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ABSTRAK 

Etanol yang dihasilkan melalui penapaian merupakan salah satu tenaga boleh 

diperbaharui dan boleh menjadi alternatif kepada tenaga bahan api fosil konvensional. 

Walau bagaimanapun, penghasilan etanol pada kadar yang tinggi sukar untuk difahami 

dan mahal untuk dikendalikan. Oleh itu, penyelidikan yang mendalam diperlukan untuk 

penghasilan yang optimum. Penggunaan model kinetik adalah salah satu kaedah yang 

paling mudah untuk bereksperimen dengan pengeluaran. Namun, pembangunan model 

kinetik praktikal memerlukan pertimbangan yang teliti terhadap banyak faktor. Selain itu, 

kajian terdahulu telah menunjukkan bahawa parameter pengadukan dalam tangki juga 

mempunyai kesan ke atas pengeluaran etanol. Objektif kajian ini adalah untuk 

menyediakan strategi penyelesaian bagi pemodelan dan simulasi pengadukan dalam 

tangki melalui penambahan dan peningkatan model kinetik. Untuk mendapatkan 

pemahaman yang lebih mendalam tentang pengeluaran etanol, analisis kestabilan model 

tanpa dimensi dan analisis parameter telah dilaksanakan. Dalam sistem persamaan 

matematik ini, tiga titik kestabilan ditemui. Sementara itu, analisis parameter 

mendedahkan hanya satu parameter dengan kesan positif dan lapan parameter yang akan 

menghalang proses penapaian etanol. Kajian ini juga mengkaji kesan pergerakan zarah-

zarah terhadap proses penapaian etanol. Penggabungan komponen pergerakan zarah-

zarah membawa kepada pembentukan tiga sistem persamaan pembezaan separa (PDE) 

berasingan, yang kesemuanya diselesaikan dengan menggunakan Kaedah Isipadu 

Terhingga (FVM). Penambahan elemen pergerakan zarah-zarah pada model juga telah 

menunjukkan bahawa pergerakan jenis alir lintang mempunyai kesan yang ketara ke atas 

sistem pengeluaran etanol. Kajian ini juga dapat menentukan nilai terbaik untuk alir 

lintang bagi mengoptimumkan pengeluaran. Penambahbaikan model lanjutan dengan 

memasukkan unsur-unsur dinamik bendalir dalam kajian ini juga telah membenarkan 

penyiasatan pengadukan sistem pengeluaran etanol. Kajian mendapati bahawa 

peningkatan keluasan pusaran permukaan bebas daripada pengadukan dan peningkatan 

kelajuan pengaduk akan mengurangkan pengeluaran. Analisis kedudukan pengaduk juga 

telah mendedahkan bahawa pengadukan yang menghasilkan larutan homogen 

meningkatkan pengeluaran etanol. Kajian ini mampu menghasilkan anggaran yang lebih 

baik untuk pengeluaran etanol dalam bioreaktor beraduk dan pemahaman yang lebih 

mendalam tentang tingkah laku zarah-zarah dalam sistem pengeluaran etanol melalui 

penapaian. 
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ABSTRACT 

Ethanol produced through fermentation is one of the renewable energies that can be an 

alternative to conventional fossil fuel energy. However, high-volume ethanol production 

process is difficult to comprehend and expensive to operate. Therefore, in-depth research 

is required for optimal outcomes. Utilising a kinetic model is one of the most convenient 

method to experiment with the production of high-volume ethanol. However, the 

development of a practical kinetic model requires careful consideration of numerous 

factors. In addition, previous research has shown that the agitation parameters in the tank 

also have an impact on ethanol production. This study aimed to provide a solution 

strategy for modelling and simulation of agitation in the tank by extending and enhancing 

the kinetic model. In order to gain a deeper understanding of ethanol production, stability 

analysis of the non-dimensional model and parameter analysis were performed. In this 

system of mathematical equations, three stability points were found. In the meantime, the 

parameter analysis revealed only one parameter with positive effects and eight parameters 

that will hinder the ethanol fermentation process. This study additionally studied the 

impact of particle movement on the process of ethanol fermentation. The incorporation 

of particle movement components led to the formation of three separate systems of partial 

differential equations (PDEs), all of which were solved using the Finite Volume Method 

(FVM). The addition of particle movement elements to the model demonstrated a 

significant effect of advection-type movements on the ethanol production system. This 

study also determined the best value for advection to optimise production. The 

incorporation of fluid dynamics elements in the extended model of this study also allowed 

for the investigation of the ethanol production system’s agitator. The study found that the 

increase in the area of the free surface vortex from agitation and the increase in agitator 

speed reduce the volume of ethanol production. The analysis of the agitator’s position 

further revealed that agitation resulting in the production of a homogeneous solution 

increases ethanol production. The findings of this study can result in better estimations 

of ethanol production in agitated bioreactors and enhance understanding of particle 

behaviour in ethanol production system through fermentation.  
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Research Background 

Energy is one of the most essential requirements for the development of a nation 

and has attracted much attention over the past several decades. According to Bouzguenda 

et al. (2019), the energy industry has a significant role in increasing wealth, fostering 

national development, and ensuring social sustainability. Nonetheless, there has been a 

significant rise in energy consumption. According to the findings of Malek et al. (2017), 

Malaysia is among the ASEAN nations that have experienced a threefold increase in 

energy consumption. In order to reduce carbon dioxide and greenhouse gas emissions 

while meeting future energy demands, fossil fuels should be replaced by sustainable and 

green energy sources. Nonetheless, the use of fossil fuels has caused global climate 

change (Kumar et al., 2020).  

Ethanol through fermentation, also known as bioethanol, appears to be a 

promising alternative to traditional fossil fuel energy sources. As an alternative energy 

source, it can typically be created through yeast fermentation from agricultural waste. 

Bioethanol is one of the renewable energies that has grabbed the attention of Malaysian 

researchers such as Derman et al. (2018) and Phuang et al. (2022), possibly due to the 

abundance of natural resources, economic considerations, and environmental concerns 

(Derman et al., 2018). Bioethanol is mostly created by fermenting the sugar, most of 

which is found in food, with yeasts or bacteria in a reactor. Nevertheless, the utilisation 

of food as a viable source for bioethanol production is hindered by the escalating market 

demand and subsequent increase in food prices (Tse et al., 2021). They also mention that 

this issue has resulted in the creation of bioethanol of the second generation, which 

replaces feed with low-value materials such as wood chips, crop residues, and waste. 

Ethanol can also be combined with diesel to create biodiesel, which emits fewer 

pollutants and greenhouse gases. According to Sokmez et al. (2022), ethanol is one of the 
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sources that can generate electricity using Direct Alcohol Fuel Cells (DAFC) technology. 

They also stated that ethanol has advantages over other liquid alcohols because it can be 

produced using renewable resources. According to Phuang et al. (2022), the Malaysian 

government enacted a B20 biodiesel mandate in 2020, requiring the transportation 

industry to blend at least 20 per cent oil palm biodiesel with diesel gasoline. In addition, 

the Feed-in Tariff Mechanism enables the renewable energy industry to sell electricity to 

the national grid at predetermined prices. The implementation of initiatives such as the 

Feed-in Tariff Mechanism in Malaysia is expected to enhance the domestic demand for 

ethanol; thus, emphasising the need for studies to improve ethanol production in 

Malaysia. 

1.2 Problem Statement 

The process of ethanol production through fermentation is complex to understand 

and expensive to operate. One of the convenient ways to experiment with the production 

is by using kinetic models. According to Phukoetphim et al. (2017), kinetic models can 

forecast fermentation performance and the influence of environmental conditions on 

ethanol production. In addition, Germec et al. (2022) state that the study on the kinetic 

models will enhance understanding of the metabolic nature of a fermentation process, 

including the behaviour of microbes and the biomass consumed throughout the 

fermentation process. In order to have a deep understanding of the microbial nature and 

subsequently optimise the production yield, a lot of consideration has to be made, such 

as the parameters and significant factors of kinetic models. 

Numerous research has been conducted to investigate the various elements that 

influence ethanol yield and the type of fermentation involved. Tesfaw & Assefa (2014) 

reported that microbial growth and ethanol production are greatly influenced by 

temperature, pH, oxygen, initial concentrations of the substrate, by-product acids, solid 

solubility, and microbe immobilisation. Phisalaphong et al. (2006) also took into account 

the influence of temperature in his investigation of ethanol production. The study 

successfully developed a kinetic model and discovered 12 parameters within it. 

Nevertheless, the study concentrated solely on developing kinetic models for batch 

fermentation, neglecting other variables that impact ethanol production.  
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A review by Tse et al. (2021) stated that three types of fermentation to produce 

ethanol fermentation, namely batch, fed-batch, and continuous fermentations, each can 

be represented with a different kind of kinetic model. In general, in batch fermentation, 

all ingredients will be added to the reactor, and only when the reaction is complete will 

the materials be extracted. In contrast, during fed-batch fermentation, the ingredients are 

regularly brought into the reactor. Similar to batch fermentation, the material will only 

be removed from the reactor at the end of the reaction. Meanwhile, continuous 

fermentation is carried out with the input and removal of material occurring continuously 

during the fermentation process. 

Batch fermentation can be undertaken in a non-shaking or shaking reactor, such 

as the experiment conducted by Nasir et al. (2017). According to their research, shaking 

the reactor creates a homogenous mixture that can increase ethanol production. This 

homogeneous mixture can be linked to hydrodynamic factors like diffusion and 

advection. Diffusion is the random motion of particles in a fluid, whereas advection is 

the transport of particles affected by the velocity of the fluid. However, there is no kinetic 

study related to batch fermentation that includes hydrodynamics factors has been 

conducted to the extent of the researcher’s knowledge. This might lead to biased 

prediction results due to the incomprehensive judgment of both chemical and physical 

phenomena occurring in the ethanol production process. 

1.3 Research Question 

This research is conducted to answer the following questions: 

i. How to improve the predictive capabilities of the existing kinetic model and 

provide more directed and rational approaches for process design and 

optimisation? 

ii. What are the advection and diffusion effects during the fermentation process? 

iii. What is the effect of hydrodynamics in a mathematical model of ethanol 

production through batch fermentation process? 
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1.4 Research Objectives 

The objectives of this research are: 

i. To improve the predictive capabilities of the existing kinetic model and provide 

more directed and rational approaches for process design and optimisation. 

ii. To examine the effects of advection and diffusion during a fermentation process. 

iii. To formulate the effect of hydrodynamics in a mathematical model of ethanol 

production through the batch fermentation process. 

 
1.5 Research Scope 

Generally, batch fermentation is conducted in a reactor with no addition or 

removal initial value of microbial, substrate, and products from the beginning of the 

operation until the process is completed. According to Tse et al. (2021), this type of 

fermentation is the cheapest to operate despite the longer downtime between batches 

because of cleaning, vessel preparation, and sterilisation. For that reason, this research 

focused on the modelling of ethanol production through batch fermentation only. 

Experimental data from Abdul Halim (2016) was used in this study due to challenges in 

gathering data for the validation process. For the computation procedure, MATLAB was 

utilised for stability analysis, whereas Python was employed for Finite Volume Method. 

1.6 Research Significance 

This research provided significant contributions to mathematics and its 

application in terms of the study’s novelty and the findings’ applicability. First, this 

research proposed a mathematical model for ethanol production through the batch 

fermentation process with the effect of hydrodynamics by coupling the diffusion-

advection-reaction equations with fluid dynamics  terms. Then, the developed kinetic 

model can be used to better predict ethanol production, better explain the fermentation 

process, and verify experimental output. 
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1.7 Thesis Outlines 

The current thesis consists of seven chapters on fermentation-based ethanol 

production. Chapter 1 outlines the introduction, the importance of studying ethanol 

fermentation production, and the existing body of knowledge in this field of study. 

Chapter 2 discusses microbial growth and its relationship to the reaction kinetic model. 

This chapter additionally explains the data sources of this study, the necessity of 

considering particle movement in the ethanol production process, the concepts of 

diffusion and advection transport phenomena, the introduction of fluid dynamics, and the 

mathematical equation for fluid flow. Chapter 3 provides an overview of the study and 

discusses the specific numerical method employed, namely the finite volume method, for 

both 1D and 2D problems. Chapter 4 examines stability analysis from the chosen model 

of Phisalaphong et al. (2006) to gain a more comprehensive understanding of the dynamic 

system of ethanol production. The proposed mathematical models for particle movement 

and fluid flow in the reactor are then presented in Chapter 5. Chapter 6 primarily focuses 

on the results and discussion of the study, whilst Chapter 7 presents the conclusions and 

recommendations for future works.  
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction 

This chapter begins with a review of microbial growth in the literature. The phases 

of microbial growth are discussed to understand the kinetic model and parameters 

involved. This chapter also outlines prior findings related to the elements of particle 

movement during fermentation and discusses the significance of fluid dynamics  in the 

process of ethanol production through fermentation. 

2.2 Microbial Growth 

Batch fermentation relates to the rate of microbial growth, substrate usage, and 

product formation in different environmental conditions (Tse et al., 2021). Microbial 

growth plays a crucial role in biotechnologies as it elucidates the fundamental aspects of 

microbial life and understands the utilisation of substrates and the resulting byproducts. 

Nevertheless, the factors influencing the growth vary depending on microbial species. 

Figure 2.1 shows the typical microbial growth as seen in Das & Pandit (2021). Microbes 

undergo various phases of growth in fermentation: (i) lag phase, (ii) exponential phase, 

(iii) stationary phase, and (iv) death phase. The lag phase follows the introduction of 

microbial, during which they are introduced and adjusted to the new environment. At this 

phase, no growth will occur. During the exponential phase, the number of bacteria and 

their mass increase with the presence of substrate. Then, the stationary phase happens 

when the growth rate equals the death rate. The death phase is when the death rate is 

higher than the growth rate. The drop-in growth rate is due to a lack of food and microbial 

contamination due to toxic or environmental changes, such as temperature or pH. 
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Figure 2.1 Phases in the microbial growth.  

Source: Das & Pandit (2021) 

2.3 Kinetic Reaction Model for Batch Fermentation 

Fermentation is a biological process whereby microbes naturally degrade 

complex substrate molecules into smaller and simpler molecules. The process leads to 

the production of many byproducts, including ethanol. During the process of 

fermentation, microbes undergo cell proliferation, which is referred to as microbial 

growth. Recently, various mathematical models pertaining to the topic of biotechnology 

have been documented in the literature, with an extensive array of kinetic models 

exploring fermentation processes. 

Kinetic models are one of the methods that can be used to gain an understanding 

of microbes. The Monod's (1949) model is the dominant and well-known kinetic model. 

This model relating to microbial growth was introduced by a French scientist, Jacques 

Monod, and it becomes the foundation for the most recently developed model. 

Equation 2.1 was used by Monod (1949) to explain the behaviour of microbial 

growth under the conditions of limited substrate availability, where  is the microbial 

growth, max is the maximum specific growth rate, S  is the substrate concentration, and 

SMK  is saturation growth constant. 
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max

SM

S

K S


 =

+
 2.1 

Roca et al. (1996) and Birol et al. (1998) are among the researchers in the field of 

ethanol fermentation who have employed the Monod (1949) model in their studies. While 

they discovered that Monod's (1949) model had a strong fit with their data from 

experimentation, the research conducted by Kono (1968) demonstrated that the model 

needed revision to accurately describe the data obtained from batch fermentation 

experiments. Kono & Asai (1969) presented a mathematical equation that explains the 

production of ethanol by incorporating parameters associated with the phase of microbial 

growth. The parameters are related to the correlation between microbial growth and 

production under growth and non-growth conditions. 

Other studies have demonstrated that a high substrate concentration inhibits 

microbial growth. Among these studies are those conducted by Yano & Koga (1969), 

Edwards (1970), and Tseng & Wayman (1975). For example, according to Tseng & 

Wayman (1975), low levels of substrate concentrations serve as a metabolic resource for 

microbes, with excessive concentrations of substrate inhibiting microbial growth. In 

addition, the model proposed by Edwards (1970), inspired by the model proposed by 

Aiba et al. (1968), incorporated substrate inhibition factors into the study of microbial 

growth. The factor of product inhibition also has an influence on the process of ethanol 

production through fermentation. Doble et al. (2004) reported that product inhibition is 

apparent when the concentration of the product exceeds a specific threshold at the end of 

the process. 

Aiba et al. (1968) effectively incorporated product inhibition effect parameters 

into the kinetic model in their study on the product inhibition effect in ethanol production. 

However, the model developed by them did not account for the substrate’s kinetic model. 

A mathematical model that integrated the effects of substrate inhibition and product 

inhibition by integrating both factors into a single equation was developed by Levenspiel 

(1980), but a substrate kinetic model is still missing from the model. Ghaly & El-Taweel 

(1997) also introduced a model of ethanol production that integrates factors, namely 

substrate limitation, substrate inhibition, ethanol inhibition, and cell death. The model 
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found that microbes possess the capacity to endure specific amounts of ethanol within 

their growth medium. Nevertheless, the presence and increase of ethanol production can 

potentially hinder microbial growth, resulting in a complete cessation of growth. Apart 

from that, they stated that the effect of osmotic pressure in a medium with a high substrate 

concentration will also inhibit growth. The microbial growth rate proposed by Ghaly & 

El-Taweel (1997) is expressed in Equation 2.2, 

max M IM

SM M IM

S P K

K S P P K S


 =

+ + +  
2.2 

where SMK  represents the saturation growth constant and MP  and IMK  represent the 

product inhibition coefficient and substrate inhibition coefficient, respectively. In 

addition, Ghaly & El-Taweel (1997) used the dK  parameter as a coefficient or the 

microbial death rate in their model.  

In principle, Equation 2.3 represents the mathematical expression for measuring 

the rate of change of microbial populations.  

max

Rate of Microbial Microbial

change of microbial growth rate death rate

M IM
d

SM M IM

S P KdM
M K M

dt K S P P K S



     
= −     

     

= −
+ + +  

2.3 

where the variable M  is the microbial concentration ( 1g L− ), P  is the product 

concentration ( 1g L− ), S  is the substrate concentration ( 1g L− ) and t  is the time ( h ). 

Additionally, Ghaly & El-Taweel (1997) highlighted the significance of the yield 

coefficient for product on substrate, PSY , the yield coefficient for microbes on substrate,

MSY  ,   and the rate of change of microbial populations, dM dt when defining the rate of 

product formation. Equation 2.4 mathematically illustrates the rate of change of the 

product. 
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max

Rate of Product

change of product formation rate

PS

MS

PS M IM
d

MS SM M IM

YdP dM

dt Y dt

Y S P KdP
M K M

dt Y K S P P K S



   
=   

   

=

 
= − 

+ + +   

2.4 

Ghaly & El-Taweel (1997) also explained three different factors that can affect 

the rate of substrate change. These factors include the substrate consumption in microbial 

growth, the substrate consumption for maintenance, and the substrate consumption in 

product formation. Equation 2.5 explains the rate of change of the substrate in more 

detail. 

Substrate 

consumption in

 microbial growth

Substrate 

consumption in

 p

Substrate 

consumption in

 mai

d

n

Rate of

change of substrate

ro uct formatio

c

n

tenan e

 
   

− = −   
    

 
 

−
 
  

 
 

−
 
    

2.5 

 

Equation 2.5 can be represented as demonstrated in Equation 2.6. 

1 1

1 1

MS PS

MS PS

dS dM dP
mM

dt Y dt Y dt

dS dM dP
mM

dt Y dt Y dt

   
− = − − −   

   

   
= + +   

     

2.6 

where m  is the maintenance coefficient of microbes. 
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In particular, Equations 2.7, 2.8, and 2.9 represent the kinetic model of Ghaly & 

El-Taweel (1997), which defines the microbial growth rate, product formation rate, and 

substrate consumption rate, respectively. 

max M IM
d

SM M IM

S P KdM
M K M

dt K S P P K S


= −

+ + +
 2.7 

maxPS M IM
d

MS SM M IM

Y S P KdP
M K M

dt Y K S P P K S

 
= − 

+ + + 
 2.8 

1 1

MS PS

dS dM dP
mM

dt Y dt Y dt

   
= + +   

   
 2.9 

Phisalaphong et al. (2006) also developed a mathematical model. Akin to the 

study conducted by Ghaly & El-Taweel (1997), Phisalaphong et al. (2006) formulated a 

mathematical model consisting of three equations that explain the dynamics of microbes, 

products, and substrates during the ethanol fermentation process. These equations, 

designated as Equations 2.10, 2.11, and 2.12, constitute a system of ordinary differential 

equations (ODEs). Different from Ghaly & El-Taweel (1997), Phisalaphong et al. (2006) 

employed a number of parameters to represent inhibition factors in the equation relating 

to ethanol production. For instance, IPK in ethanol production defines the substrate 

inhibition coefficient, while IMK  quantifies the substrate inhibition coefficient in the 

context of microbial growth. The model proposed by Phisalaphong et al. (2006) is 

represented in Equations 2.10, 2.11, and 2.12, 

1
2

max 1SM d

IM M

dM S P
SM K S K M

dt K P


−

   
= + + − −   

   
 2.10 

1
2

max 1SP

IP P

dP S P
v SM K S

dt K P

−

   
= + + −   

   
 2.11 

1 1

MS PS

dS dM dP
mM

dt Y dt Y dt

   
= − − −   

   
 2.12 
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where the variable M  is the microbial concentration ( 1g L− ), P  is the product 

concentration ( 1g L− ), S  is the substrate concentration ( 1g L− ) and t  is the time ( h ). The 

parameters and their meaning are listed in Table 2.1. 

Table 2.1 Parameters introduced by Phisalaphong et al. (2006) for ethanol 

fermentation production. 

Parameters  Description Unit 

max  Maximum specific rate for microbial growth 1h−
 

maxv  Maximum specific rate for ethanol production 1h−
 

SMK  Substrate half-saturation coefficient for microbial 

growth 

1g L−

 

SPK  Substrate half-saturation coefficient for ethanol 

production 

1g L−

 

IMK  Substrate inhibition coefficient in microbial growth 1g L−

 

IPK  Substrate inhibition coefficient in ethanol production 1g L−

 

MP  Product inhibition coefficient in microbial growth 1g L−

 

PP  Product inhibition coefficient in ethanol production 1g L−

 

dK  Microbial death rate 1h−
 

MSY  Yield coefficient for the substrate used on microbial 

growth 

dimensionless 

PSY  Yield coefficient for the substrate used on ethanol 

production 

dimensionless 

m  Maintenance coefficient of microbes 1h−
 

 

2.4 Data Extraction  

Oil palm trunk (OPT) is a waste product generated by palm oil operations. 

Chopped and pressed OPT produces juice that is rich in substrate, making it a suitable 

metabolic source for ethanol production. Abdul Halim (2016) conducted a comparative 

analysis in her doctoral dissertation to explore the feasibility of making ethanol from 

OPT. The study examined multiple factors that contribute to the increase in ethanol 



 

 13 

production, including shaking. When a shaker was employed, only Pichia stipitis showed 

signs of an increase in ethanol production, with Saccharomyces cerevisiae Kyokai no. 7 

species exhibited the highest ethanol yield under static conditions in the experiment. 

According to Abdul Halim (2016), this occurred due to the fact that shaking could 

increase the surface area in contact with the air. The implementation of this approach 

significantly reduces anaerobic conditions, a condition that does not require oxygen, 

within the bioreactor, hence resulting in a drop in ethanol production. Nevertheless, the 

study provided a basis for investigating a mathematical model related to the production 

of ethanol through fermentation, under both shaking and non-shaking situations. Hence, 

the data was used as a reference in this study. 

2.5 Particle Movement in Ethanol Production  

Using mathematical models is an effective way to understand the complex 

behaviour of fermentation processes. Understanding the parameters and key factors in 

fermentation process models will improve the understanding of microbial nature, 

optimise manufacturing yield, and boost production output. According to Ghaly & El-

Taweel (1997), optimal microbial growth requires the transport of nutrients from the 

medium to the surface of the microbes, which can be defined as the movement of 

substrate particles in the medium to the microbes, thereby affecting the production of 

ethanol. On the other hand, Setford et al. (2019) developed a mathematical model to study 

the anthocyanin dissolved in the grape skin and solution for winemaking. The study found 

two types of particle movement with the same concept as ethanol fermentation, namely 

diffusion, the random movement of particles in a fluid, and advection, the transport of 

substances influenced by fluid velocity. 

Nasir et al. (2017) conducted experiments on the isolation of Saccharomyces 

cerevisiae, a common microorganism in ethanol production, and metal ions for the 

production of ethanol through shaking fermentation and non-shaking fermentation. 

According to the study, shaking creates a homogenous mixture that improves ethanol 

production. In addition, a study conducted by Mohd Azhar et al. (2017) concluded that 

Saccharomyces cerevisiae can be inhibited in extreme conditions, such as high 

temperatures, high ethanol concentrations, and high sugar levels. To prevent such an 
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occurrence, Merger et al. (2017) highlighted particle movement factors in their study. 

Although their research aimed to optimise the substrate yeast used to produce high-

quality wine, the model can also be applied to ethanol fermentation. Recently, 

Phisalaphong et al. (2006) introduced a mathematical model that considers the inhibition 

factors in the process of ethanol production through fermentation. Inspired by those 

studies, the combination of a mathematical model that incorporates an inhibitory impact 

and a particle movement factor is deemed crucial for optimal ethanol production.  

This study aimed to provide an understanding of mathematical models in non-

shaking fermentation by considering the inhibition factor in the model of Phisalaphong 

et al. (2006) and the particle movement element as proposed in the model of Merger et 

al. (2017). The combination of these two models has led to the development of a 

mathematical model for fermentation in a shaking reactor. The mathematical model 

proposed for non-shaking fermentation is named the diffusion-reaction model, while the 

model for shaking fermentation is named the advection-diffusion-reaction model. 

2.6 Diffusion and Advection Transport Phenomena.  

There are two methods of fermentation to obtain ethanol, namely non-shaking 

fermentation and shaking fermentation, as described in Section 2.5. The two forms of 

fermentation exhibit different particle movements. The first particle movement in non-

shaking fermentation involves the natural movement of particles from regions of higher 

particle concentration to regions of lower particle concentration. Bennett (2012) 

associates this movement with a diffusion movement. Many researchers have integrated 

the elements of diffusion with reaction through mathematical equations, for example in 

the work of Tosun (2007). The representation in mathematics of a coupled diffusion-

reaction model is given by Equation 2.13. 

Accumulation Diffusion Element + Reaction Element=  2.13 

The second particle movement to explain transport phenomena, advection, is 

characterised by bulk movement or flow (Bennett, 2012). The flow created in shaking 

fermentation has an impact on the movement of particles in the reactor, consequently 
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affecting the ethanol production process (Abdul Halim, 2016). The concept of coupled 

advection-diffusion-reaction has been widely applied across multiple fields of study. For 

instance, Cheng & Zheng (2021) conducted a study on disease transmission, Ma & Tang 

(2023) investigated prey and predator population densities, and Ebrahimijahan et al. 

(2020) conducted research on the prevention of groundwater contamination. 

Tosun (2007) developed a mathematical representation for its couple advection-

diffusion-reaction model expressed in Equation 2.14 

Accumulation Advection Element + Diffusion Element 

+ Reaction Element

=  2.14 

The current study believed that the integration of these two fundamental transport 

phenomena into a system of mathematical equations enables the development of an 

extensive understanding of the complex relationship between advection and diffusion 

phenomena. 

2.7 Fluid dynamics  in Ethanol Production  

Understanding the behaviour of large-scale bioreactors is necessary to optimise 

bioethanol production. For example, Nasir et al. (2017) and Afedzi et al. (2022) indicated 

that inhomogeneity significantly impacts large-scale systems. However, the majority of 

research on ethanol production is undertaken in small-scale facilities that ignore 

inhomogeneity variables in bioreactors. 

Saikali et al. (2021) employed the Navier-Stokes equations in their mathematical 

model to determine velocity profiles when simulating turbulent flow in a stirred tank 

reactor without baffles. However, the study did not consider the impact of the velocity 

profile on ethanol fermentation. The equation is a common mathematical model in the 

field of fluid dynamics. According to Quiroz-Pérez et al. (2019), fluid flow analysis is 

essential for ensuring and enhancing equipment performance to boost production output. 

Also, several studies adapted the fluid dynamics model into the ethanol fermentation 

process. The rheological parameters, including shear rate, were assessed by Um & Hanley 

(2008) during the process of simultaneous saccharification and co-fermentation. This 
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investigation employed a high solid loading, resulting in a non-Newtonian solution in the 

tank. Their research found that regions of high shear stress can reduce the viscosity of the 

tank’s liquid. However, Tse et al. (2021) reported that water, a Newtonian solution, is 

also one of the media in the fermentation process. Therefore, it is believed that a study of 

fermentation employing a Newtonian solution is required. 

Additionally, Nagarajan et al. (2017) have conducted a fluid dynamics 

investigation on the fermentation of cellulose to produce ethanol. Prior to fermentation, 

they utilised photocatalysis, which is the process of breaking down cellulose molecules 

into smaller carbohydrate forms using light. Therefore, the tank wall has to transmit light. 

In addition, their research revealed that the Rushton impeller was capable of pushing 

particles against the reactor wall. However, their research only considered mixing aspects 

and neglected to account for element reactions. In order to contribute value to the study 

of ethanol production, this chapter combines previous advection-diffusion-reaction 

models with the fluid flow mathematical equation to illustrate fermentation in a stirred 

tank reactor.  

2.8 Mathematical Equation for Fluid Flow  

Studying the velocity profile in reactors require a comprehensive understanding 

of fluid flow. According to Childs (2011), the continuity equation, the conservation of 

mass inside a fluid flow, and the Navier-Stokes equation can be used to mathematically 

express the fluid flow model. According to Childs (2011), the continuity equation can be 

written as Equation 2.15, 

( ) ( )
 

u v

t x y

   
− = +

  
 2.15 

where   represents the density and u  and v  indicate the velocity components in the x  

and y  axes, respectively. Additionally, Equation 2.15 can be reformulated as Equation 

2.16. 
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0

0

u v
u v

t x y x y

D u v

Dt x y

  





     
+ + + + = 

     

  
+ + = 

  

 2.16 

Childs (2011) further states that in incompressible flow, the density of a fluid 

particle remains constant as the particle travels. Therefore, Equation 2.16 can be 

represented as demonstrated in Equation 2.17. 

0
D u v

Dt x y




  
= + = 

  
 2.17 

When the 0
D

Dt


= , and Equation 2.17 is divided by the density,  , the continuity 

equation can be expressed in vector notation, as presented in Equation 2.18. 

U 0     where U  
u

v

 
 • = =  

 
 2.18 

Also, Saikali et al. (2021) utilised the Navier-Stokes equation for their velocity 

profile investigation in the reactor tank. The Navier-Stokes equation is presented in 

Equation 2.19. 

( ) ( )
U 1

U U U      where U
u

vis pr
vt 

 
= − • + • −  =  

  
 2.19 

In Chapter 5, continuity and the Navier-Stokes equation were utilised to couple 

advection-diffusion-reaction equations with fluid dynamics. 
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2.9 Conclusion 

Gaining a thorough comprehension of a production process can enhance 

production output and simultaneously enable a precise mathematical model to be 

developed. Thus, this chapter begins by discussing microbial growth and its relationship 

with the reaction kinetic model of ethanol production. This chapter also presents an 

explanation of the data sources employed in the study. In addition, this chapter delineates 

the importance of incorporating particle movement into the ethanol production process, 

as well as the concepts of diffusion and advection. In order to further the investigation of 

the ethanol production process in a tank, this chapter also includes an introduction to fluid 

dynamics and the mathematical equations for fluid flow. The methodology of the study 

plays a crucial role in determining its effectiveness. Hence, the forthcoming chapter will 

provide a comprehensive explanation of the procedure utilised to achieve the objective 

of the study. 
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CHAPTER 3 

 

 

METHODOLOGY 

3.1 Introduction 

This chapter explores the structure of research framework and the numerical 

method for solving PDE problems. The solutions to 1D and 2D spatial problems are 

described in more detail for all models associated with this investigation. 

3.2 Overview of the Research 

A structured methodology is essential to ensure systematic and efficient progress 

towards achieving research objectives. This study employs a flow chart, as shown in 

Figure 3.1, to enhance the clarity and comprehensiveness of its approach. This visual tool 

illustrates the sequential steps involved, offering a clear depiction of the process flow 

from the beginning to the end of the study. 

The study started by fitting parameters to the selected model, specifically the one 

that Phisalaphong et al. (2006) proposed. This method aims to approximate the unknown 

parameter values in the model based on experimental data. Nelder-Mead serves as the 

algorithm in this parameter fitting, and Abdul Halim's (2016) study provides the 

experimental data. In general, using the algorithm, this method can estimate parameter 

values that minimize the difference between the model and the experimental data. Then, 

the study continued with stability analysis and parameter analysis on Phisalaphong et al. 

(2006) model. Using software named XPPAUT, this study conducts a stability analysis 

to determine the value of equilibrium points in the ethanol production system. In the 

meantime, the parameter analysis aims to investigate the behavior of the Phisalaphong et 

al. (2006) model parameters in relation to ethanol production. 

The investigation was subsequently continued with an analysis of particle 

movement factors during fermentation. A model of particle movement based on diffusion 
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has been suggested as a means to depict the non-shaking fermentation process. This is an 

expansion of the Phisalaphong et al. (2006). The investigation of particle movement has 

been further expanded with the incorporation of the advection factor into the model. Its 

objective is to outline the process for shaking fermentation. The fluid dynamic factor is 

also taken into account in order to ascertain the actual state of particle movement within 

the tank. A coupled fluid dynamics-advection-diffusion-reaction model was proposed. 

The Finite Volume Method was used to solve the three expanded models in this 

study. This solution has been executed via the Python programming language, enabling 

the simulation of ethanol production. The final stage of this study involves the analysis 

of the results, discussion, conclusion, and report writing. 
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Figure 3.1 Summary of overall research framework. 

 

3.3 Finite Volume Method for 1D Problems 

This section provides an overview of the Finite Volume Method (FVM). 

According to Moroney (2006), the finite volume method is suitable for fluid flow 

problems since it preserves the conservation law, even when discretized. Furthermore, 

FVM can be easily implemented on many mesh structures and geometries. In 

consideration of these benefits, the finite volume method was utilised to solve the partial 

differential equation models in this study. FVM discretised its calculations using two 

Start 

Approximate the unknown parameter values in Phisalaphong et al. (2006) model by a 

parameter fitting i.e. Nelder-Mead algorithm to fit the data of Abdul Halim (2006). 

Perform the stability analysis and parameter analysis to Phisalaphong et al. (2006) model. 

Develop a diffusion-reaction model by extending the Phisalaphong et al. (2006) model. 

Develop an advection-diffusion-reaction model by extending the Phisalaphong et al. (2006) 

model. 

Develop a fluid dynamics-advection-diffusion-reaction model by extending the 

Phisalaphong et al. (2006) model. 

Solve the models numerically using the Finite Volume Method coded in Python. 

Simulate the models using Python. 

Result analysis, discussion, conclusion, and report writing. 

End 
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forms of grids: (i) cell-vertex grid and (ii) cell-centre grid. The cell-vertex grid is used to 

calculate velocity, while the cell-centre grid is used for variables unrelated to velocity. 

In this study, Equations 5.1–5.3 and Equations 5.6–5.8 represent the model for 

the 1D spatial problem. Both models presumed that the diffusion coefficient, D , and 

velocity coefficient, U , remained constant throughout the fermentation process. 

Therefore, FVM calculation was only limited to M , P , and S  variables, with the 

solution for the coupled diffusion-reaction equation and the coupled advection-diffusion 

equation relying on the cell-centre grid type. Figure 3.2 shows the cell-centre grid. The 

letter C represents variables, and i  is the interpolated value. 

 

Figure 3.2 Cell-centre grid in 1D problem FVM. 

Equations 5.1–5.3 contained temporal, diffusion and reaction components as 

shown in the following equation. 

( ) ( ) ( )Rate Diffusion +ReactionM M M=  3.1 

( ) ( ) ( )Rate Diffusion +ReactionP P P=  3.2 

( ) ( ) ( )Rate Diffusion +ReactionS S S=  3.3 

Then, each component can be solved using the next equations. The letter C is used 

to represent all variables to avoid repeating writing and the   symbol is control volume. 
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( ) ( )
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1
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+


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=   
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 
 3.5 

where F

F

A FD C=  . The letter F is faces and tf  is time factor. The explicit-type 

computations were chosen to simplify the calculating procedure. Hence, the variable tf   

in Equation 3.5 is equal to 0. Equation 3.6 represents the new expression for the diffusion 

component. 

( )

( ) ( )

( )

F
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1 1

1 1
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1 1
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i i i i

n n
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+ −

 
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 

 − −
= + −  

  


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



 3.6 

The subsequent equation represents the component of the reaction. To simplify 

writing, the letter R is used to denote reaction component. As a result of the explicit 

calculation type, tf  in Equation 3.7 once more has the value 0. 
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Subsequently, the reaction variables M , P , and S  can be defined by the 

following equations. 
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Finally, Equation 3.11 can be utilised to determine the values of each variable for 

the subsequent iteration. 
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x
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 3.11 

Equations 5.6–5.8 contained temporal, advection, diffusion, and reaction 

components. For the temporal, diffusion and reaction components of this model, the 

calculations were similar to Equations 5.1–5.3. Therefore, temporal, diffusion and 

reaction calculations were not discussed. The following equation were then applied to 

Equations 5.6–5.8 to solve the advection component. 
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 3.12 

where F

F

B = FUC  and tf = 0. Equation 3.13 describes the new expression for the 

advection component. 
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Finally, Equations 5.6–5.8 were solved using Equation 3.14. 
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 3.14 

 

3.4 Finite Volume Method for 2D Problems 

In this research, the mathematical model for the 2D spatial problem was the 

coupled fluid dynamics-advection-diffusion-reaction equation. This model assumed that 

the advection value varied based on the fluid velocity, as commonly used in stirred 

reactors. Therefore, the FVM calculation employed differed from the 1D spatial problem. 

In Figure 3.3, the cell-vertex was represented by a white box, whereas the cell-centre was 

indicated by a shaded box. The variables U and V related to the velocity profile employed 

the cell-vertex grid, while the other variables employed the cell-centre grid. The letter Ci,j 

in Figure 3.3 was substituted with pressure (pr), microbe (M), ethanol (P), and substrate 

(S). 
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Figure 3.3 Cell-vertex grid and cell-centre grid in FVM. 

Figure 3.3 shows a single grid cell. For the proposed model to be solved, the 

calculation should involve multiple adjacent cells. Figure 3.4 depicts the particular cell 

and its adjacent cell in the calculation of variable U in Equation 5.10.  

 

Figure 3.4 The grid cells utilised to solve Equations 5.10. 

Equations 5.10–5.11 consisted of temporal, advection, diffusion, and pressure 

components. In order to simplify the calculation, Equations 5.10–5.11 were split down 

into their components. 



 

 27 

( )

( )

( )

1

1

Rate  

n

n

i

n n

i i

U
U t

t

U
t

U U x y

+



+


= 




= 



= −  

 

 
3.15 

( )

( )

( )

( )

1

F

1 1

1 1

1 1 1 1

Advection  

F

2 2

2 2

2 2

n

n

n

n n n n

i , j i , j i , j i , j

n n n n

i , j i , j i , j i , j

n n n n

i , j i , j i , j i , j

U U
U U V t

x y

UU VU t

U U U U
y

U U U U
y

V V U U

+



+ +

− −

− + + +

  
= +  

  

 
= +  

 

  + +
    

  

  + +
+ −    

  
=

 + +
+  

 

 



( )

( )1 1

2 2

n n n n

i , j i , j i , j i , j

t

x

V V U U
x

− −

 
 
 
 
 
 
  
 
   
 

   + +
+ −     

    

 

3.16 

( )

( ) ( )

( ) ( )

1

F F

F F

1 1

1 1

1 1

Diffusion +  

F+ F

2

n

n

n

n n n n

i , j i , j i , j i , j

n n n n

i , j i , j i , j i , j

n n

i , j i , j i ,

U U
U t

x x y y

U U
t

x y

U U U U
y y

x x
t

U U U U
x x

y y

y t
U U U

x

+



+ −

+ −

+ −

     
=   

      

  
=  

  

 − −
 + − 

  = 
 − −

+  + −    

 
= − +



 

 

( )

( )1 12

n

j

n n n

i , j i , j i , j

x t
U U U

y
+ −

 
+ − +



 
3.17 

 



 

 28 

( )

( ) ( )

( )

1

F

F

1

1

1
Pressure  

1
F

1

n

n

n

n n

i , j i , j

n n

i , j i , j

pr
U t

x

pr
t

x

pr pr y t

y
pr pr t

 
+



−

−


= 

 

 
=  

  

= −  



= − 



 


 3.18 

Hence, Equation 3.19 showed the calculation for the next iteration for Equations 
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After that, the calculation cell for the variable V in Equation 5.11 is displayed in 

Figure 3.5. 

 

Figure 3.5 The grid cells that were utilised in solving Equation 5.11. 

Equation 5.11 was separated into its individual components, which are 

demonstrated in Equations 3.20, 3.21, 3.22, and 3.23. 
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Thus, the Equation 3.24 could be utilised to calculate the next iteration for V.  
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All variables besides U and V utilised the cell-centre grid. As a result, the 

calculation of all variables employed the same cell grid, as shown in Figure 3.6. Equation 

5.12–5.14 contained components for temporal, advection and diffusion. The variables M, 

P, and S, which represent the microbes, ethanol and substrate, were consolidated into a 

single variable (C) due to their identical forms. 
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Figure 3.6 The grid cells that were utilised in solving Equation 5.12–5.17. 

Equation 3.25–3.27 describes each component of C. 
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Additionally, the reaction variables M , P , and S  can be defined by the 

following equations. 
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As a final step, Equation 3.31 define the values of each variable for the subsequent 

iteration. 
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3.5 Conclusion 

Research methodology is the primary focus of this chapter, which begins with an 

overview of research design. The research overview has been organised as a flow chart 

to simplify the explanation. Besides that, this chapter offers a comprehensive explanation 

of the numerical method, specifically the finite volume method, for the purpose of solving 

the mathematical model. This study aims to solve mathematical models with 1D and 2D 

dimensions. In order to solve those mathematical models, this chapter details two 

different forms of FVM. 
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CHAPTER 4 

 

 

STABILITY ANALYSIS 

4.1 Introduction 

Phisalaphong et al. (2006) demonstrated the inhibitory effect of high temperatures 

on cell activity during the fermentation process through a mathematical model. However, 

the study failed to discuss the stability analysis of the model. This chapter discusses the 

stability analysis of Phisalaphong et al. (2006) model in Equation 2.10, Equation 2.11, 

and Equation 2.12 to comprehend the dynamic system of ethanol production. Moreover, 

the results of this stability analysis can provide an estimate of ethanol production in the 

long term. 

4.2 Parameters in Phisalaphong et al. (2006) Model 

There are a total of 12 parameters in the model that Phisalaphong et al. (2006) 

proposed. The parameter fitting technique was conducted to approximate unknown 

parameter values in Phisalaphong et al. (2006) model based on the data obtained from the 

experiment conducted by Abdul Halim (2016). In this study, the parameters in 

Phisalaphong et al. (2006) model were obtained, as shown in Table 4.1. MATLAB 

toolbox that utilised the Nelder-Mead method was employed for parameter fitting 

technique. 
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Table 4.1 Fitted parameters using experimental data. 

Parameters  Fitted Values Unit 

max  0.7790 1h−
 

maxv  50.1142 1h−
 

SMK  257.9958 1g L−

 

SPK  26.3216 1g L−

 

IMK  182.3467 1g L−

 

IPK  0.1221 1g L−

 

MP  31.2110 1g L−

 

PP  25.7261 1g L−

 

dK  0.0225 1h−
 

MSY  2.7793 dimensionless 

PSY  1.2606 dimensionless 

m  0.0017 1h−
 

Figure 4.1 illustrates the microbial growth, substrate consumption, and ethanol 

formation during the ethanol fermentation production process by utilising the fitted 

parameters. The blue line in this graph represents the solution to the Phisalaphong et al. 

(2006) model using the fourth-order Runge-Kutta method, while the red dot describes 

experimental data. To have a more comprehensive understanding of the model, 

mathematical analysis was conducted in the subsequent section. 
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(a) 

 

(b) 

 

(c) 

Figure 4.1 The (a) microbial growth, (b), substrate consumption and (c) ethanol 

formation using Phisalaphong et al. (2006) model. 
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4.3 Non-dimensional Phisalaphong et al. (2006) Model 

Phisalaphong et al. (2006) introduced a mathematical model in their study, which 

focused on ethanol fermentation by highlighting several inhibitory elements. However, 

they failed to address the mathematical analysis associated with the model. Therefore, 

the purpose of this chapter is to provide a mathematical analysis of the Phisalaphong et 

al. (2006) model.  

The mathematical analyses performed in the model are stability analysis and 

parameter analysis. Before running the analysis, the model was converted to a non-

dimensional form. Transforming mathematical models into a non-dimensional form has 

numerous advantages. In a study on the need for non-dimensional form models of 

biological processes, Louie et al. (1998) found that the non-dimensional form can reduce 

the number of model parameters. Furthermore, Langtangen & Pedersen (2016) state that 

non-dimensional form models can enhance the comprehension of how distinct physical 

processes could interact in a differential equation model. In this study, Equation 4.1, a 

transformation equation, was introduced to transform Phisalaphong et al. (2006) model 

into a non-dimensional form. 
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d d
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   
 4.1 

The variables g , p , s  and   represent non-dimensional variables for microbes, 

ethanol, substrate and time, respectively. Hence, the Phisalaphong et al. (2006) model 

can be rewritten as Equation 4.2–4.5.  
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The derivation of Equation 4.1–4.4 can be found in Appendix A. Table 4.2 

summarises the meaning of these non-dimensional parameters. 

Table 4.2 Parameters of non-dimensional Phisalaphong et al. (2006) model. 

Parameters  Description 

  The ratio of maximum specific microbial growth to its death rate 

  The ratio of substrate half-saturation coefficient for microbial 

growth to its inhibitory effect 

  The ratio of substrate inhibitory effect between ethanol production 

and microbial growth 

  The ratio of maximum specific ethanol production and its substrate 

inhibitory effect to microbial death rate and its product inhibitory 

effect 

  The ratio of maximum specific ethanol production and its substrate 

inhibitory effect to microbial death rate and its product inhibitory 

effect 

  The ratio of microbial maintenance coefficient to its death rate 

  The ratio of substrate half-saturation coefficient for ethanol 

production and its substrate inhibitory effect towards the product 

inhibitory effect in microbial growth 

  The ratio of maximum specific ethanol production and its substrate 

inhibitory effect towards microbial death rate and the product 

inhibitory effect in ethanol production 

MSY  The yield coefficient for the substrate used on microbial growth 

PSY  The yield coefficient for the substrate used on ethanol production 
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The subsequent section will describe in detail how stability analysis is conducted. 

4.4 Stability Analysis 

Brandon (2003) demonstrated how to analyse the stability of a model using the 

Jacobian matrix's eigenvalues. Equation 4.6 explains the definition of the Jacobian matrix 

for the non-dimensional model by Phisalaphong et al. (2006). 
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where 

( ) ( )
2

1
 =

dg
p sd

g s s

 




−

 + +
 4.7 

( )
2

 =

dg
d s g

p s s

  





−
 + +

 4.8 

( ) ( )( )

( )

2

2
2

1
 =

dg
p sd

s
s s

  



 − −


+ +

 4.9 

( ) ( )
2

1
 =

dp
p sd

g s s



 


−

 + +
 4.10 



 

 41 

( )
2

 =

dp
d sg

p s s

 

 



−
 + +

 4.11 

( ) ( )( )

( )

2

2
2

1
 =

dp
g p sd

s
s s

 

 

 − −


+ +

 4.12 

( ) ( )

( )
( )

( )
( )

2 2

1 1
 = 1

MS PS

ds
p s p sd

g Y s s Y s s

    
  

 − −
+ + −

 + + + +
 4.13 

( )
( ) ( )2 2

 =

MS PS

ds
s g s gd

p Y s s Y s s

   

  


+

 + + + +
 4.14 

( ) ( ) ( )

( )

( ) ( )

( )

2 2

2 2
2 2

1 1
 =

MS PS

ds p g s p g s
d

s
Y s s Y s s

     


  

− − − −
+


+ + + +

 4.15 

To find the equilibrium point of the system, Equations 4.2–4.4 were set to zero 

and solved for g, p, and s. Due to the complexity of the model, the simultaneous equations 

were solved and coded in MATLAB. Based on the output values, the equilibrium points 

depended on certain conditions, as shown in Appendix B. 

In the current study, the stability study of the fermentation system was 

investigated using an alternative method, an application called XPPAUT. According to 

Ermentrout (2002), XPPAUT is a software that simulates, analyses, and animates 

dynamical systems. This software can also easily generate the direction fields, nullclines, 

and equilibrium points of dynamical systems. Figure 4.2 depicts the direction field 

between variables p and g, with red and green lines representing nullclines obtained from 

the XPPAUT. In this analysis, the value 1 was assigned to variable s. According to 

Ermentrout (2002), nullclines are curves in the direction field when the rate of change for 

a particular variable is zero, and when these nullclines intersect, an equilibrium point is 

formed. 
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The eigenvalues can be used to determine each equilibrium point’s stability. 

Stable equilibrium points have only negative real-valued eigenvalues, whereas unstable 

equilibrium points have positive real-valued eigenvalues. The equilibrium point, 

nevertheless, takes into account examined dependent variables, expressed as g, p, s, even 

though XPPAUT presents a two-dimensional image. The oval shape in Figure 4.2, with 

points at (0, 0.37, 1), represents a stable equilibrium point, whereas the triangular shape 

represents an unstable equilibrium point. 

 

Figure 4.2 Direction fields, nullclines, and equilibrium points of variable p against g. 

Figure 4.3 displays the stability study involving variables s and g, where the value 

of the variable p was set to 1. There were eleven equilibrium points in this study, two of 

which were stable (oval-shaped), while the remaining nine were unstable (triangular 

shaped). The stable equilibrium points were coordinated at (0, 1, 0.91) and (0, 1, 0.4). 

From these two studies, it can be concluded that the fermentation ethanol production 

model using Equations 4.2–4.4 had three stable points located at (0, 0.37, 1), (0, 1, 0.91), 

and (0, 1, 0.4). 
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Figure 4.3 Direction fields, nullclines, and equilibrium points of variable s against g. 

The results of the analysis in this section can be used to examine the dynamical 

systems of the Phisalaphong et al. (2006) model. 

4.5 Parameter Analysis 

The purpose of parameter analysis in the current study was to examine the 

behaviour of the parameters of Phisalaphong et al. (2006) model in connection to ethanol 

production. This analysis was conducted using a simulation method. The non-

dimensional parameter values for Phisalaphong et al. (2006) model are found in Table 

4.3. Those values were obtained by employing Equation 4.5 together with the values 

presented in Table 4.1. 
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Table 4.3 Parameter values for the non-dimensional Phisalaphong et al. (2006) 

model. 

Parameters  Values 

  34.6222 

  1.4149 

  0.0007 

  8.7134 

  1.4914 

  0.0756 

  9.6657 

  10.5712 

MSY  2.7793 

PSY  1.2606 

The non-dimensional model was solved using the Runge-Kutta method of the 

fourth order. The computations do not require units and can be interpreted as a scale 

because this model is non-dimensional. Therefore, the initial concentrations of microbes, 

ethanol, and substrate were set at 0.1, 0, and 1, respectively. The three graphs in Figure 

4.4 respectively illustrate the microbial growth, substrate consumption, and ethanol 

formation of a non-dimensional model under previously stated conditions. Based on 

Figure 4.4, the microbe approached 0.2970 units concentration on a time scale of 10. 

During the same time frame, roughly 78.16 per cent of the substrate was consumed during 

the fermentation process, yielding an ethanol concentration of 0.0946 units. 
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(a) (b) 

 

 

(c)  

Figure 4.4 The (a) microbial growth, (b) substrate consumption, and (c) ethanol 

formation using non-dimensional Phisalaphong et al. (2006) model.  

This study experimented with different values of   parameter, which were 10, 

20, and 30. Figure 4.5 depicts the subsequent analysis of   parameter for the model of 

the fermentation system. The arrows in the three graphs of Figure 4.5 illustrate the effect 

of increasing the parameter values. Figure 4.5 (a) demonstrates that the increase of   

rapidly dropped the concentration of microbes. This demonstrates that   parameter 

inhibited the growth of microbes during the fermentation process. As shown in Figure 

4.5 (b), this inhibitory effect increased the microbe’s substrate consumption. The 

concentration of remaining substrate at the end of fermentation with the greatest   value 

(  = 30) was the highest compared to other   values. Furthermore, this inhibitory will 

have an indirect effect on ethanol production as shown in Figure 4.5 (c). Increasing the 

  value from 10 to 30 will decrease the ethanol concentration at the end of fermentation. 
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(a) (b) 

 

 

(c)  

Figure 4.5 The effect of the parameter   to (a) microbial growth, (b) substrate 

consumption, and (c) ethanol formation.  

The second examined parameter was  . Figure 4.6 reveals that despite 

parameter was analysed using the same value as   parameter, it yielded different results. 

As depicted in Figure 4.6 (a) and (b), increasing the value of   parameter increases the 

exponential phase of microbial growth while accelerating the rate of substrate 

consumption. Comparing the values of   = 10 to  = 30 in Figure 4.6 (c), the 

concentration of ethanol produced through fermentation was the same. However, the 

production of ethanol with   = 30 was quicker when compared to other values    (i.e., 

 = 10 and   = 20). This indicates that increasing the    parameter value boosts ethanol 

production. 
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(a) (b) 

 

 

(c)  

Figure 4.6 The effect of the parameter    to (a) microbial growth, (b) substrate 

consumption, and (c) ethanol formation.  

The analysis of parameter analysis in the fermentation process continued with the 

investigation of   parameter. This analysis was conducted by setting   values to 10, 

20, and 30, as illustrated in Figure 4.7. Figure 4.7 (a) illustrates that the rate of microbe 

reduction in the fermentation tank was proportional to the value of   parameter. 

Moreover, in Figure 4.7 (b), only 8.07 percent of the total substrate concentration was 

utilised for  , which had a value of 30, whereas 11.70 percent of    had a value of 10. 

This also indirectly impacted ethanol production as illustrated in Figure 4.7 (c). 

Compared to the beginning of the study, the value of  = 1.4149 was capable of 

producing up to 0.0946 units of ethanol concentration. When   = 30, production was 

restricted to 0.0854 units. It implies that an increase in   value will increase the 

inhibitory effect on ethanol production. 
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(a) (b) 

 

 

(c)  

Figure 4.7 The effect of the parameter   to (a) microbial growth, (b) substrate 

consumption, and (c) ethanol formation. 

The next parameter under evaluation was   parameter, for which the values 10, 

20, and 30 were examined. Figure 4.8 (a) demonstrates the positive correlation between 

microbial growth and   values. However, increasing   values increased substrate 

consumption rates (see Figure 4.8 (b)), but decreased the ethanol production (see Figure 

4.8 (c)). The accumulated concentration of ethanol for  = 30 was 0.05 units, with 95.29 

per cent of the substrate concentration being consumed. This indicates that the increase 

in   parameter increases the inhibitory effect on ethanol production.  
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(a) (b) 

 

 

(c)  

Figure 4.8 The effect of the parameter   to (a) microbial growth, (b) substrate 

consumption, and (c) ethanol formation.   

Subsequently, an evaluation was conducted on   parameter, specifically those 

with values of 10, 20, and 30, as depicted in Figure 4.9. The findings of this study 

demonstrated that increasing   parameter had minimal impact on microbial growth (see 

Figure 4.9 (a)) and on substrate (see Figure 4.9 (b)). However, when   parameter on a 

time scale of 2 (as depicted in the enlarged graph), it is evident that an increase in the 

parameter values from 10 to 30 resulted in an apparent rise in microbial growth, followed 

by a decrease in substrate consumption. On the contrary, the production of ethanol 

showed an obvious pattern of decline as   values increased. 

 

 



 

 50 

  

(a) (b) 

 

 

(c)  

Figure 4.9 The effect of the parameter   to (a) microbial growth, (b) substrate 

consumption, and (c) ethanol formation.  

Another investigated parameter using the same parameter values as   parameter 

was   parameter (see Equation 4.3). Similar to the findings of   parameters study, the 

study on   parameter revealed the same pattern of results when the parameter values 

were increased. The rate of microbial growth exhibited a positive correlation with   

values (Figure 4.10 (a)), indicating that an increase in   values led to an increase in the 

growth rate. However, a decline in substrate consumption and ethanol production were 

observable, as depicted in Figure 4.10 (b) and Figure 4.10 (c), respectively. In addition, 

compared to the quantity of ethanol accumulated through fermentation for   parameter 

values,  = 10 produced approximately 0.0946 units, while   parameter of the same 

value produced up to 0.0489 units of ethanol. This indicates that   parameter is less 

inhibiting than   parameter. 
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(a) (b) 

 

 

(c)  

Figure 4.10 The effect of the parameter   to (a) microbial growth, (b) substrate 

consumption, and (c) ethanol formation. 

Figure 4.11 illustrates the effect of raising the MSY  parameter value on the ethanol 

fermentation process. The value of this study parameter is no different from other 

parameters. However, when compared to other parameters, this particular parameter 

exhibits distinct outcomes. Figure 4.11 (a) illustrates that the increase of MSY  has led to 

an initial rise in the rate of microbial growth during the first 5.05 units of time, followed 

by a subsequent decline in microbial growth. The substrate consumption presented in 

Figure 4.11 (b) also exhibits two distinct patterns in response to the increment of the MSY  

parameter value. The observed trend in substrate consumption during the first 3.33 units 

of time exhibits an upward pattern. After that time, however, the rate of substrate 

consumption decreased. The outcome of increasing MSY  values for ethanol production is 

also depicted in Figure 4.11 (c). Despite the absence of the MSY  parameter at a value of 
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10 because of overlap, it has been observed that a rise in the MSY  value leads to a reduction 

in the ethanol concentration after the first 5.05 units of time. Based on Equation 4.4, the 

parameter MSY  serves as the denominator in the equation. It is noted that an increase in 

the value of the denominator leads to a decrease in the rate of substrate consumption 

during the fermentation process. 

  

(a) (b) 

 

 

(c)  

Figure 4.11 The effect of the parameter MSY  to (a) microbial growth, (b) substrate 

consumption, and (c) ethanol formation. 

Figure 4.12 shows the simulation results of the difference in PSY  values. In 

general, the change in PSY  parameter values do not yield significant effects on the general 

operation of the ethanol production through fermentation. The distinction among PSY  

parameter values can merely be discerned by microbial growth, as depicted in Figure 4.12 

(a). During the initial two units of time of fermentation, there was a slight incremental 
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trend in the rate of microbial growth as PSY  value increased. In contrast, when analysing 

Figure 4.12 (b) and Figure 4.12 (c), it is observed that PSY  parameter did not exhibit 

notable differences in terms of substrate consumption and ethanol production throughout 

the three simulations conducted with distinct parameter values. Thus, it can be concluded 

that PSY  parameter has no effect on the ethanol production through fermentation. 

  

(a) (b) 

 

 

(c)  

Figure 4.12 The effect of the parameter PSY  to (a) microbial growth, (b) substrate 

consumption, and (c) ethanol formation.  

According to Figure 4.13 and Figure 4.14,   and   parameters also had an 

inhibiting impact on the fermentation-based ethanol production process. Regardless of 

the values employed for   and   parameters, increasing the values lowered the microbe 

growth rate, as shown in Figure 4.13 (a) and Figure 4.14 (a).   and   parameters also 

reduced the consumption of substrates, as displayed in Figure 4.13 (b) and Figure 4.14 
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(b). Therefore, the production of ethanol decreased as the values of   and   parameters 

increased. 

  

(a) (b) 

 

 

(c)  

Figure 4.13 The effect of the parameter   to (a) microbial growth, (b) substrate 

consumption, and (c) ethanol formation. 
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(a) (b) 

 

 

(c)  

Figure 4.14 The effect of the parameter   to (a) microbial growth, (b) substrate 

consumption, and (c) ethanol formation. 

The impacts of parameters on ethanol production are summarised in Table 4.4, 

similar to the earlier studies on parameters impacts. According to the table,   was the 

only parameter exhibiting a beneficial impact on the production of ethanol, PSY  did not 

have a significant impact, whereas the remaining eight parameters hindered the 

production of ethanol through fermentation. 
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Table 4.4 The impact of parameters in ethanol production 

Parameters Impact on Ethanol Production 

  Inhibiting impact 

  Boosting impact 

  Inhibiting impact 

  Inhibiting impact 

  Inhibiting impact 

  Inhibiting impact 

MSY  Inhibiting impact 

PSY  Impactless 

  Inhibiting impact 

  Inhibiting impact 

 

4.6 Conclusion 

The objective of this chapter was to gain a deeper mathematical understanding of 

Phisalaphong et al. (2006) model. In the very beginning of this chapter, a technique of 

parameter fitting was performed to determine the values of each parameter in the model. 

Two forms of mathematical analysis were performed to gain a deeper understanding of 

the kinetics of this model, namely stability analysis and parameter analysis. The stability 

analysis of the non-dimensional model by Phisalaphong et al. (2006) revealed three stable 

points. These points serve as tools to examine the dynamical systems of this model. The 

parameter analysis revealed that only   parameter had a positive impact on ethanol 

production. On the other hand, PSY  parameter did not have a significant impact, while the 

remaining eight parameters were found hindering the production of ethanol through 

fermentation. Next, the current study proceeds with Phisalaphong et al. (2006) extended 

model. The purpose of the expanded models was to explore particle movement during 

the fermentation process.
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CHAPTER 5 

 

 

MATHEMATICAL MODELS  

5.1 Introduction 

Phisalaphong et al. (2006) model formulated a kinetic model incorporating 

inhibitory effects in ethanol production. However, the model could not spatially predict 

the microbe, substrate, and ethanol distribution in a tank. Hence, this chapter focuses on 

extending Phisalaphong et al. (2006) reaction model. The extension aims to consider the 

particle movement factor in a fermentation reactor. Three types of particle movement 

models related to the coupled diffusion-reaction equation, the coupled advection-

diffusion-reaction equation, and the coupled fluid dynamics-advection-diffusion-reaction 

equation are presented. 

5.2 Diffusion-reaction Model 

This study focused on two types of fermentation, non-shaking fermentation and 

shaking fermentation (refer to Section 2.6). Non-shaking fermentation is characterised by 

the fermentation process in a reactor without a stirrer (agitator). This type of fermentation 

is used because bioethanol production occurs under anaerobic conditions (Serafim & 

Lanças, 2019). According to Takahashi & Aoyagi (2018), increasing the gas-liquid 

contact area of the surface culture can boost the oxygen supply to the cells by shaking the 

reactor. This is also one of the inhibitory effects that can lower ethanol production, 

according to Abdul Halim (2016). In short, it is important to study non-shaking 

fermentation as an alternative to shaking fermentation. This section proposed a 

mathematical model for non-shaking fermentation, employing diffusion-reaction 

coupling, which was an extension of Phisalaphong et al. (2006) model (see Equations 

5.1, 5.2, and 5.3). 
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( ) 2

2 2
1max

d

SM IM M

M x,t SMM P
D K M

t x K S S K P

  
= + − − 

  + +  
 5.1 

( ) 2

2 2
1max

SP IP P

P x,t v SMP P
D

t x K S S K P

  
= + − 

  + +  
 5.2 

( ) 2

2 2

2

1
1

1
1

max
d

MS SM IM M

max

PS SP IP P

S x,t SMS P
D K M

t x Y K S S K P

v SM P
mM

Y K S S K P

   
= − − −  

  + +   

  
− − −  

+ +   

 5.3 

The interpolation of diffusion element ( 2 2x  ) on microbe ( M ), ethanol ( P ), 

and substrate ( S ) is a system of nonlinear Partial Differential Equations (PDE) that 

reflects spatial coordinate ( x ) and time observation ( t ) as two independent variables. 

Table 5.1 lists the parameters and their values related to the proposed model. The values 

of these parameters were determined through the process of fitting parameters, explained 

in Chapter 4. Meanwhile, D  values were the diffusion parameter to be studied. 
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Table 5.1 Parameters in the diffusion-reaction model. 

Parameters  Description Values Units 

D  Diffusivity coefficient 0.1/0.3/0.5/0.7/0.9 2 1cm  h−  

max  Maximum specific rate for 

microbial growth 

0.779 1h−  

maxv  Maximum specific rate for 

ethanol production 

50.1142 1h−  

SMK  Substrate half-saturation 

coefficient for microbial growth 

257.9958 1g L−  

SPK  Substrate half-saturation 

coefficient for ethanol 

production 

26.3216 1g L−  

IMK  Substrate inhibition coefficient 

in microbial growth 

182.3467 1g L−  

IPK  Substrate inhibition coefficient 

in ethanol production 

0.1221 1g L−  

MP  Product inhibition coefficient in 

microbial growth 

31.2110 1g L−  

PP  Product inhibition coefficient in 

ethanol production 

25.7261 1g L−  

dK  Microbial death rate 0.0225 1h−  

MSY  Yield coefficient for the 

substrate used on microbial 

growth 

2.7793 dimensionless 

PSY  Yield coefficient for the 

substrate used on ethanol 

production 

1.2606 dimensionless 

m  Maintenance coefficient of 

microbial 

0.0017 1h−  
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Figure 5.1 illustrates the diagram of a fermentation tank used in this study, where 

0 10x   centimetres. The diagram was designed to examine the diffusion of M, P, and 

S particles in the tank. 

 

Figure 5.1 The diagram of a fermentation tank. 

Since data on the initial conditions for each space (location) were not available 

from Abdul Halim (2016), the gamma distribution was applied to depict the initial 

distribution of each particle in the tank, as described in Equation 5.4, 

( )
( )

( )

( )
( )

1
1

1

1
1

0 3 8757  g L

0 0 0 g L

0 87  g L

x

x

x e
M x, .

P x, .

x e
S x,

−
− 

−



−

−
− 

−



= 
  

=

= 
  

 

 

5.4 

where   is shape parameter and   is scale parameter of the distribution. In order to get 

the initial condition illustrated in Figure 5.1, the value of   was set to 8, while   was 

0.25. Figure 5.2, Figure 5.3, and Figure 5.4 show the initial conditions of microbes, 

substrate, and ethanol in this study, respectively. 



 

 61 

 

Figure 5.2 Initial condition of microbe concentration in a reactor. 

 

Figure 5.3 Initial condition of substrate concentration in a reactor. 

 

Figure 5.4 Initial condition of ethanol concentration in a reactor. 
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In addition, the boundary conditions were set, as shown in Equation 5.5, to 

represent a state where there was no outgoing or incoming flux on the left or right sides 

of the reactor.  

( ) ( ) ( )

( ) ( ) ( )

0 0 0
0;          0;          0;

10 10 10
0;       0;        0;

M ,t P ,t S ,t

x x x

M ,t P ,t S ,t

x x x

  
= = =

  

  
= = =

  

 5.5 

The solution to this model could be obtained using FVM, with a more 

comprehensive explanation provided in Chapter 3. In addition, this model enables the 

analysis of D  parameter, denoting particle diffusivity during the fermentation process. 

5.3 Advection-diffusion-reaction Model 

This section demonstrates the extension of the earlier mathematical model in the 

non-shaking fermentation section with the advection element, x  . The agitation 

inspired this model in fermentation which considers the advection effect on the ethanol 

production system. This model, also known as the shaking fermentation model, integrated 

the velocity coefficient parameter (U ), which are represented in Equations 5.6, 5.7, and 

5.8. 

2

2 2
1max

d

SM IM M

SMM M P M
D K M U

t x K S S K P x

   
= + − − − 

  + +  
 5.6 

2

2 2
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SP IP P

v SMP P P P
D U

t x K S S K P x

   
= + − − 

  + +  
 5.7 

2

2 2

2

1
1

1
1

max
d

MS SM IM M

max

PS SP IP P

SMS S P
D K M

t x Y K S S K P

v SM P S
mM U

Y K S S K P x

   
= − − −  

  + +   

   
− − − −  

+ +   

 5.8 

 

 



 

 63 

This model employed the same parameters, initial conditions, and boundary 

conditions as the diffusion-reaction model described in the previous subsection. This 

information makes it possible to conduct a comparative study between non-shaking 

fermentation and shaking fermentation. Similar to the previous model, this could be 

solved using FVM, as discussed in Chapter 3. 

A coupled advection-diffusion-reaction model could be used to investigate the 

velocity coefficient (U ). The current study did not only disclose the effect of increasing 

the velocity coefficient (U ), but also recommend the optimal parameters to optimise the 

ethanol production process. 

5.4 Coupled Fluid dynamics-advection-diffusion-reaction Model  

The previous section highlighted the importance of advection factors in the 

production of ethanol through fermentation. However, assigning a scalar value to this 

element does not accurately capture the hydrodynamic effects occurring in stirred 

reactors. This section aims to present a mathematical model that incorporates a velocity 

profile of the agitator that is more representative of real-world conditions. This study 

suggested integrating velocity profiles obtained from fluid dynamics into a previously 

proposed advection-diffusion-reaction model. Furthermore, to enhance the scope of the 

investigation, the present study was carried out in a two-dimensional domain. 

A baffle is a plate or series of plates that are placed within the reactor to create a 

barrier that directs the flow of the fluid in a specific pattern. The difference between a 

tank with a baffle and a tank without a baffle is depicted in Figure 5.5. In their fluid 

dynamics study, Saikali et al. (2021) validated water velocity profiles in an unbaffled 

reactor. Meanwhile, Labík et al. (2018) and Wyrobnik et al. (2022) agreed that unbaffled 

reactors are more suitable for shear-sensitive microbes, promising research with a reactor 

without a baffle. 
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(a) (b) 

Figure 5.5 The difference between (a) a tank with baffles and (b) an unbaffled tank. 

Source: (a) Afedzi et al. (2022), (b) Labík et al. (2018) 

In Chapter 2, the continuity equation and the Navier-Stokes equation are 

introduced as fundamental equations employed for a description of fluid flow within the 

reactor tank. To bridge the gap on unbaffled tank, the current study proposed a 

mathematical model for the production of ethanol in the stirred, unbaffled tank bioreactor 

This proposed model integrates both the continuity equation and the Navier-Stokes 

equation. The resulting equation, known as the fluid dynamics-advection-diffusion-

reaction equation, served as the foundation for the current study. 

0
U V

x y

 
+ =

 
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( )
2 2

2 2
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      
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( )
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t x y x y

      
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       
 5.14 

where 

( ) 2
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d

SM IM M

SM P
M K M

K S S K P

 
= − − 

+ +  
 5.15 

( ) 2
Reaction 1max

SP IP P

v SM P
P

K S S K P

 
= − 

+ +  
 5.16 

( ) 2

2

1
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1
1

max
d

MS SM IM M

max

PS SP IP P

SM P
S K M

Y K S S K P

v SM P
mM

Y K S S K P

  
= − − −   + +   

  
− − −   + +   

 5.17 

The model contained two-dimensional spatial coordinates ( ,x y ) and time 

observation ( t ), at three independent variables, namely 0 1x   metre, 0 1y   metre, 

and 0 100t   hours. U  and V  denote the velocity components in the x  and y  

directions, while pr  signifies the pressure in the solution. The variables vis  and   

describe the solution’s viscosity and density, respectively. In this research, vis  and   

were set to 6 2 11 10  m  s− −  and 31000 kg m− , the same values employed in the study by 

Saikali et al. (2021), because the reactor tank was expected to be filled with water at room 

temperature. 

Table 5.2 shows the parameters utilised in this study. To maintain consistency, all 

parameters relating to time were converted to second units and parameters relating to 

mass were converted to kilogramme units. 
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Table 5.2 The parameters value for the proposed model.  

Parameters Values Units 

D  0 01.  1m s−  

max  42 1639 10. −  1s−  

maxv  21 3921 10. −  1s−  

dK  66 2500 10. −  1s−  

m  74 7222 10. −  1s−  

SMK  12 5760 10. −  
1kg L−  

SPK  22 6320 10. −  
1kg L−  

IMK  11 8235 10. −  
1kg L−  

IPK  41 2210 10. −  
1kg L−  

MP  23 1211 10. −  
1kg L−  

PP  22.5726 10−  
1kg L−  

MSY  2.7793 dimensionless 

PSY  1 2606.  dimensionless 

Figure 5.6 presents a cross-sectional view of the bioreactor where the agitator was 

at 0 m.x =  The shaded region represents the right-hand side of the cross-sectional 

bioreactor. It was assumed that the geometry was symmetric about 0.x =  Saikali et al. 

(2021) presented several velocity profiles of water in a bioreactor with different Reynolds 

numbers ( Re ), as shown in Figure 5.7 and Figure 5.8. For this study, these velocity 

profiles were used as a guide to figure out the boundary conditions. Figure 5.6–5.8 

illustrated the boundary conditions employed in this study, and will aid in clarifying the 

domain's geometry. 
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Figure 5.6 Cross-sectional view of the bioreactor. 

  

Figure 5.7 Velocity profiles in Saikali et al. (2021) for 47 10 .Re    

Source: Saikali et al. (2021) 
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Figure 5.8 Velocity profiles in Saikali et al. (2021) for 48.6 10 .Re    

Source: Saikali et al. (2021) 

Based on the velocity profiles shown in Figure 5.7 and Figure 5.8, Equations 5.18 

and 5.19 were introduced to represent the boundary conditions at 0 m.x =  The pressure 

boundary condition in Equation 5.20 is based on Bernoulli's principle. According to 

Childs (2011), the speed of a fluid increases, the pressure within the fluid decreases. 

( ) ( )( )1 500 0 80 1
0 5 500 100

y .
U , y,t y e

+  −
=     5.18 

( ) ( )( )1 500 0 95 1
0 0 3 500 100

y .
V , y,t . y e

+  −
= −     5.19 

( ) ( )0pr , y,t U V= − +  5.20 

These equations regarding boundary conditions on the left-side domain are 

displayed in Figure 5.9. 
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(a) (b) (c) 

Figure 5.9 Boundary conditions at 0x = for (a) U , (b) V  and (c) pressure. 

Next, a no slip boundary condition was set for the right and bottom domains. 

Equation 5.21 imposes the boundary condition for the domain on the right, whereas 

Equation 5.22 applies the boundary condition for the domain on the bottom. 

( ) ( ) ( )1 0;          1 0;          1 0;U ,y,t V ,y,t pr ,y,t= = =  5.21 

( ) ( ) ( )0 0;          0 0;          0 0;U x, ,t V x, ,t pr x, ,t= = =  5.22 

According to Saikali et al. (2021), the vortex formed on the free surface resembles 

an inverted Gaussian profile, also referred to as an inverted normal distribution. Figure 

5.10 demonstrates the profile for velocity and pressure.  
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Figure 5.10 Inverted Gaussian profile for velocity and pressure. 

This profile served as the upper boundary condition for the domain in this study. 

However, because the domain range was [0, 1], only half of this profile was considered. 

The upper-boundary condition for the variables U, V, and pr was represented by 

Equations 5.23, 5.24, and 5.25, 
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2
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1 1
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pr x, ,t

e
y

 
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 


= −
  

 5.25 

where 1 2 3   = = =  were the standard deviation of the normal distribution. Figure 

5.11 depicts the three utilised standard deviation values. Chapter 6 will provide a more 

comprehensive details of standard deviation study. 
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Figure 5.11 The standard deviation values were examined. 

Given that the specific data regarding initial conditions for each space or location 

were not provided in the study conducted by Abdul Halim (2016), the utilisation of the 

normal distribution was employed in order to illustrate the dispersion of individual 

particles within the tank at the onset. The particles M, P, and S in a normal distribution 

along the domain ( ,x y ) can be defined by Equation 5.26, 

( ) ( )

( )

( ) ( )

1

1

1

0 3 8757 NormalDistibution  kgL

0 0 kgL

0 87 NormalDistibution  kgL
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−

−

−

= 

=

= 
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( )
( )

( )( )2
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x y
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−
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 5.27 

and 

( ) ( )  ( )
22

2 2

2
 

yx yx

x x y y

yCov x, y x yx
g

  −− −−  = − +
   

 5.28 
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The symbols x  and 
y  represent the means for this distribution. These 

parameters were set to 0.50 to place the highest concentration of microbes and substrate 

at the start of fermentation, primarily in the centre of the domain. On the other hand, x  

and 
y  were standard deviations. It attempted to determine the amount of dispersion 

between the mean values of variables M and S. These two parameters ( x  and 
y ) were 

both set at 0.2. Figure 5.12, Figure 5.13, and Figure 5.14 illustrate the concentration 

distribution of ,M ,S and P in the tank at the beginning of the fermentation process. 

 

Figure 5.12 Initial condition of the variable M  at the start of fermentation. 
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Figure 5.13 Initial condition of the variable S at the start of fermentation. 

 

Figure 5.14 Initial condition of the variable P (ethanol)  at the start of fermentation. 
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A Neumann-type boundary condition, equal to zero, was applied to the variables 

M, P, and S since no outflow or inflow happened on the left, right, bottom and top sides 

of the boundary. The boundary conditions for M, P, and S variables are listed in Equation 

5.29. 
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0 1
0;                 0;
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 
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 

 
= =

 

 
= =
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 
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 

 
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0 1
0;                 0;

x

S x, ,t S x, ,t

y y

=


 
= =

 

 5.29 

The model was solved using FVM. However, the use of 2D ( ,x y ) domain 

required modification on the FVM grid, as explained in Chapter 3. 

5.5 Conclusion 

This study aimed to formulate a non-linear PDE model for ethanol production 

through fermentation by coupling diffusion-reaction into the model. The model 

specifically focused on non-shaking fermentation and extended to include an advection 

factor inspired by the agitation typically employed during fermentation. Thus, a model in 

the form of an advection-diffusion-reaction equation was formed. This chapter further 

broadened the study of the reactor condition by incorporating fluid dynamics factors into 

the model, which is referred to as the coupled fluid dynamics-advection-diffusion-

reaction model.  
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CHAPTER 6 

 

 

RESULT AND DISCUSSION 

6.1 Introduction 

This chapter highlights the results of the current study of including particle 

movement elements in the reaction model of Phisalaphong et al. (2006). The study is 

organised into three distinct subtopics, each corresponding to one of the three PDE 

systems discussed in Chapter 5. The first topic of discussion relates to the diffusion-

reaction model, which is subsequently followed by a study of the advection-diffusion-

reaction model. Then, an analytical discussion on mathematical models incorporating 

fluid dynamics into coupled diffusion-advection-reaction equations is provided. The 

current chapter gives a comprehensive analysis of the impact of the agitator position on 

the ethanol production, while also offering an optimal agitator position to maximise the 

production of ethanol through fermentation. 

6.2 Discussion on Diffusion-reaction Model 

The diffusion-reaction model, together with the stated initial and boundary 

conditions, as described in Chapter 5, was solved using FVM for 0 100t   hours. 

Figure 6.1, Figure 6.2, and Figure 6.3 show the proposed model solutions for microbes, 

substrates, and ethanol, respectively. By setting D to 0.1 cm2 h-1, this model not only 

demonstrated the diffusivity process, but also depicted the inhomogeneous conditions 

that occurred in the reactor during the fermentation process, which eventually affected 

the ethanol production. Based on these figures, initially most of the particles, either 

microbes or substrate, were concentrated on the left of the reactor. However, the particles 

dispersed after the diffusivity and fermentation processes, even though they did not reach 

the right side of the reactor.  
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In particular, the initial microbe and substrate concentrations Figure 6.1 and 

Figure 6.2 were highly concentrated in the ranges of x-coordinate = [0.3, 5]. However, 

over a duration of five hours, the concentration showed an expansion within the x-

coordinate intervals of [0, 7]. This phenomenon indicates that particles within the reactor 

migrated from areas of high concentration to a region of low concentration. In contrast to 

the declining trends observed in microbial and substrate concentrations over time, ethanol 

concentrations exhibited an increasing pattern. This can be due to the fact that ethanol is 

a by-product of microbial-substrate reactions, as visually depicted in Figure 6.3. Hence, 

ethanol production will occur in any area where microbes and substrates are present, even 

with limited diffusion across the reactor. 

 

Figure 6.1 The diffusivity factor with D = 0.1 cm2 h-1 in microbial growth. 
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Figure 6.2 The diffusivity factor with D = 0.1 cm2 h-1 in substrate consumption. 

 

Figure 6.3 The diffusivity factor with D = 0.1 cm2 h-1 in ethanol production. 

This section also includes the analysis of the diffusion coefficient value of the 

fermentation system. The effects of increasing D values microbes, substrate, and ethanol 

in the reactor are depicted in Figure 6.4, Figure 6.5, and Figure 6.6, respectively. A 

simulation of the three variables during the first ten hours of fermentation with D = 0.1, 

0.3, 0.5, 0.7, and 0.9 cm2 h-1 revealed that increasing diffusivity flattered the concentration 

graph. This indicates that D could accelerate the process of obtaining a homogenous 

concentration in the reactor.  
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Figure 6.4 Evaluation of diffusion coefficient on microbial growth in the first 10 

hours. 

 

Figure 6.5 Evaluation of diffusion coefficient on substrate consumption in the first 

10 hours. 
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Figure 6.6 Evaluation of diffusion coefficient on ethanol production in the first 10 

hours. 

Diffusion is the random movement of naturally occurring particles, thereby 

beyond human control. Advection, on the other hand, is the movement due to the fluid’s 

velocity. This movement can be controlled and manipulated by humans, such as by 

shaking fermentation tank. Therefore, a proposed model for ethanol production 

incorporated the influence of shaking on the production of ethanol presented in the 

upcoming sections. 

6.3 Discussion on Advection-diffusion-reaction Model 

The solutions for the advection-diffusion-reaction model for microbes, substrate, 

and ethanol are depicted in Figure 6.7, Figure 6.8, and Figure 6.9, respectively. This study 

utilised the same settings (initial and boundary conditions), parameter values, and 

methods as earlier studies (refer to Section 6.2). However, in order to analyse the 

existence of velocity (U ) in the model, the diffusion coefficient ( D ) was set to 0.1 cm2 

h-1 and U to 0.1 cm h-1. Figure 6.7, Figure 6.8, and Figure 6.9 illustrate the differences in 

the integral results between diffusion-reaction only and advection-diffusion-reaction 

models. Compared to microbial growth and substrate consumption, ethanol production 

exhibits remarkably different in particle movement. Nonetheless, given the presence of 

the advection component in the model, microbial concentrations, originally accumulated 
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in the range of 0.3 to 5.0, were successfully dispersed across the x-coordinate within the 

first 20 hours. This is not observed in system models without an advection component (a 

model that only has diffusion components).  It also occurred in the consumption of 

substrates. After twenty hours of fermentation, the substrate particles were successfully 

distributed across the reactor’s spatial coordinates. 

  

(a) (b) 

Figure 6.7 Solution of microbial growth using (a) the diffusion-reaction model and 

(b) the advection-diffusion-reaction model. 

  

(a) (b) 

Figure 6.8 Solution of substrate consumption using (a) the diffusion-reaction model 

and (b) the advection-diffusion-reaction model. 
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(a) (b) 

Figure 6.9 Solution of ethanol production using (a) the diffusion-reaction model and 

(b) the advection-diffusion-reaction model. 

Subsequently, a study was undertaken to determine the impact of the two models 

on the particle concentration value in the tank, as shown in Table 6.1. For this study, the 

first twenty hours of fermentation were selected. Assuming that the particles 

were distributed throughout the tank, the concentration was calculated using integrals by 

computing the area under the graph. Nevertheless, the movement of these particles over 

time increased the possibility that any mathematical function may not accurately capture 

their distribution. Consequently, the particle concentration was calculated using the 

trapezoidal rule described in Appendix D.  

According to Table 6.1, the advection-diffusion-reaction model yielded higher 

particle concentration values than the diffusion-reaction model. This demonstrates that 

the influence of particle dispersion from advection can decrease tank inhomogeneity 

more quickly than diffusion alone. Hence, it can increase ethanol production, as shown 

in Figure 6.9 (b). 

Table 6.1 Concentration of particles throughout the first 20 hours of fermentation 

for the two different models. 

 Models  Microbes (g L -1) Substrate (g L -1) Ethanol (g L -1) 

Diffusion-

reaction 

2.2299 15.1563 90.9305 

Advection-

diffusion-reaction 

2.9189 22.6261 115.9547 
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A study on the variation in the value of the coefficient of velocity (U ) was also 

conducted in this section. A total of five U values were examined, namely 0.1, 0.3, 0.5, 

0.7, and 0.9 cm h-1. Figure 6.10, Figure 6.11, and Figure 6.12 show the effects of 

increasing the value of U on the concentration of microbes, substrate, and ethanol, 

respectively, in the reactor. In the meantime, Table 6.2 the measured values of and the 

projected concentrations of three distinct particle types in the fermentation tank for the 

initial twenty-hour period. This estimation was also made using the trapezoidal rule 

described in Appendix D. The concentration of microbes exhibits a declining trend as U  

increases, and there is a decline in substrate consumption when the U  value increases 

from 0.1 to 0.3. However, there was an observed rise in the total amount of remaining 

substrate after the first twenty-hour period of fermentation, as the U  value increased 

from 0.3 to 0.9. According to a study conducted by Kamer (2004), the challenging aspect 

of the microbe’s reaction with the substrate could perhaps be attributed to the high 

velocity of particle movement within the reactor. In addition, fermentation with a U

coefficient of 0.1 cm h-1 has produced the most ethanol despite the fact that the amount 

of substrate remaining at the end of fermentation is not the smallest. This study reveals 

that the advection component has a substantial impact on the system for manufacturing 

ethanol. In addition, this study also provides recommendations for the optimal U value 

to produce the most ethanol, which is a U value of 0.1 cm h-1. 

Table 6.2 The concentration of particles with different U values. 

U  (cm h-1)  Microbes (g L -1) Substrate (g L -1) Ethanol (g L -1) 

0.1 2.9189 22.6261 115.954 

0.3 2.2037 19.8257 85.2278 

0.5 2.1923 22.3784 82.0396 

0.7 2.1854 23.8929 80.1374 

0.9 2.1809 24.8588 78.9227 
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Figure 6.10 Evaluation of advection coefficient on microbial growth in the first 20 

hours. 

 

Figure 6.11 Evaluation of advection coefficient on substrate consumption in the first 

20 hours. 

 

Figure 6.12 Evaluation of advection coefficient on ethanol production in the first 20 

hours. 
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To conclude, compared to the diffusion-reaction-only model represented in 

Figure 6.9 (a) and the advection-diffusion-reaction model depicted in Figure 6.9 (b), fluid 

velocity advection can improve ethanol production. This is similar to the findings of Nasir 

et al. (2017), who found that shaking the reactor to create a homogenous mixture increase 

the production of ethanol. 

6.4 Discussion on Fluid dynamics-advection-diffusion-reaction Model 

This subsection provides a discussion of the study related to the integration of 

fluid dynamics  into coupled advection-diffusion-reaction equations within mathematical 

models. Due to differences in the initial condition, boundary condition, and reactor 

geometry between this study and prior studies, certain modifications were implemented 

to solve the model in this particular subtopic. A time interval, ( t ) of 0.08 seconds was 

chosen to solve all of the equations in the proposed model. While the distance between 

cells in the x  or y  direction ( ,x y  ) has been set to 0.01 metres. The results of a five-

minute simulation of the fermentation process are presented in Figure 6.13, Figure 6.14, 

and Figure 6.15. The arrows in the figures represent the velocity profile produced by the 

rotation of the agitator placed on the bottom of the tank surface, as implemented in the 

study by Saikali et al. (2021), with the length of the arrow indicating the magnitude of 

the velocity at a particular point. The standard deviation,   was set to 0.05 in Equations 

5.26–5.28.  

The proposed model has the capability to approximately depict the motion of 

particles within the tank, contingent upon the speed of the agitator. As shown in Figure 

5.12, the initial concentration of microbes was particularly high in the midsection of the 

tank, within the range [0.4, 0.6] of the domain. However, after five minutes of 

fermentation, the microbe concentration moved and dispersed throughout the tank, as 

depicted in Figure 6.13. Meanwhile, Figure 6.14 demonstrates that the concentration of 

the substrate, which was formerly concentrated in the centre of the domain, had shifted 

to the right side of the domain as a result of the movement of particles caused by the 

agitator speed. Figure 6.15 also depicts the occurrence of ethanol production during 

agitated fermentation when there was a difference in ethanol concentration levels within 

the tank. 
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Figure 6.13 Microbe concentration after five minutes of fermentation. 

 

Figure 6.14 Substrate concentration after five minutes of fermentation. 
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Figure 6.15 Ethanol concentration after five minutes of fermentation. 

Table 6.3 contains the concentrations of variables M, S, and P during the first five 

minutes of fermentation. In the tank, the concentration of microbes and ethanol increased, 

while the concentration of substrate decreased slightly. This is consistent with the 

conclusions of the earlier chapters, which state that microbes and ethanol will increase at 

the beginning of fermentation when substrate is present. 

Table 6.3 Particle concentration in the first 5 minutes of fermentation. 

 Minutes Microbes (kg L -1) Substrate (kg L -1) Ethanol (kg L -1) 

0 3.8757 87 0 

5 3.8769 86.8319 0. 19916 

The study of the free surface vortex at the upper boundary condition of the domain 

using the   parameter is also included in this section. As presented in Figure 5.11,   

values of 0.05, 0.10, and 0.15 were chosen for this study. Table 6.4 presents the 

concentration values of M, S, and P for the first five minutes of the fermentation process 

with different  . When the   value increased, each type of particle variable exhibited a 

decreasing trend. The vortex area on the free surface also expanded as   value increased. 

According to Saikali et al. (2021), the area of the free surface vortex increases as the 
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Reynolds number ( Re ), increases. Agarwal et al. (2021) also state that Re  is directly 

proportional to the agitator's rotational speed. On the basis of these two reports and the 

trends presented in Table 6.4, it can be concluded that increasing the   value associated 

with the agitator's rotational speed will decrease ethanol production. 

Table 6.4 Particle concentration in the first 5 minutes of fermentation with 

different  . 

Standard 

Deviation,  

Microbes (kg L -1) Substrate (kg L -1) Ethanol (kg L -1) 

0.05 3.8769 86.8319 0.19916 

0.10 3.8755 86.8001 0.19915 

0.15 3.8696 86.6661 0.19912 

In light of the findings of this study, the following section includes an 

investigation into the agitator's speed towards the ethanol production system. 

6.5 Agitator's Speed in the Ethanol Production System 

The analysis of the agitator's speed was conducted by incorporating Ag  

parameter as a speed coefficient into Equations 5.18 and 5.19, which was the left 

boundary condition equation. The following equations define the equation for the 

boundary condition at 0x .=  

( ) ( )( )500 0 80 1 1
0 5 500 100

y .
U , y,t Ag y e

 − +
=      6.1 

( ) ( )( )500 0 95 1 1
0 0 3 500 100

y .
V , y,t Ag . y e

 − +
=  −     6.2 

( ) ( )0pr , y,t U V= − +  6.3 
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This study experimented with the different settings of the Ag  parameter, which 

were 0.4, 0.6, 0.8, 1, 3, and 5. The fermentation period was set at 5 minutes, consistent 

with earlier studies. In the meantime,   parameter was set to 0.05 because, according to 

previously conducted studies, this value produced the most ethanol. The results of the 

Ag  parameter value investigation on the ethanol production system are summarised in 

Table 6.5.  

In general, the production of ethanol happened as a result of the microbe's 

interaction with the substrate. However, a pattern of decreasing microbial concentration 

has been observed with increasing Ag  values. This may be due to the sheer force of the 

agitator destroying the microbes, which resulted in a decrease in ethanol production. This 

shows that increasing the value of Ag  will reduce ethanol production. 

Table 6.5 Study of Ag  parameter values towards ethanol production yield. 

Ag Microbes (kg L -1) Substrate (kg L -1) Ethanol (kg L -1) 

0.4 3.8795 86.8885 0.199170 

0.6 3.8789 86.8743 0.199168 

0.8 3.8781 86.8557 0.199164 

1.0 3.8769 86.8319 0.199160 

3.0 3.8414 86.0384 0.199010 

5.0 3.6967 82.8101 0.198340 

 

6.6 Effect Of Agitator Position on Ethanol Yield 

In addition to analysing the effect of agitator speed on the chemical reaction in 

the tank, fluid dynamics studies have focused on geometric parameters that can influence 

the mixing performance. There are also studies on the types of agitators conducted by 

Echaroj et al. (2020) and the positions of agitators carried out by Sahin et al. (2022). 

Saikali et al. (2021) used a magnetic rod installed at the bottom of the tank as an agitator. 

Meanwhile, Agarwal et al. (2021) evaluated the flow behaviour of two Rushton turbines. 
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Figure 6.16 illustrates the positional difference between the agitators used by Saikali et 

al. (2021) and Agarwal et al. (2021) in their studies. 

 

  

(a) (b) 

Figure 6.16 The variation between the two agitator positions utilised by (a) Saikali et 

al. (2021) and (b) Agarwal et al. (2021). 

Source: (a) Saikali et al. (2021), (b) Agarwal et al. (2021) 

Modifying Equations 5.18 and 5.19, the position of the agitator was modified to 

resemble the agitator used by Agarwal et al. (2021). Below is a list of equations 

representing the new left boundary condition. 

( ) ( ) ( ) ( )( )
22 500 0 5 0 80 1 1

0 5 500 0 5 100
y . .

U ,y,t y . e
−  − +

=  −    6.4 

( ) ( ) ( ) ( )( )
22 500 0 5 0 95 1 1

0 0 3 500 0 5 100
y . .

V ,y,t . y . e
−  − +

= −  −    6.5 

( ) ( )0pr , y,t U V= − +  6.6 
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Figure 6.17 presents the new boundary condition for the left side. In this study, 

two agitators were positioned at the approximate coordinates y = 0.4 and y = 0.6. 

 

Figure 6.17 The new left-side boundary conditions for U , V and pr . 

Figure 6.18, Figure 6.19, and Figure 6.20 illustrate the fermentation results for 

microbes, substrate, and ethanol using the new agitator position, with the fermentation 

period and   parameter kept at 5 minutes and 0.05, respectively. The source of the 

velocity profile, represented by a magnitude arrow, caused the formation of two vortices 

in the tank as illustrated in Figure 6.18–Figure 6.20. One vortex was located at the lower 

part of the agitator, and the other was at the top. This demonstrates that Equations 6.4–

6.6 can produce comparable results to the study conducted by Agarwal et al. (2021). 

However, the movement produced will only move the particles to the right side of the 

domain, or more specifically, towards the tank wall. This may not reduce the factor of 

inhomogeneity. 
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Figure 6.18 Microbe concentration using the new agitator position. 

 

Figure 6.19 Substrate concentration using the new agitator position. 
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Figure 6.20 Ethanol concentration using the new agitator position. 

Table 6.6 compares the particle concentration from Saikali et al. (2021) and 

Agarwal et al. (2021), particularly in different agitation positions, as illustrated in Figure 

6.16. The current study found that all particles, whether microbes, substrate, and ethanol, 

had a higher concentration when the fermentation process was conducted using the 

agitator position described by Saikali et al. (2021) rather than the agitator position 

described by Agarwal et al. (2021). This suggests that the mixing approach of Saikali et 

al. (2021) can produce more ethanol than the mixing method of Agarwal et al. (2021). 

Even with the presence of substrate, the microbial concentration decreased from the 

initial concentration for the agitation fermentation position used by Agarwal et al. (2021) 

(microbes had an initial concentration of 3.8757 g/L, however, decreased to 3.8220 g/L). 

This could be because the mixing results created by the agitation position of Agarwal et 

al. (2021) only produce a particle movement pattern that pushes towards the tank wall, 

which is the right side of the domain. Nevertheless, this movement cannot solve the 

inhomogeneity issue in the tank, thus inhibit the fermentation process. 
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Table 6.6 Particle concentration using different agitation positions. 

Agitation 

Position 

Microbes (kg L -1) Substrate (kg L -1) Ethanol (kg L -1) 

Initial 

concentration 

3.8757 87 0 

Saikali et al.  

(2021) 

3.8769 86.8319 0. 19916 

Agarwal et al. 

(2021) 

3.8220 85.6055 0.19892 

On the basis of the research presented in this section, a recommendation can be 

made to obtain the maximum amount of ethanol, namely that a five minute fermentation 

process in the same vessel as Saikali et al. (2021), with   of 0.05 in the free surface 

vortex section, and Ag  value of 1 is capable of producing the greatest amount of ethanol. 

6.7 Conclusion 

This chapter aimed to discuss the inclusion of the particle movement elements 

into the reaction model of Phisalaphong et al. (2006). The first model discussed in this 

chapter was the coupled diffusion-reaction model. The diffusivity impact in the model 

was analysed and the result demonstrated that diffusivity had a minor effect on microbial 

growth, consumption of the substrate, and also in ethanol production. Motivated by the 

agitation employed in fermentation, the model was extended by including the advection 

parameter. Contrary to its diffusivity outcome, even though the advection coefficient was 

comparatively low, the model demonstrated an apparent change to the ethanol production 

system. Additionally, the development of this model not only confirms that the study of 

optimal advection value would enhance the value of ethanol production, but it could also 

illustrate that the presence of a high advection value will decrease ethanol production, as 

previous research has demonstrated. 

Furthermore, this chapter also provided a more comprehensive analysis of the 

coupled fluid dynamics-advection-diffusion-reaction model. The fluid velocity 

represented by the Navier-Stokes equation was selected. In the early stages of the study, 
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the velocity profile from Saikali et al. (2021) was used as the boundary condition of this 

study in order to determine the actual speed in the unbaffled tank. The proposed model 

successfully depicted the condition of particles dispersed throughout the tank. This 

reduced the inhomogeneity factor in the tank. With the effective solution of this model, 

a deeper understanding of the free surface vortex in relation to ethanol production could 

be gained. The free surface vortex was represented by a normal distribution function. The 

standard deviations of the normal distribution function were analysed to investigate the 

free surface vortex. According to this study, the smallest standard deviation of 0.05 can 

yield the highest ethanol concentration. This also indicates that a vortex with a large 

surface area will inhibit the production of ethanol. Also, the speed of the agitator was 

analysed in this chapter. The study revealed that increasing the speed of the agitator in 

the tank will kill microbes and influence the production of ethanol. 

This chapter also includes a study of the agitator's position. A comparison was 

made between the agitator used in the study by Agarwal et al. (2021) and the agitator 

described by Saikali et al. (2021). Agarwal et al. (2021) use double-Rushton turbines as 

agitators, whereas Saikali et al. (2021) employ a magnetic stirrer. Fermentation using 

agitators such as double-Rushton turbines was unable to reduce the inhomogeneity factor 

in the tank, resulting in a decrease in ethanol production, according to a study of the first 

five-minute process. This study can provide recommendations for maximising ethanol 

production. For example, to achieve a homogeneous solution, the fermentation vessel 

must be stirred. In addition, the quicker the reduction of inhomogeneity in the bioreactor, 

the lower the death rate of microbes and the higher the chance of an increase in ethanol 

production. However, excessive agitation will also increase the shear force against the 

microbes, resulting in their death. 



 

 95 

CHAPTER 7 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusion 

The process of ethanol production by fermentation has been employed for 

centuries in the production of alcoholic beverages and, more recently, in the field of 

renewable energy. Ethanol plays a crucial role in the production of biofuels, providing a 

cleaner and more environmentally friendly option compared to traditional fossil fuels. 

Consequently, the use of ethanol has the capacity to foster the establishment of an 

ecologically sustainable energy system.  

The goal of this study is to uncover novel findings in the area of fermentation-

based ethanol production. The identification of three stable points in the stability study 

can be utilised as predictive techniques for determining the long-term dynamics of 

ethanol production systems. The fermentation process will ultimately reach stable 

equilibrium points. Having knowledge of this value may provide an approximation of the 

ethanol production process. 

Furthermore, it is believed that the results of parameter analysis would also lead 

to a rise in ethanol production. Increasing the model's sigma value has a beneficial effect 

on ethanol production. This study highlights the necessity of decreasing eight hindering 

parameters in order to attain the highest yield in ethanol production. 

The proposed model in this work, which combines fluid dynamics, advection, 

diffusion, and reactivity, can be utilised to forecast ethanol production in various tanks. 

Similar to the simulations presented in this study, employing this approach could assist 

in avoiding unnecessary expenditures during the actual fermentation process. 

Additionally, it has the potential to greatly decrease the duration of testing needed during 

the fermentation process. 
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7.2 Recommendations 

Several problems and topics requiring of additional research were encountered 

throughout this study. Regarding the presented results, there are a number of crucial 

issues and extensions that must be addressed.  

This investigation was conducted using experimental data that only comprised 

time variables. In order to acquire a more precise model, it is recommended that future 

studies utilise sample data that include the geometric structure of a tank. In addition, it is 

also believed that a comprehensive exploration of fluid dynamics  is necessary to broaden 

the scope of research in this field. The investigated model only predicted the fluid flow 

generated by a magnetic stirrer and two Rushton turbines. A comparison analysis 

conducted to examine the effects of these two different kinds of agitators on ethanol 

production would reveal contrasting results. Meanwhile, a variety of agitators have been 

utilised in the industry. It is recommended to do further investigation on various kinds of 

agitators that have the capability of increasing ethanol output. Last but not least, it is 

important to note that this mathematical study focused on batch fermentation approaches. 

Thus, it is strongly suggested that this mathematical model be adjusted so that it can be 

used for fed-batch or continuous fermentation. 
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Appendix A: Non-dimensional Phisalaphong et al. (2006) model. 

The model proposed by Phisalaphong et al. (2006) is represented by Equations 2.1, 2.2, 

and 2.3 

1
2

1max SM d

IM M

dM S P
SM K S K M

dt K P

−

   
=  + + − −   

   
 

2.1 
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2
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IP P

dP S P
v SM K S
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= + + −   

   
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1 1

MS PS

dS dM dP
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dt Y dt Y dt

   
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   
 

2.3 

 

can be modified into a non-dimensional model using the following transformations 
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Then, for Equation 2.1, 

1
2

1max SM d

IM M

dM S P
SM K S K M

dt K P

−

   
=  + + − −   

   
 

( )
1

2

1
1

IM max IPIM
max IM IM SM IM d IM

IM d M

d

sK pv KdgK
sK gK K sK K gK

K K P
d

K

−

    
 =  + + − −          

 

 

( )
1

2

1 1
1

IMmax IM IM max IP d IM
SM IM

IM d IM d M IM d

sKsK gK pv K K gKdg
K sK

d K K K K P K K

−

        
 = + + − −                

 



 

 105 

( )
1

2 1max IM max IP
SM IM IM

d d M

sgK pv Kdg
K sK s K g

d K K P

−   
= + + − −      

 

Let max

dK


 =  

( )
1

2 1 max IP
IM SM IM IM

d M

max

d

v Kdg
sgK K sK s K p g

d K PK

−   
= + + − −    






 

2
1

I

maxIM

SM I

I

MM

P

dM

sgKdg
p g

d K sK s K

v K

K P

  
= − −   + + 


 
 

 

Let max IP

d M

v K

K P
 =  

( )2
1IM

SM IM IM

sgKdg
p g

d K sK s K
=

 +



+
− −  

( ) 2
1 IM

SM IM IM

sgKdg
p g

d K sK s K
= − −

 + +
 

( ) 2
1

SM IM IM

IM

dg sx
p g

K sK s Kd

K

= − −
+


+

 

( ) 2
1

SM IM IM

IM IM IM

dg sg
p g

K sK s Kd

K K K

= − −


+ +

  

( )
2

1
SM

IM

g
K

dg sg
p

d
s

K
s

= −

+ +

  −


 



 

 106 

Let SM

IM

K

K
 = . 

Finally, the non-dimensional form of Equation 2.1 can be derived as shown in the 

following equation. 
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In the case of Equation 2.2,  
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Let 
2

  &      IP

IM

SP IP

IM

K K K

KK
  ==  

and Equation 2.2 can be expressed in non-dimensional form as illustrated below. 
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Relating to Equation 2.3, 
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 and MS PSY Y  are already in dimensionless form. So, these 2 parameters are left without making 

any changes. 

( )

( )

1
2

1
2

1
1

1

IMmax IM IM max IP d IMIM
SM IM

MS IM M d MS

d

IMmax IM IM max IP
SP IM IM

PS IP P d

sKsK gK v K K gKdsK
K sK p

Y K P K Y
d

K

sKv sK gK v K
K sK p mgK

Y K P K

−

−

    
 = − + + − +          

 

    
 − + + − −        

 



 

 109 

1
2 2

1
2 2

1 1
1

1
1

IM d IMIM

IM IM IM d

IM IM

IM IM

max IM max IP
SM IM

MS d M d MS

max IM max IPIM
SP IM

PS d IP P d

s gK v K gsds
K sK p

d Y K P K Y

v s gK v Ks K mg
K sK

K

K K KK

K

p
Y K P

K K K

K

K

K

K K

−

−

       
= − + + − +                 

     
− + + − −       

     

1

dK

 
 
 

 

( )
1

2

1
2 2

1
1

1
1

max IM max IP
SM IM IM

MS d M d MS

max IM max IPIM
SP IM

PS d IP P d d

sgK v Kds g
K sK s K p

d Y K P K Y

v sgK v Ks K mg
K sK p

Y K K P K K

−

−

    
= − + + − +          

     
− + + − −       

     

 

2

2 2

1

1

IM

MS

SM IM IM

max IM

PS d

IM MS
S

P

max

d

d
P IM

a

max IP

I

P

m x P

M d

d

I

sg
K

Yds
p

d K sK s K

v Ksg

Y K g
p g

s K

v

v K

P K

Y
K sK

K

P K

K

K

K

m



 
 









 









= − −   + +  

 
 

  
− − + −  

 +





+

 


 

Let mmax maax x,      ,      ,      
d

IP

d P

P

d Md

I v K

K

v K

K P P

m

KK


 == ==  

( )

( )

2

2
2

1
1

1
1

SM IM IMMS

IM

max IM

d

SP IP IM IP IMPS MS

IP IP IP

ds sg
p

K sK s Kd Y

K

v K
sg

K g
p g

K K K K KY Y
s s

K K K

= − −
+ +

 
 
 − −



+

+ +



− 

 



 

 110 

( )

( )

( )

2

2 2

1

1 1

 

MS

max IM

d

PS MSSP IP I

S I M

M IP

I

M I

IM IM

M

P

M

IM

I

pds sg

d Y
s s

v K
sg

p K
g

Y YK K sK K s K

K

K K

K K

K

K

−
=


+ +

 
 

−   



+ + − 
+ + 







 

Let SM

IM

K

K
 =  

( ) ( ) ( )2 2

2

1 1

1

SP IP IM IP IMmax IM

MS PS d IP

MS

K K sK K s Kp p v Kds sg
sg

d Y s s Y K K

g
Y

+ +−


 −  
= + 

 + +  

 
+ − 










 

 

( ) ( )

( )

2

2 2 2

1 1

1

max IM IP

MS PS d IM SP IP IM IP IM

MS

p p v K Kds sg
sg

d Y s s Y K K K K sK K s K

g
Y

− −  
= +  

 + + + +



 






+ −










 

( ) ( )

( )

2

2 2 2

1 1

1

max IP IM

MS PS d IM SP IP IM IP IM

MS

p p v K Kds sg
sg

d Y s s Y K K K K sK K s K

g
Y

− −  
= +  

 + + + +





 
+ − 











 

( ) ( ) ( )2 2

2 2

1 1

1

SP IP IM IP IMmax IP

MS PS d IM IM

MS

K K sK K s Kp p v Kds sg
sg

d Y s s Y K K K

g
Y

+ +−



 −  
= +  

 + + 

 
+ −












 



 

 111 

( ) ( ) 2
2

2 2 22

1 1

1

S

M

IP

MS P M

IM IM

IM

ma

IS

M

x IP

d M

S

IP

I I

P
p p Kds sg

sg s s
d Y s s Y

g

K

K K

K

v K K

Y

KK K

K − −  
= +  + + 

 +


 
+  

 
+ −

















 

Let 
max

2
,      IP

d IM

SP IP

IM

K K v K

KK K
 ==  

( ) ( ) 2

2

1 1 1IP

IMMS PS MS

p pds sg
sg s s g

Kd Y s s Y

K

Y

− −   
= + 


+


  + + −  

+ +


 








 

Let IP

IM
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The Equation 2.3 can therefore be transformed into a non-dimensional form, as shown 

in the following expression. 

( ) ( )
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1 1 1
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− −  
= + + − 
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
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
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Appendix B: Conditions of equilibrium points. 

The equilibrium points depend on the certain condition as follows: 

Condition 1 

( ≠ 0 |  ≠ 0 &  = 0) &  ≠ 0 |  = 0 |  ≠ 0 &  = 0 &  = 0 |  ≠ 0 &  ≠ 0 &  = 0 

&  ≠ 0 

Condition 2 

 ≠ 0 &  = 0 &  = 0 

Condition 3 

 ≠ 0 &  = 0 &  = 0 

Condition 4 

 ≠ 0 &  ≠ 0 &  = 0 &  ≠ 0 

Condition 5 

( ≠ 0 |  ≠ 0 &  = 0) & z2 + *z +  ≠ 0 & z2 + z +  ≠ 0 &  ≠ 0 | z2 + *z +  ≠ 0 

& z2 + z +  ≠ 0 &  ≠ 0 &  = 0 &  = 0 | z2 + *z +  ≠ 0 & z2 + z +  ≠ 0 &  ≠ 0 

&  ≠ 0 &  = 0 &  ≠ 0 

Condition 7 

 ≠ 0 &  ≠ 0 &  = 0 &  ≠ 0 

Condition 8 

( ≠ 0 |  ≠ 0 &  = 0) &  ≠ 0 |  = 0 |  ≠ 0 &  = 0 &  = 0 |  ≠ 0 &  ≠ 0 &  = 0 

&  ≠ 0 
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Appendix C: Fourth-order Runge-Kutta methods. 

The fourth-order Runge-Kutta method is given by 

( )1 1 2 3 42 2
6

i i

s
h h k k k k+ = + + + +  

 

where 

( )

( )

1

2 1

3 2

4 3

2 2

2 2

i i

i i

i i

i i

k f t ,h

s s
k f t ,h k

s s
k f t ,h k

k f t s,h sk

=

 
= + + 

 

 
= + + 

 

= + +

 

 

 

The variable 𝑠 is the iterative step size and ℎ𝑖+1 is the approximation at 𝑡𝑖 + 𝑠. 
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Appendix D: Estimating the Concentration of Particles. 

Trapezoidal rule can be used to compute the particle concentration.  

 

The trapezoidal rule is represented by the following equation. 

( )1 2 12
2

b

n

a

b a
ydx a y y y b

n
−

−
  + + + + +   

 

 

where n is the number of subintervals and h is the equal trapezoidal width. 

 

  

 

 

 




