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ABSTRACT In the realm of software testing, resource limitations pose a significant challenge to ensuring
comprehensive testing coverage. While there are numerous attempts to systematically generate test cases
that maximize input coverage and fault detection, there remains an essential need for prioritizing test cases
to ensure efficient utilization of resources. Given the important role of each individual test case in the
overall testing process, a Prioritized Test Suite (PTS) plays a vital role in optimizing testing resources,
achieving maximum fault detection, and providing comprehensive test coverage. This research addresses
this need by proposing and implementing a new testing strategy called Cuckoo Search with Adaptive Fuzzy
Logic-Controlled Genetic Algorithm Operators for Generating PTS (CS-FuzGA-PTS). CS-FuzGA-PTS
aims to systematically generate PTS by utilizing t-way testing, boundary value analysis (BVA), and opti-
mization techniques. CS-FuzGA-PTS employs T-way testing for test case reduction and ensures maximum
input coverage. CS-FuzGA-PTS incorporates BVA to prioritize test cases based on their boundary values to
identify potential defects that occur at the boundaries of input ranges, thereby optimizing the test execution
efforts by focusing on high-priority cases. The core of CS-FuzGA-PTS lies in a new optimization algorithm
called CS-FuzGA as a search algorithm. The algorithm integrates adaptive fuzzy logic-controlled Genetic
Algorithm (GA) operators with Cuckoo Search (CS). By dynamically adjusting search behavior based on
solutions diversity, CS-FuzGA enhances both exploration and exploitation, achieving an optimal balance
between them through integrating GA operators into CS according to search requirements. The results
obtained from the experiments provide insights into the effectiveness of CS-FuzGA-PTS in generating a PTS
that can identify potential defects occurring at input boundaries. Moreover, CS-FuzGA-PTS outperforms
existing strategies in terms of test reduction.

INDEX TERMS Adaptive fuzzy logic control, boundary value analysis, cuckoo search, fault detection,
genetic algorithm, prioritized test cases, optimization, software testing, T-way testing.
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I. INTRODUCTION
As advancements in technology drive rapid evolution in
software development, creating innovative technologies and
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applications has become increasingly complex. This com-
plexity highlights the critical importance of rigorous software
testing to ensure the quality, reliability, and integrity of these
applications in meeting user needs and market requirements.
Numerous existing test suite generation strategies attempt to
systematically ensure comprehensive test coverage that cov-
ers awide range of software inputs, while others aim to reduce
the size of the generated test suite. In general, when designing
a testing tool for generating test suites, several objectives are
considered. These objectives include minimizing test cases,
maximizing input coverage, and maximizing fault detection,
to name a few. To produce high-quality software, different
testing tools and approaches have investigated these objec-
tives.

In the literature, many techniques aim to maximize test-
ing coverage and minimize test suite size objectives, such
as state transition testing, use case testing, and combina-
torial testing. These techniques ensure that the software
is tested against a wide range of input combinations that
maximizing fault detection while using the minimum test
suite size. T-way testing, a combinatorial test design tech-
nique, systematically generates the test suite from a large
input space in a way that covers all possible t-size combina-
tions of input parameters, thus ensuring maximum coverage.
To minimize the test suite size, several t-way testing strate-
gies utilize optimization algorithms as search engines for
generating optimal test suites, such as Simulated Anneal-
ing (SA) [1], Genetic Algorithm (GA) [1], [2], Ant Colony
Algorithm (ACA) [2], Harmony Search (HS) [3], Particle
Swarm Optimization (PSO) [4], and Cuckoo Search (CS)
[5], to find the minimum test cases that cover the maxi-
mum inputs. Due to their efficiency, many researchers adopt
hybridization or adaptation of meta-heuristic algorithms as
search engines, such as high-level hyper-heuristic (HHH) [6],
elite-FPA [7], Improved-JA [8], Learning-CS [9], Modified
ABC [10], Modified FPA [11], Hybrid HS with Grey Wolf
Optimizer [12], and Hybrid ABC [13].
These strategies have proven their efficiency as they take

advantage of the hybridization of algorithms to produce
an optimal test suite rather than relying solely on a single
algorithm. CS is an optimization algorithm inspired by the
brood parasitic behavior of cuckoo species. However, its
search capabilities, like other optimization algorithms, are
limited, and it may trap in local optima due to a lack of
exploration or exploitation or a balance between the two.
To address these limitations, this research proposes a new
optimization algorithm called CS-FuzGA by integrating CS,
fuzzy logic control, and GA operators to overcome the lim-
itations of standard CS. Integrating GA operators, such as
mutation and crossover, into CS enhances its performance
by enabling a more thorough exploration of the search space
and by exploiting promising solutions. On the other hand,
adaptive fuzzy logic control monitors the diversity of the
potential solutions and dynamically adjusts search behaviour
to achieve a good balance between exploration and exploita-
tion by integrating GA operators into CS according to search

requirements. Additionally, by adjusting genetic operators
based on the population diversity, the CS-FuzGA is able to
mitigate the premature convergence issue, which is com-
monly encountered in optimization algorithms.

Beyond combinatorial testing, other software testing tech-
niques, such as equivalence partitioning, boundary value
analysis (BVA), and decision table testing, offer high poten-
tial to identify critical defects. BVA, a black box testing
technique, focuses on testing the values at the boundaries
of input domains, where errors are more likely to occur.
BVA plays a crucial role in software quality by thoroughly
examining critical points on the boundaries. Integrating t-way
testing and BVA can enhance the robustness and efficiency
of the testing process, leading to high software quality and
reliability. To effectively leverage these insights, this research
aims to design a software testing strategy for generating
a Prioritized Test Suite (PTS) by integrating t-way testing and
BVA techniques.

PTS is a set of test cases that are organized and designed
in a practical sequence, indicating the importance of each
individual test case, including test case cost, test case cov-
erage, test case history, and customer requirements [14],
[15]. In general, prioritizing test cases plays a vital role in
maximizing fault detection, optimizing testing resources, and
achieving comprehensive test coverage. However, an effec-
tive PTS is designed to maximize the probability of fault
detection based on certain criteria [16]. Although the impor-
tance of different test case prioritization techniques for
maximizing fault detection is known, prioritizing the test case
based on the BVA adds another layer of effectiveness to the
testing process. A PTS ordered by BVA helps to optimize
the test execution efforts by executing high-priority test cases
first. By prioritizing test cases based on these boundary con-
ditions, testers can detect hidden defects that may remain
undetected in other testing approaches.

Given these challenges, our research proposes a novel
software testing strategy called Cuckoo Search with Adap-
tive Fuzzy Logic-Controlled Genetic Algorithm Operators
for Generating PTS (CS-FuzGA-PTS), which aims to sys-
tematically generate PTS by utilizing t-way testing, BVA,
and CS-FuzGA techniques. CS-FuzGA-PTS incorporates the
BVA technique to prioritize test cases based on their boundary
values to identify potential defects that occur at the bound-
aries of input ranges, while t-way testing is used as a test
reduction technique to reduce the number of test cases and
ensure maximum input coverage. CS-FuzGA-PTS utilizes
the CS-FuzGA algorithm as the core search algorithm for
maximizing t-way testing coverage.

Putting the pieces together, the contributions of this
research can be summarized as follows:

• Enhanced Optimization with CS-FuzGA: This
research contributes to the field of optimization by
proposing a new variant of the CS algorithm that utilizes
the strengths of both CS and GA operators. CS-FuzGA
is controlled by fuzzy logic to be able to adjust and

VOLUME 12, 2024 172993



A. B. Nasser et al.: CS-FuzGA-PTS: Maximizing Fault Detection

improve its performance, leading to better exploration
of the solution space and exploiting promising regions.
This combined approach provides an efficient optimiza-
tion process compared to using CS alone.

• Prioritized Test Suite Generation with CS-FuzGA-
PTS: Proposes a new software testing method for gener-
ating PTS based on CS-FuzGA called CS-FuzGA-PTS.
CS-FuzGA-PTS employs t-way testing to systematically
reduce the number of test cases, and BVA to prioritize
test cases based on their boundary values, which helps to
optimize the test execution efforts and identify potential
defects occurring at input range boundaries.

The rest of the paper is organized as follows: Section II
reviews the related work, including t-way testing strate-
gies and prioritized test strategies. Section III presents the
two proposed works: CS-FuzGA and CS-FuzGA-PTS, while
Section IV evaluates the proposed works against the existing
works and discusses the results. Lastly, Section V concludes
the work and presents recommendations for future work.

II. RELATED WORKS
As far as literature is concerned, a significant amount of study
has been conducted on test case generation. This section pro-
vides an overview of both early t-way testing strategies and
themost recent research, especially focused on prioritized test
case generation. These strategies come from a diverse range
of fields, including optimization algorithms, mathematical
approaches, and heuristic search techniques. Broadly speak-
ing, the existing t-way testing strategies can be categorized
into either the One Parameter at a Time (OPAT) strategy,
where the test cases are generated by adding a column per
iteration, or the One Test at a Time (OTAT) strategy, where
the test cases are generated by adding one row per iteration
until all the t combinations are covered. Examples of OPAT
strategies are the in-parameter-order (IPO) strategy and its
variants [17], [18]. OPAT strategies optimize the process of
generating test cases for each individual parameter instead of
the entire set of test cases for all parameters. These strategies
are fast and efficient as they can produce the minimum num-
ber of test cases; however, they are computationally intensive
for large systems.

On the other hand, Automatic Efficient Test Generator
(AETG) [19], GTWay [20], Jenny [21], TConfig [22], and
WHITCH [23] are examples of OTAT strategies. While
these strategies are manageable and efficient, especially
for systems with complex interactions between parameters,
managing the complexity of these strategies is still challeng-
ing [24]. Under the OTAT, several strategies treat the problem
of test case generation as an optimization problem. These
strategies utilize meta- heuristic algorithms such as SA [1],
GA [1], [2], ACA [2], HS [3], PSO [4] and CS [5] to find
the optimal test case that covers the maximum number of t
combinations. The strategies start by generating all the t com-
binations, and then iteratively, the meta-heuristic algorithm
is used to find the optimal test case that covers the maximum

number of combinations. This process is repeated until all the
t combinations are covered. These strategies are efficient in
terms of reducing the total size of the test suite and the time
taken to generate the test cases compared to the exhaustive
search. Due to its efficiency, many researchers adopt adaptive
or hybridized meta-heuristics algorithms as search engines,
such as high-level hyper-heuristic (HHH) [6], elite-FPA [7],
Improved-JA [8], Learning-CS [9], Modified ABC [10], Self-
adaptive FPA, Hybrid HS with Grey Wolf Optimizer [12],
and Hybrid ABC [13]. These strategies have proven their
efficiency as they take advantage of the hybridization of
algorithms to produce the optimal test cases in a reasonable
time.

In addition to addressing the test suite reduction prob-
lem, several studies have responded to other software testing
problems, including test suite prioritization. Rechtberger et
al. [25] examined and analyzed the prevalent presence of
Finite State Machines (FSMs) in contemporary systems and
the necessity of testing these systems through the use of
trained sequences of transitions in FSMs. The study focused
on generating test paths in the most efficient manner, consid-
ering many factors such as the lowest test cost or the highest
likelihood of identifying flaws in the System Under Test
(SUT). This study also emphasized the necessity of reaching
a specific test coverage criterion and the effectiveness of the
model-based testing (MBT) strategy. The specific criteria for
generating test pathways from the FSM model are provided.
These capabilities encompass the ability to initiate and con-
clude test paths in predetermined states, select the order in
which states and transitions are traversed, and specify the
range of path lengths. The methodology described here is the
Prioritized State Machine Test (PSMT) strategy, which tries
to produce sets of test pathways. PSMT uses the FSM model
and two categories of test coverage requirements to represent
the problem. Furthermore, the method includes a description
of six algorithm alternatives, with a baseline N-switch reduc-
tion algorithm serving as a point of reference. The efficacy of
the six algorithm variants is evaluated by assessing their abil-
ity to generate test pathways and activate simulated flaws as
specified in the FSMs. The study evaluates the characteristics
of the produced test pathways and their efficacy in various
problem configurations, employing a combination of actual
automotive and defense projects and artificially generated
FSMs. The study demonstrates that the PSMT technique
outperforms the baseline in most problem scenarios. Addi-
tionally, it discusses the distinct behaviors of the six algorithm
variations, which vary based on the utilization of the FSM.
The primary conclusions of the research highlight the adapt-
ability and possible practicality of the PSMT technique in
actual industrial experiments. This statement highlights the
importance of simultaneously fulfilling the defined criteria
and the significance of the approach and evaluation in testing
both functional and non-functional software requirements.

Ahmed et al. in [26] put forth a Bi-objective Dragon-
fly Algorithm (BDA), as a means of generating a T-way
PTS. When producing test suites, it is frequently necessary
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to differentiate between high-priority and low-priority test
cases; therefore, the research emphasizes the significance of
considering both the weighting and priority of test cases.
The objective of the BDA strategy is to produce PTSs by
considering two key factors: the priority and weight of the test
cases. Comparing the effectiveness of BDA to that of existing
T-way strategies, the research demonstrates that BDA gen-
erates PTSs effectively and is competitive in terms of test
suite size. In addition to discussing the possibility of future
enhancements, the research concludes that BDA is a valuable
strategy in the field of software testing due to its effective-
ness in managing multiple objectives. Furthermore, the paper
identifies prospective future research directions the addition
of sequence-based testing, the consideration of constraints for
BDA, and the improvement of variable strength interaction.
These factors suggest there is still room for enhancement
in the algorithm capabilities and performance. In light of
the research paper accomplishments, there are prospects for
additional refinements pertaining to the performance, scope,
and functionalities of the algorithm.

Michaels et al. in [27] presented a method for creating test
cases for open-source Android applications. They developed
a test generation tool using Java and compiled it in Eclipse.
The research seeks to address many research inquiries, such
as determining the rate of event coverage and code cover-
age for test suites prioritized based on element and event
sequences. Additionally, it intends to discover the generation
in which an element or event sequence obtains 100% code
coverage initially. Test generation involves the random exe-
cution of the program to be tested using a Java-based test
generating tool that is built and compiled in Eclipse. The
utility communicates with an Android emulator by utilizing
the Appium server to transmit events and obtain verification
of event execution. The test cases are analyzed to obtain data
regarding the element and event sequence criteria. Scripts
are then used to build a comprehensive set of each gener-
ation covered by the entire test suite. The study assesses
the order in which tests are conducted by analyzing the
code coverage achieved. It also quantifies the rates at which
items, events, and code are covered using different metrics.
The study focuses on the prioritizing of test suites based on
sequence-based coverage criteria and reports on the extent to
which 100% sequence coverage is achieved by the applica-
tion. The study examines the implications of the findings,
including the effectiveness of prioritizing test suites with
extensive sequence spaces and their potential use for big-
ger applications. Overall, the study offers valuable insights
into the process of generating and prioritizing test cases
for Android applications, specifically emphasizing event and
code coverage.

Kali and Murthy in [28] introduced a hybrid Firefly
Algorithm (FA) to prioritize regression test cases in software
development. The methodology used the K-means clustering
algorithm to distinguish pertinent test cases from irrelevant
ones. It then optimizes the process using a hybrid firefly

algorithm (HFFA), which combines the Artificial Bee Colony
algorithm and the FA. The evaluation of the performance
involves the use of several metrics, with a specific focus on
the average percentage of faults detected (APFD). The results
demonstrate that the suggested hybrid Firefly ABC technique
surpasses the current methods in terms of accuracy andAPFD
values. The study demonstrates the efficacy of the hybrid
FA in prioritizing test cases, and the conclusion underscores
the superiority of the suggested method compared to existing
techniques.

Choi et al. [29] examined the efficacy of fault detection by
prioritizing combinatorial test generation. The study investi-
gates the relationship between Kullback-Leibler (KL) diver-
gence, weight coverage, and fault detection effectiveness,
particularly when order-based and frequency-based prioriti-
zation methods are employed. The study seeks to ascertain
if order-oriented prioritized combinatorial test suites with
higher weight coverage yield superior fault detection effec-
tiveness and if frequency-oriented prioritized combinatorial
test suites with better KL divergence yield superior fault
detection effectiveness. Moreover, the study assesses the rela-
tionship between the effectiveness of fault detection and the
prioritization strategies employed.

Badanahatti and Murthy in [30] employed the test case
prioritization technique to do regression testing on web
applications. This paper examines many methodologies and
strategies for test cases, including input-driven methods,
point-of-interest (POI)-based methods, and clustering and
optimization techniques. The suggested methodology com-
prises three primary stages: test case generation, test case
clustering utilizing the Kernel Fuzzy C Means (KFCM)
algorithm, and test case prioritization employing the Gray
Wolf Optimization (GWO) algorithm for test case priori-
tization. In addition, this study employs performance and
coverage metrics, such as loop coverage, statement cover-
age, line coverage, and comment coverage, to generate test
cases. Additionally, it assesses the efficiency of the suggested
approach by considering factors such as the time it takes
to execute and the amount of memory it consumes. It also
compares this to other strategies that are already in use. The
objective is to efficiently determine the order of importance
for test cases in the regression testing of online applications.
An opportunity exists to enhance the method by employing
diverse clustering and optimization strategies, with a specific
emphasis on security in cloud systems.

Biswas et al. in [31] employed Ant Colony Optimization
(ACO) to automate software testing and developed two algo-
rithms utilizing the optimal pathways and test sequence data.
The initial technique seeks to produce ordered paths in a
control flow graph (CFG) by having the ants compute the
likelihood of potential nodes and build paths accordingly. The
likelihood is calculated by using the pheromone value and
heuristic information. This method guarantees that the paths
are ranked according to likelihood and allows for the early
identification of faults throughout the testing procedure. The

VOLUME 12, 2024 172995



A. B. Nasser et al.: CS-FuzGA-PTS: Maximizing Fault Detection

second approach employs ACO to provide test data, which
is subsequently utilized as input for the created pathways.
The approach is specifically designed to generate test data
sequences that span the full domain and avoid incomplete
searches. This comprehensivemethodology ensures thorough
software coverage while minimizing duplication, enhancing
the quality of testing, and reducing testing costs. The talks
emphasized the efficacy of the proposed approach in automat-
ing structural software testing. The prioritized paths and the
provision of relevant test data aid in covering all program
paths and effectively detecting faults at an early stage. The
research also showcased the utilization of algorithms in eval-
uating a software module, achieving comprehensive coverage
of all possible paths while minimizing redundancy. The study
revealed that the ACO algorithm is highly effective in achiev-
ing optimum outcomes in software testing. Additionally,
the integration of several meta-heuristic methodologies can
enhance the performance of software testing applications.

Wang et al. in [32] devised a technique for creating test
cases using prioritized pair-wise testing. Firstly, the approach
entails allocating priority weights to each parameter, which
represents the parameter priority information. As weight
increases, priority also increases. The criteria for determining
weights were established according to code coverage, test
case cost, recently modified code domain, and testers’ incli-
nation. Additionally, a composite binary group was formed
by utilizing weighted parameters. The weights of the test
cases were determined by summing the values of the binary
groups covered by them. The objective of this strategy
was to enhance testing efficiency by giving precedence to
high-important test cases. Furthermore, this approach gener-
ates a priority combination model known as a biased covering
array. This model is used to aggregate pair-wise test cases
with priority. The test cases are arranged in descending order
according to their priority weights. The objective is to cre-
ate a biased covering array that satisfies pair-wise criteria
while maximizing the total weight of the first N test cases.
Ultimately, the study included a greedy approach to the
GA to enhance the efficiency of test case development. The
objective of this integrated strategy was to tackle the issue
of combinatorial testing with prioritization and devise an
improved global search algorithm.

Qu et al. in [33] examined the efficacy of combinatorial
interaction testing (CIT) in assessing software topics across
various versions. The objective of the research is to assess
the performance of CIT in detecting intentionally introduced
defects, in comparison to a comprehensive test set. The study
examines various methods for prioritizing CIT test suites
and compares them to a method for re-generating and pri-
oritizing them. The goal is to determine whether prioritized
and re-generated/prioritized CIT test suites are more effective
in detecting defects earlier than non-prioritized test suites.
An issue with the study on Combinatorial Interaction Test-
ing (CIT) is its failure to assess the effectiveness of CIT
tests in selecting or prioritizing problems across various soft-
ware versions. Furthermore, the study did not evaluate the

effectiveness of CIT in regression testing when applied to
successive iterations of a software program. Moreover, there
is a lack of inquiry into the implementation of prioritization
approaches in this particular setting. The study also lacks
empirical testing on actual software topics and fails to address
the crucial aspect of prioritizing weighting.

Summing up, the reviewed research papers proposed dif-
ferent methods for generating PTS by considering different
objectives, including minimizing test cost, maximizing fault
detection probability [25], coverage weight and priority of
test cases [25], [32], and coverage of the sequences of
events or elements of the program [27]. This section also
shows that several techniques have been used for generating
PTS; however, optimization algorithms such as BDA [26],
HFFA [28], KFCM with GWO [30], and ACO [31], are
the most common techniques used for generating PTS. The
existing studies applied the generated PTS across different
domains of software testing, including regression testing, web
application testing, Android application testing, and general
test suite prioritization. The studies highlight the significance
of integrating PTS into the testing development process to
enhance the efficiency of the overall testing process, leading
to high-quality and reliable software. Building upon these
foundational works, our research introduces a newmethod for
generating PTS aimed at achieving key objectives, including
increasing fault detection and improving testing coverage.
In the next section, we introduce our proposed method,
CS-FuzGA-PTS, which integrates BVA and t-way testing
techniques to provide a more effective solution to achieve
these objectives.

III. PROPOSED WORKS
Building upon the foundations laid by the prior research
discussed in the previous section, this section presents the
design of the two proposed works: CS-FuzGA-PTS as a test-
ing strategy for generating PTS and the CS-FuzGA algorithm
as an optimization algorithm. The method comprises primary
components that consider the base of the method. Before we
start presenting the CS-FuzGA-PTS, the following is a brief
description of the CS-FuzGA-PTS components:

1. T-wayTestingTechnique: CS-FuzGA-PTS utilizes t-way
testing as a sampling technique to minimize the size of
the test suite by selecting representative test cases that
ensure all the t-combinations of inputs are included in
the test cases. The test case coverage or weight, which is
considered the first objective of CS-FuzGA-PTS, is calcu-
lated based on the t-way testing technique. The test case
coverage measures the number of t-combinations covered
by the test case.

2. Boundary Value Analysis Technique: In order to iden-
tify critical defects that occur on the boundaries of input
ranges, unlike other t-way test generation strategies where
the test cases are generated only based on the interac-
tion strength of the inputs, CS-FuzGA-PTS utilizes the
BVA technique to prioritize the test cases based on their
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boundary values. By focusing on the boundaries of inputs,
prioritized test cases can enhance the efficiency of test
execution efforts by executing high-priority test cases first.
The test case priority, which is the second objective to be
optimized during the test case generation, measures the
number of boundary values covered by the test case.

3. Cuckoo Search Algorithm: The CS Algorithm is used as
the core search algorithm for searching for the optimal test
cases. generating prioritized test cases. The CS optimizes
test cases based on the coverage score and boundary value
score of the test cases.

4. Adaptive Fuzzy Logic Control with GAOperators: CS
alone may get stuck in the local optima. To overcome this
limitation, adaptive fuzzy logic control with GA operators
is used to continuously monitor the diversity of the poten-
tial solutions and enhance the search quality. Adaptive
fuzzy logic control dynamically adjusts search behavior to
achieve a good balance between exploration and exploita-
tion by integrating GA operators into CS according to
search requirements.

A. THEORETICAL BACKGROUND
1) T-WAY TESTING
T-way testing, also known as Combinatorial testing, is a
minimization technique used to generate a test suite based
on interaction fault detection. The t in T-way stands for the
interaction length. For a better understanding, let’s consider
an example of a Scale and Layout setting under the Display
setting in Windows 10. For this example, there are three
parameters which are:

1. Night light (On, Off)
2. Change the size of text, apps and other items has two

values (100% and 125%)
3. Display resolution has six values (1366×768, 1280×768,

1280 × 720, 1280 × 600, 1024 × 768, 800 × 600)
4. Display orientation has two values (Landscape and Por-

trait)

All the variations of the inputs are considered for testing the
environment. There are 2 (Night light) × 2 (Text size) × 6
(Display resolution)× 2 (Display orientation)= 48 test cases
that need to be checked that can cover all the interactions
in FIGURE 1. However, the size of the test suite can be
reduced from 48 to 12 test cases by considering two-way
interaction. Two-way interaction testing guarantees that any
two- combination of parameters covers at least one time in
the final test suite. It should be noted that the size of the test
suite is 75% reduction, but the fault detection rate can reach
90%. Three-way testing unlike two-way testing, improves the
identification of faults to 99% which is a great chance of
finding faults effectively in a reasonable time.

2) BOUNDARY VALUE ANALYSIS
In software testing, partition testing divides the input space
into smaller partitions then, from each partition, test cases are
selected. If any test case is selected from one partition and

FIGURE 1. Scale and layout setting.

FIGURE 2. Boundary partitioning example.

tested, the results should be the same every time. For example,
if we have a system that FIGURE 2 shows. Then only one
value is selected from each partition. shows. Then only one
value is selected from each partition.

BVA is similar to partition testing however, the difference
between them is, in BVA, the boundary values between par-
titions (i.e. maximum and minimum values) are included in
test cases to identify potential defects that usually occur at
the boundaries of input ranges. In addition, BVA considers
some values as output of input space. In our earlier example,
the values -1, 0, 17, 18, 34, 35, 54, 55, 88, and 81 must be
included in the test cases. Partition testing is an easy way
to reduce the test cases while BVA has a great ability to
identify potential defects that occur at the boundaries of input
ranges [34].

3) CUCKOO SEARCH
CS is a population-based algorithm inspired by brood parasite
behavior in some birds like Guira cuckoos. CS provides
an ideal balance between local intensification and global
diversification by intensifying the search for solutions in
the incumbent solution neighborhood, as well as efficiently
expanding the search space by using Levy flights. CS has
only one parameter, Pa, to be tuned, less than the number of
parameters in the GA and PSO.
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FIGURE 3. Pseudocode of the cuckoo search [35].

The algorithm begins by generating an initial nest pop-
ulation. There are two operations performed within each
generation of the algorithm. First, create a new nest by car-
rying out a levy flight, and then evaluate the new nest and
remove the existing nest if a better evaluation is obtained.
The second part of the algorithm finds the bad nests and
eliminates them with probability, Pa, [35]. The pseudocode
in FIGURE 3 summarizes the steps of the CS algorithm.

B. CUCKOO SEARCH BASED ON ADAPTIVE FUZZY LOGIC
CONTROL OF GENETIC ALGORITHM OPERATORS FOR
PRIORITIZED TEST CASE GENERATION
TheCS-FuzGA-PTS is designed to generate the PTS. PTS is a
set of ordered test cases designed to maximize the probability
of fault detection based on certain criteria. The CS-FuzGA-
PTS follows a systematic approach to generate PTS. The
CS-FuzGA-PTS optimizes the PTS by incorporating both
t-way test coverage and test BVA. The combination of these
two testing techniques enables efficient, targeted test case
generation. In general, to generate the PTS, the CS-FuzGA-
PTS starts by generating all the t-combinations of the inputs
and boundary values of input ranges, and then it iteratively
generates the test cases that maximize the test coverage and
test priority. The procedure of generating PTS using CS-
FuzGA-PTS can be seen as two main phases:

1) GENERATING T-COMBINATIONS AND BOUNDARY
VALUES
Based on the SUT configuration, the CS-FuzGA-PTS starts
by generating a list of all the t-combinations of the inputs
and lists the boundary values of the input ranges. CS-FuzGA-
PTS receives the SUT configuration, including the number of
inputs, the boundaries of the input ranges, and the interaction

level (t value). Based on the t-way testing concept as the
base of the test case reduction techniques, the CS-FuzGA-
PTS generates all the t-combinations of the inputs according
to the configuration of the SUT. The t-combination is a list
of input combinations such that each combination covers the
interaction of a specific number of inputs. For example, 2-
combinations (or t-way combinations) cover all pairs of the
inputs, and 3-combinations cover all triplets of the inputs. CS-
FuzGA-PTS also identifies the boundary values of the inputs
and stores them in a boundary values list. The boundary value
list consists of crucial boundaries for the input. In addition to
the edges of the input, the subranges can be involved in the
boundary value list.

2) PRIORITIZED TEST SUITE GENERATION
The core part of the CS-FuzGA-PTS method is to gen-
erate a set of test cases that maximize test coverage and
fault detection. To achieve this objective, CS-FuzGA-PTS
uses CS-FuzGA as an optimization algorithm for finding
the optimal test case that covers the maximum number of
t-combinations and boundary values. During the test case
generation, the CS-FuzGA explores the search space, which
is the list of t-combinations, and the boundary values list to
find a set of test cases that meet the objective of maximizing
test coverage and fault detection. Each candidate solution
of CS-FuzGA, which is a set of possible inputs, presents
a test case. CS-FuzGA-PTS follows OTAT for generating
the test suite; therefore, it iteratively attempts to generate
one test case at each iteration that optimally fulfils the two
objectives of CS-FuzGA-PTS. The best test case generated by
CS-FuzGA is added to the final test suite list. Subsequently,
the t-combinations and boundaries covered by this test case
are deleted from the respective lists. This process of finding
the optimal test case and removing the covered elements are
repeated until the two lists are devoid of elements.

The output of these two phases is the final test suite accom-
panied by two testing metrics. The final test suite includes
the set of test cases, t-way coverage weight of each test case,
and boundary values analysis weight of each test case. The
t-way coverage weight measures the extent to which each
test case covers different interaction combination inputs with
size t, which basically measures how well the test is able
to explore software interaction inputs. On the other hand,
the boundary values analysis weight measures the efficiency
of the test case in exposing potential issues near boundary
ranges. To construct the PTS, testers have the flexibility to
organize the PTS based on their preference, either based on
the test case coverage weight or the boundary values weight.
FIGURE 4 summarizes the steps of CS-FuzGA-PTS.

C. CS-FUZGA OPTIMIZATION ALGORITHM
CS-FuzGA, as an optimization algorithm, serves as the core
implementation search algorithm used in CS-FuzGA-PTS for
finding optimal test cases. The CS-FuzGA is an enhancement
algorithm of the CS algorithm, it attempts to enhance the
balance between exploration and exploitation and premature
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FIGURE 4. CS-FuzGA-PTS steps.

convergence. To achieve this goal, CS-FuzGA integrates
fuzzy logic control and genetic operators in CS. CS-FuzGA
monitors and enhances the performance of CS-FuzGA based
on the performance of the algorithm by injecting the required
GA operators to enhance the performance. As each GA oper-
ator has its own search capabilities, the integration of GA
operators and fuzzy logic control in CS allows it to dynami-
cally balance exploration and exploitation during the search
process. Unlike the standard CS which relies on fixed param-
eter settings to balance between exploration and exploitation,
one of the most unique features of CS-FuzGA is the use of
fuzzy logic to manage this balance and control the algorithm
behavior overall. The risk of premature convergence to local
optima is a common challenge in metaheuristic algorithms.
The CS-FuzGA attempts to mitigate this through a syner-
gistic combination of fuzzy logic control and GA operators.
First, the fuzzy logic dynamically balances exploration and
exploitation by adjusting CS parameters based on popula-
tion diversity, therefore preventing excessive focus on one

area. Additionally, the integration of GA operators into CS
enhances CS-FuzGA global search ability, thus ultimately
reducing the likelihood of becoming trapped in local optima.

Here are the steps of the CS-FuzGA algorithm for gener-
ating test cases:

Step 1: Initialization of Cuckoo Eggs
According to the initial setting of the algorithm, CS-

FuzGA starts by initializing the population of cuckoo eggs,
which it generates randomly based on the search space. CS-
FuzGA also sets up common parameters such as maximum
iteration and size of the population. In order to reduce the
parameters of CS-FuzGA that need initial values, CS-FuzGA
has been designed to set up some parameters such as muta-
tion rate of GA and switch probability of CS based on the
performance of CS-FuzGA. This step ends by evaluating the
coverage and boundary value weights of each cuckoo egg.

Step 2: Improvement process of CS-FuzGA
After the population of the cuckoo egg is initialized, the

population is iteratively subject to an improvement process.
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The improvement process of CS-FuzGA can be seen in two
parts:

• First, the cuckoo eggs are subjected to CS improvement
process, including moving the eggs to new nests using
levy flight or abandoning and replacing them.

• Secondly, the population is subjected to the enhanced
part of CS. In this part, CS-FuzGA integrates the GA
operators, including mutation and crossover, into its
search process. The operators are wisely injected into
the search process to maintain the balance between
exploration (mutation) and exploitation (crossover). The
decision to favor either exploration or exploitation is
influenced by the adaptive fuzzy logic control based
on population diversity and performance. To select the
favor operator, CS-FuzGA calculates the diversity of the
population.

CS-FuzGA calculates the diversity within the population and
then bases the diversity score, CS-FuzGA selects the genetic
operator that favors either exploration or exploitation. To do
that, CS-FuzGA starts calculating themembership of the pop-
ulation members for low, medium, and high diversity levels,
and based on the membership, the algorithm selects a genetic
operator that either emphasizes exploration (mutation) or
exploitation (crossover).

IV. RESULTS AND DISCUSSION
This section aims to present the experimental evaluation of
the proposed works against the existing works. The perfor-
mance of CS-FuzGA-PTS is compared against the existing
works in terms of test case reduction and defect identifi-
cation. This section is divided into several subsections: the
first section presents the experiment setup, while the second
section evaluates the CS-FuzGA-PTS against the existing
strategies in terms of test case reduction. The third section
evaluates the effectiveness of CS-FuzGA-PTS in terms of
defect detection. Lastly, the fourth section evaluates the
proposed optimization algorithmCS-FuzGA against the stan-
dard CS and GA in terms of convergence rate.

A. EXPERIMENTAL SETUP
To conduct the experiment, the CS-FuzGA-PTS, standard
CS, GA and random search are implemented using Python
to generate test cases for software input. Additionally, results
of existing works such as SA, GA, PSO, FPA, and CS will
be collected from the published papers. Specifically, the effi-
ciency of the proposed method will be evaluated against the
existing works in terms of generating the optimal test cases.
Second, the effectiveness of defect identification using the
proposed method will be evaluated. Lastly, the performance
of CS-FuzGA as an optimization algorithm will be evaluated
against the standard CS and GA solution quality and con-
vergence rate. The experiments were performed on a laptop
with specifications of an Intel (R) Core (TM) i7-3770 CPU@
3.40 GHz - 3.40 GHz, 8GB of RAM,Windows 10, and 64-bit
operating system. For the parameter setting, CS-FuzGA-PTS

TABLE 1. Parameters for meta-heuristic strategies of interests.

has been tuned, resulting in a maximum iteration of 200 and
a population size of 30, as indicated by the convergence rate
analysis in this study. while the other parameters, such as
mutation rate, and the probability of CS, used the recom-
mended default values. Meanwhile, for other optimization
methods, the recommended settings from the original papers
are used. Table 1 represents the parameters that are adopted
for the meta-heuristic strategies [3], [5], [6], [36].

B. TEST CASE REDUCTION
This experiment evaluates the ability of CS-FuzGA-PTS to
minimize the test cases of the SUT while maintaining suffi-
cient coverage. In this section, CS-FuzGA-PTS is compared
with existing t-way testing methods such as mAETG, AETG,
IPOG, Jenny, TVG, PSO, HSS, FPA and CS. The results of
these methods are collected from the available research [3],
[5], [36], [37].

For a comprehensive comparison, this section presents
experiments employing three well-known real-world sys-
tem configurations that are commonly used in t-way testing
research. These experiments aim to evaluate the performance
and effectiveness of the CS-FuzGA-PTS test case generation
method across a range of complexities.

1. Experiment 1: A system with a configuration of 10 inputs,
each input with 2-values while the coverage strength, t,
is varied from 2 to 10.
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TABLE 2. Comparison with existing strategies for experiment 1.

TABLE 3. Comparison with existing strategies for experiment 2.

TABLE 4. Comparison with existing strategies for experiment 3.

2. Experiment 2: A system with a configuration of 10 inputs,
each input with p-values where p is varied from 2 to 7, and
the coverage strength is 4.

3. Experiment 3: A system with a configuration of i inputs,
where i is varied from 5 to 10, each input with 5-values
and the coverage strength 4.

In analyzing the above experimental results, the results
reveal distinct trends among computational-based and meta-
heuristic testing strategies. The results of experiment 1 in
Table 2 show that computational-based strategies, such as

IPOG, TVG, Jenny, and TConfig, demonstrate reasonable
performance in terms of test case reduction, where TVG
and Jenny outperform other strategies across different values
of t. Concerning meta-heuristic strategies, CS-FuzGA-PTS
achieves the best performance in most of the cases; it con-
sistently outperforms other meta-heuristic strategies.

The results of computational-based strategies for exper-
iment 2 show varied and competitive performance across
different levels of input. GTWay consistently outperforms the
other strategies, while Jenny produces competitive results.
In this experiment, meta-heuristic strategies demonstrate
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strong performance in minimizing test cases compared to
computational-based strategies. Both CS-FuzGA-PTS and
FPA consistently outperform other meta-heuristic strategies
in most cases, achieving the best test suite size across various
input levels.

Similarly, the results of Experiment 3 show that ITCH
and GTWay consistently maintain competitive performance,
demonstrating their robustness across different configura-
tions. On the other hand, meta-heuristic strategies show
strong performance compared to computational-based strate-
gies.While CS-FuzGA-PTS is not the best in this experiment,
it shows very competitive results. The FPA strategy outper-
forms the other strategies in most cases.

Transitioning into the broader discussion, the initial obser-
vation underscores that meta-heuristic strategies exhibit
strong performance compared to computational-based strate-
gies. In the same context, the experiments involve a variety of
system configurations, including different numbers of inputs,
values, and coverage strengths. It has been observed that vary-
ing system configurations influence the performance of both
computational-based and meta-heuristic strategies. However,
it is noteworthy that none of the strategies achieve optimal
results across all configurations.

Considering computational-based strategies, we can
observe that TVG, Junny, ITCH, and GTWay consistently
perform better than other computational-based strategies.
This might be because most of these strategies employ
advanced techniques that allow them to identify and eliminate
redundant test cases more effectively. For example, TVG
utilizes static analysis by analyzing the control flow graph
of the program, then employs heuristic search and redundant
test vector elimination. Similarly, Junny employs adaptive
heuristic search and a merging technique that combines test
cases covering similar interactions for further reduction. The
outstanding performance of ITCH and GTWay in reducing
test cases stems from their efficient algorithms, due to their
dynamic adaptability and scalability to higher-order inter-
actions. ITCH’s heuristic and incremental approach starts
with pairwise tests and gradually increases the complexity
of test cases, allowing it to generate competitive results.
GTWay integrates test generation with execution, enabling
the identification and elimination of redundant test cases,
further reducing size.

On the other hand, FPA and CS-FuzGA-PTS consistently
outperform other meta-heuristic strategies in most cases,
while CS stands out in some cases. The results show the
robustness of FPA and CS-FuzGA-PTS under different con-
figurations, where both are able to achieve the best results
across different configurations. This might be because most
of these strategies employ techniques that allow them to adapt
their performance to different configurations. The authors
believe that the combination of GA operators in CS-FuzGA-
PTS, controlled by the fuzzy technique plays a vital role in
achieving good results. Also, the utilization of the Levy flight
in both FPA andCS-FuzGA-PTSmay be identified as another
contributing factor to achieving good results. The results also

show that CS and HSS produce a competitive result, while
PSO exhibits competitive performance as well, but it fails to
record any best results across all the configurations. It might
face challenges in achieving an optimal balance between
exploration and exploitation within the search space. It is
worthwhile to mention that CS-FuzGA-PTS is designed to
self-adapt between exploration and exploitation to achieve
an optimal balance between the two, as the selection of GA
operators is based on the performance of CS-FuzGA-PTS.

C. PRIORITIZATION AND DEFECT ANALYSIS
This section aims to evaluate the effectiveness of CS-FuzGA-
PTS in prioritizing test cases and identifying potential
defects. The section exhibits the prioritization capabilities of
CS-FuzGA-PTS compared to existing methods. The evalu-
ation is structured as two experiments. The effectiveness of
CS-FuzGA-PTS is evaluated in terms of identifying bugs
using a real-world application.

In this evaluation, we use the Healthcare Eligibility Assess-
ment System (HEAS) as a real-world application to evaluate
the proposed method. HEAS is a GUI-based software used
to assess the health status of customers to determine their
eligibility for certain services, such asmedical treatments, job
eligibility, insurance coverage, or other services. The appli-
cation has been selected because it involves various input
types, user interactions, calculations, decision-making pro-
cesses, and stakeholder impacts within a manageable context.
As FIGURE 5 shows, HEAS calculates the customer’s score
based on various health factors and criteria, including:

• Medical History: [No significant medical history, Minor
medical conditions, Chronic conditions, Serious ill-
nesses, Terminal conditions]

• Lifestyle Habits: [Healthy lifestyle, Occasional
unhealthy habits, Regular unhealthy habits, Sedentary
lifestyle]

• AgeGroup: (Enter numerical age value) [Infant/Toddler,
Child/Teenager, Adult, Senior Citizen]

• Body Mass Index (BMI): (Enter BMI value) [Under-
weight, Normal, Overweight, Obese]

• Chronic Medications: [None, Few, Moderate, Many]
• Family Medical History: [No significant family history,
Family history of certain conditions]

• Physical Fitness: [Active and fit, Moderately fit, Low
physical activity]

• Blood Pressure: (Enter numerical blood pressure value)
[Normal, Prehypertension, Hypertension]

• Blood Sugar Level: (Enter numerical blood sugar level
value) [Normal, Prediabetes, Diabetes]

• Smoking Status: [Non-smoker, Ex-smoker, Current
smoker]

• Alcohol Consumption: [Non-drinker, Occasional drinker,
Regular drinker].

To evaluate the effectiveness of CS-FuzGA-PTS in iden-
tifying software defects, we execute the PTS generated
by CS-FuzGA-PTS during the testing process on HEAS
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FIGURE 5. Healthcare eligibility assessment system.

TABLE 5. HEAS defect identification result using CS-FuzGA-PTS and random generation.

as the system under test. To measure defect identifica-
tion, we employed Mutation Testing with PIT (PITest).
PITest is a powerful tool used to assess the effectiveness
of test suite for identifying defects in the source code.
It accomplishes this by generating mutated versions of the
source code that include software defects. PITest gener-
ates different kinds of defects in the source code, such as
Conditional Changes, ArithmeticMutations, VariableManip-
ulation, Exception Handling, Boundary Changes, Statement
Deletion and Operator Alterations. As the proposed method

emphasizes prioritizing test cases through BVA, Boundary
Changes mutation is exclusively used to mitigate any poten-
tial influences on the results.

Table 5 shows the comparison results of defect identifica-
tion using the PTS generated by CS-FuzGA-PTS compared
with random generation. The table displays two important
metrics for the evaluation, including mutation kill rate (a.k.a.
mutator coverage) and average line coverage. In addition to
that, it displays the average analysis time. Mutation kill rate
presents the percentage of the number of killed mutations to
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FIGURE 6. Comparison of convergence rate for system 1.

the total number of mutations, while line coverage presents
the percentage of covered lines of code to the total lines of
code. The comparison shows that CS-FuzGA always tends
to achieve a higher mutation kill rate and line coverage com-
pared to random generation, and it is able to detect all the
defects by executing a certain number of high-priority test
cases. While exhaustive testing requires up to (30×10×10×

20×4 × 5×4 × 4×2 × 3×3) 3715 test cases, only 25 test
cases can achieve 100% mutation coverage and kill all the
generated mutations.

The results obtained from this experiment provide insights
into the effectiveness of CS-FuzGA-PTS in generating a test
suite that is able to identify potential defects occurring at
input boundaries. By optimizing and prioritizing the test cases
based on coverage weight and BVA, the proposed method
outperforms the other methods in terms of coverage weight,
test suite size, and defect detection.

D. CONVERGENCE RATE
The aim of this experiment is to evaluate the performance of
CS-FuzGA as an optimization algorithm. The evaluation aims
to observe and analyze the convergence rate of CS-FuzGA

compared to standard CS and GA. The convergence rate mea-
sures how fast the algorithm can reach the optimal solution
as the number of iterations increases. To measure the conver-
gence rate, the results of the three algorithms are tracked over
a series of iterations as shown in Table 6. The results of the
experiment are also presented in FIGURES 6 and 7 of two
systems configurations:

• System 1 has 5 inputs, each with 10 values, and a cover-
age strength of 2,

• System 2 is HCS, with a coverage strength of 2.

From the line plots in the figures, we track the obtained results
over the iterations, while in the box plot on the right side,
we see the distribution of the obtained test suite size.

For both systems, the performance of CS-FuzGA is supe-
rior to the other two algorithms, as shown in the line plot.
Overall, the iterations, the proposed method produces an
optimal number of test cases than CS and GA. Box plots
also show that the distribution of CS-FuzGA test suite sizes
is always smaller than the other two algorithms. It also shows
that the average of test suite sizes (as displayed by the orange
line in the boxes) is almost at the bottom of the boxes,
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FIGURE 7. Comparison of convergence rate for HCS system.

meaning that the average of test suite sizes is the same as the
minimum test suite size. Box plots also show that the worst
results obtained by CS-FuzGA are still better compared to the
results obtained by CS and GA.

The results indicate that the integration of the CS and GA
operators with fuzzy logic control is able to accelerate the
search process of CS-FuzGA compared to standard CS and
GA. By continuously monitoring the diversity of popula-
tion and coverage rate, fuzzy logic control is dynamically
able to adjust the contributions of CS and GA operators
throughout the optimization process. This dynamic adapta-
tion enables the CS-FuzGA algorithm to strike an optimal
balance between exploration and exploitation, enhancing the
search quality.

E. COMPLEXITY ANALYSIS
The complexity of the algorithm is important for evaluating
its scalability and performance. Especially when it applies to
large-scale problems. This section analyses the CS-FuzGA
algorithm in comparison to standard cuckoo search (CS)
and genetic algorithms (GA) in terms of time complexity.
complexity of space and overall efficiency.

The time complexity of CS depends on the number of
iterations and the number of solutions or nests. Each iteration
creates a new solution and replaces the worst performing nest.
This can generally be expressed as follows:

O(n · I )

where I is the number of iterations and n is the number of
nests.

The time complexity of GA depends on the number of
iterations, and time complexity of each GA operators. The
time complexity of GA can generally be expressed as follows:

O(n · I · (s+ c+ m))

where I is the number of iterations or generation, n is the
number of chromosome, s is the time complexity of selection,
c is the time complexity of crossover, and m is the time
complexity of mutation.

The time complexity of CS-FuzGA depends on the number
of iterations, time complexity of one selected GA operator
and Overhead from the adaptive fuzzy logic control. The
time complexity of CS-FuzGA can generally be expressed as
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TABLE 6. Analyzing the convergence rate for system 1 AND HCS system.

follows:

O(I · (n+ (s+ c+ m) + k + d))

where:
O(I): The cost of I iterations, encompassing both CS and

GA operator execution.
O(n): The cost of managing n nests in the CS.
O(s + c + m): This reflects the cost of applying one

of the GA operators (s: selection, c: crossover, or m:

mutation) per iteration, chosen based on algorithm per-
formance. It avoids the full complexity of a complete
GA cycle.

O(k): The overhead of the adaptive fuzzy logic control,
generally considered a small constant.

O(d): The computational cost of evaluating population
diversity and selecting the appropriate GA operator. This is
also expected to be relatively small compared to the other
terms.
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This analysis indicates CS-FuzGA has a significant scal-
ability advantage over standard GA. Although CS has a
simpler time complexity, CS-FuzGA improves its search
capabilities by integrating GA operators. However, CS-
FuzGA maintains a lower cost by executing only one GA
operator per iteration within CS loop. The additional costs
of fuzzy logic control (k) and different computations (d)
are relatively small. In general, the time complexity of
CS-FuzGA is favorable when compared to the potential per-
formance and scalability benefits of CS-FuzGA. As a result,
CS-FuzGA is well balanced between the simplicity of CS
and the power of GA, making it suitable for large-scale
problems.

V. CONCLUSION
In this paper, we have proposed and implemented a method
called CS with Adaptive Fuzzy Logic-Controlled GA Opera-
tors for PTS Generation (CS-FuzGA-PTS). CS-FuzGA-PTS
aims to generate a PTS that combines t-way testing for
test case reduction and boundary analysis for prioritizing
test cases based on potential defects at boundaries of input
ranges. CS-FuzGA-PTS optimizes the test cases using the
CS-FuzGA algorithm as the core search algorithm. CS-
FuzGA integrates CS with adaptive fuzzy logic control and
GA operators to continuously monitor the diversity of poten-
tial solutions enhancing the search capability. Considering
the test results, the research achieved its objectives, as the
PTS generated using CS-FuzGA-PTS demonstrates superior
performance in identifying defects. Furthermore, the experi-
ment shows CS-FuzGA-PTS ability to surpass existing t-way
strategies in terms of test reduction. From an optimization
perspective, the proposed CS-FuzGA accelerates the search
process and obtains a better convergence rate compared
to standard CS and GA. Overall, the results suggest that
CS-FuzGA-PTS is a promising approach for test reduction
and fault detection due to its crafting design that integrates
t-way testing and boundary analysis techniques from the
software testing domain and CS, GA operators, and fuzzy
logic control from the optimization domain. Furthermore,
CS-FuzGA-PTS is able to monitor and adjust its perfor-
mance based on the results obtained, which can boost either
exploration or exploitation by measuring the diversity of the
population.

The proposed CS-FuzGA-PTS has a significant implica-
tion for the field of software testing, as the software systems
become increasingly complex. There are practical applica-
tions of the proposed method across various industries where
software failures can lead to significant to substantial losses,
including Finance and Banking, Healthcare, and E-commerce
systems, to name a few. In these applications, the CS-FuzGA-
PTS can enhance the reliability of applications by effectively
identifying the critical defects that may occur at input limits,
thereby improving system robustness. Furthermore, by using
T-way testing and boundary value analysis, CS-FuzGA-PTS
reduces the number of required test cases. while maintaining
comprehensive coverage. This reduction directly reduces the

overall costs, including the resources required for testing
and time and manpower. On the other hand, there are some
limitations raised when applying CS-FuzGA-PTS to different
complexities of software projects. As the software system
gets more complex, CS-FuzGA-PTS may face challenges to
efficiently generate and prioritize all relevant test cases due to
the combinatorial explosion of possible test cases. Addition-
ally, the CS-FuzGA-PTS relies heavily on BVA to prioritize
test cases, which require domain expertise to identify these
critical boundary values.

For future work, there is still room for improving the per-
formance of CS-FuzGA-PTS by exploring the integration of
other metaheuristic algorithms beyond CS. Furthermore, due
to its adaptive nature, CS-FuzGA can be utilized for solving
other real-world optimization problems, such as travel sales-
man problem, software product line, and global optimization
problems.
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