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ABSTRAK 

Penerbitan data merupakan kaedah yang banyak digunakan untuk berkongsi data, 
terutamanya dalam bidang penyelidikan, kerana ia membolehkan operasi perlombongan 
data untuk mengekstrak pengetahuan berharga daripada pangkalan data yang diterbitkan. 
Pengetahuan ini boleh digunakan untuk representasi, interpretasi, atau penemuan corak 
menarik. Walau bagaimanapun, potensi penuh data parsial yang diterbitkan, berasal dari 
set data besar atau siri set data, belum sepenuhnya diwujudkan, terutamanya disebabkan 
oleh pelbagai cabaran yang dihadapi oleh para sarjana semasa mengekstrak pengetahuan 
dari data yang diterbitkan. Salah satu cabaran yang penting berkaitan dengan privasi data, 
yang sering menyebabkan pendedahan identiti individu, akses tidak dibenarkan kepada 
maklumat peribadi, dan penyalahgunaan data peribadi untuk tujuan yang tidak diingini. 
Isu ini telah menjadi halangan besar kepada kemajuan data yang diterbitkan. Bagi 
mengatasi kebimbangan ini dan memastikan kegunaan data, beberapa pendekatan 
berdasarkan penyamaran telah dibangunkan dalam bidang Penerbitan Data Penjagaan 
Privasi (PPDP). Kekberkesanan pendekatan anonimisasi data bergantung kepada 
pelbagai metode perlindungan yang digunakan untuk mencapai privasi. Walau 
bagaimanapun, metode perlindungan ini sering mengubah data secara berlebihan atau 
menuntut tahap kepercayaan yang tidak praktikal dalam pelbagai skenario berkongsi data. 
Melindungi data peribadi daripada orang-orang yang tidak boleh mengakses maklumat 
ini dan kemampuan individu untuk menentukan atau menarik kesimpulan mengenai 
identiti individu yang dapat mengakses maklumat peribadi mereka adalah aspek penting 
dalam metode perlindungan data. Meningkatkan metode perlindungan untuk publikasi 
data adalah penting untuk mencapai keseimbangan antara utiliti data dan privasi individu, 
yang merupakan cabaran besar. Untuk mencapai anonimisasi data yang berkesan, kajian 
ini mencadangkan pendekatan ditingkatkan yang dikenali sebagai pendekatan 
perlindungan berdasarkan tahap Upper Lower (UL), berdasarkan pendekatan 
pemotongan. Pendekatan UL bertujuan untuk mencapai keseimbangan yang lebih baik 
antara utiliti dan privasi. Kajian ini mencadangkan satu metodologi yang melibatkan 
pembahagian data kepada bahagian mendatar dan menegak, serta memanfaatkan Tahap 
Perlindungan Rendah (𝐿𝑃𝐿)  dan Tahap Perlindungan Tinggi (𝑈𝑃𝐿)  untuk mengira 
atribut yang unik dan serupa. Dengan menukar atribut-atribut ini, data yang diterbitkan 
dapat dijaga daripada risiko pendedahan sambil memastikan kepelbagaian yang 
mencukupi.  Idea utamanya adalah memilih set atribut untuk menentukan tahap 
perlindungan yang diperlukan dan menukar di antara mereka untuk meningkatkan privasi 
data yang dipublikasikan sambil mengekalkan utiliti data yang tinggi. Dataset Dewasa, 
yang mengandungi dataset sebenar, digunakan, dan menurut keputusan, pendekatan UL 
dapat mengekalkan kegunaan data sambil menawarkan perlindungan privasi yang 
ditingkatkan. Pendekatan yang dicadangkan memberikan utiliti data sekitar 92.47%, yang 
lebih tinggi daripada yang dicapai apabila peratusan tahap pertukaran adalah 2% 
menggunakan 𝐿𝑃𝐿 dan 98% menggunakan 𝑈𝑃𝐿 dengan dataset pendidikan berukuran 
4.5K. Dengan kadar pertukaran 5%, pendekatan yang dicadangkan mencapai 92.19% 
menggunakan 𝐿𝑃𝐿 dan 95% menggunakan 𝑈𝑃𝐿. Secara kesimpulannya, pendekatan UL 
mengurangkan risiko pendedahan data berbanding dengan kerja-kerja sedia ada seperti 
penggabungan, 𝑒 − 𝐷𝑃, Mondrian, komposisi, probabiliti, dan kaedah hibrid. Dengan 
menggunakan pendekatan ini, publikasi data dapat dilaksanakan dengan cara yang 
memastikan kegunaan data secara praktikal sambil melindungi privasi individu. Menjaga 
keseimbangan antara utiliti dan privasi adalah penting, dan pendekatan UL menawarkan 
penyelesaian yang berjanji untuk mencapai keseimbangan ini. pendekatan UL 
menawarkan penyelesaian yang menjanjikan untuk mencapai keseimbangan ini. 
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ABSTRACT 

Data publication is a widely used method for sharing data, particularly in research fields, 

as it allows for data mining operations to extract valuable knowledge from published 

databases. This knowledge can be utilized for representation, interpretation, or the 

discovery of interesting patterns. However, the full potential of published partial data, 

derived from large datasets or a series of datasets, is yet to be realized, primarily due to 

various challenges faced by scholars during the extraction of knowledge from published 

data. One significant challenge is related to data privacy, which often results in the 

disclosure of individuals' identities, unauthorized access to private information, and the 

misuse of personal data for unintended purposes. This issue has become a major 

hindrance to the advancement of published data. To address these concerns and ensure 

data utility, several anonymization-based approaches have been developed in the field of 

Privacy-Preserving Data Publishing (PPDP). The effectiveness of data anonymization 

approaches relies on different protection methods employed to achieve privacy. However, 

these protection methods often either excessively falsify data or demand an impractically 

high level of trust in different data-sharing scenarios. Protecting private data from people 

who must not access this information and the individuals’ capability to determine or infer 

the identity of individuals who can access their personal information are crucial aspects 

of data protection methods. Improving protection methods for data publication is crucial 

to strike a balance between data utility and individuals' privacy, presenting a significant 

challenge. To achieve effective data anonymization, this study proposes an enhanced 

approach called the Upper Lower (UL) level-based protection approach, based on the 

slicing approach. The UL approach aims to strike a better balance between utility and 

privacy. The study proposes a methodology involving the division of data into horizontal 

and vertical partitions and leveraging the Lower Protection Level (𝐿𝑃𝐿)  and Upper 

Protection Level (𝑈𝑃𝐿) to compute unique and identical attributes. By swapping these 

attributes, the published data can be effectively safeguarded against disclosure risks while 

still preserving adequate diversity. The key idea is to choose a set of attributes to 

determine the required level of protection and swap between them to improve published 

data privacy while preserving high data utility. The Adult dataset, which included a real 

dataset, was used, and according to the results, the UL approach could maintain the data’s 

usefulness while offering improved privacy preservation. The proposed approach delivers 

about 92.47% data utility, which is more than what is achieved when the percentage of 

exchange level is 2% using 𝐿𝑃𝐿 and 98% using 𝑈𝑃𝐿 with a 4.5K education dataset. With 

a 5% swap rate, the proposed approach obtains 92.19% using 𝐿𝑃𝐿 and 95% using 𝑈𝑃𝐿. 

In conclusion, the UL approach minimizes the risk of data disclosure compared to existing 

works such as merging, 𝑒−𝐷𝑃, Mondrian, composition, probabilistic, and hybrid 

methods. By employing this approach, data publication can be carried out in a manner 

that ensures practical usability of data while protecting individuals' privacy. Striking a 

balance between utility and privacy is crucial, and the UL approach offers a promising 

solution to achieve this balance. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Background   

Over the past few years, the increasing prevalence of advanced computing 

techniques has led to the creation of vast amounts of data, commonly referred to as "big 

data" (Maniam and Singh, 2020; Majeed and Lee, 2021). Numerous organizations across 

various sectors, including government, banking, medical, insurance, and public and 

private institutions, have actively sought to make their data published to the public 

(Binjubeir et al., 2020). This effort involves collecting data from clients or users for 

research, analysis, exploration, or other purposes (Maniam and Singh, 2020; Lei Xu et al. 

2014; Mendes and Vilela, 2017). This data has been recognized as a transformative force 

in the digital age, with experts likening its significance to that of "new oil" in society 

(Jayapradha et al., 2022). The data collected is often unstructured or complex and sourced 

from multiple channels, such as sales records, internet-of-things sensors, social media, 

healthcare patient records, and image or video archives (Binjubeir et al., 2020). 

Data publishing helps researchers in data analytics to extract new and valuable 

information from partial data derived from big data sets (BinJubier et al., 2022). This 

information can be used for diverse purposes, such as representing, interpreting, or 

discovering intriguing patterns that can improve organizational productivity and assist in 

their potential plans. Analyzing and extracting patterns or knowledge from published data 

sets is a crucial practice that organizations use to obtain new or useful information (Jubeir 

et al., 2020; Jeba et al., 2022; Maniam and Singh, 2020; Lei Xu et al. 2014; Mendes and 

Vilela, 2017). The ability to analyze data, discover novel insights, and protect sensitive 

data is a crucial competitive advantage for organizations today (BinJubier et al., 2022; 

Cavanillas, Curry, and Wahlster, 2016). However, the potentials of published partial data 

are yet to be realized as scholars are facing several problems during knowledge extraction 

from the published data (Nasiri and Keyvanpour, 2020). One of such challenges is the 

issue related to data privacy that leads to the disclosure of individuals' identity. In 
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addition, recent advancements in the field of learning technology have significantly 

threatened the secure propagation of private data over the web (Jayapradha et al., 2022; 

BinJubier et al., 2022; Zigomitros et al., 2020). It has led to the limited availability of 

datasets to researchers (Yu, 2016; Siddique et al., 2018; Olatunji et al., 2022). With the 

internet being a prime source of privacy breaches and cyber-attacks, hackers have been 

presented with numerous opportunities, resulting in the insecurity of data and information 

(Kumar et al., 2019). 

In general, two common models for data publication have been proposed: the 

multiple publication model from the same data publisher and the single publication model 

from several data publishers (Hasan et al., 2018). Multiple data publications involve a 

series of datasets released at different times, each providing extensions to certain aspects 

(e.g., quarterly released data) (Gkoulalas-Divanis and Loukides, 2015; Wong et al., 2010; 

Wong and Fu, 2010). When datasets are from the same publisher, this implies that the 

publisher has knowledge of all the original data. Several privacy approaches exist (Chen 

et al., 2009) to maintain data privacy. However, these approaches mainly focus on the 

single publication model (Li, Li, and Venkatasubramanian, 2007; Machanavajjhala et al., 

2007; Sweeney, 2002b; Hasan et al., 2018), where the dataset is anonymized by the 

publisher without considering other published datasets. An attacker can then launch a 

composition attack (Ganta, Kasiviswanathan, and Smith, 2008; Hasan et al., 2018) on the 

published data to compromise their privacy. The single publication model can be 

exemplified in a scenario where patients visit hospitals A and B for specialized procedures 

or follow-up care. In this case, both hospitals anonymize their original data by 

generalizing or replacing non-sensitive attributes with new values. The anonymized data 

is subsequently made available to the intended recipients without taking into account the 

published datasets from the other hospital. The composition attack is a way used by 

attackers to link available records in the microdata to an external database to identify 

individuals and exploit sensitive information. This attack can be carried out by combining 

the quasi-identifier (QI) attributes of different datasets to identify individuals. The attack 

becomes more complex with the availability of more datasets from different data 

collectors (Chen et al. 2009b; BinJubier et al. 2022). Assume that the following 

information of the patient is known to the attacker (Age = 25 years old, Sex = Male, and 

lives in Zipcode = 132000). The attacker is aware of the hospitals, which were visited by 
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the patient, and that the hospitals have individually published their data without 

consulting each other. This situation increases the risk of breaching the patient's privacy. 

However, exploiting the sensitive information of the patient becomes difficult for the 

attacker in either dataset, as both datasets satisfy k-anonymity and l-diversity (Jayapradha 

et al., 2022). 

Two fundamental approaches exist for revealing published data in both models. 

The first approach is an interactive setup in which the data collector performs certain 

functions on the data in order to respond to the data analyzer's queries. The second 

approach is a non-interactive setting, where data sanitization is carried out before being 

published (Gao and Zhou, 2020; Narayanan, 2009). Furthermore, the type of privacy 

varies depending on the data and how it is used, where many methods are used to provide 

privacy (Shah and Gulati, 2016b; Binjubeir et al., 2020). Anonymizing data before 

publication is one of the most common and used practices for protecting individuals' 

privacy. Data anonymization intends to reduce the threat of disclosing personal 

information while preserving the possibility of using published data (Majeed and Lee, 

2021). 

1.2 Motivation  

The widespread use of the Internet and information technology makes it easier for 

people to expand their virtual presence online (Aldeen, Salleh, and Razzaque, 2015). 

Meanwhile, the Internet and information technology have delivered a deluge of 

information, making it easy to collect, share, and exchange data (Yu and Member, 2016; 

Aldeen et al., 2015; Eom et al., 2020). This huge amount of data makes it crucial to 

develop tools that can discover the extraction of hidden knowledge to generate new or 

useful information that can represent, interpret, or discover interesting patterns. These 

tools are called data mining tools (Lei Xu et al., 2014; Han, Kamber, and Pei, 2012; 

Zorarpacı and Özel, 2021). Data mining promises to reveal what is hidden, but the owners 

will be upset if sensitive information is exposed to the public or adversaries. Additionally, 

publishing data is the most straightforward way to share data, enabling research 

organizations to extract information from public datasets using data mining activities. 
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With this information, intriguing patterns may be represented, interpreted, or discovered 

(Binjubeir et al., 2020; Gkoulalas-Divanis and Loukides, 2015).  

Besides the importance of data mining operations in many applications, there has 

been a growing focus on the privacy risks associated with data publication. Consequently, 

potential breaches and abuses of data privacy have received a lot of attention. As a result, 

it is essential to ensure proper data protection because failure could lead to circumstances 

that could harm both people and organizations (Binjubeir et al., 2020; Lei Xu et al., 2014; 

Zorarpacı and Özel, 2021). For this reason, many establishments are caught between 

sharing information and protecting their privacy to get this valuable information 

(Binjubeir et al., 2020; Jubeir et al., 2020). Consequently, researchers have developed a 

novel research field called privacy-preserving data publishing (PPDP) (BinJubier et al. 

2022; Chen et al. 2009), which has garnered considerable attention recently. PPDP 

focuses on eliminating privacy risks of individuals while preserving the utility of released 

data for data mining (Jayapradha et al., 2022; Jeba et al., 2022; Lei Xu et al., 2014; Yu 

and Member, 2016; Mendes and Vilela, 2017; Aldeen et al., 2015).   

1.3 Problem Statement 

The practice of data publishing allows research institutions to easily share their 

data with others, enabling research organizations to perform data mining operations and 

extract valuable insights from the published data. These insights can subsequently be 

utilized to represent, translate, or uncover new and exciting forms of information 

(Binjubeir et al., 2020; Gkoulalas-Divanis and Loukides, 2015). However, the potential 

of published data has yet to be explored because scholars face several challenges when 

extracting information from published data. One of these challenges is data privacy, 

which results in the exposing of individuals' identities, unauthorized access to information 

and private data, and the use of personal information for unintended purposes (Yu, 2016; 

Siddique et al., 2018; Hasan et al., 2018; BinJubier et al., 2022; Binjubeir et al., 2020; 

Zorarpacı and Özel, 2021; Jayapradha et al., 2022). Despite removing identity attributes 

(IAs) like names and social security numbers to protect data, in many cases, the remaining 

data can still be used to identify the person. Additionally, even if sensitive attributes (SA) 

are not explicitly disclosed, they may still be inferred through linking attacks, where the 
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remaining attributes are linked with other data sources. This kind of attack is known as a 

composition or intersection attack (Zigomitros et al., 2020;Gkoulalas-Divanis and 

Loukides, 2015; Hasan et al., 2018; BinJubier et al., 2022; Binjubeir et al., 2020). 

To address these concerns while still retaining data utility, various anonymization-

based approaches have been developed in Privacy-Preserving Data Publishing (PPDP), 

such as slicing ( Li et al., 2012), merging (Hasan et al., 2018), 𝑒−𝐷𝑃 (Mohammed et al., 

2011), Mondrian (LeFevre et al., 2006), composition (Baig et al., 2012), probabilistic 

(Sattar et al., 2014) and hybrid (Li et al., 2016). The aim of data anonymization is to 

reduce the likelihood of revealing personal information while preserving the possibility 

of using published data and causing uncertainty in identity inference or sensitive value 

estimation (Lasko and Vinterbo, 2010; Majeed and Lee, 2021; BinJubier et al., 2022; 

Zorarpacı and Özel 2021; Olatunji et al., 2022). Anonymization-based approaches 

recurrently resort to using different protection methods, such as grouping methods, 

perturbation methods, and measurement correlation (similarity) methods (Jeba et al., 

2022; BinJubier et al., 2022; Li et al., 2016; Hasan et al., 2018; Mohammed et al., 2011; 

Sattar et al., 2014; LeFevre et al., 2006; Baig et al., 2012; Wong and Fu, 2010), and 

causing uncertainty in identity inference or sensitive value estimation (Lasko and 

Vinterbo, 2010). Protection methods used with anonymization-based approaches aim to 

avoid attempts to identify the record owner's identity by converting a dataset's original 

values to the anonymized dataset. When performing the extraction of knowledge through 

data mining operations, the anonymous dataset is used instead of the original dataset (Jeba 

et al., 2022; BinJubier et al., 2022). 

Anonymization approaches based on grouping methods are commonly used for 

privacy protection but face challenges in defending sensitive values against composition 

attacks (BinJubier et al., 2022). To mitigate this issue, the perturbation method is 

employed, modifying the real values of the dataset to create an anonymized version. The 

𝑒 − 𝐷𝑃, composition, probabilistic, and hybrid approaches are highly respected for their 

effectiveness in privacy preservation through data perturbation and anonymization. 

However, this modification can impact data utility depending on the amount and type of 

noise or the specific properties of that data are not preserved (Jeba et al., 2022; Mivule, 
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2013). Introducing a correlation measure as a solution to enhance protection and preserve 

data utility is a promising protection method. By grouping highly correlated attributes 

together in columns and preserving their correlations, the correlation measure safeguards 

privacy. It achieves this by breaking associations between uncorrelated attributes in other 

columns through protection methods based on anonymization approaches, such as 

random permutation and generalization (Jayapradha et al., 2022; A. Hasan et al., 2018). 

However, recent correlation-based methods like slicing and merging face the drawback 

of relying on random permutation, which may not provide reliable protection against 

attribute or membership disclosure. Additionally, merging procedures can generate fake 

tuples, resulting in a loss of data utility and incorrect knowledge extraction (BinJubier et 

al., 2022; Majeed and Lee, 2021; Jeba et al., 2022; Anil Sharma et al., 2020; Rohilla, 2015). 

The following 2.4 section (Protection Methods Based on Anonymization) will describe 

in detail each of these protection methods. 

Evidently, this gap is an opportunity to improve privacy protection through the 

design of a slicing-based approach. This approach would effectively prevent attackers 

from identifying individuals or disclosing sensitive information in a table, while 

simultaneously determining the optimal balance between privacy and data utility. 

Achieving this balance would require improved protection methods that identify specific 

attributes capable of detecting potential disclosure, enhancing the privacy of published 

data without compromising its utility. Protection methods can convert original dataset 

values into anonymized ones, which can then be used in data mining operations to prevent 

the identification of record owners (Jayapradha et al., 2022; Cunha et al., 2021). 

Nevertheless, most current approaches fail to adequately address the effectiveness of 

using anonymized data for data mining and determine the level of protection necessary 

to prevent the disclosure of private information while maintaining data utility (Lasko and 

Vinterbo, 2010; Binjubeir et al., 2020; Majeed and Lee, 2021; BinJubier et al., 2022; Eom 

et al., 2020; Cunha et al., 2021). Table 1.1 outlines this problem and underscores the need 

for the improvement of more effective protection methods. 
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Table 1.1 Summary of problem statement  

No. Problem Description Affect 

1 Although numerous approaches 

have been proposed to address 

privacy concerns, many of them do 

not adequately consider the 

effectiveness of anonymized data 

when attempting to attain a high 

level of privacy. This critical issue 

has been highlighted in studies by 

(Mehmood et al., 2016; Hasan et 

al., 2016; Jeba et al., 2022; 

BinJubier et al., 2022). However, 

there is still a need for further 

research to identify the most 

effective approaches for achieving 

this balance between privacy and 

utility. 

Data anonymization is a 

crucial practice that helps 

to mitigate the risks of 

revealing personal 

information when 

publishing data. This 

process involves using 

various protection 

methods to alter or mask 

sensitive values, thereby 

reducing the chances of 

identity inference. 

By implementing 

anonymization 

approaches to 

mitigate the risk of 

disclosing 

individuals' 

information, a trade-

off often arises 

between higher 

privacy and 

decreased data utility 

or increased data 

utility and decreased 

privacy. 

2 The majority of current approaches 

lack adequate consideration of the 

effectiveness of using anonymized 

data for data mining and 

determining the level of protection 

necessary to prevent the disclosure 

of private information while 

preserving data utility (Lasko and 

Vinterbo, 2010; Binjubeir et al., 

2020; Majeed and Lee, 2021; 

BinJubier et al., 2022; Eom et al., 

2020). To address these issues, it is 

crucial to develop improved 

protection methods that accurately 

determine the level of protection 

required and identify specific 

attributes that can help detect 

potential disclosure. 

The protection of specific 

attributes within data is 

crucial to ensure privacy. 

Anonymization-based 

approaches are 

commonly employed to 

transform original 

attribute values into 

anonymized ones, 

employing various 

protection methods. 

These anonymized values 

can subsequently be 

utilized in data mining 

operations, effectively 

safeguarding the 

identification of record 

owners. 

Effect on the data 

utility and privacy 

Table 1.1 shows that this study will address two significant issues: achieving a 

balance between privacy and utility in data applications, and determining the amount of 

protection required to achieve published data privacy while retaining more data utility. 
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1.4 Aim and Research Objectives 

The primary goal of this research is to protect data privacy by lowering the risk of 

disclosing personal information and preserving the potential use of published data. The 

slicing approach has been designed to overcome the limitations of previous works in 

preventing unauthorized disclosure of individuals' identities, and it is widely used for data 

anonymization while maintaining data utility. Slicing can be performed through vertical 

and horizontal data partitioning. Vertical partitioning is applied when highly correlated 

attribute values are grouped into columns, while horizontal partitioning is applied when 

tuples are grouped into buckets; the attribute values are permutated randomly to break the 

linkages between different columns. However, a significant drawback of the slicing 

approach is the reliance on random permutation as a protection method, as it does not 

always guarantee adequate protection against attribute or membership disclosure. 

Moreover, striving for a high level of privacy using random permutation-based protection 

methods inevitably leads to some information loss. 

To address these limitations, the proposed study introduces an enhanced approach 

called the Upper Lower (UL) level-based protection approach, based on the slicing 

approach. The proposed approach consists of two steps. In the first step, it uses horizontal 

partitioning (tuple partition) and vertical partitioning (attribute grouping) to anonymize 

published data, similar to the slicing approach. The second step involves the 

implementation of an improved protection method using Lower Protection Level (𝐿𝑃𝐿) 

and Upper Protection Level (𝑈𝑃𝐿). This method aids in identifying specific attributes 

that have the potential to reveal personal information and determines the appropriate level 

of protection required to prevent the disclosure of private information. By doing so, the 

UL approach effectively mitigates identity disclosure while achieving a balance between 

preserving privac and maintaining data utility. The aim is to safeguard personal 

information while still allowing the data to remain useful for various purposes. This 

overarching goal can be subdivided into the following specific objectives: 

i. To improve the current slicing approach, which incorporates the randomized 

protection method, a novel approach is introduce termed Upper Lower (UL) level-

based protection. This approach integrates horizontal partitioning (tuple 
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partitioning) and vertical partitioning (attribute grouping) to anonymize the 

published data, resembling the slicing approach while eschewing the 

randomization protection method. The primary objective of this approach is to 

strike a balance between preserving privacy and optimizing data utility, 

ii. To anonymize data using the Lower Protection Level (𝐿𝑃𝐿) and Upper Protection 

Level (𝑈𝑃𝐿) aims to enhance the effectiveness of the UL approach in determining 

the necessary protection level. This is achieved by selecting specific cell values 

that aid in preventing identity disclosure and broken the link between it through a 

rank swapping protection method. The utilization of the rank swapping protection 

method is intended to enhance data privacy, utility, and ensure l-diversity in the 

dataset. 

iii. To evaluate the efficiency of the proposed approach by comparing its performance 

with other existing works. 

Table 1.2 summarizes the mapping between research questions (RQ), research 

objectives (RO), and research contributions (RC) for this study. The first question led to 

the design of a slicing-based enhanced approach called the Upper Lower (UL) level-based 

protection approach that can be used for data anonymization of published data. The 

enhanced approach would effectively prevent attackers from identifying individuals or 

disclosing sensitive information in a table while simultaneously determining the optimal 

balance between privacy and data utility. The second objective answers the second 

research question, which introduces an improved protection method called the Lower 

Protection Level (𝐿𝑃𝐿)  and Upper Protection Level (𝑈𝑃𝐿)  for the anonymization 

approach to be more effective in determining the amount of protection required through 

selecting particular cell values that help prevent identity disclosure. By doing so, the UL 

approach effectively mitigates identity disclosure and breaks the linkages between the 

attribute values that compromise the privacy of published data, resulting in enhanced 

privacy for published data and the preservation of data utility. The third objective answers 

the third and fourth research questions and leads to the evaluation of the efficiency of the 

proposed approach by comparing its performance with other existing works.  
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Table 1.2 Mapping of research questions to objectives and contributions in this 

thesis 

Research Question Research Objective Contribution 

What approach(es) 

can be used for data 

anonymisation while 

simultaneously 

determining the 

optimal balance 

between privacy and 

data utility? 

To design a slicing-based enhanced 

approach called the Upper Lower 

(UL) level-based protection 

approach that can be used for data 

anonymization of published data. 

The enhanced approach aims to 

achieve a better balance of utility 

and privacy before releasing any 

data product. 

Propose an enhanced approach 

based on slicing that can be 

used for data anonymization of 

published data. This enhanced 

approach aims to effectively 

minimize the risk of identity 

disclosure and sever the 

connections between attribute 

values that could potentially 

compromise the privacy of the 

published data, resulting in 

enhanced privacy for published 

data and the preservation of 

data utility. 

What amount of 

protection is needed 

to prevent private 

information 

disclosure whilst 

preserving data 

utility? 

To propose an improved protection 

method called the Lower Protection 

Level (𝐿𝑃𝐿) and Upper Protection 

Level (𝑈𝑃𝐿)  for the 

anonymization approach, which is 

more effective in determining the 

amount of protection required 

through selecting particular cell 

values that help prevent identity 

disclosure. By doing so, the UL 

approach effectively mitigates 

identity disclosure and breaks the 

linkages between the attribute 

values that compromise the privacy 

of published data, resulting in 

enhanced privacy for published 

data and the preservation of data 

utility. 

rks by effectively determining 

the amount of protection 

required to prevent personal 

information disclosure and 

striking a balance between 

privacy and utility in the 

published data. 

How do you evaluate 

the efficiency of the 

anonymization 

approach? and Can 

anonymized data be 

effectively used for 

data mining 

operations? 

This study involved comparing the 

performance of the proposed 

approach to that of other existing 

works to assess its effectiveness. 

The evaluation of the proposed 

approach revealed that this 

method has a high capacity to 

preserve more data utility and 

provide stronger privacy 

protection. 

1.5 Contribution 

This research introduces an enhanced approach called the Upper Lower (UL) 

level-based protection approach, which utilizes slicing to achieve data anonymization. 

Privacy-Preserving Data Publishing (PPDP) encompasses various protection methods 

and approaches, with anonymization being one of the most widely used. The primary 
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objective of this research is data anonymization while maintaining an optimal balance 

between privacy and data utility. The contributions of this research can be summarized 

as follows: 

i. Designing the UL approach, an enhanced slicing-based method that effectively 

prevents attackers from identifying individuals or disclosing sensitive information 

in the data table. This approach achieves a better balance between privacy and 

data utility, 

ii. Introducing the 𝑈𝑃𝐿 and 𝐿𝑃𝐿 methods as improved protection methods within 

the anonymization approach. These methods address limitations present in 

existing works by accurately determining the level of protection required to 

prevent the disclosure of personal information. Unlike random way used in other 

approaches to break attribute value correlations, the 𝑈𝑃𝐿  and 𝐿𝑃𝐿  methods 

identify specific attributes for swapping. Selectively swapping specific cells is 

crucial for enhancing data privacy, preserving valuable information, and ensuring 

l-diversity in the published microdata table, 

iii. Validating the proposed approach by utilizing existing data from related works to 

evaluate its effectiveness against composition attacks. A comprehensive 

evaluation is performed to compare the proposed approach with existing methods 

in terms of preserving data utility and privacy. 

1.6 Scope and Limitation 

The motivation behind preserving published data privacy stems from the proposal 

of an enhanced approach known as the UL approach, based on slicing. This approach 

aims to prevent attackers from identifying individuals or disclosing sensitive values in the 

table, while achieving a better balance between privacy, information loss, and utility. To 

ensure the efficient execution of the proposed UL approach, the implementation 

environment is carefully selected by simulating all relevant scenarios. The research scope 

encompasses data, attack, and privacy types. Table 1.3 provides a summary of the study's 

scope and limitations. 
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Table 1.3 Research Scope and Limitations 

No Items  Scope of Research Reason 

1 dataset Adult dataset (Kohavi 

and Becker, 2019) 

The "Adult" dataset was utilized in the experiments 

to evaluate and compare the results with other 

existing works. 

2 Data 

form 

microdata form Microdata contains the actual information and offers 

the advantage of conducting analyses that may not 

be feasible with other data forms. 

3 Privacy 

type 

Information privacy Information privacy is concerned with ensuring that 

sensitive values are not disclosed and that the 

identities of individuals or groups cannot be deduced 

from the information collected by data collectors. 

4 Attack 

type  

A composition attack When addressing privacy preservation in 

anonymization approaches, it is crucial to assess the 

potential threats presented by adversaries with 

access to externally accessible data and diverse 

inference methods. Understanding these risks is key 

to effectively safeguarding privacy. 

1.7 Thesis Outline and Organization 

Chapter 1 discusses the introduction of the research, encompassing the study's 

background, motivation, problem statements, aims and objectives, contributions, scope, 

and limitations. It concludes by summarizing the thesis outline and organization. 

Chapter 2 comprises the literature review, providing an overview of the 

approaches and methods used for privacy-preserving. It delves into the concept of 

privacy, anonymization approaches, protection methods based on anonymization, and 

data utility, along with measuring risks. 

Chapter 3 outlines the research procedures, presenting the stages, methods, and 

their relationships to clarify the design of the proposed solution. The research 

methodology explains the proposed approach and the involved algorithms at each stage, 

followed by dataset initialization and performance evaluation. 

Chapter 4 introduces the design of the UL approach and the improved protection 

methods, 𝑈𝑃𝐿 and 𝐿𝑃𝐿. It also includes the measurement of the required protection level. 

The chapter evaluates the effectiveness of the approach in preserving data utility, 
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comparing it with other existing works, and assessing its privacy protection against 

considered attacks. 

Chapter 5 provides the thesis conclusion, summarizing the work, discussing key 

findings, and suggesting future research directions. 

Except for the first and final chapters, each chapter begins with an introduction 

and concludes with a summary.
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction 

This chapter reviews privacy, anonymization approaches, and protection methods 

based on anonymization approaches. It begins with the definition of privacy and describes 

the approaches to privacy-preserving data publishing (PPDP). Following that, the 

anonymization approach is explained, and a discussion of the protection methods based 

on anonymization approaches ensues, comparing their advantages and disadvantages. 

Additionally, the approaches used under each protection method are compared in this 

chapter. Next, measures of risk disclosure and data utility are described. Finally, a 

summary is provided to recapitulate the key points of this chapter. 

2.2 Privacy Definition  

Although various definitions of privacy exist, providing an accepted standard 

definition of this concept is difficult (Cranor et al., 2016; Banisar and Davies, 1999; 

Mendes and Vilela, 2017; Gan et al., 2018). In 1948, the Universal Declaration of Human 

Rights (Banisar and Davies, 1999) established privacy as a fundamental right. However, 

due to the fact that privacy can vary in scope, such as in communication, at home, and 

with family, its definition may be perceived as having a very restricted application. 

According to (Banisar and Davies, 1999; Mendes and Vilela, 2017), privacy is commonly 

categorized into bodily privacy, communication privacy, information privacy, and 

territorial privacy, as illustrated in Figure 2.1.  

The collection and management of personally identifiable information is part of 

information privacy. Individuals' bodily privacy protects them from invasive procedures, 

such as drug testing and others. Communication privacy entails protecting the privacy of 

all forms of communication. Territorial privacy is intended to limit intrusion into a 

regional environment. 
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The study of information privacy is primarily concerned with interaction and 

content privacy. Content privacy involves the prevention of identity disclosure from 

anonymized or encrypted databases, such as the extraction of credit card information from 

a state or national database. Interaction privacy, on the other hand, refers to preventing 

the disclosure of an individual’s content, such as checking victims’ encrypted web traffic 

or using a voice fingerprint to access services (Yu, 2016).  

 

Figure 2.1 Scope of privacy 

As a result, the current study adopts a definition of privacy in content and 

interaction (Mendes and Vilela, 2017; Banisar and Davies, 1999), which is relevant to the 

research path involving the collection and analysis of individual data, ultimately assisting 

organizations in improving their efficiency and supporting future plans. 

Despite the overlap between confidentiality and privacy in some contexts, their 

respective concepts and protection methods are distinct. Confidentiality is viewed as data-

related, focusing on protecting data from unauthorized access, modification, or loss when 

transferred across a network (Senosi and Sibiya, 2017; Binjubeir et al., 2020). On the 

other hand, privacy has an additional "data owner-oriented" concept as it deals with the 

data owners and aims to protect the private information of the data owners (Wang et al., 

2019). The variation in privacy arises from the types of data collected and their uses, 

leading to the adoption of various approaches to ensure privacy (Shah and Gulati, 2016b).  

When addressing privacy concerns, multiple methods are employed, but some 

information loss is inevitable, and there is a trade-off between data utility and information 

loss. Data utility refers to the extent to which modified data can be effectively used for 

in-depth analysis while satisfying privacy requirements. However, existing generic 
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solutions fail to address all privacy concerns associated with protecting sensitive 

information while preserving data utility. Previous studies have focused on finding 

effective protocols for specific problems, considering the trade-offs between data utility 

and information loss during privacy-enhancing data mining (Ding and Klein, 2010; Shah 

and Gulati, 2016a; Bhaladhare and Jinwala, 2016; Yu et al., 2018; Yu et al., 2016).  

In recent years, a subfield of data mining known as PPDP (Privacy-Preserving 

Data Publishing) has grown to address privacy concerns during data publication. A 

crucial aspect of PPDP is manipulating the data using a specific method so that a good 

data mining model can be developed on modified data that satisfies a specified privacy 

requirement with minimal information loss for the intended data analysis task. Here, data 

mining operations will be used without jeopardizing the security of sensitive individual 

data, especially at the record level (Wong and Fu, 2010). 

2.2.1 Privacy Preservation Data Publishing (PPDP) 

Data collectors collect vast quantities of data from data providers on data 

warehouse servers to support subsequent data mining operations. The data collected may 

contain sensitive personal information about individuals. Consequently, the purpose of 

PPDP (Privacy-Preserving Data Publishing) is to protect privacy during data collection 

and dissemination to various data mining servers (Zhang and Zhao, 2007; Yin et al., 

2017). In addition to protecting privacy, PPDP considers the utility of data for effective 

data mining operations, ensuring that sensitive information remains unintelligible, and 

record owners remain unidentifiable within a set of other records, making it difficult for 

attackers to link them to specific records. Since ideas about privacy vary, so do the ways 

they protect it. No existing generic solutions can handle all privacy issues while 

effectively protecting sensitive information from unwanted disclosure (Binjubeir et al., 

2020). Hence, several methods are used to provide privacy (Shah and Gulati, 2016b). 

Three approaches have been developed for privacy-preserving information (Bertino, Lin, 

and Jiang, 2008; Binjubeir et al., 2020). As illustrated in Figure 2.2, these approaches are 

data exchange (Conway and Strip, 1976), data cryptography (Yang, Zhong, and Wright, 

2005), and data anonymization (Agrawal and Srikant, 2000; Agrawal and Haritsa, 2005; 

Binjubeir et al., 2020). 
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Figure 2.2 Data protection methods in PPDP  

Using a data exchange approach, private information may be disseminated from 

(at least) one data source to another. Therefore, this approach only works for systems with 

reliable data sources, where none of the data providers have any intention to compromise 

the disseminated private information. In several real-world systems, data providers are 

rarely trusted because they could seek to undermine the distributed private information. 

Hence, private information cannot be fully protected from compromise with this data 

exchange approach (Clifton et al., 2004; Zhang, 2006). 

When using data cryptography, multiple parties (referred to as data providers) 

collaborate to compute results or analyze non-sensitive information. Each data provider 

possesses a pair of public and private keys. Furthermore, all parties, including the data 

collectors (servers for the data warehouse), must have access to the public keys of all data 

providers. Initially, all data providers are provided with the combined sum of public keys, 

which they use to encrypt their data and transmit it securely to the data warehouse servers. 

As a result, no participant gains access to information beyond their own input. Once the 

encrypted data is received, the data warehouse servers can utilize mathematical 

manipulations to generate precise models. These models serve to address privacy 

concerns among competitors or other untrustworthy entities (Vaghashia and Ganatra, 

2015; Lindell, 2011; Andrew et al., 2019). However, the complexity of this approach may 

lead to high computational costs for data providers and warehouse servers, making it 

impractical (ElGamal, 1985; Luo and Wen, 2014).  

To counteract attempts to identify the owners of specific records, the data 

anonymization approach is employed (Binjubeir et al., 2020; Hasan et al., 2018). This 

approach aims to preserve the usefulness of the data while ensuring the protection of 

individual identities. The upcoming section delves further into the discussion of the data 

anonymization approach, as it holds the primary focus of this thesis. 
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2.3 Data Anonymization Approaches  

Anonymization of data is an approach used to safeguard data in a manner that 

prevents attackers from making inferences about the identities of individuals or disclosing 

private information to those individuals. It is necessary to treat the collected data as a 

private table called the microdata table 𝑇. This table comprises a set of tuples, and each 

tuple 𝑡 is regarded as a client, possessing various attributes linked to clients (Jubeir et al., 

2020; Aldeen et al., 2015; Olatunji et al., 2022). Typically, these attributes are categorized 

as Identity Attribute (IA), which explicitly identifies the records of the client (e.g., name, 

cellular numbers, and driver's license numbers); Quasi-identifier (QI) attributes refer to a 

sequence of individuals' non-explicit attributes (e.g., gender, nationality, ZIP code, and 

age) where no single attribute can give specific identification of the person; instead, all 

the attributes must be combined to identify the person. The QI attributes include two 

types: numeric and categorical, as depicted in Figure 2.3. Additionally, there are Sensitive 

Attributes (SA), which denote confidential information (see Table 2.1) (Sharma, 2017; A 

Machanavajjhala et al., 2006; Jeba et al., 2022; Zigomitros et al., 2020).  

Therefore, it is expected that organizations publish only partial data derived from 

their datasets in the form of microdata. This approach can enhance an organization's 

reputation or support future plans without divulging the proprietorship of the sensitive 

data. Even though the attributes (IAs) that identify users in the table, such as names, 

cellular numbers, and driver's license numbers, are removed under the assumption that 

anonymity is maintained, the remaining data can, in most cases, be used to re-identify the 

person. Additionally, sensitive attributes (SA) may still be exposed through linking 

attacks, where sensitive attributes are associated with other public data sources. This 

situation is known as a "composition attack" or "intersection attack." As a result, 

anonymization can only be accomplished by modifying these attributes to obscure the 

relation between the individual and specific values, thereby preventing such attacks and 

preserving the potential application of the published data (Hasan et al., 2018; Jeba et al., 

2022).  
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Table 2.1 Medical database of patients 

 

 

 

Figure 2.3 Types of QI attributes 

The composition attack is the result of mixing different publicly available 

datasets. Since datasets are rarely isolated, attackers rely on the intersection of datasets to 

exploit sensitive information, given that they are a combination of other datasets. The 

complexity of this problem increases with the availability of more datasets from various 

data collectors (Gkoulalas-Divanis and Loukides, 2015). Records in published datasets 

are typically arranged in small groups known as an equivalence class. All individuals in 

the equivalence class are similar and associated with sensitive values, depending on the 

protection method used (Gambs, Killijian, and del Prado Cortez, 2010; Hasan, Jiang, and 

Li, 2017). A person's privacy is compromised if the adversary's confidence is significantly 

greater than a random guess. 

Anonymization approaches have proven to be an effective means of preserving 

privacy. In recent years, protecting published data through anonymization approaches has 

been extensively studied (Binjubeir et al., 2020; Hasan et al., 2018). These approaches 

aim to modify the attributes (QI values) to weaken the linkage between QI and SA values, 
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thereby preventing such attacks and ensuring the preservation of privacy for published 

data. To achieve effective privacy preservation, a variety of protection methods based on 

anonymization approaches are employed prior to data publication. These protection 

methods are carefully designed to prevent the identification of record owners while 

simultaneously maintaining the utility of the data (Jeba et al., 2022; Zigomitros et al., 

2020). The following section will describe these protection methods based on 

anonymization approaches. 

2.4 Protection Methods Based on Anonymization Approaches 

Anonymization approaches employ various protection methods, which can be 

used and combined within the same approach to introduce uncertainty into identity 

inference or sensitive value estimation. Protection methods based on anonymization 

approaches aim to avoid attempts to identify the record owner's identity by converting a 

dataset's original values to an anonymized dataset. When performing data mining 

operations, the anonymous dataset is used instead of the original dataset. In this study, 

these protection methods based on anonymization approaches are classified into three, as 

illustrated in Figure 2.4 grouping methods, perturbation methods, and measurement 

correlation (similarity) methods (Binjubeir et al., 2020; Hasan et al. 2018). The following 

subsections describe these methods in further detail.  

 

Figure 2.4 Classification of the protection methods of the data anonymisation 

approaches 
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2.4.1 Preserving Privacy Based on The Grouping Method 

This method divides the entire records horizontally into several groups or 

partitions and only allows each tuple to belong to one group (Xiao and Tao, 2006; 

Sweeney, 2002b). The goal of this procedure is to make it harder for a person to identify 

with their SA values in the group by weakening the linkage between the QI and SA values. 

Grouping is often implemented using suppression and generalization and bucketization 

and/or combined. 

Suppression and generalization are effective sensitive data protection methods 

against unauthorized access as they hide or replace some details of the attributes. 

Furthermore, both methods address different attributes individually, meaning that they 

only adjust the selected values that will minimize utility loss (Verykios et al., 2004; 

Olatunji et al., 2022). In the suppression way, the values of the attributes are replaced in 

the table with ANY, denoted by "*". This means some or all values of the attribute are 

replaced by "*". The second operation is the generalization method. In the generalization 

method, a specific value of the attributes is replaced by a more general value according 

to a given taxonomy, thereby making the QI less identifying (Wong and Fu, 2010; Cunha 

et al., 2021).  

There are two major ways of anonymizing information using the generalization 

method: global recoding and local recoding. For global recoding, once an attribute value 

is generalized, each value occurrence should be replaced by a new generalized value. For 

example, all values in the birth date attribute are generalized to years, or all values in 

nationality are related to continents. In local recoding, values may be generalized to 

different generalization domains. For example, local recoding may generalize values of 

the age attribute into [20–39], [40–59], and [60–90]. Hence, local recoding is more similar 

to the original data and can preserve more information than global recoding, making the 

data mining operations more accurate. Additionally, overlapping intervals are unsuitable 

for most classification tools as they complicate classification tasks (Wong and Fu, 2010; 

Wen, Wu, and Castiglione, 2017; Cunha et al., 2021). 

Table 2.2 serves as a means of anonymizing data through the use of the 

suppression way. Upon examination, it becomes apparent that the first two tuples and the 

last tuple share the same quasi-identifier (QI) values. These three tuples can be considered 
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as forming an equivalence class, representing a collection of tuples in the table that share 

identical QI values. Similarly, the third, fourth, and fifth tuples form another equivalence 

class or QI-group. On the other hand, generalization is employed to transform specific 

values into more generalized forms. Numeric values can be changed to value ranges. For 

example, in Table 2.3, the value 23 can be generalized to the range 23-30. In the case of 

categorical values, they can be replaced with other categorical values representing 

broader concepts than the original values. For instance, the category "gender" can be 

generalized to "person."   

Table 2.3, it also serves as a method for anonymizing data using the generalization 

approach. Upon examination, it becomes evident that the first three tuples share identical 

quasi-identifier (QI) values, forming an equivalence class. The remaining tuples form 

another equivalence class because they share identical quasi-identifier (QI) values (Wong 

and Fu, 2010).   

Suppression and generalization ways primarily target quasi-identifier (QI) 

attributes, such as age, zip code, and gender, while overlooking the sensitive attributes 

(SA) of individuals (Wong and Fu, 2010; Jeba et al., 2022). These ways address distinct 

attributes separately, altering only the designated values (Wong and Fu, 2010; Jeba et al., 

2022). In anonymized datasets, records are typically grouped based on shared QI values, 

forming equivalence classes. Within these classes, individuals exhibit similarities and are 

associated with sensitive values determined by the anonymization approach. 

Generalization provides the benefit of ensuring uniform attribute values within each 

group, thereby facilitating the analysis of published data (Wong and Fu, 2010). However, 

both suppression and generalization ways remain susceptible to indirect attacks, allowing 

the inference of individuals' attributes and potential identity disclosure when certain QI 

attributes are revealed. Moreover, both methods entail significant information loss while 

aiming for a heightened level of privacy (Li and He, 2023). For instance, in Table 2.2 and 

Table 2.3, the second equivalence class reveals a single match linked with two sensitive 

values for the "Gender" attribute, displaying "female" in Table 2.2 and "person" in Table 

2.3. Consequently, despite attackers correctly identifying the victim's equivalence class, 

they may fail to accurately determine the associated sensitive value.  
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Table 2.2 Published by suppression 

Quasi identifier table Sensitive table 

ID Age Gender Zip code Disease 

1 * male * flu 

2 * male * cancer 

3 * female * flu 

4 * female * heart disease 

5 * female * flu 

6 * male * heart disease 

An alternative way for anonymizing data is known as bucketization, proposed by 

Xiao and Tao (Xiao and Tao, 2006). This method is similar to generalization in terms of 

creating equivalence classes but does not modify any attribute related to the quasi-

identifier (QI) or the sensitive attribute (Li and He, 2023).  

Table 2.3 Published by generalization 

Quasi identifier table Sensitive table 

ID Age Gender Zip code Disease 

1 23-30 person 130350 flu 

2 23-30 person 130350 cancer 

3 23-30 person 130350 flu 

4 31-60 person 130351 heart disease 

5 31-60 person 130351 flu 

6 31-60 person 130351 heart disease 

The bucketization process entails partitioning the original data table into non-

overlapping partitions, yielding two distinct tables: the Quasi-Identifier (QI) table and the 

sensitive table. Each partition is assigned a unique identifier known as GID, where all 

tuples within a partition share the same GID value. These tuples are subsequently 

projected onto the QI attributes and the confidential attributes, resulting in the sensitive 

table. The primary objective of bucketization is to ensure that individuals within the same 

bucket exhibit indistinguishable values for the confidential attributes. Consequently, 

bucketized data complicates an observer's ability to associate specific records with 

individuals or infer sensitive information, as demonstrated in Table 2.4. Notably, the 

grouping achieved in Table 2.4 mirrors that of Table 2.3, albeit with Table 2.4 retaining 

all original tuple values, whereas Table 2.3 incorporates some generalized tuple values 

(Wong and Fu, 2010; Jayapradha et al., 2022) 
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Table 2.4 Published by bucketization 

 

The bucketization process entails partitioning the original data table into non-

overlapping partitions, yielding two distinct tables: the Quasi-Identifier (QI) table and the 

sensitive table. Each partition is assigned a unique identifier known as GID, where all 

tuples within a partition share the same GID value. These tuples are subsequently 

projected onto the QI attributes and the confidential attributes, resulting in the sensitive 

table. The primary objective of bucketization is to ensure that individuals within the same 

bucket exhibit indistinguishable values for the confidential attributes. Consequently, 

bucketized data complicates an observer's ability to associate specific records with 

individuals or infer sensitive information, as demonstrated in Table 2.4. Notably, the 

grouping achieved in Table 2.4 mirrors that of Table 2.3, albeit with Table 2.4 retaining 

all original tuple values, whereas Table 2.3 incorporates some generalized tuple values 

(Wong and Fu, 2010; Jayapradha et al., 2022). 

Based on the grouping method, some of the best approaches for ensuring data 

anonymity are the k-anonymity approach (Bayardo and Agrawal, 2005), l-diversity 

approach (Ashwin Machanavajjhala et al., 2006), T-closeness approach (Li et al., 2007) 

and Mondrian approach (LeFevre, DeWitt, and Ramakrishnan, 2006). The following 

subsections describe these approaches in further detail. 

K-anonymity is a widely used and well-known privacy approach (Pawar et al., 

2018). To protect individuals' privacy, Roberto and Samarati et al. (Roberto J Bayardo 

and Agrawal, 2005; Samarati and Sweeney, 1998) introduced the notion of k-anonymity 

to limit the disclosure of information. The concept of k-anonymity is based on altering 

the values of the quasi-identifier (QI) attributes to make it impossible for an attacker to 

determine the identities of individuals in a particular dataset while preserving the 
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maximum utility of the disclosed data (see Table 2.5) (Roberto J Bayardo and Agrawal, 

2005; Samarati and Sweeney, 1998).  

Table 2.5 Three anonymous versions of the medical patient database relating to 

Table 2.1 

ID Equivalence Class Age Gender Zip code Disease 

1 1 2* Person 462*** heart disease 

2 2* Person 462*** heart disease 

3 2* Person 462*** flu 

4 3* Person 462*** heart disease 

5 2 3* Person 462*** cancer 

6 3* Person 462*** cancer 

7 3* Person 462*** cancer 

8 3 ≥ 40 Person 462*** flu 

9 ≥ 40 Person 462*** flu 

10 ≥ 40 Person 462*** flu 

The K value serves as a privacy metric, representing the frequency of each 

combination of values within an equivalence class. In the given example, Table 2.5 is 

utilized to anonymize data through the application of suppression and generalization 

methods. When the value of k is set to 3, the data is considered 3-anonymous. This 

indicates that the tuples in the table have been generalized to the extent that there are at 

least three occurrences of every combination of data. The lower the K value, the lower 

the de-anonymization likelihood. In contrast, if the K value is greater, an attacker will 

have a harder time determining the identities of individuals. However, increasing the K 

value simultaneously reduces the data utility (Mendes and Vilela, 2017; Olatunji et al., 

2022). 

Although the k-anonymity approach provides some amount of privacy protection, 

it has a few drawbacks. First, it can be challenging for k-anonymity to identify the quality 

improvement qualities in external tables and determine how much data can be shared with 

others (Keyvanpour, 2011). Recent research has shown that 87% of the population can 

be identified using seemingly unimportant quasi-identifier (QI) attributes (Aldeen et al., 

2015; Sweeny, 2002; Binjubeir et al., 2020). In earlier studies, researchers obtained 

mobility datasets of 1.5 million people using a k-anonymity approach (removing apparent 
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identity attributes). They found that they could identify an individual with 95% accuracy 

using just four spatiotemporal points (De Montjoye et al., 2013; Yu, 2016). Another 

recent study (Yu, 2016; De Montjoye et al., 2015) that analyzed a data collection of over 

1 million people's 90-day financial transactions corroborated the disadvantages of the 

simple k-anonymity approach. The study found that almost 90% of the subjects could be 

re-identified using four spatiotemporal points. 

Second, Table 2.5, related to Table 2.1, illustrates three different anonymous 

versions of the sick individuals' database. The k-anonymity approach attempts to work on 

the QI attributes, such as determining a person's age, zip code, and gender, but does not 

invest in the sensitive attributes (SA) of the individual (Yu, 2016). As a result, the k-

anonymity approach is susceptible to indirect attacks, which create the possibility of 

inferring a person’s attributes and disclosing their identity. Examples of this type of attack 

include the homogeneity attack (also known as the absence of variety in SA within an 

anonymized group; see the equivalence class 3 in Table 2.5) (Binjubeir et al., 2020), as 

well as the background knowledge attack, which is based on the following aspects: an 

adversary has enough background knowledge from the relationship between SAs and QI 

attributes to conduct probabilistic attacks (Yu, 2016; Li et al., 2014), or when the QI 

attributes are connected with other public data, this attack is known as a composition 

attack (Sweeney, 2002a; Bhaladhare and Jinwala, 2016; Yu, 2016; Keyvanpour, 2011). 

In addition, while trying to achieve a high level of privacy, it is impossible to avoid the 

loss of information when employing the k-anonymity approach (Mehmood et al., 2016). 

The k-anonymity approach might affect how data is used, which could cause an imprecise 

or even unworkable extraction of knowledge through data mining. As a result, balancing 

the need for privacy and the desire for utility is critical in data applications (BinJubier et 

al., 2022). 

Machanavajjhala et al. (Machanavajjhala et al., 2007) designed an l-diversity 

approach to shield the identities of individuals from disclosure. It extends the k-

anonymity approach. The major aim of the l-diversity approach is to protect one's privacy, 

which is achieved by expanding the spectrum of sensitive values. This approach treats 

specific attribute values the same regardless of how they are distributed in the data, 

resulting in an adequate representation of sensitive attributes inside each equivalence 

class, which guards against probabilistic inference attacks (Priyadarsini, Sivakumari, and 

Amudha, 2016). 
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Definition 1 (l-Diversity):  A QI-group (or equivalence classes 𝐸) is said to 

satisfy l-diversity (or a QI-group is said to be l-diverse) if the probability that any tuple 

in this group is linked to a sensitive value is at most 1/l. The table satisfies l-diversity (or 

the table is said to be l-diverse) if each QI-group satisfies l-diversity. The value of l 

represents the level of diversity required, with higher values providing stronger privacy 

protection. For instance, consider Table 2.5, which is a 3-diverse table. It comprises three 

QI-groups. The first QI-group encompasses the first four tuples, the second QI-group 

consists of the fifth, sixth, and seventh tuples, and the last QI-group includes the final 

three tuples. In each QI-group, the probability of a tuple being associated with cancer is 

at most 0.3 (Pawar et al., 2018). 

The distribution of values of sensitive attributes (SAs) presents a significant 

challenge for the I-diversity approach. This is due to the fact that various values have 

varied levels of sensitivity. In anonymized data, one sensitive attribute value may occur 

much more often than other values in an equivalence class (see equivalence class 1 in 

Table 2.5). This repeated occurrence of a value poses a severe privacy risk, as it allows 

an adversary to infer the likelihood of other entities within the equivalence class sharing 

the same value. This type of attack is known as a skewness attack (Pawar et al., 2018; Li 

et al., 2007). Because of the possibility of skewed attribute values, the construction of 

viable l-diverse representations is a challenging task. Additionally, this approach's ability 

to prevent the disclosure of an attribute through a similarity attack is insufficient (in an 

equivalence class, the sensitive attribute's values are different even though they are 

semantically related). I-diversity ensures that there is a variety of sensitive values present 

in each equivalence class, but it does not consider how closely together these values are 

semantically. This disadvantage served as the impetus for the invention of the T-closeness 

approach (Li et al., 2007; Priyadarsini et al., 2016; Pawar et al., 2018). 

T-closeness is an extension of l-diversity-based anonymization, applied to protect 

the privacy of data sets. Li et al. (Li et al., 2007) proposed this approach to enhance data 

set privacy. In this method, the distribution of sensitive attributes in each equivalence 

class should resemble the distributions of those attributes in a general table; for example, 

the difference between the two distributions should not exceed the threshold value 𝑡 (Li 

et al., 2014; Li ,2007). 

LeFevre et al. first introduced the Mondrian approach (LeFevre et al., 2006). The 

Mondrian approach was initially discussed by LeFevre et al. in 2006 (LeFevre et al.). It 



28 

is a greedy multidimensional technique that achieves k-anonymity across a data table's 

quasi-identifier (QI) attributes by recursively dividing the domain space into a number of 

regions, each containing at least k records. The approach starts with the entire database 

table as a partition, then divides it into two smaller partitions. These smaller partitions are 

then recursively divided into two parts until the k-anonymization principle is achieved. If 

so, the pre-cut partition functions as an equivalence class in the anonymized database. 

Using the range or set of QI attribute values present in the equivalence class itself, each 

equivalence class is generalized. 

 The Mondrian approach can be implemented using either strict or relaxed 

partitioning. When using strict partitioning, global recoding is the preferred method for 

dividing the database into non-overlapping sections. On the other hand, relaxed 

partitioning uses a local recording system and creates partitions that may overlap in the 

generalized quasi-identifier values, making it more flexible. 

Overall, anonymization approaches based on grouping methods are simple and 

attempt to protect the privacy of individuals; however, they have an intrinsic drawback. 

They cannot effectively defend the sensitive values of the records from a composition 

attack (Li et al., 2016). Moreover, achieving optimal anonymization is an NP-Hard 

problem (Chambers, De Mesmay, and Ophelders, 2018; Binjubeir et al., 2020). 

Additionally, these techniques become ineffective in high dimensionality scenarios, as 

the identity of the primary record holders can be exposed by combining the data with 

background information or public data (Chambers et al., 2018; Hasan et al., 2018; 

Binjubeir et al., 2020; Andrew et al., 2019).  

Given this, there is no one approach that is ideal for solving all privacy issues, as 

the type of privacy concern varies depending on the data used and how it is used. 

However, the disadvantages of one approach may be mitigated by another. This use is 

contextualized, and the position of the introduced approach in the literature is highlighted 

in Table 2.6 which lists prior works that have been discussed for privacy protection based 

on the grouping method. 
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Table 2.6 Summary of related works on preserving privacy based on grouping method. 

Authors approaches Objectives Method Strength Weakness 

(Roberto J 

Bayardo and 

Agrawal, 2005) 

and (Samarati 

and Sweeney, 

1998) 

K-

anonymization 

Proposed for limiting 

disclosure of information 

and protect the privacy of 

persons 

Modifying the values of 

the QI attributes enhances 

privacy by complicating 

the attacker's ability to 

determine individuals' 

identities.  The K value 

serves as a metric for a 

measuring of privacy. 

This approach protects an 

individual’s identity while 

releasing sensitive 

information 

K-anonymity faces indirect attacks, 

allowing attackers to deduce 

individual features, including 

homogeneity, background 

knowledge, and composition 

attacks. Additionally, its 

effectiveness diminishes in high-

dimensional datasets. 

(Machanavajjhal

a et al., 2007) 

L-diversity The primary objective of 

L-diversity is to uphold 

privacy by augmenting 

the diversity of sensitive 

values. 

This approach strives to 

treat the values of a 

specific attribute 

uniformly, regardless of 

their distribution within 

the dataset. 

This approach aims to 

maintain privacy by 

ensuring adequate 

representation of sensitive 

attributes within each 𝐸𝑒. 

This approach is vulnerable to 

skewness attacks, similarity 

attacks, and composition attacks.  

(Li et al. ,2007) T-closeness The primary objective of 

T-closeness is to uphold 

privacy, representing an 

extension of L-diversity. 

The distribution of SA 

within any 𝐸𝑒 should 

closely resemble the 

distribution of the 

attribute across the entire 

dataset.  

This approach works to 

distribution SA in any 𝐸𝑒 

similar to the distribution of 

the attribute in an overall 

table which lead to preserve 

privacy 

This approach is unable to protect 

the SA values of records 

consistently and efficiently against 

composition attacks. 

(LeFevre et al., 

2006) 

Mondrian Studying the problem of 

k-anonymization over the 

quasi- identifier attributes 

of a database table 

Partitioning the domain 

space recursively into 

multiple regions, each 

containing a minimum of 

k records, Mondrian 

generalizes a set of quasi-

identifier (QI) values 

within each equivalence 

class. 

Getting an anonymous 

dataset 

Local recoding closely resembles 

the original data and can retain 

more information, yet it may 

render the data susceptible to 

composition attacks. Moreover, 

overlapping intervals prove 

unsuitable for most classification 

tools as they introduce complexity 

to classification tasks. 
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2.4.2 Preserving Privacy Based on The Perturbation Method 

The goal of perturbation is to protect sensitive information in a way that makes it 

challenging for an attacker to use attribute linkage attacks to identify a specific person in 

a published dataset or to infer a specific person's precise, sensitive value. It mainly adds 

uncertainty to published datasets and reduces the possibility of determining sensitive 

personal information (Wong and Fu, 2010; Zorarpacı and Özel, 2021). Among the most 

favorable methods of anonymity in perturbation is adding noise (randomization) to the 

data (Brand, 2002; Chawla et al. 2005; Shah and Gulati, 2016a; Li, Yan, and Zhang, 

2014), creating synthetic data (Liew et al., 1985; Rubin, 1993; Domingo-Ferrer, 2002), 

and swapping attributes (Fienberg and McIntyre, 2004).  

One of the most popular perturbation methods is randomization (adding noise) 

(Shah and Gulati, 2016a; Li et al., 2014; Mendes and Vilela, 2017; Zorarpacı and Özel, 

2021). This method involves specific perturbation of the original data values by 

introducing or multiplying a randomized or stochastic number to conceal the distinct 

values of records. Consequently, adversaries cannot deduce the private attributes of a 

specific person by relating the attributes. Therefore, the perturbed data value of an 

individual can be significantly different from its original version, for instance, in a 

situation where a student's GPA is fraudulently increased from 3.45 to 3.65. Mivule 

(Mivule, 2013) was the first to publish work on additive noise under the general term 𝑋 +

β. The key notion is that instead of publishing 𝑋, the data owner releases the tuples 

produced from 𝑋 + β, where 𝑋 is the original data value and β is a random value selected 

from a particular distribution (Kim, 1986). The degree of privacy is determined by how 

well the original values of a modified attribute can be estimated (Agrawal and Aggarwal, 

2001). Furthermore, experiments in (Charu and Philip, 2008; Du and Zhan, 2003; 

Evfimievski et al., 2002) show that some data can be maintained in randomized data 

mining operations. Fuller (Fuller, 1993) and Kim et al. (Kim et al.,1995) showed that the 

addition of random noise would not affect some simple statistical information, such as 

correlations and means.   

Despite the simplicity and intuitive nature of the randomization method, it also 

has certain drawbacks, with privacy breaches being the most common (Mendes and 

Vilela, 2017; Binjubeir et al., 2020; Nasiri and Keyvanpour, 2020). Experimental studies 

(Kargupta et al., 2003; Huang et al., 2005; K. Chen and Liu, 2005; Luo and Wen, 2014; 
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JEBA et al., 2022) have demonstrated the limited effectiveness of randomization in 

preserving privacy. Private data recovery algorithms can reasonably reconstruct the 

original data from the perturbed data, particularly when there is a relationship or strong 

correlation among different attributes, which tends to be preserved even after 

randomization. The independent noise added to each attribute allows a private data 

recovery algorithm to exploit the spectral structure of the perturbed data using filtering 

methods, enabling accurate recovery of the original data. Furthermore, achieving optimal 

data privacy by adding noise significantly increases computational costs and results in the 

loss of some statistical data properties, rendering the dataset nearly unusable for users 

(Mivule, 2013). Therefore, it is essential to strike a balance between data privacy and 

utility (Binjubeir et al., 2020).  

Data swapping was first presented by Fienberg and McIntyre (Fienberg and 

McIntyre, 2004) as a method for preserving data privacy, especially in datasets containing 

categorical attributes. The basis of this approach is to switch the original data into a 

distorted version that will still retain the same frequency count statistics as the original 

version by altering the data values of selected cells. Data swapping is useful in protecting 

both numerical (Reiss, Post, and Dalenius, 1982) and categorical attributes (Reiss, 1984). 

Swapping allows the masking of information for all individuals, as it only needs 

to be performed on the sensitive attribute (SA) to break the relationship between the 

record and the individual, leaving the quasi-identifier (QI) attributes undisturbed. While 

swapping works well, it has the major disadvantage of not maintaining multidimensional 

relationships. Furthermore, swapping is expected to affect data mining operations 

(Matthews and Harel, 2011). It is also possible that swapping may cause illogical 

combinations, such as a record suggesting that there is a guy with ovarian cancer if the 

microdata database contains gender and type of cancer (Hasan et al., 2016; Murthy et al., 

2019). 

Rank swapping is an alternative to the swapping way (Benjamin C.M. Fung et al., 

2010). The values of attribute 𝑎i are first ranked in ascending order before swapping each 

of the ranked values with another randomly selected ranked value from a specified range. 

Rank swapping can maintain multivariate relationships more appropriately than ordinary 

data swapping (Matthews and Harel, 2011; Domingo-Ferrer and Torra, 2002). The main 

difference between rank swapping and ordinary data swapping is that the range over 
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which the data can be swapped is restricted. The advantage here is that it limits the values 

that can be swapped with other values, while the difficulty lies in finding the cells for 

swapping that will maintain the multivariate relationships of interest (Liew et al., 1985; 

Lasko and Vinterbo, 2010). 

Privacy in data publishing can be achieved using synthetic data (Chen et al., 

2009). Synthetic data is used to produce data with similar distributional characteristics to 

the original information instead of altering the original dataset or using it as it is. The 

beauty of synthetic data stems from the fact that it comes from actual data and 

distributions, making it almost indistinguishable from the original data. Therefore, one of 

the key benefits of this approach is that an attacker cannot reveal private information by 

obtaining the published data. However, in practice, the identified data may lack sufficient 

utility (Heldal and Iancu, 2019). In addition, many statistical disclosure methods are used 

to generate synthetic data based on patterns found in the original dataset (Rubin, 1993). 

For example, condensation is used to represent synthetic data (Saita and Llirbat, 2004). 

The general idea is to first build a statistical model from the data by condensing the 

records into multiple groups based on their centers, radii, and sizes. Then, another set of 

data can be generated based on the statistical information. 

In the last decade, various approaches for ensuring privacy in independent data 

publishing have been suggested, including the random rotation perturbation approach 

(Keke Chen and Ling Liu, 2005), random projection approach (Liu, Kargupta, and Ryan, 

2006; Johnson and Lindenstrauss, 1984), probabilistic approach (Sattar et al., 2014), e-

differential privacy approach (𝑒 − 𝐷𝑃) (Mohammed et al., 2011), hybrid approach (Li et 

al., 2016), and composition (Baig et al., 2012). The following paragrapgs describe these 

approaches in further detail. 

Liu et al. (Keke Chen and Ling Liu, 2005) introduced a new protection method 

called rotating. It changes (rotates) the data in a specific way to protect private 

information in public datasets from composition attacks. One disadvantage of the data 

rotation approach is that domain-specific data attributes like Euclidean distance or the 

inner product are not preserved. This finding indicates that most existing modeling 

approaches are perturbation invariant while introducing distance inference assaults 

(Aggarwal and Yu, 2008; Patel, Dodiya, and Pate, 2013).   Simultaneously, projection 

matrices have been used to anonymize mined datasets in the projection approach (Liu et 
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al., 2006). It provides a number of random projection matrices that can be used to protect 

privacy from composition attacks in various data mining applications. However, 

identifying the actual data's approximation is possible (X. Li et al., 2014). 

A probabilistic approach was designed by Sattar et al. (Sattar et al., 2014) (2014), 

which suggested a new approach called (𝑑, 𝛼) -linkable. The probabilistic approach 

attempts to reduce the likelihood that an adversary can successfully complete a 

composition attack by guaranteeing that (𝑑) sensitive values are linked with a QI-group 

with a likelihood of (𝛼) by discovering the correlation between the QI and sensitive 

attributes. 

A hybrid approach has been addressed by Li et al. (Li et al., 2016), and a 

composition approach by Baig et al. (Baig et al., 2012) to protect data privacy against 

composition attacks in many independent data publications. According to Hasan et al. 

(Hasan et al., 2018),  composition is the first privacy approach to defend against 

composition attacks across multiple independent data publications. Two novel ideas were 

incorporated into the composition to defend against composition attacks: (𝜌, 𝛼) - 

anonymization by sampling and composition-based generalization. Additionally, in a 

hybrid approach that combines sampling, generalization, and perturbation, Laplacian 

noise was added to the count of each sensitive attribute (SA) in each equivalence class. 

In these approaches, the values of the quasi-identifier (QI) are divided into equivalence 

classes, in which all values are identical. Consequently, members of an equivalence class 

are indistinguishable. 

Mohammed (Mohammed et al., 2011) proposed the first generalization-based 

noninteractive approach, known as 𝑒 − 𝐷𝑃. The suggested solution creates a generalized 

contingency table probabilistically before introducing noise to the counts. The 𝑒 − 𝐷𝑃 

offers a robust privacy guarantee for statistical query answering in addition to protection 

against composition attacks through differential privacy-based data anonymization 

(Ganta et al., 2008; Zorarpacı and Özel, 2021). According to (Li et al., 2016; Cormode et 

al., 2013; Sarathy and Muralidhar, 2011; Hasan et al., 2018), when using 𝑒 − 𝐷𝑃  to 

defend against composition attacks, a significant amount of data utility is lost during 

anonymization.  
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Table 2.7 illustrates the summary of related works on preserving privacy based on 

the perturbation method for multiple independent data publishing. It has been pointed out 

that the measurement of privacy preservation level and information loss is usually carried 

out through data perturbation methods (Aggarwal and Yu, 2008). The two critical 

concepts that should be mentioned here are privacy preservation and information loss. 

The privacy preservation level refers to the difficulty in estimating original data from 

perturbed data (Keke Chen and Ling Liu, 2005). On the other hand, information loss is a 

situation in which a significant portion of the information of the original dataset is lost 

after perturbation. 
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Table 2.7 Summary of related works on preserving privacy based on the perturbation method. 

Authors Approaches Objectives Method Strength Weakness 

(Li et al., 2016) a hybrid Protecting data privacy 

from composition 

attacks and preserve 

data utility 

They proposed a hybrid 

approach that integrates 

sampling, generalization, and 

perturbation, achieved by 

incorporating Laplacian noise 

into the count of every 

sensitive value within each 

equivalence class. 

The proposed work reduces 

the risk of composition 

attacks and preserves data 

utility 

There is still 

more data loss 

(Baig et al., 

2012) 

composition Protecting data privacy 

from composition 

attacks and preserve 

data utility 

The proposed approach 

integrated two novel concepts: 

(𝜌, 𝛼)- anonymization by 

sampling and composition-

based generalization for 

independent datasets to protect 

against composition attacks. 

The composition approach 

effectively protects privacy 

and preserves data utility. 

There is still 

more data loss 

(Sattar et al., 

2014) 

probabilistic Reducing the likelihood 

an adversary can 

successfully complete a 

composition attack 

They were used the 

probabilistic approximation to 

achieve the privacy principle 

They were used the 

probabilistic approximation 

to achieve the privacy 

principle 

This approach 

lacks 

improvement in 

several areas, 

including 

diversity, 

overcome of fake 

tuples and so on. 
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Table 2.7 Continued 

Authors Approaches Objectives Method Strength Weakness 

(Mohammed et 

al., 2011) 

 

𝑒 −  𝐷𝑃 Studying the problem of 

anonymization for the 

non-interactive setting 

based on the 

generalization technique 

First probabilistically generates 

a generalized contingency table 

and then adds noise to the 

counts 

𝑒 −  𝐷𝑃 provides a strong 

privacy guarantee for 

statistical query answering 

and protection against a 

composition attack by 

differential privacy-based 

data anonymization 

It generates a 

significant 

amount of data 

utility losses 

during 

anonymization. 

(Keke Chen and 

Ling Liu, 2005) 

Random 

rotation 

Classification of data 

with multiple 

dimensions (attributes) 

for privacy preserving 

data 

Random rotation perturbation 

works for changing (rotation) 

the data in a specific manner to 

protect private information in 

public data sets 

Privacy is guaranteed as 

long as the data values of 

the published data relatively 

differ from the data values 

of the original data. 

The major 

drawback of the 

random rotation 

perturbation is 

that the domain-

specific 

properties of data 

are not preserved. 

(Liu et al., 2006) Random 

projection 

Random projection 

matrices have been 

utilized as tools for the 

preservation of the 

privacy of data sets 

Random projection works to 

transfer a set (N) of the 

original data points from its 

initial high dimensional space 

to a lower-dimensional 

subspace (randomly selected). 

This approach offers high-

level privacy to the data 

lose data and 

lower the risk 

ratio of disclosure 
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2.4.3 Preserving Privacy Based on Measures of Correlation (Similarity) 

This method uses multiple correlated attributes (multiple dimensions) instead of 

a single-column distribution to achieve outstanding results for data mining operations. 

The data distributions are reorganized to preserve privacy based on the grouping method 

to conduct mining, which analyzes each dimension independently while ignoring the 

connections between various attributes (dimensions) (Keke Chen and Ling Liu, 2005). 

The perturbation method, used to protect privacy, modifies the real values of dataset 𝐷 to 

create its anonymized version 𝐷1. The usability of the data is affected, or the data's 

distinctive attributes are lost depending on the type and amount of perturbation present 

(Mivule, 2013). Utilizing a correlation (similarity) metric to enhance protection and 

preserve more data utility is a brilliant solution to these issues (Hasan et al,. 2018; Han et 

al., 2012). The correlation measure aims to preserve the usefulness of the data by 

arranging highly correlated attributes in columns and keeping the correlations between 

those attributes. It also breaks the linkages between uncorrelated qualities in other 

columns, thereby protecting users' privacy. These associations are broken using 

protection methods based on anonymization approaches, such as randomly permuted data 

or generalization, and so on (Hasan et al., 2018; Li et al., 2012; Olatunji et al., 2022). 

The strength of the association between two categorical attributes is measured 

using the mean square contingency coefficient (MSCC), a chi-square measure to assess 

the relationship's strength between two categorical attributes denoted by 𝑟. The value of 

this coefficient, 𝑟, falls between [0, 1]. When the value of 𝑟 is greater than 0 but less than 

1, the categorical attributes are related. If the value is 0, there is no correlation between 

the categorical attributes. A value of 𝑟  = 1 indicates a perfect match between the 

categorical attributes (Li et al., 2012; Cramir 1946).  

Assume attribute 𝑎1 with value domain {𝑣11, 𝑣12, … 𝑣1𝑑1,}, attribute 𝑎2 with value 

domain {𝑣21, 𝑣22, … 𝑣2𝑑2,} , and their domain sizes are 𝑑1  and 𝑑2 , respectively. The 

MSCC between 𝑎1 and 𝑎2 is defined as follows (Hasan et al., 2018; Li et al., 2012): 

 

r2(a1, a2) =
1

min {d1, d2}
∑ ∑

(fij − fi. fj)
2

fi. fj

d2

j=1

d1

i=1

 2.1 
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Where 𝑟2(𝑎1, 𝑎2) is the MSCC between attributes 𝑎1and 𝑎2; 𝑓𝑖. and 𝑓.𝑗  refer to 

the occurrence fractions of the 𝑣1𝑖  and 𝑣2𝑗  in the data, respectively; and 𝑓𝑖𝑗 is the fraction 

of cooccurrence of 𝑣1𝑖 and 𝑣2𝑗  in these data. Therefore, 𝑓𝑖. and 𝑓.𝑗 are the marginal totals 

of 𝑓𝑖𝑗: 𝑓𝑖. =  ∑ 𝑓𝑖𝑗
𝑑2
𝑗=1  and 𝑓.𝑗 =  ∑ 𝑓𝑖𝑗

𝑑1
𝑖=1 . 0 ≤ 𝑟2(𝑎1, 𝑎2) ≤ 1. 

The most recent correlation-based approaches for privacy-preserving data 

publishing are slicing (T. Li et al., 2012) and merging (A. Hasan et al., 2018). Slicing, in 

particular, has gained significant attention as a novel data anonymization approach. The 

authors propose a risk disclosure prevention concept that avoids generalization. In 

random slicing, the attribute values within a bucket are permuted to break column-wise 

relationships. This way effectively protects the privacy of published records by mitigating 

risks related to attribute and membership disclosure. Furthermore, slicing is particularly 

suitable for anonymizing high-dimensional data as it retains more data utility compared 

to attribute value generalization. Therefore, slicing ensures both data privacy and the 

preservation of data utility by avoiding attribute value generalization. It involves vertical 

partitioning (attribute grouping) and horizontal partitioning (tuple partitioning), and the 

resulting sliced table should undergo random permutation (see Table 2.8) (Li et al., 2012). 

For better understanding, slicing should be formalized, as Li et al. (2012) suggested. 

Table 2.8 Published data by slicing 

 

2.4.3.1 Attribute Grouping 

The microdata table 𝑇 comprises of a set of 𝑡 tuples, 𝑡 ∈ 𝑇, and 𝑛 number of 𝑎 

attributes, where 𝑡 is a tuple of 𝑇 and 𝑡 is described as 𝑡 = (𝑡[𝑎]1, 𝑡[𝑎]2 … , 𝑡[𝑎]𝑛), where 

𝑡[𝑎]𝑖 1 ≤ 𝑖 ≤ 𝑛. In attribute grouping, the initial step involves separating the attributes 

into multiple individual attributes. Next, the related attributes are grouped together into 

subsets, ensuring that each attribute belongs to a distinct subset. Consequently, each 

subset is referred to as a cell, and the combination of these cells forms the columns. In 
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microdata table 𝑇, there will be 𝑐𝑜𝑙 columns 𝑐𝑜𝑙1, 𝑐𝑜𝑙2 … , 𝑐𝑜𝑙𝑐 satisfying ∪𝑖=1
𝑐 𝑐𝑜𝑙𝑖 = 𝑎 

attribute and for any 1 ≤  𝑖1  ≠  𝑖2 ≤ 𝑐𝑜𝑙, 𝑐𝑜𝑙𝑖1 ∩ 𝑐𝑜𝑙𝑖2 = ∅. When there is only one SA, 

the position is placed last for easy representation.  

Definition 2 (cell): A cell refers to a pair of attributes, such as {(Age, Gender)}, 

where each cell 𝐶𝑐𝑜𝑙,𝐸  is uniquely identified by the column number 𝐶𝑜𝑙𝑖  and the 

equivalence class number 𝐸𝑗 . For instance, in Table 2.8, any cell within the column 

{(Age, Gender)} is identified by the values of 𝐶𝑜𝑙𝑖 and 𝐸𝑗, which 1 ≤  𝑖 ≤ 𝑐𝑜𝑙 and 1 ≤

 𝑗 ≤ 𝐸  and the first equivalence class consists of tuples 𝑡1= {𝑡1, 𝑡2, 𝑡3, 𝑡4}. 

2.4.3.2 Tuple Partition 

The objective of tuple 𝑡 partitioning is to create multiple subsets of Table 𝑇 in 

such a way that each tuple can only belong to one of these subsets. Each subset of tuples 

is known as an equivalence class or bucket. Let's assume there are 𝐸𝑒 equivalence classes, 

namely 𝐸1, 𝐸2, … 𝐸𝑒. In this case, the union of all these equivalence classes, from  𝐸𝑖 to 

𝐸e ( where 1 ≤  𝑖 ≤ 𝑒), results in the original table 𝑇. It is important to note that for any 

pair of indices  𝑖1  and 𝑖2 , where 1 ≤  𝑖1  ≠  𝑖2 ≤ 𝑒, the intersection between 𝐸𝑖=1  and 

𝐸𝑖=2 is empty (denoted by 𝐸𝑖=1 ∩ 𝐸𝑖=2 = ∅). 

However, slicing can lead to data utility and privacy issues because it randomly 

permutes attribute values in each bucket, increasing the likelihood of erroneous tuples 

and negatively affecting the published microdata's utility. An attacker can use analysis of 

the bogus tuples to understand the notion of the implemented anonymization process, 

potentially violating the privacy of published data (Hasan et al., 2016; Binjubeir et al., 

2020; Mendes and Vilela, 2017). For instance, the tuple 𝑡1 for the zip code 130350 in 

Table 2.8 only has one matching equivalence class connected to two sensitive values. 

Here, l-diverse slicing can link any individual with SA values with a probability of no 

greater than 1/l because it has been established that slicing satisfies l-diverse slicing by 

being connected to the SA values by 1/2. Assume that the zip code attribute is exposed 

because it has a significant number of QI values (sufficient variety), and that an attacker 

who depends on background information is aware of this (23, M). An attacker can then 

define the person's sensitive attribute. Additionally, as stated in (Hasan et al., 2016), 

incompatibility between the QI and SA values (erroneous tuples) is may be produced if 

the slicing process varies the SA value (randomly) between 𝑡1 and 𝑡2. 
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Hasan et al. (Hasan et al., 2018) developed the merging approach to secure 

personal identification from disclosure. This been regarded as an extension of slicing. 

Merging's primary purpose is to preserve privacy in many separate data releases by 

employing cell generalisation and random attribute value permutation to seperate 

connection between various columns. Regarding privacy risks and data utility, the 

merging approach conserved data usefulness while posing minor privacy hazards because 

of increased false matches in the released datasets. Nonetheless, the merging approach's 

significant weaknesses are the randomised permutation way for the attribute values to 

breach the relationship between the columns and the increase in false matches for unique 

attributes. However, there will be a large number of matching buckets (more than the 

initial tuples), resulting in utility data loss, and could generate inaccurate and infeasible 

knowledge acquisition from data mining operations (Sharma, Singh, and Rehman, 

2020;Jeba et al., 2022). As a result, the main reasons for revealing people's identities are 

unique attributes or the ability of some cells in the tuple to match with cells in other tuples 

in the same equivalence class, allowing precise extraction of a person's attributes (Li et 

al., 2012; Hasan et al., 2018; Binjubeir et al., 2020). 

Other studies have demonstrated the rational of allowing a tuple to match more 

than one bucket when preventing attribute and membership disclosure (Gkoulalas-

Divanis and Loukides, 2015; Li et al., 2012). When records for a single person are mapped 

to multiple buckets, a super bucket is created from the collection of buckets. 

Table 2.9 illustrates the previous works discussed in the earlier sections for 

preserving privacy based on measures of correlation (similarity) between different 

attributes. It has been pointed out that the measurement of correlation (similarity) plays a 

significant role in improving the protection and keeping more data utility (Li et al,. 2012). 
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Table 2.9 Summary of related works on preserving privacy based on the measurement of correlation (similarity) method 
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2.4.4 Critical Analysis 

As highlighted in the literature review, a significant challenge arises when 

organizations publish data that is crucial for enhancing their efficiency and aiding their 

future targets. Despite the anonymization approaches uses differant protection methods 

such as suppression and generalization, randomization, and/or combined and causing 

uncertainty in identity inference or sensitive value estimation (Lasko and Vinterbo, 2010). 

However, these approaches can still lead to the disclosure of sensitive attributes (SA) 

through linking attacks, where the remaining attributes (quasi-identifiers) are linked with 

other data sources, referred to as composition or intersection attacks (Majeed and Hwang, 

2023). 

Moreover, many of the existing anonymization approaches struggle to strike an 

optimal balance between data utility and privacy when releasing data products. Achieving 

a satisfactory level of privacy preservation while retaining valuable information for data 

mining remains a challenge (Majeed and Hwang, 2023). The evaluation criterion for 

assessing the effectiveness of an anonymization approach lies in its capability to protect 

data privacy by reducing the exposing individuals' data and ensuring that the published 

data remains usable (Majeed and Lee 2021; Siddique et al., 2018; Hasan et al., 2018; 

BinJubier et al., 2022). 

The focus of this research is to get a specified level of privacy with minimum 

information loss for the intended data mining operations. Thus, the focus of the study is 

to reduce the risk of a composition attack when multiple organisations independently 

release anonymised data and, meanwhile, released data remain as useful as possible.  

Table 2.10 provides a summary of the main challenges and gaps motivating this study in 

the domain of anonymization approaches' performance. 
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Table 2.10 Critical analysis of related works on existing anonymization approaches 

Approaches Protection methods Determine 

the Level of 

Protection 

Prevent the 

Disclosure of 

Information 

Prevent 

Composition 

Attack 

Data Utility 

Preservation 

Mondrian The proposed approach involves recursively partitioning the domain space into 

multiple regions, ensuring that each region contains a minimum of k records. In each 

equivalence class, a set of QI values is generalized 

✘ ✔ ✘ ✔ 

Hybrid A hybrid approach has been proposed that integrates sampling, generalization, and 

perturbation ways. It involves adding Laplacian noise to the count of each sensitive 

value within every equivalence class. This combination aims to enhance privacy 

protection. 

✘ ✔ ✔ ✔ 

𝑒 − 𝐷𝑃 In order to provide protection, the initial step involves the probabilistic generation of a 

generalized contingency table, which is subsequently followed by the addition of noise 

to the counts. 

✘ ✔ ✔ ✘ 

Probabilistic The probabilistic approach aims to lower the risk of a successful composition attack by 

ensuring that sensitive values are linked to a QI-group with a specific likelihood (𝛼). 

This is achieved by identifying correlations between the QI and sensitive attributes. 

✘ ✔ ✔ ✔ 

Composition The proposed approach combines two novel concepts, (𝜌, 𝛼)-anonymization through 

sampling and composition-based generalization, to provide protection against 

composition attacks for independent datasets. 

✘ ✔ ✔ ✔ 

Slicing This method incorporates vertical partitioning, horizontal partitioning, and random 

permutation of the sliced table. It involves attribute grouping through vertical 

partitioning, tuple partitioning through horizontal partitioning, and a crucial step of 

random permutation to enhance privacy protection 

✘ ✔ ✔ ✔ 

Merging The primary goal of the merging approach is to ensure privacy by employing both 

vertical and horizontal partitioning of data. It aims to enhance privacy protection by 

increasing the occurrence of false matches for unique attributes. Additionally, it is 

essential to randomly permute the sliced table as part of the process. 

✘ ✔ ✔ ✔ 

UL The use of lower protection level (𝐿𝑃𝐿) and upper protection level (𝑈𝑃𝐿) can be 

instrumental in determining the required level of data protection. Rank swapping is 

employed to protect unique and highly identical attributes, ensuring the privacy 

protection of data while preserving data utility. 

✔ ✔ ✔ ✔ 
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2.5 Data Utility and Measuring Risks 

The balance between data utility and privacy is often viewed as a trade-off, and it 

is influenced by the protection methods employed in anonymization approaches and their 

prioritization of these two aspects (BinJubier et al., 2022). This study describes 

maintaining privacy as minimizing disclosing of information on individuals. Data utility, 

on the other hand, refers to what extent we can use the sterile database for intensive 

analyses. For instance, by suppressing each Quasi-identifier (QI), a dataset can be 

generalized, providing maximum privacy but rendering the information obtained useless. 

Finding a good balance between privacy and utility is necessary because the published 

datasets (sanitized) must permit tasks related to data mining operations for search and 

analysis. As a result, the usefulness of data in published datasets is assessed by how well 

statistical and aggregate data are used.  

The ability to protect data privacy by lowering the risk of disclosing personal 

information while maintaining the potential use of published data is the criterion for 

judging the effectiveness of the anonymization approach (Majeed and Lee 2021; Siddique 

et al., 2018; Hasan et al., 2018; BinJubier et al., 2022). There are two ways to evaluate 

the data utility, or the degree of risk disclosure, in published (sanitized) datasets. The first 

approach involves utilizing one of the quantified measures of information loss that have 

been evaluated, and the second involves using data as input into a query and assessing the 

accuracy of the results. Each of these measures is described in the following subsections. 

Readers can refer to a more thorough survey (Benjamin C M Fung et al., 2010; Anjum, 

2013).  

2.5.1 Measurement of risk disclosure 

This section covers the measurement of disclosure risk in microdata during a 

composition attack. A composition attack occurs when an intrusive party, especially one 

knowledgeable about some of the Quasi-identifier (QI) values, attempts to identify a 

specific person in the microdata by linking several readily accessible records to an 

external database to disclose restricted information (Chen et al., 2009b). Therefore, the 

measurement of disclosure risk involves assessing the rarity of a cell in microdata 

publishing. Previous studies have proposed quantifying the risk disclosure using a 

certainty penalty (CP). The CP is determined by the ratio of the number of real matches, 
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where the QI values in the original dataset are compared with the QI values in the 

anonymized dataset. If a record in the anonymized dataset matches the QI values in the 

original dataset, it is considered a disclosure of QI values. The CP is calculated as the 

total number of disclosed QI values (or number of real matches) divided by the total 

number of matches, as shown in Equation 2.2 (Hasan et al., 2018; BinJubier et al., 2022):   

 
𝐷𝑖𝑠𝑐𝑙𝑜𝑠𝑢𝑟𝑒 𝑟𝑖𝑠𝑘 𝑟𝑎𝑡𝑖𝑜 (𝐷𝑅𝑅)  =  

𝑀𝑎𝑡𝑐ℎ𝑒𝑑 𝑟𝑒𝑐𝑜𝑟𝑑𝑠

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
 ×  100%  2.2 

2.5.2 Measurement of data quality 

Data quality is evaluated based on the distortion ratio (𝐷𝑅). There are several 

methods for calculating the 𝐷𝑅 in published data (Wong and Fu, 2010) to determine how 

much anonymization affects data distortion. According to previous works, a suitable 

measure for calculating the 𝐷𝑅 is the generalized distortion ratio (𝐺𝐷𝑅) (Rohilla, 2015). 

The swap or generalize methods are used as a protection method to break the association 

of the attributes. When a node 𝑝 in the taxonomy tree 𝑡 of two categorical attributes 

(𝑎1
∗∗, 𝑎2

∗∗ ∈  𝑇∗∗) is used to swap or generalize the attributes, the 𝐷𝑅 with 𝑝 is defined 

(BinJubier et al., 2022). 

 

𝐷𝑅(𝑎1
∗∗, 𝑎2

∗∗) = {

0, 𝑎1
∗∗ = 𝑎2

∗∗   
|𝐶𝑜𝑚𝑚𝑜𝑛(𝑎1

∗∗, 𝑎2
∗∗)|

|𝑁|
, 𝑎1

∗∗ ≠ 𝑎2
∗∗   2.3 

 

where |𝐶𝑜𝑚𝑚𝑜𝑛(𝑎1
∗∗, 𝑎2

∗∗)| represents the set of leaf nodes in the lowest common tree of 

𝑎1
∗∗ and 𝑎2

∗∗ in 𝑡 and |𝑁| represents the set of all leaf nodes in 𝑡. 

Figure 2.5 depicts a domain of generalization hierarchies of attributes for marital 

status (MS). If 𝑎𝑖
∗∗  and 𝑎𝑗

∗∗  values fall into the same rank group and don't contain 

nonsensical combinations, their swap values are equal, and the 𝐷𝑅 is 0. In the absence of 

this, their generalised values are equal to 
|𝐶𝑜𝑚𝑚𝑜𝑛(𝑎1

∗∗,𝑎2
∗∗)|

|𝑁|
, and the 𝐷𝑅  is equal to 

∑ 𝑑𝑗,𝑘
𝑛,𝑚
𝑗=1,𝑘=1 , where 𝑑𝑗,𝑘 is the distortion of the attribute 𝑎𝑗

∗∗ of tuple 𝑡𝑘.  

The distortion ratio (𝐷𝑅), also known as data utility, is a proportional measure 

that compares the amount of distortion in a generalised dataset to the amount of distortion 
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in a fully generalised dataset. It is possible to determine the value of the data by 

subtracting the 𝐷𝑅 from Equation 2.4 shown below (Wong and Fu, 2010): 

 𝐷𝑎𝑡𝑎 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 =  (100 − 𝐷𝑅)%             2.4 

 

 

Figure 2.5 Example of a domain of generalisation hierarchies of attributes for marital 

status (MS) 

 

2.5.3 Query Workload 

An aggregate query is used to measure the usefulness of data in published datasets. 

An arithmetic operation known as an aggregate query takes a set of values and produces 

a single value that expresses the importance of the data. It is common practice to provide 

the base numbers that represent the expected data utility to test the efficacy of the 

suggested approach using the aggregate query operators "COUNT," "MAX," and 

"AVERAGE." (Zhang et al., 2007; Jayapradha et al., 2022). A query predicate is 

characterized by two parameters: the dimension of the predicate 𝑑 and the selectivity of 

the query 𝑠𝑒𝑙. The predicate dimension 𝑑 signifies the number of Quasi-identifiers (QIs) 

present in the predicate, while the selectivity 𝑠𝑒𝑙 indicates the number of values in each 

QI𝑖𝑗, where 1 ≤  𝑗 ≤  𝑑. For instance, when responding to aggregate queries with a query 

predicate containing QI attributes, the "COUNT" operator is typically considered. Let 𝑇 

be a table containing QI quasi-identifiers, QI1 ∷, QI𝑖 , with 𝑑(QI𝑖) being the domain of 

quasi-identifier. Next, the questions are formatted as follows: 

𝐒𝐄𝐋𝐄𝐂𝐓 𝐂𝐎𝐔𝐍𝐓(∗) from  𝐓 

𝑾𝒉𝒆𝒓𝒆 QI𝑖1 ∈  d(QI𝑖1)) 𝒂𝒏𝒅, QI𝑖dim ∈  d(QI𝑖dim) 𝒂𝒏𝒅, s ∈  𝑑𝑠  
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Here, QI𝑖𝑗 , 1 ≤ 𝑗 ≤ 𝑑 represents the quasi-identifier (QI) value for attribute 𝑎𝑖𝑗 , 

where QI𝑖𝑗  ⊆  𝑑(QI𝑖𝑗)  and 𝑑(QI𝑖𝑗)  is the domain for attribute 𝑎𝑖𝑗 . 𝑠  is the sensitive 

attribute (SA) value, where 𝑠 ⊆  𝑑𝑠 and 𝑑𝑠 is the domain for the SA. To determine the 

size of each QI𝑖𝑗 (1 ≤ j ≤ dim), a random selection is made from the range of 0, 1, ..., 𝑠𝑒𝑙 

* |𝑑(QI𝑖𝑗)|, where |𝑑(QI𝑖𝑗)| represents the cardinality of the domain for attribute 𝑎𝑖𝑗 (Q. 

Zhang et al., 2007; BinJubier et al., 2022). 

Each query is executed on both the original table and the anonymized table. The 

count obtained from the original table is referred to as  actualcoun , while the count 

obtained from the anonymized table is referred to as sanitizedcount . The difference 

between the result sets obtained from evaluating the query 𝑄 on raw data and sanitized 

data, respectively, is the normalized error for the query 𝑄, denoted as 𝐸𝑟𝑟𝑜𝑟 (𝑄). The 

formula used to calculate the query error is as follows (Zhang et al., 2007):  

  

𝑒𝑟𝑟𝑜𝑟(𝑄) =  
𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒𝑑𝑐𝑜𝑢𝑛𝑡  −  𝑎𝑐𝑡𝑢𝑎𝑙𝑐𝑜𝑢𝑛

𝑎𝑐𝑡𝑢𝑎𝑙𝑐𝑜𝑢𝑛
 

 

2.5 

2.6 Summary 

This chapter defines the context of the thesis by providing a thorough background 

on the essential concepts, methodologies, and methods used in the research, along with 

citations to the most important publications in the literature. The presentation moves from 

broad, overarching ideas to more focused ones. 

First, the definition and types of privacy are discussed, setting the foundation for 

the subsequent topics. Data publishing is the cornerstone problem in this thesis; therefore, 

Privacy-Preserving Data Publishing (PPDP) and the approaches used are introduced. 

Given that data anonymization is the main focus of this thesis, the anonymization 

approach is presented, where two important issues are discussed: protection methods 

used, and data utility and measuring risks. 

Finally, several anonymization approaches are also classified based on the 

protection methods used, such as preserving privacy based on grouping, perturbation, and 

measurement correlation (similarity) methods. These approaches are analyzed in terms of 

their weaknesses and strengths. 
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CHAPTER 3 

 

 

METHODOLOGY 

3.1 Introduction 

The flow of the research procedure is described in this chapter, outlining the stages 

and methods used to accomplish the research objectives outlined in Chapter 1. It also 

establishes the relationship between the research questions, research objectives, and their 

connection to the chapters that follow. As noted in the literature review, numerous 

approaches have been proposed to address privacy issues, aiming to protect sensitive 

information from uninvited disclosure while preserving the utility of the data. However, 

there is still room for improving user privacy while maintaining data usefulness. 

In essence, this research focuses on designing an enhanced slicing-based approach 

called the Upper Lower (UL) level-based protection approach, which can be used for data 

anonymization of published data, leading to a better balance of utility and privacy before 

releasing any data product. Additionally, this work introduces an improved protection 

method called the Lower Protection Level (𝐿𝑃𝐿) and Upper Protection Level (𝑈𝑃𝐿)  for 

anonymization, which is more effective in determining the required amount of protection. 

𝑈𝑃𝐿 and 𝐿𝑃𝐿 involve selecting specific cell values that help identify disclosure and break 

the link between them, enhancing the privacy of the published data while ensuring 

additional data utility and guaranteeing the achievement of 1-diversity in the published 

data. 

The focus of this research is to attain a definitive degree of privacy while ensuring 

minimal information loss during data mining. This study aims to minimize the 

vulnerability of configuration assault in the event of releasing anonymous data by various 

independent organizations, while maintaining the integrity and functionality of the 

released data. This chapter is designed as follows: Section 3.2 presents the complete flow 

of the procedures. Section 3.3 describes the three stages of the design of the UL approach. 

Section 3.4 explains the methods used to evaluate the proposed approach. Section 3.5 
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describes the hardware and software used in this research, and the chapter is summarized 

in Section 3.6. 

 

Figure 3.1 Flow of research procedures  
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3.2 Flow of research procedures 

This section depicts the sequence of research stages taken to achieve the 

objectives. Figure 3.1 illustrates the overall research flow. The figure shows that the third 

and fourth chapters are devoted to the study's main contributions. The following are the 

steps in the research. 

3.3 Design of UL approach 

This research focuses on designing a slicing-based enhanced approach called the 

Upper Lower (UL) level-based protection approach that can be used for data 

anonymization for published data, leading to a better balance of utility and privacy before 

releasing any data product. Additionally, this work introduces an improved protection 

method called the Lower Protection Level (𝐿𝑃𝐿) and Upper Protection Level (𝑈𝑃𝐿) for 

anonymization, which is more effective in determining the amount of protection required. 

𝑈𝑃𝐿 and 𝐿𝑃𝐿 select particular cell values that help to identify disclosure and break the 

link between them to enhance the privacy of the data that has been published, ensure 

additional utilization of data, as well as guarantee that 1-diverse is achieved in the 

published data (Jeba et al., 2022; Cunha et al., 2021).  

Figure 3.1 illustrates the proposed UL approach to data protection, simultaneously 

preserving the utility of the data. This approach consists of three stages that protect the 

published data from unauthorized disclosure. The following is the discussion of these 

three stages. 

3.3.1 Dataset Preparation stage 

The 'Preparing the dataset' stage aims to initialize the dataset and measure the 

correlation between attributes. To evaluate the experiments and compare with other 

existing works, the 'Adult' dataset has been applied and used for the experiments. Ronny 

Kohavi, together with Barry Becker, extracted and assembled this dataset from the 1994 

United States Census Bureau (Kohavi and Becker, 2019). Accordingly, this dataset is 

made up of fifteen Quasi-identifier (QI) attributes with 48,842 tuples, as depicted in Table 

3.1. The classifiers for each attribute describe the type of attribute (Continuous, 

Categorical) and the numerical range. For example, the 'sex' attribute possesses a 

numerical range equal to 2 (male, female). 
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Table 3.1 Description of US-Census Adult dataset  

 

The Adult dataset, which includes real data, has been applied (Kohavi and Becker, 

2019). In the dataset initialization process, independent datasets were required to simulate 

the actual scenario of independent data publishing, particularly in cases where such 

datasets are separately published by various organizations that have similar records. 

However, the pitfall of this proposition lies in the fact that an individual's data is often 

published by many organizations (Malin and Sweeney, 2004). Under such conditions, any 

intruder can initiate a composition assault (Ganta et al., 2008; Hasan et al., 2018) on such 

published datasets just to alter the privacy of the dataset. More information about the case 

of a single publication approach was previously provided in Section 1.1 (Background). 

In the dataset initialization process, five disjoint datasets of different sizes were 

pooled from the Adult dataset and extracted into two independent datasets called the 

Education and Occupation datasets. The Education dataset contains eight Quasi-identifier 

(QI) attribute values: work class (categorical, 8), relationship (categorical, 6), gender 

(categorical, 2), age (continuous, 74), marital status (categorical, 7), education 

(categorical, 16), and salary (categorical, 2). The Occupation dataset also contains eight 

QI attribute values: work class (categorical, 8), relationship (categorical, 6), gender 

(categorical, 2), age (continuous, 74), marital status (categorical, 7), occupation 

(categorical, 14), and salary (categorical, 2). The parenthesis figures indicate the attribute 

type and the number of classifiers for each attribute. Table 3.2 shows a sample from the 

'Adult' dataset having eight QI attribute values.  
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In terms of attribute classification, the Education and Occupation attributes are 

categorical and have a vast numerical range. Consequently, the Education attribute is 

assumed to be a sensitive attribute (SA) in the Education dataset, while the Occupation 

attribute is considered an SA in the Occupation dataset. The remaining attributes are 

regarded as QI attributes. 

Table 3.2 Sample from “Adult” dataset having eight QI attribute values 

 

The Education and Occupation datasets were extracted from the Adult dataset, 

which contains a total of 48,842 tuples. Randomly selecting 4000 tuples for each 

category, separate datasets were created. The remaining tuples were utilized to generate 

an overlapping tuple, which was also used to detect composition attacks.  

For both the Education and Occupation categories, five duplicates were created. 

The overlapping tuple was constructed by gradually adding tuples in increments of 100, 

200, 300, 400, and 500 to both the Occupation and Education datasets. As a result, the 

dataset sizes for Education and Occupation are 4.1K, 4.2K, 4.3K, 4.4K, and 4.5K (where 

K=1000) datasets, respectively (see Figure 3.2: An illustration of the dataset Table 3.3). 
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Figure 3.2 An illustration of the dataset 

Table 3.3 Five independent datasets of various sizes for the simulation of the actual 

independent data publishing scenario from Occupation and Education dataset. 

 

After the initialization process, the correlation between attributes is measured. The 

dataset initialization generated datasets with sizes of (4.1K), (4.2K), (4.3K), (4.4K), and 

(4.5K) for the Education and Occupation datasets to simulate the actual independent data 

publishing scenario. Each dataset is treated as a microdata table 𝑇. In the case where the 

microdata table 𝑇 has 𝑎𝑖 attributes, where 𝑖 = 1,2, … 𝑛. the strength of the correlations 

between pairs of attributes can be computed using several methods (Hasan et al., 2018; 

Li et al., 2012; Cramir 1946). Because most attributes are categorical, the most suitable 

method for estimating the correlations between pairs of attributes is the mean square 

contingency coefficient (MSCC). The MSCC is a chi-square-based measure of the 

correlation between two categorical features. The value of this coefficient 𝑟 ranges from 

[0, 1], and it is symmetric, as presented in Table 3.4 3.4. If there is a perfect relationship 

between the two attributes, the measure of the association will have a value of 1. 

Otherwise, these measures differ in their maximum value. In the case of no relationship 

between the two attributes, the measure of association has a value of 0. The MSCC 
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between 𝑎1  and 𝑎2  is defined as follows (Hasan et al., 2018; Li et al., 2012) and as 

explained in Section 2.4.3:  

 

𝑟2(𝑎1, 𝑎2) =
1

𝑚𝑖𝑛{𝑑1, 𝑑2}
∑ ∑

(𝑓𝑖𝑗 − 𝑓𝑖. 𝑓𝑗)
2

𝑓𝑖. 𝑓𝑗

𝑑2

𝑗=1

𝑑1

𝑖=1

,      3.1 

Table 3.4 Sample of computing the correlations between pairs of attributes 

𝒂𝟏 

𝒂𝟐 

age workcla

ss 

educatio

n 

marital-

status 

occupation relationsh

ip 

sex salary 

age 1 0.14469

9 

0.14591

9 

0.411203 0.109966 0.253803 0.043

474 

0.115

424 

workcla

ss 

0.144

699 

1 0.10659

1 

0.135567 0.277626 0.113452 0.061

987 

0.079

298 

educatio

n 

0.145

919 

0.10659

1 

1 0.134942 0.401093 0.129015 0.043

844 

0.143

852 

marital-

status 

0.411

203 

0.13556

7 

0.13494

2 

1 0.209917 0.523499 0.194

715 

0.179

016 

occupati

on 

0.109

966 

0.27762

6 

0.40109

3 

0.209917 1 0.201785 0.186

27 

0.134

539 

relations

hip 

0.253

803 

0.11345

2 

0.12901

5 

0.523499 0.201785 1 0.288

118 

0.179

101 

sex 0.043

474 

0.06198

7 

0.04384

4 

0.194715 0.18627 0.288118 1 0.073

902 

salary 0.115

424 

0.07929

8 

0.14385

2 

0.179016 0.134539 0.179101 0.073

902 

1 

The Age attribute can have an infinite number of continuous values. Therefore, 

this study applies discretization to partition the domain of the continuous age attribute 

into intervals and manage the cluster of interval values as a discrete domain. The equal-

width discretization method is applied to fractionate the attribute domain into (some k) 

equal-sized intervals. For example, in Figure 3.3, local recoding generalizes values of the 

age attribute into four intervals: [17–37], [38–58], [59–79], [80-100]. 

 

Figure 3.3 The equal-width discretization of age attribute 
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3.3.2 Table Partition (vertical and horizontal) Stage 

After completing stage 1, stage 2 focuses on the vertical and horizontal 

partitionization of the table. The dataset in the table is divided both vertically and 

horizontally based on the correlation computation between pairs of attributes, which is 

known as r. This phase aims to categorize similar attributes based on the extent of their 

inter-attribute connections, considering both utility and privacy aspects. 

Regarding data utility, closely connected attributes are grouped together to ensure 

that their inter-attribute relationships are preserved. However, from a privacy perspective, 

categorizing unrelated attributes poses a higher risk of vulnerability compared to 

categorizing highly connected attribute values, as it increases the likelihood of attribute 

identification. To enhance privacy protection, it is crucial to eliminate the connections 

among unrelated attributes (Li et al., 2012; BinJubier et al., 2022). 

The microdata table 𝑇 comprises a set of 𝑡 tuples, where 𝑡 belongs to 𝑇, and 𝑛 

number of 𝑎 attributes, where each tuple 𝑡 is represented as 𝑡 = (𝑡[𝑎]1, 𝑡[𝑎]2 … , 𝑡[𝑎]𝑛), 

with 𝑡[𝑎]𝑖 denoting the value of attribute a for tuple 𝑡, where  1 ≤ 𝑖 ≤ 𝑛. 

In the vertical partition, the attributes are initially separated into multiple groups. 

Then, similar attributes are further grouped together in subsets based on their correlation, 

with each attribute belonging to a specific subset. Each subset consisting of a pair of 

attributes is referred to as a cell, and the combination of these cells forms the columns. In 

microdata table 𝑇, there will be 𝑐𝑜𝑙 columns 𝑐𝑜𝑙1, 𝑐𝑜𝑙2 … , 𝑐𝑜𝑙𝑐 satisfying ∪𝑖=1
𝑐 𝑐𝑜𝑙𝑖 = 𝑎 

attributes where 1 ≤  𝑖1  ≠  𝑖2 ≤ 𝑐𝑜𝑙, 𝑐𝑜𝑙𝑖1 ∩ 𝑐𝑜𝑙𝑖2 = ∅.  

In addition, the quasi-identifiers (QIs), and sensitive attributes (SAs) are 

organized in columns 𝑐𝑜𝑙𝑖, 1 ≤ 𝑖 ≤ 𝑛 . These attributes are clustered in 𝑛  columns 

denoted as 𝑐𝑜𝑙𝑛, regardless of the size of the sensitive column 𝑐𝑜𝑙𝑐. In certain cases, the 

number of attributes 𝑎s in the sensitive column 𝑐𝑜𝑙𝑐 may be predetermined as 𝑐.   

The size of the sensitive column 𝑐𝑜𝑙𝑐 is determined by a parameter 𝑐, which can 

be mathematically represented as |𝑐𝑜𝑙𝑐| = 𝑐. If 𝑐 = 1, then 𝑐𝑜𝑙𝑐 = 1, indicating that the 

sensitive column contains only one attribute, denoted as 𝑐𝑜𝑙𝑐 = {𝑆}. In the case where 

𝑐 = 2, the process is referred to as bucketization. When 𝑐 > 1, |𝑐𝑜𝑙𝑐| > 1, indicating that 

there are multiple attributes in the sensitive column. For the purpose of this study, the 

sensitive attribute 𝑎s is focused on as a single attribute. 
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Assuming that the sensitive attribute is located in the last column, denoted as  

𝑐𝑜𝑙𝑐, this column is referred to as the sensitive column in Table 3.5. If there are multiple 

sensitive attributes in the data, their individual or collective distributions can be used 

(Machanavajjhala et al., 2006). In the vertical partitioning, highly related attributes (cells) 

are grouped together in columns, while unrelated attributes are placed in separate 

columns. Each individual attribute 𝑎𝑖 is assigned to a specific subset. As shown in Table 

3.5, the columns 𝐶𝑜𝑙𝑖 {𝑐𝑜𝑙1, 𝑐𝑜𝑙2, … 𝑐𝑜𝑙𝑛,} contain all the attributes 𝑎𝑖. 

Table 3.5 presents the three partitions for the columns 𝐶𝑜𝑙𝑖  based on the 

correlation calculation (𝑟) between each pair of attributes: 

1- 𝑇∗ consists of columns that contain highly correlated attributes, denoted as 𝑐𝑜𝑙∗. 

In other words, 𝑐𝑜𝑙∗  is a subset of columns in 𝑇∗  where 𝑐𝑜𝑙∗ = {𝑐𝑜𝑙1
∗

,
,

𝑐𝑜𝑙2
∗ , … 𝑐𝑜𝑙𝑖

∗}, and 𝑐𝑜𝑙∗ belongs to 𝑇∗. 

2- 𝑇∗∗ comprises all columns that do not have correlated attributes, represented as 

𝑐𝑜𝑙∗∗. Hence, 𝑐𝑜𝑙∗∗ = {𝑐𝑜𝑙1
∗∗

,
, 𝑐𝑜𝑙2

∗∗, … 𝑐𝑜𝑙𝑖
∗∗}.  

3- 𝑇𝑐 consists of columns that include the sensitive attribute 𝑐𝑜𝑙𝑐. In cases where 

there is a sensitive attribute present, it is positioned in the final column. It is 

important to note that  𝑐𝑜𝑙𝑐 belongs to 𝑇𝑐, and the union of(𝑇∗⋃ 𝑇∗∗)⋃ 𝑇𝑐 equals 𝑇.  

Table 3.5 Example of partitions in table 𝑇 

 

The K-medoid clustering algorithm, also known as the Partitioning Around 

Medoids (PAM) algorithm (Kaufman and Rousseeuw, 1990), is utilized to organize 

similar attributes into columns, ensuring that each attribute is assigned to a specific 

column. In Figure 3.4, this algorithm represents each attribute as a point in the cluster 

space, guaranteeing the resolution of every attribute. The inter-attribute disparity in the 

clustered space is quantified by the formula d(𝑎1, 𝑎2) = 1 − 𝑟2(𝑎1, 𝑎2) , where 

𝑟2(𝑎1, 𝑎2) measures the association between attributes 𝑎1 and 𝑎2. The resulting value 
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ranges from 0 to 1. When two attributes are strongly correlated, their affiliated data points 

exhibit reduced disparity within the clustered space. For example, in Table 3.4, the 

measure of association 𝑟2(𝑠𝑒𝑥, salary)  is calculated as (0.073902)2 , resulting in 

0.005461505604. 

After evaluating the disparity between related data points, the k-medoid method 

organizes related attributes into subsets called cells, and the combination of these cells 

forms the columns (𝑇∗, 𝑇∗∗, and 𝑇c), as shown in Table 3.6 and Table 3.7 presents the 

categorization of the related attributes obtained from the correlation of the inter-attribute 

evaluation for the Educational dataset, while Table 3.8 and Table 3.9 are based on the 

Occupational dataset. The selection of the k-medoid method is motivated by the following 

reasons (Hasan et al., 2018): 

i. A considerable number of available algorithms, such as the k-means calls for 

computation of the ‘centroids.’ However, the idea of ‘centroids’ is alien to this 

setting due to the fact that every attribute generates a data point in the clustering 

space. 

ii. The k-medoid technique is considerably dynamic to outliers (data points that are 

relatively distant from the remaining of the data points). The clusters estimated 

using the k-medoid technique are not altered by the sequence of data points 

assessment. 

 

 

Figure 3.4 The result of the k-medoid clustering algorithm PAM. 

 



58 

Table 3.6 Partitions of table 𝑇 into three partitions based on k-medoid algorithm 

PAM for Education dataset size of (4.1K, 4.2K and 4.4K) 

𝑻∗ contains all columns with 

highly correlated attributes 

𝑻∗∗ contains all columns with 

uncorrelated attributes 

𝑻𝒄 contains column with 

sensitive attributes 

(sex, salary) 
(age, 

workclass) 

(marital-status, 

relationship) 

(occupation, education) 

Table 3.7 Partitions of table 𝑇 into three partitions based on k-medoid algorithm 

PAM for Education dataset size of (4.3K and 4.5K) 

𝑻∗ contains all columns with 

highly correlated attributes 

𝑻∗∗ contains all columns with 

uncorrelated attributes 

𝑻𝒄 contains column 

with sensitive attributes 

(sex, 

salary) 

(age) (marital-status, 

relationship) 

( workclass, 

occupation) 

(education) 

Table 3.8 Partitions of table 𝑇 into three partitions based on k-medoid algorithm 

PAM for Occupation dataset size of (4.1K, 4.2K and 4.4K) 

𝑻∗ conains all columns with 

highly correlated attributes 

𝑻∗∗ contains all columns with 

uncorrelated attributes 

𝑻𝒄 contains column with 

sensitive attributes 

(sex, salary) 
(age, 

workclass) 

(marital-status, 

relationship) 

(education, occupation) 

Table 3.9 Partitions of table 𝑇 into three partitions based on k-medoid algorithm 

PAM for Occupation dataset size of (4.3K and 4.5K) 

𝑻∗ contains all columns with 

highly correlated attributes 

𝑻∗∗ contains all columns with 

uncorrelated attributes 

𝑻𝒄 contains column with 

sensitive attributes 

(sex, salary) 
(age) (marital-status, 

relationship) 

( workclass, 

education) 

(occupation) 

In horizontal Partition, the table is divided into different subsets so that each tuple 

can only be assigned to a single subset. Every subset of these tuples is referred to as a 

bucket or an equivalence class. Assume there are 𝐸equivalence classes, 𝐸1, 𝐸2, … 𝐸𝑒 then, 

∪𝑖=1
𝑒 𝐸𝑖 = 𝑇 for any 1 ≤  𝑖1  ≠  𝑖2 ≤ 𝑒, 𝐸𝑖1 ∩  𝐸𝑖2 = ∅.   

To achieve this partitioning, the equal-width discretization technique is applied to 

the age attribute domain, dividing it into k equal-sized intervals. Tuples with similar 

values are then categorized into buckets or equivalence classes. In this process, each 

individual is associated with a specific sensitive value, ensuring that an attacker cannot 

deduce the sensitive attribute values of an individual with a probability greater than 1/l, 

where l represents the number of possible sensitive values. The tuples were categorized 

using the Mondrian algorithm (LeFevre et al., 2006). They are separated in the 

equivalence classes, in the absence of generalization attributes, according to the top-down 
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technique. Subsection 2.4.1 presented the description of tuples grouped into buckets, as 

seen in Figure 3.5.  

 

Figure 3.5 The horizontal partition algorithm of tuples into buckets 

Figure 3.5 describes the horizontal partition algorithm of tuples into buckets or 

equivalence classes, in which two data structures are preserved: the queue of equivalence 

classes and a collection of anonymized equivalence classes. Initially, the queue contains 

a single empty equivalence class (line 1). During each iteration (lines 2 to 7), an 

equivalence class 𝐸 is dequeued from the queue 𝑄 and processed using the table partition 

horizontal algorithm. This algorithm applies the top-down technique based on the 

Mondrian criterion (LeFevre et al., 2006) to split the equivalence class into two. Line 5 

utilizes an I-diversity checking algorithm, as shown in Figure 3.7, to ensure diversity 

within the equivalence class. Similarly, the two equivalence classes are attached at the 

bottom of the queue (line 6) to achieve a further breakdown of the equivalence class. The 

equivalence class is sent to line 7 by the table partition algorithm when it becomes 

unbreakable. The anonymized table reaches the publication stage as soon as it reaches 

line 8. 

3.3.3 The improved protection stage 

In the previous stage, the microdata table𝑇 was partitioned both vertically and 

horizontally, organizing all attributes, including Quasi-identifiers (QIs) and Sensitive 

Attributes (SAs), into separate columns. This clustering serves as the foundation for the 

implementation of the third stage, known as the improved protection method. The primary 

objective is to prevent the unauthorized disclosure of individuals' identities by altering QI 

values in a way that conceals any potential linkages between individual values and 
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specific attributes. This approach ensures that published data remains useful and 

informative.  

This stage involves two steps, namely the implementation of an improved 

protection method using the Lower Protection Level (𝐿𝑃𝐿) and Upper Protection Level 

(𝑈𝑃𝐿), along with attribute swapping or generalization. These steps help identify specific 

attributes that could potentially reveal personal information and determine the appropriate 

level of protection required to prevent the disclosure of private data. By doing so, the UL 

approach effectively mitigates identity disclosure while striking a balance between 

preserving privacy and maintaining data utility. The goal is to safeguard personal 

information while still allowing the data to be useful for various purposes. 

In Step 1 of the improved protection method, the strength of the relationship 

between attributes is primarily assessed using the correlation coefficient (𝑟).  

illustrates how 𝑈𝑃𝐿 and 𝐿𝑃𝐿 improve protection by identifying two types of cell 

values: (1) the values of unique cells and (2) highly identical values in 𝑇∗∗ . 𝐿𝑃𝐿 

determines cells that possess unique values within the range of 0.0 < 𝐿𝑃𝐿 ≤  Ф. For such 

attributes, the 𝑟 value typically hovers around 0 but is not exactly 0. Similarly, 𝑈𝑃𝐿 

identifies cells that have numerous similar attributes with values in the range of Ф ≤

𝑈𝑃𝐿 <  1.0. In the case of these attributes, the 𝑟 value usually hovers around 1 but is not 

exactly 1. If such cells have a high 𝑟 value in 𝑇∗∗, it indicates that these cells are likely to 

belong to the same equivalence class, which is referred to as matching bucket. This poses 

a privacy risk as an adversarial party can gain more certainty about the SA when these 

cells are linked to other cells in 𝑇∗, resulting in privacy violations. The remaining cells, 

which have association values distant from 1 and 0, are distinguished by their diversity, 

which effectively prevents attribute disclosure. It is crucial that these cells exhibit a 

diversity value of at least two (diversity ≥ 2), to fulfill the desired privacy objective. 

The goal of 𝑈𝑃𝐿 and 𝐿𝑃𝐿 is to discover the collection of unique cells and highly 

identical values for cells from table 𝑇∗∗, which are assumed to be known to intruders:  

𝐶𝑐𝑜𝑙,𝐸 =  Ф ≤ 𝑈𝑃𝐿 <  1.0, and 𝐶𝑐𝑜𝑙,𝐸 = 0.0 < 𝐿𝑃𝐿 ≤  Ф. 

The attributes that are selected for swapping during this period are referred to as 

the swapping attributes. The number of cells that fall within this period is denoted by 



61 

|𝐶𝑐𝑜𝑙,𝐸| and |𝐶𝑐𝑜𝑙,𝐸|. The values initially marked for swapping are represented by the swap 

rate, denoted by Ф. Usually, Ф ranges from 1% to 10%, indicating that the fraction of 

attributes actually swapped will be less than one.  

Definition 2 (Matching Buckets): Assuming 𝑐𝑜𝑙𝑖
∗∗ represents the columns, and 

𝑐𝑜𝑙𝑖
∗∗ = {𝑐𝑜𝑙1

∗∗
,
, 𝑐𝑜𝑙2

∗∗, … 𝑐𝑜𝑙𝑛
∗∗} , where 𝑖 = 1,2, … 𝑛 , and and 𝑐𝑜𝑙∗∗ ∊ 𝑇∗∗.  Let 𝑡∗∗ 

represent a tuple, and 𝑡∗∗|𝑐𝑜𝑙𝑖
∗∗| represent the value of 𝑐𝑜𝑙𝑖

∗∗ in tuple 𝑡∗∗. Then, let 𝑡∗∗ 

represent an equivalence class in the microdata table 𝑇∗∗ , and 𝐸∗∗|𝑐𝑜𝑙𝑖
∗∗|  denote the 

multiset of values from 𝑐𝑜𝑙𝑖
∗∗ in equivalence class 𝐸∗∗. 𝐸∗∗ denotes equivalence class of 

𝑡∗∗ if for all 1 ≤  𝑖 ≤ 𝑐𝑜𝑙∗∗, 𝑡∗∗|𝑐𝑜𝑙𝑖
∗∗| ∊ 𝐸∗∗|𝑐𝑜𝑙𝑖

∗∗|.   

Definition 3 (the Lower Protection Level (𝑳𝑷𝑳) and Upper Protection Level 

(𝑼𝑷𝑳)): 𝐿𝑃𝐿 and 𝑈𝑃𝐿 are correlation coefficient (𝑟) values assigned to each cell 𝐶𝑐𝑜𝑙,𝐸
∗∗  

in column 𝑐𝑜𝑙𝑖
∗∗, where (𝐿𝑃𝐿 and 𝑈𝑃𝐿 ∈ 𝑟).  

 

 

Figure 3.6 Protection improvement algorithm of 𝑈𝑃𝐿 and 𝐿𝑃𝐿 

When calculating the correlation coefficient (𝑟)  for partition Table 𝑇∗∗ of 

attributes, the values of attribute 𝑎𝑖
∗∗  are classified into three categories, as shown in 

Figure 3.6. 

𝐶𝑐𝑜𝑙,𝐸 includes highly identical attribute values with 𝑟 within the range of Ф ≤

𝑎𝑖
∗∗ <  1.0, as depicted in line 3. 
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1- 𝐶𝑐𝑜𝑙,𝐸 comprises unique attribute values with 𝑟 within the range of 0.0 < 𝑎𝑖
∗∗ ≤

 Ф, as shown in line 4. 

2- 𝐶𝑐𝑜𝑙,𝐸  consists of the remaining cells with values of 𝑎𝑖
∗∗  that have a distant 

association from 𝐶𝑐𝑜𝑙,𝐸and 𝐶𝑐𝑜𝑙,𝐸, falling within the range 𝐶𝑐𝑜𝑙,𝐸 < 𝑎𝑖
∗∗ < 𝐶𝑐𝑜𝑙,𝐸, 

as seen in line 5. The presence of diverse cells within equivalence classes is a 

crucial attribute of 𝐶𝑐𝑜𝑙,𝐸 that plays a significant role in safeguarding privacy.  

Line 8 serves as a check for the l-diversity privacy requirement, as illustrated in 

Figure 3.6. 

However, it is expected that all cells have a diversity value of ≥ 2  in every 

equivalence class. Furthermore, attribute swapping or generalization for  𝐶𝑐𝑜𝑙,𝐸and 𝐶𝑐𝑜𝑙,𝐸 

(see lines 6 and 7) enhances the veracity of information during decision-making 

processes. Veracity refers to the reliability of data and signifies the significance of relying 

on such data for data mining operations (Hasan et al., 2018). 

 

Figure 3.7 The diversity-check algorithm 

The diversity-check algorithm, as illustrated in Figure 3.7, presents a 

comprehensive elucidation of the l-diversity checking process. For each tuple, denoted as 

𝑡∗, the algorithm maintains a list named 𝐿{𝑡∗}, which serves as a repository for statistical 

information pertaining to 𝑡∗’s corresponding equivalence classes or buckets. Each entry 

in the 𝐿{𝑡∗}  list encompasses pertinent statistics associated with a specific matching 
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equivalence class, represented as 𝐸∗. These statistics encompass the matching probability 

𝑝(𝑡∗, 𝐸∗) and the distribution of candidate sensitive values 𝐷(𝑡∗, 𝐸∗).  

The l-diversity checking algorithm commences by iteratively scanning each 

equivalence class denoted as 𝐸∗ (lines 1 to 2) to collect the frequency 𝑓(𝑣) of occurrence 

for each column value 𝑣  within the particular equivalence class. Subsequently, the 

algorithm proceeds to scan individual tuples, specifically tuple 𝑡∗  within the 

aforementioned equivalence class 𝐸∗(lines 3 to 4) to identify all other tuples that match 

with 𝑡∗  within 𝐸∗ . During this process, the algorithm also records the matching 

probability denoted as 𝑝(𝑡∗, 𝐸∗) and the distribution of candidate sensitive values denoted 

as 𝐷(𝑡∗, 𝐸∗). These recorded values are then added to a list denoted as 𝐿{𝑡∗} (line 5). By 

the completion of line 5, the algorithm constructs the list 𝐿{𝑡∗}  for each tuple 𝑡∗ , 

containing crucial information about its corresponding matching equivalence class. 

In the final step, a comprehensive scan is performed on the tuples within 𝐸∗ to 

compute the 𝑝(𝑡∗, 𝑠∗) values, based on the information stored in 𝐿{𝑡∗}. This calculation 

entails considering all tuples 𝑡∗ associated with each sensitive value 𝑠∗. The algorithm 

employs these computed probabilities to establish I-diversity. Specifically, the algorithm 

assesses whether the condition 𝑝(𝑡∗, 𝑠∗)  ≤ 1/l holds true for every sensitive value 𝑠∗ (as 

outlined in lines 6 to 10). If this condition is satisfied for all sensitive values, signifying 

that the matching probabilities are less than or equal to 1/l, the anonymization Table 𝑇∗ 

is considered to possess I-diversity. This criterion ensures that each sensitive value is 

adequately distributed across the tuples, thus promoting diversity in the anonymized 

dataset.   

To illustrate, let's consider the anonymized table presented in Table 3.10, which 

introduces the concept of satisfying 2-diversity. This table consists of two equivalence 

classes, denoted as 𝐸∗. The first equivalence class, 𝐸1
∗, contains the first four tuples, while 

the second equivalence class, 𝐸2
∗, contains the last four tuples. Let's focus on a specific 

tuple, 𝑡1, with the quasi-identifier (QI) values (32, F, 130352). To determine the sensitive 

value associated with 𝑡1, we need to examine its matching equivalence classes. 

 The first step is to analyze the anonymized table's first column, which represents 

Age and Gender. By observing the table, we can deduce that 𝑡1 must belong to the first 

equivalence class, 𝐸1
∗since there are no matches of (32, F) in the second equivalence class, 
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𝐸2
∗. Consequently, we can conclude that 𝑡1cannot be in the second equivalence class, 𝐸2

∗, 

and it must reside in the first equivalence class, 𝐸1
∗. Upon examining the zip code attribute 

in the second column (zip code, Disease) within the first equivalence class, 𝐸1
∗, we can 

determine that the column value for 𝑡1must be either (130352, heart disease) or (130352, 

flu). It's important to note that the other two column values in the same zip code, 130352, 

are present. Without additional information, both heart disease and flu are equally likely 

to be the sensitive value associated with 𝑡1. Consequently, the probability of correctly 

identifying the sensitive value for 𝑡1 is limited to 0.5, as there is an equal chance of it 

being either heart disease or flu. By following a similar approach, we can verify that 2-

diversity is upheld for all other tuples in Table 3.10. Let 𝑝(𝑡∗, 𝐸∗) represent the 

probability of tuple 𝑡1 belonging to equivalence class 𝐸∗. For instance, in this particular 

example, 𝑝(𝑡1
∗, 𝐸1

∗) is equal to 1, indicating that 𝑡1 is guaranteed to be in equivalence class 

𝐸1
∗, while 𝑝(𝑡1

∗, 𝐸2
∗) is equal to 0, signifying that 𝑡1 cannot be found in equivalence class  

𝐸2
∗. A tuple 𝑡1 can belong to multiple equivalence classes, and its overall matching degree 

across the entire dataset is denoted as 𝑓(𝑡) and calculated as the summation of 𝑓(𝑡∗, 𝐸∗) 

over all equivalence classes 𝐸∗ . The probability that  𝑡1  is a member of a specific 

equivalence class 𝐸∗ can be expressed as follows: 

 
𝑝(𝑡∗, 𝐸∗) =  

𝑓(𝑡∗, 𝐸∗)

𝑓(𝑡∗)
                 3.2 

 

In the second step of the algorithm, the probability that a target tuple, denoted as 

𝑡∗, takes a sensitive value 𝑠∗,  denoted as 𝑝(𝑡∗, 𝑠∗), is computed using the law of total 

probability (T. Li et al., 2012). This is achieved by first calculating 𝑝(𝑠∗|𝑡∗, 𝐸∗), which 

represents the probability that 𝑡∗ takes sensitive value 𝑠∗ given that 𝑡∗ is in equivalence 

class 𝐸∗. The law of total probability is then employed to find the overall probability of  

𝑡∗ taking the sensitive value 𝑠∗ as follows: 

 𝑝(𝑡∗, 𝑠∗) =  ∑ 𝑝(𝑡∗, 𝐸∗)𝑝(𝑠∗|𝑡∗, 𝐸∗)𝐸           3.3 

 

To compute the probability 𝑝(𝑡∗, 𝐸∗), the algorithm considers the fraction of 

column values in tuple 𝑡∗ that match the corresponding column values in equivalence 

class 𝐸∗. For instance, when examining Table 3.10, the column value (32, F) is one of the 

column values present in tuple 𝑡∗ . If any column value in 𝑡∗  does not apear in the 
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corresponding column of 𝐸∗, it can be definitively concluded that t^ does not belong to 

𝐸∗ .  Generally, equivalence class 𝐸∗  may potentially match |𝐸∗|  tuples, where |𝐸∗| 

represents the number of tuples in 𝐸∗ . In the absence of additional information, the 

algorithm assumes independence among column values, making each of the |𝐸∗| tuples 

equally likely to be an original tuple. As a result, the probability of 𝑡∗ being in 𝐸∗  is 

determined by the fraction of the |𝐸∗| tuples that match 𝑡∗.  

To formalize this analysis, the algorithm examines the matching between the 

column values of 𝑡∗ , represented as {𝑡∗[𝑐𝑜𝑙1], 𝑡∗[𝑐𝑜𝑙2] … 𝑡∗[𝑐𝑜𝑙𝑐]} , and the column 

values of 𝐸∗ denoted as {𝐸∗[𝑐𝑜𝑙1], 𝐸∗[𝑐𝑜𝑙2] … 𝐸∗[𝑐𝑜𝑙𝑐]}. To quantify the matching, the 

algorithm introduces 𝑓𝑖(𝑡∗, 𝐸∗) (1 ≤ 𝑖 ≤ 𝑐 − 1) as the fraction of occurrences of 𝑡∗[𝑐𝑜𝑙𝑖] 

in 𝐸∗[𝑐𝑜𝑙𝑖], and 𝑓𝑐(𝑡∗, 𝐸∗) as the fraction of occurrences of 𝑡∗[𝑐𝑜𝑙𝑐 − {𝑠}] in 𝐸∗[𝑐𝑜𝑙𝑐 −

{𝑠}], where 𝑐𝑜𝑙𝑐 − {𝑠} represents the set of quasi-identifier (QI) attributes in the sensitive 

column. For example, in Table 3.10 we have 𝑓1(𝑡1
∗, 𝐸1

∗) = (32, F) in 𝐸1
∗  =1/4 =0.25 and 

𝑓2(𝑡1
∗, 𝐸1

∗) = (130352) in 𝐸1
∗  = 2/4 =0.5. Similarly, 𝑓1(𝑡1

∗, 𝐸2
∗) = (32, F) in 𝐸2

∗  = 0 and 

𝑓2(𝑡1
∗, 𝐸2

∗) = (130352) in 𝐸2
∗ = 0. Intuitively, 𝑓𝑖(𝑡∗, 𝐸∗) measures the degree of matching 

on column 𝑐𝑜𝑙𝑖 between tuple 𝑡∗ and equivalence class 𝐸∗.  

Table 3.10 A 2-diverse published table 

 

When computing the probability distribution 𝑝(𝑠∗|𝑡∗, 𝐸∗)  for a given pair 

(𝑡∗, 𝐸∗) , where 𝑡∗  belongs to equivalence class 𝐸∗ , the sensitive value of 𝑡∗  can be 

determined by examining the sensitive column of E^. The sensitive column of E^ contains 

the quasi-identifier (QI) attributes, and only sensitive values that match 𝑡∗'s QI values are 

considered as candidate sensitive values for 𝑡∗. In the absence of additional knowledge, 

all candidate sensitive values within the equivalence class are equally likely. Let 
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𝐷(𝑡∗, 𝐸∗)  represent the distribution of candidate sensitive values for 𝑡∗  within the 

equivalence class 𝐸∗.  

Definition 4 (𝑫(𝒕∗, 𝑬∗)): Any sensitive value associated with 𝑡∗ in equivalence 

class 𝐸∗, denoted by𝑡∗[𝑐𝑜𝑙𝑐 − {𝑠}], is considered a candidate sensitive value for 𝑡∗. The 

total count of candidate sensitive values for 𝑡∗ in 𝐸∗, including duplicates, is denoted by 

𝑓𝑐(𝑡∗, 𝐸∗) . The distribution 𝐷(𝑡∗, 𝐸∗)  represents the probability distribution of the 

candidate sensitive values within the equivalence class 𝐸∗, and 𝐷(𝑡∗, 𝐸∗)(𝑠∗) denotes the 

probability of the sensitive value 𝑠∗ in this distribution. For example, in Table 3.10, the 

distribution for 𝑡1
∗  within equivalence class 𝐸1

∗  is given by 𝐷(𝑡1
∗, 𝐸1

∗) = (heart disease: 

0.5, flu: 0.5). Consequently, the probability of the sensitive value "Flu" for 𝑡1
∗ within 𝐸1

∗ 

is 0.5, which can be denoted as 𝐷(𝑡1
∗, 𝐸1

∗)(flue) = 0.5. Thus, the probability p(𝑠∗|𝑡∗, 𝐸∗) 

is exactly equal to (𝐷(𝑡∗, 𝐸∗)(𝑠∗), i.e., p(𝑠∗|𝑡∗, 𝐸∗) =  (𝐷(𝑡∗, 𝐸∗)(𝑠∗). 

In step 2 of the improved protection stage, referred to as the swapping or 

generalization step, the protection of randomly permuted values in an equivalence class 

may not fully guarantee privacy from attribute or membership disclosure. This is because 

the permutation of values can increase the risk of attribute disclosure rather than ensuring 

privacy (Hasan et al., 2018). Therefore, the proposed algorithm in this study aims to 

satisfy the privacy requirement within each equivalence class. To optimize data utility 

and strengthen personal privacy within the UL approach, this step integrates rank 

swapping as a protection method. Rank swapping is utilized to break the association 

between unique attributes and cells with highly identical values. It involves exchanging 

attribute values between pairs of records within a subset of the original data. This 

procedure modifies the tuple data by swapping attribute values that are either unique or 

highly identical. If attribute swapping is not feasible, the protection method in this step 

employs attribute generalization. Generalization transforms the attributes into more 

generalized forms to safeguard privacy. It is important to note that rank swapping offers 

advantages in preserving data utility, particularly when dealing with aggregate queries, 

compared to the generalization approach. By implementing rank swapping, the algorithm 

ensures a balance between preserving privacy and maintaining data utility within the UL 

approach. The primary objective of attribute swapping or generalization is to generate the 

anonymized table 𝑇. This table guarantees that there are no nonsensical combinations 
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(invalid tuples) within the records and satisfies the requirement of l-diverse slicing, as 

depicted in Figure 3.8. 

 

Figure 3.8 Swapping or generalisation of attributes 

To confirm the reliability of attribute swapping, it involves checking if the values 

of attribute 𝑎𝑖
∗∗ are in the same rank group (line 1). The values of attribute 𝑎𝑖

∗∗ are first 

ranked in ascending order before swapping each of the ranked values with another 

randomly selected ranked value from a specified range. For example, 𝐿𝑒𝑣𝑒𝑙0 in Figure 

3.9 possesses two categories: {Federal − gov, Local − gov, State − gov}  and {Self −

emp − inc, Self − emp − not − inc}.  Rank swapping can maintain multivariate 

relationships more appropriately than ordinary data swapping (Matthews and Harel, 

2011;Domingo-Ferrer and Torra, 2002). 

In line 2, the values of an attribute 𝑎𝑖
∗∗ that need to be swapped are checked to 

ensure that they do not contain nonsensical combinations that could adversely affect the 

usefulness of the published microdata.  

In line 3, two attributes exchange values in cases where the two attributes belong 

to the same hierarchy category and nonsensical combinations are absent. However, if the 

attributes do not belong to the same category or if nonsensical combinations are present, 

attribute values are generalized to satisfy k-anonymity (line 5). During attribute 

generalization, the entire equivalence class is not generalized, which provides a better 

chance for enhancing the usefulness of the data compared to full table or column 

generalization. This, in turn, enhances the usefulness of the published dataset. 

Definition 5 (Attribute Generalisation): Let 𝑇∗∗ be a part of the microdata table 

𝑇, and 𝑎𝑖
∗∗  represents a set of quasi-identifier (QI) attributes in 𝑇∗∗ . The QI attribute 

values are replaced by their generalized model through generalization. Assume 𝑑𝑖
∗∗ and 
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𝑑𝑗
∗∗ are two domains with dimensional regions {𝑑𝑖1,

∗∗ , 𝑑𝑖2
∗∗ … , 𝑑𝑖𝑛

∗∗} and {𝑑𝐽1,
∗∗ , 𝑑𝑗2

∗∗, … 𝑑𝐽𝑛
∗∗} 

respectively, where ∪𝑑𝑖𝑛,
∗∗ = 𝑑𝑖

∗∗  and 𝑑𝑖
∗∗ ∩ 𝑑𝑗

∗∗ = ∅ . The values in 𝑑𝑗
∗∗  represent the 

generalization of the values in domain 𝑑𝑖
∗∗, denoted as 𝑑𝑖

∗∗ < 𝑑𝑗
∗∗ (a many-to-one value 

generalization approach). Generalization follows a domain generalization hierarchy, 

which is a collection of domains ordered according to the relationship 𝑑𝑖
∗∗ < 𝑑𝑗

∗∗ (see 

Figure 3.9).      

 

Figure 3.9    of domain (left) and value (right) generalisation hierarchies for the work–

class (WC) attributes  

In Figure 3.9 (right), the likely domain generalization hierarchy for work-class 

(WC) attributes is described. At lower levels in the generalization hierarchy for WC 

attributes, generalization is not used. Nonetheless, at the top levels of the hierarchy, the 

WC tends to be more general. A singleton is a maximal domain level element that denotes 

the likelihood of values being generalized in every domain to a single value. 

3.4 Evaluation of Performance 

The experiments on real datasets are divided into two stages. The first deals with 

the measurement of the protection level needed, while the second is concerned with the 

assessment of the suggested approaches to see how well they can fight and prevent 

composition attack occurrences. The effectiveness of the approach was tested by 

comparing it to the effectiveness of similar approaches such as hybrid (Li et al., 2016), 

𝑒 − 𝐷𝑃(Mohammed et al., 2011;Zorarpacı and Özel, 2021), merging (Hasan et al., 2018), 

probabilistic (Sattar et al., 2014), composition (Baig et al., 2012)  and Mondrian (LeFevre 

et al., 2006).  
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3.5 Hardware and Software  

A HP laptop was used to assess the approach. The features of the device with 

graphic device capabilities are described in Table 3.11. Furthermore, the Python 

language, which was invented by Guido van Rossum in 1989 (Mészárosová, 2015), was 

applied to implement this experiment. Python is an interpreter programming language 

that is created as an open-source project. It works in many operating systems, such as 

Microsoft Windows, Linux, and Unix systems, including MacOS X, and is fully 

supported by standard and third-party libraries through the mere duplication of the 

program’s source code (Mészárosová, 2015).  

Table 3.11 Hardware and Graphic Cards Specifications 

 

3.6 Chapter Summary 

In conclusion, this chapter presented the flow of research procedures. It started by 

describing the problem identification, followed by an explanation of the proposed 

research methodology to attain the research objectives. The proposed research 

methodology consists of three stages, and all stages have been highlighted and put into 

context, from the design of the UL approach and the improved protection method for 

anonymization to the approach of being more effective in determining the amount of 

protection required to maintain sustainable data utility and achieve a higher degree of 

privacy protection. The datasets and methods to evaluate the proposed work have also 

been listed and discussed. The following chapter elaborates on the evaluation results 

stages presented in this chapter. 
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION  

4.1 Introduction 

In this section, we introduce the Upper Lower (UL) level-based protection 

approach for data anonymization, building upon the slicing-based approach discussed in 

Chapter 2. The slicing approach is recognized as a novel technique for data 

anonymization, offering a distinct protection method without resorting to generalization. 

The fundamental concept behind the slicing approach is to prioritize data privacy 

while preserving data utility by leveraging correlation measurements between the 

attributes. Highly correlated attributes are grouped together in columns, allowing for the 

preservation of correlations between these attributes. This correlation-based approach 

safeguards privacy by disrupting associations between uncorrelated attributes in other 

columns through protection methods such as random permutation and generalization. 

However, these protection methods may not always provide a reliable defense against 

attribute or membership disclosure. Additionally, merging procedures can generate fake 

tuples, resulting in a loss of data utility and incorrect knowledge extraction. 

To address the limitations of the slicing approach, the UL approach has been 

designed. The UL approach aims to prevent attackers from identifying individuals or 

disclosing sensitive information in a table while simultaneously determining the optimal 

balance between privacy and data utility.  

This chapter evaluates the UL approach used to anonymize published data and 

assesses the outcomes in different sections. Section 4.2 presents the design of the UL 

approach, explaining the basic idea/concept, improved protection method, the dataset 

preparation, and parameters used while implementing the proposed work, and measuring 

the protection level. Then, the evaluation of the UL approach is discussed in Section 4.3 

in terms of measuring risks and data utility compared to existing works such as merging, 

𝑒 − 𝐷𝑃 , Mondrian, composition, probabilistic, and hybrid approaches. Data utility is 

evaluated by measuring the extent of information loss and assessing the accuracy of 
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aggregate query results obtained using the data. Finally, Section 4.4 summarizes the 

chapter. 

4.2 Design of UL approach  

The main idea behind the UL approach, introduced in this section, is to prevent 

attackers from identifying individuals or disclosing sensitive information in a table while 

simultaneously determining the optimal balance between privacy and data utility. 

Achieving this balance would require improved protection methods that can effectively 

identify specific attributes capable of detecting potential disclosure risks. By identifying 

these attributes, the UL approach determines the required protection level, thereby 

enhancing the privacy of published data without sacrificing its utility. 

To conduct the experiments, independent datasets were required to simulate the 

realistic scenario of publishing independent data where the dataset is anonymized by the 

publisher without considering other published datasets. From the Adult dataset, we 

extracted the Education and Occupation datasets and then created five copies for each 

dataset. This resulted in datasets of the following sizes: 4.1K, 4.2K, 4.3K, 4.4K, and 4.5K, 

each containing eight QI attribute values. 

In terms of the parameters, assessing the UL approach is an important step. In 

many cases, the Single publication model is considered a non-interactive data publishing 

method used for experimental analysis. The experiment was conducted in a non-

interactive privacy setting. However, a significant portion of the research on differential 

privacy (Dwork, 2006) aligns with interactive settings. In interactive settings, the data 

collector performs specific functions on the data to respond to queries from the data 

analyzer. In this experiment, a user can access the dataset using numerical queries, as the 

anonymization approach adds noise to the query answers. However, the practical 

environment may not always support this approach, as datasets are typically published 

publicly. Therefore, for the experiment on differential privacy, the non-interactive setting 

was chosen, as highlighted in (Mohammed et al., 2011).  

This chapter aims to evaluate the UL approach, focusing on achieving an optimal 

balance between privacy and data utility, as well as determining the required level of 

protection. The efficiency of the UL approach is assessed using various approaches within 

non-interactive privacy settings. These approaches include the hybrid approach (Li et al., 
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2016), merging approach (Hasan et al., 2018), 𝑒 − 𝐷𝑃  approach (Mohammed et al., 

2011), probabilistic approach (Sattar et al., 2014), Mondrian approach (LeFevre et al., 

2006), and composition approach (Baig et al., 2012). For the purpose of comparison 

experiments, the equivalence class was selected based on previous studies. To establish 

an equivalence class, we chose k = 4 and k = 6, where I-diversity is also indicated as I = 

4 and I = 6. The primary goal of I-diversity is to enhance privacy preservation by 

increasing the diversity of sensitive values. In the context of differential privacy, 

Laplacian noise with 𝑒 =  0.3 is added to the count of sensitive values within a given 

equivalence class (Sattar et al., 2014), representing the e-differential privacy budget. Two 

fundamental factors can be considered for comparison purposes: data utility and risk 

disclosure. Any modification or alteration of these parameters directly impacts both the 

preservation of privacy and the utility of the data. 

4.2.1 Experimental Results for Measuring Required Protection level 

In this experiment, the correlation coefficient (𝑟) was calculated for partition 

Table 𝑇∗∗ of attributes, with the values of attribute 𝑎𝑖
∗∗ classified into three categories, as 

shown in Figure 3.6. 

The protection level was measured using the upper protection levels (𝑈𝑃𝐿) and 

lower protection levels (𝐿𝑃𝐿) with five changes in swap rates Ф for 𝐿𝑃𝐿 and 𝑈𝑃𝐿 to 

determine the number of cells and tuples in each variation. The summarized results of 

measuring the protection level are presented in Table 4.1 and Table 4.2, with a specific 

focus on the Educational datasets. These tables provide detailed information on the 

number of cells and tuples in each 𝐿𝑃𝐿 and 𝑈𝑃𝐿, considering different swap rates Ф 

applied to the partitions 𝑇∗∗. Both the Education and Occupation datasets share the same 

attributes, with each attribute having an equal number of classifiers. As a result, 

measuring the relationship strength between attributes led to highly similar or identical 

results, with a specific focus on the Educational datasets.   

In Table 4.1, the emphasis is on cells that contain unique attributes within the 

tuples. These cells are considered potentially riskier because of their uniqueness or near-

uniqueness. The table provides information about the count of such cells, which helps in 

assessing the vulnerability of the dataset. On the other hand, Table 4.2 focuses on the 

number of cells in the tuples that have matching (highly identical) attributes. Cells with 
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matching or near-matching attributes are deemed potentially riskier because most of these 

tuples belong to the same equivalence class. This gives the adversary confidence in 

inferring sensitive information by linking these attributes with other attributes or datasets. 

By analyzing these tables, one can measure the protection level of the Educational 

datasets and gain insights into the potential risks associated with unique and matching 

attributes within the tuples. This information must be considered by the decision maker 

based on the disclosure risk and data utility, taking into account the measures of the 

strength of the relationship between attributes. 

The strength of the association between attributes was considered due to the 

known strength and variety of data (see Table 3.4). Subsequently, 𝐿𝑃𝐿 and 𝑈𝑃𝐿 were 

utilized to identify specific attributes for swapping, as opposed to using a random 

approach to break correlations between attribute values. These steps aid in the 

identification of attributes that could potentially reveal personal information, determining 

the appropriate level of protection required to prevent the disclosure of private data. As a 

result, the UL approach effectively mitigates identity disclosure while striking a balance 

between preserving privacy and maintaining data utility. The primary goal is to safeguard 

personal information while still ensuring the data remains useful for various purposes. 

In Table 4.1, a higher swap rate Ф indicates increased privacy, while in Table 4.2, 

a lower swap rate Ф indicates higher privacy but decreased data utility. These tables offer 

valuable insights into the trade-offs between privacy and data utility, assisting decision-

makers in making informed choices.  
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Table 4.1 Five changes of swap rates for 𝐿𝑃𝐿 to calculate the number of cells and tuples in each change 

 

Table 4.2 Five changes of swap rates for 𝑈𝑃𝐿 to calculate the number of cells and tuples in each change 
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4.3 Experimental Results for Comparison Evaluation 

In recent years, numerous anonymization approaches have been proposed, 

showing significant superiority over older approaches. These approaches integrate 

various protection methods to strike a balance between privacy preservation and data 

usability.  

For the experiment, different groups of datasets were utilized based on the 

initialized dataset presented in Figure 3.2, and they were used as inputs for the following 

approaches: 𝑒 − 𝐷𝑃 (Mohammed et al., 2011; Zorarpacı and Özel, 2021), Hybrid (Li et 

al., 2016), Probabilistic (Sattar et al., 2014), Composition (Baig et al., 2012), Mondrian 

(LeFevre et al., 2006), Merging (Hasan et al., 2018), and proposed approach. The 

objective was to calculate the privacy risks and corresponding data utility for each 

approach.  

As a protection method against sensitive value disclosure, the hybrid approach in 

(Li et al., 2016) utilizes a combination of sampling, generalization, and perturbation by 

adding Laplacian noise to the count of every sensitive value in each equivalence class. 

This combination aims to protect against composition attacks. In the 𝑒 − 𝐷𝑃 approach, 

protection is achieved by initially generating a generalized contingency table, followed 

by adding noise to the counts. The probabilistic approach suggests a new protection 

method called (𝑑, 𝛼)-linkable. It tries to limit the likelihood of an adversary completing 

a composition attack by ensuring that the (𝑑) sensitive values are associated linked to a 

QI-group with a specific likelihood (𝛼). This is achieved by identifying correlations 

between the Quasi-identifier (QI) and sensitive attributes. The Composition approach 

combines two novel concepts, (𝜌, 𝛼)-anonymization through sampling and composition-

based generalization, to provide protection against composition attacks for independent 

datasets. The Mondrian approach involves recursively partitioning the domain space into 

multiple regions, ensuring that each region contains a minimum of k records. In each 

equivalence class, a set of Quasi-identifier (QI) values are generalized. The primary goal 

of the merging approach is to ensure privacy by employing both vertical and horizontal 

partitioning of data. The partitioning of data aims to enhance privacy protection by 
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increasing the occurrence of false matches for unique attributes. Additionally, it is 

essential to randomly permute the sliced table as part of the process.  

The ability to protect data privacy by lowering the risk of disclosing personal 

information and maintaining the potential use of published data is the criterion for judging 

the effectiveness of the anonymization approach (Majeed and Lee 2021; Siddique et al., 

2018; Hasan et al., 2018; BinJubier et al., 2022). The use of lower protection level (𝐿𝑃𝐿) 

and upper protection level (𝑈𝑃𝐿)  as protection method in UL approach can be 

instrumental in determining the required level of data protection and selecting particular 

cells that help to identity disclosure. Then, rank swapping is employed to protect unique 

and highly identical attributes, ensuring the privacy protection of data while preserving 

data utility. Therefore, the UL approach decrease the risk of disclosing data to people and 

maintain possible utilization. Consequently, the experiment was carried out to compare 

the efficiency of the proposed UL approach with six of the approaches used. The 

comparison is performed based on two main factors: data utility and risk disclosure. Data 

utility is evaluated by measuring the extent of information loss and assessing the accuracy 

of query results obtained using the data. These factors are elaborated upon in the 

subsequent subsections. 

4.3.1 Experimental Results for Data Utility Comparison 

This experiment aims to evaluate the data utility achieved through the distortion 

ratio (𝐷𝑅) in published data. The 𝐷𝑅, which quantifies the anonymization outcome on 

the overall distortion data, can be assessed using various methodologies, as proposed by 

Wong and Fu (Wong and Fu , 2010). Among these methodologies, the generalised 

distortion ratio (𝐺𝐷𝑅) serves as a suitable measure for estimating the 𝐷𝑅, as indicated 

by Rohilla (Rohilla, 2015). As explained in section 2.5 (Data Utility and Measuring 

Risks), the 𝐺𝐷𝑅 is used to quantify the anonymization outcome on the overall distortion 

data. By employing the 𝐺𝐷𝑅  as a metric, we can effectively assess the impact of 

anonymization on the data utility, allowing us to strike a balance between privacy 

protection and data quality. 
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Figure 4.1 and Figure 4.2 present the data utility outcomes resulting from data 

loss on the Educational dataset. In Figure 4.1, the proposed approach indicated a 2% swap 

rate (Ф) by Low Protection Level (𝐿𝑃𝐿) and 98% by Upper Protection Level (𝑈𝑃𝐿). 

Additionally, Figure 4.2 showed that the proposed approach had a 5% swap rate (Ф) by 

𝐿𝑃𝐿 and 95% by 𝑈𝑃𝐿. The selection of the swap rate (Ф) by decision makers is essential 

to control the required protection level, and this is achieved by referencing the 

modifications in swap rates, as demonstrated in Table 4.1 and Table 4.2. An increase in 

Ф in 𝐿𝑃𝐿 or a decrease in Ф in 𝑈𝑃𝐿 results in improved privacy but leads to a decrease 

in utility data. The evaluation of the proposed approach was conducted by comparing it 

with various acknowledged approaches: the hybrid approach (Li et al., 2016), merging 

approach (Hasan et al., 2018), 𝑒 − 𝐷𝑃 approach (Mohammed et al., 2011), probabilistic 

approach (Sattar et al., 2014), Mondrian approach (LeFevre et al., 2006), and composition 

approach (Baig et al., 2012). The results showed that the proposed approach achieved 

higher data utility than all the compared approaches.  Specifically, the proposed approach 

(UL approach) outperformed the other approaches in terms of data utility with the 

Educational dataset of size 4.5K. It achieved approximately 92.47% data utility with a 

swap rate Ф of 2% by 𝐿𝑃𝐿 and 98% by 𝑈𝑃𝐿, and approximately 92.19% data utility with 

a swap rate Ф of 5% by 𝐿𝑃𝐿 and 95% by 𝑈𝑃𝐿. This superiority is attributed to the UL 

approach's reliance on value rank swapping, which ensures the preservation of more data 

utility compared to the merging approach. The merging approach used 𝑁 fake tuples with 

the same Quasi-Identifier (QI) value as the original table, and the Sensitive Attribute (SA) 

values were assigned to them based on the main dataset's SA value distribution. 

Consequently, the proposed approach exhibited less data loss compared to the merging 

approach. The proposed approach adopted a selective generalization technique within the 

cell while fulfilling the privacy requirement, which played a crucial role in preserving 

more data utility. On the other hand, the remaining approaches employed protection 

methods that contributed to higher data loss. More information about the protection 

methods used in these approaches can be found in Section 2.4 (Protection Methods Based 

on Anonymization Approaches). 
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Figure 4.1 Education Dataset utility (swap rate (Ф) of 2%  and 98%) 

 

 

Figure 4.2 Education Dataset utility (swap rate (Ф) of 5%  and 95%) 
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4.3.2 Experimental Results for Measuring Risks 

This section focuses on measuring the disclosure risk ratio (𝐷𝑅𝑅)  of the 

anonymization approach outputs to ensure privacy preservation. Determining the 

appropriate level of protection is critical, and it is essential to use risk disclosure measures 

that are independent of the data representation method selected. Existing research has 

demonstrated that risk disclosure can be evaluated using a Certainty Penalty (CP) (Hasan 

et al., 2018; BinJubier et al., 2022), which calculates the percentage of true matches to 

the total matches, as explained in Section 2.5 (Data Utility and Measuring Risks). 

The experimental results for the disclosure risk ratio (𝐷𝑅𝑅) are presented for both 

the Educational dataset (Figure 4.3 and Figure 4.4) and the Occupational dataset (Figure 

4.5 and Figure 4.6). 𝐷𝑅𝑅  serves as a measure of an adversary's confidence level in 

inferring sensitive values within these datasets. Notably, the 𝑒 − 𝐷𝑃  approach 

(Mohammed et al., 2011) exhibited the lowest privacy risks compared to the UL approach 

and other existing methods. Specifically, when using k = 4, l = 4 and k = 6, l = 6 for a 

dataset size of 4.5K, the 𝑒 − 𝐷𝑃  approach achieved approximately 0.7% and 0.69% 

disclosure risk ratio (privacy risk) for the Education and Occupation datasets, 

respectively. The proposed solution (Mohammed et al., 2011) involves probabilistically 

generating a generalized possibility table and introducing noise to the total, providing a 

high level of privacy assurance and protection against composition attacks through 

differential privacy grounded data anonymization (Zorarpacı and Özel, 2021; A. Hasan et 

al., 2018), as evidenced in the results. However, previous research by (Li et al., 2016; 

Cormode et al., 2013; Sarathy and Muralidhar, 2011; Hasan et al., 2018) has observed 

that using 𝑒 − 𝐷𝑃 to protect against composition attacks may lead to a significant amount 

of data utility loss during anonymization, validating the findings discussed in Figure 4.1 

and Figure 4.2.   

The hybrid approach (Li et al., 2016) exhibited a lower probability of exposing 

the end user's private data compared to the probabilistic approach (Sattar et al., 2014), 

composition approach (Baig et al., 2012), Mondrian approach (LeFevre et al., 2006), and 

merging approach (Hasan et al., 2018). For the Educational and Occupational datasets, 

the hybrid approach achieved approximately 1.9% and 1.98% disclosure risk ratio 
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(privacy risk) when using k = 4, l = 4, and approximately 1.55% and 1.6% when k = 6, l 

= 6, for a dataset size of 4.5K, respectively. Furthermore, compared to the probabilistic 

approach, the merging approach reduced the likelihood of composition attacks on the 

released datasets (Sattar et al., 2014), composition approach (Baig et al., 2012), and 

Mondrian approach (LeFevre et al., 2006).    

Additionally, the proposed approach demonstrated a lower probability of 

exposing the user's private data compared to the hybrid approach (Li et al., 2016), 

merging approach (Hasan et al., 2018), probabilistic approach (Sattar et al., 2014), 

Mondrian approach (LeFevre et al., 2006), and composition approach (Baig et al., 2012). 

This achievement was accomplished by disabling unique cells and high identical cells for 

both the Upper Protection Level (𝑈𝑃𝐿) and Lower Protection Level (𝐿𝑃𝐿), as well as by 

enforcing the presence of numerous similar cells in every bucket. These measures 

effectively ensured protection against identity disclosure. 

Given the subtle nuances observed in the comparative outcomes, conducting significance 

tests for certain approaches becomes impractical. This observation underscores the lack 

of statistical significance in the disparities observed between approaches. For instance, 

the UL approach exhibited a privacy risk of approximately 1.5% in Figure 4.4, utilizing 

a dataset size of 4.5K within the Education domain. Conversely, the merging, hybrid, 

probabilistic, and composition approaches displayed privacy risks of roughly 1.65%, 

1.55%, 1.9%, and 2.2%, respectively. Consequently, due to the marginal disparities and 

the absence of statistical significance, conducting significance tests would not yield 

insights into the efficacy of the proposed approach compared to its counterparts. For 

further elucidation and detailed analysis, please refer to Figure 4.3, Figure 4.4, Figure 4.5 

and Figure 4.6. 
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Figure 4.3 Privacy risk for Education dataset (𝑘 = 4, 𝑙 = 4) 

 

 

Figure 4.4 Privacy risk for Education dataset (𝑘 = 6, 𝑙 = 6)  
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Figure 4.5 Privacy risk for Occupation dataset (𝑘 = 4, 𝑙 = 4) 

 

 

Figure 4.6 Privacy risk for Occupation dataset (𝑘 = 6, 𝑙 = 6) 

Figure 4.7 presents a comprehensive summary of the experimental results for the 

disclosure risk ratio (𝐷𝑅𝑅) based on different swap rates Ф = {(1%, 99%), (2%, 98%), 

(5%, 95%), (10%, 90%), (15%, 85%)} for the lower protection levels (𝐿𝑃𝐿) and upper 
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protection levels (𝑈𝑃𝐿) using the Educational dataset with a size of 4.5K. The results in 

Figure 4.7, Table 4.1,  and Table 4.2 demonstrate that an increase in Ф  in 𝐿𝑃𝐿  or a 

reduction in Ф in 𝑈𝑃𝐿 leads to higher privacy levels but lower data utility. Throughout 

this research, the composition attack was mitigated by effectively handling unique 

attributes and high identical attribute values through the utilization of 𝐿𝑃𝐿 and 𝑈𝑃𝐿, 

while also introducing diversity of cells to prevent identity disclosure. Consequently, a 

cell is susceptible to disclosure risk if it can be distinguished from others and lacks 

diversity within its equivalence class (Taylor, Zhou, and Rise, 2018).  

 

 

Figure 4.7 Experimental result for 𝐷𝑅𝑅 for 𝐿𝑃𝐿 and 𝑈𝑃𝐿 when Ф={(1%, 99%), 

(2%, 98%), (5%, 95%), (10%, 90%), (15%, 85%)} 

4.3.3 Experimental Results for Aggregate Query Error 

In addition to assessing the utility of data through "penalty" measures derived 

from the distortion ratio (𝐷𝑅), the utility of data in anonymized form was also evaluated 

using a relative query error. This assessment involves using data as input for a query and 

evaluating the accuracy of the query results, as discussed earlier in section 2.4.4 (Data 

Utility and Measuring Risks). Aggregate queries, such as 'COUNT,' 'MAX,' and 

'AVERAGE,' were repeatedly employed by operators to generate crucial numerical 
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values representing the predictable data utility, thus validating the effectiveness of the 

approach. 

To address the aggregate queries in this experiment, the "COUNT" operator was 

used, as elaborated in section 2.4.4 (Data Utility and Measuring Risks). Each query was 

applied to both the initial data and the data produced by the UL approach, along with 

other available approaches. The initial and anonymized data both underwent counting, 

where the count for the original data was denoted as 𝑜𝑟𝑔𝑐𝑜𝑢𝑛𝑡, and the count for the 

anonymized data was represented as 𝑎𝑛𝑧𝑐𝑜𝑢𝑛𝑡, with 𝑎𝑛𝑧𝑐𝑜𝑢𝑛𝑡 pertaining to the proposed 

approach and other available approaches. The average relative error in the anonymized 

dataset was computed for all queries using Equation 4.1 (Zhang et al., 2007): 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =  
𝑜𝑟𝑔𝑐𝑜𝑢𝑛𝑡 −  𝑎𝑛𝑧𝑐𝑜𝑢𝑛𝑡

𝑜𝑟𝑔𝑐𝑜𝑢𝑛𝑡
∗ 100% 4.2 

 

In the experiment, we selected a series of quasi-identifier (QI) attributes for 

evaluation, including workclass; followed by sex and workclass; then sex, workclass, and 

marital-status; further followed by sex, workclass, marital-status, and relationship; and 

finally, sex, workclass, marital-status, relationship, and occupation. Figure 4.8 displays 

the relative query error on the y-axis based on these chosen QI attributes. The Mondrian, 

hybrid, 𝑒 − 𝐷𝑃, probabilistic, composition, merging, and proposed approach underwent 

evaluation with k set to 6 and I-diversity set to 6 for merging and the proposed approach. 

The swap rates Ф were specifically set at 𝐿𝑃𝐿 = 5% and 𝑈𝑃𝐿 = 95%. 

To compute the relative query error, the anonymized tables generated by the 

proposed approach were compared with tables created by other available approaches. The 

comparison involved different combinations of one, two, three, four, or five QI attributes. 

Furthermore, for the 4.5K Occupational dataset, numerous potential query variations 

were formulated and executed across the anonymization tables. 

Figure 4.8 illustrates the relative query error, with the y-axis representing the 

relative percentage error and the x-axis indicating different options for the QI attributes. 

The experimental results consistently demonstrate that the proposed approach, which uses 

the rank swapping method, outperforms generalization in terms of answering aggregate 

queries. Furthermore, the proposed approach exhibits a relatively minor error compared 
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to other approaches. Thus, when attribute swapping is not feasible, the attributes are 

generalized to ensure privacy protection and data utility. 

 

 

Figure 4.8 Aggregate query error 

4.4 Chapter Summary 

Data anonymization is a common practice to protect data privacy and facilitate 

knowledge extraction by creating an anonymous version of the data before its release. 

Numerous approaches have been developed to utilize data anonymization for 

safeguarding privacy, adhering to stringent regulations for protecting sensitive 

information or personally identifiable data while preserving data utility. In this 

experiments, various protection configurations were employed to address the privacy 

challenge. Each approach has its advantages and limitations. The performance of the 

proposed UL approach was evaluated using real datasets and compared with similar 

methods in the existing literature. The results demonstrated that the UL approach in this 

research achieved a superior balance between data utility and privacy. 
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CHAPTER 5 

 

 

CONCLUSION 

5.1 Introduction 

This study designed and carried out many experiments before arriving at the final 

approach proposed in this thesis (Li et al., 2016; Hasan et al., 2018; Zorarpacı and Özel, 

2021). Many anonymisation approaches were studied and investigated in the first stage, 

leading to the design of a slicing-based enhanced approach called the Upper Lower (UL) 

level-based protection approach for published data. This stage has exacerbated the 

shortcomings of the anonymisation approaches. 

In the second stage, an improved protection method was proposed called the 

Lower Protection Level (𝐿𝑃𝐿) and Upper Protection Level (𝑈𝑃𝐿) for the anonymisation 

approach of being more effective in determining the amount of protection required. The 

goal of using 𝑈𝑃𝐿 and 𝐿𝑃𝐿 methods is to find the particular cell's value that helps to 

identify disclosure and break the link between it by value swapping to guarantee a lower 

risk of attribute disclosure and l-diverse slicing.  

The last stage of this study involved comparing the performance of the proposed 

approach to that of other existing works to assess its effectiveness. The evaluation of the 

proposed approach revealed that this method has a high capacity to preserve more data 

utility and provide stronger privacy protection. The previous chapters discussed the 

study’s design, implementation, and evaluation of all contributions. Section 5.2 of this 

chapter summarizes all contributions, while Section 5.3 provides recommendations for 

future research.    

5.2 Summary of Research Contributions 

This research significantly contributes to the field of Privacy-Preserving Data 

Publishing (PPDP) by focusing on anonymizing published data while achieving an 

optimal balance between privacy and data utility. 
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Within the realm of PPDP, several sub-contributions have been made to enhance 

data anonymization and protect published data while retaining its utility. One of the key 

sub-contributions of this study is the development of the UL design, an improved slicing-

based approach that effectively reduces the risk of disclosure compared to existing 

approaches. The proposed approach demonstrates superior performance, empowering 

researchers, decision-makers, and technology experts to extract valuable knowledge from 

published data across diverse domains, including education and healthcare. 

The second objective of this study involves investigating protective methods to 

determine the most effective way to prevent the disclosure of private information while 

preserving data utility. For this purpose, the Lower Protection Level (𝐿𝑃𝐿) and Upper 

Protection Level (𝑈𝑃𝐿)  methods were employed. These methods selectively swap 

specific attributes, as opposed to random swapping used in existing approaches, thereby 

breaking correlations between attribute values. This selective swapping approach 

significantly enhances the privacy of published data while ensuring its utility and 

achieving l-diversity in the published microdata table. 

To validate the proposed approach, this study utilizes existing data from related 

works to assess its effectiveness against composition attacks. A comprehensive 

evaluation is conducted to compare the proposed approach's efficacy in preserving data 

utility and privacy with existing approaches. The experimental results indicate that the 

UL approach offers superior privacy protection and is capable of preserving additional 

data. Specifically, the UL approach achieves approximately 92.47% greater data utility 

than the merging approach when the percentage of swap rate Ф is 2% using 𝐿𝑃𝐿 and 98% 

using 𝑈𝑃𝐿, with a dataset size of 4.5K for Education. Furthermore, it achieves 92.19% 

data utility when the swap rate Ф percentage is 5%, using 𝐿𝑃𝐿 and 95% using 𝑈𝑃𝐿, with 

the same dataset size for Education. 

Regarding privacy risks, the proposed approach potentially reduces the risk of 

disclosure compared to other existing works such as the hybrid (Li et al., 2016), merging 

(Hasan et al., 2018), 𝑒 − 𝐷𝑃 (Mohammed et al., 2011), probabilistic (Sattar et al., 2014), 

Mondrian (LeFevre et al., 2006), and composition (Baig et al., 2012) approaches. 

Specifically, the UL approach achieves approximately 1.5% less privacy risk than other 

existing works when the percentage of swap rate Ф is 5%, using 𝐿𝑃𝐿 and 95% using 

𝑈𝑃𝐿, with K=6, I=6, and an Education dataset size of 4.5K.  
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Furthermore, the UL approach consistently provides more accurate answers to 

aggregate queries compared to other existing works when the UL approach uses the 

swapping method. The experimental results demonstrate that the swapping method 

consistently offers more precise answers to aggregate queries. 

Additionally, this work proposes a classification of protection methods based on 

anonymization approaches. The primary goal of this classification is to provide 

satisfactory accuracy in preventing attempts to recognize the record owner's identity 

while preserving data utility. In this study, the protection methods based on 

anonymization approaches are classified into grouping methods, perturbation methods, 

and measurement correlation (similarity) methods. 

5.3 Recommendation for Future  

Similar to other scholarly research, this study leaves ample room for additional 

work to address its limitations and expand upon its foundation. The following is a brief 

list of potential future directions that could enhance or expand this work: 

i. The developed UL approach is versatile and can be adapted and expanded to 

detect various malicious attacks, such as probabilistic attacks. Additionally, it has 

the capability to accommodate different types of datasets that include multiple 

sensitive attributes (SA), 

ii. The possibility of adding or replacing another new method of the protection 

methods to the UL approach or extending some stages of the UL approach to 

increase data utility and decrease risk disclosure, 

iii. The Lower Protection Level (𝐿𝑃𝐿) and Upper Protection Level (𝑈𝑃𝐿) methods 

with measures of correlation (similarity) can be applied in other areas of sciences, 

engineering, and technology. Using this method is worth further research as well. 
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