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Abstract: Natural sources used in industry, such as envir-
onmental waste fibers for plants, waste paper, and others,
can lessen waste-throwing problems and reduce environ-
mental pollution to save lives on the earth’s crust. The
natural composites of natural fiber-reinforced thermo-
plastic are undoubtedly to be sustainable and eco-friendly.
Therefore, the current work was conducted to study the
addition of natural fiber date palm Khestawi-type fiber
(DPKF) with different loadings (5, 10, and 15%) into the
polypropylene (PP) matrix to prepare DPKF/PP composites.
The specimens were prepared by using the lamination
method. In addition, the mechanical properties of these
composite material specimens were studied by following
ASTM, which included tensile, flexural, and impact tests. A
scanning electron microscope (SEM) and X-ray diffraction
(XRD) were employed to analyze the morphology and the
structure crystallite studied of the DPKF/PP composites.
The results show that the DPKF/PP composite with 15%
fiber content recorded the best tensile strength, tensile
modulus, and low tensile strain performance. Moreover,
XRD and SEM analysis confirmed the mechanical proper-
ties and crystalline nature of the DPKF/PP composites.
Finally, the values of the flexural and impact properties
increased with increasing fiber loading.
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1 Introduction

Each engineering application or engineering design has a
set of crucial factors that need to be achieved to get proper
design successfully [1-5]. Global and governmental trends
have commanded that subrogated industrial materials by
sustainable and environmentally friendly materials [6-9].
Therefore, the process of selecting sustainable materials
and the method of manufacturing are considered crucial
factors in achieving the sustainable development goals of
the “British Times Organization” [10-15]. For engineering
applications, the right balance between the material’s per-
formance, recyclability, and functionality became crucial.
Furthermore, discovering new materials with appealing,
unique properties might open up new avenues for design
[16-19]. However, lots of requirements and restrictions
often affect the use of a particular type of material in a
specific application [20-22]. As a result, choosing the right
material type for a given application is a multi-criteria
problem where appropriate judgments must be made for
each design based on several special factors [23].

The use of natural resources has been strongly encour-
aged recently due to the enormous need for awareness of
environmental impact [24]. This has pushed the govern-
ment’s emphasis on new regulations regarding environ-
mental impact issues and sustainability concepts, as well
as growing social, economic, and ecological awareness
[25-27]. As a result, natural fiber composites, also known
as natural fiber reinforced polymer composites or NFRPCs,
emerged as a useful substitute material type for a variety
of applications [28]. Traditionally, constructed fibers have
been employed as reinforcing components in composite mate-
rials [29]. Meanwhile, there is currently interest in replacing
them with natural fibers [30-35]. As fillers or reinforcing ele-
ments for polymer-based matrices, natural fiber composites,
including jute [36], date palm fiber [37], hemp [38], sisal [39],
oil palm fiber [40], kenaf [41], sugar palm fiber [42], and flax
[43] are used. Using natural fibers in this method reduces
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waste disposal issues and environmental degradation, and the
sustainable goal can be achieved [44].

NFCs have several advantages over synthetic compo-
sites, like low costs and density and acceptable specific
strength and modulus, which can lead to low-weight pro-
ducts [45,46]. Since they are generated from a renewable
resource, their production requires less energy, and unlike
glass fibers, they may be simply disposed of at the end of their
useful life by composting or by recovering their calorific value
in a furnace [47]. Furthermore, natural fibers are superior to
conventional glass fibers in several ways, including avail-
ability, sequestration of CO,, improved energy recovery, less
tool wear during machining, and decreased irritation of the
skin and respiratory system [48-51].

Except for the northern region, Iraq may be regarded
as a date palm country because date palm trees are found
throughout the place. Iraq has a wide variety of date palm
tree species [48]. Zahidi, Khastawi, Barhi, Berban, Khadrawi,
etc., are among them. Date palms of the Khestawi kind are
conveyed to be the best because their fruits have a sweet
flavor taste [52]. Owing to the abundance of these trees, a
significant amount of fiber could be obtained [53-55].

There are several processes used for manufacturing
composite materials based on thermoplastics, such as extru-
sion, injection molding, internal mixing, heat pressing, lami-
nation, etc. [56]. Choosing one of these methods is consid-
ered a great challenge, given that each of these methods has
advantages and disadvantages [57]. Extrusion in the manu-
facture of plastics is beset by issues with quality control,
limited materials, and expensive setup expenses at first
[58]. Enhancing process effectiveness and efficiency requires
reducing waste and achieving consistent product quality
[59-61]. Moreover, innovative solutions are needed to enhance
process efficiency and product quality since internal
mixers have drawbacks such as high-energy consump-
tion, equipment wear, and difficulties establishing uni-
form mixing. These issues also impede scaling and raise
operational expenses [62—-65].

Conversely, the lamination process offers substantial
advantages in terms of barrier qualities, customization,
strength, aesthetic appeal, adaptability, material efficiency,
and better functionality, whereas internal mixers and
extruders encounter unique obstacles in the manufac-
turing of plastics. Thus, the lamination process has a posi-
tive effect on the mechanical properties of date palm
Khestawi type fiber (DPKF)/polypropylene (PP) composites
as it reduces the effect of heat and thereby holds the
internal structure of the fibers and the polymer together,
improving the mechanical performance compared to other
manufacturing techniques such as extrusion the composite
is subjected to repeated heat.
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Therefore, in this study, a lamination technique was
utilized to prepare all dosages of DPKF/PP composites.
After that, their performance was evaluated by testing
their tensile, flexural, and impact properties, which were
then characterized by X-ray diffraction (XRD) and scanning
electron microscopy (SEM). This composite material can be
applied in several industries, such as automotive, packa-
ging, and others.

2 Experimental procedure

2.1 Materials

The materials used in this study were PP and DPKF. The
matrix PP was purchased from Malaysia SDN BHD/Petronas
Co. Ltd, with properties shown in Table 1. Date palm Khes-
tawi-type fiber was obtained locally.

2.2 Preparation of fiber

The fiber was washed in tap water to remove impurities
and dust and then dried for 2 days at atmosphere pressure
and room temperature. Afterwards, the fiber was put in
the oven at 80°C for 24 h to complete the drying process
and remove the moisture.

2.3 Preparation of DPKF/PP composites

The lamination method was carried out by producing
sheets of thermoplastic PP with dimensions of 20 cm x
20 cm and a thickness of 1 mm for subsequent preparation
for various DPKF/PP composites using a hot press machine
model ILLIG RD 53C, 10 tons (Figure 1). The first stage was
produced sheets with a thickness of 1 mm. Two molds with
the same dimensions were used of different thicknesses.

Table 1: PP properties [26]

Product properties Test method  Units Value
Melt flow rate (230°C/2.16 kg) ~ ISO 1133 g/10min 12
Flexural modulus ISO 178 MPa 1,300
Tensile stress at yield ISO 527 MPa 32
Specific gravity 150 1183 g/cm® 0.855
Melting temperature ISO 11357-3 °C 160
Izod notched at 23°C min* ISO 180/1A k)/m? 2.5

*Injection molding procedure for a specimen as per ISO 180/1A.
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The molds were made of stainless steel with dimensions of
20 cm x 20 cm, 1-mm-thick (the initial mold for producing
the sheets), and the other 3 mm thick (the final mold for
composites) with a top and bottom cover. The number of
layers was fixed at three for all the DPKF/PP composites
studied, and fibers were added between them. The heating
process with a hot press was carried out by placing the
mold inside the hot press machine after the required
amount of polymer or polymer sheets and fibers. To pro-
duce the composites DPKF/PP, a layer of sheets was added
to the bottom of the mold, half the amount of DPKF reinfor-
cement was added, and another layer of sheets was added,
after which the final amount of fibers, subsequently the last
layer. The mold was closed with the upper cover and then
inserted into the hot pressing machine to apply a mechan-
ical load of 4 tons and a constant thermal load for all opera-
tions of 165°C. The mold was placed in a hot press machine
for 12 min before the heating stopped. Then cooling began at
10°C/min until around 30°C, before the mold was released. In
the final stage of the process, the composite sheets were cut
using a manual cutting saw according to the standard spe-
cifications for tension, bending, and impact.

3 Mechanical tests of DPKF/PP
composites

3.1 Tensile test

Tensile tests determine a material’s behavior to stress by
applying tensile (pulling) force on it. Testing a material’s
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strength and elongation ability is how tensile tests do this.
This test was performed according to (ASTM D638). The test
gives the full material profile tensile properties (strength,
modulus, strain). The relation between stress and strain,
which was obtained gives the composites’ mechanical
behavior during the load and predicts the point of failure.
Instron Laryee (Figure 2) was used with a crosshead speed
of 5mm/min. Five specimens were prepared for each
composite.

3.2 Flexural test

Bend testing establishes a material’s flexural strength and
modulus by applying stress to it until it fractures or
deforms. Shear stress is created along the midline of the
specimen during a flexure test, which causes tensile ten-
sion on the convex side and compression stress on the
concave side. Shear stress needs to be reduced to guar-
antee that tensile or compression stress is the main cause
of failure [3]. The same INSTRON in tensile test performed
this test according to ASTM D790.

3.3 Impact test

Impact testing is the process of evaluating the resistance of
an item to high-speed loading. An impact test measures the
amount of energy required to fracture a test item quickly.
This test is performed according to ISO-180 [3]. When the

Figure 1: Hot press machine model ILLIG RD 53C, 10 tons.

Figure 2: Tensile Instron Laryee.
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Figure 3: Pendulum XJU-22 Izod impact test.

specimen is clamped at one end and held vertically in a
cantilever beam end, it breaks at a velocity of 3.5 m/s due to
a pendulum XJU-22 (Figure 3) with a work value of 5.5].

In addition, all the mechanical specimens were tested
five times for each tensile, flexural, and impact properties
test individually. Accordingly, Table 2 represents the ten-
sile properties, and Table 3 illustrates the impact and flex-
ural properties of the DPKF/PP composites. Moreover, the
crucial statistical factors were calculated accordingly to
represent the average, error, and standard deviation for
each DPKF/PP composite sample.

4 Characterizations of DPKF/PP
composites

4.1 SEM

A sophisticated kind of electron microscope called a SEM
uses a focused electron beam to scan a sample’s surface to
produce precise photographs of its surface. High-resolution
pictures that show the topography and surface composi-
tion of the sample are made possible in large part by the
SEM. SEM is utilized in the context of composite materials
to see how various contents, such as DPKF (a particular
filler or addition), affect the fracture surface following a
tensile test for the DPKF/PP composites. The SEM Tescan
Mira3 XMU from the Czech Republic (Figure 4) was the
particular equipment utilized for this observation. Under-
standing how different DPKF concentrations affect the
mechanical characteristics and failure causes of the com-
posites was made easier with this technique.
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4.2 XRD

By examining their distinct diffraction patterns, crystalline
materials may be quickly and accurately characterized through
the use of XRD, an analytical method that aids in the identifica-
tion of various phases within the material. One such piece of
equipment is the Shimadzu, Japan-based XRD-6000 device. A
crystalline sample, such as a DPKF sample, reacts to X-rays by
producing constructive interference patterns. The structural
details of the sample are then revealed by detecting, processing,
and recording these diffracted X-rays (Figure 5).

5 Results and discussion

5.1 Effect of changed fiber content on the
tensile properties of DPKF/PP composites

5.1.1 Tensile strength

Figure 6 shows the effect of fiber loading on the tensile
strength of DPKF/PP composites. The tensile strength values
for the neat PP, 5, 10, and 15wt% of DPKF/PP composites
were 30.54, 27.844, 25.87, and 32.2MPa, respectively. The
best composite was the third one with a content of 15 wt%
DPKF in the PP matrix. This was due to the good distribution
of fibers within the matrix [27,66-70], and the perfect match
between the fibers added with the polymer [28,71-75], reflected
in its cohesion as obvious in Figure 8d. In addition, there were
no gaps or voids between the fibers and the polymer, produ-
cing heavy interlocking [9,76-78]. Therefore, this proves that
mechanical interlocking was sufficient to transfer the load
from PP to DPKEF, and the reinforcing effect of the DPKF was
dominant. Meanwhile, at 5, 10 wt%, DPKF/PP composites, the
less fiber amount in the matrix caused a reduction in load
transfer capacity among the fibers; the lack of fiber content
pushed the accumulation of stresses and reduced their transfer
in the structure of the composites, which weakened their
ability to withstand, so they failed [28,79-83].

5.1.2 Tensile modulus

Figure 7 shows the effect of fiber content on the tensile
modulus of DPKF/PP composites. The tensile modulus values
for the neat PP, 5, 10, and 15 wt% of DPKF/PP composites were
4.81, 5.708, 5.25, and 8.49 GPa, respectively. The tensile mod-
ulus of DPKG/PP composites augmented gradually with the
fiber loading doses. The composite consists of a low-stiffness
matrix and high-stiffness fibers; therefore, the increasing
fiber loading leads to a rise in the stiffness of composites [29].
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Table 2: Tensile strength, tensile modulus, tensile strain, average, error, and standard deviation for the neat PP and different DPKF content by weight

percentage in DPKF/PP composites

No. of samples Different DPKF content wt% in PP

Tensile strength (MPa)

Tensile modulus (GPa) Tensile strain (%)

1 (1) 0% DPKF with neat PP 30.132
2 (2) 0% DPKF with neat PP 36.247
3 (3) 0% DPKF with neat PP 34311
4 (4) 0% DPKF with neat PP 26.308
5 5) 0% DPKF with neat PP 25.702
Average 30.54
Std.error 2.1009
Std.Dev.E 4.6977
Error -2.5968
1 (1) 5% DPKF with 95% PP 24.081
2 (2) 5% DPKF with 95% PP 27.584
3 (3) 5% DPKF with 95% PP 26.162
4 (4) 5% DPKF with 95% PP 32.838
5 (5) 5% DPKF with 95% PP 28.555
Average 27.844
Std.error 1.4578
Std.Dev.E 3.2597
Error -1.8019
1 (1) 10% DPKF with 90% PP 28.51
2 (2) 10% DPKF with 90% PP 26.258
3 (3) 10% DPKF with 90% PP 26.885
4 (4) 10% DPKF with 90% PP 21.423
5 (5) 10% DPKF with 90% PP 26.274
Average 25.87
Std.error 1.1851
Std.Dev.E 2.6500
Error ~1.4649
1 (1) 15% DPKF with 85% PP 34.332
2 (2) 15% DPKF with 85% PP 31.359
3 (3) 15% DPKF with 85% PP 27.35
4 (4) 15% DPKF with 85% PP 37.154
5 (5) 15% DPKF with 85% PP 30.805
Average 322
Std.error 1.6623
Std.Dev.E 3.7170
Error -2.0547

5.27 7.322
4.66 6.459
5.70 5.706
4.09 6.5
4.34 5.913
4.81 6.38
0.2343 0.2811
0.5240 0.6286
-0.2897 -0.347
6.371 5.386
5.355 4.211
5.778 5.292
5.067 5.578
5.969 3.896
5.708 4.87
0.2289 0.3412
0.5119 0.7630
-0.2830 -0.4218
4.834 4.597
5.079 5.621
4.636 4.668
5.693 4.795
6.008 4.769
5.25 4.89
0.2598 0.1862
0.5810 0.4163
-0.3212 -0.2301
7.589 4.163
8.738 3.751
9.326 4.113
8.592 3.182
8.205 3.741
8.49 3.79
0.2884 0.1756
0.6449 0.3928
-0.3565 -0.2171

where Std.error: standard error, Std.Dev.E: standard deviation.

5.1.3 Tensile strain

Figure 8 shows the effect of fiber range on the tensile strain
of DPKF/PP composites. The tensile strain values for the pure
PP, 5, 10, and 15 wt% of DPKF/PP composites were recorded as
6.38, 4.87, 4.89, and 3.79%. DPKG/PP composites’ tensile strain
declined slowly due to increased fiber loading. This supported
the tensile modulus property of the DPKF/PP composites. Due
to increased fiber content instead of increased polymers, com-
posites tend to be less stretchable when compared with the
neat PP matrix. This is due to the superior elongation ability of
PP compared to the low capability of elongation for reinforced
fibers in composites [30]. As a result of orientation, the fibers

in the matrix parallel to the line of tensile stress resulted in
high stiffness with a noticeable decrease in elongation [31].

5.2 Effect of changed fiber content on the
flexural properties of DPKF/PP
composites

5.2.1 Flexural strength

Figure 9 shows the effect of fiber lamination content on the
flexural strength of DPKF/PP composites. The flexural
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Table 3: Flexural strength, flexural modulus, impact strength, average, error, and standard deviation for the neat PP and different DPKF content by

weight percentage in DPKF/PP composites

No. of samples Different DPKF content wt% in PP

Flexural modulus (GPa)

Flexural strength (MPa) Impact strength (%)

1 (1) 0% DPKF with neat PP 0.233

2 (2) 0% DPKF with neat PP 0.189

3 (3) 0% DPKF with neat PP 0.172

4 (4) 0% DPKF with neat PP 0.205

5 (5) 0% DPKF with neat PP 0.201
Average 0.2
Std.error 0.0100
Std.Dev.E 0.0225
Error -0.0124

1 (1) 5% DPKF with 95% PP 0.65

2 (2) 5% DPKF with 95% PP 0.474

3 (3) 5% DPKF with 95% PP 0.617

4 (4) 5% DPKF with 95% PP 0.515

5 (5) 5% DPKF with 95% PP 0.689
Average 0.589
Std.error 0.0407
Std.Dev.E 0.0911
Error -0.0504

1 (1) 10% DPKF with 90% PP 0.682

2 (2) 10% DPKF with 90% PP 0.621

3 (3) 10% DPKF with 90% PP 0.552

4 (4) 10% DPKF with 90% PP 0.66

5 (5) 10% DPKF with 90% PP 0.62
Average 0.627
Std.error 0.0222
Std.Dev.E 0.0496
Error -0.0274

1 (1) 15% DPKF with 85% PP 1122

2 (2) 15% DPKF with 85% PP 1.286

3 (3) 15% DPKF with 85% PP 1.305

4 (4) 15% DPKF with 85% PP 0.975

5 (5) 15% DPKF with 85% PP 0.957
Average 1.129
Std.error 0.0738
Std.Dev.E 0.1651
Error -0.0912

19.74 20.9
21.08 22.131
21.84 28.258
21.10 29.026
16.26 27.685
20 25.6
0.4755 1.6922
1.0632 3.7840
-0.5877 -2.0917
35.202 9.939
30.963 10.148
41.896 10.86
38.973 9.365
38.681 10.688
37.143 10.2
1.8744 0.2685
4.1912 0.6004
-2.3168 -0.3319
43.395 17.745
35.901 16.244
41.667 13.608
32.476 17.044
46.561 18.359
40 16.6
2.5570 0.8271
5.7176 1.8494
-3.1606 -1.0223
63.034 24.54
66.883 17.59
55.141 19.555
59.242 20.84
55.7 25.975
60 21.7
2.2277 1.5584
4.9813 3.4848
-2.7536 -1.9263

where Std.error: standard error, Std.Dev.E: standard deviation.

strength values for the neat PP, 5, 10, and 15wt% of DPKE/PP
composites were 20, 37.143, 40, and 60 MPa, respectively. Flexural
strength showed an increasing trend as fiber lamination loadings
increased. The strong bonding between DPKF and PP matrix
resulted in thriving flexural behaviors where the performance of
the stress conveyed between the polymer and fiber rose. A similar
behavior was also observed by teams of investigators [32-35].

5.2.2 Flexural modulus

Figure 10 shows the effect of fiber content on the flexural
modulus of DPKF/PP composites. The flexural modulus

values for the neat PP, 5, 10, and 15 wt% of DPKF/PP com-
posites were 0.2, 0.589, 0.627, and 1.129 GPa, respectively.
There was a similar behavior between flexural modulus
and flexural strength. This confirmed the flexural strength
results, as proved previously by [32-35].

5.3 Effect of changed fiber content on the
impact strength of DPKF/PP composites

Figure 11 shows the effect of fiber content on the average
impact strength of DPKF/PP composites. The impact
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Figure 4: SEM Tescan Mira3 XMU from the Czech Republic.

Figure 5: Shimadzu, Japan-based XRD-6000 device.

strength values for the neat PP, 5, 10, and 15 wt% of DPKF/
PP composites were 25.6, 10.2, 16.6, and 21.7 k]/mz, respec-
tively. It was evident that, when compared with the other
composites at various energy levels, the composite speci-
mens with 15% DPKF loading had greater impact strength
values. It could be attributed to the increase in the stiffness
of the composite due to the increased DPKF loading of
reinforced PP. Conversely, there was a deterioration in impact
strength behaviors for all doses of DPKF/PP when compared
with the highest impact strength recorded for PP. When the
hummer strikes the test sample, it undergoes kinetic energy
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Figure 7: Effect of fiber loading on tensile modulus of DPKF/PP
composites.

dissipation through several processes, according to the energy
dissipation point of view. For instance, these mechanisms
include pull-out, tension, deformation, and frictional slip of
DPKF in the PP matrix. Many factors dominate the impact
process, such as hummer shape, fiber properties, and boundary
conditions, the most critical of which is temperature. Therefore,
the reason for the decline in impact strength values for all doses
of DPKF/PP may be due to the influence of the temperature at
which the test was performed [36].
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Figure 9: Effect of fiber loading on the flexural strength of DPKF/PP
composites.

6 Characterizations of DPKF/PP
composites with changing fiber
content

6.1 SEM

Figure 12 shows the SEM images for the fracture surfaces of
tensile specimens for the different fiber content of DPKF
in DPKF/PP composites. The pull-out and breakage of all
DPKF combinations in the PP matrix were detected. This
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Figure 11: Effect of fiber loading on the impact strength of DPKF/PP
composites.

indicated that the adhesion between DPKF and PP matrix
was good.

Figure 12a shows a streamlined, glassy broken surface
in different places of the structured PP matrix.

Figure 12b—d show moderate fiber-matrix adhesion,
with some gaps between fibers and matrix due to the
hydrophilicity nature of DPKF, which was affected by
heating processes during the hot compression procedures.
In addition, SEM detected crushing and pulling-out fibers
in different areas of the DPKF/PP composites due to the
good interlocked DPKF with PP polymers [37-39]. Finally,
this analysis confirmed the mechanical behaviors of the
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different DPKF/PP composites, such as tensile, flexural, and
impact properties, as shown in Figure 6, through the pre-
cise representation of the fracture area in Figure 12.

6.2 XRD

Figure 13 shows the XRD analysis for the pure PP and
changed fiber loading 5, 10, and 15 wt% of DPKF/PP compo-
sites. For the pure PP and the group DPKF/PP composites, the
highest peak was found at 20 = 14.1°; meanwhile, the lowest
was at 20 = 18.64°. Conversely, the intensities for these
dosages were recorded as PP = 842.61, with different DPKF
loading 5, 10, and 15 wt% in the PP matrix as 776.94, 777.14,
and 880.05, respectively. The high-intensity peaks commonly
indicate a coherent crystalline structure. However, the low

it
e daa
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intensity confirms disorderly interaction in the crystal struc-
ture. In other words, the intensity reflects the crystallinity of
composites [40]. Relying on that consideration the 15wt%
DPKE/PP composite proved the best mechanical properties
among all the DPKF/PP dosages and PP matrix. Additionally,
DPKF distribution was uniformly noted in the form of indi-
vidual layers within the PP polymer, causing exfoliated
DPKEF/PP composites with upgraded properties [1].

XRD data for pure PP and its composites reinforced
with different percentages of DPKF is shown in the fol-
lowing tables. For material crystalline structure and phase
behavior analysis, 26, d-spacing, and full width at half max-
imum (FWHM) measurements are essential.

Table 4 describes pure PP’s XRD features, whereas
Tables 5-7 show the impacts of adding 5, 10, and 15 wt%
DPKF to the PP matrix. These comparisons show how

s
V det [spot
8 mm|LFD| 6.0

Figure 12: SEM images of (a) pure PP, (b) 5wt%, (c) 10 wt%, and (d) 15 wt% DPKF/PP composites.
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Figure 13: Diffraction pattern of pure PP and different DPKF/PP
composites.

Table 4: XRD data showing 26, d-spacing, and FWHM for pure PP

26 (deg) d (A) FWHM Intensity Crystallite
(deg) (counts) size (nm)
14.2757 6.19925 1.16040 17,264 6.91
21.6862  4.09472 1.65600 18,564 4.89
17.0978 5.18185 1.36800 13,720 5.88
14.2757 6.19925 1.16040 17,264 6.91
17.0978 5.18185 1.36800 13,720 5.88
18.7468  4.72960 1.31560 11,179 6.13
21.6862  4.09472 1.65600 18,564 4.89
25.6898  3.46494 0.96000 1,308 8.49
28.8781 3.08923 1.42670 1,233 5.75
42.8386 210931 1.66670 2,235 5.12
Average 6.08

Table 5: XRD data showing 26, d-spacing, and FWHM for 5 wt% DPKF

reinforced PP composites

26 (deg) d (A) FWHM Intensity Crystallite
(deg) (counts) size (nm)
14.2932  6.19170  1.20780 14,156 6.63
21.6581 4.09997 1.72960 17,586 4,68
17.0699  5.19026 1.56000 13,556 5.15
11.6883  7.56510 0.82660 242 9.67
12.5639  7.03977 1.12000 1,373 714
14.2932  6.19170  1.20780 14,156 6.63
17.0699  5.19026 1.56000 13,556 5.15
18.6671 474961 1.68000 11,780 4.80
21.6581 4.09997 1.72960 17,586 4.68
25.1707 3.53521 1.96000 2,464 4.16
28.6185  3.11666  1.86670 1,563 4.40
333795 2.68220 0.84000 477 9.88
42.9319  2.10494 1.76000 1,805 4.85
443111 2.04257 0.88000 463 9.75
Average 6.26
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Table 6: XRD data showing 26, d-spacing, and FWHM for 10% DPKF-
reinforced PP composites

26 (deg) d (A) FWHM Intensity Crystallite
(deg) (counts) size (nm)
141909  6.23610 1.11090 15,258 7.21
21.5895  4.11284 1.62200 16,369 4.99
17.0300  5.20233 1.50000 12,554 5.36
11.4497  7.72220 1.20000 582 6.66
141909  6.23610 1.11090 15,258 7.21
17.0300  5.20233 1.50000 12,554 5.36
18.5872  4.76985 1.52000 10,501 5.30
21.5895  4.11284 1.62200 16,369 4,99
253370 3.51238 1.29330 1,646 6.30
28.6751  3.11064 1.78000 1,346 4.61
427087 211543  1.55330 1,909 5.50
Average 5.77

reinforcing affects composites’ crystalline structure and
mechanical characteristics.

7 Conclusion

An environmentally friendly composite of the DPKF/PP
with a meticulously selected lamination method for its gen-
eration successfully achieved good mechanical properties.

The mechanical tensile, flexural, and impact properties
studies confirmed the best fiber loading content of 15 wt%
DPKEF/PP that recorded a peak of tensile strength at a value
of 32.2 MPa. Moreover, the recording was supported and con-
firmed by the SEM and XRD analyses as well. The highest
peak for both the pure PP and the group DPKF/PP composites
was found at 20 = 14.1°, while the lowest peak was found at
20 = 18.64°. However, the intensities with varying DPKF

Table 7: XRD data showing 26, d-spacing, and FWHM for 15% DPKF
reinforced PP composites

20 (deg) d (A) FWHM Intensity Crystallite
(deg) (counts) size (nm)
14.2814 6.19679 1.20090 16,116 6.97
17.0699 5.19026 1.68000 15,740 5.00
21.5939 411202 1.80890 18,729 4.67
11.6883 7.56510 1.09340 692 7.63
12.6834  6.97371 1.04000 2,048 8.03
14.2814  6.19679 1.20090 16,116 6.97
17.0699 5.19026 1.68000 15,740 5.00
18.6671 4.74961 1.68000 12,242 5.01
21.5939  4.11202 1.80890 18,729 4.67
25.2905 3.51873 1.76000 1,507 4.83
28.6851 3.10958 1.52000 1,178 5.64
42.7521 2.11338  1.52000 1,740 5.86
445510  2.03213  0.88000 542 10.19

Average 6.19




DE GRUYTER

loadings of 5, 10, and 15 wt were noted for these dosages, with
PP = 842.61% as 776.94, 777.14, and 880.05, in the PP matrix, in
that order. This composite can be used in the automotive
industry due to it is considered a sustainable material. We
recommend further research to explore other applications of
this material in different fields of engineering. This composite
may need study with different combination methods or may
need fiber treatment to improve the mechanical properties.
These if applied could open many fields to utilize these com-
posites in other application domains.
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