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A B S T R A C T   

This paper addresses the critical challenge of energy efficiency in commercial buildings, where chillers typically 
consume 40–50% of total building energy. Accurate forecasting of chiller power consumption is essential for 
optimizing building energy management systems and reducing operational costs. Despite advances in deep 
learning, existing forecasting models often struggle with the complex temporal dependencies and non-linear 
patterns in chiller operation data. This paper presents an innovative approach using a hybrid Convolutional 
Neural Network-Long Short-Term Memory (CNN-LSTM) model optimized by the Barnacles Mating Optimizer 
(BMO). The study compares the proposed CNN-LSTM-BMO against other metaheuristic optimization algorithms, 
including Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), and 
Differential Evolution (DE). The models were evaluated using comprehensive performance metrics and validated 
through statistical analysis. Results demonstrate that the CNN-LSTM-BMO achieves superior performance with 
the lowest Root Mean Square Error (RMSE) of 0.5523 and highest R² value of 0.9435, showing statistically 
significant improvements over other optimization methods as confirmed by paired t-tests (P < 0.05). Key ob
servations include: (1) the CNN-LSTM-BMO model converges 27% faster than traditional optimization methods; 
(2) SHapley Additive exPlanations (SHAP) analysis reveals that temperature-related features, particularly sa
turation temperature, are the most influential predictors across all models; and (3) the proposed model main
tains prediction accuracy even under varying operational conditions. The proposed CNN-LSTM-BMO model 
demonstrates robust convergence characteristics and superior generalization capability, making it particularly 
suitable for real-world applications in building energy management systems. This research contributes to the 
advancement of accurate and efficient chiller power consumption forecasting methodologies, offering practical 
implications for Heating, Ventilation, and Air Conditioning (HVAC) system optimization and energy efficiency 
improvements in commercial buildings.   

1. Introduction 

Energy management in buildings and industrial facilities is a critical 
challenge, particularly in the context of Heating, Ventilation, and Air 
Conditioning (HVAC) systems, where chillers are key components for 
maintaining temperature control and ensuring efficient cooling. As 
chillers often constitute a significant proportion of a building's energy 
consumption, accurate forecasting of their power usage is essential for 

optimizing operational strategies, reducing energy costs, and improving 
overall efficiency [1,2]. Commercial buildings account for approxi
mately 40% of global energy consumption, with HVAC systems re
presenting the largest end-use category at 40–50% of total building 
energy usage [3]. Within HVAC systems, the energy distribution varies 
significantly among components: chillers typically consume 40–50% of 
HVAC energy, while air handling units (AHUs) account for 40%. The 
remaining energy is distributed among auxiliary equipment such as 
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pumps and cooling towers. Chillers dominate energy consumption due 
to 3 primary factors: (1) the thermodynamic energy intensity of the 
vapor compression cycle required for cooling, (2) continuous operation 
during occupied hours regardless of partial loading conditions, and (3) 
the cascading effect where inefficient chiller operation negatively im
pacts the energy consumption of dependent systems such as pumps and 
cooling towers [4]. A recent study found that optimizing chiller per
formance alone can reduce overall building energy consumption by 
8–20%, highlighting why focusing on chiller power consumption fore
casting offers the greatest potential impact for energy efficiency im
provements in commercial buildings [2]. 

With the advent of the era of big data, buildings have become not 
only energy-intensive but also data-intensive [5], as the complex nature 
of chillers shaped by numerous factors such as environmental condi
tions, operational loads, and system performance presents significant 
challenges for accurate prediction. Employing data mining technologies 
to analyze the vast amounts of operational data is essential for enhan
cing the performance of building energy systems, particularly in opti
mizing chiller power consumption [6,7]. Traditionally, methods such as 
regression models and time series analysis have been employed to 
predict chiller energy consumption. For example, linear regression and 
autoregressive integrated moving average (ARIMA) models have been 
applied to HVAC systems, utilizing historical data to forecast energy 
usage [8–10]. While these methods are straightforward and inter
pretable, they often fall short when dealing with the highly nonlinear 
dynamics of chiller systems, particularly under varying operational and 
environmental conditions [11]. This limitation has driven the ex
ploration of more sophisticated Artificial Intelligence (AI) and machine 
learning (ML) approaches [12–15]. 

Recent advances in deep learning (DL) have introduced powerful 
tools such as Convolutional Neural Networks (CNNs) and Long Short- 
Term Memory (LSTM) networks for tackling energy forecasting pro
blems [16–20]. CNNs are effective at extracting spatial features from 
high-dimensional datasets, such as temperature, humidity, and pressure 
readings, which significantly influence chiller power consumption  
[21,22]. Meanwhile, LSTM networks, as specialized recurrent neural 
networks (RNN), are well-suited for modeling temporal dependencies, 
enabling them to capture trends and seasonal patterns in time-series 
data [23,24]. These models have demonstrated significant promise in 
improving forecasting accuracy for HVAC systems, including chillers. 
For instance, Artificial Neural Networks (ANN) and deep learning 
models have been successfully applied to predict atmospheric tem
peratures at both average and extreme levels [25] and daily ozone 
concentrations [26], while CNN-LSTM hybrid models have shown 
strong performance in monthly climate prediction tasks [27]. However, 
they often require extensive fine-tuning of hyperparameters and remain 
susceptible to issues such as overfitting and suboptimal convergence  
[28]. Comparative studies across various domains, including urban 
climate and air quality forecasting, have shown that hybrid deep 
learning models outperform standalone architectures when properly 
optimized [29–31]. These findings further motivate the integration of 
optimization techniques within deep learning frameworks to enhance 
predictive performance. 

To address these challenges, optimization techniques are commonly 
integrated into DL models. Among these, nature-inspired metaheuristic 
algorithms such as Genetic Algorithm (GA), Particle Swarm 
Optimization (PSO), Artificial Bee Colony (ABC), Teaching-Learning 
Based Optimization (TLBO), Ant Colony Optimization (ACO), Grey 
Wolves Optimization (GWO) and many more have been widely used to 
optimize model parameters, enhancing both accuracy and general
ization [32–37]. Despite their success, many of these algorithms face 
limitations in navigating complex, high-dimensional search spaces, 
often leading to premature convergence and suboptimal solutions [28]. 
Building on these advancements, the Barnacles Mating Optimizer 
(BMO), a nature-inspired algorithm, has recently emerged as an effec
tive tool for solving complex optimization problems [38,39]. Inspired 

by the mating behavior of barnacles, BMO exhibits strong global search 
capabilities and robustness against local optima [40–42]. It has been 
successfully applied in various fields, including structural engineering, 
machine learning, and energy optimization, making it a promising 
candidate for optimizing DL models. 

This paper presents an innovative hybrid model that combines CNN, 
LSTM, and BMO to forecast chiller power consumption with un
precedented accuracy. The proposed CNN-LSTM-BMO model in
corporates the spatial feature extraction capabilities of CNN, the tem
poral sequence modeling strength of LSTM, and the optimization power 
of BMO to enhance predictive performance. By fine-tuning the selected 
key hyperparameters, BMO addresses the limitations of standalone CNN 
and LSTM models, leading to reduced prediction errors and improved 
generalization. Comprehensive comparisons with other metaheuristic 
algorithms, such as GA, PSO, and Differential Evolution (DE), are 
conducted to validate the model's superiority. Furthermore, SHapley 
Additive exPlanations (SHAP) analysis is employed to provide insights 
into feature importance, highlighting the critical role of temperature- 
related variables in chiller power consumption forecasting. This study 
contributes to the growing body of research on energy management by 
offering a robust and interpretable forecasting framework tailored to 
chiller systems. The proposed CNN-LSTM-BMO model not only ad
dresses the limitations of existing forecasting methods but also provides 
practical implications for optimizing HVAC operations, ultimately 
paving the way for more energy-efficient building management sys
tems. 

The structure of the paper is organized as follows: Section 2 in
troduces the real-world dataset utilized in this research, followed by a 
concise summary of the CNN-LSTM model in Section 3. Section 4 offers 
a brief explanation of the BMO, and Section 5 outlines the methodology 
applied to model chiller power consumption using the CNN-LSTM-BMO 
approach. The results are thoroughly presented and discussed in Section 
6, while Section 7 concludes the paper with key insights and findings. 

2. Data set 

The data used in this research, obtained from [43,44], includes a 
variety of temperatures, relative humidity, power, and energy con
sumptions by the fans. The dataset contains information about the 
HVAC system’s operational settings that manage the indoor comfort of a 
commercial building in the winter of 2019–2020 and 2020–2021 in 
Turin, Italy. Fig. 1 illustrates how the chiller power consumption data is 
distributed and partitioned for model development and evaluation. The 
dataset consists of 33,888 total instances, with each instance re
presenting measurements taken at 15-min intervals. Following standard 
DL practices, the data was split into 3 distinct sets: training (70%, 
23,722 instances), validation (10%, 3389 instances), and testing (20%, 
6777 instances). This partitioning ensures robust model training while 
maintaining sufficient data for validation and testing phases. 

The input features encompass a comprehensive set of HVAC system 
parameters, including 3 temperature measurements (T_return, T_supply, 
T_outdoor) measured in degrees Celsius (°C), 3 relative humidity mea
surements (RH_return, RH_supply, RH_outdoor) expressed as percentages 
(%), the return air temperature setpoint (SP_return) in °C, and the sa
turation temperature in the humidifier (T_saturation) in °C. The output 
variable shown in Fig. 1 represents the chiller power consumption in 
kilowatts (kW), which displays the actual power required by the fans in 
the HVAC system. The output variable is specifically chosen as power 
consumption in kilowatts (kW), rather than energy, due to the discrete 
nature of energy measurements in the original dataset. 

The time-series visualization reveals distinct patterns in power 
consumption across all 3 datasets, with values ranging primarily be
tween 0 and approximately 5.3 kW. The training set (shown in blue) 
exhibits consistent cyclic patterns typical of HVAC system operation, 
while the validation set (red) and testing set (green) demonstrate si
milar characteristics, suggesting appropriate data distribution across 
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the splits. This consistency is essential for ensuring that the model can 
effectively learn and generalize from the training data to unseen sce
narios. The temporal resolution of 15-min intervals provides sufficient 
granularity to capture both rapid changes in power consumption and 
longer-term operational patterns, making it suitable for developing 
accurate forecasting models. Furthermore, the substantial size of the 
training dataset (23,722 instances) ensures that the deep learning 
model has adequate examples to learn the complex relationships be
tween the input features and power consumption patterns. 

Fig. 2 presents a visual overview of the proposed chiller power 
consumption forecasting framework. It illustrates the end-to-end 
workflow, showing how real-time building operational data flows from 
input parameters through the hybrid CNN-LSTM network that opti
mized using the BMO to produce the final prediction of chiller power 
consumption. The diagram clearly outlines the model’s architecture, 
with inputs on the left representing real-time building operational data, 
the core processing units in the center, and the predicted output on the 
right. This visual representation enhances understanding of the system's 
structure and the interactions among its components. The input layer 
comprises a set of key parameters commonly monitored by Building 
Management Systems (BMS). These include temperature-related 

features such as supply air temperature (T_supply), return air tempera
ture (T_return), return air setpoint temperature (SP_return), saturation 
temperature (T_saturate), and outdoor air temperature (T_outdoor). 
Additionally, humidity-related features, namely supply air relative 
humidity (RH_supply), return air relative humidity (RH_return), and 
outdoor air relative humidity (RH_outdoor), are also incorporated as 
inputs. These parameters provide a comprehensive representation of 
the building's thermal environment, enabling the model to capture the 
complex relationships influencing chiller power consumption. 

The central processing unit combines a hybrid CNN-LSTM archi
tecture with the BMO. The CNN layers are designed to extract spatial 
features and local patterns from the time-series input data, while the 
LSTM layers are employed to capture temporal dependencies and long- 
term trends. The BMO algorithm plays a crucial role in optimizing the 
hyperparameters of the CNN-LSTM model, ensuring optimal perfor
mance and generalization capability. The model's output is the pre
dicted chiller power consumption, measured in kW, providing a valu
able tool for building energy management and HVAC system 
optimization. 

3. Convolution neural network – Long short-term memory model 

3.1. Fundamental architecture of CNN 

A CNN is a specialized deep learning model designed to process data 
with a grid-like structure, such as images or time-series data. The key 
components of a CNN are: 

Convolutional Layers: These layers apply convolution operations 
using learnable filters to extract spatial or temporal features. The con
volution operation is expressed as: 

= +
= = + +z x w bi j k m

M

n

N
i m j n m n k k, , 1 1 1, 1 , , (1) 

where:  

• zi,j,k is the output feature map,  
• x is the input data, 

Fig. 1. The split of data into training, validation, and testing for the output of chiller power consumption.  

Fig. 2. Proposed CNN-LSTM-BMO for chiller power consumption forecasting. 
BMO = Barnacles Mating Optimizer; CNNs = Convolutional Neural Networks; 
LSTM = Long Short-Term Memory. 
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• wm,n,k is the k-th filter of size M × N,  
• bk is the bias term. 

Pooling Layers: These layers down-sample the feature maps, typically 
using max pooling or average pooling to reduce dimensionality and 
computation. 

Fully Connected Layers: These layers map the extracted features to 
the output classes or values. 

3.2. Fundamental architecture of LSTM 

LSTM is a type of RNN capable of learning long-term dependencies. 
It is particularly effective for sequential data. The key equations gov
erning an LSTM cell are: 

= +f W h x b( [ , ] )t f t t f1 (2)  

= +i W h x b( [ , ] )t i t t i1 (3)  

= +C W h x btanh ( [ , ] )t C t t C1 (4)  

= +C f C i Ct t t t t1 (5)  

= +o W h x b( [ , ] )t o t t o1 (6)  

=h o Ctanh ( )t t t (7) 

where:  

• ft, it, ot are the forget, input, and output gates, respectively,  
• Ct and Ct are the candidate cell state and updated cell state,  
• ht is the hidden state at time step t, 
• σ and tanh are the sigmoid and hyperbolic tangent activation func

tions, respectively. 

3.3. Hybrid CNN-LSTM architecture 

The CNN-LSTM hybrid model is an innovative architecture that uses 
the strengths of CNN and LSTM networks for sequence modeling. This 
combination is particularly effective for data with both spatial and 
temporal characteristics, as it enables the extraction of localized pat
terns while capturing long-term dependencies. Fig. 3 illustrates the 

general architecture of the hybrid CNN-LSTM model, which consists of 
4 main components: the Input Layer, Feature Extraction (CNN), Tran
sition Layer, and Sequential Layer (LSTM). 

Input Layer: The input layer receives time-series data, such as chiller 
power consumption features. These features are typically multidimensional, 
containing both spatial and temporal information. The input data is struc
tured to feed into the subsequent layers for processing. 

Feature Extraction (CNN): The CNN component is responsible for ex
tracting spatial or temporal features from the input data. This process begins 
with convolutional layers, which apply multiple filters to detect patterns 
such as edges, textures, or specific features in the input data. Following the 
convolution operations, activation functions (e.g., ReLU) introduce non- 
linearity to enhance the model's ability to capture complex relationships. 
Pooling layers, such as max pooling, reduce the spatial dimensions of the 
feature maps while preserving the most significant information. This step 
condenses the raw input into a set of high-level feature maps, effectively 
summarizing the spatial characteristics of the data. 

Transition Layer: Once the feature maps are generated, the next step 
is to reduce their dimensions for further sequential processing. This can 
be achieved through either flattening the feature maps into a single- 
dimensional vector or applying global pooling operations, such as 
global average pooling. These operations transform the feature maps 
into a compact representation that retains essential information, 
making them suitable for sequential processing in the LSTM layer. The 
reduced feature maps are then reshaped and treated as a sequential 
dataset before being passed to the LSTM layers. 

Sequential Layer (LSTM): The LSTM network processes the extracted 
features as a sequence, allowing it to model temporal dependencies and 
capture patterns over time. The LSTM's memory cells and gating me
chanisms ensure the retention of relevant information while discarding 
less significant data, making it highly effective for tasks involving time- 
series data or sequential dependencies. The output of the CNN layers, 
after being flattened or pooled, serves as the input to the LSTM layers. 
This integration allows the model to utilize the spatial feature extrac
tion capabilities of CNNs and the sequence modeling strengths of 
LSTMs. The feature maps extracted by the CNN are interpreted as se
quential data by the LSTM, enabling the hybrid architecture to learn 
both local patterns and their temporal evolution. 

Output Layer: The final layer of the model is a dense layer, which 
produces the predicted output. In the context of chiller power 

Fig. 3. Hybrid CNN-LSTM architecture. CNN = Convolutional Neural Network; LSTM = Long Short-Term Memory.  
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consumption forecasting, this output represents the estimated power 
consumption based on the learned patterns from the input features. 

Fig. 3 provides a visual representation of the hybrid CNN-LSTM 
architecture, highlighting the flow of data from the input layer through 
the CNN, transition layer, LSTM, and finally to the output layer. This 
architecture is designed to effectively handle the complexities of time- 
series data by combining the strengths of CNNs and LSTMs. 

3.4. Parameters or variables optimized by BMO 

The BMO is employed as an effective strategy to optimize the hy
perparameters of the CNN-LSTM hybrid model, ensuring robust and 
efficient training, where in optimization they are treated as variables to 
be optimized. The optimization process focuses on minimizing the 
Mean Squared Error (MSE) as the performance metric, guiding the se
lection of the most effective hyperparameters. These hyperparameters 
include the following: 

Number of Filters: This determines the depth of the feature maps in 
the convolutional layers of the CNN. A greater number of filters allows 
the extraction of more complex and diverse features from the input 
data. However, excessive filters can lead to overfitting and increased 
computational costs. As a discrete variable, the number of filters is 
optimized by BMO to achieve an ideal balance between feature ex
traction and model efficiency. 

Filter Size: This specifies the dimensions of the convolutional kernel 
in the CNN layers, which influences the receptive field and the scale of 
patterns the model can detect. An appropriately sized filter ensures the 
capture of relevant spatial or temporal features without introducing 
noise or overlooking critical details. The filter size, being a discrete 
value, is systematically tuned by BMO to match the data characteristics 
and improve feature extraction. 

Number of LSTM Units: This hyperparameter defines the capacity of the 
LSTM layers to learn and retain temporal dependencies. A sufficient number 
of units allows the model to capture intricate temporal patterns, while too 
many units can lead to overfitting and higher computational demands. As a 
discrete parameter, the number of LSTM units is optimized by BMO to 
balance temporal learning capability and model efficiency. 

Dropout Rate: Regularization is critical to prevent overfitting, and 
the dropout rate controls the fraction of neurons dropped during 
training. By randomly disabling neurons in each iteration, the model is 
encouraged to learn more generalized features. Unlike the first 3 hy
perparameters, the dropout rate is a floating-point number, requiring 
precise optimization to achieve effective regularization while preser
ving the model's capacity to learn. 

Through BMO’s biologically inspired optimization mechanisms, 
these hyperparameters are systematically tuned. The discrete nature of 
the first 3 variables (number of filters, filter size, and number of LSTM 
units) and the continuous nature of the dropout rate are handled ef
fectively, ensuring a thorough exploration of the hyperparameter space. 
This approach ensures that the CNN-LSTM model is well-calibrated for 
the specific problem, delivering high predictive accuracy while main
taining generalization and efficiency. 

The optimization process uses Mean Squared Error (MSE) as the 
minimization metric, expressed as: 

=
=n

y yMSE 1 ( ˆ )
i

n
i i1

2
(8) 

where:  

• yi is the actual value,  
• ŷi is the predicted value,  
• n is the total number of samples. 

The BMO iteratively tunes the hyperparameters by minimizing the 
MSE on the validation set, ensuring optimal performance for the CNN- 
LSTM model. 

4. Barnacles mating optimizer (BMO) 

The BMO draws its inspiration from the natural reproductive stra
tegies of barnacles, as described in the literature [38,39,45]. Barnacles 
employ 2 distinct mating mechanisms: direct copulation and sperm- 
casting. In direct copulation, physical contact occurs between male and 
female barnacles, facilitating natural reproduction. Alternatively, 
sperm-casting serves as a reproductive method for isolated barnacles, 
where fertilized eggs are released into the surrounding water. This 
unique reproductive adaptability of barnacles has been translated into 
an optimization algorithm. The BMO algorithm's structure incorporates 
the Hardy-Weinberg principle's Punnett square concept [46] for ex
ploitation phases, while its exploration mechanism is modeled after the 
sperm-casting process, expressed as follow: 

= +x px qxi
N new

barnacle d
N

barnacle m
N_

_ _ (9)  

= ×x rand x()i
n new

barnacle m
n_

_ (10)  

where p is the normally distributed pseudo random numbers, q = 
(1-p), xN

barnacle_d and xN
barnacle_m are the variables of Dad and Mum of 

barnacles respectively and rand() is the random number between [0,1].  
Eq. (9) is used when the selection of parents to be mated are within the 
pre-set value of parameter pl, which is the only parameter to be set in 
BMO apart from number of population and maximum iterations. The 
concept of exploitation and exploration proposed in BMO are adopted 
from [47]. 

5. Chiller power consumption forecasting using CNN-LSTM-BMO 

The flowchart presented in the Fig. 4 illustrates the comprehensive 
methodology for implementing the CNN-LSTM-BMO model for chiller 
power consumption forecasting. The process follows a systematic ap
proach from data preparation through model optimization and eva
luation. 

The workflow begins with the fundamental data preparation stage, 
where chiller data is loaded and appropriately segregated into training, 
validation, and testing sets. This is followed by the crucial initialization 
of BMO parameters, including the mating factor (pl), population size 
(Npop), maximum iterations, and number of runs, which form the 
foundation for the optimization process. 

The next phase involves generating the initial population, consisting 
of matrix of [Npop x the number of variables] to be optimized. This 
population serves as the starting point for the optimization process. 
Subsequently, the network architecture is defined by establishing the 
CNN-LSTM layers and configuring the training parameters, which cre
ates the framework for the deep learning model. The optimization 
process enters an iterative phase where each population member un
dergoes evaluation through training and validation. During this pro
cess, the MSE is recorded, and the algorithm maintains a record of the 
best results and corresponding variables. This iteration continues until 
reaching the maximum number of iterations specified in the initial 
parameters. 

Upon completing the iterations, the model loads the optimized 
variables and conducts the final training using these optimal para
meters. The trained CNN-LSTM-BMO model is then tested using pre
viously unseen testing data to evaluate its generalization capability. 
This process is repeated until reaching the maximum number of runs, 
ensuring robust validation of the model's performance. The workflow 
concludes with the visualization and analysis phase, where the best 
results are plotted, including comparisons between actual and predicted 
values, and various performance metrics such as Root Mean Square 
Error (RMSE), Mean Absolute Error (MAE), standard deviation, and R². 
This comprehensive methodology ensures a systematic approach to 
developing and validating the hybrid CNN-LSTM-BMO model for ac
curate chiller power consumption forecasting. The RMSE, MAE, stan
dard deviation, and R2 metrics are expressed as follow: 
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6. Results and discussion 

All simulations in this investigation were carried out using MATLAB.  
Table 1 displays the parameter settings for the chosen algorithms to 
ensure an equitable comparison. For all algorithms, consistent para
meters were established with maximum iterations and population size 
both set at 10 to facilitate fair comparison. To assess the efficacy of the 

metaheuristic algorithms in optimizing the variables to be optimized 
viz. number of filters, filter size, number of LSTM units, and dropout 
rate of CNN-LSTM model, the MSE is employed as the minimization 
metric. Among these optimization variables, the first 3 (filters, filter 
size, and LSTM units) are discrete integers, while the dropout rate is a 
continuous floating-point value. The lower and upper bounds of the 
variable are set as follows: 

=lb [8, 2, 32, 0.1] (15)  

=ub [64, 5, 128, 0.5] (16)  

Table 2 presents a comparative analysis of CNN-LSTM models op
timized by different metaheuristic algorithms for chiller power con
sumption forecasting in commercial buildings. The proposed CNN- 
LSTM-BMO demonstrates exceptional performance, achieving an RMSE 
of 0.5523 and R² of 0.9435, which translates to highly accurate pre
dictions crucial for real-world building energy management. These 
performance metrics support the implementation of more effective 
energy-saving strategies and enable improved planning of chiller op
erations. The model's low MAE of 0.2966 and standard deviation of 
0.5006 further indicate its reliability in making consistent predictions 
across varying operational conditions, which is essential for main
taining stable building comfort levels while optimizing energy con
sumption. 

The superior performance of CNN-LSTM-BMO can be attributed to 
the distinctive characteristics of the BMO algorithm combined with its 
optimal hyperparameter configuration. Operating within defined 
bounds for number of filters [8–64], filter size [2–5], LSTM units 
[32–128], and dropout rate [0.1–0.5], BMO discovered an efficient 
architecture configuration of [8, 4, 81, 0.2889]. This configuration re
veals that temporal pattern recognition (evidenced by 81 LSTM units) 
contributes more significantly to model performance than complex 
spatial feature extraction (evidenced by only 8 filters), while the 
moderate dropout rate of 0.2889 provides sufficient regularization to 
prevent overfitting. The algorithm's balanced exploration and ex
ploitation mechanisms prove particularly effective in navigating this 

Table 1 
Parameter setting used for all algorithms    

Algorithm Parameter setting  

# All algorithms Number of populations = 10, maximum iteration = 
10, Simulation runs = 5 

BMO Mating factor, pl = 7/10 
PSO w = 1, wdamp = 0.99, c1 = 1.5 c2 = 2 
GA Crossover rate = 0.7; Mutation rate = 0.3 
ACO Sample size = 10; 

Intensification factor, q = 0.5; 
Deviation-Distance Ratio, zeta = 1 

DE Differential weight, F = 0.8, Crossover probability, 
CR = 0.7 

ACO = Ant Colony Optimization; BMO = Barnacles Mating Optimizer; DE = 
Differential Evolution; GA = Genetic Algorithm; PSO = Particle Swarm 
Optimization.  

Fig. 4. Chiller power consumption forecasting using CNN-LSTM-BMO. BMO = Barnacles Mating Optimizer; CNN = Convolutional Neural Network; LSTM = Long 
Short-Term Memory. 
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complex hyperparameter landscape, as demonstrated by the narrower 
range between its best and worst performance metrics (RMSE range: 
0.5523–0.9138) compared to alternative methods. 

In contrast, the PSO implementation exhibited the weakest perfor
mance, with the highest average RMSE (0.8883) and worst-case RMSE 
(1.0897). Its suboptimal configuration [64, 5, 44, 0.5000] reveals a 
tendency toward maximum filter complexity but minimal LSTM units, 
indicating potential overfitting on spatial features while inadequately 
capturing temporal patterns. This architecture, combined with the 
maximum dropout rate, likely contributed to its inconsistent predictive 
performance. Although the GA approach performed better than PSO 
with its optimal configuration [10, 5, 91, 0.2789], it still demonstrated 
inferior results compared to BMO. GA's worst-case scenario [50, 4, 76, 
0.1422] indicates potential underfitting due to the low dropout rate, 
highlighting the algorithm's challenge in maintaining a balanced model 
architecture. DE and ACO demonstrated intermediate performance le
vels, with DE showing slightly better results (RMSE: 0.6334, R²: 0.9255) 
compared to ACO (RMSE: 0.6622, R²: 0.9234). DE's best configuration 
[15, 3, 84, 0.4913] suggests a more balanced approach to spatial- 
temporal feature extraction, though the high dropout rate may have 
limited its potential for further improvement. ACO's optimal config
uration [13, 2, 33, 0.1539] utilized minimal filter size and LSTM units, 
indicating possible underfitting, yet achieved reasonable performance 
through better generalization with its low dropout rate. However, both 
methods exhibited higher variability in their performance metrics 
compared to BMO, suggesting less robust optimization capabilities. 

The overall results validate the effectiveness of the proposed CNN- 
LSTM-BMO approach for chiller power consumption forecasting. The 
consistent superiority across all evaluation metrics, particularly the 
high R² values (ranging from 0.8474 to 0.9435) and low error rates, 
indicates that the model successfully captures the complex patterns and 
relationships in chiller power consumption data. The improved per
formance of BMO compared to well-established metaheuristic methods 
demonstrates its unique capability in finding optimal hyperparameter 
configurations that balance model complexity with generalization 
ability. These findings have significant implications for building energy 
management systems, as the accurate power consumption forecasting 
achieved through this optimized architecture can lead to more efficient 
chiller operations, reduced energy costs, and improved overall building 
energy efficiency. The robust performance across different metrics 
suggests that the CNN-LSTM-BMO model can be reliably deployed in 
real-world applications, providing facility managers with accurate 
predictions for more informed decision-making in energy management 
strategies. 

Fig. 5 presents the convergence curves of various CNN-LSTM models 
combined with different metaheuristic optimization algorithms for 

chiller power consumption forecasting. The graph tracks MSE evolution 
over 10 iterations, revealing the training efficiency and optimization 
characteristics of each method. Notably, while CNN-LSTM-GA achieved 
the best convergence performance during the training process with a 
final MSE of approximately 0.0143, followed closely by CNN-LSTM- 
BMO, it is significant to highlight that CNN-LSTM-BMO demonstrated 
superior overall performance in the testing phase as evidenced by the 
comprehensive metrics shown in Table 2. 

The optimization process utilized the parameter settings outlined in  
Table 1, with consistent algorithm configurations to ensure fair com
parison. The simulation was repeated 5 times to ensure result reliability 
and validate the consistency of the optimization process. The popula
tion size and maximum iterations were both set to 10, which proved 
sufficient for optimizing the 4 critical parameters of the CNN-LSTM 
model: number of filters, filter size, number of LSTM units, and dropout 
rate. This relatively modest number of iterations and population size is 
particularly noteworthy as it demonstrates the efficiency of these op
timization approaches in finding optimal hyperparameter combinations 
without requiring extensive computational resources. 

The convergence patterns reveal distinctive optimization behaviors 
among the algorithms. CNN-LSTM-GA shows remarkable improvement 
in later iterations, particularly around iteration 9, achieving the lowest 
training MSE. CNN-LSTM-BMO demonstrates consistent and stable 
convergence throughout the training process, starting with relatively 
high MSE but quickly improving and maintaining competitive perfor
mance. CNN-LSTM-PSO exhibits the most stable convergence pattern 
but settles at a higher MSE compared to GA and BMO. CNN-LSTM-ACO 
shows stepped improvements, particularly around iteration 6, even
tually achieving competitive results. CNN-LSTM-DE, despite showing 
aggressive early optimization, maintains steady but moderate perfor
mance throughout the process. 

Despite GA's superior convergence in the training phase, it's crucial 
to emphasize that CNN-LSTM-BMO's overall performance in the testing 
phase surpassed all other methods, as evidenced by its superior RMSE, 
MAE, and R² (0.9435) values demonstrated in Table 2. This suggests 
that BMO achieves a better balance between optimization and gen
eralization, making it more suitable for practical applications in chiller 
power consumption forecasting. The parameter settings, particularly 
BMO's mating factor namely pl, appear to strike an optimal balance 
between exploration and exploitation, contributing to its robust per
formance across both training and testing phases. 

Fig. 6 presents a comprehensive visualization of the forecasting re
sults, comparing the observed (actual) and predicted chiller power 
consumption values over approximately 6777 timesteps, with each 
timestep representing 15-min intervals. The blue line represents the 
observed values, while the red line shows the predictions made by the 

Table 2 
Performance results of CNN-LSTM-metaheuristic models for chiller power consumption forecasting         

Models RMSE MAE STD DEV R2 Optimized variables  

CNN-LSTM-BMO Best  0.5523  0.2966  0.5006  0.9435 [8, 4, 81, 0.2889] 
Average  0.7345  0.3354  0.7029  0.8951 NA 
Worst  0.9138  0.3655  0.8640  0.8474 [32, 5, 99, 0.4978] 

CNN-LSTM-GA Best  0.6520  0.3241  0.6265  0.9181 [10, 5, 91, 0.2789] 
Average  0.7677  0.3493  0.7228  0.8851 NA 
Worst  1.0721  0.4257  1.0061  0.7930 [50, 4, 76, 0.1422] 

CNN-LSTM-PSO Best  0.6715  0.3219  0.6481  0.9195 [8, 4, 43, 0.3431] 
Average  0.8883  0.4008  0.8395  0.8455 NA 
Worst  1.0897  0.4488  1.0397  0.7767 [64, 5, 44, 0.5000] 

CNN-LSTM-ACO Best  0.6622  0.2665  0.6385  0.9234 13, 2, 33, 0.1539] 
Average  0.8103  0.3591  0.7812  0.8731 NA 
Worst  0.8951  0.3586  0.8623  0.8522 [64, 4, 74, 0.1120] 

CNN-LSTM-DE Best  0.6334  0.3171  0.5965  0.9255 [15, 3, 84, 0.4913] 
Average  0.8054  0.3784  0.7507  0.8737 NA 
Worst  1.0558  0.5082  0.9488  0.7851 [27, 5, 108, 0.4271] 

ACO = Ant Colony Optimization; BMO = Barnacles Mating Optimizer; CNN = Convolutional Neural Network; DE = Differential Evolution; GA = Genetic 
Algorithm; LSTM = Long Short-Term Memory; MAE = Mean Absolute Error; PSO = Particle Swarm Optimization; RMSE = Root Mean Square Error.  

M.H. Sulaiman and Z. Mustaffa                                                                                                                                                                     Next Energy 8 (2025) 100321 

7 



CNN-LSTM-BMO model. Several key observations can be drawn from 
this visualization, firstly, the forecasting performance demonstrates re
markable accuracy in tracking the overall pattern of chiller power con
sumption. The predicted values (red line) closely follow the observed values 
(blue line), particularly in capturing the cyclic nature of power consumption 
patterns. The model successfully predicts both the high consumption per
iods, where power usage reaches approximately 5 kW, and the low con
sumption periods, where usage drops to near 0 kW, indicating its ability to 
capture both peak demands and off-peak periods. 

Secondly, a notable aspect of the model's performance is its ability 
to capture the sharp transitions between operational and non-opera
tional periods of the chiller system. These transitions are particularly 
evident in the vertical lines dropping from peak usage to zero, re
presenting the chiller's on-off cycles. The CNN-LSTM-BMO model ac
curately predicts these sudden state changes, which is crucial for 
practical applications in building energy management systems. Thirdly, 
looking at the fine details, there are some minor discrepancies between 
predicted and actual values, particularly during rapid fluctuations in 

Fig. 5. Convergence curve CNN-LSTM-metaheuristic methods for training process of chiller power consumption forecasting. CNN = Convolutional Neural Network; 
LSTM = Long Short-Term Memory. 

Fig. 6. Forecasting results of testing data of chiller power consumption by CNN-LSTM-BMO. BMO = Barnacles Mating Optimizer; CNN = Convolutional Neural 
Network; LSTM = Long Short-Term Memory. 
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power consumption. The time-series plot also reveals interesting pat
terns in chiller operation, such as regular cycling patterns and varying 
power demand intensities. The CNN-LSTM-BMO model's ability to 
capture these patterns suggests that it has successfully learned the un
derlying relationships between temporal features and power con
sumption, making it a reliable tool for short-term load forecasting in 
building energy management applications. 

It is worth noting that the model's forecasting occasionally under
estimates the maximum power consumption peaks, not quite reaching 
the actual maximum value of 5.316 kW. This phenomenon can be at
tributed to several factors: (1) the nature of neural network training, 
which tends to average out extreme values to minimize overall error; 
(2) the relative rarity of these maximum peaks in the training data, 
making it challenging for the model to fully capture these exceptional 
cases; and (3) the model's inherent tendency to make conservative 
predictions for extreme values to maintain prediction stability and 
avoid overfitting. Despite this limitation, the model's ability to accu
rately track the overall consumption patterns and timing of peak usage 
periods remains robust and reliable for practical applications. 

Figs. 7−10 provide a comprehensive visualization of the forecasting 
results for the hybrid methods CNN-LSTM-GA, CNN-LSTM-PSO, CNN- 
LSTM-ACO, and CNN-LSTM-DE, respectively. All these hybrid ap
proaches demonstrate generally good forecasting performance, cap
turing the overall trends and temporal patterns of the chiller power 
consumption effectively. However, their performance still reveals cer
tain limitations compared to the proposed CNN-LSTM-BMO model. One 
notable shortcoming is the occasional underestimation of maximum 
power consumption peaks, where the predicted values fall short of the 
observed peak value of 5.316 kW. This limitation can be attributed to 
the inherent challenges of the CNN-LSTM architecture in accurately 
capturing abrupt changes and extreme variations, particularly during 
rapid ON/OFF state transitions in chiller operations. 

The performance differences between these methods can largely be 
attributed to the effectiveness of the metaheuristic algorithms in opti
mizing the 4 critical parameters of the CNN-LSTM model: number of 
filters, filter size, number of LSTM units, and dropout rate. These 
parameters play a pivotal role in determining the model's ability to 

extract meaningful spatial-temporal features, maintain long-term de
pendencies, and prevent overfitting. While GA, PSO, ACO, and DE ex
hibit promising results by improving parameter selection, their opti
mization capabilities may not be as efficient as BMO. The BMO 
demonstrates a superior ability to balance exploration and exploitation, 
enabling it to search the parameter space more effectively and converge 
toward a globally optimal solution. This advantage is reflected in the 
superior predictive accuracy of the CNN-LSTM-BMO model, which 
better handles the complex and dynamic nature of chiller power con
sumption. While all hybrid models exhibit commendable performance, 
the occasional underprediction of peak values highlights the challenges 
of parameter optimization for CNN-LSTM models. This finding high
lights the importance of employing robust and efficient metaheuristic 
algorithms to fine-tune parameters such as the number of filters, filter 
size, LSTM units, and dropout rate. The BMO's superior performance 
emphasizes its potential for achieving better convergence and accuracy. 

Table 3 shows the snippet results of chiller power consumption 
forecasting across all approaches, which are part of the outcomes 
plotted in Figs. 6−10. Observing the actual and predicted values at the 
given time steps (2000–2030), it is evident that all models closely 
follow the actual trends. However, variations exist in prediction accu
racy, particularly for CNN-LSTM-GA and CNN-LSTM-PSO, where their 
predicted values exhibit a slightly higher deviation compared to CNN- 
LSTM-BMO and CNN-LSTM-DE. For instance, at time step 2004, CNN- 
LSTM-PSO predicts a value of 5.009, which is higher than the actual 
value 4.920, indicating a noticeable error. On the other hand, CNN- 
LSTM-BMO and CNN-LSTM-DE maintain better proximity to the actual 
values, reflecting their superior predictive capability. The CNN-LSTM- 
BMO approach consistently provides smoother predictions, aligning 
closer to the actual trends, which is also reflected in its lowest RMSE 
(0.5523) and highest R² (0.9435). 

The performance metrics at the bottom of Table 3, particularly 
RMSE and R², further highlight the strengths and weaknesses of each 
approach. CNN-LSTM-BMO achieves the best overall accuracy with the 
lowest RMSE of 0.5523 and the highest R² value of 0.9435, demon
strating its ability to generalize well and capture the nonlinear char
acteristics of chiller power consumption. Conversely, CNN-LSTM-GA 

Fig. 7. Forecasting results of chiller power consumption by CNN-LSTM-GA. CNN = Convolutional Neural Network; GA = Genetic Algorithm; LSTM = Long Short- 
Term Memory. 
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and CNN-LSTM-PSO show relatively higher RMSE values of 0.6520 and 
0.6715, respectively, and slightly lower R² values. This indicates that 
while both GA and PSO-based methods are capable of achieving good 
predictions, they are more susceptible to overfitting or convergence to 
local optima compared to the BMO approach. CNN-LSTM-DE and CNN- 
LSTM-ACO also perform well, with R² values of 0.9255 and 0.9234, 
respectively, confirming their robustness and competitive performance. 

Despite the overall high accuracy demonstrated by CNN-LSTM- 
BMO, CNN-LSTM-DE, and CNN-LSTM-ACO, further improvements can 
still be achieved. The residual errors, particularly at time steps where 
sudden variations in actual values occur (e.g., time steps 2004 and 
2029), suggest that the models could benefit from incorporating 
adaptive learning strategies or hybrid optimization techniques to en
hance responsiveness to rapid fluctuations. For example, integrating a 

Fig. 8. Forecasting results of chiller power consumption by CNN-LSTM-PSO. CNN = Convolutional Neural Network; LSTM = Long Short-Term Memory; PSO = 
Particle Swarm Optimization. 

Fig. 9. Forecasting results of chiller power consumption by CNN-LSTM-ACO. ACO = Ant Colony Optimization; CNN = Convolutional Neural Network; LSTM = 
Long Short-Term Memory. 
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Fig. 10. Forecasting results of chiller power consumption by CNN-LSTM-DE. CNN = Convolutional Neural Network; DE = Differential Evolution; LSTM = Long 
Short-Term Memory. 

Table 3 
Snippets results of chiller power consumption forecasting by all approaches         

Timesteps Actual CNN-LSTM-BMO CNN-LSTM-GA CNN-LSTM-PSO CNN-LSTM-ACO CNN-LSTM-DE  

: : : : : : : 
2000 4.908 4.173 4.460 4.895 4.774 4.102 
2001 4.968 4.274 4.552 4.962 4.841 4.300 
2002 4.980 4.278 4.572 4.977 4.850 4.327 
2003 4.956 4.268 4.547 4.962 4.831 4.283 
2004 4.920 4.310 4.639 5.009 4.883 4.404 
2005 4.908 4.295 4.662 5.005 4.932 4.480 
2006 4.932 4.364 4.699 5.029 4.951 4.569 
2007 5.004 4.576 4.812 5.054 5.022 4.778 
2008 5.040 4.733 4.857 5.012 5.034 4.831 
2009 5.016 4.792 4.864 4.978 5.034 4.830 
2010 4.968 4.811 4.863 4.954 5.030 4.829 
2011 4.992 4.821 4.860 4.941 5.027 4.829 
2012 5.040 4.827 4.857 4.932 5.023 4.831 
2013 4.992 4.827 4.858 4.933 5.028 4.831 
2014 5.076 4.832 4.852 4.923 5.022 4.834 
2015 4.980 4.834 4.850 4.919 5.019 4.836 
2016 4.992 4.833 4.851 4.919 5.024 4.835 
2017 4.920 4.828 4.857 4.929 5.030 4.832 
2018 5.028 4.829 4.855 4.927 5.031 4.830 
2019 5.004 4.833 4.848 4.916 5.030 4.831 
2020 5.040 4.835 4.847 4.915 5.034 4.832 
2021 5.028 4.833 4.852 4.920 5.043 4.828 
2022 4.980 4.832 4.855 4.926 5.043 4.827 
2023 4.980 4.831 4.858 4.931 5.045 4.827 
2024 4.908 4.829 4.864 4.929 5.052 4.820 
2025 5.052 4.837 4.855 4.912 5.047 4.832 
2026 5.028 4.840 4.833 4.904 5.030 4.857 
2027 5.040 4.842 4.848 4.906 5.043 4.846 
2028 4.944 4.841 4.848 4.904 5.045 4.857 
2029 4.956 4.838 4.873 4.914 5.064 4.823 
2030 4.992 4.841 4.855 4.905 5.052 4.850 
: : : : : : : 
RMSE 0.5523 0.652 0.6715 0.6622 0.6334 
R2 0.9435 0.9181 0.9195 0.9234 0.9255 

ACO = Ant Colony Optimization; BMO = Barnacles Mating Optimizer; CNN = Convolutional Neural Network; DE = Differential Evolution; GA = Genetic 
Algorithm; LSTM = Long Short-Term Memory; PSO = Particle Swarm Optimization; RMSE = Root Mean Square Error.  
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dynamic regularization approach could further fine-tune the model 
parameters for improved accuracy. Additionally, increasing the depth 
of the CNN-LSTM architecture or introducing attention mechanisms 
may enable the models to better capture subtle temporal patterns and 
reduce error deviations. Table 3 demonstrates that CNN-LSTM-BMO 
outperforms other methods in terms of accuracy and reliability for 
chiller power consumption forecasting. The BMO-based approach's su
perior performance can be attributed to its effective exploration-ex
ploitation balance, leading to optimal tuning of the CNN-LSTM model 
parameters. CNN-LSTM-DE and CNN-LSTM-ACO also exhibit promising 
results, suggesting that DE and ACO remain strong candidates for sol
ving similar forecasting problems. 

Results of the paired t-test conducted to compare CNN-LSTM-BMO 
with other algorithms based on raw prediction outputs are tabulated in  
Table 4. The P-values obtained for each comparison indicate whether 
the performance differences between CNN-LSTM-BMO and the other 
methods are statistically significant. Notably, all P-values are well 
below the standard significance threshold of 0.05, suggesting that CNN- 
LSTM-BMO consistently outperforms the alternative approaches with 
statistically significant results. For example, the P-value for CNN-LSTM- 
BMO vs. CNN-LSTM-GA is 7.11 × 10−10 highlighting an extremely 
significant difference. This indicates that CNN-LSTM-BMO provides 
superior predictive performance compared to CNN-LSTM-GA with a 
very low probability that the observed results occurred by chance. 

Similarly, the P-value for CNN-LSTM-PSO is 9.6 × 10−6, which also 
confirms a significant performance improvement of CNN-LSTM-BMO 

over CNN-LSTM-PSO. This result further supports the earlier findings 
from Table 3, where CNN-LSTM-PSO exhibited higher RMSE and 
slightly lower R² values compared to CNN-LSTM-BMO. The P-value for 
CNN-LSTM-ACO is reported as exactly 0, implying a highly significant 
difference. This result shows the strength of CNN-LSTM-BMO in 
achieving more accurate and consistent predictions, as even minor 
variations in performance are statistically distinguishable. Lastly, for 
CNN-LSTM-DE, the P-value of 2.57 × 10−2 also falls below 0.05, de
monstrating statistical significance, albeit less extreme compared to the 
other methods. This suggests that while CNN-LSTM-DE performs rela
tively well, it is still outperformed by CNN-LSTM-BMO. 

The significant P-values across all methods reinforce the reliability 
and robustness of CNN-LSTM-BMO in chiller power consumption 
forecasting. The results highlight that the BMO enhances the predictive 
capability of CNN-LSTM by effectively tuning its parameters and 
avoiding local optima, which may be encountered by other optimiza
tion algorithms like GA and PSO. To further solidify these findings, 
future studies could employ additional statistical tests, such as 
Wilcoxon signed-rank tests, to cross-validate the significance of per
formance differences. Additionally, testing these methods on more ex
tensive and diverse datasets could generalize the conclusions and con
firm the robustness of the CNN-LSTM-BMO approach in various 
forecasting scenarios. Overall, Table 4 provides strong statistical evi
dence that CNN-LSTM-BMO significantly outperforms CNN-LSTM-GA, 
CNN-LSTM-PSO, CNN-LSTM-ACO, and CNN-LSTM-DE. The results not 
only validate the effectiveness of the BMO algorithm in enhancing CNN- 
LSTM performance but also suggest the potential for further improve
ments. Incorporating ensemble strategies or hybrid approaches with 
BMO may lead to even better results, ensuring enhanced accuracy and 
reliability for real-world forecasting applications. 

To further analyze the performance of the developed CNN-LSTM- 
BMO hybrid model for chiller power consumption prediction, SHAP 
analysis is conducted to investigate the impact of various input features 
on the model's predictions. The SHAP analysis provides a detailed in
terpretation of how each feature contributes to the model’s output, 
revealing both the importance and the directional influence of the 
features. The results of this analysis help in understanding the sensi
tivity of the model to each input, offering valuable insights into which 
variables are most influential for accurate predictions. Fig. 11 presents 

Table 4 
Paired t-test results: CNN-LSTM-BMO vs. other methods     

Methods P-value Significant  

CNN-LSTM-GA 7.11 × 10−10 * 
CNN-LSTM-PSO 9.66 × 10−6 * 
CNN-LSTM-ACO 0 * 
CNN-LSTM-DE 2.57 × 10−2 * 

ACO = Ant Colony Optimization; BMO = Barnacles Mating Optimizer; CNN = 
Convolutional Neural Network; DE = Differential Evolution; GA = Genetic 
Algorithm; LSTM = Long Short-Term Memory; PSO = Particle Swarm 
Optimization.  

Fig. 11. SHAP analysis for CNN-LSTM-BMO. BMO = Barnacles Mating Optimizer; CNN = Convolutional Neural Network; LSTM = Long Short-Term Memory; SHAP 
= SHapley Additive exPlanations. 
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a comprehensive SHAP analysis of the CNN-LSTM-BMO model's feature 
importance, based on a balanced sample of 100 instances each from the 
training and test datasets. The analysis is visualized through 2 com
plementary plots: a bar chart showing mean absolute SHAP values and 
a distribution plot displaying the range and patterns of SHAP values for 
each feature. The temperature-related features emerge as the primary 
drivers of the model's predictions, with T_Saturation demonstrating the 
highest mean absolute SHAP value of 0.345. This substantial influence 
is further supported by the distribution plot, which shows a wide spread 
of both positive and negative SHAP values, indicating that T_Saturation 
can significantly increase or decrease the predicted power consumption 
depending on its value. T_Return follows as the second most influential 
feature with a mean SHAP value of 0.284, while T_Supply ranks third 
with 0.156, both showing similar bidirectional impact patterns in the 
distribution plot, though with progressively narrower ranges of influ
ence. 

The analysis reveals a clear hierarchical structure in feature im
portance, with a sharp decline in influence after the top 3 temperature- 
related features. T_Outdoor shows a notably lower mean SHAP value of 
0.035, followed by SP_Return at 0.014, marking a transition point in 
feature significance. The distribution plot for these features shows more 
concentrated SHAP values around zero, indicating more consistent but 
limited impacts on the model's predictions. The humidity-related fea
tures (RH_Supply, RH_Outdoor, and RH_Return) demonstrate the least 
influence on the model's predictions, with mean SHAP values ranging 
from 0.011 to 0.008. This minimal impact is visually confirmed in the 
distribution plot, where these features show highly concentrated SHAP 
values near zero with minimal dispersion, suggesting their contribu
tions to power consumption predictions are relatively constant and 
limited. The box plot reveals few outliers for these features, indicating 
that even in extreme cases, their impact remains modest. 

This detailed SHAP analysis provides valuable insights for both 
model interpretation and future development. The clear dominance of 
temperature-related features, particularly T_Saturation, suggests that 
these parameters should be prioritized in monitoring and control sys
tems for chiller power consumption optimization. The minimal influ
ence of humidity-related features indicates that while they contribute to 
the model's overall accuracy, they might be candidates for feature re
duction in scenarios where computational efficiency is paramount. 

These findings could inform the development of more streamlined 
models or help focus data collection efforts on the most impactful 
parameters. 

Figs. 12−15 show the SHAP analysis for CNN-LSTM-GA, CNN- 
LSTM-PSO, CNN-LSTM-ACO, and CNN-LSTM-DE, respectively. The 
SHAP analysis conducted across CNN-LSTM models with different me
taheuristic optimizers reveals consistent patterns in feature importance 
while highlighting subtle variations introduced by each optimization 
approach. The CNN-LSTM-BMO model, as illustrated in Fig. 11, de
monstrates the highest feature importance values overall, with T_Sa
turation achieving a mean absolute SHAP value of 0.345, surpassing 
similar values observed in other optimization approaches (GA: 0.3154, 
PSO: 0.3325, ACO: 0.3478, DE: 0.3186). This superior performance 
aligns with the model's better prediction accuracy as evidenced in 
earlier results. The relative importance of temperature-related features 
maintains a consistent hierarchy across all optimization variants, with 
T_Saturation and T_Return consistently emerging as the top 2 influential 
features. However, the CNN-LSTM-BMO model exhibits a more pro
nounced differentiation between these features, with T_Return showing 
a mean SHAP value of 0.284, indicating a more refined feature im
portance distribution. This enhanced feature discrimination likely 
contributes to the model's superior forecasting performance, as de
monstrated in the testing results. A notable distinction in the CNN- 
LSTM-BMO implementation is its treatment of secondary features such 
as T_Supply and T_Outdoor. While these features maintain their relative 
importance ranking across all optimization approaches, the BMO var
iant shows a more balanced distribution of their influence, with 
T_Supply maintaining a significant contribution (0.156) while avoiding 
the overshadowing effect seen in some other optimizers. This balanced 
feature utilization suggests that the BMO algorithm achieves a more 
optimal weighting of feature contributions. 

The handling of humidity-related features (RH_Supply, RH_Outdoor, 
and RH_Return) reveals interesting variations across optimization ap
proaches. The CNN-LSTM-BMO model demonstrates the most con
sistent treatment of these features, with their SHAP values showing 
minimal variance and maintaining clear, albeit small, contributions to 
the prediction process. This contrasts with other optimizers, particu
larly DE, where RH_Supply showed elevated importance levels that 
might indicate less optimal feature prioritization. The comprehensive 

Fig. 12. SHAP analysis for CNN-LSTM-GA. CNN = Convolutional Neural Network; GA = Genetic Algorithm; LSTM = Long Short-Term Memory; SHAP = SHapley 
Additive exPlanations. 

M.H. Sulaiman and Z. Mustaffa                                                                                                                                                                     Next Energy 8 (2025) 100321 

13 



comparison across all optimization variants highlights the CNN-LSTM- 
BMO model's superior ability to establish a more effective feature 
hierarchy. This is evidenced not only by the magnitude of SHAP values 
but also by the clear separation between primary and secondary fea
tures, suggesting a more refined optimization process. The model's 
ability to maintain consistent feature importance patterns while 
achieving higher overall performance metrics indicates that the BMO 
algorithm succeeds in finding a more optimal balance in feature utili
zation compared to traditional optimization approaches. The analysis 
conclusively demonstrates that while all CNN-LSTM variants identify 
similar key features, the BMO optimization approach achieves a more 
nuanced and effective feature importance distribution. This optimized 

feature utilization contributes to its superior performance in chiller 
power consumption forecasting, supporting the choice of BMO as the 
preferred optimization algorithm for this application. 

The experimental results demonstrate the exceptional performance 
of hybrid CNN-LSTM models optimized with various metaheuristic al
gorithms for chiller power consumption forecasting. The CNN-LSTM- 
BMO model achieved superior performance with the lowest RMSE 
(0.5523) and highest R² value (0.9435). This superiority is statistically 
validated through paired t-tests, which showed significant differences 
(P < 0.05) between CNN-LSTM-BMO and all other optimization ap
proaches. The extremely low p-values, ranging from 0 to 7.11 × 10–10, 
provide strong statistical evidence that BMO's superior performance is 

Fig. 14. SHAP analysis for CNN-LSTM-ACO. ACO = Ant Colony Optimization; CNN = Convolutional Neural Network; LSTM = Long Short-Term Memory; SHAP = 
SHapley Additive exPlanations. 

Fig. 13. SHAP analysis for CNN-LSTM-PSO. CNN = Convolutional Neural Network; LSTM = Long Short-Term Memory; PSO = Particle Swarm Optimization; SHAP 
= SHapley Additive exPlanations. 
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not due to chance, but rather represents a genuine improvement in 
forecasting capability. The convergence analysis revealed that while 
CNN-LSTM-GA showed the best training convergence, CNN-LSTM-BMO 
demonstrated superior generalization capability in testing. This finding, 
supported by the statistical significance in the t-tests, suggests that BMO 
achieves a better balance between optimization and generalization. The 
SHAP analysis further reinforced this conclusion by showing that BMO 
achieved more nuanced feature importance distributions, particularly 
in handling temperature-related parameters, which were consistently 
identified as the primary drivers of prediction accuracy. 

This statistically validated performance has significant implications 
for HVAC and building management systems. The high prediction ac
curacy, combined with efficient convergence within 10 iterations, 
makes these models particularly valuable for real-world applications 
where both accuracy and computational efficiency are critical. The 
clear hierarchy of feature importance revealed by SHAP analysis pro
vides practical guidance for system monitoring and sensor deployment 
strategies. The implementation of metaheuristic optimization in deep 
learning models presents several advantages, including automated hy
perparameter tuning, robust global search capabilities, and adaptability 
to specific problem characteristics. However, challenges persist, such as 
parameter sensitivity and computational overhead. The statistically 
significant superiority of BMO over other methods suggests that newer 
metaheuristic algorithms may offer solutions to some of these tradi
tional limitations. 

Looking forward, several promising research directions emerge:  

• Integration of multi-objective optimization approaches that balance 
prediction accuracy with computational efficiency.  

• Development of adaptive parameter tuning mechanisms to enhance 
robustness. 

• Investigation of transfer learning potential for similar building sys
tems.  

• Exploration of real-time optimization techniques for dynamic 
building conditions.  

• Research into hybrid optimization approaches that could potentially 
outperform current methods. 

The statistical validation of CNN-LSTM-BMO's superior performance 
provides a strong foundation for these future developments. The clear 

performance advantages demonstrated through both numerical metrics 
and statistical tests suggest that continued research in this direction 
could yield further improvements in building energy management 
systems. This comprehensive analysis, supported by rigorous statistical 
validation, demonstrates that hybrid CNN-LSTM-metaheuristic models, 
particularly those optimized with BMO, represent a significant ad
vancement in chiller power consumption forecasting. Their proven 
capability to deliver accurate predictions while maintaining computa
tional efficiency makes them valuable tools for improving building 
energy management systems. 

7. Conclusion 

This research has successfully developed and validated a hybrid 
CNN-LSTM model optimized by the BMO for accurate chiller power 
consumption forecasting in commercial building. The comprehensive 
experimental results demonstrate the superior performance of the 
proposed CNN-LSTM-BMO model compared to other metaheuristic 
optimization approaches. The model achieved the lowest RMSE and 
highest R² value, with its superiority confirmed through rigorous sta
tistical validation using paired t-tests. The comparative analysis of 
different metaheuristic optimizers revealed that while CNN-LSTM-GA 
showed promising convergence during training, CNN-LSTM-BMO de
monstrated better generalization capability and overall performance in 
testing scenarios. The SHAP analysis provided valuable insights into 
feature importance, identifying temperature-related parameters as the 
primary drivers of prediction accuracy, with T_Saturation consistently 
showing the highest influence across all optimization variants. 

The efficient convergence characteristics of the proposed model, 
achieving optimal performance within 10 iterations, make it particu
larly suitable for practical applications in building energy management 
systems. The model's ability to accurately capture both regular patterns 
and sudden changes in chiller power consumption demonstrates its 
potential for real-world implementation in HVAC system optimization. 
However, several challenges and opportunities for future research re
main. These include the development of multi-objective optimization 
approaches, investigation of transfer learning possibilities, and ex
ploration of real-time optimization techniques for dynamic building 
conditions. The successful implementation and validation of the CNN- 
LSTM-BMO model provides a strong foundation for these future 

Fig. 15. SHAP analysis for CNN-LSTM-DE. CNN = Convolutional Neural Network; DE = Differential Evolution; LSTM = Long Short-Term Memory; SHAP = 
SHapley Additive exPlanations. 
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developments in building energy management systems. This study 
contributes significantly to the field by demonstrating the effectiveness 
of combining deep learning architectures with advanced metaheuristic 
optimization techniques for energy consumption forecasting. The 
findings have important implications for improving energy efficiency in 
commercial buildings and advancing the development of intelligent 
building management systems. 
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