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ABSTRAK 

Bendalir viskoelastik mikropolar adalah sejenis bendalir bukan Newtonian dengan ciri-

ciri likat dan elastik serta mengandungi struktur mikro. Pelbagai bahan seperti darah, 

cecair sinovial, kristal cecair dan sebahagian pelincir mempamerkan ciri-ciri bendalir 

mickropolar viskoelastik, menjadikan kajian ini bermanfaat untuk pelbagai aplikasi 

industri, kejuruteraan dan bioperubatan. Sebagai contoh, kajian ini boleh membantu 

memahami tingkah laku bendalir sekitar penyemperit silinder dalam pemprosesan 

polimer. Disebabkan sifat kompleks bendalir ini, persamaan yang mengawal cecair 

mikropolar viskoelastik mencapai sehingga tertib keempat dalam persamaan momentum 

yang memerlukan syarat sempadan tambahan untuk mendapatkan penyelesaian lengkap. 

Tesis ini mengkaji tingkah laku aliran bendalir mikropolar viskoelastik melewati jasad 

tumpul, khususnya silinder bulat mendatar dan sfera dibincangkan untuk fenomena 

olakan bebas dan campuran. Pada mulanya, kajian ini memberi tumpuan kepada aliran 

lapisan sempadan dan kemudiannya analisis dikembangkan untuk merangkumi olakan 

bebas dan campuran. Olakan bebas terjadi kerana perbezaan ketumpatan dalam bendalir 

yang disebabkan oleh kecerunan suhu, kebiasaannya melibatkan tingkah laku bendalir di 

sekitar permukaan yang dipanaskan atau disejukkan, manakala olakan campuran 

melibatkan kedua-dua olakan bebas dan gerakan bendalir paksa, lazimnya dari sumber 

luaran. Persamaan menakluk lapisan sempadan ditukar ke bentuk tanpa dimensi sebelum 

ditukar kepada set persamaan lapisan sempadan ketakserupaan. Kemudian, kaedah kotak-

Keller, iaitu skim perbezaan terhingga, digunakan untuk menyelesaikan persamaan ini 

secara berangka menggunakan bahasa pengaturcaraan Fortran. Keputusan dipaparkan 

dalam bentuk jadual dan grafik yang merangkumi profil halaju, suhu dan putaran mikro, 

geseran permukaan dan pemindahan haba untuk pelbagai parameter seperti viskoelastik, 

mikropolar, olakan campuran, magnetik serta sudut sejajar medan magnet bagi kes suhu 

permukaan malar. Kajian mendapati bahawa kelajuan, suhu dan ciri mikro-putaran 

bendalir viskoelastik mikropolar dipengaruhi oleh sifat viskoelastiknya serta kehadiran 

mikrostruktur dalam bendalir. Secara umum, viskoelastisiti dan mikrostruktur cenderung 

melambatkan halaju aliran tetapi meningkatkan profil suhu dan putaran mikro. Ciri-ciri 

ini juga mempengaruhi sifat pemindahan haba dan geseran permukaan aliran bendalir 

serta mengawal pemisahan lapisan sempadan pada jasad tumpul. Kelikatanjalan yang 

lebih tinggi mengakibatkan pengurangan dalam pekali pemindahan haba dan geseran 

permukaan, sementara mikropolariti yang lebih tinggi menghasilkan kesan yang 

sebaliknya. Selain itu, parameter sudut sejajar juga dikenal pasti sebagai faktor pembatas 

untuk kekuatan medan magnet di mana kekuatan adalah maksimum apabila garis medan 

magnet dan vektor kelajuan aliran bersilang. Parameter olakan campuran menunjukkan 

kesan yang sama pada silinder bulat mendatar dan sfera. Peningkatan parameter olakan 

campuran menyebabkan peningkatan halaju aliran, pekali geseran permukaan dan 

pemindahan haba di samping merendahkan profil putaran mikro dan suhu. Secara 

keseluruhannya, masalah yang dibincangkan dalam tesis ini tidak terhad kepada geometri 

dan kesan aliran bendalir yang dikaji ini, malah idea ini juga boleh diekstrapolasi kepada 

geometri alternatif dan kesan tambahan lain. 
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ABSTRACT 

Viscoelastic micropolar fluid is a non-Newtonian fluid that exhibits both viscous and 

elastic properties along with the presence of microstructures. Diverse materials such as 

blood, synovial fluid, liquid crystals, and certain lubricants exhibit the characteristics of 

viscoelastic micropolar fluids, rendering this study advantageous for a broad spectrum of 

industrial, engineering, and biomedical applications. For instance, this study could help 

to understand fluid behaviour around cylinder extruders in polymer processing. Due to 

the complex nature of this fluid its governing equations involve fourth-order derivatives 

in the momentum equations that require an additional boundary condition to obtain a 

complete solution. This thesis investigates the behaviour of viscoelastic micropolar fluid 

flow over bluff bodies, specifically horizontal circular cylinders and spheres. Initially, 

the study focuses on boundary layer flow, and subsequently extends its analysis to 

encompass free and mixed convection scenarios. Free convection occurs due to density 

differences in the fluid caused by temperature gradients, often involving fluid behaviour 

around heated or cooled surfaces, while mixed convection involves both free convection 

and forced fluid motion, typically from an external source. The governing boundary layer 

equations are transformed into the non-dimensional form before they are converted into 

a set of non-similar boundary layer equations. Then, the Keller-box scheme, which is a 

finite-difference method, was used to solve these equations numerically employing the 

Fortran programming language. The results are displayed in both tabular and graphical 

forms include velocity, temperature and microrotation profiles, skin friction and heat 

transfer for various parameters such as viscoelastic, micropolar, mixed convection, 

magnetic as well as the aligned angle of the magnetic field for the case of constant wall 

temperature. From the study, it is found that velocity, temperature and micro-rotation 

behaviour of viscoelastic micropolar fluid is influenced by its viscoelastic nature as well 

as the presence of microstructures in the fluid. In general, viscoelasticity and 

microstructures tend to retard the velocity of the flow but enhance the temperature and 

microrotation profiles. These characteristics also have a leverage on the heat transfer and 

skin friction properties of the fluid flow while exerting control on the boundary layer 

separation on the bluff body. Higher viscoelasticity leads to a reduction in heat transfer 

and skin friction coefficient, while higher micropolarity results in the opposite behavior. 

In addition, the aligned angle parameter is also recognized as a limiting factor for the 

strength of the magnetic field and the strength is maximised when the magnetic field lines 

and flow velocity vectors are orthogonal. The mixed convection parameter has the same 

effect on horizontal circular cylinder and sphere. Elevating the mixed convection 

parameter leads to augmented flow velocity, skin friction coefficient, and heat transfer, 

while simultaneously impeding microrotation and temperature profiles. Overall, the issue 

addressed in this thesis is not solely confined to the present geometry and fluid flow 

impact; rather, it can be extrapolated to encompass alternative geometries and 

supplementary effects. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Research Background 

Fluid dynamics is a study related to movement of fluid and gas which can be 

affected by different forces. This field of study is pertinent to numerous disciplines and 

has enabled scientists to explore natural occurrences such as ocean current, plate tectonics 

as well as the theoretical foundations of technological advancements such as oil pipelines, 

conditioning systems and aircraft design. The discipline that is devoted to solving 

mathematically challenging fluid flow problem is known as computational fluid 

dynamics where Navier-Stokes is solved numerically using computer software to 

simulate fluidic system (Raman et al., 2018). Computational fluid dynamics has been 

proven to assist engineers in the designing process to maximize performance and ensure 

consumers’ safety in addition to detecting damage to machinery components that is 

undetectable by instruments.  

Most studies in fluid dynamics focus on an important region of the fluid known 

as the boundary layer, driven by the fact that what happens on the boundary layer will 

affect the outer flow. Reflecting upon the boundary layer theory, the outstanding research 

by Prandtl (1928) needs to be addressed. Introducing the idea of existence of a thin 

transition layer, or better known as the boundary layer that is adjacent to the wall of solid 

boundary in a fluid flow, Prandtl has opened a new paradigm in terms of applications in 

aerodynamics and fluid dynamics. He hypothesized that due to the adhesion of fluid on 

the wall caused by friction effect, the fluid would assume the wall velocity, which is also 

known as the no-slip condition and a large velocity gradient exists within the layer 

(Anderson, 2005). Since the velocity gradient is proportional to the shear stress, the local 

shear stress will also be large, hence the skin friction drag force on the body within this 
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region is prominent. However, outside the boundary layer, viscosity has no effect, and it 

is known as the free flow.  

Besides, Prandtl also raised the idea of the presence of a separation point where 

the flow detached from the wall into the free flow because of external conditions (Tani, 

1977) which leads to a relevant contribution in aviation as boundary layer separation is 

an important factor for aircraft wings (Svorcan et al., 2022). In airplane design, the main 

goal is to reduce the pressure drag which opposes the forward motion or also known as 

aircraft stall by delaying the boundary layer separation area. Among the ways to achieve 

this are by keeping the aircraft body smooth to reduce the air and surface friction and 

using the optimum angle of attack for the wing.  

The physical phenomenon of boundary layer initiates two possible sources of 

drag. The first type of drag is the frictional drag which is caused by frictional shear stress 

between fluid and solid surface, while the other is the pressure drag that is formed due to 

boundary layer separation. The shape of the body is the indicator whether the flow is 

dominated by frictional, or pressure drag. For bluff body like cylinder and sphere, which 

are of interest in this study, pressure drag has the upper hand. With practical importance, 

for example in design of sports equipment (e.g. dimple on golf balls to delay separation) 

(Mehta, 1985), and in reducing wind noise in car design (Watkins, 2010), the topic of 

fractional and pressure drag at various types of body are always relevant and crucial to 

be discussed in studies related to boundary layer for any types of fluid.   

Different types of fluid require different sets of equations as the model 

accentuates the predominant characteristics of the fluid. Viscoelastic fluid is a type of 

non-Newtonian fluid, used to classify fluids that are both viscous and elastic in nature. 

These fluids are semi-permanently deformed when force is exerted on them but would 

go back to the original state when the force is removed. Unset cement, honey and egg-

white are examples of viscoelastic fluid. The most common viscoelastic fluid in our daily 

life is toothpaste. When we press the tube, the paste deforms following the force from 

our hand, but when force is released, the fluid goes back into the tube to its initial state. 

Some industrial polymers are viscoelastic in nature and even biofluids like blood and 

saliva are mostly viscoelastic ((Rock et al., 2020); and (Plan et al., 2020)).  
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Besides resembling industrial fluid like polymer, non-linear viscoelastic fluid 

model can also be used to model brain injury since about 83% of total brain mass is made 

up of water. The initial investigation commenced in the 1940s with Holbourn (1943), 

presents utilization of brain and cranium anatomy, in conjunction with Newton's law of 

motion, to approximate the likelihood of an injury occurring and its precise location based 

on the shear strain within the brain. This pioneer study has then inspired Cotter et al. 

(2002) to propose his model and his numerical results suggest that brain injury is actually 

a brain turbulence phenomenon. Furthermore, Kainz et al. (2023) conducted an 

experimental study  using a tailor-made polyvinyl alcohol-based hydrogel to mimic the 

brain tissue. These studies evident the importance of the viscoelastic fluid model for 

medical purpose in neurodevelopment and neurosurgery.  

Similar to viscoelastic, micropolar fluid also belongs to the non-Newtonian 

family. It is a new class of fluid that responds to micro-rotational motion and spin inertia 

triggered by small, rigid and randomly oriented cylindrical elements in the form of 

dumbbell-shaped molecules suspended in viscous fluid (Saleem et al., 2012). Examples 

of micropolar fluid include lubricants, blood and liquid crystals. Red blood cells are one 

of the components in blood, along with white blood cell and platelets in plasma. They are 

small, semi rigid particles for which microrotation is substantial to increase blood 

viscosity, thus changing the blood rheology. The presence of microstructure would affect 

the physical and mechanical properties of any fluid. Hence, it motivates researchers to 

re-examine the classical flows in order to reveal the effects of the microstructure on how 

it alters the behavior of the flow.  

When it comes to micropolar fluid, Eringen is a significant figure that paves the 

way for a new class of fluids that responds to micro-rotational motion and spin inertia. 

His work on micropolar fluid model (Eringen, 1966) and a more recent version (Eringen, 

2001), basically serves as a user manual for any model of micropolar fluid and has been 

cited continuously. In the study, Eringen highlighted how the classical Navier-Stokes 

theory is incapable of acknowledging the unique characteristic of micropolar fluid. Thus, 

by incorporating the microfluid theorem from his own work (Eringen, 1964), he 

introduced the micropolar fluid model. Since the foundation has been laid, research 
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opportunities are created to explore on this fluid and improvise previous studies that do 

not consider the presence of microstructures. 

The mathematical concept of micropolar fluid has also been discussed in detail 

by Lukaszewicz (1999) in his work and besides lubrication theory, other real-life 

applications of the fluid had also been highlighted. Among them is how micropolar model 

can serve to represent biological flows such as the blood flow in our body and lubrication 

in human joints which could be a life-changing contribution in biomedical engineering.  

To date, numerous studies have attempted to describe the blood flow model as 

micropolar (Beg et al., 2022); (Reddy et al., 2023) and (Vilchevskaya et al., 2023), thus 

convincing the author on the importance of micropolar fluid for medical sciences break 

through. Prasad and Yasa (2021) and Abdullah and Norsarahaida (2010) were both 

intrigued by the blood flow through a stenosis-related narrowing of a tapered artery 

caused by the accumulation of adipose deposits. The consensus among these studies is 

that the micropolar fluid model most accurately represents blood flow due to the rotating 

suspended microelements that comprise blood.  

Micropolar fluid has also been proven to be better lubricants compared to other 

fluids with the same viscosity. According to Tipei (1979), lubricants with micro rotational 

properties generate higher pressure and load carrying capacity while enhancing bearing 

performance. Zu-gan and Zhang-ji (1987) from their study revealed that the scale of 

suspended materials or the additive in the lubricants affects the performance of the 

lubricant. Additive with smaller scale is preferred as it works better at decreasing the 

friction coefficient and increasing the heat dissipation effect. Similar studies on 

micropolar fluids as lubricants have also been published by Mukutadze et al. (2022) and 

Sharma et al. (2023). 

Magnetohydrodynamics (MHD) is among the sought-after effect in fluid flow 

problems. MHD is the study that concerns the behaviour of electrically conducting fluid 

under the exposure of electric and magnetic field. The Lorentz force or electromagnetic 

force is the outcome of the motion when current is induced into the fluid causing the 

magnetic field itself to be altered. In astrophysics, humans are protected from the harmful 

UV radiation by the earth’s magnetic field that is self-produced from the motion of earth’s 
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liquid core. Besides, the important role of MHD in industrial process is a major 

motivation to study MHD especially in metallurgical industry. The versatility of Lorentz 

force and magnetic field is recognized by metallurgists and now is part of the regular 

process to heat, pump, stir, stabilize, repel and levitate liquid metals (Davidson, 2016). 

Convection is a mode of heat transfer that occurs due to fluid movement from 

hotter to colder region. The simplest example of convection in daily life is how the air 

condition works to cool a room. During the process, the less dense hot air will go up and 

replaced by the cooler air from the air conditioner that will sink to the lower part of the 

room due to higher buoyancy. The cycle continues generating a convection current that 

will keep the room at the desired temperature. This also explains the reason why air 

conditioner is positioned high on the wall instead of at the bottom like a heater. 

Convection is applied in the mechanism of refrigerators, air-cooled engines, 

convection oven and even for heat exchanger in industrial machines as well as nuclear 

facilities. Heat exchanger works by allowing interactions between fluid at different 

temperatures and as a result, heat is transferred to one another to achieve equilibrium. 

The industrial furnace that are used in petroleum refining and other chemical process 

industries, for example, have two specific chambers: one section is where radiation heat 

transfer is dominant while the other chamber uses the mechanism of convection heat 

transfer.  

There are three types of convection which are free or natural, forced and mixed 

convection. Free convection occurs due to buoyancy forces. Cooling a hot cup of water 

by exposing it to room temperature is an example of free convection. The heat from the 

hot water is gradually transferred to the outer layer of air and as a result, the water cools 

down. Forced convection is when fluid movement is externally driven by another source 

like a fan or pump. Refrigerators, for example use fans to blow away the heat and retain 

the cold temperature. This concept could also work in our favour on a cold winter day. 

Turning on a ceiling fan on low speed would circulate the air and force the hotter air to 

come down instead of drifting on the ceiling and leaving the colder air at the bottom due 

to the density.  Mixed convection, as the name suggests is the combination of both free 

and forced convections. The concept is applied in the cooling system of photovoltaic or 
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solar panels to remove excess heat and enhance electrical efficiency which is attainable 

using the nano-cooling fluid as studied by Al-Waeli et al. (2018).  

Putting all the above elements together, this study focuses on the boundary layer 

flow of viscoelastic micropolar fluid subject to aligned MHD effect, considering two 

distinct geometries, namely the horizontal circular cylinder and sphere, in the context of 

free and mixed convection modes. To the best of the author’s knowledge, the study of 

viscoelastic micropolar model over bluff body has not yet received much attention. This 

complex fluid model is anticipated to compensate the weakness of the existing models 

and become a three-in-one model for viscoelastic, micropolar and viscoelastic micropolar 

fluid flow.  

1.2 Problem Statement 

Advancements in industrial and engineering applications over recent decades 

have highlighted the limitations of classical Navier-Stokes equation on describing 

complex fluid behaviours, which require the discovery of non-Newtonian fluid model 

(Bafakeeh et al., 2023). These scenarios include mathematical models that represent 

complex fluid with characteristics that is implausible to be captured by simpler model. 

One such model is the viscoelastic micropolar model. Since many fluids used in polymer 

processing, biotechnology and advanced material manufacturing exhibit both viscoelastic 

and micropolar properties, the viscoelastic micropolar model addresses limitation and 

could provide better predictions in scenarios where the existing model that separate 

viscoelastic and micropolar characteristics fall short (Gaffar et al., 2020).  

Boundary layer flow over bluff bodies such as circular cylinder and spheres are 

of particular interest due to their prevalence in real-word scenarios. These shapes generate 

complex flow pattern and understanding the phenomena is crucial for optimizing designs 

in aerospace, civil and marine engineering (Arjun & Kumar, 2017). Investigating the 

behaviour of viscoelastic micropolar fluid around these geometries can provide insight to 

enhance efficiency, reducing drag and improve performance in wide range of technology 

and processes . On those grounds, this study aims to explore the following problems: 
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i. Boundary layer flow of viscoelastic micropolar fluid over a circular cylinder.  

ii. Free convection boundary layer flow of viscoelastic micropolar fluid with aligned 

MHD over a horizontal circular cylinder. 

iii. Mixed convection boundary layer flow of viscoelastic micropolar fluid with 

aligned MHD over horizontal circular cylinder. 

iv. Free convection boundary layer flow over solid sphere in viscoelastic micropolar 

fluid with aligned MHD. 

v. Mixed convection boundary layer flow of viscoelastic micropolar fluid over solid 

sphere with aligned MHD. 

 

1.3 Research Questions 

For this thesis, the research questions that will guide the investigation for all the 

problems outlined in Section 1.2 are: 

i. How to formulate mathematical model for the following proposed problems? 

ii. How to solve the governing nonlinear differential equations of the proposed 

problems by using Keller-box method? 

iii. What are the effects of viscoelastic, micropolar, magnetic and aligned angle effect 

on the skin friction and heat transfer coefficient as well as the velocity, 

microrotation and temperature profiles of the fluid? 
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1.4 Research Objectives 

This study investigates the complex dynamics of viscoelastic micropolar fluid 

flow in bluff body. The research begins by examining the boundary layer flow over a 

circular cylinder to provide a foundation for subsequent analyses. Building upon this 

initial investigation, the study expands to explore free and mixed convection boundary 

layer flow over both horizontal circular cylinders and solid spheres with aligned MHD 

effect. The objectives of this study are as follows: 

i. To introduce a viscoelastic model with microstructures that exhibit viscous and 

elastic characteristics as it passes over a horizontal circular cylinder and solid 

sphere. 

ii. To improve the existing models of non-Newtonian fluid that can be a generalized 

model for complex fluid. 

iii. To develop numerical codes for solving the complex fluid using Keller-box 

method.  

iv. To obtain numerical solutions of the viscoelastic micropolar fluid model and 

conduct validation test over existing literatures. 

v. To investigate the effect of the parameters involved in the model to the skin 

friction and heat transfer of the fluid as well as the temperature, velocity and 

microrotation profiles. 

 

1.5 Research Framework 

The transformed governing equations have been solved numerically using the 

Keller-box method coded in Fortran language. The research framework of this study is 

shown in the following figure. 
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Figure 1.1 Research framework  
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1.6 Research Scope 

The focus of this study is on two-dimensional incompressible boundary layer flow 

of viscoelastic micropolar fluid as it goes over horizontal circular cylinder and solid 

sphere. Viscoelastic micropolar fluid is a complex fluid that exhibits both viscous and 

elastic properties, while also containing microstructures that can undergo rotation 

independent of the fluid's overall motion. Non-similarity transformation variables are 

applied to the dimensionless governing equations which results in the equations being 

reduced to a set of partial differential equations with less complexity. Due to the 

complication of the differential equations, exact solutions are non-existent and only 

numerical solutions are attainable.  

In this study, only the behaviour of the flow at the boundary layer will be 

considered as the boundary layer region has been proven to be crucial in various fields. 

Throughout the analysis,  blood is utilised as a representative model for viscoelastic 

micropolar fluid due to its unique composition of cellular components, primarily red 

blood cells,  that can rotate independently within the plasma. In addition, its nature that 

can partially recover its shape after deformation is consistent with the behaviour of 

viscoelastic fluid.  

1.7 Research Significance 

Micropolar and viscoelastic fluid are both from the non-Newtonian family. 

Viscoelastic is a renowned type of fluid in industrial-manufacturing processes and 

engineering field with practicality in petroleum drilling, manufacturing of foods and 

paper, as well as reducing frictional drag on the hulls of ships and submarines. Typical 

applications for viscoelastic boundary layer flow includes polymer sheet extrusion from 

a dye, glass fibre and paper production, and drawing of plastic films (Jafar et al., 2019) 

and (Veena et al., 2023).  

Micropolar fluid is equally interesting and plays a significant role in chemical and 

biomedical industry. In the chemical industry, the micropolar fluid theory can be used to 

visualize the flow of lubricants, liquid crystal and polymeric fluids. Meanwhile, in 

medicine, the synovial fluid in knee that plays an important role to reduce friction 
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between the articular cartilages of synovial joints during movements exhibit micropolar 

traits (Florea & Roşca, 2015). 

However, there exists certain liquids such as human blood and synovial fluid that 

fall into both categories of being viscoelastic and micropolar. The existing models of 

viscoelastic or micropolar fluid are inadequate to describe the flow of such fluid. If 

viscoelastic model is considered, the presence of suspended particles that rotate in the 

fluid are neglected. On the other hand, micropolar fluid model fails to embrace the 

elasticity nature of the viscous fluid. These characteristics require utmost consideration 

since the presence of the particles and the viscoelasticity have paramount effect on the 

behaviour of the fluid flow and heat transfer. To put it briefly, choosing the existing 

model means that we have to abandon one characteristic or another and hence will not be 

the greatest option since the model is not the best representation of the fluid. 

Therefore, in this study, the non-Newtonian viscoelastic and micropolar fluid will 

not be considered separately as prior studies, but together as a complex fluid known as 

viscoelastic micropolar. This study is motivated by the existence of certain fluids that 

could fit both characteristics as being viscoelastic as well as micropolar fluid, for 

example, human and animal blood. The outcome produced from the mathematical model 

proposed will give a more accurate representation of viscoelastic fluid with the presence 

of microrotating particles. With the existence of viscoelastic micropolar model, the 

previous models are improvised for a better representation of these types of fluid to 

explain the motion of such fluid. 

Convection is the main method of heat transfer in fluids. Free convection is a 

method of heat transfer due to temperature differences without the assistance of any 

external mechanism. Convection is especially significant in food industry. Free 

convection assists in sterilization of liquid food material in still retorts with steam flowing 

around the surface of the can. The process occurs by exposing the hot surface with or 

without insulation to colder ambience air (Koribilli et al., 2011). It also takes place when 

food is placed inside a chiller or freezer store in which circulation is not assisted by fans. 

Besides these examples, free convection is also common in nature and engineering 

applications. 
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Mixed convection, on the other hand, occurs in many technological and industrial 

applications such as solar central receivers that are exposed to wind currents, cooling of 

nuclear reactors during emergency shutdown, heat exchangers placed in low-velocity 

environments, boundary-layer control on air foil, lubrication of ceramic machine parts 

and food processing. Mixed convection flows arise when the free stream, inertial and near 

wall buoyant forces have strong effects on the resulting convective heat transport. 

The MHD effect will also be considered for all problems in this study. However, 

instead of transverse MHD, which is common in the study of fluid flow, the main focus 

will be on the effect of aligned MHD. By considering aligned MHD, the mathematical 

models proposed are more generalized and valid for both transverse and aligned MHD. 

Aligned MHD is more industrially befitting since the exposure of the magnetic field could 

be at any arbitrary angle not only limited to being perpendicular to the fluid flow.  

From the previous arguments, the significance of the study of free and mixed 

convections of viscoelastic micropolar boundary layer flow problems with aligned MHD 

effect is justified due to its imperative applications in real life. For instance, the 

viscoelastic micropolar fluid model over sphere could be used to analyse the blood flow 

in human body when microsphere is used as drug carrier so that the drug can be released 

at specific parts of our body as the microsphere can be pH responsive (Singh & Nayak, 

2023). Besides, the vortex flow meter also works based on the concept of vortex 

formation that occurs when the fluid flow separates from bluff body (Li et al., 2020).  

Considering these facts, the output from this research could enhance the 

understanding of the fluid flow phenomena and improve the development of related 

fields, for example the manufacturing industries. Besides, the generation of efficient 

algorithm of the viscoelastic micropolar problem will help in solving the problem of 

computational fluid dynamics in the future and improve the existing models.  

1.8 Thesis Organization  

This thesis comprises of a total of nine chapters. The first three chapters are the 

preliminary part of this study while the rest of the chapters will elaborate each of the 

problem in detail. The essence of each chapter is summarized as follows: 
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Chapter 1: The introductory part where the research background, problem 

statement research objectives, research scope and research significance 

are explained in detail. 

 

Chapter 2 : The literature that leads toward the establishment of the problems are 

acknowledged and research gaps are addressed in this particular chapter. 

 

Chapter 3: This chapter focuses on the derivation part of the problems which 

centres around the conservation of mass, momentum, energy and 

angular momentum. From the derivation, the governing equations which 

consist of continuity, momentum, angular momentum and energy 

equation are obtained and to be solved numerically in the upcoming 

chapters. 

 

Chapter 4: For the first problem, we will look at the boundary layer problem of 

viscoelastic micropolar fluid over circular cylinder. The constitutive 

equations are solved using Keller-box method in Fortran and compared 

to previous results. Then, the effects of viscoelastic, micropolar, 

magnetic and aligned angle parameters on the velocity and microrotation 

profiles as well as skin friction coefficient are observed.  

 

Chapter 5: Free convection boundary layer flow of viscoelastic micropolar fluid 

over horizontal circular cylinder will be discussed. There will be an 

additional energy equation in the governing equations. Hence, outcome 

will also include temperature profile and heat transfer coefficient.  

 

Chapter 6: In this chapter mixed convection boundary layer flow of viscoelastic 

micropolar fluid over horizontal circular cylinder is investigated. This 

leads to an additional parameter for mixed convection to be inspected.  

 

Chapter 7: This chapter will discuss the free convection boundary layer flow of 

viscoelastic micropolar fluid over sphere. Effects of viscoelastic, 
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micropolar, magnetic and aligned angle parameter on the velocity, 

temperature and microrotation profiles as well as skin friction 

coefficient and heat transfer will be observed.  

 

Chapter 8: The problem to be discussed is the mixed convection boundary layer 

flow of viscoelastic micropolar fluid over sphere. The same profiles and 

physical parameters as in Chapter 7 are evaluated for all parameters on 

top of the mixed convection parameter.  

 

Chapter 9: This chapter will conclude this study and provide recommendations for 

future research opportunities related to this topic. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction  

In this chapter, the previous work of other researchers that incited this study and 

made it possible are reviewed. Viscoelastic and micropolar fluid are the main interests in 

various studies and the same goes for magnetohydrodynamics effect. The numerical 

scheme chosen for this study is also highlighted. Reviewing these works provided 

insights into the missing pieces in the fluidic system that is worth putting together for 

application purposes.  

2.2 Viscoelastic Fluid 

The study of viscoelastic fluid is familiar in fluid mechanics due to the possible 

important discoveries that could be huge contributions to various fields of interest as these 

non-Newtonian fluid covers a significant range of fluid. Among the earliest viscoelastic 

fluid models is the Oldroyd-B model (Oldroyd, 1950) that is a decent approximation of 

the fluid but inappropriate at high stress levels because of singularity in the equation 

(Denn, 1990). It is then trailed by the Walter-B model (Beard & Walters, 1964), where 

Prandtl’s idea of boundary layer theory is extended to the case of idealized viscoelastic 

fluid where the fluid is assumed to be incompressible and inviscid. This study provides 

fellow researchers with the insight that fluid elasticity is directly proportional to the 

velocity at boundary layer as well as the stress on the solid boundary. 

The study of flow for viscoelastic fluid has started as early as 1980s by Rajagopal 

et al. (1984), focusing on the flow of the second order fluid on stretching sheet due to its 

significance in polymer processing. The study has theoretically proven that power 

expenditure to stretch the sheets is affected by the viscoelasticity property of the fluid as 

the skin friction decreases when the viscoelastic parameter gets higher. The idea is then 

extended by Dandapat and Gupta (1989) who consider the flow and heat transfer of the 
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above-mentioned study thus acquiring an exact analytical solution of the problem. 

However, these results come with a restriction that the viscoelastic parameter must be 

generally small.  

Limitation is imposed on the above-mentioned models due to the reason that the 

equation of the motion of viscoelastic fluid is of higher order than the classical Navier-

Stokes equations. As a result, complete solution is unattainable from the existing 

boundary conditions. Inspired by Bourgin and Tichy (1989), where extra velocity 

boundary condition is added to a fifth order differential equation to represent second-

order fluid, Garg and Rajagopal (1990) overcome the restriction by including additional 

boundary conditions at infinity in their study of the motion of non-Newtonian fluid. This 

study creates opportunities for further investigations of viscoelastic fluid where the 

dimensionless viscoelastic parameter, K is no longer limited to only small values.  

Later, in her study of mixed convection flow of viscoelastic fluid over a wedge, 

Kumari et al. (1995) adopted the idea of boundary conditions augmentation where an 

extra condition is incorporated since the momentum equation is one order higher than the 

classical boundary layer equation. The work of Anwar et al. (2008) also benefitted from 

the idea where the analysis is valid for arbitrary value of K after additional boundary 

condition ( ) 0f   =  is included. This study which focuses on the boundary layer flow of 

viscoelastic fluid over a heated and cooled horizontal circular cylinder reveals that heated 

cylinder delays separation of the boundary layer from the solid surface while cooling the 

cylinder brings the separation point closer to the lower stagnation point.  

Since the earliest study has demonstrated that less power is required to stretch a 

sheet in viscoelastic fluid compared to one in Newtonian fluid, to date, the publications 

on the topic of boundary layer flow of viscoelastic fluid along a stretching sheet have 

developed rapidly. Using the  momentum integral technique, Bujurke et al. (1987) 

focused on the momentum and heat transfer of the flow and the results showed that skin 

friction can be minimized by choosing the right fluid with particular viscoelasticity and 

speed of drawing the sheet. On the other hand, Andersson (1992) conducted a study on 

the magnetic effect on viscoelastic fluid flow over a stretching sheet and successfully  

obtained the exact analytical solution. The finding disclosed that both external magnetic 
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field and viscoelasticity had the same effect on the flow where velocity and boundary 

layer thickness were reduced, while on the contrary, the surge in values of the parameters 

increased the skin friction.  

Other notable example of viscoelastic flow over stretching body is the study of 

hydromagnetic flow for viscoelastic fluid over an oscillatory stretching surface where the 

analytical result from homotopy analysis method was compared to numerical results from 

a finite difference scheme and both undoubtedly yielded similar results (Abbas et al., 

2008). Similar interest on magnetic effect on viscoelastic fluid flow has also motivated 

Misra et al. (2008) to study the flow and heat transfer in channels with stretching walls 

for which the model is applicable to simulate the flow of blood in arteries with stretchable 

walls upon exposure to magnetic field.  

Aside from the stretching sheet problem, the effect of viscoelastic fluid flow on 

other geometrics are also pursued to match the diversity of application problems. Among 

them are the published work of Bodart and Crochet (1994) which aimed to compute the 

motion of a sphere released along the axis of a circular cylinder filled with a specific 

viscoelastic fluid, namely the Oldroyd-B fluid. Sets of material parameters were 

thoughtfully chosen in this study to replicate laboratory experiments and the result 

showed that the retardation to relaxation time ratio, a numeric value used to quantify the 

elasticity property, affects the time-dependent velocity of the sphere. The study also 

investigated the same geometrical body but with drag reduction as the primary interest of 

the study where the outcome of the study confirms the breakthrough of viscoelastic fluid 

in industrial application as it theoretically validates that fluid elasticity and shear-thinning 

have remarkable effects in reducing drag coefficient.  

In addition, Minaeian et al. (2020) and Ma et al. (2023) examined the flow of 

viscoelastic fluid over horizontal circular cylinder. Both studies utilized numerical 

techniques to analyse viscoelastic fluid flow around a circular cylinder oscillating 

transversely to the flow direction. The former study focused on heat transfer 

characteristics, implementing a finite volume method to solve the governing equations. 

They found that increasing Reynolds and Bingham numbers enhances heat transfer, while 

raising Prandtl number reduces it. The effects of fluid elasticity were significant, 
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especially near the cylinder surface. In contrast, the latter study investigated the lock-in 

phenomenon and wake topology. Using a high-order dual splitting scheme, they 

simulated Oldroyd-B fluid flow at low and moderate Reynolds numbers.  

Other fluid rheology of viscoelastic fluid in other bluff body geometrics had also 

been explored. For instance, Khan et al. (2020) and Ramzan et al. (2022) investigated the 

fluid motion between rotating parallel disks, Badami et al. (2021)  observe the flow of 

viscoelastic fluid in an axisymmetric pipe. Meanwhile Kudenatti & Amrutha (2022) and 

(Sun et al., 2024), evaluated the boundary layer flow of viscoelastic fluid over a moving 

or static wedge and triangular cylinders, respectively. These studies have contributed to 

the idea of solving the complex viscoelastic micropolar fluid when the terms related to 

the viscoelasticity is concerned. The idea of augmented boundary condition is adopted 

along with some general ideas of how the viscoelastic characteristics of the fluid will 

affect the flow and heat transfer.  

2.3 Micropolar Fluid 

As mentioned in the introduction, Eringen is the main figure behind the flow of 

micropolar model that his study is the ultimate framework for any research involving 

micropolar fluid. Since his breakthrough, the study of micropolar fluid started to gain 

momentum with Willson (1970) and Peddieson (1970) being among the earliest 

researchers to actively pursue the topic of micropolar fluid. Both researchers explored the 

concept of boundary layer theory in micropolar at stagnation points by re-examining the 

existing classical flows but taking the existence of microstructure into consideration.  

Various other studies for this uniquely structured fluid include the work of 

Ariman and Cakmak (1968) which focused on the motion of micropolar fluid between 

two parallel plates and Ahmadi (1976) whose finding is applicable to the flow of 

suspension solutions over a flat plate. Although the attention is mostly on two-

dimensional body where the solution is attainable with less complication, Nath (1975) 

took the alternative to solve the similar equation for the steady incompressible laminar 

boundary layer equations for micropolar fluids over a two-dimensional body at stagnation 

point as well as non-similarity equations for three-dimensional body, namely sphere and 

cylinder (Nath, 1976).  
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According to the micropolar fluid theory, the micropolar fluid model should 

include an extra set of transport equation to represent the conservation of local angular 

momentum on top of the classical fluid dynamic equations (Ishak et al., 2006). This 

angular momentum equation and the micropolar parameter, or also known as material 

parameter sets apart the model from other fluid flow and becomes an additional puzzle 

to solve when dealing with micropolar fluid where these problems can be approached 

analytically and numerically.  

Researchers started covering various modes of heat transfer, geometrics and 

effects as soon as it was proven that the micropolar model is an ideal representation for 

fluids with various physical structures which is a common trait in non-Newtonian fluid. 

Studies on micropolar flow dynamics are evenly favoured for both stretching and 

shrinking sheets. Sankara and Watson (1985) initiated the study of micropolar flow over 

a permeable stretching sheet using a globally convergent homotopy method coupled with 

a more robust and efficient optimization method called the Quasi-Newton method. Then, 

this work is further extended by Heruska et al. (1986) who examined the flow over a 

porous stretching sheet by applying the same method thus enabling the comparison of the 

flow pattern between the impermeable porous stretching sheet.  

The idea of fluid flow over a shrinking sheet is founded by Wang (1990) who 

briefly presented the solution of a specific unsteady shrinking film before the complete 

idea is published by Miklavcic and Wang (2006) and later, adopted for micropolar flow 

due to the importance in paper production, metal spinning and drawing of plastic films. 

The study of micropolar flow over shrinking sheet had been conducted by Azizah Tukiran 

and Ishak (2012) while Aurangzaib et al. (2016) came out with an original model of the 

flow and heat transfer over an exponentially permeable stretching sheet. Both studies 

affirmed that micropolar fluid requires stronger mass suction compared to the classical 

Newtonian fluid for the solution to exist because of the microrotation affect.  

Thus far, the studies of micropolar fluid is not only limited to these cases but has 

been extended by other researchers with more effects and relevant geometrics that is 

related to real-life applications. Kumar et al. (2022) investigated the impact of micropolar 

parameter on the flow of CNT-blood nanofluid through a squeezing channel where the 
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results obtained is applicable for drug delivery system in our body.  Meanwhile, Wang 

and Chu (2023) proposed a model that can be used to simulate the flow of micropolar 

fluids in geological engineering applications. Simulating the behaviours of geological 

phenomena is very important for understanding how they were formed and preventing 

potential dangers. Besides these real-life models, micropolar model also allows detailed 

simulation of complex fluid flows in the microscopic geometries found in stomach 

anatomy, which can provide biological insights that could be risky to be tested 

experimentally (Saleem et al., 2021).  

For engineering processes that happen in high temperature environment, radiation 

effect has also appealed as a topic of interest. Ishak (2010), Siddiqa et al. (2021) and Alao 

et al. (2024) had analysed the fluid flow of micropolar flow over unmoving horizontal 

plate through porous medium, vertical and stretchable surface, respectively, by using 

Rosseland diffusion approximation to describe the radiative heat transfer in the energy 

equation. Furthermore, Rana et al. (2021) explored nano-micropolar fluids with 

magnetohydrodynamic effects and porous media with applications in simulation and 

control of microfluidic devices, biomedical engineering, microelectronics cooling, and 

nanomaterial manufacturing. The outcome of the study inferred that increasing magnetic 

field and micropolar effects suppress the velocity but enhance the temperature.  

From the review, there has also been a growing interest in the study of complex 

fluid and several models that include micropolar fluid had been identified. Among them 

is the popular micropolar nanofluid published by Hsiao (2017), Rashad et al. (2019), 

Dawar et al. (2020) and Guedri et al. (2023). There is a valid reason for such interest in 

micropolar nanofluid and according to Sadiq et al. (2019), micropolar and nanofluid are 

highly compatible duo as micropolar fluid contain microelements that are highly likely 

nano-size particles which will make the micropolar to behave like nanofluids. This 

combined fluid model could accurately characterize fluids with microscale structures and 

embedded nanoparticles to imitate the flow of engineered smart fluids, biological fluids 

and microgel suspensions.  

Besides micropolar nanofluid, there is also the Casson micropolar fluid that 

represents Casson fluid model with microrotation. Mehmood et al. (2017) observed the 
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flow of Casson micropolar fluid for a system undergoing internal heating phenomenon, 

Ali et al. (2020) examined the behaviour of the pulsatile flow of micropolar-Casson fluid 

in a constricted channel in the existence of magnetic field, while Al-Sharifi et al. (2023) 

computationally investigated the boundary layer flow of non-Newtonian Casson 

micropolar fluid, analysing the effects of rheological parameters on velocity and thermal 

fields.  

Further review also revealed the existence of a hybrid model known as Casson 

micropolar nanofluid that has also been introduced and published by Shah et al. (2019) 

and  Amjad et al. (2021). In addition to the ones mentioned above, there are still other 

complex micropolar models such as Jeffrey micropolar (Al-Sharifi et al., 2017), 

micropolar Brinkman (Faltas et al., 2020), micropolar ferrofluid model (Rauf et al., 2023) 

as well as micropolar-casson model (Abbas et al., 2024). The existence of these joint 

micropolar fluid is an attempt to develop a model that is as close as possible to 

representing the physics of complex real-world fluids.  

2.4 Bluff Body  

Bluff body refers to a shape that creates substantial drag and flow separation due 

to its non-streamlined geometry, in contrast to streamlined teardrop shapes designed for 

low drag. Bluff bodies have broad, rounded shapes rather than sleek, tapered shapes. 

Circular cylinders, spheres, cubes and prisms are examples of bluff bodies and in real life 

these can be visualized as tall structures like buildings, bridges as well as offshore 

pipelines. However, any aerodynamic body could be bluff body depending on the 

orientation flow such as the airplane wing at high angles of attack (Verma & Govardhan, 

2011). According to Bearman (1997), advances in computer technology have greatly 

enabled studies involving bluff body geometry, as the numerical solutions to the complex 

Navier-Stokes equations for these flows have become more tractable. With high-

performance computing, research groups can now obtain solutions for bluff body 

problems that were previously impossible or impractical to solve numerically. 

Bluff body is less resistant of frictional drag but comes with significant pressure 

drag which depends on the shape of the forebody and afterbody that might lead to a large 

wake region. Wake region refers to the large low-pressure turbulent region behind the 
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body which contributes to pressure drag. Flow separation and vortex shedding are two 

important phenomena in bluff-body aerodynamics that are incredibly important and play 

vital roles in various processes such as vehicle design (Nath et al., 2021) and wind 

engineering especially in structural engineering (Buresti & Piccardo, 2022). Driven by 

the importance of the study of bluff body hydrodynamics, a variety of work on bluff body 

had been published.  

 

Figure 2.1 Boundary layer flow of fluid over bluff body 

Experimental study is the traditional approach to observe and predict the turbulent 

flows around bluff bodies before technology takes over and numerical solution is readily 

available. Among the earliest experimental studies on bluff body is conducted by  

Parkinson (1971) whose findings revealed that  the vortex formation length and width of 

the wake size are influenced by Reynolds number and cross-section of the cylinder while 

Saha et al. (2000) also conducted an experimental study which revealed that the 

separation mechanism and the related integral parameters for the flow over circular and 

square cylinder are non-identical. On the other hand, Yagmur et al. (2015) conducted a 

thorough study by looking at both angles experimentally and numerically, for the flow in 

the wake region for diverse bluff bodies. The experiment was conducted using the 

Particle Image Velocimetry (PIV) method in an open water channel and the experimental 

results obtained are consistent with the numerical analysis.  

Since experimental studies require extensive knowledge and comes with many 

potential limitations, computational fluid dynamics seems to be a more convenient option 

for researchers. The analytical study of mixed convection boundary layer on a sphere by 

Hieber and Gebhart (1969) was inspired by the first experimental study of the same topic 

by Yuge (1960). Afterwards, Chen and Mucoglu (1977) and Mucoglu and Chen (1978) 

used an implicit finite difference scheme to investigate the heat transfer results of the 
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laminar mixed force and free convection flow over a sphere. Their work was then 

extended by  Lien and Chen (1987) who examined the case when the flow is subjected to 

constant mass transfer and uniform surface temperature.  

Many works on boundary layer flow and heat transfer for different types of fluid 

flow over a sphere are available for review. Nazar and Amin (2002) and  Nazar et al. 

(2002), for example, proposed a model for free convection boundary layer flow of 

micropolar fluid over sphere for constant wall temperature and constant heat flux 

boundary conditions, respectively. Followed by these studies, Cheng (2008) examined 

the natural convection heat transfer near sphere with constant wall temperature and 

concentration while Salleh et al. (2012) did a similar study with Newtonian heating. 

Recent study on hybrid micropolar fluid over sphere is also conducted by Alkasasbeh et 

al. (2023) to investigate how magnetic field impacts the flow while Boodoo (2024) 

developed a mathematical model to analyse the flow of micropolar fluid around porous 

shell for better understanding of the behaviour of drug-carrying microspheres in the body 

for more effective drug delivery method.  

The study of viscoelastic fluid over a solid sphere is also fairly popular. Kasim et 

al. (2012) and Kasim et al. (2013) investigated the behaviour of fluid for natural 

convection boundary layer flow over sphere with constant heat flux and Newtonian 

heating, respectively. In the meantime, the same case of mixed convection boundary layer 

flow of viscoelastic fluid was published by Ghani and Rumite (2021) with MHD effect 

while Pimenta and Alves (2021) added viscous dissipation to the flow model. 

According to Schlichting and Kestin (1960), the study of boundary layer is 

pioneered by Ludwig Prandtl in 1904. His early work is acknowledged as the most 

significant concept in fluid rheology and the flow over circular cylinder is one of his 

domains. Prandtl’s work was then extended by Blasius (1908), who successfully came 

out with the first solution of the steady forced convection momentum boundary layer 

flow over circular cylinder using the series method. The thermal equation of the same 

problem was solved by Frossling (1958) by considering the case when the surface 

temperature of the circular cylinder is constant using the series expansion technique. 

Then, Sparrow and Lee (1976) solved the problem of flow of a vertical stream over a 
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heated horizontal circular cylinder with constant wall temperature. Their achievement is 

trailed by Merkin (1977), who solved the problem of mixed convection from a horizontal 

circular cylinder held at constant temperature numerically.   

Now that this problem has proven attainability, the concept is implemented for 

other significant new ideas. Javed et al. (2018), for instance, decided to approach on the 

axisymmetric flow of Casson fluid upon noticing that swirling cylinder has yet been 

widely discussed. In their recent study, Hosseinzadeh et al. (2020), performed an analysis 

of flow over a horizontal and three-dimensional cylinder for a fascinating cross-fluid that 

originally belongs to the Newtonian subclass with the presence of gyrotactic 

microorganisms and nanoparticles. While Khan et al. (2021) and Khan et al. (2022) 

investigated the flow of hybrid nanofluid and Johnson-Segalman fluid over a vertical 

cylinder, respectively, an experimental study of structure turbulent flow behind a square 

cylinder had also been conducted as opposed to the conventional streamlined cylinder in 

cross-flow (Yanovych et al., 2021).  

Many researchers who study bluff body fluid dynamics are driven by the fact that, 

while there is extensive literature on one-dimensional flows, very little research exists on 

two-dimensional flows around bluff body geometries. Bluff body problems have been 

largely overlooked due to their greater complexity compared to one-dimensional 

scenarios. However, this presents an opportunity for this study, as the boundary layer 

flows and heat transfer with viscoelastic micropolar fluid specifically over a sphere and 

circular cylinder have not yet been fully explored.  

2.5 Magnetohydrodynamic (MHD)   

During the review for the previous subtopics, it is noticeable that a great number 

of literatures mentioned about the MHD effect. MHD is a field that study the dynamics 

of electrically conducting fluids. The phenomenon of magnetic field in convection flow 

is remarkably significant in the advancement of technology and industry with important 

role in insulation of nuclear reactor, solar energy collection and cooling of electronic 

chips and devices as well as petroleum production (Tamoor et al., 2017). MHD was first 

discovered by Hannes Alfven, an engineer-cum-physicist who was awarded the Nobel 

Prize in Physics for his extraordinary discovery. In his article, Alfven (1942) described 
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MHD as a combined electromagnetic-hydro-dynamic wave that changes fluid motion 

when electrically conducting fluid is exposed to a constant magnetic field, causing the 

fluid motion to generate electromotive force thus producing electric current.  

Among the earliest work on MHD effect was published by Goldsworthy (1961), 

who in continuation of  Alfven’s work, presented an extensive theory that enables for the 

MHD flow of perfectly conducting viscous fluid over three different obstacles which are 

sphere, circular cylinder and semi-infinite flat plate to be predicted. As for non-

Newtonian fluid, the first study of magnetic field effect on the flow was published by 

Sarpkaya (1961), elevated by earlier studies on Newtonian fluid. The two non-Newtonian 

models that were considered in the study were Bingham plastic model and power-law 

model where the flow of these fluid between two parallel plates in the presence of a 

transverse magnetic field was observed. Later, the study was extended by Kapur (1962) 

for the flow of Reiner-Rivlin fluid.  

To date, the effect of MHD has been studied for the flow of almost all existed 

fluid and mode of heat transfer, even coupled with other effects to match with the actual 

applications. Ramzan et al. (2016) and Yasmin et al. (2020) are both interested in the 

MHD effect on micropolar fluid on stretched surface. The results from the prior study 

which focused on the combination of thermal radiation and Joule heating showed that 

microrotation and magnetic field intensity are directly related which can be justified 

physically, as higher magnetic field will speed up the rotation of the fluid particles and 

as a result, increase microrotation velocity. The latter study revealed that the magnetic 

field and micropolar parameters show opposing effects on the flow velocity, but both 

enhance heat transfer. 

More examples of studies of MHD effect include Bibi et al. (2019) whose study 

focussed on solving the flow of MHD tangent hyperbolic fluid on variable conductive 

heat flow with convective boundary condition. The high nonlinearity of the problem 

called for numerical solution as the best option and this problem was solved using bvp4c 

in MATLAB. Other than that, Muhammad et al. (2021) did a comparison study of two 

different numerical methods which are the bvp4c function and shooting technique to 

solve three-dimensional Eyring–Powell nanofluid nonlinear thermal radiation with 
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modified heat plus mass fluxes. The comparison of tables and graphs presented in the 

paper indicates that both techniques produce exactly the same result. Meanwhile, instead 

of using existing method, Wakif (2020) came out with a novel numerical procedure using 

a new unconventional GDQLLM algorithm that integrates local linearization technique 

with the generalized differential quadrature method to study convective flows of radiative 

Casson fluids moving over a nonlinearly elongating elastic sheet with a nonuniform 

thickness with MHD effect.  

So far, all the above listed literatures analyse the case when the fluid flow is 

perpendicular to the magnetic field. However, imposing such limitations on the study will 

restrict the practicality. With the aim for more general and applicable result, researchers 

started exploring the idea of aligned MHD. In their numerical study of structure of 

oblique hydromagnetic shock waves, Dixon and Woods (1976) addressed that majority 

of  studies are devoted on the limiting case of 0 =  and 90 =  where   represents the 

angle of magnetic field that oblique angles (0 90 )   seems neglected. The same 

idea was emphasised by Chandna et al. (1982) when he solved the flow of variably 

inclined MHD plane where the angle and velocity field were diversified using hodograph 

transformation.  

Later, Josserand et al. (1993) conducted a study on liquid metal flow over a 

cylinder under the effect of aligned MHD where the pressure and drag measurements on 

the body was observed. The result from the experimental study showed that the rear and 

global pressure drag are proportional to ,N where N is the interaction parameter, a ratio 

between electromagnetic force and inertia forces yields. Sekhar et al. (2007) also 

investigated the flow on circular cylinder with aligned MHD but with particular interest 

on viscous fluid. The study concluded that magnetic field and drag coefficient are 

positively correlated and that the magnetic field has greater effect on downstream base 

pressure compared to the upstream base pressure.  

A comparison study between aligned and non-aligned MHD flow for two types 

of water-based ferrofluids over a flat plate was pursued by Ilias et al. (2016). The outcome 

of the study revealed that increasing angle of magnetic field increases the heat transfer 

rate on the plate surface and that the transfer rate is higher for kerosene-ferrofluid 
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compared to water. In the meantime, studies of aligned MHD on nanofluid flow by 

Rosaidi et al. (2022) and Ali et al. (2022) concluded that the surge of magnetic field and 

aligned magnetic field accelerated the temperature and fluid velocity.  

However, it was shown by (Ilias et al., 2023) for Jeffry hybrid nanofluid flow, the 

magnetic effect tends to retard the flow velocity but increase the temperature and that the 

aligned magnetic parameter displays identical effect on the flow as the magnetic 

parameter. Alternatively, Ali et al. (2024), who investigates the effect of MHD on 

micropolar fluid over stretching wedge surface concludes that the magnetic field oppose 

fluid motion, increasing the temperature profiles but reduce the velocity and 

microrotation profiles.  

In summary, the aligned MHD field could provide a simpler starting point to 

reveal the basic influences of the magnetic field on the boundary layer flow and heat 

transfer prior to adding the extra complexities of the transverse orientation. This aids 

fundamental understanding and control of MHD systems that motivates incorporating 

aligned magnetic effect in this study. 

2.6 Keller-box Method 

The Navier-Stokes equation that is used to describe the motion of fluid are in the 

form of differential equations, so the key to solving fluid dynamics problems lies within 

solving the differential equations. The complexity and method chosen to solve the 

equations depend on whether the equations are in the form of ordinary or partial 

differential equations where partial differentials equation are more challenging to deal 

with. The function bvp4c in MATLAB and shooting method are popular options among 

researchers when it comes to ordinary differential equations while for partial differential 

equations, finite difference and finite elements methods are implemented. Finite 

difference method has been used to solve wide range of boundary value problems since 

1940s. The principle of the method is to convert the partial differential equations into a 

set of simultaneous equations for which the solution is the approximate solution of the 

boundary value problem (Zhou, 1993).  
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For finite difference approaches, Keller-box method has been a popular option to 

solve fluid flow and heat transfer problems. The method was first introduced by Keller 

and Cebeci (1972), claiming that it is faster, simpler to program and more versatile than 

other such numerical methods where the governing partial differential equations are 

reduced to first-order system. Furthermore, the method also allows for calculation that is 

extremely close to the boundary-layer separation without any restraint and has proven to 

be applicable to three-dimensional boundary layer flows. Afterwards, the method has 

been discussed extensively by Cebeci and Bradshaw (1984) and widely adopted by other 

researchers for various boundary value problems.  

In his work, Cebeci et al. (1986) has also demonstrated that the Keller-box method 

can also be used to represent flows that have regions of reverse flow which is common 

when dealing with opposed forced and free convection. Motivated by the desirable 

features of Keller-box method, Poulikakos and Renken (1987) implemented the method 

to find the numerical solution of the energy equation for their general model for flow in 

porous medium with variable porosity, flow inertia, and Brinkman friction effects. Then, 

the same method was utilized in the published works of Lin and Yu (1988) and Lin and 

Chen (1988), where the free convection flow on horizontal plate and a general model of 

mixed convection flow on vertical plate were discussed, respectively.  

To date, the numerical scheme has been applied to various geometric bodies. For 

instance, Hossain et al. (1996) applied the method to solve free convection flow near 

rotating round-nosed bodies with the presence of transverse magnetic field despite the 

non-similarity in the constitutive equations due to the buoyancy force field on top of the 

magnetic field and the transverse curvature of the bodies. The numerical scheme has also 

been chosen by Habib et al. (2022) to visualise the effects of chemical reaction, variable 

suction, activation energy, and heat-generation over a non-linear static and moving wedge 

with heat transfer properties, chosen for its rapid algorithm and adaptability for most 

problems. To further illustrate the versatility of Keller-box method, the method has also 

been adopted by Mohamed et al. (2023) and Habib et al. (2024) to examine the MHD 

effect on boundary layer flow of Casson ferrofluid over vertical truncated cone and 

nanofluid over a paraboloid, respectively.  
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Thus far, the finite difference scheme is still relevant for current and ongoing fluid 

dynamics problems as proven by Bilal et al. (2017) to which the numerical results of his 

study for the flow of Williamson fluid along cylindrical stretching surface showed 

excellent agreement with a previous study using Homotopy analysis method, hence 

validating the reliability of this technique. Furthermore, a comparison study of two 

different numerical approaches, namely the Keller-box and shooting method by Shabbir 

et al. (2020) has also demonstrated the consistency of the technique when almost identical 

figures are obtained from both methods.  

According to Ahmed et al. (2021), compared to other numerical techniques, 

Keller-box is speedier and more efficient when dealing with cases of higher order 

nonlinear differential equations. His numerical results on unsteady squeezing flow 

between two infinite parallel plates were authenticated by comparing the solution of the 

simplest case of his work obtained using Keller-box method and the built-in function 

bvp4c in MATLAB. All things considered, due to the flexibility and reliability of the 

Keller-box method, this method has been chosen to solve the problems in this study using 

the Fortran programming language.  

2.7 Summary  

In this chapter, previous studies related to the current research interest has been 

reviewed to identify the gap that can be filled in. It has been determined through the 

evaluation that studies on the heat transfer and flow characteristics of viscoelastic 

micropolar are scarce. Given the considerable quantity of non-Newtonian fluids that 

exhibit these dual characteristics, it is prudent to consider investigating this issue. In 

addition to examining the flow of a complex fluid, one of the challenges in the present 

study will be determining the solution of fourth-order partial differential equations, given 

that the bluff body has been selected as the geometric subject of interest. Despite this, 

this study is made feasible by the concepts compiled from prior research and the 

encouraging outcomes produced by the Keller-box method. 
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CHAPTER 3 

 

 

METHODOLOGY 

3.1 Introduction 

In this chapter, the derivation of the constitutive equations of the flow for 

viscoelastic micropolar fluid with MHD effect that consists of continuity, momentum, 

angular momentum and energy equations are elaborated. Generally, those equations are 

based on the three fundamental physical principles which are conservation of mass, 

Newton’s second law and first law of thermodynamics which describe the relationship 

between velocity, pressure, temperature and density to the parameters that characterise 

the flow of a fluid. From the literature review in Chapter 2, the studies concerning the 

flow of viscoelastic micropolar fluid over horizontal circular cylinder and sphere are 

extremely limited. However, the closest literatures that guided these problems are the 

cases when viscoelastic and micropolar flow are considered separately. This chapter is 

divided into four sections where Section 3.1 is the introduction to the chapter, 3.2 presents 

the detailed derivation of the governing equations, 3.3 demonstrates the derivation of the 

boundary layer equations of the viscoelastic micropolar fluid and 3.4 summarizes the 

governing equations of the flow for viscoelastic micropolar fluid.  

3.2 Governing Equation for Newtonian Fluid with MHD Effect 

This section covers the derivation of continuity, momentum, energy and angular 

momentum equations where the details are explained in Section 3.2.1 to 3.2.4, 

respectively. Subsequently, it is followed by the description of the concept of boundary 

layer approximation in Section 3.2.5. 

3.2.1 Continuity Equation  

The law of conservation of mass declares that mass can neither be created nor 

destroyed, hence constant amount of matter is present in a system over time for an isolated 
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system (Coleman, 2010). The fluid flow has to obey this law since material does not 

simply disappear nor does new material would simply emerge during the flows. 

According to Oertel (2010), the rate of mass accumulation in a volume element equals 

the difference between the rate of mass in and out of the volume element or 

the mass fluxes into the volume element
The rate of change of mass

in a volume element
the mass fluxes out of the volume element

= −





 3.1 

This can be visualised as in Figure 3.1 where in the x-direction, the mass flux entering 

the volume element is given by:  

 ( )u dy dz  3.2 

and when the position shifts from x to x dx+  in the x-direction, the quantity change is 

depicted by:  

 
u

dx
x




 3.3 

 

 

Figure 3.1 Mass fluxes entering and leaving volume element in x-direction 
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Hence, the net outflow in x-direction is given by:  

 
( ) ( )u u

u dydz u dx dydz dy dz
x

d
x

x
 

 
  

− + = − 
  

 3.4 

while net outflow in y-direction is:  

 
( ) ( )v v

v dxdz v dy dx zdydz dx d
y y

 
 

  
− + = − 

  

 3.5 

and in z-direction, net outflow is:  

 
( ) ( )w w

w dxdy w dz dxdy dx dy dz
z z

 
 

  
− + = − 

  

 3.6 

In the Cartesian space, the vector velocity field is defined as u v w= + +V i j k  and the 

density of the fluid element is ( , , , ).x y z t =  Therefore, net flow mass is: 

 
( ) ( ) ( )

net mass flow
u v w

dxdydz
x y z

     
= − + + 

   

 3.7 

Since the rate of change of mass inside the volume element is equivalent to the sum of 

net flow mass, then,  

 
( ) ( ) ( ) ( )u v w

dxdydz
x y z

dx dy dz

t

      
− + +



 

=
 

 3.8 

Considering that ,dV that is physically defined as total mass of fluid in volume element 

is given by ,dV dx dy dz=  the equation can be simplified to: 

 
( ) ( ) ( )u v w

x y zt

    
+ +

 


=

 
−  3.9 
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After rearranging the equation and using the operator, ,i j k
x y z

  
 = + +

  
the equation 

is transformed to:  

 0
t





+ =


V  3.10 

Considering that the material derivative of the density is 
D

Dt t

 



= + 


V  and 

applying the vector identity ( ) ( ) ,   =  + V V V  alternatively, Equation (3.10) 

can also be expressed in the form:  

 ( ) 0
D

Dt


+  =V  3.11 

Since for incompressible fluid the density remains constant throughout the flow, hence 

Equation (3.11) becomes:  

 0 =V  3.12 

For two-dimensional case, the continuity equation can be written as:  

 0
u u

x y

 
+ =

 
 3.13 

3.2.2 Momentum Equation 

Momentum equation, or better known as the Navier-Stokes equation is named 

after Claude-Louis Navier and Sir George Stokes where the differential equations serve 

the purpose of expressing the motion of a particle immersed in a fluid or the motion of 

the fluid itself. The equation is constructed from the Newton’s second law of motion in 

the form below:  

 m=F a  3.14 

which describes that the net force of fluid element, F is equivalent to the product of its 

mass, m and the acceleration of the element, a.  
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According to Katopodes (2019), the type of forces that must be considered 

correspond to normal and tangential stresses exerted on the element’s surfaces by the 

surrounding fluid as well as the body forces that act through the centroid of the element. 

Body forces, bF  result from immersing fluid element is a force field such as gravitational 

and electromagnetic field. The forces are proportional to the mass of the fluid and spread 

across the fluid element without physical contact. Meanwhile, the surface forces, sF  

includes pressure that act inward and normal to the surface element and viscous forces 

that acts in any direction on the surface caused by the viscosity of the fluid.  

In his detail derivation of Navier Stokes equation with consideration of all forces 

acting on the fluid, Subramanian (2019a) stated that the following equation can be casted 

to represent the principle of conservation of momentum applied to a control volume. 

 ( ) b
t

 
 

+  =  +  

V
V V T F  3.15 

In the equation, T embodied the stress tensor of the fluid where motion is initiated due to 

horizontal friction and shear stresses. The stress at a point in a fluid is described by nine 

components that can be written in matrix form as follows:  

 

x xy xz

yx y yz

zx zy z

  

  

  

 
 

=  
 
 

T  3.16 

where the main diagonal elements ,x y   and z  represent the normal stresses. The 

remaining six elements in the form i j  express the shear stresses, where i represents the 

surface upon which it is acting on while j specifies the direction where the stress acts on 

as illustrated in Figure 3.2.   
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Figure 3.2 Normal stresses and shear stresses of fluid element 

Following Papanastasiou et al. (2021), total stress tensor is generally expressed as the 

sum of isotropic pressure and viscous distributions or mathematically, 

 p= − +T I τ  3.17 

Taking Equation (3.16) into consideration, Equation (3.15) in each direction, 

respectively, can be written as follows:  

x-direction: 

 
yxxx zx

x

u u u u p
u v w f

t x y z x x y z

 
 

       
+ + + = − + + + + 

        
 3.18 

y-direction: 

 
xy yy zy

y

v v v v p
u v w f

t x y z y x y z

  
 

       
+ + + = − + + + + 

        
 3.19 

z-direction:  

 
yzxz zz

z

w w w w p
u v w f

t x y z z x y z

 
 

       
+ + + = − + + + + 

        
 3.20 
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or subsequently, in their vector form,  

 bp
t


 

+  = − + + 
 

V
V V τ F  3.21 

where ( ), , .b x y zf f f  =F  They also stated that for Newtonian fluid, 2=τ D  for 

which   is the dynamic viscosity of the fluid and the rate-of-strain tensor, D is 

equivalent to ( )
1

.
2

T  + 
 

V V  Hence, it follows from Equation (3.17) that the stress 

tensor may be defined by:  

 ( )2
T

p p   = − + = − +  + 
 

T I D I V V  3.22 

In Cartesian coordinate system, Equation (3.22) is made up of nine components in the 

form:  

 , , , ,
ji

ij ij

j i

vv
T p i j x y z

x x
 

 
= − + + =    

 3.23 

where 
ij  is the Kronecker Delta, which is defined such that 1ij =  when i j=  and 

0ij =  when .i j  As a result of the symmetric nature of viscous stress tensor, i.e., 

ij ji = , there are only six independent stress components which are: 

2 , 2 , 2

, ,

x y z

xy yx xz zx yz zy

u v w

dx dy dz

u v u w v w

dy dx dz dx dz dy

     

        

  
= = =

         
= = + = = + = = +    

    

   3.24 

As a result, T can be written in matrix form as:  
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2

0 0

0 0 2

0 0

2

u u v u w

dx y x z x
p

u v v v w
p

y x y z y
p

u w v w w

z x z y z



       
+ +    

      
             = − + + +              
   

       + +           

T  3.25 

Hence, the divergence of total stress tensor in Cartesian coordinate system can be defined 

as:  

 

2 2 2 2 2

2 2 2

2 2 2 2 2

2 2 2

2 2 2 2 2

2 2 2

2

2

2

p u u v u w

x dx y x y z x z

p u v v v w

y x y x y z y z

p u w v w w

z x z x y z y z

  

  

  

         
− + + + + +    
          

         
  = − + + + + +   

           
 

         
− + + + + +               

T  3.26 

Concurrently, gravitational and magnetic field are the components of body force, bF  

where the force can be expressed as: 

 

 b = + F g J B  3.27 

given that   is the average density of the element, g is the gravitational vector, defined 

as ( ), ,0 ,x yg g= − −g  J is the electric current density and B represents the magnetic field. 

The magnetic force is incorporated by implying Lorentz force in the equation. According 

to the generalized Ohm’s law, the density of the induced current, J can also be written in 

the form:  

 ( ) ,= + J E V B  3.28 
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assuming that   represents the electrical conductivity of the fluid, E is the electrical field 

and = +
0

Β Β b  where b indicates the induced magnetic field, while B0 is the uniform 

magnetic field at aligned angle   in the form 0(0, sin ,0).B   In this study, it is of interest 

to investigate how different values of acute angle,   could affect the fluid flow.  

Under the assumptions that 0=E  since there is no applied or polarization 

voltage, and that b is insignificant compared to the value of the magnetic field B0 so that 

the magnetic Reynolds number is small (Zakaria & Amin, 2014), Equation (3.28) 

becomes:  

 ( ) ( )0 0

0

0 sin , sin ,0

0 0 sin

u v vB uB

B

    



=  = = −J V B

i j k

 3.29 

From the result,  

( )2 2 2 2

0 0 0 0

0

sin sin 0 sin , sin ,0

0 0 sin

vB uB uB vB

B

       



 = − = − −J B

i j k

 3.30 

Hence, the body force equation in Equation (3.27) can be written as:  

 
( ) ( )

( )

2 2 2 2

0 0

2 2 2 2

0 0

, ,0 sin , sin ,0

sin , sin ,0

b x y

x y

g g uB vB

g uB g vB

    

     

= − − + − −

= − − − −

F
 3.31 

Following the derivations of the body force components in Equation (3.31) and the stress 

tensor in Equation (3.26), Equation (3.18) which is the steady two- dimensional flow for 

Newtonian fluid in x-direction is now in the form as follows:  

 
2 2 2

2 2

02 2
2 sin x

u u p u u v
u v uB g

x y x x y x y
     

       
+ = − + + + − −  

         
 3.32 

or similarly,  
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2 2
2 2

02 2
sin x

u u p u u u v
u v uB g

x y x x y x x y
     

           
+ = − + + + + − −    

           
 3.33 

Taking into account Equation (3.13), the above equation can be simplified to: 

 
2 2

2 2

02 2
sin x

u u p u u
u v uB g

x y x x y
    

      
+ = − + + − −  

       
 3.34 

and correspondingly, the momentum equation for y-direction is:  

 
2 2

2 2

02 2
sin y

v v p v v
u v vB g

x y y y x
    

      
+ = − + + − −  

       
 3.35 

In the equations, the total pressure in the flow, p is the sum of hydrostatic pressure, hp  

and dynamic pressure, dp  or mathematically written in the form .h dp p p= +  Outside 

the boundary layer, the hydrostatics pressure that is due to the weight of the fluid can be 

expressed as:  

 h
x

p
g

x



= −


 3.36 

where   corresponds to the fluid density. Hence,  

 ( )h d d
x x

p p p
g g

x x x
  

  
− − − = − −

  
 3.37 

and substituting these terms into Equation (3.34), we obtain: 

 ( )
2 2

2 2

02 2
sind

x

pu u u u
u v uB g

x y x x y
     

      
+ = − + + − + −  

       
 3.38 

However, according to Padet et al. (2015), the equation can be simplified by adopting the 

Boussinesq approximation, where the density can be described as a linear function of the 
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temperature alongside a reference value, which for this case refers to the ambient 

temperature of the fluid, T  in the following form:  

 ( )p T T  

 − = −  3.39 

Rearranging and substituting the equation into Equation (3.38), the following equation is 

acquired:  

 ( )
2 2

2 2

02 2
sind

x

pu u u u
u v uB T T g

x y x x y
     



      
+ = − + + − + −  

       
 3.40 

In the equation, *  represents the thermal expansion coefficient and defined as

* 1
.

pT






 
= −  

 
 Concurrently, in y-direction the momentum equation will be in the 

form as follows: 

 ( )
2 2

2 2

02 2
sin y

v v p v v
u v vB T T g

x y y y x
     



      
+ = − + + − + −  

       
 3.41 

after the subscript d in the dynamic pressure term is dropped for the sake of simplicity.  

3.2.3 Energy Equation   

The energy equation of flow is derived from the first law of thermodynamics that 

is a vital concept for chemical reaction including for nuclear power plant. The law states 

that even if energy is converted from one form to another, the total energy remains 

constant. According to  Zohuri (2018), this relationship can be expressed as:  

E Q W = +       3.42 

where E  is the change of internal energy in the system, Q is the heat transferred in or 

out of the system and W represents the work done on or by the system.  

In the equation, the term system corresponds to the control volume where the 

working fluid passes through. The total energy inside a control volume which is also 
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known as stored energy per unit mass is a combination of kinetic energy corresponding 

to the bulk motion of the fluid, 
2

2

V
 and the internal energy of the fluid from the molecular 

motion, e. Hence, the total internal energy is 
2

.
2

V
e+  Since the internal and kinetic 

energy flow are defined as: 

i. internal energy flow = (mass flow) × (internal energy/mass), 

ii. kinetic energy flow = (mass flow) × (kinetic energy/mass)  

and the mas flow is dxdydz  therefore the total energy flow rate of a given fluid element 

in space can be expressed in substantial derivative as follows:  

 
2

 = 
2

D V
E e dx dy dz

Dt


 
 + 

 
 3.43 

Meanwhile, the next element, Q represents the heat energy from volumetric 

heating and heat transfer across the surface. Volumetric heating refers to a condition 

where an entire volume (of a flowing fluid in this case) is uniformly heated thus 

delivering energy evenly throughout the body and this phenomenon can be 

mathematically interpreted as:  

 volumetric heating of the element = q dx dy dx  3.44 

where the term q  represents the volumetric heat rate addition per unit mass. As for the 

surface heating in the x-direction, the amount of heat transported into the moving fluid is 

xq dy dz  per unit time per unit area while the heat transferred out is given by 

.x
x

q
q dx dy dz

x

 
+ 
 

 This can be demonstrated by Figure 3.3. 
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Figure 3.3 Heat fluxes flow in and out of volume element 

From the figure, the net heat flux in the x-direction can be written as:  

 
x x

x x

q q
q dy dz q dx dy dz dx dy dz

x x

  
− + = − 

  
 3.45 

While in the y-direction the net heat flux is: 

 y y

y y

q q
q dx dz q dy dx dz dx dy dz

y y

  
− + = − 

  
 3.46 

and in z-direction, the net heat flux is:  

 
z z

z z

q q
q dx dy q dz dx dy dx dy dz

z z

  
− + = − 

  
 3.47 

It follows from Equations (3.45) to (3.47) that the heat transferred in and out of the 

moving fluid is:  

 
yx z

qq q
Q q dx dy dz

x y z

    

= − + +  
    

 3.48 
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Aside from the law of conservation of energy, Fourier’s law also plays a vital role 

in the derivation of heat energy. The law states that the rate of heat transfer through a 

material is proportional to the negative gradient in the temperature and to the area, at 

right angles to that gradient, through which the heat flows (Arfken et al., 1984). The 

differential form is given by:  

 k T= − q  3.49 

or can be written separately for individual component as:  

 ; ;x y z

T T T
q k q k q k

x y z

  
= − = − = −

  
 3.50 

where the proportionality constant, k is known as thermal conductivity. Consequently, 

substituting Equation (3.50) into Equation (3.48), the new form is: 

 
T T T

Q q k k k dx dy dz
x x y y z z


          

= + + +     
          

 3.51 

The work rate is performed by a force, F moving at velocity V. The two forces 

that will be considered are body forces that act on fluid inside the volume and surface 

forces which consists of pressure, shear and normal forces that act on the volume surface.  

A force pointing towards the positive coordinate direction is positive while the opposite 

direction will be in negative sign. The work rate done by a force acting on a moving fluid 

element is:  

 ( )x y zW V dx dy dz uf vf wf dx dy dz =  = + +g  3.52 

given that force, ( ), ,x y zf f f=F  includes gravitational, electric and magnetic forces. 

Referring to Figure 3.4, the work rate done by pressure in x-direction is: 

 
( ) ( )up up

up up dx dy dz dx dy dz
x x

   
− + = −  

    
 3.53 
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Figure 3.4 Work done by surface force in x-direction 

Considering that ,xx yx   and zx  are the components of the stress acting on the surface 

which outward normal is pointing towards the x-direction, the net rate of work done by 

the surface forces in the x-direction is:  

( ) ( )

( ) ( ) ( ) ( )

yxx

x x yx yx

yxzx x zx

zx zx

uu
u dx u dy dz u dy u dx dz

x y

uu u u
u dz u dx dy dx dy dz

z x y z


   

  
 

    
  + − + + −  
         

     
+ + − = + +   

         

 3.54 

Cumulatively, the total net rate of work done by the forces in the x-direction is:  

 
( ) ( ) ( ) ( )yxx zx

uup u u
dx dy dz

x x y z

    
− + + + 

     

 3.55 

Therefore, the total of net rate of work done in all directions of the moving fluid due to 

the body and surface force can be represented by the following equation.  
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

yxx zx

xy y zy yzxz z

x y z

uup vp wp u u

x y z x y z

v v v ww w
W dx dy dz

x y z x y z

uf vf wf

 

    



      
− + + + + +  

       
 

     
= + + + + + +      
 
 + + +
 
 
 

 3.56 

Hence, putting together all the individual elements, the final energy equation is obtained 

as follows: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )
( )

2

2

yxx

xy y zyzx xz

yz z

x y z

uup vp wp u

x y z x y

v v vu w

z x y z x

w w
uf vf

D V T T T
e q k k k

Dt

wf

x x y y z

y z

z




  










           
+ = + + +      

   

    
− + + + + 

     

   
+ + + + +

  

+

     

 

 
+ + +





+





 3.57 

Equation (3.57) is the non-conservation form of energy equation since there are 

differentiated variables in the equation that exist as the coefficients of a certain derivative, 

for example the term 
( )

.
up

x




 When equations are solved numerically, the conservation 

form is more favourable. Therefore, in order to convert the energy equation to 

conservation form, chain rule is applied to the terms on the right side of the equation 

which results in the following equation:  
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2

2

x
x

yx xyzx
yx zx xy

w

D V T T T
e q k k k

Dt x x y y z

u p
p u

x x

v p p u
p v p w u

y y z z x x

u u u
u u v

y y z z x x

z





 
 





  
+ 

  

        
− + − + + +     

         

      
+ + + + + +   

        

           
+ = + + + −      

          

( )

y zy xz
y zy xz

yz z
yz z x y z

u u u
v v w

y y z z x x

u u
w w uf vf wf

y y z z

  
  

 
  


 



        
+ + + + + +     

         

    
+ + + + + + +   

     

 3.58 

Equation (3.58) can also be rearranged as:  

2

2

yx xy y zyx zx

yzxz z
x yx

u v w

x y z

x y z x y z

p p p u u
u v w

x y z x y z x y

D V T T T
e q k k k p

Dt x x y y z z

u v

w



    

 
 


             

+ = + + + −        
            

   
+ +   

  
+

  
+ +

  

    
+ + +

     

      
+ + − − +





 
+

   
+ −

   




( )

zx xy y zy xz yz z

x y z

u v v v w w w

z x y z x y z

uf vf wf

      



      
+ + + + + + +

      

+ + +

   3.59 

However, it is also common for the energy equation to be expressed in terms of 

the internal energy, e only instead of the combination of internal and kinetic energy as 

shown in the equation. This can be achieved by using Equations (3.18) to (3.20) from 

Section 3.2.2. The first step is to multiply the equations by u, v, and w, respectively, from 

which these equations are obtained.  

 

2

2 yxx zx
x

u
D

p
u u u u uf

Dt x x y z

 
 

 
     = − + + + +

   
 3.60 
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2

2 xy y zy

y

v
D

p
v v v v vf

Dt x x y z

  
 

 
      = − + + + +

   
 3.61 

 

2

2 yzxz z
z

w
D

p
w w w w wf

Dt x x y z

 
 

 
     = − + + + +

   
 3.62 

Now, given that 2 2 2 2 ,u v w V+ + =  the sum of the equations can be simplified to: 

( )

2

2 yx xy y zyx zx

yzxz z
x y z

V
D

p p p
u v w u v

Dt x x x x y z x y z

w uf vf wf
x y z

    


 


 
             = − − − + + + + + +   

           

  
+ + + + + + 

   

 3.63 

By subtracting Equation (3.63) from Equation (3.59), the following equation is obtained:  

( )

x yx zx xy y zy xz

yz z

u v w

x y z

u u u v v v w

x y z x

z

D T T T
e q k k k p

Dt x x y y z z

y z x

w w

y



     









           
= + + + −      

        

  
+ +

  

      
+ + + + + + +

      

 
+ +





 



 3.64 

In the above equation, even though the terms related to body force are already eliminated, 

the equation is still in non-conservative form. The equation can be reduced further by 

recognizing the symmetricity of the stress tensor i.e. ,xy yx xz zx   = =  and 
yz zy =  As 

reported by Oertel (2010), from the definition of enthalpy, h and equation of state of ideal 

gas, the internal energy can be expressed as:  

 
p

p
e c T


=  −  3.65 
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where pc  is the specific heat at constant pressure. Substituting this thermodynamic 

relation and Equation (3.24) into Equation (3.65), while also taking into account that 

pressure is constant, the energy equation becomes:  

2 2 2

2 2 2

2 2 22 2 2

2 2 2

p

DT T T T
c q k k k

Dt x y z

u v w u v u w v w

x y z y x z x z y

 



  
= + + + +

  

                   
+ + + + + + + +           

                    

 3.66 

The terms in the square brackets are expressed in velocity gradient and they represent the 

rate of viscous dissipation, .  Hence, the equation can be written as:  

 

2 2 2

2 2 2p

DT T T T
c q k k k

Dt x y z
  

  
= + + + +

  
 3.67 

According to Bejan (2013), many convection problems comply with simple 

models where the fluid conductivity, k is a constant value, volumetric heat addition, q  

is zero and viscous dissipation,   is negligible. With these assumptions, those related 

terms are discarded, and the equation becomes: 

 

2 2 2

2 2 2p

T T T T T T T
c u v w k

t x y z x y z


        
+ + + = + +  

         
 3.68 

For a two-dimensional steady incompressible flow, the conservative form of the energy 

equation is:  

 

2 2

2 2

T T T T
u v

x y x y

    

+ = + 
    

 3.69 

given that 
p

k

c



=  and it is known as thermal diffusivity. 
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3.2.4 Angular Momentum Equation  

When micropolar fluid is considered, an additional equation that represents the 

conservation of angular momentum is needed with the rest of the governing equations to 

describe the fluid flow in terms of the microrotation of the suspended microelements. 

This equation is a result from the fact that for polar fluid, stress tensor is not symmetric 

and the conservation law of linear momentum is independent of the law of conservation 

of mass and momentum (Lukaszewicz, 1999).  

Lukaszewicz (1999) also mentioned that for micropolar fluid, the angular 

momentum is made up of two components, which are the spin angular momentum from 

the particle rotation and the orbital angular momentum due to the fluid flow. According 

to the principle of conservation of angular momentum, the rate of change of angular 

momentum is equal to the sum of moments of external forces. Therefore, this can be 

expressed mathematically as  

 ( )
D

j
Dt

 +  =H r V M  3.70 

where j  is microinertia per unit mass, H is the microrotation vector, r is the position 

vector and M is the sum of the moments acting on the fluid element. The moments, M 

can be broken down into three elements which are body couples, surface couples and 

antisymmetric part of the stress tensor. As a result, Equation (3.70) can be updated to  

 
( )

( )

2

2

j j
t t

    



    
+  +  +  +  = +    

    

+ − +

H V
V H H H r V V l H

H V

 3.71 

given that l is body couple per unit mass,   is vortex viscosity and   is the spin gradient 

viscosity defined as 1 .
2

j



 

= + 
 

 Since 0 =H H and assuming no body couple, i.e 

0, =l these terms can be dismissed from the equation. The third term, 

t


 
 +  

 

V
r V V  can also be omitted because it is related to the linear momentum 
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equation and is balanced by the moment of the stress tensor divergence. Hence, the 

equation is now in the form  

 ( )2 2j
t

  
 

+  =  + − + 
 

H
V H H H V  3.72 

For steady two-dimensional flow, the angular momentum equation can be written as  

 

2 2

2 2
2

H H H H v u
j u v H

x y x y x y
  

         
+ = + + − + −    

         
 3.73 

3.2.5 Boundary Layer Approximation 

Prandtl’s boundary layer theory is the fundamental of the existence of boundary 

layer equations, which are the simpler form of Navier-Stokes equations that is only 

applicable on the boundary layer (Anderson, 2005). The concept originated from 

Prandtl’s assumptions that when fluid flows over a surface at large value of Reynold 

number ( )Re ,→  the flow region is split into two regions. The first region is the region 

away from the object surface where viscous effect is negligible while the other region is 

known as the boundary layer region where viscous effect and inertia are equally 

significant.  

In rectangular Cartesian form, the inertia and viscous terms are defined as 
u

u
x





 

and 

2

2
,

u

y




 respectively. Since both are comparable, their order of magnitude would also 

be identical. Order of magnitude refers to a quantity that is used in scaling analysis to 

decide whether a term should remain or to be dropped from the equation. According to 

Subramanian (2019b), for inertia and viscous term of a plate with length L, their order of 

magnitude is given by:  

 

2 2

2 2

U Uu u
u

x L y
   


  

 
 3.74 
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From the relationship, 
2 L

U




 

or 
1

ReL
L


 where ReL

U L


=  is the Reynold 

number based on the length of the plate. Consequently,   which represents the boundary 

layer thickness will have a very small value if Re 1.L  Since the terms of order   will 

be relatively small, those terms can be discarded from the equations. Following Ozisik 

(1985) and Arifin (2019),  

 o(1), o(1), o( )u x y   3.75 

Performing the scaling analysis to the continuity equation in Equation (3.13), the 

following is obtained.  

Table 3.1  Order of magnitude analysis for continuity equation 

Terms Order of Magnitude 

u

x



  

o(1)
o (1)

o (1)
=

 
v

y



  ( )
o(1)

o

v


=

 

According to Biswas (2003), it is the general rule of incompressible fluid mechanics that 

for continuity equation, none of the terms should be dismissed. Hence, from the rule it 

can be concluded that v is of order .  Additionally, he also stated the term 
p

y


−


 will not 

exceed order 1 while the order of the rest of the quantities has been verified by and Abdul 

Rahman Mohd Kasim (2014) and Schlichting and Gersten (2016) as the following: 

Table 3.2  Order of magnitude analysis for quantities 

Terms Order of Magnitude 



  

( )2o 
 

  
2

1
o



 
 
   

2

0B
 ( )2o 

 
g o(1)
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For the momentum equation in x-direction as stated in Equation (3.40),  

Table 3.3  Order of magnitude analysis for x-momentum equation 

Terms Order of Magnitude Decision 

u
u

x




 

o(1)
o (1) o (1)

o (1)
=  remain 

u
v

y




 ( )

( )
o(1)

o o(1)
o




=  remain 

2

2

u

x








 ( ) ( )2 2o(1)

o o
o(1)

 =  0  

2

2

u

y








 ( )

( )
2

2

o(1)
o o(1)

o



=  remain 

2 2

0 sinB u





 
( )

( )2

2

o(1)
o o(1) o(1)

o



=  remain 

( )xg T T 

−  o(1)  remain 

Hence, from the analysis, the term 

2

2

u

x








 that is of order 2 will be dropped from the 

equation. As for the momentum equation in y-direction in Equation (3.41), the analysis 

is as follows.  

Table 3.4  Order of magnitude analysis for y-momentum equation 

Terms Order of Magnitude Decision 

v
u

x




 

( )
( )

o
o(1) o

o(1)


=  remain 

v
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y




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( )

( )
( )

o
o o

o


 


=  remain 

2

2

v

y








 ( )

( )

( )
( )2

2

o
o o

o


 


=  remain 

2

2

v

x








 ( )

( )
( )2 3

o
o o

o(1)


 =  0  

2 2

0 sinvB





 
( )

( )2

2

o(1)
o o(1) o(1)

o



=  remain 

( )yg T T 

−  o(1)  remain 
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From the scaling analysis, only the aligned magnetic and buoyancy terms are of order 1 

but the rest of the terms are of order   and 3.  Therefore, the momentum equation in the 

y-direction can be secluded from the constitutive equations.  

 For the momentum equation to be balanced, the term 
p

y


−


 must be of order .  

This can be physically interpreted as the pressure remains unchanged in the boundary 

layer which implies that p is only a function of x. Hence, .
p dp

x dx


=


 However, since 

Prandtl has declared that pressure on the surface is almost identical to pressure at the edge 

of the boundary layer, therefore across boundary layer, pressure is negligible (Arakeri & 

Shankar, 2000). Hence, 0
dp

dx
=  and for simplification purpose, the term xg  is replaced 

by g. As a result, the boundary layer equations of Newtonian fluid are: 

 0
u v

x y

 
+ =

 
 3.76 

 ( )
2

2 2

02
sin

u u u
u v B u g T T

x y y

 
 

 





  
+ = − + −

  
 3.77 

As for the energy equation, the quantities in Equation (3.69) with their orders are: 

 ( )2o(1), oT    3.78 

The order of magnitude analysis on the equation is as follows: 

Table 3.5  Order of magnitude analysis for energy equation 

Terms Order of Magnitude Decision 

T
u

x




 

o(1)
o (1) o (1)

o (1)
=  remain 

T
v

y




 ( )

( )
o(1)

o o(1)
o




=  remain 

2

2

T

x




 ( ) ( )2 2o(1)

o o
o(1)

 =  0  
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Table 3.5 Continued 

Terms Order of Magnitude Decision 
2

2

T

y




 ( )

( )
2

2

o(1)
o o(1)

o



=  remain 

From the analysis, the third term will be discarded, hence the thermal boundary layer 

equation is:  

 

2

2

T T T
u v

x y y


  
+ =

  
 3.79 

For the angular momentum equation in Equation (3.73), following Biswas et al. (2012), 

( )2o(1), oj    and o( ).   The order of magnitude for the equation is presented 

in the following table.  

Table 3.6 Order of magnitude analysis for angular momentum equation 

Terms Order of Magnitude Decision 

H
ju

x





 

o(1)
o (1)o (1) o (1)

o (1)
=  remain 

H
jv

y





 ( )

( )

( )
( )

o
o(1)o o

o


 


=  remain 

2

2

H

x




 ( ) ( )2 2o(1)

o o
o(1)

 =  0  

2

2

H

y




 ( )

( )
2

2

o(1)
o o(1)

o



=  remain 

v

x




 ( )

( )

( )
( )2

o
o o

o 1


 =  0  

u

y




 ( ) ( )

o(1)
o o

o(1)
 =  remain 

H  o(1)o(1) o(1)=  remain 

 

From the analysis, after discarding two of the terms, the angular momentum equation is: 
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2

2
2

H H u H
j u v H

x y y y
  

      
+ = − + +   

      
 3.80 

3.3 Governing Equation for Viscoelastic Micropolar Fluid 

In Section 3.2, the derivation of the governing equations for Newtonian fluid is 

shown in detail. Newtonian fluid model is presented as the model is simple which makes 

it convenient to explain how the equations of fluid flow are derived from the conservation 

of mass, momentum and energy as well as how other concepts are utilized in order to 

construct the equations in the simplest solvable form. Moreover, the Newtonian fluid 

model is the basic framework of any fluid model and even our complex model can be 

reduced to Newtonian fluid model by discarding all the parameters that describe the 

viscoelasticity and polar characteristics. Based on the idea that has been presented in the 

previous section, Section 3.3 will elaborate in detail the derivation of the governing 

equation for viscoelastic micropolar fluid.  

The continuity and energy equations for viscoelastic micropolar fluid are identical 

to respective equations of the Newtonian fluid that are stated in Equations (3.76) and 

(3.79). Since the fluid is polar, an additional angular momentum is also necessary to 

describe the fluid flow as derived in Section 3.2.4. However, the major contribution of 

this study will be in terms of the Navier-Stokes equation that represents the conservation 

of momentum and due to the intricate nature of the fluid, the derivation will be much 

more complicated since there will be more terms involved compared to the Newtonian 

model. Furthermore, the order of the derivatives will be as high as fourth order, and it is 

widely recognized that for differential equations, the order and the level of difficulty to 

solve the equations work in parallel.  

Referring to Jafar et al. (2019) as well as Idowu and Falodun (2020), the Cauchy 

stress tensor for viscoelastic fluid is given by:  

 ( ) 02 2e k
 

= −  
 

τ d d  3.81 
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where I, d and 0k  represent the identity vector, deformation rate tensor and short-memory 

coefficient, respectively. In the equation, 


d  is the upper-convected derivative of a tensor, 

defined as:  

 ( )( ) ( ) ( )
T



=  −   − d V d d V V d  3.82 

which is equivalent to:  

 ( )2 (2 ) (2 ) (2 )
T



=  −   − d V d d V V d  3.83 

Hence, in steady condition the stress component in two-dimension is: 

 ( ) ( )02 (2 ) (2 ) (2 )
T

ij ij ij ij ijd k d d d   = −  −   − 
 
V V V  3.84 

where  

 2 , , , ,
j i

ij

i j

d i x y j x y
x x

 
= + = =
 

V V
 3.85 

The individual elements of the stress tensor are as follows:  

22 2

0 2

1
2 2 2

2
xx

u u u u u u v
k u v

x x x y x y y x
 

           
= − + − + +    

             

 3.86 

2 2 2 2

2 20
2 2

2

xy yx

v u

x y

u v u v v u u v v u

x x y y x y x x y
k

y

 
 

+
 

          
+ + + −  +   


 
= =



 
 

  
−   


 

          

 3.87 

22 2

0 2

1
2 2 2

2
yy

v v v v v v u
k u v

y x y y y x x y
 

            
 = − + − + +    

              

 3.88 
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However, the stress tensor in Equation (3.93) is insufficient for this problem as it does 

not count into the couple stress that is vital for model with rotating microelements. 

Therefore, for the case of viscoelastic micropolar fluid, the total stress tensor of the fluid 

is: 

 e pp= − + +T I τ τ  3.89 

where pτ  is the additional couple stress from the microrotation. According to Alzahrani 

et al. (2022), given that ( )0,0, ,H=H  in vector form the couple stress can be defined 

as:  

 ( ) ( )p  =   + τ V H  3.90 

Following Equation (3.18) and (3.19), the momentum equations for viscoelastic 

micropolar fluid with the corresponding order of magnitude analysis are: 

x-direction:  

2 2

2 2

3 3 3 3 2 2 2 2

3 2 2 3 2 2

0

2

3

1

2

u u p u u H
u v

x y x x y y

u u u u u u u u v
u v

x x

x

v

y x y y x x y y y x y x

v u

x

k

y












      
+ = − + + + 

      

                 
+ + + + + − +        

                     +
  
 −

   

 +
 
 



 3.91 

Table 3.7 Order of magnitude analysis for x-momentum of viscoelastic micropolar fluid 

Terms Order of Magnitude Decision 

u
u

x




 

o(1)
o (1) o (1)

o (1)
=  remain 

u
v

y




 ( )

( )
o(1)

o o(1)
o




=  remain 

2

2

u

x









 
 



+


 ( ) ( )2 2o(1)

o
o

2
(1)

2o =  0  
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Table 3.7 Continued 

Terms Order of Magnitude Decision 
2

2

u

y








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 


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=  remain 

H

y




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
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
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 
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
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o
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x y
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y-direction: 

2 2
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2 3 3 2 2 2 2
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v v p v v
u v
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     

                 
+ + + − + + −        

                    +
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 +
 

 

 

 3.92 
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Table 3.8 Order of magnitude analysis for y-momentum of viscoelastic micropolar fluid 

Terms Order of Magnitude Decision 

v
u

x




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After the boundary layer approximation, all the terms in y-direction can be discarded and 

as for the momentum equation in x-direction, the equation is simplified to:  
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1u u p u
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
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

    
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      
+ + + − 





      



 

 3.93 

where 





=  is the kinematic viscosity. Furthermore, adding the term that corresponds 

to the MHD effect as derived in Equation (3.31), the momentum equation of viscoelastic 

micropolar fluid with aligned MHD effect is:  

( )
2

2

3 3 2 2

0

2

2
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2

0

2

1
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u u p u
u v

x y x y

u u u u u u
u v
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 
 




 



 





    
+ = − + + + 

    

      
+ + + − 

+

      


−



−


 

 3.94 

3.4 Summary  

In this chapter, the derivation of the governing equations of the flow for 

viscoelastic micropolar fluid has been presented in detail. The main idea in this chapter 

is to come out with a set of equations that would be the best representation of the complex 

fluid where the equations should obey the conservation laws and at the same time, 

embody the viscoelasticity and micropolar characteristics of the fluid. The formulation 

also included the influence of aligned magnetic field. The basic equations of the proposed 

model are initially displayed in vector form before they are simplified by applying the 

boundary layer and Boussinesq approximations so that only the significant terms remain. 

Table 3.9 provides a summary of the basic governing equations that have been derived 

throughout this chapter. 
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Table 3.9 Governing equations of viscoelastic micropolar fluid with MHD effect 

Name Equation  

Continuity 

equation  
0

u v

x y

 
+ =

 
 

 

Momentum 

equation 

( )

2

2

3 3 2 2

0

2

2 2

0

3 2

1
sin

u u p u
u

g
x

H
uB

y

k

v
x y x y

u u u u u u
u v

y y x
T T

y y x y

 


 






 







    
+ = − + + + 

    

   




  
+ +

−


+ −
     

−


+
 

 

Angular 

momentum 

equation  

2

2
2

H H u H
j u v H

x y y y
  

      
+ = − + +   

      
 

 

Energy 

equation  

2 2

2 2

T T T T
u v

x y x y

    

+ = + 
    
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CHAPTER 4 

 

 

FLOW OF VISCOELASTIC MICROPOLAR FLUID OVER A HORIZONTAL 

CIRCULAR CYLINDER WITH ALIGNED MHD EFFECT  

4.1 Introduction 

The primary focus of this chapter is the problem involving the flow of viscoelastic 

micropolar fluid under the influence of aligned magnetic effect over a horizontal circular 

cylinder. This problem will serve as the pilot study for the rest of the problems especially 

in Chapters 5 and 6. Therefore in this chapter, only the behaviour of the flow will be 

analysed without considering the heat effect for our initial encounter with this model. The 

model will be presented in Section 4.2 where non-dimensional variables and non-

similarity transformation will be introduced to the viscoelastic micropolar equation that 

had been derived in Chapter 3.  

Following the outcomes obtained from applying the Keller-box method to the 

solvable form of the governing equations, the results will be presented and discussed in 

Section 4.3. The references used to affirm the reliability of the results in this chapter 

mainly come from Ariel (2002) and Anwar et al. (2008). While both studies focus on the 

boundary layer flow of viscoelastic fluid, the prior study specifically examines the flow, 

while the latter delves into the problem when mixed convection is considered. After the 

validation, the behavioural effect of the viscoelastic micropolar flow is then evaluated 

from the velocity and microrotation profiles as well as the skin friction coefficient that 

will be discussed in Section 4.4.  

4.2 Mathematical Formulation 

Consider a horizontal circular cylinder with radius a  that is aligned to a free 

stream velocity given by .U  A steady, two-dimensional incompressible viscoelastic 

micropolar fluid flows over the circular cylinder as the cylinder is imposed to a uniform 
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magnetic field at an acute, aligned angle, , that is measured clockwise from the vertical 

downward. The Cartesian coordinate x  is measured along the circumference of the 

cylinder starting from the lower stagnation point while y  is perpendicular to the surface 

of the body as illustrated in Figure 4.1.  

 

Figure 4.1 Schematic diagram for flow of viscoelastic micropolar fluid over a horizontal 

circular cylinder 

This problem governed by Equations (3.76) and (3.80) is denoted by ‘ ˉ ’ as an indication 

that these equations are still in dimensional form as presented below: 

 0
u v

x y

 
+ =

 
 4.1 

 
2

2
2

H H u H
j u v H

x y y y
  

      
+ = − + +   

      
 4.2 

As for the momentum equation, following Equation (3.94) while discarding heat related 

terms, the following equation is obtained:  

 

2
2 2

2

3 3 2 2

0

2 3

0

2

1
sin

u u p u
u v

x y x y

u u u u u u
u v

x y y x y y x y

H
uB

y

k

  


 


 



    
+ = + + + 

    

      
+ + − 




−

    




+

 

 4.3 
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Outside the boundary layer region, the momentum equation of the flow is defined as:  

 

2

2

3 3 2 2

0

2

2

3

2

0

2

sin
1e e e

e

e e e e e e
e

e

u u up
u v

x y x y

u u u u u u
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x y y x y

H
u B

y

y

x y

k

  









 




−

   
+ = +

+

+ + 
    

      
+ + −

     



  
 4.4 

where ( )( ) sineu x U x a=  and it represents the velocity outside the boundary layer. 

Since the velocity is only dependent on x, Equation (4.4) can be reduced to:  

 2 2

0

1
sine

e e

up
u u B

x x




 


= +

 
 4.5 

Substituting Equation (4.5) into Equation (4.3), the following momentum equation is 

obtained: 

 

( )
2

2

2

2 3 2

0

2 3

2

0 sine
e e

duu u u
u v u u

x y dx y

u u u u
u v

x y y y x y

H
u B

y

k

   


 





   
+ = + + 

   

      
+ − 



+ 
− −

 
    




+

 

 4.6 

The governing equations are subjected to the boundary conditions:  

 

0, on 0,

( ), 0, 0 ase

u
u v H n y

y

u
u u x H y

y


= = = − =




→ → → →



 4.7 

This set of equations are then transformed into their non-dimensionless form where each 

term is stripped off its units by substituting relevant dimensionless variables. For this 

flow problem, the following variables are assumed:  

 

1 1 1
2 2 2 ( )Re Re Re

, , , , , e
e

u xx y u v aH
x y u v H u

a a U U U U

−

   

= = = = = =  4.8 
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Applying the variables in Equation (4.8) into Equations (4.1), (4.2) and (4.6), the 

dimensionless form of continuity remains in the same form as stated in Equations (3.76) 

while the momentum and angular momentum equations are as follows:  

  

( ) ( )1

2
2

12

2 3 2

2 3

1 sine
e

e

duu u u
u v u K K

x y dx y

u u u u
K u v

x y y y

N
M u

y

y

x

u 
  

+ = + + +
  

      
+ − 




− −



+  
      

 4.9 

 
2

1
1 2

2 1
2

KH H u H
u v K H

x y y y

     
+ = − + + +   

     
 4.10 

The dimensionless governing equations are bounded to the following conditions: 

 

1
0,  at 0

2

( ), 0, 0 as e

u
u v H y

y

u
u u x H y

y


= = = − =




→ → → →



 4.11 

And the parameters that express the special characteristics of the flow in the governing 

equations can be defined as: 

 
2

0 0
1, , ,

k U B aa
j K K M

U a U

 

  


 

= = = =  4.12 

where K, K1 and M, represent the dimensionless viscoelastic, micropolar and magnetic 

parameter, respectively. Then, the equations can be further simplified by reducing the 

dependence of some terms to a single variable instead of two. For this problem, the 

following set of non-similarity equations is introduced for the mentioned purpose: 

 ( , ), ( , )xf x y H xh x y = =  4.13 

The non-dimensional stream function,   is defined as:   
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 ,u v
y x

  
= = −
 

 4.14 

and it satisfies the continuity equation in Equation (3.76). After the non-similarity 

variables are applied, the momentum and angular momentum equations in Equations 

(4.9) and (4.10) will be in the form below:  

( )
23 2

2

1 13 2

2 3 4

2 3 43 4 2

3 4 2 4 2 3

3 2 2

2

sin cos sin
1 sin

2

f f f x x h f x
K f K M

y y y x y y x

f f f f

x y y x yf f f f
K f x

y y y y f f f f

y x y y x y

f f
x

y x y


       

+ + − + + − −   
       

     
−  

          + − − +             + − 
        

  
= −

  

2

2

f f

x y

 
 

  

 4.15 

and  

 

2 2

1
12 2

1 2
2

K h h f f f h f h
f h K h x

y y y y y x x y

           
+ + − − + = −    

           
 4.16 

Referring to Lukaszewicz (1999), the dimensionless quantity, n in the boundary 

condition is known as the coupling number which measures the ratio between 

microinertia and the angular viscosity of the fluid where 0 1.n   For micropolar fluid, 

microinertia explains the stress experienced by the microstructures in the fluid to rotate 

around its axis where higher microinertia indicates more resistance for the particles to 

change their speed during rotation. Both Lukaszewicz (1999) and Vijaya et al. (2016) 

mentioned that the case 0n =  corresponds to Newtonian fluid where microinertia is 

negligible compared to the angular velocity or in simpler terms, the value describes fluid 

with miniscule to no microstructures. Meanwhile, 1n =  defines micropolar fluid where 

the particles in the fluid and the micro-rotational vector are rotating harmoniously at the 

same angular velocity. As this behavior indicates that fluid does not oppose the rotation, 
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this is a special case of polar fluid with the characteristics of Newtonian fluid that is 

unaffected by shear rate.  

 Due to these arguments, for all the problems in this study, the value 1 2n =  is 

chosen to describe the viscoelastic micropolar model that belongs to the non-Newtonian 

family. This value indicates that both microinertia and angular viscosity are present, 

hence implying that the rotation is opposed by the fluid which is consistent to the nature 

of non-Newtonian fluid. As a result, the boundary conditions of this problem in non-

dimensionless form are:  

 

2

2

2

2

1
0, on 0

2

sin
, 0, 0 as

f f
f h y

y y

f x f
h y

y x y

 
= = = − =
 

 
= = = →

 

 4.17 

Considering the flow near the lower stagnation point of the cylinder where 0,x   

Equations (4.15) and (4.16) will reduce to the following ODEs  

( ) ( ) ( )2 2 2

1 11 1 1 sin 2 0ivK f ff f K h M f K f f f f f       + + − + + − − + − − =    4.18 

 ( )1
11 2 0

2

K
h f h f h K h f

 
   + + − − + = 

 
 4.19 

bounded to the conditions below:  

 

1
(0) (0) 0, (0) (0)

2

1, 0, 0 as

f f h f

f f h y

 = = = −

 → → → →

 4.20 

where the derivatives are with respect to variable y. For this problem, the physical 

quantity of interest is the local skin friction coefficient, .fC  Following Nazar (2004), the 

coefficient is defined as:  
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1 2

2

Re w
fC

U



 

=  4.21 

and for viscoelastic micropolar fluid, the reduced skin friction parameter, w is: 

 

2 2

0 2

0 0

2
2
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y y

u u u u u
H k u v

y x y y x y


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Substituting Equations (4.8), (4.12) and (4.22) into Equation (4.21), the non-dimensional 

skin friction coefficient is:  

 
11 ( ,0)

2
f

K
C xf x

 
= + 

 
 4.23 

4.3 Results and Discussion  

The ordinary differential equations in Equations (4.18) and (4.19) bounded by the 

conditions stated in Equation (4.20) are solved using the Keller-box method by 

implementing the Fortran algorithm. The numerical results obtained are tabulated and the 

velocity and microrotation profiles as well as the local skin friction coefficient are 

graphically illustrated to examine the effects of viscoelastic parameter, K, micropolar 

parameter, K1, magnetic parameter, M and the aligned angle,   on the fluid as it flows 

over the circular cylinder.  

The limiting case of the problem without the influence of viscoelastic, material 

and magnetic parameter is compared to the exact and numerical solution from published 

results for affirmation of results reliability. Current results are compared to the exact 

solution by Ariel (2002) and numerical solution by Anwar et al. (2008). The momentum 

equation and boundary conditions for both studies are listed in Table 4.1 where the 

current study and the study by Anwar included an augmented boundary condition, 

( ) 0f   =  while Ariel took a different approach and discarded the extra condition at 

infinity. Both approaches have the advantages over the other as having the extra boundary 

conditions will make the results valid for even large values of K (Garg & Rajagopal, 
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1990) whilst Ariel’s algorithm is applicable in finite domains by perceiving the stress 

condition at the wall. Despite the fact that Anwar’s study is on convective boundary layer 

flow, the equation is reduced to the limiting case for forced convection when 0. =  

From the result comparison displayed in Table 4.2, it is evident that the current 

result concurs with those from the literatures. Furthermore, the current result shows 

extremely small relative error with the exact solution as compared to the numerical 

solution from the viscoelastic model. It is noteworthy that the purpose of this error 

analysis is to validate the accuracy of the current result given that the exact solution is 

known. The relative error recorded in Table 4.3 is calculated by taking the ratio of the 

absolute discrepancy between the exact and numerical value obtained with respect to the 

exact value itself. It can be observed that the error values are extremely small and 

negligible in comparison to the existing model. From this evaluation, it is justified that 

the numerical result for this flow problem is reliable so further analysis on the velocity 

and microrotation profiles are conducted.  

The velocity profile in Figure 4.2 shows that the increase of viscoelastic parameter 

value, K reduces the speed of the flow. Due to no-slip condition, velocity of fluid at the 

wall is zero and increases as it moves further from the wall until it reaches free stream 

outside the boundary layer region. Higher value of viscoelastic parameter implies greater 

elasticity effect that would oppose the flow and resist deformation. As a result, the 

velocity is reduced as it fails to increase rapidly near the wall. This outcome has also been 

observed by Nazemi et al. (2019) for his comparison study between viscoelastic and 

Newtonian fluid.  

The same effect is also observed with the growth of material parameter, K1 as 

presented in Figure 4.5 with similar explanation but different stimulus. As discussed in 

Section 1.1, micropolar fluid contains tiny spinning particles or microelements that rotate 

on their own axes, isolated from the fluid velocity at the wall. Similar to the 

viscoelasticity behaviour, the microrotation also creates additional defiance to 

deformation that create resistance to the change of velocity. On the account that higher 

micropolar parameter means higher micropolarity, fluid with higher parameter consists 

of particles with greater tendency to rotate independently of the fluid's bulk motion, hence 
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building more resistance to deformation. These particles refuse to align with the fluid 

flow and keep spinning independently, obstructing the development of the velocity 

boundary layer and causing the velocity gradient to decrease.  

On the contrary, Figure 4.8 reveals that the increase of magnetic parameter, M 

and   has a boosting effect on the flow, causing the velocity to rise. Even though this 

result seems to contradict the expected behaviour of velocity in micropolar fluid from the 

literatures as observed by Yasmin et al. (2020) that lean towards magnetic field has 

retarding effect on the velocity, it cannot be generalized this way for this problem as 

despite the micropolarity, this complex fluid is also viscoelastic in nature. It has been 

shown in studies that for viscoelastic fluid, the presence of magnetic field could either 

increase or decrease the velocity of the flow (Bhukta et al., 2014) (Mahat et al., 2022). 

As for the microrotation profile, it only existed for micropolar fluid where it 

describes the angular velocity of the particles in terms of the magnitude and direction of 

the spin. Figures 4.3, 4.6 and 4.9 show a standard pattern occurring in all three figures 

where reversal behaviour can be observed once it reaches a turning point at 1.68.y   All 

profiles show negative values of microrotation velocity indicating that for this problem, 

the particles are going against the vorticity of the fluid flow by spinning at anti-clockwise 

direction.  

In Figure 4.3, increasing K stimulates the spinning velocity when the flow is 

reasonably close to the cylinder surface, but as it approaches ,y  the opposite effect is 

observed. The rise of parameter K1 also displays the same behaviour as shown in Figure 

4.6 where at relatively small values, the velocity increases but for 0.8,y   increase of 

K1 leads to lower spin velocity. The initial increase and subsequent decrease in angular 

velocity with increasing K and K1 values is likely due to enhanced particle rotation 

followed by increased fluid structure resistance. On the contrary, M and   effects depict 

the reversal behaviour from the previous two parameters for the microrotation profile as 

illustrated in Figure 4.9. For 1.8,y   the velocity declines synchronously but for 

1.8 ,y    the opposite behaviour is detected where h increases when M and   gets 

larger. This could result from the force exerted by the magnetic field that tends to orient 
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the microscopic components of the fluid in a particular direction which can affect the 

particles' rotation followed by magnetically induced circulation at higher field strengths. 

Aside from the velocity and microrotation profiles, Figures 4.4, 4.7 and 4.10 

further analyse the behavioural flow over the bluff body in terms of how the parameters 

could influence the body and flow separation. Figure 4.4 illustrates the skin friction 

coefficient at different points on the cylinder for variety of K values. From the figure, 

higher values of K  will contribute towards lower fC  and as the parameter becomes 

larger, the undesirable boundary layer separation is stalled. This is because higher 

viscoelastic parameter means higher resistance and stronger attachment on the wall to 

delay the separation. The same result is recorded by Jones and Lewis (1968) that higher 

viscoelasticity moves the separation point towards the front stagnation point. 

Similar effect is observed for M and   effects, where the induced magnetic field 

also delays the separation time as M and   grow, while fC  surges in value. It is also 

illustrated in Figure 4.10 that when M gets significantly large,   no longer affects the 

boundary layer separation where the separation will occur at the same point on the wall 

for any value of .  The effect of material parameter is presented in Figure 4.7. The figure 

reveals that when K1 elevates, fC  increases, and contrary to the other parameters, the 

separation is inclined to occur in advance which would result in a wider wake region after 

the separation point.  

For the case of viscoelastic effect, its nature that resists deformation leads to the 

above observations. The opposition to the flow as mentioned previously has led to the 

reduction of velocity gradient and simultaneously, the magnitude of viscous stresses. As 

a result, the skin friction decreases.  
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Table 4.1 The momentum equation and boundary conditions of problems involved for 

result validation.   

Author Model 

Present 

( ) ( )

( )

2 2

1 1

2

1 1 1 sin

2 0iv

K f ff f K h M f

K f f f f f

    + + − + + − −

  + − − =
 

with boundary conditions 

1
(0) (0) 0, (0) (0)

2

1, 0, 0 as

f f h f

f f h y

 = = = −

 → → → →

 

Ariel  

(2002) 

( )2 21 2 0ivf ff f K ff f f f     + + − − − + =  

with boundary conditions 

(0) 0, (0) 0, ( ) 1f f f = =  =  

Anwar et al. 

(2008) 

( )2 21 2 0ivf ff f K f f ff f     + − + + + − − =  

with boundary conditions 

(0) (0) 0, (0) 1

1, 0, 0 as

f f

f f y





= = =

 → → → →
 

 

Table 4.2 Values of (0)f   at different values of K when 1 0M K= =  

K Exact solution 

Ariel (2002) 

Present Viscoelastic model 

Anwar et al (2008) 

0 1.232588 1.232657 - 

0.05 1.179830 1.179893 - 

0.1 1.134114 1.134172 1.135982 

0.2 1.058131 1.058180 1.045412 

0.3 0.996844 0.996886 0.960922 

0.4 0.945869 0.945907 0.882512 

0.5 0.902500 0.902535 0.810182 

1 0.752766 0.752803 - 

100 0.099515 0.100783 - 

500 0.044677 0.045487 - 

1000 0.031607 0.032229 - 
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Table 4.3 The percentage error between present model and another viscoelastic model 

compared to an exact solution 

K Present Viscoelastic model 

Anwar et al (2008) 

0.1 0.0058 0.1868 

0.2 0.0049 1.2719 

0.3 0.0042 3.5922 

0.4 0.0038 6.3357 

0.5 0.0035 9.2318 

 

Table 4.4 Variation of (0)f   for various values of K, K1, M and    

K K1 M α  f (0)  
1 1 1 6  0.750093 

2 1 1 6  0.615378 

3 1 1 6  0.535845 

4 1 1 6  0.481519 

5 1 1 6  0.441285 

1 1.5 1 6  0.720308 

1 2 1 6  0.693973 

1 2.5 1 6  0.670474 

1 3 1 6  0.649327 

1 3.5 1 6  0.630153 

1 1 0 6  0.691474 

1 1 1.5 6  0.750093 

1 1 3 6  0.854826 

1 1 4.5 6  0.902423 

1 1 6 6  0.990432 

1 1 1 4  0.804255 

1 1 1 3  0.854826 

1 1 1 2  0.902423 
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Figure 4.2 Variation of ( )f y  for various K at 1 1K M= =  and 6 =    

 

Figure 4.3 Variation of ( )h y  for various K at 1 1K M= =  and 6 =  
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Figure 4.4 Variation of fC  for various K at 1 1K M= =  and 6 =  

 

Figure 4.5 Variation of ( )f y  for various K1 at 1K M= =  and 6 =   
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Figure 4.6 Variation of ( )h y  for various K1 at 1K M= =  and 6 =  

 

Figure 4.7 Variation of 
fC  for various 1K  at 1K M= =  and 6 =  
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Figure 4.8 Variation of ( )f y  for various M and   at 1 1K K= =   

 

Figure 4.9  Variation of ( )h y  for various M and   at 1 1K K= =   
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Figure 4.10 Variation of fC  for various M and   at 1 1K K= =   

 

4.4 Summary 

In this chapter, the boundary layer flow of viscoelastic micropolar fluid over 

horizontal circular cylinder with aligned magnetic effect is discussed. The problem is 

solved numerically using the Keller-box method coded in Fortran programming language 

before the results are converted in graphical form in MATLAB software. The outline of 

all the steps involved for the mathematical formulation for this problem is presented in 

Table 4.6. The study of behavioral flow of the viscoelastic micropolar fluid will be further 

extended in Chapters 5 and 6 where free and mixed convections will be considered, 

respectively. The results presented in Section 4.3 can be summarized as follows:  

i. Velocity profile decreases when K and K1 increase, while the opposite trend is 

observed for M and .  
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ii. Microrotation profile increases as K and K1 increase for small values of y, but as 

y approaches infinity, h decreases. The reverse pattern is displayed by the 

microrotation profile when M and   get larger.  

iii. The skin friction coefficient increases when K1, M and   grow in value, but the 

opposite trend occurs when K increases. Boundary layer separation can be 

delayed by increasing K, M and ,  as well as using smaller K1.  

Table 4.5 Summary of present results for boundary layer flow of viscoelastic 

micropolar on a circular cylinder 

Distribution K  1K  M  α  

f           

h          

fC          

      increase    decrease 
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Table 4.6 Solution procedure for mathematical formulation of boundary layer flow of 

viscoelastic micropolar fluid over horizontal circular cylinder 

Steps Equations 

Governing 

Equations 

0
u v

x y

 
+ =

   

( ) ( )
2

1 12

2 3 2

2

1

3

2sin1e
e e

duu u u
u v u K K

x y dx y

u u u u
K u v

x

H
M u u

y

y y y x y


  

+ = + +
  

      
+ − 




− −



 
     

+
 

2

1
1 2

2 1
2

KH H u H
u v K H

x y y y

     
+ = − + + +   

     
 

Boundary 

conditions 

1
0,  at 0

2

( ), 0, 0 as e

u
u v H y

y

u
u u x H y

y


= = = − =




→ → → →

  
Non-similarity 

transformation 
( , ), ( , )xf x y H xh x y = =  

Ordinary 

differential 

equations 

At stagnation point: 

( ) ( )

( )

2 2

1 1

2

1 1 1 sin

2 0iv

K f ff f K h M f

K f f f f f

    + + − + + − −

  + − − =
 

( )1
11 2 0

2

K
h f h f h K h f

 
   + + − − + = 

   

Transformed 

boundary 

conditions 

1
(0) (0) 0, (0) (0)

2

1, 0, 0 as

f f h f

f f h y

 = = = −

 → → → →
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CHAPTER 5 

 

FREE CONVECTION BOUNDARY LAYER FLOW OF VISCOELASTIC 

MICROPOLAR FLUID OVER A HORIZONTAL CIRCULAR CYLINDER 

WITH ALIGNED MHD EFFECT 

5.1 Introduction 

In this chapter, the free convection viscoelastic flow is taken into account with 

consideration of the influence of aligned magnetic field in the presence of microelements. 

Both the viscoelastic and micropolar properties are highlighted to describe the rheological 

behaviour of the fluid in this chapter, along with other parameters that have been 

discussed in Section 4.2 and 4.3. In the process of obtaining the numerical solutions, the 

steps include nondimensionalization and converting the governing equations into 

ordinary differential equation that will be shown in Section 5.2. The numerical solution 

is then presented and discussed in Section 5.3 before the concluding remarks in Section 

5.4.  

The two main references for this study are the free convection flow of viscoelastic 

fluid problem by Kasim et al. (2011) while another problem published by Nazar et al. 

(2002) concentrated on the free convection boundary layer flow over a circular cylinder 

immersed in micropolar fluid. Both studies were constructed around Merkin (1976) and 

Merkin and Pop (1988) where the complete solution of this problem was presented for 

the case of Newtonian fluid using a finite difference scheme. Most importantly, the results 

obtained had been validated to confirm the solidity of present model and numerical 

algorithm.  

5.2 Mathematical Formulation 

Free convection boundary layer flow of viscoelastic micropolar fluid over a 

horizontal circular cylinder with aligned magnetic field effect is investigated. The 

configuration considered for this problem is illustrated in Figure 5.1.  
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Figure 5.1 Schematic diagram for mixed convection boundary layer flow of viscoelastic 

micropolar fluid over a circular cylinder  

 

The governing equations that represent the conservation of mass and angular 

momentum for the flow had been expressed in Equations (4.1) and (4.2), while the energy 

equation had been stated in Equation (3.79). The dimensional momentum equation, 

unique for this problem is in the form below:  

 

( )

2 2 3 2
0

2 2 3

2 2

0
sin sin

ku u u u u u u
u v u v

x y x y x yy y y

x H
g T T u B

a y

 

 

 
 

 

   
   
     

 
 
 

  +      
+ = + + −

       


+ − + −



  5.1 

subject to the boundary conditions: 

 

1
0, , on  0

2

0, 0, , 0 as  

w

u
u v T T H y

y

u
u T T H y

y



= = = = − =




→ → → → →



 5.2 

As proposed by Nazar (2004) and Mahat et al. (2021), the following variables are 

integrated into the equations to remove the physical dimensions while supplementarily, 

reducing the complexity of the model.  
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31 1 1
24 2 4 4

, , , , ,
w

T Tx Gr y aGr u aGr v a Gr H
x y u v H

a a T T


  

− − −





−
= = = = = =

−
 5.3 

The outcomes of nondimensionalization for continuity and angular momentum equations 

are as stated in Equations (3.76) and (4.10), while the momentum and energy equations 

are as follows:  

 

( )
2 2 3 2

1 2 2 3

2

1

1

sin sin

u u u u u u u
u v K K u v

x y y x y y y x y

H
x K Mu

y
 

         
+ = + + + −  

          


+ + −



 5.4 

 

2

2

1

Pr
u v

x y y

    
+ =

  
 5.5 

The governing equations are bounded by:  

 

1
0, 1, on 0

2

0, 0, 0, 0 as

u
u v H y

y

u
u H y

y






= = = = − =




→ → → → →



 5.6 

where the parameters in the equations are defined as: 

( ) 31/2 2 2
2 1/2 0

1 2 2

0

1/2

Gr
Gr , Gr, ,

Gr
,

wg T T a B a
j Ka

k
K

a
M

 

  



 

−
−

== = ==  5.7 

Subsequently, the identical stream function as in Equations (4.13) and (4.14) are 

introduced to the equations with an additional function for the energy equation in the 

form:  

 ( , )x y =  5.8 

As a result, the angular momentum equation is transformed into Equation (4.16) and the 

following is the new form of the momentum and energy equations.  
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( )
23 2

2

1 13 2

2
3 4 2 2 3 4 4 2 3

3 4 2 3 4 3 2 2

2 2

2

sin
1 sin

2

f f f x g f
K f K M

y y y x y y

f f f f f f f f f f f f
K f x

y y y y x y y x y y x y y x y

f f f f
x

y x y x y

 
     

+ + − + + − 
     

                
+ − − + − + −    

                   

    
= − 

     

 5.9 

 
2

2

1

Pr

f f
f x

y y y x x y

         
+ = − 

      
 5.10 

These equations are subjected to the boundary conditions:  

 

2

2

2

2

1
0, 1, on 0

2

0, 0, 0, 0 as

f f
f h y

y y

f f
h y

y y





 
= = = =− =
 

 
→ → → → →

 

 5.11 

Near the lower stagnation point of the cylinder, where 0,x   the angular momentum 

equation is reduced to Equation (4.19) while the momentum and energy equation become: 

( ) ( )2 2 2

1 11 1 sin 2 0ivK f ff f K h Mf K f f ff f        + + − + + + − + − − =  5.12 

 
1

'' ' 0
Pr

f + =  5.13 

bounded to the following conditions: 

 

1
(0) (0) 0, (0) 1, (0) (0)

2

0, 0, 0, 0, as 

f f h f

f f h y





 = = = = −

 → → → → →

 5.14 

In this problem, the physical quantities of interest are the reduced skin friction coefficient, 

fC  and the heat transfer coefficient, .wQ Whilst the dimensionless skin friction 

coefficient remains the same as the previous problem as stated in Equation (4.24),  the 

dimensionless heat transfer coefficient, according to Kasim et al. (2011) is:  
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 ( ,0)wQ x = −  5.15 

5.3 Results and Discussion 

The ODE in Equations (5.12), (5.13) and (4.19), with the boundary conditions in 

(5.14) along with the PDE in Equations (5.9), (5.10) and (4.16) are solved using the 

Keller-box method coded in Fortran language and the numerical results are calculated. 

For this problem, all parameters that contribute towards the flow behaviour as expressed 

in the finalized equations are investigated. The effect of the physical parameters on 

velocity, temperature and microrotation profiles are evaluated with also special interest 

on their influence on the local skin friction coefficient, fC  and heat transfer coefficient, 

.wQ    

For validation purposes, results for the limiting case of this study are compared 

to the results documented by Merkin (1976), Molla et al. (2006) and Yasin et al. (2020). 

These studies have demonstrated the effects of free convective flow at the boundary layer 

of circular cylinder restricted by the same boundary conditions. In his study, Molla (2006) 

even justified his results using two different numerical methods, which are the Keller-

box method and perturbation solution technique. The momentum equation from the 

governing equations of each problem is displayed in Table 5.1, while the result 

comparability is recorded in Tables 5.2 and 5.3. Present result shows high degree of 

similarity of (0)xf   and (0)−  values to the above-mentioned studies as demonstrated 

in Figures 5.2 and 5.3. From both figures, it can be observed that all the markers that 

represent the values from different studies are overlapping, and they fall exactly on the 

line that represents the value from the current result. Hence, the figures have further 

justified the validity of the result from this study before further analysis.  

The results of 
fC  and wQ  as the parameter values which varied at Pr 21=  are 

presented in Table 5.4. This particular Prandtl number is applied throughout this study 

since according to Saeed et al. (2021), the dimensionless number represents pure human 

blood, that as aforementioned in Section 1.7, is a classic example of viscoelastic 

micropolar fluid. The table presents the distributions of heat transfer coefficients and 
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local skin friction of the fluid on the circular cylinder's surface. The results are intended 

to provide insight into the behaviour of the viscoelastic micropolar fluid prior to the 

illustrative figures in which the figures depict the results.  

The effect of increasing the value of K when other parameters are held constant 

is visualized in Figure 5.4 where the velocity of the fluid flow declines and then rises as 

the parameter is amplified. Similar effect is observed in Figure 5.9 that as K1 rises, f   

declines but as the flow moves further away from the wall and the momentum boundary 

layer thickness elevates, trend reversal is detected. Meanwhile, from Figures 5.6 and 5.11, 

it is evident that both parameters, K and K1 intensify the microrotation profile, but the 

profile decreases at higher K and K1 towards the free stream. This suggests that both 

viscoelasticity and micropolar properties enhance the rotational motion of fluid particles 

at the boundary layer. However, at higher values of both parameters, this effect 

diminishes towards the free stream, possibly as bulk flow effects begin to dominate over 

boundary interactions. 

The temperature profiles for a range of values for K and K1 also exhibit identical 

behaviour where Figures 5.5 and 5.10 show positive correlation between both parameters 

and the temperature. Viscoelasticity and temperatures are strongly related as the property 

itself is related to the time taken for molecular arrangement to occur inside the matter due 

to stress application. When the body undergoes deformation, a fraction of the total work 

is dissipated as heat through viscous losses but the remnant of the deformational energy 

is stored in elastic form Tschoegl (1989).  

As for the trend of wQ  in Figure 5.7, it is apparent that higher K would reduce the 

amount of heat transfer but before boundary layer separation, which occurs in advance 

for lower value of K, the backward pattern is observed. The exact behavioural pattern is 

revealed in Figure 5.8 for 
fC  where the trend is explainable by the viscoelastic nature of 

the fluid that has the efficiency to reduce the frictional force between the body surface 

and the fluid. For the K1 parameter, Figures 5.12 and 5.13 indicate that the parameter 

tends to enhance 
fC  but minimize wQ  on the surface and the separation for both 
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quantities occurred faster as K1 gets larger. These observations infer that the number of 

micro particles in the flow undeniably has significant impact on the physical quantities.  

It has also been verified by Figures 5.14 and 5.15 that parameters M and   do 

hold substantial effect on the velocity and temperature of the flow. The velocity is 

suspended with the rise of M value, but the opposite effect is observed for temperature. 

The result also gives credence to the notion that different values of   will produce 

magnetic field with diversity of strength stemmed on its position on the flow region. For 

this problem, the increase of   value seems to enhance the effect of M thus broadening 

the Lorentz force on the surface of the cylinder. As a result, the force resists the movement 

of the fluid flow and its temperature increases.  

For the microrotation profile in Figure 5.16, it is revealed that there exists positive 

relationship between M and the microrotation profile before the turning point. 

Furthermore, the microrotation is maximized when the magnetic field lines are 

perpendicular to the fluid flow. On the contrary, for wQ  and ,fC  their values depleted 

when the angle expands from 0 to 2.  As for the magnetic effect, intensifying M also 

decreases wQ  and 
fC  These trends are illustrated in Figures 5.17 and 5.18. Overall, these 

results manifested that both parameters, M and   are correlated and can serve as limiting 

quantity for each other when either one is held constant.  
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Table 5.1 The momentum equation and boundary conditions of problems involved for 

result validation.   

Author Model  

Present 

( )

( )

2 2

1 1

2

1 1 sin

2 0iv

K f ff f K h Mf

K f f ff f

     + + − + + + −

  + − − =
 

with boundary conditions 

1
(0) (0) 0, (0) 1, (0) (0)

2

0, 0, 0, 0, as 

f f h f

f f h y





 = = = = −

 → → → → →

 

 

Merkin  

(1976) 

2 0f ff f   + − + =  

with boundary conditions 

(0) (0) 0, (0) 1

0, 0, as 

f f

f y





= = =

→ → →
 

 

Molla et 

al 

(2006) 

2 0f ff f   + − + =  

with boundary conditions 

(0) (0) 0, (0) 1

0, 0, as 

f f

f y





= = =

→ → →
 

 

Yasin et 

al 

(2020) 

( ) ( ) ( )
( ) ( )

( )

( ) ( )

2

2.5

1 /1

11 1 /

/
0

1 /

f fs

f ss f

ff f

s f

f f f f

Mf

    


     

 

   

− +
  + − +

− + − − +
 

− =
− +

 

with boundary conditions 

(0) (0) 0, (0) 1

0, 0, as 

f f

f y





= = =

→ → →
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Table 5.2 Comparative values of skin friction coefficient (0)xf   at different values of x 

when Pr 1=  

x 
Merkin 

(1976) 

Molla et al (2006) 
Yasin et al 

(2020) 
Present Finite 

difference 

Series 

0 0.0000 0.0000 0.0000 0.0000 0.0000 
6  0.4151 0.4145 0.4144 0.4121 0.4149 

3  0.7558 0.7539 0.7544 0.7538 0.7549 

2  0.9579 0.9541 0.9550 0.9563 0.9583 

2 3  0.9756 0.9696 0.9701 0.9743 0.9755 

5 6  0.7822 0.7739 0.7824 0.7813 0.7809 

 

Table 5.3 Comparative values of (0)−  at different values of x when Pr 1=  

x  
Merkin 

(1976) 

Molla et al (2006) 
Yasin et al 

(2020) 
Present Finite 

difference 
Series 

0 0.4214 0.4241 0.4216 0.4214 0.4214 

6  0.4161 0.4161 0.4164 0.4163 0.4162 

3  0.4007 0.4005 0.4009 0.4008 0.4007 

2  0.3745 0.3740 0.3751 0.3744 0.3747 

2 3  0.3364 0.3355 0.3389 0.3364 0.3363 

5 6  0.2825 0.2812 0.2923 0.2824 0.2821 
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Figure 5.2 Comparative values of (0)xf   at different values of x when Pr 1=   

 

Figure 5.3 Comparative values of  (0)−  at different values of x when Pr 1=  



 

 91 

Table 5.4 Variation of fC  and wQ  for various values of K, K1, M and   for Pr 21=   at 

2x =  

K K1 M α  f
C  wQ  

1 1 1 6  0.513783 0.821961 

2 1 1 6  0.490497 0.807547 

3 1 1 6  0.469973 0.794194 

4 1 1 6  0.452023 0.782125 

5 1 1 6  0.436233 0.771238 

1 1.5 1 6  0.539834 0.798068 

1 2 1 6  0.563746 0.777162 

1 2.5 1 6  0.585650 0.758645 

1 3 1 6  0.605792 0.742075 

1 3.5 1 6  0.624423 0.727116 

1 1 0 6  0.541666 0.854099 

1 1 1.5 6  0.513783 0.821961 

1 1 3 6  0.477542 0.778424 

1 1 4.5 6  0.463968 0.761661 

1 1 6 6  0.441518 0.733355 

1 1 1 4  0.493622 0.797958 

1 1 1 3  0.477542 0.778424 

1 1 1 2  0.463968 0.761661 

 

 

Figure 5.4 Variation of ( )f y  for various values of K at 1 0.5K M= =  and 6 =   
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Figure 5.5 Variation of ( )y  for various values of K at 1 0.5K M= =  and 6 =  

 

Figure 5.6 Variation of ( )h y  at various values of K at 1 0.5K M= =  and 6 =  
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Figure 5.7 Variation of wQ  for various values of K at 1 0.5K M= =  and 6 =  

 

Figure 5.8 Variation of 
fC  for various values of K at 1 0.5K M= =  and 6 =  
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Figure 5.9 Variation of ( )f y  for various values of K1 at 0.5K M= =  and 6 =  

 

Figure 5.10 Variation of ( )y  for various values of K1 at 0.5K M= =  and 6 =  
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Figure 5.11 Variation of ( )h y  at various values of K1 at 0.5K M= =  and 6 =  

 

Figure 5.12 Variation of wQ  for various values of K1 at 0.5K M= =  and 6 =  
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Figure 5.13  Variation of 
fC  for various values of K1 at 0.5K M= = and 6 =  

 

Figure 5.14 Variation of ( )f y  for various values of M and   at 1 0.5K K= =   
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Figure 5.15 Variation of ( )y  for various values of M and   at 1 0.5K K= =  

 

Figure 5.16 Variation of ( )h y  for various values of M and   at 1 0.5K K= =  
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Figure 5.17 Variation of wQ  for various values of M and   at 1 0.5K K= =  

 

Figure 5.18 Variation of 
fC  for various values of M and   at 1 0.5K K= =  
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5.4 Summary 

This chapter has extended the problem from Chapter 4 by considering the 

boundary layer flow of viscoelastic micropolar fluid over a horizontal circular cylinder 

with the presence of magnetic effect for the case of free convection. The results are 

obtained using the Keller-box method, by employing Fortran programming and the 

change of trend for the physical quantities as well as the velocity, temperature and 

microrotation profiles influenced by parameters K, K1, M and   had been discussed in 

Section 5.3. From the results obtained, the following are observed:  

i. Velocity is inversely proportional to all the parameters, K, K1, M and . For K 

and K1, as flow approaches the free stream, the trend reversed. 

ii. Temperature is enhanced by the increase of K, K1, M and .  

iii. Microrotation is positively correlated with all the parameters, but the profiles 

reverse towards the free stream. 

iv. The rate of heat transfer is inversely proportional to all parameters.  

v. The local skin friction coefficient rises with the decrease of K, M and   but the 

opposite occurs for K going towards the free stream. Meanwhile, the skin friction 

coefficient and K1 are positively correlated.  

 

Table 5.5 Summary of present results for free convection boundary layer flow of 

viscoelastic micropolar on a circular cylinder 

Distribution K  1K  M  α  

f           

h          

          

fC          

wQ          

      increase    decrease 
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Table 5.6 Solution procedure for mathematical formulation of free convection boundary 

layer flow of viscoelastic micropolar on a horizontal circular cylinder 

Steps Equation 

Governing 

equations 0
u u

x y

 
+ =

 
 

( )
2 2 3 2

1 2 2 3

2

1

1

sin sin

u u u u u u u
u v K K u v

x y y x y y y x y

H
x K Mu

y
 

         
+ = + + + −  

          


+ + −


2

1
1 2

2 1
2

KH H u H
u v K H

x y y y

     
+ = − + + +   

     
 

2

2

1

Pr
u v

x y y

    
+ =

  
 

Boundary 

conditions 

1
(0) (0) 0, (0) 1, (0)

2

0, 0, 0, 0 as

u
u v H

y

u
u H y

y






= = = = −




→ → → → →



 

Non-similarity 

transformation 
( , ), ( , ), ( , )xf x y H xh x y x y  = = =  

Ordinary 

differential 

equations 

At stagnation point: 

( ) ( )

( )

2

1 1

2

2

1 1 sin1

2 0iv

K K h M ff f f f

K f f f f f

  + + − −  + − + +

  + − − =
 

( )1
11 2 0

2

K
h f h f h K h f

 
   + + − − + = 

 
 

1
0

Pr
f  + =  

Transformed 

boundary 

conditions 

1
(0) (0) 0, (0) 1, (0) (0)

2

0, 0, 0, 0, as 

f f h f

f f h y





 = = = = −

 → → → → →
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CHAPTER 6 

 

 

MIXED CONVECTION BOUNDARY LAYER FLOW OF VISCOELASTIC 

MICROPOLAR FLUID OVER A HORIZONTAL CIRCULAR CYLINDER 

WITH ALIGNED MHD EFFECT 

6.1 Introduction  

This chapter is a continuation of Chapter 5 where in this study, the boundary layer 

flow of viscoelastic micropolar fluid over a horizontal circular cylinder with MHD effect, 

considering the case of mixed convection is discussed. When fluid motion is driven solely 

by buoyancy forces caused by density differences in the fluid due to temperature 

variations, this is considered as pure free convection. However, according to Incropera et 

al. (1996), when external forces such as fan or pump is introduced and the forced flow 

becomes comparable in magnitude to the natural buoyancy-driven flow, the system has 

entered a regime of mixed convection. The transition from forced convection to mixed 

convection could also happen when buoyancy forces become significant enough to affect 

the flow pattern alongside the forced flow. This typically happen when the forced flow 

velocity decreases or when temperature differences increase between the body and the 

flow.  

The theoretical framework for this problem is primarily based on the viscoelastic 

models that were developed by Anwar et al. (2008) and Kasim et al. (2013) as well as the 

micropolar model by Nazar et al. (2003). The viscoelastic, micropolar, magnetic and 

aligned angle effect on the fluid flow will be discussed as the previous chapters on top of 

parameter   which represents the mixed convection parameter. The results for the 

component skin friction, heat transfer as well as velocity, micropolar and temperature 

profiles are plotted for a wide range of parameters and the results will be reviewed and 

summarized.  
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6.2 Mathematical Formulation  

Similar to the problem presented in Chapter 5, a horizontal circular cylinder is 

heated at constant temperature as it is immersed in viscoelastic micropolar fluid. As the 

free stream flows upward, its velocity at the boundary layer can be defined as ( )eu x  

while the temperature of the ambient is .T  The physical model of this study is as 

illustrated in Figure 6.1.  

 

Figure 6.1 Schematic diagram for mixed convection boundary layer flow of viscoelastic 

micropolar fluid over a circular cylinder  

The continuity, angular momentum and energy equations under boundary layer 

and Boussinesq approximation to represent the convective flow of viscoelastic 

micropolar fluid is as expressed in Equations (4.1), (4.2), and (3.79), respectively. The 

momentum equation, for this problem is defined by the following equation:  

 

( ) ( )

2 2 3 2

0

2 2 3

2 2sin sin

e
e

e

u ku u u u u u u
u v u u v

x y x y x y y y x y

N x
g T T u u B

y a

 

 

 
 

 


     +      
+ = + + + −   

             

  
+ + − − − 

  

 6.1 

The governing equations are associated to the boundary conditions: 
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,

,

1
on

2

as

0, 0,

( ), 0, 0

w

e

u

y

u

y

u v T T H y

u u x T T H y









= = = = − =

→ → → → →

  6.2 

Then, the physical dimensions in the governing equations are dismissed by a set of 

dimensionless variables as proposed below:  

 

1 1
2 2

1
2

, Re , , Re

( )
Re , ,e

e

w

x y u v
x y u v

a a U U

u x T Ta
H H u

U U T T


 

− 

  

  
= = = =   

   

  −
= = = 

− 

 6.3 

As a result from the substitution of the dimensionless variable, the continuity, angular 

and energy equations are transformed to Equations (3.76), (4.10) and (5.5), respectively, 

while the momentum equation is as follows: 

( )

( )

1

2

1

2 2 3 2

2 2 3
1

sin sin

e
e

e

K

H
x M u

y

uu u u u u u u
u v u K u v

x y x y x y y y x y

K u 

  
+ −   

  


+ − −



       
+ = + + +

         

+

 6.4 

The boundary conditions in Equation (6.3) are transformed to: 

 

1
0, 1, on 0,

2

( ), 0, 0, 0 ase

u
u v H y

y

u
u u x H y

y






= = = = − =




→ → → → →



 6.5 

The parameters in the equations are as defined in Equation (4.12) and  

 
( ) 3

2 2
,

Re

wg T T aGr
Gr






−
= =  6.6 
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Then, the same stream functions as stated in Equations (4.13) and (5.8) are applied to the 

momentum equation in Equation (6.4) and the boundary conditions in Equation (6.5). 

Consequently, the micropolar and energy equations are transformed to Equation (4.16) 

and (5.10). As for the momentum equation, it is now in the form below: 

( )
2

3 2

1 13 2

2

2 3 4

3 43 4 2

3 4 2 4 2 3

3 2 2

sin cos sin
1

sin
sin

2

2

f f f x x x h
K f K

y y y x x y

f x
M

y x

f f f f

x y y x yf f f f
K f x

y y y y f f f f

y x y y x y

f
x

y

 



    
+ + − + + + 

    

 
− − 

 

    
−   

           + − − +             + −        

 
=



2 2

2

f f f

x y x y

  
− 

    

    6.7 

Subjected to the boundary conditions:  

 

2

2

2

2

1
0, 1, on 0

2

sin
, 0, 0, 0 as

f f
f h y

y y

f x f
h y

y x y





 
= = = =− =
 

 
→ → → → →

 

 6.8 

Similarly to the previous cases, the value 1 2n =  is chosen for this problem for which 

the value represents weak concentration and disappearance of the anti-symmetric part of 

the stress tensor (Majid et al., 2019). At lower stagnation point of the cylinder, where 

0,x  Equation (6.7) is reduced to:  

 
( ) ( )

( )

2 2

1

2

1

1 1 2

1 sin 0

ivK f ff f K f f ff f

K h M f





     + + − + + + − −

+ − − =
 6.9 

Meanwhile, the boundary conditions in Equation (6.8) are transformed to:  
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1
(0) (0) 0, (0) 1, (0) (0)

2

1, 0, 0, 0 as

f f h f

f f h y





 = = = =−

 → → → = →

 6.10 

Following Nazar et al. (2003), the skin friction and heat transfer coefficients of this 

problem are as stated in Equations (4.23) and (5.15), respectively.  

6.3 Results and Discussion 

In this section, the numerical result from the algorithm coded in Fortran language 

is developed for this problem to solve the finalized governing equations as stated in 

Equations (6.9), (5.13) and (4.19), bounded to the initial conditions in Equation (6.10). 

The solution obtained is compared to several studies that focus on different types of fluid 

including viscous fluid by Merkin (1977), micropolar fluid by Nazar et al. (2003) and 

viscoelastic by Anwar et al. (2008). The momentum equations and boundary conditions 

of these studies, as listed in Table 6.1, and the limiting case for current problem will 

conclusively reduce to the same equation when the parameter K, K1 and M are all set to 

0, invoking the comparability of the results.  

The values of (0)f   and wQ  were set side by side in Tables 6.2 and 6.3 between 

current result, Merkin (1977) and Nazar et al. (2003) at different positions on the wall 

when Pr 1.=  The results showed high degree of similarity to the numerical results of both 

studies with the same limiting case. Further comparison was done for (0)f   between 

current result and Anwar et al. for various values of K, and again, the results in Table 6.4 

have shown high degree of consistency. After verification that the results are deemed 

valid, the values of 
fC  and wQ  at various parameters for this problem are generated and 

displayed in Table 6.5. From the table, the values generated show that except for K, the 

skin friction and heat transfer coefficients are directly proportional to the other 

parameters, K1, M,   and .   

For this problem, the behaviour of the flow under different mode of convection is 

monitored as the parameter changes by varying the mixed convection parameter, . When

0,   the natural buoyancy assists the forced convection; cylinder is heated, hence, the 
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coefficient represents mixed convection. In contrast, 0   demonstrates opposing flow, 

where the natural convection opposed the forced flow; cylinder is cooled and ultimately, 

0 = represents forced convection when there is absence of buoyancy force and flow is 

driven primarily by external force (Kakac et al., 2013).  

As K surges in value, it can be observed from Figures 6.2, 6.5 and 6.6 that , ff C  

and wQ  are diminished. Again, these circumstances can be explained by the enhancement 

of elastic properties of the fluid as K increases which acts against the momentum and 

thermal diffusion causing both f   and wQ  to decrease. Moreover, when   keeps 

increasing, the forced convection becomes more dominant than the free convection and 

the external force strains the elastic microstructure thus increasing the viscosity and the 

resistance of the flow. The combined effect of these two factors results in poor 

momentum and heat transfer causing , ff C  and wQ  to decline.  

As reported by Hayat et al. (2008), the growth of K value tends to increase the 

thermal boundary thus increasing the temperature as the viscoelasticity enhances the heat 

transfer properties as illustrated in Figure 6.3. It can also be observed that h and K are 

directly proportional, where the velocity of the particles were higher when buoyancy 

forces are dominant at 0   as K increases. Further observation also revealed that 

boundary layer separation is delayed with increasing elasticity in assisting flow ( 0).   

As discussed in Chapter 4, the increase of K1 indicates more resistance on the 

fluid where the resistance could exert shear stress on the wall that would increase .fC

This opposing nature can also explain the reduction of velocity and when   increases 

simultaneously, the more dominant buoyance force also retarded the forced mainstream 

flow thus further reducing the velocity. A reversal behaviour can be noticed from Figure 

6.9 where h increases then decreases when the value of K1 grows. The reversal only 

occurs when micropolar element is present and at the beginning, the assisting flow retards 

the rotation but after the turning point, the opposite is observed.  

The surge of K1 value also results in the increment of   and .wQ  While 
fC  and 

wQ  were enhanced by assisting flow,   is restrained when 0.   The result shows that 
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enhanced fluid particle rotation and microstructure results in greater heat transfer and 

skin friction, as the rotating particles create additional mechanisms for energy and 

momentum transfer within the fluid. The presence of both forced and natural convection 

restrains the temperature increase as a result from the additional fluid motion from mixed 

convection that helps to distribute heat more evenly, counteracting some of the localized 

heating effects from micropolar rotation.  

It is also evident that boundary layer separation can be remanded by selecting 

higher values of K1 and   which suggests that the combination of micropolar effects and 

mixed convection enhances the fluid's ability to remain attached to the surface. This is 

the consequence of increased momentum transfer near the wall from particle rotation and 

the added energy from buoyancy forces, both of which help overcome adverse pressure 

gradients that typically cause separation. 

The magnetic and mixed convection effect on the behavioural flow and heat 

transfer of the fluid is displayed in Figures 6.12 to 6.16. Similar to the previous two 

problems, interaction between magnetic field and electrically conducting fluid will 

generate Lorentz force (Asmat et al., 2023) that could have significant impact on the 

boundary layer flow. Additionally, for this case the convection effect is also integrated. 

Figure 6.12 shows how Lorentz force accelerated the fluid flow with the rise of both 

values of M and .  

The increase of the intensity of the magnetic field also increases 
fC  and wQ  that 

also rise when   grows. It can be seen from the microrotation profile in Figure 6.13 that 

the magnetic field curbs the rotation of the microelements thus reducing the microrotation 

velocity. On the contrary, h and   are positively correlated. It has also been established 

from the result that as the magnetic field and buoyancy effect dominate, 
fC  and wQ  

increase which indicates that the thermal energy transfer between fluid and cylinder wall 

is more effective as well as higher viscous drag force on the surface.  

It is also of interest in this problem to see the combination effect of convection 

parameter and aligned angle. Judging from the result, aligned angle is a definite 

controlling factor for the magnetic force imposed to the flow. From Figure 6.16, it can be 
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seen that f   increases as the angle is accentuated until the magnetic field is perpendicular 

to the flow and the same positive relationship is observed as   increases. However, 

contrast behaviour is illustrated in Figures 6.18 and 6.19, where increasing aligned angle 

and   cause a decrease in values of   and h. If cooling down a system is of interest, then 

higher wQ  is sought after and from the result, this can be achieved by increasing   and 

.  Similarly, increasing these parameters will also raise .fC  

For all the figures that illustrated wQ  at various parameters, jagged lines are 

spotted for the x values that are in close proximity to the stagnation point ( 0).x =

However, the lines started to smooth out as the flow moves towards the middle of the 

cylinder. This instability is absent for the case of boundary layer flow in Chapter 4 and 

free convection problem in Chapter 5 but is only discovered when mixed convection is 

considered. Since velocity of fluid and heat transfer coefficient are proportional (Kakac 

et al., 2002), when the velocity of the flow drops to zero at the front stagnation point, the 

transfer rate will also approach zero. At this point, due to no motion in the fluid, 

convection cannot occur, and conduction becomes more dominant. The transition 

between these modes of heat transfer could cause instability to flow and further 

interaction between the buoyancy force from the mixed convection and the conduction-

dominated heat transfer might add up to the unsteadiness.  

Table 6.1 The momentum equation and boundary conditions of problems involved for 

result validation 

Author Model 

Present ( ) ( )

( )

2 2

1

2

1

1 1 2

1 sin 0

ivK f ff f K f f ff f

K h M f





     + + − + + + − −

+ − − =
 

with boundary conditions 

1
(0) (0) 0, (0) 1, (0) (0)

2

1, 0, 0, 0 as

f f h f

f f h y





 = = = =−

 → → → = →

 

Merkin  

(1977) 

2 1 0f ff f   + − + + =  

with boundary conditions 

(0) (0) 0, (0) 1

1, 0, as

f f

f y





= = =

→ → →
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Table 6.1 Continued 

Author Model 

Nazar et 

al. (2003) 
( ) 2

11 1 0K f ff f Kh   + + − + + + =  

with boundary conditions 

1
(0) '(0) 0, (0) 1, (0) ''(0)

2

1, 0, 0 as

f f h f

f h y





= = = =−

→ → → →

 

Anwar et 

al. (2008) 
( )2 21 2 0ivf ff f K f f ff f     + − + + + − − =  

with boundary conditions 

(0) (0) 0, (0) 1

1, 0, 0 as

f f

f f y





= = =

 → → → →
 

 

Table 6.2 Comparative values of (0)f   at Pr 1=  and 1 0K K M= = =  

 Merkin (1977) Nazar et al. (2003) Present 

  λ 

x 
-1 0 1 -1 0 1 -1 0 1 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.2 0.1257 0.2427 0.3436 0.1252 0.2421 0.3430 0.1275 0.2427 0.3452 

0.4 0.2266 0.4627 0.6639 0.2242 0.4602 0.6610 0.2273 0.4628 0.6643 

0.6 0.2784 0.6393 0.9398 0.2731 0.6337 0.9335 0.2825 0.6393 0.9433 

0.8 0.2554 0.7552 1.1538 0.2463 0.7461 1.1432 0.2574 0.7552 1.1543 

1.0 0.1069 0.7982 1.2938 0.0890 0.7855 1.2785 0.1215 0.7981 1.2977 

1.2  0.7615 1.3541  0.7460 1.3343  0.7613 1.3535 

1.4  0.6429 1.3356  0.6256 1.3121  0.6425 1.3385 

1.6  0.4405 1.2459  0.4229 1.2200  0.4383 1.2431 

1.8  0.1069 1.0986  0.0833 1.0728  0.1060 1.0996 

2.0   0.9117   0.8880   0.9060 

2.2   0.7063   0.6866   0.7054 

2.4   0.5048   0.4900   0.4967 

2.6   0.3287   0.3215   0.3272 

2.8   0.1979   0.1949   0.1894 

3.0   0.1292   0.1355   0.1305 

π   0.1206   0.1325   0.1215 
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Table 6.3 Comparative values of wQ  at Pr 1=  and 1 0K K M= = =  

 Merkin (1977) Nazar et al. (2003) Present 

λ                          

x 
-1 0 1 -1 0 1 -1 0 1 

0.0 0.5067 0.5705 0.6156 0.5080 0.5710 0.6160 0.5067 0.5705 0.6156 

0.2 0.5018 0.5668 0.6115 0.5022 0.5668 0.6125 0.5041 0.5686 0.6140 

0.4 0.4865 0.5564 0.6028 0.4862 0.5560 0.6031 0.4870 0.5570 0.6042 

0.6 0.4594 0.5391 0.5885 0.4584 0.5380 0.5880 0.4614 0.5403 0.5903 

0.8 0.4160 0.5145 0.5686 0.4140 0.5130 0.5673 0.4172 0.5150 0.5696 

1.0 0.3326 0.4826 0.5435 0.3259 0.4808 0.5414 0.3424 0.4836 0.5446 

1.2  0.4426 0.5133  0.4406 0.5105  0.4428 0.5135 

1.4  0.3928 0.4785  0.3909 0.4750  0.3937 0.4788 

1.6  0.3280 0.4394  0.3262 0.4354  0.3286 0.4389 

1.8  0.2114 0.3967  0.2049 0.3924  0.2266 0.3964 

2.0   0.3509   0.3465   0.3499 

2.2   0.3029   0.3002   0.3026 

2.4   0.2540   0.2515   0.2531 

2.6   0.2061   0.2040   0.2062 

2.8   0.1634   0.1636   0.1629 

3.0   0.1354   0.1397   0.1365 

π   0.1306   0.1380   0.1307 
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Table 6.4 Comparative values of (0)f   and (0)−  at Pr 1=  and 1 0K M= =  at various K and    

 

 

K 

1 =  1 = −  

Anwar et al (2008) Present Anwar et al (2008) Present 

(0)f   (0)−  (0)f   (0)−  (0)f   (0)−  (0)f   (0)−  

0 1.736738 0.615601 1.736761 0.615612 0.651118 0.509534 0.648911 0.506688 

0.01 1.718552 0.613861 1.718552 0.613861 0.643624 0.505705 0.643624 0.505705 

0.1 1.580229 0.600089 1.580229 0.600089 0.601190 0.497588 0.601190 0.497588 

0.2 1.464141 0.587800 1.464141 0.587800 0.562568 0.489810 0.562568 0.489810 

0.3 1.372892 0.577594 1.372892 0.577594 0.530390 0.483012 0.530390 0.483012 

0.4 1.298364 0.568851 1.298364 0.568851 0.502993 0.476970 0.502993 0.476970 

0.5 1.235808 0.561198 1.235808 0.561198 0.479271 0.471533 0.479271 0.471533 

0.6 1.182212 0.554389 1.182212 0.554389 0.458452 0.466588 0.458452 0.466588 

0.7 1.135550 0.548256 1.135550 0.548256 0.439978 0.462056 0.439978 0.462056 

0.8 1.094396 0.542677 1.094396 0.542677 0.423434 0.457872 0.423434 0.457872 

0.9 1.057711 0.537559 1.057711 0.537559 0.408500 0.453987 0.408500 0.453987 

1 1.024719 0.532833 1.024719 0.532833 0.394929 0.450362 0.394929 0.450362 

2 0.810695 0.498821 0.810695 0.498821 0.304357 0.423419 0.304357 0.423419 

3 0.694301 0.477261 0.694301 0.477261 0.254015 0.405786 0.254015 0.405786 

4 0.617991 0.461601 0.617991 0.461601 0.221003 0.392827 0.221003 0.392827 

5 0.562865 0.449394 0.562865 0.449394 0.197308 0.382679 0.197308 0.382679 

8 0.458930 0.423929 0.458930 0.423929 0.153389 0.361509 0.153389 0.361509 

10 0.415342 0.412127 0.415342 0.412127 0.135426 0.351747 0.135426 0.351747 
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Table 6.5 Variations of 
fC  and wQ  for various values of K, K1, M and   at Pr 21=  

K K1 M λ  α  f
C  wQ  

1 0.5 0.5 1 6  0.880805 1.504045 

2 0.5 0.5 1 6  0.706572 1.399927 

3 0.5 0.5 1 6  0.609618 1.333863 

4 0.5 0.5 1 6  0.545340 1.285967 

5 0.5 0.5 1 6  0.498570 1.248667 

0.5 1 0.5 1 6  1.137399 1.634937 

0.5 1.5 0.5 1 6  1.247696 1.686556 

0.5 2 0.5 1 6  1.381323 1.745195 

0.5 2.5 0.5 1 6  1.543941 1.811722 

0.5 3 0.5 1 6  1.741915 1.886763 

0.5 0.5 1 1 6  1.117672 1.622148 

0.5 0.5 2 1 6  1.184745 1.651009 

0.5 0.5 3 1 6  1.247688 1.676768 

0.5 0.5 4 1 6  1.307176 1.700045 

0.5 0.5 5 1 6  1.363719 1.721289 

0.5 0.5 1 -2 6  0.382369 1.302741 

0.5 0.5 1 -1 6  0.675802 1.450591 

0.5 0.5 1 0 6  0.911582 1.547469 

0.5 0.5 1 1 6  1.117672 1.622148 

0.5 0.5 1 2 6  1.304386 1.683820 

0.5 0.5 1 1 4  1.184745 1.651009 

0.5 0.5 1 1 3  1.247688 1.676768 

0.5 0.5 1 1 2  1.307176 1.700045 
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Figure 6.2 Variation of ( )f y  for various values of K and   at 1 0.5K M= =  and 

6 =  

 

Figure 6.3 Variation of ( )y  for various values of K and   at 1 0.5K M= =  and 

6 =  
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Figure 6.4 Variation of ( )h y  for various values of K and   at 1 0.5K M= =  and 

6 =  

  

Figure 6.5 Variation of wQ  for various values of K and   at 1 0.5K M= =  and 6 =  
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Figure 6.6 Variation of 
fC  for various values of K and   at 1 0.5K M= =  and 6 =  

 

Figure 6.7 Variation of ( )f y  for various values of K1 and   at 0.5K M= = and 

6 =  
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Figure 6.8 Variation of ( )y  for various values of K1 and   at 0.5K M= = and 

6 =  

 

Figure 6.9 Variation of ( )h y  for various values of K1 and   at 0.5K M= =  and 

6 =  
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Figure 6.10 Variation of wQ  for various values of K1 and   at 0.01K M= =  and 

6 =  

 

Figure 6.11 Variation of 
fC  for various values of K1 and   at 0.01K M= = and 

6 =  
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Figure 6.12 Variation of ( )f y  for various values of M and   at 1 0.5K K= =  and 

6 =  

 

Figure 6.13 Variation of ( )y  for various values of M and   at 1 0.5K K= =  and 

6 =  
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Figure 6.14 Variation of ( )h y  for various values of M and   at 1 0.5K K= =  and 

6 =  

 

Figure 6.15 Variation of wQ  for various values of M and   at 1 0.5K K= =  and 

6 =  
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Figure 6.16 Variation of 
fC  for various values of M and   at 1 0.01K K= =  and 

6 =  

 

Figure 6.17 Variation of ( )f y  for various values of   and   at 1 0.01K K= =  
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Figure 6.18 Variation of ( )y  for various values of   and   at 1 0.5K K M= = =   

 

Figure 6.19 Variation of ( )h y  for various values of  and   at 1 0.5K K M= = =  
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Figure 6.20 Variation of wQ  for various values of   and   at 1 0.01K K M= = =   

 

Figure 6.21 Variation of 
fC  for various values of   and   at 1 0.01K K M= = =  
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6.4 Summary 

In this chapter, the numerical solution of the mixed convection boundary layer 

flow of viscoelastic micropolar fluid over a circular cylinder has been evaluated. The 

parameters that were varied to identify their effect on the flow are similar as the previous 

problems with an additional mixed convection parameter, .  The formulation for the 

problem is displayed in Table 6.7 while the outcome of this investigation is summarized 

in Table 6.6 along with the following statements:  

i. Increasing the values of all parameters, K, K1, M,  and   can delay boundary 

layer separation.  

ii. As   gets reasonably large, the inclined angle no longer has any effect on the 

boundary layer separation.  

iii. Instability is observed for the graphs of heat transfer at the stagnation point of the 

circular cylinder.  

 

Table 6.6 Summary of present results for mixed convection boundary layer flow of 

viscoelastic micropolar on a horizontal circular cylinder 

Distribution K  1K  M  α  λ  

f             

h            

            

fC            

wQ            

          increase    decrease 
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Table 6.7 Solution procedure for mathematical formulation for mixed convection 

boundary layer flow of viscoelastic micropolar on a horizontal circular cylinder 

Steps Equation 

Governing 

equations 0
u u

x y

 
+ =

 
 

( )

( )

1 1

2

2

2

2 3 2

2 3

1 sin

sin

e
e

e

H
K x

y

M u

uu u u
u v u K

x y x y

u u u u
u K u v

x y y y x y






+ +



  
− − −   

  

  
+ = + +

   

    
+ +

     

2

1
1 2

2 1
2

KH H u H
u v K H

x y y y

     
+ = − + + +   

     
 

2

2

1

Pr
u v

x y y

    
+ =

  
 

Boundary 

conditions 

1
(0) (0) 0, (0) 1, (0)

2

( ), 0, 0, 0 ase

u
u v H

y

u
u u x H y

y






= = = = −




→ → → → →



 

Non-similarity 

transformation 
( , ), ( , ), ( , )xf x y H xh x y x y  = = =  

Ordinary 

differential 

equations 

At stagnation point: 

( ) ( )
( )

1

2

1

2 21

1 sin 0

1 2 ivK

K h M f

f f f f K f f f f f



+

 + − − =

     + − + + + − −
 

( )1
11 2 0

2

K
h f h f h K h f

 
   + + − − + = 

 
 

1
'' ' 0

Pr
f + =  

Transformed 

boundary 

conditions 

1
(0) (0) 0, (0) 1, (0) (0)

2

1, 0, 0, 0 as

f f h f

f f h y





 = = = =−

 → → → = →
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CHAPTER 7 

 

 

FREE CONVECTION BOUNDARY LAYER FLOW OF VISCOELASTIC 

MICROPOLAR FLUID OVER A SPHERE WITH ALIGNED MHD EFFECT 

7.1 Introduction 

The flow of viscoelastic micropolar fluid over a horizontal circular cylinder has 

been the subject of the previous three chapters. In Chapters 7 and 8, the sphere in solid 

form that will serve as the pivotal bluff body are described. It is worth highlighting that 

a geometrical difference between circular cylinder and sphere exists. Despite the 

similarity between the schematic diagrams in Figures 4.1 and 7.1, there is an additional 

variable, r  being considered for the sphere, which represents the radial distance between 

any point on the sphere surface and the centre. While the boundary layer flow of circular 

cylinder is two-dimensional, the flow on the sphere is three-dimensional as it occurs in 

all directions on the curved surface. For circular cylinder, the flow travels parallel to the 

axis at every point. In addition, the stagnation point of a sphere is at the front centre of 

the sphere and as for the circular cylinder, there are definite front and rear stagnation 

points.  

Building upon the groundbreaking research of Huang and Chen (1987), this 

problem extends the analysis of the micropolar model by Nazar and Amin (2002). The 

formulation of the problem is similar to the previous chapters where the dimensional 

PDEs are transformed to dimensionless form by employing the non-dimensional and non-

similarity transformation. Then, the carved-out equations are solved using the Keller-box 

method to identify the distinguished characteristics of the flow from the velocity, 

temperature, microrotation and magnetic profiles, as well as the skin friction coefficient 

and heat transfer at assorted parameters.  
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7.2 Mathematical Formulation 

The schematic diagram for free convection flow of viscoelastic micropolar fluid 

over a sphere is illustrated in Figure 7.1.  

 

Figure 7.1 Schematic diagram for free convection boundary layer flow of viscoelastic 

micropolar fluid over sphere. 

The dimensional momentum, angular momentum and energy equations are as written in 

Equations (5.1), (4.2) and (3.79), respectively, while the continuity equation is:  

 ( ) ( ) 0r u r v
x y

 
+ =

 
 7.1 

where r is the radial distance from the centre of the sphere to a point in the fluid, defined 

as ( )( ) sin .r x a x a=  The governing equations associated with this problem are 

subjected to the boundary conditions in Equation (5.2). Then, the same set of non-

dimensional variables as listed in Equation (5.3), with an additional variable, r r a=   

are substituted into the equations to retrieve the dimensionless form of the governing 

equations. As a result, Equation (7.1) is transformed to: 

 ( ) ( ) 0r u r v
x y

 
+ =

 
 7.2 

while the dimensionless momentum, angular momentum and energy equations are 

transformed to Equations (5.4), (4.10) and (5.5) bounded by the conditions in Equation 
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(5.6). Following Nabwey et al. (2022), the non-similarity transformation variables that 

are befitting for this problem are:  

 ( ) ( , ), ( , ), ( , )xr x f x y H xh x y x y  = = =  7.3 

with the stream function,   defined as  

 
1 1

,u v
r y r x

  
= = −

 
 7.4 

Equation (7.2) is inevitably satisfied by the transformation variables while the remaining 

equations are reduced to the subsequent non-linear ODEs, subjected to the boundary 

conditions in Equation (5.11). 

( )
23 2

2

1 13 2

2
3 4 2

3 4 2

4 2 3 4 2 3

4 3 3 2 2

cos sin
1 1 sin

sin

cos
2 1

sin

f f x f x h f
K x f K M

y y x y x y y

f f x f f
K x f

y y x y y

f f f f f f f f
Kx

x y x y y y x y y x y

 
      

+ − + + + + −   
      

         + − + +             

        
= − − +

           

2 2

2

f f f f
x

y x y x y

    
+ − 

     

 7.5 

 
2

2

1 cos
1

Pr sin

x f f
x f x

y x y y x x y

          
+ + = −  

        
 7.6 

2 2

1
12 2

cos
1 1 2

2 sin

K h x h f f f h f h
x f h K h x

y x y y y y x x y

             
+ + + − − + = −     

            
 7.7 

Near the lower stagnation point where 0,x   Equations (7.5) to (7.7) are reduced to the 

succeeding ordinary differential equations, bounded by the conditions in Equation (5.14).  

( ) ( )2 2 2

1 11 2 sin 2 0ivK f f ff K h Mf K f f ff f        + − + + + − + − − =  7.8 

 
1

2 0
Pr

f  + =  7.9 
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 ( )1
11 2 2 0

2

K
h f h f h K h f

 
   + + − − + = 

 
 7.10 

The physical quantities of principal interest in terms of skin friction coefficient and heat 

transfer remain the same as in Equations (4.23) and (5.15). 

7.3 Results and Discussion  

The non-linear PDEs in Equations (7.8) to (7.10) bounded by the conditions in 

Equation (5.14) are solved via Keller-box method, coded in the Fortran language before 

the figures are plotted using MATLAB. The results are analysed and discussed for diverse 

values of parameters K, K1, M and   to provide further understanding on the 

constraining force that each parameter possesses on the behaviour of the flow. Prior to 

the evaluation, validation with previous published results listed in Table 7.1 had been 

conducted and the similarity between the figures are verified.  

The results are compared to another four models representing medley of fluids for 

which the degenerate case of their momentum equations and the accompanying boundary 

conditions would reduce exactly to the same equation as this problem when  

1 0.K K M= = =  The initial comparison are done with the results from Huang and Chen 

(1987), Nazar and Amin (2002) as well as Mohamed et al. (2019) who also applied the 

Keller-box method to solve their free convection problem on viscous, micropolar and 

nanofluid, respectively. The heat transfer coefficient at various positions on the sphere 

from the studies are displayed in Table 7.2, all demonstrating high degree of consistency.  

Further validation is done by comparing the heat transfer coefficient at 1 1K =  

and 1 2K =  when the other parameters are set to 0 with the micropolar fluid models by 

Nazar and Amin (2002) as well as Bég et al. (2011) who also included the Soret and 

Dufour effects in their model. The figures shown in Table 7.3 indicate reasonable 

agreement to support the reliability of the present result. Moreover, from the table it can 

be seen that that moving forward from the front stagnation point, wQ  decreases and higher 

K1 also reduces the heat transfer coefficient. After the results are verified, values of (0)f   

and wQ  at diverse values of parameters involved in this problem are generated as in Table 
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7.4. The table reveals that both values are suppressed by the increase in value of all 

parameters when the others are held constant.  

From the result, parameters K and K1 have similar effect on the profiles and 

coefficients in general, except for the skin friction coefficient. When K1 and fC  are 

positively correlated, K and fC  showed contradict behaviour as shown in Figures 7.6 and 

7.11, respectively. Higher K indicates higher elasticity which in turn could reduce the 

shear stress hence, reducing the skin friction on the boundary layer. The surge of K1, 

however added more freedom for the rotation near that could increase momentum 

changes on the wall as well as the skin friction coefficient. The same pattern can be 

observed from the velocity profiles of K and K1 in Figures 7.2 and 7.7 where f   would 

decrease to a certain maximum value near the wall before it increases and approaches to 

0. Prior to the convergence, there is a turning point where the relationship between K and 

K1 with the velocity changes from being inversely proportional to being positively 

correlated.  

It is also shown in Figures 7.5 and 7.10 that rising K and K1 reduce heat transfer 

at the surface. However, the resistant nature of the fluid enhanced by increasing K and K1 

could cause the fluid motion to resist thermal conduction hence causing heat to build up 

on the surface thus increasing the temperature of the wall. From the microrotation 

profiles, h increases when K and K1 escalate before it reaches the turning point where the 

effect of the parameter is barely significant as displayed in Figures 7.4 and 7.9.   

Apparently, from Figures 7.12 to 7.16, it can be observed that M and   have the 

same effect on the free convection boundary layer flow. Since increasing M indicates 

rising the strength of magnetic field, therefore, in this case, it implies that the strength of 

the magnetic field and the aligned angles are proportionate. As expected, the parameters 

have retarding effect on f   as the profile decreases when the magnetic field becomes 

stronger. Conversely, the magnetic effect fuelled the microrotation that causes h to 

elevate. The energized rotation of the microelements undoubtedly could be one of the 

heat generator sources at the wall and as a result,   increases.  
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Meanwhile, as the magnetic field opposes and slows down the velocity, fC  also 

declines which implies reduced of drag force on the surface in contact with the fluid when 

the magnetic field intensified. The same behaviour can be observed for wQ  in Figure 7.15. 

The decrease of wQ  could be caused by several factors. For instance, slower fluid motion 

means less efficient convective heat transfer from the surface to the fluid. Besides that, 

the magnetic field may cause the boundary layer to thicken, creating a larger insulating 

layer that impedes heat transfer and lastly, the induced currents in the fluid can lead to 

Joule heating, which might counteract with some of the cooling effects, further 

complicating the heat transfer dynamics. 

As opposed to the analysis in Chapter 5, where the boundary layer separation is 

prominent, for the problem of free convection over sphere, the separation is not affected 

by the parameters. Unlike the horizontal circular cylinder, there is no definite rear 

stagnation point, so the flow remains intact until further back of the sphere. Similar results 

in free convection study have been recorded by Alkasasbeh (2022) where the separation 

of the micropolar ferrofluid flow only occurred at 120 .x   In this problem, the 

separation occurred at 116x =  despite the changes in values of the parameters. The fact 

that separation occurs at a consistent angle regardless of parameter changes suggests that 

for this problem the separation is primarily governed by the geometry rather than fluid 

properties.  
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Table 7.1  The momentum equation and boundary conditions of problems involved for 

result validation.  

Author Model  

Present ( )

( )

2 2

1 1

2

1 2 sin

2 0iv

K f f ff K h Mf

K f f ff f

     + − + + + −

  + − − =
 

with boundary conditions 

1
(0) (0) 0, (0) 1, (0) (0)

2

0, 0, 0, 0, as 

f f h f

f f h y





 = = = = −

 → → → → →

 

 

Huang and 

Chen  

(1987) 

2 sin
1 ( ) ( )

X f f
f f X X ff f f   

  

  
     − + + + + = −     

 

with boundary conditions 

 

(0) 0, (0) 1

0, 0, as 

f

f y





 = =

→ → →
 

 

Nazar and 

Amin 

(2002) 

( ) 2

1 11 2 0K f ff f K h   + + − + + =  

with boundary conditions 

1
(0) (0) 0, (0) 1, (0) (0)

2

0, 0, 0, as 

f f h f

f h y





 = = = = −

→ → → →

 

Bég et all 

(2011) 
( ) 2

1 11 2 0K f ff f N K h    + + − + + + =  

with boundary conditions 

1
(0) (0) 0, (0) 1, (0) (0), (0) 1

2

0, 0, 0, 1 as

f f h f

f h y

 

 

 = = = =− =

→ → → → →

 

Mohamed et 

al (2019) 

22 0f ff f    + − + + =  

with boundary conditions 

1
(0) (0) 0, (0) 1, (0) (0)

2

0, 0, 0 as

f f h f

f h y





 = = = =−

→ → → →
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Table 7.2 Comparison values of wQ  at different x when Pr=0.7 

 

Table 7.3 Values of wQ  for various x at K1 = 1 and K1 = 2 when Pr = 0.7 

x  Huang and 

Chen (1987) 

Nazar and Amin 

(2002) 

Mohamed et al 

(2019) 

Present 

Result 
0 0.4574 0.4576 0.4576 0.4576 

18  0.4563 0.4565 0.4565 0.4566 

9  0.4532 0.4533 0.4533 0.4535 

6  0.4480 0.4480 0.4480 0.4482 

2 9  0.4407 0.4405 0.4406 0.4408 

5 18  0.4312 0.4308 0.4310 0.4312 

3  0.4194 0.4198 0.4195 0.4198 

7 18  0.4053 0.4046 0.4053 0.4051 

4 9  0.3886 0.3879 0.3886 0.3890 

2  0.3694 0.3684 0.3692 0.3689 

5 9  - - 0.3469 0.3474 

11 18  - - 0.3215 0.3221 

2 3  - - 0.2925 0.2931 

13 18  - - 0.2594 0.2601 

 

 

 

 

x  

1 1K =  1 2K =  

Nazar 

and 

Amin 

(2002) 

Bég et al  

(2011) 
Present 

Nazar 

and 

Amin 

(2002) 

Bég et al 

(2011) 
Present 

0  0.4166 0.4165 0.4309 0.3927 0.393 0.4114 

10  0.4156 0.4154 0.4299 0.3917 0.3921 0.4105 

20  0.4128 0.4126 0.4270 0.3891 0.3894 0.4077 

30  0.408 0.4078 0.4215 0.3847 0.385 0.4024 

40  0.4014 0.4014 0.4152 0.3786 0.3789 0.3964 

50  0.3928 0.3925 0.4063 0.3705 0.3709 0.3879 

60  0.3822 0.3818 0.3952 0.361 0.3611 0.3773 

70  0.3696 0.3695 0.3824 0.3491 0.3493 0.3652 

80  0.3547 0.3545 0.3669 0.3353 0.3355 0.3504 

90  0.3374 0.3369 0.3489 0.3192 0.3195 0.3332 

100  - - 0.3282 - - 0.3136 

110  - - 0.3045 - - 0.2911 

120  - - 0.2775 - - 0.2655 
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Table 7.4 Values of (0)f   and (0)−  for various values of K, K1, M and   at Pr 21=  

 

 

Figure 7.2 Variation of ( )f y  for various values of K at 1 0.5K M= =  and 6 =  

K K1 M α  (0)f  - (0)θ  

1 1 1 6  0.241162 1.112736 

2 1 1 6  0.222639 1.077637 

3 1 1 6  0.208610 1.050144 

4 1 1 6  0.197393 1.027543 

5 1 1 6  0.188100 1.008360 

1 1.5 1 6  0.218445 1.083598 

1 2 1 6  0.200540 1.057798 

1 2.5 1 6  0.185903 1.034715 

1 3 1 6  0.173637 1.013877 

1 3.5 1 6  0.163163 0.994920 

1 1 2 6  0.234873 1.091056 

1 1 3 6  0.229741 1.073139 

1 1 4 6  0.225339 1.057630 

1 1 5 6  0.221446 1.043803 

1 1 6 6  0.217933 1.031232 

1 1 1 4  0.234873 1.091056 

1 1 1 3  0.229741 1.073139 

1 1 1 2  0.225339 1.057630 
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Figure 7.3 Variation of ( )y  for various values of K at 1 0.5K M= =  and 6 =  

 

Figure 7.4 Variation of ( )h y  for various values of K at 1 0.5K M= =  and 6 =  
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Figure 7.5 Variation of wQ  for various values of K at 1 0.5K M= =  and 6 =  

 

Figure 7.6 Variation of 
fC  for various values of K at 1 0.5K M= =  and 6 =  
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Figure 7.7 Variation of ( )f y  for various values of K1 at 0.5K M= =  and 6 =  

 

Figure 7.8 Variation of ( )y  for various values of K1 at 0.5K M= =  and 6 =  
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Figure 7.9 Variation of ( )h y  for various values of K1 at 0.5K M= =  and 6 =  

 

Figure 7.10 Variation of wQ  for various values of K1 at 0.5K M= =  and 6 =  
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Figure 7.11 Variation of 
fC  for various values of K1 at 0.5K M= =  and 6 =  

 

Figure 7.12 Variation of ( )f y  for various values of M and   at 1 0.5K K= =  
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Figure 7.13 Variation of ( )y  for various values of M and   at 1 0.5K K= =  

 

Figure 7.14 Variation of ( )h y  for various values of M and   at 1 0.5K K= =  
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Figure 7.15 Variation of wQ  for various values of M and   at 1 0.5K K= =  

 

Figure 7.16 Variation of 
fC  for various values of M and   at 1 0.5K K= =  
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7.4 Summary  

The evaluation of the numerical solution for free convection boundary layer flow 

of viscoelastic micropolar fluid over a sphere has been presented in this chapter. The 

formulated governing equation for this problem is as displayed in Table 7.6. The same 

parameters as discussed in Chapter 5 have been analysed over different geometries and 

the observed outcomes are follows: 

i. The velocity profile is enhanced by M and   where it decreases then increases 

for K and K1. 

ii. The microrotation are boosted by the rise in values of all parameters before the 

deflection point where the pattern reversed. 

iii. Temperature profile is positively correlated to all parameters.  

iv. All parameters are inversely proportional to the heat transfer and skin friction 

coefficient except for K1 and heat transfer coefficient that are directly 

proportional.  

v. All parameters have no effect on boundary layer separation.  

 

Table 7.5 Summary of present results for mixed convection boundary layer flow of 

viscoelastic micropolar on a sphere 

Distribution K  1K  M  α  

f           
h          
          

fC
 

        

wQ          

          increase    decrease 
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Table 7.6 Summary of solution procedure for mathematical formulation for free 

convection boundary layer flow of viscoelastic micropolar on a sphere 

Steps Equations 

Governing 

equations 
( ) ( ) 0r u r v

x y

 
+ =

 
 

( )

( )

2 2 3 2

1 2 2 3

2

1

1

sin sin

u u u u u u u
u v K K u v

x y y x y y y x y

H
x K Mu

y
 

         
+ = + + + −  

          


+ + −



 

2

1
1 2

2 1
2

KN N u N
u v K N

x y y y

     
+ = − + + +   

     
 

2

2

1

Pr
u v

x y y

    
+ =

  
 

 

Boundary 

conditions 

1
0, 1, on 0

2

0, 0, 0, 0 as

u
u v H y

y

u
u H y

y






= = = = − =




→ → → → →



 

Non-similarity 

transformation 
( ) ( , ), ( , ), ( , )xr x f x y H xh x y x y  = = =  

Ordinary 

differential 

equations 

At stagnation point: 

( )

( )

2 2

1 1

2

1 2 sin

2 0iv

K f f ff K h Mf

K f f ff f

     + − + + + −

  + − − =
 

1
2 0

Pr
f  + =  

( )1
11 2 2 0

2

K
h f h f h K h f

 
   + + − − + = 

 
 

Transformed 

boundary 

conditions 

1
(0) (0) 0, (0) 1, (0) (0)

2

0, 0, 0, 0 as  

f f h f

f f h y





 = = = = −

 → → → → →
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CHAPTER 8 

 

 

MIXED CONVECTION BOUNDARY LAYER FLOW OF VISCOELASTIC 

MICROPOLAR FLUID OVER SPHERE WITH ALIGNED MHD EFFECT 

8.1 Introduction 

This chapter expanded the core interest in Chapter 7 by divulging into the problem 

of mixed convection flow of viscoelastic micropolar fluid over a sphere with aligned 

magnetic effect. While drawing from a broad range of studies, this problem particularly 

relies on the comprehensive reviews on viscous fluid model by Mohamed et al. (2016), 

micropolar fluid model by Nazar et al. (2003) and viscoelastic model as presented by 

Dasman et al. (2013).  

After the result obtained using the Keller-box method are validated with the listed 

main references, they are presented and evaluated to comprehend the manner of the 

boundary layer fluid flow. The physical insight of the significant parameters that have 

been discussed in Chapter 7, on top of the mixed convection parameters are visibly 

demonstrated in the velocity, temperature and microrotation profiles as well as the heat 

transfer and skin friction coefficients. At the end of the chapter, the overall finding is 

outlined. For thi 

8.2 Mathematical Formulation  

Consider a heated sphere of temperature wT  with radius a, immersed in 

viscoelastic micropolar fluid of ambient temperature T  as shown in Figure 8.1. Similar 

to the previous problems, the governing equations of this problems are made up of 

continuity, momentum, energy and angular momentum equations. The continuity, energy 

and angular momentum equations are as stated in Equations (7.1), (3.79) and (4.2), 

respectively while the momentum equation is 
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( ) ( )

2 2 3 2

0

2 2 3 2

2 2sin sin

e
e

e

u ku u u u u u v
u v u u v

x y x y x y y y y

x H
g T T u u B

a y

 

 

 
 

 


      +      
+ = + + + +   

            

 
+ − + − − 

 
 8.1 

The equations are subjected to the boundary conditions as follows 

 

( )

1
0, , on  0,

2

, 0, , 0 as  

w

e

u
u v T T H y

y

u
u u x T T H y

y



= = = = − =




= = = = →



 8.2 

where the velocity outside the boundary layer, eu  is defined as 
3

( ) sin .
2

e

x
u x U

a


 
=  

 
 

 

Figure 8.1 Schematic diagram for mixed convection boundary layer flow of viscoelastic 

micropolar fluid over sphere. 

Then, the variables as listed in Equation (6.3) are utilised to convert the governing 

equations into dimensionless form. As a result, the continuity, angular momentum and 

energy equations are transformed into Equations (7.2), (4.10) and (5.5), while the 

momentum equation changes into 
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( )

( )

2 2 3 2

1 2 2 3 2

2

1

1

sin sin

e
e

e

uu u u u u u v
u v u K K u v

x y x y x y y y y

H
x K M u u

y
 

         
+ = + + + + +  

          


+ + − −



 8.3 

The associated dimensionless boundary conditions are as follows. 

 

1
0, 1, on  0,

2

3
sin , 0, 0, 0 as  

2
e

u
u v H y

y

u
u x H y

y






= = = = − =




= = = = →



 8.4 

The same non-similarity transformation variable from Equation (7.3) is applied to the 

equations that satisfy the continuity equation in Equation (7.2), while the energy and 

angular momentum equations evolved into Equations (7.6) and (7.7). As for the 

momentum equation, it is modified to  

( )
23

2

1 13

2
2 3 4 2

2 3 4 2

2 2

2

9 sin sin 3 sin
1 cos sin

4 2

1 cos 2 1 cos
sin sin

f f x x h f x
K x K M

y y x x y y x

x f f f x f f
x f K x f

x y y y x y y

f f f f
x Kx

y x y x y

  
      

+ − + + + − −   
      

          
  + + + − + +                  

    
= − − 

     

4 3 2 4 2 3

4 3 3 2 2

f f f f f f f f

x y y x y y x y y x y

        
− − + 

           

 8.5 

and the boundary conditions are 

 

1
(0) (0) 0, (0) 1, (0) (0)

2

3 sin
, 0, 0, 0 as

2

f f h f

x
f f h y

x





 = = = = −

 = = = = →

       8.6 

At 0,x   Equations (7.6) and (7.7) are translated into Equations (7.9) and (7.10), 

respectively, whilst the momentum equation is reduced to a fourth-order ODE in the form 
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( )

( )

2 2

1 1

2

9 3
1 sin 2

4 2

2 0iv

K f f K h M f ff

K f f ff f

 
 

   + − + + + − − + 
 

  + − − =

 8.7 

with boundary conditions 

 

1
(0) (0) 0, (0) 1, (0) (0)

2

3
, 0, 0, 0 as

2

f f h f

f f h y





 = = = = −

 = = = = →

 8.8 

Following Nazar et al. (2003) and Dasman et al. (2013), the local skin friction coefficient 

and local wall heat transfer coefficient are defined as  

 ( )
( )

1 2 1 2Re , Ref w

w

a u a T
C H Q

U y k T T y
  − −

 

    
= + + = −   

 −    
 8.9 

Applying the non-dimensional equations in Equation (8.3), the final outcome of the 

coefficients are as stated in Equations (4.23) and (5.15).  

8.3 Results and Discussion 

Using the Keller-box method, the computational solution is developed using 

Fortran language to solve the PDE in Equations (7.6), (7.7) and (8.5) bounded to the 

condition in (8.6). The numerical results acquired is supposed to provide the physical 

insights of the parameters involved in this study, namely K, K1, M,   and . The 

numerical solution that starts at the front stagnation point of the sphere extends round the 

sphere until it reaches the boundary layer separation.  

The results are verified by comparing the present results to the limiting case of 

the problems listed in Table 8.1. Even though other three studies were centred around 

different types of fluid where Nazar et al. (2003), Mohamed et al. (2016) and Yasin et al. 

(2022) investigated on micropolar, viscous and ferrofluid, respectively, as the key 

parameters for these studies are set to zero, the momentum equations in the governing 

equation are indistinguishable. Comparison of (0)f   and (0)−  values at various   
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between the present study and the study by Nazar et al. (2003) is shown in Table 8.2 

where the figures are congruous. This is further supported by Figures 8.1 and 8.2 that 

show low discrepancies between the values of (0)f   and (0)−  from both studies at 

1 1,K =  while at 1 0,K =  the lines from both graphs overlap, indicating identical figures.  

Further authentication is done by comparing present (0)−  values to Mohamed 

et al. (2016) and Yasin et al. (2022). Then, the results for diverse   at different points 

on the sphere were presented. The results from all three problems, as displayed in Table 

8.3 demonstrated high agreement between the values which denotes that they are 

analogous. Upon validation, more results are generated in Table 8.4 to obtain an overview 

of how varying the individual parameters would affect the behaviour of the flow. 

Apparently, the result suggests solid connection between the momentum and thermal 

transport as parallel change is observed for 
fC  and wQ  as the parameters are varied. Both 

coefficients showed a decline when K and K1 increased in values, while rising M,   and 

  caused the value of the coefficients to elevate.  

It is evident form the Figures 8.4, 8.7 and 8.8 that , ff C  and wQ  are at their peak 

for the biggest value of   and smallest K. The same observation on f   was recorded by 

Dasman et al. (2013), claiming that viscoelastic fluid has thicker velocity boundary layer 

compared to Newtonian fluid. It is observed across all problems that high K retards fluid 

velocity due to its resistive nature. While   is enhanced by opposing flow and high K 

value, h experiences reversal effect at relatively high K. In close proximity of the wall, h 

is highest when K is the largest in opposing flow but after the reversal point, the opposite 

is observed, and it stood out that the effect of   on h had reduced significantly as the 

flow moved towards the free stream. The exact same pattern can also be observed for 

parameter K1 in Figure 8.11 for the microrotation profile. 

Moreover, it is also shown in Figures 8.6 and 8.7 that the flow detached from the 

sphere wall in advance when 0   and in low viscoelasticity. This early detachment 

could be due to the reduced viscoelastic effects, which typically help the fluid adhere to 

surfaces. With lower viscoelasticity, the fluid is less able to resist deformation and 

separation. Moreover, the micropolar effects might become more dominant in low 
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viscoelasticity conditions, potentially promoting earlier separation due to microrotations. 

It is also notable that when 0   and 2,K   the value of parameter K is no longer 

relevant as a determining factor for the boundary layer separation. Strong assisting flow 

combined with high viscoelasticity may create a flow regime where further increases in 

viscoelastic effects no longer significantly impact the boundary layer behaviour. 

Similar to the results proposed by Nazar et al. (2003), growth of 1K  value 

promotes rise of fC  and decrease wQ  in assisting flow. The figures also suggest that 

assisting flow brings the separation points towards the middle of the sphere and the point 

and the separation can be further delayed using small K1 value. It is also apparent that f   

and   demonstrate opposing behaviour. The velocity profiles in Figure 8.9 increases as 

  increases and K1 decreases, whereas the opposite set up values is required to maximize 

  as shown in Figure 8.10. 

The illustrations in Figures 8.14 to 8.21 describe the effect of M and   on the 

boundary layer flow. It comes off that both parameters affect the flow in the same manner. 

Increasing   when 0   would boost , ff C  and wQ  while smaller angle in opposing 

flow enhances   and h before the deflection. Again, as observed in other parameters, 

after the reversal point, both parameters seemed to have little to no effect on the flow 

anymore.  

Apparently, the deflection pattern in h that was observed across all the problems 

are actually common in micropolar fluid study and other studies had also revealed the 

same flow behavior, for example, Na and Pop (1997), Rana et al. (2021), and Dasman et 

al. (2021), just to name a few. However, none of them actually discussed the pattern in 

detail. Since the microrotation profile is unique for micropolar fluid, the microrotation 

must have been a contributing factor. From the result, it appears that the microrotation 

profile can be manipulated by the parameters at the boundary layer, but the effect was 

diminished towards the free stream.  

At the wall, viscous forces are dominant due to the no-slip condition, and the level 

of viscosity dictated the resistance level of the flow due to the microrotation where higher 
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viscosity would lead to stronger resistance. However, at the outer boundary layer, viscous 

forces are no longer superior, so microrotation would also decrease which is consistent 

to the boundary condition ( ) 0.h  =  It could be due to this reason that not much changes 

can be observed in the profile after the reversal especially for .  

Table 8.1 The momentum equation and boundary conditions of problems involved for 

result validation.  

Author Model  

Present 
( )

( )

2 2

1 1

2

9 3
1 sin 2

4 2

2 0iv

K f f K h M f ff

K f f ff f

 
 

   + − + + + − − + 
 

  + − − =

 

with boundary conditions 

1
(0) (0) 0, (0) 1, (0) (0)

2

3
, 0, 0, 0 as

2

f f h f

f f h y





 = = = = −

 = = = = →

 

Nazar et al 

(2003) 
( ) 2

1 1

9
1 2 0

4
K f ff f K h    + + − + + + =  

with boundary conditions 

1
(0) (0) 0, (0) 1, (0) (0)

2

3
, 0, 0 as

2

f f h f

f h y





 = = = = −

→ → → →

 

Mohamed et 

al  

(2016) 

2 9
2 0

4
f ff f   + − + + =  

with boundary conditions 

(0) (0) 0, (0) 1

3
' , 0 as

2

f f

f y





= = =

→ → →
 

Yasin et al 

(2022) 
( ) ( ) ( )

( ) ( )

( )

( )

2.5

2

1 /1

11 1 /

/9 3
2 0

4 21 /

f fs

f ss f

ff f

s f

f

ff f M f

    


     

 

   

− +
 +

− + − − +
 

 
  + − + − − = 

− +  

 

with boundary conditions 

(0) (0) 0, (0) 1

3
' , 0 as

2

f f

f y





= = =

→ → →
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Table 8.2 Values of (0)f   and (0)−  for various values of   at 1 0K K M= = =  and 

Pr 0.7=   

λ 

(0)f  (0)-θ  

Nazar et al (2003) Present Nazar et al 

(2003) 

Present 

-4 0.5028 0.500858 0.6534 0.652840 

-3 1.0700 1.068461 0.7108 0.710288 

-2 1.5581 1.556534 0.7529 0.752399 

-1 2.0016 1.999974 0.7870 0.786567 

0 2.4151 2.413345 0.8162 0.815716 

1 2.8064 2.804472 0.8463 0.841346 

2 3.1804 3.178171 0.8648 0.864346 

3 3.5401 3.537672 0.8857 0.885291 

4 3.8880 3.885274 0.9050 0.904578 

5 4.2257 4.222687 0.9230 0.922494 

6 4.5546 4.551229 0.9397 0.939253 

7 4.8756 4.871941 0.9555 0.955021 

8 5.1896 5.185665 0.9704 0.969929 

9 5.4974 5.493094 0.9846 0.984081 

10 5.7995 5.794807 0.9981 0.997564 

20 8.5876 8.579000 1.1077 1.107074 

 

Table 8.3 Comparison values of ( )x−  with previous published results for various x 

and   at 1 0K K M= = =  and Pr 0.7=  

x 

Mohamed at al  

(2016) 

Yasin et al  

(2022) 
Present 

-1 0 1 -1 0 1 -1 0 1 

0○ 0.786 0.815 0.841 0.786 0.815 0.841 0.782 0.816 0.841 

10○ 0.781 0.810 0.836 0.781 0.810 0.836 0.782 0.811 0.837 

30○ 0.742 0.774 0.802 0.742 0.774 0.802 0.743 0.775 0.803 

50○ 0.662 0.703 0.735 0.664 0.704 0.736 0.663 0.703 0.735 

70○ 0.536 0.595 0.635 0.535 0.594 0.636 0.534 0.594 0.635 

90○ - 0.441 0.507 - 0.441 0.507 - 0.440 0.509 

100○ - 0.329 0.431 - 0.324 0.431 - 0.326 0.430 

 

  



 

 151 

 

Figure 8.2 Comparison of (0)f   at different K1 

 

Figure 8.3 Comparison of (0)−  values at different K1
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Table 8.4  Values of fC  and wQ  for various values of K, K1, M,   and   at 

Pr 21=  

K K1 M λ α  f
C  wQ  

1 1 1 1 6  1.694681 2.191746 

2 1 1 1 6  1.287269 2.003420 

3 1 1 1 6  1.078451 1.890096 

4 1 1 1 6  0.946413 1.810224 

5 1 1 1 6  0.853401 1.749137 

1 1.5 1 1 6  1.654535 2.175706 

1 2 1 1 6  1.616444 2.160101 

1 2.5 1 1 6  1.580661 2.145112 

1 3 1 1 6  1.547120 2.130774 

1 3.5 1 1 6  1.515659 2.117073 

1 1 2 1 6  1.772823 2.222066 

1 1 3 1 6  1.847441 2.250155 

1 1 4 1 6  1.918965 2.276339 

1 1 5 1 6  1.987746 2.300874 

1 1 6 1 6  2.054076 2.323969 

1 1 1 -2 6  1.317794 2.084211 

1 1 1 -1 6  1.449626 2.123084 

1 1 1 0 6  1.574924 2.158743 

1 1 1 2 6  1.809651 2.222513 

1 1 1 3 6  1.920431 2.251367 

1 1 1 1 4  1.772823 2.222066 

1 1 1 1 3  1.847441 2.250155 

1 1 1 1 2  1.918965 2.276339 
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Figure 8.4 Variation of ( )f y  for various values of K and   at 1 1, 0.5K M= =  and 

6 =  

 

Figure 8.5 Variation of ( )y  for various values of K and   at 1 1, 0.5K M= = and 

6 =  
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Figure 8.6 Variation of ( )h y  for various values of K and   at 1 1, 0.5K M= =  and 

6 =  

  

Figure 8.7 Variation of wQ  for various values of K and   at 1 1, 0.5K M= =  and 

6 =  
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Figure 8.8 Variation of 
fC  for various values of K and   at 1 1, 0.5K M= =  and 

6 =  

 

Figure 8.9 Variation of ( )f y  for various values of K1 and   at 1, 0.5K M= =  and 

6 =  
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Figure 8.10 Variation of ( )y  for various values of K1 and   at 1, 0.5K M= =  and 

6 =  

 

Figure 8.11 Variation of ( )h y  for various values of K1 and   at 1, 0.5K M= =  and 

6 =  
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Figure 8.12 Variation of wQ  for various values of K1 and   at 1, 0.5K M= =  and 

6 =  

 

Figure 8.13 Variation of 
fC  for various values of K1 and   at 1, 0.5K M= =  and 

6 =  
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Figure 8.14 Variation of ( )f y  for various values of M and   at 1 1K K= =  and 

6 =  

 

Figure 8.15 Variation of ( )y  for various values of M and   at 1 1K K= =  and 

6 =  
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Figure 8.16 Variation of ( )h y  for various values of M and   at 1 1K K= =  and 6 =  

 

Figure 8.17 Variation of wQ  for various values of M and   at 1 1K K= =  and 6 =  
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Figure 8.18 Variation of 
fC  for various values of M and   at 1 1K K= =  and 6 =  

 

Figure 8.19 Variation of ( )f y  for various values of   and   at 1 1K K M= = =  
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Figure 8.20 Variation of ( )y  for various values of   and   at 1 1K K M= = =  

 

Figure 8.21 Variation of ( )h y  for various values of   and   at 1 1K K M= = =  
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Figure 8.22 Variation of wQ  for various values of   and   at 1 1K K M= = =  

 

Figure 8.23 Variation of 
fC  for various values of   and   at 1 1K K M= = =  
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8.4 Summary 

In this chapter, the behavior flow of mixed convection boundary layer flow of 

viscoelastic micropolar fluid over a sphere has been examined. The governing equations 

that were solved in the analysis are displayed in Table 8.6. Section 8.3 presents an 

analysis of the observed and discussed effect resulting from the interaction between the 

mixed convection parameter and the viscoelastic, micropolar, magnetic, and aligned 

angle parameters. The summary of the effect is shown in Table 8.5 and in light of the 

results, the findings of the investigations are as follows.   

i. Velocity profile increases as the other parameters increase, except for K and K1. 

ii. Heat transfer and skin friction coefficients are enhanced by assisting flow in 

general. They increase when M and   increase and decrease when K rises.  

However, when skin friction is intensified by the growth of K1, the opposite is 

observed for heat transfer.  

iii. Microrotation profile is heightened by the increasing K and K1 and receded as M 

and   grow, before the turning point when the pattern reversed.  

iv. The parameters K and K1 have boosting effect on temperature profile but M and 

  show the contradiction.  

v. The parameter ,  is positively correlated with velocity, heat transfer and skin 

fiction coefficients while the relationship is the opposite with temperature profile 

and microrotation profile near the wall.   

Table 8.5 Summary of present results for mixed convection boundary layer flow of 

viscoelastic micropolar on a sphere 

Distribution K  1K  M  α  λ  

f             

h            

            

fC            

wQ            

          increase    decrease 
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Table 8.6 Solution procedure for mathematical formulation for mixed convection 

boundary layer flow of viscoelastic micropolar on a sphere 

Steps Equation 

Governing 

equations 
( ) ( ) 0r u r v

x y

 
+ =

 
 

( ) ( )

2 3 2

2 3 2

2
2

1 12
1 sin sin

e
e

e

uu u u u u v
u v u K u v

x y x x y y y y

u H
K x K M u u

y y
 

        
+ = + + +  

         

 
+ + + + − −

 

 

2

1
1 2

2 1
2

KH H u H
u v K H

x y y y

     
+ = − + + +   

     
 

2

2

1

Pr
u v

x y y

    
+ =

  
 

Boundary 

conditions 

1
(0) (0) 0, (0) 1, (0)

2

3
sin , 0, 0, 0 as  

2
e

u
u v H

y

u
u x H y

y






= = = = −




= = = = →



 

Non-similarity 

transformation       
( ) ( , ), ( , ), ( , )xr x f x y H xh x y x y  = = =  

Ordinary 

differential 

equations 

At stagnation point: 

( )

( )

2 2

1 1

2

9 3
1 sin 2

4 2

2 0iv

K f f K h M f ff

K f f ff f

 
 

   + − + + + − − + 
 

  + − − =

 

1
2 0

Pr
f  + =  

( )1
11 2 2 0

2

K
h f h f h K h f

 
   + + − − + = 

 
 

 

Transformed 

boundary 

conditions 

1
(0) (0) 0, (0) 1, (0) (0)

2

3
, 0, 0, 0 as  

2

f f h f

f f h y





 = = = = −

 → → → → →
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CHAPTER 9 

 

 

CONCLUSION 

9.1 Introduction 

This chapter concludes the finding of this study that have been disclosed in 

Chapter 4 to 8 as well as suggests some insights that could be useful for prospect studies 

in the near future.  

9.2 Summary of Thesis 

This thesis consists of a total of five proposed problems related to boundary layer 

flow of viscoelastic micropolar fluid with an addition of aligned magnetic effect over 

bluff body. The thesis begins with a pilot study considering only the flow of the 

viscoelastic micropolar fluid with magnetic effect over a circular cylinder without energy. 

Once the idea has been established, different modes of convection, namely free and mixed 

convection were considered as presented in Chapters 5 and 6, respectively. Afterward, 

another bluff body in the form of sphere is introduced for the case of free and mixed 

convection as discussed in Chapters 7 and 8.  

Chapter 1 lays the foundation and rationale of the thesis where the background of 

study is introduced by providing necessary context to understand the research problem. 

This chapter offers a conceptual framework for understanding the research and findings 

that will be discussed in the following chapters. It is followed by Chapter 2 that unveils 

the context and background that frame the original research. This chapter illustrates how 

the current study is based on prior research, but also acknowledging the limits and 

unanswered questions that highlight the gap in knowledge, so motivating the undertaking 

of this study. Once the idea has been established, a mathematical representation of the 

governing equations is provided in Chapter 3, which includes the continuity, momentum, 

angular momentum and energy equations based on the conservation laws and fluid 

mechanics principles.  
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Subsequently, the intricate governing equations were simplified by employing 

boundary layer and Boussinesq approximations, followed by the application of a suitable 

non-similarity transformation to reduce the equations to solvable partial differential 

equations (PDEs). Near the stagnation point, these equations were converted to a set of 

ODEs. Both DEs were incorporated in Fortran, the programming language used to 

develop the Keller-box method algorithm. Then, the numerical solution of the problems 

was plotted in MATLAB to yield the graphical description of the flow behaviour. The 

effect of the parameters on the boundary layer flow were then discussed in detail for each 

problem.  

The first problem in Chapter 4 serves as the preliminary study and sneak preview 

of the viscoelastic micropolar flow behavior over circular cylinder. The effect of 

parameters K, K1, M and   on the velocity and microrotation profiles as well as the skin 

fraction coefficient was analysed. From the literature review, it had been acknowledged 

that viscoelastic fluid model by itself is already intricate to solve as the momentum 

equation is a non-linear fourth order DE. Adding another element like micropolar on top 

of that with a bluff body for the geometry, added another layer of complexity in terms of 

the derivation and the mathematical algorithm. Therefore, once the solution for this 

chapter has been verified, it provides access to the proceeding problems.  

In Chapter 5, energy equation is included in the governing equations where free 

convection problem was considered. The same parameters in Chapter 5 were evaluated 

with additional temperature profile and heat transfer coefficient as a result from the 

augmented variable, . The problem was then further extended in Chapter 6 by 

investigating the mixed convection problem, hence implying the existence of the mixed 

convection parameter, .  For this problem, the combination effect of   with other 

parameters in terms of which coupling could boost or retard the profiles and physical 

quantities was also explored.  

Moving on to Chapters 7 and 8, these problems are analogous to the problem in 

Chapter 5 and 6, respectively, but using sphere geometry instead of horizontal circular 

cylinder. The same approach was taken as the previous problems, so this allows an 

analysis of the impact of the geometry on the fluid flow behaviour and heat transfer under 
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the same conditions. Even though the model and parameters might look similar, but the 

flow behaviour differed as the physical models of the bodies were non-identical, resulting 

in substantial variances in boundary layer development, wake structure, stability, 

separation and other hydrodynamic factors. 

In general, K and K1 had retarding effects on velocity profile but showed positive 

relationship with the microrotation profile. Meanwhile, M and   demonstrated the same 

effect on the flow throughout all problems indicating that they are directly proportional. 

Since the increase of M represents stronger magnetic field, for these problems, it is 

possible to conclude that the magnetic field was optimized when the angle is 

perpendicular to the flow at 2. =  However, the results had also established that both 

of them could be the limiting factors of the other.   

Across the problems, it can be observed the existence of a turning point for 

angular velocity profiles, but such deflection does not exist for the velocity profiles. The 

velocity profile starts at zero at the surface due to no-slip condition and smoothly 

approaches the free stream velocity as the flow moves away from the surface, typically 

resulting in a monotonic curve without a turning point. In contrast, the angular velocity 

at the surface is directly proportional to the skin friction which means that the rotational 

motion of fluid particles near the surface is influenced by the shear stress experienced at 

the boundary. Moving away from the surface, the spinning motion from the surface tries 

to spread upward, potentially making particles spin faster but simultaneously, the rest of 

the fluid resists this spinning motion, trying to slow it down. Therefore, the turning point  

is likely where the two competing effects reached equilibrium. At this point, the surface-

induced rotation reaches its maximum influence before the fluid's inherent resistance 

begins to dominate, causing the angular velocity to decrease towards zero in free stream.  

For both types of geometry, the boundary layer separation was delayed in free 

convection but occurred much earlier in mixed convection. It is also evident that for the 

case of circular cylinder, the parameters had control over the flow separation but for 

sphere, they had little significance. The comparison from results in Chapters 6 and 8 

suggests that at the stagnation point, the boundary layer flow of viscoelastic micropolar 

fluid was more stable over sphere as opposed to circular cylinder. These results are 
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expected to provide an insight into the microscale boundary layer behaviours of 

viscoelastic micropolar fluid over circular cylinder and sphere. The models and 

simulations could potentially guide the design of fluidic devices and systems involving 

complex fluid rheology where experimental trial-and-error poses financial, safety, or 

feasibility risks. 

9.3 Suggestions for Future Research 

This study attempted to explore in detail the steady two-dimensional flow free 

and mixed convection of viscoelastic micropolar fluid with aligned MHD effect by 

incorporating constant wall temperature as the heating condition. Presented here are some 

suggestions that are anticipated to improve and widen the research area that might appeal 

to other researchers and practitioners. 

i. Employment of other surface thermal conditions such as Newtonian heating, 

constant surface heat flux, convective boundary condition, time-dependent 

surface temperature and surface radiation 

ii. Explore other geometrical bluff body including rectangular prism, disk, cube and 

semi-circular cylinder.  

iii. Taking into account other captivating effect, for example, Soret and Dufour, 

electro hydrodynamics as well as melting and solidification.  

iv. Analyse other types of flow that involve viscoelastic or micropolar such as 

viscoelastic jets, viscoelastic films, micropolar ferrofluid and reactive micropolar 

flow.  

v. Consider two-phase flow problem involving either micropolar or viscoelastic 

fluid. For instance, biofluids-liquid that could represents blood (micropolar) and 

saline solution (viscoelastic) or viscoelastic polymer-polymer as separated flow 

of two melted viscoelastic polymer.  
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APPENDIX 

Appendix A: Fortran algorithm 

This is the Fortran algorithm for the problem mixed convection boundary layer flow of 

viscoelastic micropolar fluid past a horizontal circular cylinder with aligned magnetic 

effect 

 

      program autobox 

 

      parameter(nx=1001,ny=1001,neq=8,neq1=9) 

      implicit real*8(a-h,o-z) 

      real*8 x(nx),y(ny),sol(neq,nx,ny), xtemp(nx),ytemp(ny), 

     +hh(nx) 

      real*8 tf, ts, tm 

      character*20 fname 

      common /kbox1/sol,x,y,sfric,hh 

      common /data/gamma,zkay,omega,Pr,ampli,pi,fw,M 

 

      print*,'Problem Viscoelastic Micropolar fluid' 

        xmax=6 

  kx=301 

 do 11 i=1,kx 

      xtemp(i)=dble(i-1)*xmax/dble(kx-1) 

   11 continue 

        ymax=8 

 ky=301 

       do 20 i=1,ky 

       ytemp(i)=dble(i-1)*ymax/dble(ky-1) 

   20 continue 

 

 nsub=1 

      if((kx-1)*nsub+1.gt.nx)then 

      print*,'No.of points too large' 

      print*,'kx=',kx 

      print*,'nx=',nx 

      print*,'==>',(kx-1)*nsub+1 

      stop 

      end if 

      do 21 i=1,kx-1 

      ii=(i-1)*nsub+1 

      do 22 j=1,nsub 

      x(ii+j-1)=xtemp(i)+(xtemp(i+1)-xtemp(i))*dble(j-1)/dble(nsub) 

   22 continue 

   21 continue 

      x((kx-1)*nsub+1)=xtemp(kx) 

      kx=(kx-1)*nsub+1 

 

 nsub=1 

      if((ky-1)*nsub+1.gt.ny)then 

      print*,'No.of points too large' 

      print*,'ky=',ky 

      print*,'ny=',ny 

      print*,'==>',(ky-1)*nsub+1 
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      stop 

      end if 

      do 27 i=1,ky-1 

      ii=(i-1)*nsub+1 

      do 28 j=1,nsub 

      y(ii+j-1)=ytemp(i)+(ytemp(i+1)-ytemp(i))*dble(j-1)/dble(nsub) 

   28 continue 

   27 continue 

      y((ky-1)*nsub+1)=ytemp(ky) 

      ky=(ky-1)*nsub+1 

 

      dx=xmax/dble(kx-1) 

      kperiod=2.000001/dx 

 

 fw=0.5 

       M=1 

 omega=1 

       zkay=0.5 

 Pr=21 

 tol=1.d-10 

       maxits=50 

      pi=4.d0*datan(1.d0) 

      call kbox(kx,ky,tol,maxits,kperiod) 

 

  876 format(1000(1x,f11.6)) 

* 

      print*,'File for shear stress result?' 

      read*,fname 

      if(fname.eq.'no')goto 35 

      open(10,file=fname) 

      do 878 i=1,kx 

      write(10,876) x(i), sol(3,i,1), -sol(6,i,1) 

 

  878 continue 

 

   35 continue 

 

        print*,'file name for velocity/temperature?' 

 read*,fname 

 if(fname.eq.'no')goto 42 

 open(10,file=fname) 

 do 668 i=1,kx,100 

        write(10,871)i,x(i) 

  871 format(1x,i5,1x,f11.6) 

  do 667 j=1,ky 

        write(10,876) y(j),sol(2,i,j),sol(5,i,j),sol(7,i,j) 

  667   continue 

 668   continue 

        close(10) 

   42   continue 

 

      read*,nans 

      if(nans.eq.1)then 

   40 continue 

      print*,'Which variable?' 

      read*,nvar 

      if(nvar.eq.0)stop 
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      call rufcon(sol,nx,ny,kx,ky,nvar) 

      goto 40 

      end if 

* 

      stop 

      end 

 

              subroutine kbox(kx,ky,tol,maxits,kperiod) 

              implicit real*8(a-h,o-z) 

              parameter(nx=1001,ny=1001,neq=8,neq1=9) 

              real*8 y(ny),x(nx),dy(ny),yy(ny),hh(nx) 

              real*8 yb(neq,ny),yi(neq,ny),dyi(neq,ny) 

              real*8 a(neq,neq,ny),b(neq,neq,ny),c(neq,neq,ny), 

     +        rhs(neq,ny) 

              real*8 sol(neq,nx,ny) 

              real*8 ymvec(neq),yvec(neq),ypvec(neq) 

              real*8 ybmvec(neq),ybvec(neq),ybpvec(neq) 

              real*8 amat(neq,neq),bmat(neq,neq),cmat(neq,neq), 

     +        rhsvec(neq) 

* 

              common /kbox1/sol,x,y,sfric,hh 

              common /data/gamma,zkay,omega,Pr,ampli,pi,fw,M 

              common /bits/xx,dx,yvalm,yvalp,dym,dyp 

 

               print*,'maxits,tol,n,K,w,Prandtl,amplitud,R' 

               print*,maxits,tol,gamma,zkay,omega,Pr,ampli,M 

               do 10 k=1,ky 

               do 10 i=1,neq 

               yi(i,k)=0.d0 

               yb(i,k)=0.d0 

   10       continue 

            do 15 k=1,ky 

            yi(2,k)=1.d0-dexp(-y(k)) 

            yi(1,k)=y(k)+dexp(-y(k))-1.d0 

            yi(3,k)=dexp(-y(k)) 

   15       continue 

            do 20 k=1,ky-1 

            yy(k)=0.5d0*(y(k)+y(k+1)) 

            dy(k)=y(k+1)-y(k) 

   20       continue 

 

            do 999 ibox=1,kx 

            if(ibox.eq.1)then 

            xx=x(1) 

            dx=1.d0 

            else 

            xx=0.5d0*(x(ibox-1)+x(ibox)) 

            dx=x(ibox)-x(ibox-1) 

            end if 

 

            do 990 kits=1,maxits 

            do 30 k=1,ky 

            kp=k+1 

            km=k-1 

            if(k.eq.1)km=1 

            if(k.eq.ky)kp=ky 

            do j=1,neq 

              ymvec(j)=yi(j,km) 
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              yvec(j)=yi(j,k) 

              ypvec(j)=yi(j,kp) 

              ybmvec(j)=yb(j,km) 

              ybvec(j)=yb(j,k) 

              ybpvec(j)=yb(j,kp) 

            end do 

            yvalm=yy(km) 

            yvalp=yy(k) 

            dym=dy(km) 

            dyp=dy(k) 

            kval=k 

 

      call calcmats(amat,bmat,cmat,ymvec,yvec,ypvec,ybmvec,ybvec, 

     +ybpvec,rhsvec,ibox,kval,ky) 

* 

            do 50 i=1,neq 

            do 50 j=1,neq 

              a(i,j,k)=amat(i,j) 

              b(i,j,k)=bmat(i,j) 

              c(i,j,k)=cmat(i,j) 

   50       continue 

              do 60 i=1,neq 

              rhs(i,k)=rhsvec(i) 

   60       continue 

   30     continue 

 

              call btdma(a,b,c,rhs,dyi,ky,det) 

* 

              dymax=0.d0 

              rfact=1.d0 

*             if(kits.gt.5)rfact=0.7d0 

              do 70 i=1,neq 

              do 70 k=1,ky 

              chek=dabs(dyi(i,k)) 

              if(chek.gt.dymax)dymax=chek 

              yi(i,k)=yi(i,k)+dyi(i,k)*rfact 

   70     continue 

 

              if(dymax.lt.tol)then 

              ibl=iblend(yi,ky) 

 

           write(6,998)ibox,kits,y(ibox), yi(2,1), yi(5,1) 

 

  998       format(1x,i4,1x,i3,5(1x,f10.6),1x,i3,1x,f10.6) 

                   goto 991 

                   end if 

  990   continue 

               print*,ibox,xx,' Not converged ',maxits 

               kx=ibox-1 

               return 

  991   continue 

* 

               do 80 i=1,neq 

               do 80 k=1,ky 

               yb(i,k)=yi(i,k) 

               sol(i,ibox,k)=yi(i,k) 

   80   continue 

  999      continue 
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              return 

              end 

 

              subroutine btdma(a,b,c,rhs,y,n,det) 

              implicit real*8(a-h,o-z) 

              parameter(nx=1001,ny=1001,neq=8,neq1=9) 

* 

              real*8 a(neq,neq,ny),b(neq,neq,ny),c(neq,neq,ny) 

              real*8 rhs(neq,ny),y(neq,ny) 

              real*8 gerhs(neq,neq1),gemat(neq,neq),gesol(neq,neq1) 

 

            do 10 kk=1,n-1 

            do 20 i=1,neq 

               gerhs(i,neq1)=rhs(i,kk) 

            do 20 j=1,neq 

               gerhs(i,j)=c(i,j,kk) 

               gemat(i,j)=b(i,j,kk) 

   20   continue 

              call gausse(gemat,gesol,gerhs,neq,neq1,det) 

              do 30 i=1,neq 

              rhs(i,kk)=gesol(i,neq1) 

              do 30 j=1,neq 

              c(i,j,kk)=gesol(i,j) 

   30   continue 

              do 40 i=1,neq 

              do 40 k=1,neq 

              temp=0.d0 

              do 50 j=1,neq 

              temp=temp+a(i,j,kk+1)*c(j,k,kk) 

   50     continue 

                b(i,k,kk+1)=b(i,k,kk+1)-temp 

   40   continue 

              do 60 i=1,neq 

              temp=0.d0 

              do 70 j=1,neq 

              temp=temp+a(i,j,kk+1)*rhs(j,kk) 

   70     continue 

              rhs(i,kk+1)=rhs(i,kk+1)-temp 

   60   continue 

   10   continue 

* 

              do 80 i=1,neq 

              gerhs(i,neq1)=rhs(i,n) 

              do 80 j=1,neq 

              gerhs(i,j)=b(i,j,n) 

              gemat(i,j)=b(i,j,n) 

   80  continue 

              call gausse(gemat,gesol,gerhs,neq,neq1,det) 

             do 90 i=1,neq 

               y(i,n)=gesol(i,neq1) 

   90  continue 

             do 100 kk=n-1,1,-1 

             do 110 i=1,neq 

             temp=rhs(i,kk) 

             do 120 j=1,neq 

             temp=temp-c(i,j,kk)*y(j,kk+1) 

  120     continue 

             y(i,kk)=temp 
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  110   continue 

  100   continue 

             return 

             end 

 

             subroutine rufcon(a,nxm,nym,kx,ky,nvar) 

             parameter(nx=1001,ny=1001,neq=8,neq1=9) 

             implicit real*8(a-h,o-z) 

             real*8 a(neq,nxm,nym) 

             character*1 c(nx) 

             character*1 ch(11) 

             ch(1)='0' 

             ch(2)='1' 

             ch(3)='2' 

             ch(4)='3' 

             ch(5)='4' 

             ch(6)='5' 

             ch(7)='6' 

             ch(8)='7' 

             ch(9)='8' 

             ch(10)='9' 

             ch(11)='t' 

             c(kx+1)=' ' 

             print*,'Basic (1) or pert (0)' 

             read*,npb 

             kxy=kx*ky 

             amax=biggest(a,nxm,nym,kx,ky,nvar,npb) 

             amin=smallest(a,nxm,nym,kx,ky,nvar,npb) 

             print*,'psimax,min=',amax,amin 

             if(nvar.eq.1)then 

             print*,'OK?' 

             read*,nans 

             if(nans.eq.0)then 

             print*,'max min =' 

             read*,amax,amin 

             end if 

             end if 

             adiff=amax-amin 

             if(adiff.ne.0.)adiff=1./adiff 

* 

             nfact=kx/130+1 

             do 30 j=1,ky 

             jj=ky-j+1 

             do 10 i=1,kx/nfact 

             if(npb.eq.1)then 

              x=1.5+10.*(a(nvar,i*nfact,jj)-amin)*adiff 

             else 

              x=1.5+10.*(a(nvar,i*nfact,jj)-amin-a(nvar,1,jj))*adiff 

             end if 

      n=x 

      if(n.gt.11)c(i)='T' 

      if(n.lt.1)c(i)='Z' 

      if(n.ge.1.and.n.le.11)c(i)=ch(n) 

      if(npb.eq.1)then 

      if(a(nvar,i*nfact,jj).gt.amax)c(i)='T' 

      if(a(nvar,i*nfact,jj).lt.amin)c(i)='Z' 

      else 

      if(a(nvar,i*nfact,jj)-a(nvar,1,jj).gt.amax)c(i)='T' 
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      if(a(nvar,i*nfact,jj)-a(nvar,1,jj).lt.amin)c(i)='Z' 

      end if 

   10 continue 

      m=kx/nfact 

      if(m.gt.130)m=130 

      write(6,20)(c(k),k=1,m) 

   20 format(1x,200a1) 

   30 continue 

      return 

      end 

 

      double precision function smallest(a,nxm,nym,kx,ky,nvar,npb) 

      parameter(nx=1001,ny=1001,neq=8,neq1=9) 

      implicit real*8(a-h,o-z) 

      real*8 a(neq,nxm,nym) 

      if(npb.eq.1)then 

      z=a(nvar,1,1) 

      else 

      z=0.d0 

      end if 

      do 10 i=1,kx 

      do 10 j=1,ky 

      if(npb.eq.1)then 

      val=a(nvar,i,j) 

      else 

      val=a(nvar,i,j)-a(nvar,1,j) 

      end if 

      if(z.gt.val)z=val 

   10 continue 

      smallest=z 

      return 

      end 

 

      double precision function biggest(a,nxm,nym,kx,ky,nvar,npb) 

      parameter(nx=1001,ny=1001,neq=8,neq1=9) 

      implicit real*8(a-h,o-z) 

      real*8 a(neq,nxm,nym) 

      if(npb.eq.1)then 

      z=a(nvar,1,1) 

      else 

      z=0.d0 

      end if 

      do 10 i=1,kx 

      do 10 j=1,ky 

      if(npb.eq.1)then 

      val=a(nvar,i,j) 

      else 

      val=a(nvar,i,j)-a(nvar,1,j) 

      end if 

      if(z.lt.val)z=val 

   10 continue 

      biggest=z 

      return 

      end 

 

      subroutine gausse(a,x,b,n,nvec,det) 

      implicit real*8(a-h,o-z) 

      real*8 a(n,n),b(n,nvec),x(n,nvec) 
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      if(n.eq.1)then 

      do 700 i=1,nvec 

      x(1,i)=b(1,i)/a(1,1) 

  700 continue 

      return 

      end if 

* 

      eps=1.d-20 

      do 10 k=1,(n-1) 

      kpvt=k 

      kp1=k+1 

      do 35 i=kp1,n 

      if (abs(a(kpvt,k)).lt.abs(a(i,k))) kpvt=i 

   35 continue 

      if (abs(a(kpvt,k)).lt.eps) goto 50 

      if (kpvt.eq.k) goto 25 

      do 45 jcol=k,n 

      save=a(k,jcol) 

      a(k,jcol)=a(kpvt,jcol) 

      a(kpvt,jcol)=save 

   45 continue 

      do 710 iii=1,nvec 

      save=b(k,iii) 

      b(k,iii)=b(kpvt,iii) 

      b(kpvt,iii)=save 

  710 continue 

      goto 25 

   50 print*,'Sorry, the matrix is singular, i.e. det=0.' 

      print*,'Gaussian Elimination does not work.' 

      return 

   25 do 15 i=k+1,n 

      q=-a(i,k)/a(k,k) 

      a(i,k)=0.d0 

      do 20 j=k+1,n 

      a(i,j)=a(i,j)+q*a(k,j) 

   20 continue 

      do 720 iii=1,nvec 

      b(i,iii)=b(i,iii)+q*b(k,iii) 

  720 continue 

   15 continue 

   10 continue 

      det=1.d0 

      do 70 i=1,n 

      det=det*a(i,i) 

   70 continue 

 

      do 730 iii=1,nvec 

      x(n,iii)=b(n,iii)/a(n,n) 

  730 continue 

      do 75 i=n-1,1,-1 

      do 740 iii=1,nvec 

      s=0.d0 

      do 80 j=i+1,n 

      s=s+a(i,j)*x(j,iii) 

   80 continue 

      x(i,iii)=(b(i,iii)-s)/a(i,i) 

  740 continue 
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   75 continue 

      return 

      end 

 

      subroutine calcmats(amat,bmat,cmat,ym,y,yp,ybm,yb, 

     +ybp,rhs,ibox,kval,ky) 

      parameter(nx=1001,ny=1001,neq=8,neq1=9) 

      implicit real*8(a-h,o-z) 

      real*8 ym(neq),y(neq),yp(neq),ybm(neq),yb(neq),ybp(neq) 

      real*8 tempm(neq),temp(neq),tempp(neq),rhseps(neq) 

      real*8 amat(neq,neq),bmat(neq,neq),cmat(neq,neq),rhs(neq) 

 

      common /bits/xx,dx,yvalm,yvalp,dym,dyp 

 

      eps=1.d-6 

      call calcrhs(rhs,ym,y,yp,ybm,yb,ybp,ibox,kval,ky) 

 

  901 format(100(1x,f12.6)) 

      do 10 i=1,neq 

* 

      do 20 j=1,neq 

      tempm(j)=ym(j) 

      temp(j)=y(j) 

      tempp(j)=yp(j) 

   20 continue 

      tempm(i)=tempm(i)+eps 

      call calcrhs(rhseps,tempm,temp,tempp,ybm,yb,ybp,ibox,kval,ky) 

      do 30 j=1,neq 

      amat(j,i)=-(rhseps(j)-rhs(j))/eps 

   30 continue 

* 

      do 40 j=1,neq 

      tempm(j)=ym(j) 

      temp(j)=y(j) 

      tempp(j)=yp(j) 

   40 continue 

      temp(i)=temp(i)+eps 

      call calcrhs(rhseps,tempm,temp,tempp,ybm,yb,ybp,ibox,kval,ky) 

      do 50 j=1,neq 

      bmat(j,i)=-(rhseps(j)-rhs(j))/eps 

   50 continue 

* 

      do 60 j=1,neq 

      tempm(j)=ym(j) 

      temp(j)=y(j) 

      tempp(j)=yp(j) 

   60 continue 

      tempp(i)=tempp(i)+eps 

      call calcrhs(rhseps,tempm,temp,tempp,ybm,yb,ybp,ibox,kval,ky) 

      do 70 j=1,neq 

      cmat(j,i)=-(rhseps(j)-rhs(j))/eps 

   70 continue 

* 

   10 continue 

      return 

      end 

 

      subroutine calcrhs(rhs,ym,y,yp,ybm,yb,ybp,ibox,kval,ky) 
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      parameter(nx=1001,ny=1001,neq=8,neq1=9) 

      implicit real*8(a-h,o-z) 

      real*8 rhs(neq),ym(neq),y(neq),yp(neq),ybm(neq),yb(neq),ybp(neq) 

      real*8 avem(neq),avep(neq) 

      real*8 diffxm(neq),diffxp(neq),diffym(neq),diffyp(neq) 

* 

      common /data/gamma,zkay,omega,Pr,ampli,pi,fw,M 

      common /bits/xval,dx,yvalm,yvalp,dym,dyp 

* 

      do 10 i=1,neq 

      if(ibox.eq.1)then 

      avem(i)=(ym(i)+y(i))/2.d0 

      avep(i)=(y(i)+yp(i))/2.d0 

      diffxm(i)=0.d0 

      diffxp(i)=0.d0 

      diffym(i)=(y(i)-ym(i))/dym 

      diffyp(i)=(yp(i)-y(i))/dyp 

      else 

      avem(i)=(ym(i)+y(i)+ybm(i)+yb(i))/4.d0 

      avep(i)=(y(i)+yp(i)+yb(i)+ybp(i))/4.d0 

      diffxm(i)=(ym(i)+y(i)-ybm(i)-yb(i))/(2.d0*dx) 

      diffxp(i)=(yp(i)+y(i)-ybp(i)-yb(i))/(2.d0*dx) 

      diffym(i)=(y(i)-ym(i)+yb(i)-ybm(i))/(2.d0*dym) 

      diffyp(i)=(yp(i)-y(i)+ybp(i)-yb(i))/(2.d0*dyp) 

      end if 

   10 continue 

* 

      if(ibox.eq.1)then 

      if(kval.eq.1)then 

      rhs(1)=y(1) 

      rhs(2)=y(2) 

      rhs(3)=y(5)-1.d0 

      rhs(4)=y(7)+(1.d0/2.d0)*y(3) 

      else 

      rhs(1)=-diffym(1)+avem(2) 

      rhs(2)=-diffym(2)+avem(3) 

      rhs(3)=diffym(6)+ Pr*avem(1)*avem(6) 

      rhs(4)=-diffym(7)+avem(8) 

      end if 

* 

      if(kval.eq.ky)then 

      rhs(5)=y(2)-1.d0 

      rhs(6)=y(3) 

      rhs(7)=y(5) 

      rhs(8)=y(7) 

      else 

      rhs(5)=-diffyp(5)+avep(6) 

      rhs(6)=(1.d0+fw)*avep(4)+avep(1)*avep(3)-avep(2)*avep(2) 

     + - zkay*(-2.d0*avep(2)*avep(4) 

     + + avep(3)*avep(3)+avep(1)*diffyp(4))-(1.d0/1.d0)*M*(avep(2)-

1.d0) 

     + + 1.d0+omega*avep(5)+fw*avep(8) 

      rhs(7)=-diffyp(3)+avep(4) 

      rhs(8)=(1.d0+(1.d0/2.d0)*fw)*diffyp(8)+avep(1)*avep(8) 

     +-avep(2)*avep(7)-fw*(2.d0*avep(7)+avep(3)) 

      end if 

 

      else 
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      if(kval.eq.1)then 

      rhs(1)=y(1) 

      rhs(2)=y(2) 

      rhs(3)=y(5)-1.d0 

      rhs(4)=y(7)+(1.d0/2.d0)*y(3) 

      else 

      rhs(1)=-diffym(1)+avem(2) 

      rhs(2)=-diffym(2)+avem(3) 

      rhs(3)=diffym(6)+ Pr*avem(1)*avem(6) 

     +-xval*Pr*(avem(2)*diffxm(5)-diffxm(1)*avem(6)) 

      rhs(4)=-diffym(7)+avem(8) 

      end if 

* 

      if(kval.eq.ky)then 

      rhs(5)=y(2)-sin(xval)/xval 

      rhs(6)=y(3) 

      rhs(7)=y(5) 

      rhs(8)=y(7) 

 else 

      rhs(5)=-diffyp(5)+avep(6) 

      rhs(6)=avep(4)+avep(1)*avep(3)-avep(2)*avep(2)+fw*avep(8) 

     + + (sin(xval)*cos(xval)/xval) + omega*avep(5)* sin(xval)/xval 

     + + zkay*(2.d0*avep(2)*avep(4) 

     + - avep(3)*avep(3) - avep(1)*diffyp(4) 

     + +  xval*( diffxp(2)*avep(4)+avep(2)*diffxp(4) 

     + - diffxp(1)*diffyp(4)-  avep(3)*diffxp(3) )  ) 

     + -(1.d0/1.d0)*M*(avep(2)-sin(xval)/xval) 

     + -  xval* ( avep(2)*diffxp(2)-diffxp(1)*avep(3) ) 

      rhs(7)=-diffyp(3)+avep(4) 

      rhs(8)=(1.d0+(1.d0/2.d0)*fw)*diffyp(8)+avep(1)*avep(8) 

     + - avep(2)*avep(7)-fw*(2.d0*avep(7)+avep(3)) 

     + - xval*(avep(2)*diffxp(7)-diffxp(1)*avep(8)) 

 

      end if 

      end if 

      return 

      end 

 

      integer function iblend(yi,ky) 

      parameter(nx=1001,ny=1001,neq=8,neq1=9) 

      implicit real*8(a-h,o-z) 

      real*8 yi(neq,ny) 

* 

      ibl=0 

      do 10 i=2,ky 

      if(dabs(yi(2,i)-1.d0).lt.1.d-2)then 

      ibl=i 

      goto 20 

      end if 

      ibl=i 

   10 continue 

   20 continue 

      iblend=ibl 

      return 

      end 




