT22 sensor is employed 

to measure temperature and humidity in the greenhouse, with NodeMCU serving as the main 

microcontroller [30], [31]. Additional features, such as fans and heaters, are used to regulate the 

environment. The system is connected to the internet to monitor the growth environment and store 

data in the Thing Speak cloud. Users can view data directly through a web interface or a mobile 

application. If environmental conditions exceed predefined limits, the system can be adjusted 

automatically. Data analysis in the study shows a negative relationship between temperature and 

humidity. However, the research does not incorporate a control system, such as machine learning 

technology or fuzzy logic [32], that would enable the system to predict and adjust conditions 

automatically, reducing the risk of losses and human involvement. 

From several descriptions of the above research, many studies are still related to smart 

Greenhouse that have not yet used an automatic control system that can regulate equipment in the 

greenhouse environment, such as machine learning technology, fuzzy logic, or other control systems 

[33], [34]. Therefore, in this study, an automatic control system is developed to regulate the watering 

and lighting of plants automatically based on soil moisture, room temperature, and incoming light 

intensity using fuzzy logic, especially fuzzy Sugeno. The system applied in the greenhouse is called a 

smart greenhouse [35]. The goal of developing this system is to facilitate and save time in managing 

the conditions of plants that require water, lighting, and other factors, where all monitoring factors 

and results are displayed on an LCD screen integrated with the system inside the greenhouse. 

The discussion of this research paper is organized into four parts. The first part discusses previous 

research so that contributions made in this study can be identified. Part two examines the system 

design and research methods used. Part three explains the results of the experiments conducted, and 

part four concludes the findings and briefly provides further suggestions for improving this paper. 

Through this research, it is expected that the use of fuzzy logic control will ensure that the control of 

conditions in the greenhouse environment operates according to the desired conditions [36]. 

2. Method 

2.1. System Design 

The fuzzy control system to be designed will use the main inputs of soil moisture and temperature 

[37], [38]. The light sensor input will be used to automatically control the UV lights inside the 

greenhouse. The ultrasonic sensor HCSR04 input will be used to measure water height as an alarm 

when the water is depleted [39]. The sensor inputs will be processed by the microcontroller. The 

microcontroller will then control the UV lights, buzzer, and pump based on user-desired inputs, as 

seen in Fig. 1. 

Fig. 2 explains the overall system architecture design. The system works by first reading the 

conditions in the greenhouse when the device is active. All sensor readings will be displayed on the 

LCD so that users can see the sensor values when the device is first activated. 

Then, the readings from the temperature and soil moisture sensors in the greenhouse are 

processed by the fuzzy logic controller, and the output is a delay in milliseconds. This delay is 

converted into seconds and used to provide a delay or active time for the DC motor when it is in an 

active state. In terms of irrigation, one fixed drip can release 16 litters of water per hour, which means 
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that each second, the fixed drip will release 4.4 ml of water. The light sensor output will be used as a 

reference set value, which will be processed to automatically turn on the UV lights. Similarly, the 

distance sensor will be used to activate the buzzer when the water in the water storage is about to run 

out. All systems in this final project run in parallel, so there will be three plants running automatically 

with the sensor inputs specified in Fig. 2. 

 

Fig. 1. System block diagram 

 

Fig. 2. System architecture design 

2.2. Fuzzy Design in the System  

In this research, the Fuzzy Sugeno [40] method is employed to understand how the method 

functions in making decisions regarding the outputs of an IoT-based greenhouse system [41], [42]. In 

this study, the Fuzzy Sugeno method is specifically applied to the irrigation output using a water 

pump, focusing on chili plants. This choice is made due to the presence of two variables sensed by 

temperature and humidity sensors. For the environmental temperature cooling output using a fan and 

the light provision output using an LED strip, only one variable, temperature, is considered, and it is 

measured using a temperature sensor. The following outlines the programming design using the fuzzy 

method. 
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2.2.1. Fuzzification [43] 

In this system, there are two types of variables, namely soil moisture and temperature [44]. Soil 

moisture variable has 3 criteria: dry, normal, and wet, while the temperature variable has 4 criteria: 

cold, cool, normal, and hot. From the generated results, 3 criteria are formed: fast, normal, and slow. 

The soil moisture variable has a measurement range from 0 to 100, representing the minimum and 

maximum average moisture. These values correspond to each input membership function of soil 

moisture, which is elaborated into 3 membership functions: dry, moist, and wet. Fig. 3 illustrates the 

membership functions of the soil moisture input [45]. 

Assuming the detected soil moisture value by the sensor is 66, then in Fig. 3, it can be observed 

that this value falls between moist and wet. If the value is manually calculated, the result will be 

obtained and illustrated as shown in Fig. 4. 

 

Fig. 3. Membership of soil moisture input 

For Example, X = 66 

U_moist     = (c – x) / (c - b) = (70 – 66) / (70 – 65) = 4 / 5 = 0.8 

U_wet = (x – a) / (b – a) = (66 – 65) / (70 – 65) = 1 / 5 = 0.2 

Based on the calculations of the soil moisture variable, it can be concluded that the soil moisture 

value of 66 has a membership degree of 0.8 in the moist membership function and 0.2 in the wet 

membership function. 

 

Fig. 4. Fuzzification condition of soil moisture 

 The temperature variable has a measurement range from 18°C to 30°C, representing the average 

values of the minimum and maximum temperatures. These values correspond to four membership 

functions: cold, cool, normal, and hot. Fig. 5 temperature input membership functions. 
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Fig. 5. Temperature input membership 

If the assumed temperature value obtained by the sensor is 21°C, it can be seen in Fig. 5 that the 

value is located between cold and cool. If the value is manually calculated, the result will be obtained 

and illustrated as shown in Fig. 6. 

For Example, X = 21 

U_cold = (c –  x) / (c −  b)= (24 – 21) / (24 – 20) = 3/4 = 0.75 

U_cool = (x –  a) / (b –  a) = (21 – 20) / (24 – 20) = 1/4 = 0.25 

Based on the calculated temperature variable, it can be concluded that the temperature value of 

21°C has a membership degree of 0.75 in the cold membership function and 0.25 in the cool 

membership function. 

Time variable is a variable used as the final or output result obtained from the calculation of soil 

moisture variables and temperature variables. The time variable has a measurement range from 0 

seconds to 10 seconds. These values represent each membership function of the temperature input, 

which is described by 3 membership functions: fast, moderate, and slow. Here is Fig. 7, which 

illustrates the membership function of the time variable. 

2.2.2. Fuzzy Rule 

The fuzzy rule process or inference is the process of combining rules based on data obtained from 

fuzzification results, resulting in the formation of 12 fuzzy sets as seen in Table 1. 

Table 1.  Fuzzy rule 

Temp 
Cold Cool Normal Hot 

Humidity 
Dry Medium Medium Long Long 

Moist Fast Fast Medium Medium 

Wet Fast Fast Fast Fast 

 

Fig. 6. Membership of soil moisture input 
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Fig. 7. Membership of the time variable 

Based on the fuzzy rules provided in Table 1, the rules to be used in this research can be outlined 

as follows: 

• (R1) If Dry Humidity AND Cool Temperature THEN Medium Time 

• (R2) If Dry Humidity AND Mild Temperature THEN Medium Time 

• (R3) If Dry Humidity AND Normal Temperature THEN Long Time 

• (R4) If Dry Humidity AND Warm Temperature THEN Long Time 

• (R5) If Moist Humidity AND Cool Temperature THEN Fast Time 

• (R6) If Moist Humidity AND Mild Temperature THEN Fast Time 

• (R7) If Moist Humidity AND Normal Temperature THEN Medium Time 

• (R8) If Moist Humidity AND Warm Temperature THEN Medium Time 

• (R9) If Wet Humidity AND Cool Temperature THEN Fast Time 

• (R10) If Wet Humidity AND Mild Temperature THEN Fast Time 

• (R11) If Wet Humidity AND Normal Temperature THEN Fast Time 

• (R12) If Wet Humidity AND Hot Temperature THEN Fast Time 

After formulating the rule base, the next step is to determine the implication function for each 

rule, which will then enter the defuzzification stage. In this study, the fuzzy method used is the Sugeno 

fuzzy method. The rules used in this method for implication functions involve using the MIN function 

and AND as the operator determining the smallest membership value. The formula is μA Ո B = min 

(μA[x], μB[y]). Here are the explanations for some of the rules: 

• (R5) If Moist Humidity AND Cool Temperature THEN Fast Time. α-Predicate 1 = µ Soil 

Humidity ∩ µ Temperature = min (µMoist [0.8] ∩ µCool [0.75]) = min(0.75) 

• (R10) If Wet Humidity AND Mild Temperature THEN Fast Time. α – Predicate 1 = µ Soil 

Humidity ∩ µ Temperature = min(µWet [0.2] ∩ µMild [0.25]) = min(0.2) 

• (R6) If Moist Humidity AND Mild Temperature THEN Fast Time. α – Predicate 1 = µ Soil 

Humidity ∩ µ Temperature = min(µMoist [0.8] ∩ µMild [0.25]) = min(0.25) 

• (R9) If Wet Humidity AND Cool Temperature THEN Fast Time. α – Predicate 1 = µ Soil 

Humidity ∩ µ Temperature = min(µWet [0.2] ∩ µCool [0.75]) = min(0.25) 

2.2.3. Defuzzification 

After the calculation for each rule by taking the MIN value of each variable corresponding to the 

existing rule conditions, the next step is to calculate the defuzzification using the following formula 

(1). 
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 𝑍 =
𝛼 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 1(𝑧1) + ⋯ + 𝛼 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 𝑛(𝑧1)

𝛼 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 1 + ⋯ + 𝛼 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 𝑛
 (1) 

Here, Z is the defuzzification value, and α−Predicateα−Predicate represents the implication value 

of each rule in the previous stage, need to substitute α−Predicate 1(z1), α−Predicate 2(z1), α−Predicate 

2(z1), α−Predicate 3(z1) and α−Predicate 4(z1) with the calculated implication values for specific 

rules. Similarly, α−Predicate 1, α−Predicate 2, α−Predicate 3, and α−Predicate 4 are the total 

implication values for all rules. Using the formula above, you can compute the defuzzification value 

Z based on the implications of the previously established rules. 

𝑍 =
0.75 (3) + 0.2 (3) + 0.25 (3) + 0.25 (3)

0.75 + 0.2 + 0.25 + 0.25
 

𝑍 =
2.25 + 0.6 + 0.75 + 0.75  

1.45
 

𝑍 =
4.35 

1.45
= 3 𝑆𝑒𝑐𝑜𝑛𝑑 

2.3. Test Scenarios 

Test scenarios involve the experimentation and evaluation of the assembled equipment according 

to the plan outlined in this research. The following are the results of the final examination, comprising 

Functional Testing and Fuzzy Sugeno Process Testing. 

A. Functional Testing involves the examination of each component of the equipment used in this 

research. 

• Device testing is conducted with the aim of testing all devices or components used to determine 

if they function correctly and as planned. This includes assessing the functionality of the 

temperature and soil moisture sensors, obtaining values that are then input into the system and 

connected to the Internet of Things (IoT). Additionally, testing is conducted on the outputs of 

this system, namely the Fan, LED Strip, and Water Pump. 

• Blynk Application Testing This testing is performed to assess the functions and features used to 

view data collected by sensors and to control the equipment. 

B. Fuzzy Sugeno Testing method testing involves evaluating how this method is applied to the 

irrigation control system to generate outputs in accordance with the pre-designed and calculated 

parameters. 

3. Results and Discussion 

This chapter will elaborate on the implementation of the hardware design, software 

implementation, functional testing, and analysis of the test results. 

3.1. Testing Implementation of the Entire Equipment Circuit 

In Fig. 8 (a) and Fig. 8 (b), the front and rear views of the entire equipment circuit for the IoT-

based greenhouse system are presented. The equipment utilizes a container in the form of a simple 

model resembling a greenhouse, with dimensions of 17 cm in height, 15 cm in width, and 20 cm in 

length. It is equipped with a rectangular water storage tank underneath, measuring 15 cm in width and 

20cm in length. Between the greenhouse model and the water tank, there is a partition in the form of 

a rectangular block with dimensions of 5 cm in height, 15 cm in width, and 20 cm in length. This 

partition has a small hole in the centre for the entry of water released by the incoming water pipe for 

the plants and also for the water droplets from the top, which are installed on the greenhouse. At the 

back of the greenhouse container, there is a compartment for the components used in this system, 

measuring 14cm in height, 8 cm in width, and 8cm in length. It contains several holes on the right and 

left sides for the entry of cables to the components inside. The components used in this system include 
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the DHT11 temperature sensor, Soil Moisture sensor, Wemos D1R1, Breadboard, three relays, fan, 

LED strip, water pump, and a 5V power supply. 

  
(a) (b) 

Fig. 8. (a) Front view of the equipment circuit, (b) rear view of the equipment circuit 

3.2. Software Implementation 

In This part will delve into the software aspect of the project. It will outline the steps taken to 

translate the hardware design into functional software. This includes programming the Wemos D1R1, 

configuring the communication between sensors and the microcontroller, and integrating the control 

logic for the various output devices. The software architecture and code snippets may be provided to 

offer a comprehensive understanding of the implemented logic. 

In the Blynk application testing, the functionality of monitoring and controlling the created IoT-

based greenhouse system will be assessed. The purpose of using this application is to monitor the 

environmental conditions in the greenhouse model connected to the devices and to control each output 

of the system, such as the fan, LED strip, and water pump. 

In Fig. 9 the initial view of the IoT-based greenhouse project using the Blynk application. This 

page displays real-time environmental condition monitoring, including air temperature in the 

greenhouse, air humidity, and soil moisture. The data displayed for air temperature and humidity is 

collected using the DHT11 temperature sensor, while the data for soil moisture is obtained using the 

soil moisture sensor. On the initial page of the IoT-based greenhouse project, there are also three 

control buttons for the output devices in the system: the fan used for temperature cooling, the LED 

strip used for lighting, and the water pump for irrigation. 

3.3. Functional Testing of the Equipment 

Functional testing involves testing each assembled component used in this research. The purpose 

of functional testing is to determine whether the assembled and integrated components and devices 

operate as intended. 

3.3.1. DHT11 Temperature Sensor Testing 

The temperature sensor testing using the DHT11 temperature sensor in the Arduino IDE yielded 

readings that were approximately the same as those obtained using a thermometer, which served as a 

temperature reference during simultaneous testing. The results of the testing will be documented in 

Table 2, where temperature readings using the DHT11 temperature sensor and the thermometer were 

conducted 10 times. After obtaining temperature values, the error percentage was calculated for each 
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test, and the overall error results were averaged, according to formula (2). The temperature sensor 

readings for the DHT11 were 28.31, and for the thermometer, they were 28. 

 

𝐸𝑟𝑟𝑜𝑟 (%) =  
DHT11 Value − 𝑇ℎ𝑒𝑟𝑚𝑜𝑚𝑒𝑡𝑒𝑟 𝑉𝑎𝑙𝑢𝑒

𝑇ℎ𝑒𝑟𝑚𝑜𝑚𝑒𝑡𝑒𝑟 𝑉𝑎𝑙𝑢𝑒
 × 100% 

𝐸𝑟𝑟𝑜𝑟 (%) =  
28.31 − 28

28
  100% = 1.10% 

(2) 

To calculate the average error rate during the testing of the DHT11 temperature sensor, the 

following steps were taken and according to formula (3). 

 ∑ 𝑒𝑟𝑟𝑜𝑟 =  𝑆𝑢𝑚 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑟𝑜𝑚 𝑎𝑙𝑙 𝑡𝑒𝑠𝑡𝑠 (3) 

For example, if this test was conducted 10 times, ∑error would be the sum of the error values for 

each of the 10 tests, according to formula (4). 

 

𝐸𝑟𝑟𝑜𝑟 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (%) =
∑ 𝑒𝑟𝑟𝑜𝑟

∑ 𝑇𝑟𝑖𝑎𝑙
  

𝐸𝑟𝑟𝑜𝑟 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (%) =
9.89

10
= 0.989% 

(4) 

 

Fig. 9. Initial view of the greenhouse project in the Blynk application 
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Table 2.  Results of temperature testing with DHT11 temperature sensor and thermometer 

No 
DHT11 Temperature 

Sensor Data (°C) 
Thermometer (°C) Error (%) 

1 28.31 28 1.10 

2 31.28 31 0.90 

3 33.63 33 1.9 

4 30.15 30 0.5 

5 26.07 26 0.26 

6 27.25 27 0.92 

7 30.08 30 0.26 

8 31.28 31 0.90 

9 29. 12 29 0.41 

10 27.74 27 2.74 

Average Error 0.989 % 

 

From the calculation results obtained during the testing, it can be concluded that the DHT11 

temperature sensor has an average error rate of 0.989%. Therefore, it can be inferred that the DHT11 

temperature sensor is functioning well and in accordance with the desired specifications. 

3.3.2. Soil Moisture Sensor Testing 

The results of testing the soil moisture sensor using the soil moisture sensor on Arduino IDE are 

recorded in Table 3. The testing involved readings using the soil moisture sensor with a pot filled with 

soil. Subsequently, water was added in multiples of 30 ml to the pot. The testing was conducted 7 

times. After obtaining soil moisture values, calculations were performed to convert sensor data into 

percentage data for each test. The following is the calculation of soil moisture percentage in the testing 

with a water volume of 30ml, where the soil moisture sensor value is 788.5, and the ADC value from 

the soil moisture sensor, which uses 10 bits, is 1023. After obtaining soil moisture values, calculations 

were performed to convert sensor data into percentage data for each test. The calculation formula (5) 

for soil moisture percentage is: 

 

𝑆𝑜𝑖𝑙 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒(%) =
(𝐴𝐷𝐶𝑉𝑎𝑙𝑢𝑒 − 𝑆𝑜𝑖𝑙 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑆𝑒𝑛𝑠𝑜𝑟 𝑉𝑎𝑙𝑢𝑒)

𝐷𝐶𝑉𝑎𝑙𝑢𝑒
 

𝑆𝑜𝑖𝑙 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒(%) =
(1023 − 788.5)

1023
= 22.9 % 

(5) 

From the calculation results obtained during the testing, it can be concluded that the soil moisture 

sensor values have been converted into percentage values, which can be further processed in the 

system. Therefore, it can be inferred that the soil moisture sensor (soil moisture) is functioning well 

and in accordance with the desired specifications. 

Table 3.  Results of humidity testing with soil moisture sensor 

No Water Volume (ml) 
Soil Moisture 

Sensor Value 
Soil Humidity (%) 

1 30 788.5 22.9 

2 60 648.3 36.6 

3 90 503 49.5 

4 120 439.7 57 

5 150 362 64.6 

6 180 302.7 70.4 

7 210 261.4 74.4 

 

3.3.3. Testing of Temperature Cooling Control System 

The results of testing the temperature cooling control system using the DHT11 temperature 

sensor on Arduino IDE can be seen in Table 4. The fan condition operated automatically and 

functioned properly; the fan operated according to the conditions specified based on the data collected 

by the temperature sensor. The testing results are recorded in Table 4. The testing was conducted over 
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2 days, with time divisions in the morning at 07:00 AM, noon at 12:00 PM, afternoon at 04:00 PM, 

and evening at 08:00 PM. From the obtained results of the testing, it can be concluded that the 

temperature cooling control system operates well in the greenhouse and aligns with the desired 

specifications. 

Table 4.  Results of temperature cooling control system testing with DHT11 temperature sensor 

Testing Testing Time 
DHT11 Temperature 

Sensor (°C) 
Fan Condition 

1 

Morning 07:00 AM 28 Off 

Noon 12:00 PM 33 On 

Afternoon 04:00 PM 30 On 

Evening 08:00 PM 26 Off 

2 

Morning 07:00 AM 27 Off 

Noon 12:00 PM 31 On 

Afternoon 04:00 PM 29 On 

Evening 08:00 PM 27 Off 

 

3.3.4. Lighting Control System Testing 

The results of the lighting control system testing using the DHT11 temperature sensor on the 

created device are presented in Table 5. The LED strip condition operated automatically and 

functioned properly; the LED strip operated according to the conditions specified based on the data 

collected by the temperature sensor. The testing results are recorded in Table 5. The testing was 

conducted over 2 days, with time divisions in the morning at 07:00 AM, noon at 12:00 PM, afternoon 

at 04:00 PM, and evening at 08:00 PM. Based on the obtained results from the testing, it can be 

concluded that the lighting control system operates well in the greenhouse and aligns with the desired 

specifications. 

Table 5.  Results of lighting control system testing with DHT11 temperature sensor 

Testing Testing Time 
DHT11 Temperature 

Sensor (°C) 
LED Strip Condition 

1 

Morning 07:00 AM 28 On 

Noon 12:00 PM 33 Off 

Afternoon 04:00 PM 30 Off 

Evening 08:00 PM 26 On 

2 

Morning 07:00 AM 27 On 

Noon 12:00 PM 31 Off 

Afternoon 04:00 PM 29 On 

Evening 08:00 PM 27 On 

 

3.3.5. Irrigation Control System Testing 

The results of the irrigation control system testing using fuzzy logic, aimed at determining the 

functionality of the fuzzy logic system in irrigation, are presented in Table 6. The testing is modelled 

as the accuracy of the irrigation duration, which is the output of the system implemented on the 

microcontroller. The obtained results from the fuzzy logic applied in Arduino IDE are compared with 

the simulation results using MATLAB. The testing results are recorded in Table 6. The testing was 

conducted over 3 days, with time divisions in the morning at 08:00 AM, noon at 12:00 PM, and 

afternoon at 05:00 PM. After obtaining the system output values and MATLAB output values, 

calculations were made to determine the percentage error for each test. The overall error was then 

averaged, according to formula (6). The calculation of the percentage error for the irrigation control 

system testing using fuzzy logic is as follows: the system output data is 5.63, and the MATLAB output 

data is 5.79.  

 𝑒𝑟𝑟𝑜𝑟 (%) =
𝐴𝑟𝑑𝑢𝑖𝑛𝑜 𝑉𝑎𝑙𝑢𝑒 − 𝑀𝑎𝑡𝑙𝑎𝑏 𝑉𝑎𝑙𝑢𝑒

𝑀𝑎𝑡𝑙𝑎𝑏 𝑉𝑎𝑙𝑢𝑒
 × 100% (6) 
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𝑒𝑟𝑟𝑜𝑟 (%) =
5.63 − 5.79

5.79
 × 100% = 2.7 % 

This formula is used to calculate the average error rate during the irrigation control system testing. 

It involves summing up the individual error values and then dividing by the total number of tests 

conducted, according to formula (7). 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 (%) =
∑𝐸𝑟𝑟𝑜𝑟

∑ 𝑇𝑒𝑠𝑡𝑠
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 (%) =
∑12.5

∑ 9
= 1.3% 

(7) 

The average error rate calculation during the irrigation control system testing is 1.3%. From the 

calculation results obtained during the testing, it can be concluded that the irrigation control system 

testing using fuzzy logic has an error rate of 1.3%, indicating that the system operates well and 

normally, aligning with the desired specifications. 

3.3.6. Sunflower Plant Testing 

In Fig. 10, plant testing is conducted based on 4 conditions. These conditions are: 

• Automatic Irrigation and Lighting in the greenhouse. 

• Manual Irrigation and Automatic Lighting in the greenhouse. 

• Automatic Irrigation with Sunlight. 

• Manual Irrigation and Sunlight. 

 

Fig. 10. Plant testing results 

In Fig. 4, the testing results were conducted on different days but at the same duration, which is 

7 days. Measurements were taken between 10:00 AM and 1:00 PM. The measurement results were 
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obtained by summing the average plant height; the number of plants in each condition is 4 plants with 

an initial height of 2 cm. In Fig. 10, it can be said that the plant condition in the greenhouse is better 

due to the minimal factors that can interfere with the plant's growth and development. 

Table 6.  Results of irrigation control system testing by comparing Matlab simulation results with the device 

created using Arduino IDE 

Testing Time 

Measurement Results 
Water Pump 

Status 

(Seconds) 

Manual Fuzzy 

Calculation 

Results (Seconds) 

Matlab 

Simulation 

Output 

(Seconds) 

Temperature 
Soil 

Moisture 

Day 1 

08.00 29oC 413 3 2.68 2.75 

12.00 31oC 277 7 6.43 6.36 

16.30 30oC 463 2 1.1 1.17 

Day 2 

08.00 30oC 642 0 0 0 

12.00 32oC 690 0 0 0 

16.30 30oC 716 0 0 0 

Day 3 

08.00 28oC 674 0 0 0 

12.00 31oC 703 0 0 0 

16.30 27oC 649 0 0 0 

4. Conclusion 

Based on the conducted research on the monitoring and control of IoT-based greenhouse 

environmental conditions using fuzzy logic algorithms, several conclusions can be drawn, including: 

IoT-based greenhouse devices can facilitate control and monitoring of the greenhouse, tested in real-

time and automated integration with the Blynk application on smartphones. Based on the conducted 

tests on the system, such as temperature cooling, lighting, and irrigation systems, they have functioned 

well and operated according to predefined conditions. The IoT-based greenhouse device using the 

Fuzzy Sugeno method can be considered to have functioned effectively. According to the results in 

the irrigation control system testing table using fuzzy logic, the average error is 1.3%, indicating the 

successful functioning of the fuzzy logic method in this system. 

Suggestions for the development of this research include, among others, that this IoT-based 

greenhouse system still relies on third-party applications, so it is expected that in future research, 

control and monitoring can be conducted using a specific application. 
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