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Epilepsy is a neurological condition affecting millions worldwide. It is characterised by
recurrent seizures. Electroencephalography remains one of the important investigations
into the diagnosis and management of epilepsy, imaging electrical activities of the brain
to outline patterns that precede seizures. Mathematical modeling of seizure patterns
requires identifying specific antecedent features of seizures in EEG recordings. Better
understanding of such patterns could contribute to better management and improvement
in the quality of life for persons living with the condition. The research further proposes
a new mathematical framework wherein simple signals from EEG can be imagined as an
analog of primes, drawing their inspiration from number-theoretical and linear algebraic
concepts. It is based on the definition of the GCD for EEG signal square matrices and
a theorem that will prove the existence of infinitely many elementary EEG signals. The
approach described below transforms the EEG data into square matrices and, by applying
algebraic techniques, allows a systematic analysis of seizure activity. The results suggest
that this framework provides a structured method for EEG signal processing, offering
potential applications in seizure analysis and related neurological studies.
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1. Introduction

Epilepsy is a neuropsychiatric disorder affecting over 65 million individuals worldwide, characterized
by recurring unprovoked seizures [1]. These seizures result from abnormal electrical discharges in the
brain. Electroencephalography (EEG) is a widely accepted, non-invasive technique for diagnosing and
assessing epilepsy [2]. By capturing the brain’s electrical activity during seizures, EEG provides real-
time information crucial for diagnosis and treatment monitoring. Advancements in EEG signal analysis
have significantly enhanced seizure detection. Traditional approaches, such as visual inspection and
basic signal processing, are effective but time-consuming and heavily reliant on clinical expertise [3].
More recently, machine learning and deep learning techniques have revolutionized this field. Auto-
mated seizure detection is now achievable through algorithms such as Convolutional Neural Networks
(CNNs) [4–7] and Recurrent Neural Networks (RNNs) [8–10]. These approaches reduce the burden on
healthcare providers, maximize accuracy, and enhance efficiency, ultimately leading to better predictive
outcomes in epilepsy management.

The development of Fuzzy Topographic Topological Mapping (FTTM) has further refined EEG
signal analysis. Initially designed to address neuromagnetic inverse problems [11], FTTM has evolved
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into a powerful framework for analyzing complex brain signals [12, 13]. Transforming EEG data into
square matrices [14, 15] allows for the application of algebraic techniques, providing a structured ap-
proach to understanding EEG signals. Recent research [16,17] has drawn analogies between elementary
EEG signals and prime numbers, leveraging mathematical properties to simplify and enhance signal
analysis. Building on these findings, this study introduces a mathematical framework that treats the
elementary components of EEG signals as analogous to prime numbers. By applying principles from
number theory and linear algebra, the study defines key properties of EEG signal matrices, establishes
theorems on their factorization, and explores the practical implications of this framework for EEG sig-
nal processing. The proposed methodology extends previous research while offering a more structured
approach that has the potential to improve both diagnostic and therapeutic strategies for epilepsy.

To achieve these objectives, the paper first introduces foundational mathematical definitions rele-
vant to EEG signal square matrices, including key properties such as divisibility and matrix ordering.
It then presents the core theoretical contributions, including theorems on unique factorization, the
infinitude of elementary EEG signal components, and the definition of the greatest common divisor
(GCD) for EEG matrices. Following this, the study discusses the implications of these results, ad-
dressing computational challenges, potential applications in seizure analysis, and connections between
EEG signal matrices and number theory. Finally, the paper concludes by summarizing its findings
and proposing directions for future research, particularly in extending the framework to improve EEG
signal analysis in practical settings. By establishing this structured foundation, the study offers a novel
perspective on EEG signal processing, contributing both theoretical insights and practical applications
for epilepsy diagnosis and neurological research.

2. Preliminary results

Firstly, the recorded EEG signals during epileptic seizures, as illustrated in Figure 1, can be transformed
into square matrices to facilitate analysis. This transformation begins with the digitisation of EEG
data, where signals are sampled at a high frequency (256 samples per second). Each recorded time
point in the EEG data is tabulated as in Table 1.

Fig. 1. EEG signal recorded from Patient A at the time t = 1 [15].

Mathematical Modeling and Computing, Vol. 12, No. 2, pp. 558–572 (2025)



560 Ahmad Fuad A. A., Yusof Y., Ruslan A., Zenian S.

Table 1. Average Potential Difference (APD)
at the sensor on MCt=1 [15].

Sensor X Y APD
Fz 7.68 0 0
Fp1 7.3041 2.3733 52.02898438
Fp2 7.3041 −2.3733 6.779648438
F3 3.3691 3.3691 19.26382813
F4 3.3691 −3.3691 9.716523438
C3 0 3.1812 49.30257813
C4 0 −3.1812 16.01148438
P3 −3.3691 3.3691 37.73242188
P4 −3.3691 −3.3691 6.303164063
O1 −7.3041 2.3733 3.56859375
O2 7.3041 −2.3733 12.700625
F7 4.5142 6.2133 15.66375
F8 4.5142 −6.2133 2.464921875
T3 0 7.68 15.07421875
T4 0 −7.68 15.63382813
T5 −4.5142 6.2133 4.565429687
T6 −4.5142 −6.2133 5.765625
Fz 3.1812 0 12.84117188
Cz 0 0 8.29734375
Pz −3.1812 0 4.4128125
Oz −7.68 0 0

Binjadhnan [15] developed a MATLAB program to rearrange the data from column APD in Table 1
to form a square matrix, A(1), where the numbers in each entry are rounded to five decimal places as
follows:

A(1) =













12.7006 3.56859 0 4.56543 5.76563
37.7324 6.303316 4.41281 49.3026 16.0115
15.0742 15.6338 8.29734 12.8412 19.2638
9.71652 15.6638 2.46492 52.0290 6.77965

0 0 0 0 0













(1)

For any given time t, a square matrix can be written correspondingly, and a set of square matrices is
formed, which is denoted as MCn(R). In other words,

MCn(R) =
{

[βij(z)t]n×n
| i, j ∈ Z

+, βij(z)t ∈ R
}

, (2)

where βij(z)t is the potential difference reading of EEG signals from a particular ij sensor at a time t.
Then, Binjadhnan and Ahmad [14] converted the set MCn(R) into a set of upper triangular matrices
MC∗

n(R) using QR real Schur triangularisation, written as:

MC ′′
n(R) =

{

[βij(z)t]n×n
| βij(z)t = 0,∀j < i 6 n, i, j ∈ Z

+, βij(z)t ∈ R
}

.

Furthermore, the set MC ′′
n(R) is proven to be a semigroup under matrix multiplication. Later, the

semigroup MC ′′
n(R) is decomposed via the Krohn–Rhodes decomposition technique and yields its

elementary components. For example, the resultant upper triangular matrix from matrix A(1) is
decomposed via Krohn-Rhodes decomposition that produces an upper triangular matrix R(1):

R(1) =









68.7781 19.1106 29.5811 21.7906
0 −10.801 −9.15214 −13.2557
0 0 12.3599 −16.204
0 0 0 8.9931









. (3)

Notice that the dimension of the matrix A(1) is reduced from 5 × 5 to a lower dimension. This
reduction occurs because the Krohn–Rhodes decomposition treats the matrix as a block matrix. The
matrix R(1) is invertible and can be expressed as a product of its elementary components: the unipo-

Mathematical Modeling and Computing, Vol. 12, No. 2, pp. 558–572 (2025)



Prime-like structures in EEG signal matrices: A framework for analysing EEG signals in epilepsy 561

tent matrix and the semisimple matrix. This observation led Binjadhnan to view these elementary
components as analogous to prime numbers and to introduce the concept of divisibility for square
matrices of EEG signals, as defined in Definition 1.

Definition 1 (Divisibility of EEG signals square matrices [15]). If A(t) and B(t) are EEG
signals, we say that A(t) divides B(t), written A(t) | B(t), if there exist EEG signals M(t) such that
M(t)B(t) = A(t), where B(t) ∈ MC

′′∗
n (R).

Remark 1. A(t)|B(t) in Definition 1 means that A(t)B−1(t) or B−1(t)A(t). To simplify, A(t) | B(t)
can also be written as A(t)B−1(t).

To illustrate the concept of divisibility of EEG signal square matrices in Definition 1, we provide
an example using the specific EEG signal matrix R(1).

Example 1. Let R(1), B(1), and M(1) be EEG signal square matrices, such that R(1) is a square
matrix written in (3). Then R(1) can be written as

R(1) =









68.7781 19.1106 29.5811 21.7906
0 −10.801 −9.15214 −13.2557
0 0 12.3599 −16.204
0 0 0 8.9931









=









1 −1.7693 2.3933 3.5579
0 1 −0.7405 −1.4740
0 0 1 −1.8018
0 0 0 1

















68.7781 0 0 0
0 −10.801 0 0
0 0 12.3599 0
0 0 0 8.9931









.

R(1) can be written as the product of M(t)B(t), where

M(t) =









1 −1.7693 2.3933 3.5579
0 1 −0.7405 −1.4740
0 0 1 −1.8018
0 0 0 1









,

and

B(t) =









68.7781 0 0 0
0 −10.801 0 0
0 0 12.3599 0
0 0 0 8.9931









.

Definition 1 extends the classical concept of divisibility from integers to EEG signal square matrices.
It implies that for A(t) to divide B(t), there must exist a matrix M(t) such that multiplying M(t)
with B(t) results in A(t). This forms the basis for understanding the relationships and hierarchical
structure between different EEG signal matrices, leading to Theorem 1.

Theorem 1 (Ref. [15]). For EEG signals A(t), B(t), and C(t), the following properties hold:

1. If A(t) | B(t) and B(t) | C(t), then A(t) | C(t).
2. If A(t) | B(t) and C(t) | B(t), then (M(t)A(t) +N(t)C(t)) | B(t) for arbitrary EEG signals M(t)

and N(t).
3. Let B(t) be commutative EEG signals. If A(t) | B(t) and A(t) | C(t), then

(

A(t)2 | B(t)C(t)
)

.
4. If B(t) | C(t) and A(t) | C(t), then A(t) | B(t).

These properties mirror those in prime numbers, ensuring that the structure and relationships
between EEG signal square matrices are preserved. They provide a logical foundation for constructing
more complex analyses and ensuring consistency in these relationships. A significant consequence of
these properties is outlined in Theorem 2.

Theorem 2 (Ref. [15]). Any invertible square matrix of EEG signal readings at time t can be
written as a product of elementary EEG signals in one and only one way.
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Theorem 2 guarantees the uniqueness of the factorisation of EEG signal square matrices, analogous
to the Fundamental Theorem of Arithmetic, which ensures that every positive integer has a unique
prime factorisation. This result simplifies the analysis and manipulation of EEG signal square matrices
by ensuring a unique factorisation into elementary components. Building on this, Ahmad Fuad and
Ahmad [16] proved Theorems 3 and 4.

Theorem 3 (Ref. [16]). Let D(t) be a diagonal matrix of EEG signals at time t. If D(t) is decom-
posed using the Jordan–Chevalley decomposition, which produces the sum of its semisimple D(t)S ,
and nilpotent D(t)N parts, then D(t)S = D(t) and D(t)N = 0.

Theorem 4 (Ref. [16]). Let U(t) be a diagonal matrix of EEG signals at time t. If U(t) is decom-
posed using the Jordan–Chevalley decomposition, which produces the sum of its semisimple U(t)S ,
and nilpotent U(t)N parts, then U(t) = U(t)S +U(t)N and U(t)S = I, where I is the identity matrix.

Theorems 3 and 4 provide a detailed decomposition of EEG signal matrices into their fundamen-
tal components using the Jordan–Chevalley decomposition. These theorems lay the groundwork for
understanding how EEG signal matrices can be uniquely factored into more elementary components,
mirroring the concept of prime factorisation in number theory. Building on this foundation, we can
further explore the structural properties of these elementary components. Specifically, by considering
the interaction between the semisimple and nilpotent parts of these decomposed matrices, we derive an
essential consequence that parallels a well-known result in number theory, the Goldbach Conjecture,
as Theorem 5.

Theorem 5 (Ref. [18]). Let p, p1, and p2 be primes such that p = p1 + p2. The presentation is
unique except for the order.

Consequently, continuing the idea of viewing the elementary components of EEG signals as prime
numbers, Ahmad Fuad and Ahmad [10] introduced the notion of ordering square matrices as Defini-
tion 2.2.

Definition 2 (Precede operator [17]). Let C and C ′ be n × n matrices and C 6= C ′. Matrix
C is said to precede C ′, denoted C ≻ C ′, if there exists a first element cij in C greater than the
corresponding element c′ij in C ′ for some indices i, j. The comparison is performed row by row,
starting from the first row and moving sequentially down, until the first instance where cij > c′ij is
found. This precedence relation is defined as: C ≻ C ′ whenever there exists an i, j such that cij > c′ij
in row sequence. If c′ij > cij at the deciding point, then C ′ ≻ C. When all the corresponding elements
are equal, i.e. cij = c′ij for all i, j, then C = C ′.

Readers interested in further details may refer to [17] for a comprehensive discussion on the algo-
rithm related to Definition 2. Example 2 illustrates how Definition 2 applies in practice.

Example 2. Consider two square matrices A and B such that

A =













0.8147 0.0975 1.576 4.56 5.763
37.7234 6.30316 4.41281 49.3026 16.0115
15.0742 15.6338 8.29734 12.8412 19.2638
9.71652 15.6638 2.46492 52.0290 6.77965
6.3031 8.2973 5.0742 52.0290 3.7324













B =













0.8147 0.0975 1.576 4.56 5.763
37.7234 6.30316 4.41281 49.3026 16.0115
15.0742 0.8147 9.71652 6.3031 19.2638
9.71652 15.6638 2.46492 52.0290 6.77965
12.8412 8.2973 5.0742 52.0290 3.7324













As clearly seen, the first aij > bij is found. In this case, a32 > b32. Then, A ≺ B.

Mathematical Modeling and Computing, Vol. 12, No. 2, pp. 558–572 (2025)



Prime-like structures in EEG signal matrices: A framework for analysing EEG signals in epilepsy 563

Definition 2 introduces a new way of ordering square matrices using a precede operator. This
operator is designed to establish a hierarchical relationship between matrices, particularly in the context
of analysing EEG signals. This precede operator is crucial for expanding the analogy of EEG signal
matrices to prime numbers by allowing them to be ordered meaningfully, similar to the well-ordering
property of integers. This operator’s introduction enables more nuanced comparisons and analyses
of EEG signal matrices, offering a novel view on their mathematical and practical implications in
neurological studies. While this approach may seem sensitive to the order of rows and columns, the
transformation of EEG data into square matrices follows a structured process that maintains the spatial
arrangement of electrodes. This ensures that the ordering is applied consistently.

The lexicographic ordering with the precede operator has several advantages for EEG signal analy-
sis. It provides a clear and systematic way to rank common divisors, ensuring a well-defined structure
in the data. It also captures small but important differences in EEG signals, which may be useful in
identifying subtle patterns. While other methods, such as ordering based on matrix norms or eigen-
values, could be considered, these methods typically reduce the entity to a single scalar value, losing
information about the relationships between individual entries. In contrast, the precede operator re-
tains the full structure of the data, allowing for a more precise and meaningful comparison. Although
lexicographic ordering can change if the rows and columns are rearranged, this is not a concern in our
framework because the transformation of EEG signals into matrices follows a fixed and meaningful
arrangement based on electrode positions. Therefore, the precede operator remains a reliable and ef-
fective tool for ordering EEG signal matrices in this context. The following section presents the main
results derived from viewing elementary components of EEG signals as analogous to prime numbers.

3. Main results

This section presents the key findings of the study, which build on the earlier discussion of matrix
decomposition and the analogy between elementary EEG signals and prime numbers. The results help
to deepen our understanding of EEG signal matrices by applying mathematical principles similar to
those used in number theory.

Definition 3 (Greatest Common Divisor of EEG Signal Square Matrices). Let A(t) and B(t)
be two invertible square matrices of EEG signals belonging to a semigroup MCn(R) (or to a structured
subclass, such as MC ′′

n(R) of upper triangular matrices) that is closed under matrix multiplication.
We adopt the right-divisibility convention, meaning that for X(t), Y (t) ∈ MCn(R), we say that

X(t) | Y (t)

if there exists a matrix M(t) ∈ MCn(R) such that

Y (t) = X(t)M(t).

The greatest common divisor (GCD) of A(t) and B(t), denoted as

G(t) = gcd(A(t), B(t)),

is defined as the unique matrix G(t) ∈ MCn(R) satisfying the following conditions:

1. Common Divisor Condition: There exist matrices MA(t) and MB(t) in MCn(R) such that

A(t) = G(t)MA(t), B(t) = G(t)MB(t).

2. Maximality Condition with Respect to the Precede Operator: Let

D = {H(t) ∈ MCn(R) | A(t) = H(t)XA(t), B(t) = H(t)XB(t),

for some XA(t),XB(t) ∈ MCn(R)}

be the set of all common divisors of A(t) and B(t). Then G(t) is the unique maximal element
in D with respect to the precede operator ≻; that is, for any H(t) ∈ D with H(t) 6= G(t), when
comparing the entries of G(t) = [gij(t)] and H(t) = [hij(t)] row by row (from left to right), the first
entry where they differ satisfies

gij(t) > hij(t).
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3. Uniqueness Up to Units: If G′(t) is another matrix in MCn(R) satisfying (1) and (2), then there
exists an invertible matrix U(t) ∈ MCn(R) such that

G′(t) = G(t)U(t).

The definition of divisibility in this study follows a right-divisibility convention, meaning that
for matrices X(t) and Y (t) in MCn(R), we say that X(t) divides Y (t) if there exists a matrix
M(t) ∈ MCn(R) such that Y (t) = X(t)M(t). This choice is motivated by several important consider-
ations. First, EEG signal matrices in this study belong to structured subclasses, such as MC ′′

n(R), the
set of upper triangular matrices, which are closed under right-multiplication. Preserving this structure
ensures that factorization remains within the same class, facilitating further analysis and interpre-
tation. In contrast, left-divisibility, where Y (t) = M(t)X(t), could introduce factors that alter the
structural properties of the matrices, complicating computation and potentially disrupting meaningful
relationships within the EEG signal matrices.

Additionally, right-divisibility aligns with standard matrix decomposition techniques such as QR
decomposition, which inherently involve right-multiplication. This ensures that when computing the
greatest common divisor (GCD) and performing related factorizations, the quotient matrices remain
well-defined and computationally stable. Furthermore, right-divisibility is consistent with algebraic
frameworks in semigroup theory, where closure under multiplication is preserved. This consistency
makes it particularly well-suited for analyzing EEG signal matrices, which require structured de-
composition to identify fundamental signal components. Beyond its theoretical advantages, right-
multiplication also provides practical benefits in computational applications. In EEG analysis, the
GCD G(t) serves to extract common structural patterns from signal matrices, while the quotient ma-
trices MA(t) and MB(t) capture the remaining variability. By using right-multiplication, these quotient
matrices can be analyzed directly without altering their fundamental properties. This approach simpli-
fies both theoretical derivations and practical computations, reinforcing the choice of right-divisibility
as the preferred convention in this study.

In the following example, we illustrate the computation of the greatest common divisor (GCD)
for 5× 5 EEG signal square matrices using standard matrix multiplication and the precede operator.
Although we use upper triangular matrices for computational simplicity, the principles extend to
general square matrices, with additional considerations discussed in the remarks.

Example 3. Let

D =













1.75 1.20 0.95 0.85 0.65
0.00 2.10 1.55 1.20 0.95
0.00 0.00 2.50 1.80 1.10
0.00 0.00 0.00 3.00 1.90
0.00 0.00 0.00 0.00 3.50













be our candidate for the greatest common divisor. The choice of D is motivated by its appearance as
a common factor in the following factorizations. Next, let

X =













2.00 1.10 0.80 0.60 0.40
0.00 1.80 1.00 0.70 0.50
0.00 0.00 1.60 0.90 0.65
0.00 0.00 0.00 1.40 0.80
0.00 0.00 0.00 0.00 1.20













, Y =













2.50 1.30 1.00 0.75 0.55
0.00 2.20 1.20 0.85 0.65
0.00 0.00 1.80 1.10 0.80
0.00 0.00 0.00 1.70 1.00
0.00 0.00 0.00 0.00 1.40













Both X and Y are chosen as invertible upper triangular matrices to ensure that the product remains
upper triangular, thereby preserving structure and simplifying numerical verification. We define A =
D · X, B = D · Y . Since both D and X are upper triangular, the product A = D · X is computed
entry by entry. For example, the (1, 1) entry of A is:

a11 = 1.75 × 2.00 = 3.50.

Similarly, the (1, 2) entry is:
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a12 = 1.75 × 1.10 + 1.20 × 1.80 = 1.93 + 2.16 = 4.09.

Continuing in this manner, we obtain:

A =













3.50 4.09 4.12 3.94 3.38
0.00 3.78 4.58 4.55 4.16
0.00 0.00 4.00 4.77 4.39
0.00 0.00 0.00 4.20 4.68
0.00 0.00 0.00 0.00 4.20













.

Similarly, the matrix B = D · Y is computed as:

B =













4.38 4.92 4.90 4.83 4.26
0.00 4.62 5.31 5.54 5.14
0.00 0.00 4.50 5.81 5.34
0.00 0.00 0.00 5.10 5.66
0.00 0.00 0.00 0.00 4.90













.

Since both A and B factor as A = D · X and B = D · Y , D is a common divisor of A and B. The
precede operator (≻) is used to compare common divisors row by row (left to right). The largest
common divisor is the one where, at the first differing entry, its value is greater than that of any other
common divisor. If D′ is another matrix satisfying the above conditions, then there exists an invertible
matrix U such that: D′ = D · U . This confirms that D is unique up to right-multiplication by an
invertible matrix.

Thus, based on the common divisor, maximality, and uniqueness conditions, we conclude that the
greatest common divisor (GCD) of A and B is:

D =













1.75 1.20 0.95 0.85 0.65
0.00 2.10 1.55 1.20 0.95
0.00 0.00 2.50 1.80 1.10
0.00 0.00 0.00 3.00 1.90
0.00 0.00 0.00 0.00 3.50













. (4)

Example (4) not only adheres to our definition but also demonstrates a practical method for com-
puting the GCD of EEG signal square matrices, ensuring that the largest possible common structure is
preserved. This concept of matrix divisibility and the GCD lays the foundation for further definitions
related to the structure of EEG signal matrices, including the concept of relatively prime for square
matrices, introduced in Definition 4.

Definition 4. Let A(t) and B(t) be two invertible EEG signal square matrices. We say that
A(t) and B(t) are relatively prime if their greatest common divisor is the identity matrix, i.e.,
gcd(A(t), B(t)) = I.

Definition 4 generalizes the classical number-theoretic concept of relative primeness to the setting
of EEG signal square matrices. In classical number theory, two integers a and b are relatively prime if
their greatest common divisor is 1. The analogy in the matrix setting is straightforward: two matrices
A(t) and B(t) are relatively prime if the only common divisor they share is the identity matrix I,
which serves as the multiplicative identity in matrix algebra. Rather than defining relative primeness
in terms of direct divisibility conditions, the definition naturally extends from the concept of the GCD
for matrices. By establishing that gcd(A(t), B(t)) = I, we ensure that no nontrivial common matrix
D(t) exists such that both A(t) and B(t) are divisible by D(t). This makes the definition more concise
and operationally useful, since checking for relative primeness reduces to computing the GCD and
verifying whether it equals the identity matrix.

The definition assumes that A(t) and B(t) are invertible matrices. This assumption ensures that
divisibility is well-defined in the semigroup or group structure of EEG signal square matrices under
multiplication. If non-invertible matrices were allowed, additional complications would arise, partic-
ularly in cases where matrices have zero divisors or rank deficiencies. The restriction to invertible
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matrices ensures that the greatest common divisor is unique up to multiplication by units (invertible
matrices), mirroring the coprime integer case, where the GCD is unique up to sign. The definition
specifies that divisibility follows the right-multiplication convention, meaning that for a matrix X(t),
we say X(t) | Y (t) if and only if there exists a matrix M(t) such that

Y (t) = X(t)M(t).

This choice is important because in a noncommutative setting (such as matrix multiplication), left-
and right-divisibility can lead to different results. Ensuring a consistent convention throughout the
manuscript avoids ambiguities in how divisibility is interpreted.

By definition, if two matrices A(t) and B(t) are relatively prime, then any equation of the form

A(t)X(t) +B(t)Y (t) = I

must have at least one solution in MCn(R). This follows from the matrix Bézout identity, which states
that relatively prime matrices behave similarly to relatively prime integers in Diophantine equations.
This property has significant implications in EEG signal transformations, particularly in cases where
matrix decompositions or transformations involve modular conditions. Consequently, ensuring that
EEG transformation matrices are relatively prime guarantees that the decomposition retains full rank
and avoids redundancy in signal representation.

To illustrate this concept, we now present an explicit example of two relatively prime 5 × 5 EEG
signal square matrices in Example 4. This example will demonstrate the step-by-step verification of
the GCD, confirming that the only common divisor is the identity matrix. By analyzing the structure
and divisibility properties of these matrices, we gain further insight into how relative primeness can be
applied in the context of EEG signal processing.

Example 4. We consider the following two invertible 5 × 5 upper triangular matrices with entries
given to two decimal places:

A =













3.21 5.43 1.23 4.56 2.34
0 2.34 3.45 6.78 5.67
0 0 7.89 2.22 3.33
0 0 0 8.88 1.23
0 0 0 0 9.87













, B =













6.54 2.18 7.96 3.14 8.20
0 4.56 1.23 9.87 2.46
0 0 3.57 6.28 4.19
0 0 0 7.89 1.23
0 0 0 0 5.67













.

Since A and B are upper triangular with nonzero diagonal entries, they are invertible, and we define
divisibility via right-multiplication. That is, for matrices X and Y in our set MCn(R), we write X | Y
if there exists a matrix M such that

Y = XM.

According to our definition of relative primeness, A and B are relatively prime if

gcd(A,B) = I,

where I is the identity matrix. In other words, the only common divisor of A and B (with respect to
the right-divisibility convention) is the identity matrix.

To verify this, we note that if a nontrivial common divisor D exists (i.e., D 6= I), then D must be an
upper triangular matrix that divides both A and B. In particular, since the diagonal entries of an upper
triangular matrix are preserved under multiplication, D would have diagonal entries d11, d22, . . . , d55
that divide the corresponding diagonal entries of A and B. The diagonal entries of A are

3.21, 2.34, 7.89, 8.88, 9.87,

and those of B are

6.54, 4.56, 3.57, 7.89, 5.67.

A nontrivial common divisor would require that each dii is a common factor (in the sense of real
numbers) of the corresponding entries in both A and B. However, a careful comparison reveals that
these entries do not share any common factor other than 1. For example, while 3.21 and 6.54 might have
a ratio, the second diagonal entries 2.34 and 4.56 and the remaining entries do not have a consistent
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nontrivial common factor. Consequently, the only possibility is that dii = 1 for all i, which implies
D = I. Thus, we conclude that

gcd(A,B) = I,

meaning that A and B are relatively prime.

The use of upper triangular matrices in Example 4 is intentional. Their structure ensures that
the product remains within a closed set (i.e., the set of upper triangular matrices) and simplifies the
verification of divisibility, particularly via the diagonal entries. Although this example uses structured
matrices, the approach extends to general 5×5 matrices provided that the divisibility notion is defined
consistently. Now, the main result of this paper is presented as Theorem 6.

Theorem 6. There are infinitely many elementary components of EEG signals.

Proof. Assume, for the sake of contradiction, that there are only finitely many elementary EEG
signals, which we denote by

E1, E2, . . . , EM ,

where M is a finite integer. By Theorem 2, any invertible EEG signal matrix can be uniquely factorized
into these elementary components. Consider the matrix

A = E1E2 · · ·EM .

Now, define the matrix

A′ = A+ I,

where I is the identity matrix. Note that by construction, I is not included among the elementary
components E1, . . . , EM (since elementary components are defined to be nontrivial factors). We claim
that A and A′ are relatively prime. Indeed, if they had a nontrivial common divisor D, then D would
divide I as well (since I = A′ −A), which is impossible unless D = I. Therefore,

gcd(A,A′) = I.

By the unique factorization property (Theorem 2), the product AA′ must have a factorization into
elementary components. However, since A already contains all the assumed elementary components
and A′ is relatively prime to A, the factorization of AA′ must involve at least one new elementary
component, contradicting the assumption that only E1, E2, . . . , EM exist. Repeating this process, we
construct an infinite sequence of matrices

A,A′, (AA′), (AA′ + I), (AA′(AA′ + I)), . . .

each of which contains at least one more elementary component than the previous one. Hence, there
must exist infinitely many elementary EEG signals, contradicting our initial assumption of finiteness.
Thus, we conclude that there are infinitely many elementary EEG signals. �

Theorem 6 shows that the basic building blocks of EEG signals–like prime numbers–are infinite in
number, providing a rich structure for further study. To highlight the analogy between EEG signals
and positive integers, Table 2 compares the fundamental properties of both.

This comparison highlights structural parallels between mathematical approaches employed in elec-
troencephalogram (EEG) signal analysis and foundational principles of classical number theory. The
theoretical framework proposed in this study demonstrates how such analogies can yield novel insights
into both domains. The following section provides a systematic analysis and critical discussion of the
principal findings.

4. Analysis and discussion

4.1. Greatest common divisor of EEG signal square matrices

The concept of the greatest common divisor (GCD) for EEG signal square matrices, introduced in
Definition 3, provides a structured mathematical approach for analyzing EEG signals. However, its
implementation presents challenges concerning invertibility assumptions, computational complexity,
and sensitivity to the spatial arrangement of electrodes. The current definition assumes that EEG
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Table 2. Comparison and similarity between EEG signals and positive integers.

PROPERTY EEG SIGNALS POSITIVE INTEGERS

Divisibility Definition 1

Definition 5 (Ref. [19]). If a and b

are integers, we say that a divides b if

there is an integer c such that b = ac.

Unique factorisation Theorem 2 Fundamental Theorem of Arithmetic
Building blocks Diagonal EEG signals group and

the unipotent EEG signals group
Prime numbers

Highlights Jordan–Chevalley decomposition
of EEG signals (Theorem 3 and
Theorem 4)

Pseudo–Goldbach Theorem
(Theorem 5).

Infinitude of the
building blocks

There are infinitely many
elementary components of EEG
signals (Theorem 3.1)

There are infinitely many primes.

signal square matrices are invertible, which may not always be the case due to noise, rank deficiency,
or linear dependencies in real-world EEG recordings. EEG signals often exhibit high correlation among
channels, leading to matrices that are singular or nearly singular. This limitation affects the practi-
cal applicability of the framework, as non-invertible matrices lack well-defined multiplicative inverses.
One possible solution is to incorporate regularization techniques such as Tikhonov regularization [20]
or the use of pseudoinverses [21], including the Moore–Penrose inverse, which can provide stable solu-
tions when working with rank-deficient matrices. Preprocessing methods such as principal component
analysis (PCA) or singular value decomposition (SVD) can also mitigate rank-deficiency issues by re-
ducing the dimensionality of the data while retaining essential signal characteristics [22, 23]. Future
research should explore how these techniques can be integrated into the framework to ensure broader
applicability to real EEG datasets.

Determining the GCD of EEG signal matrices involves matrix decomposition, factorization, and
verification through matrix multiplication, which are computationally expensive operations. These
processes scale cubically with the size of the matrix, posing challenges when dealing with high-density
EEG systems that contain a large number of electrodes. For real-time applications such as seizure
prediction or brain-computer interface (BCI) systems, this level of computational demand may be
impractical. Optimizations such as block-wise decomposition, parallel processing, and hardware accel-
eration using graphics processing units (GPUs) can improve scalability [24]. Alternative approaches
that approximate GCD computations without requiring full matrix factorization may also be devel-
oped to balance computational efficiency with accuracy. Future work should address these limitations
by implementing algorithmic enhancements to improve the feasibility of the proposed framework in
large-scale EEG datasets.

The precede operator, which establishes lexicographic ordering, is dependent on the spatial ar-
rangement of EEG electrodes. Most EEG studies adhere to standardized configurations such as the
10–20 system, but variations in electrode positioning, re-referencing schemes, or missing channels could
affect the computed GCD and its interpretability. Spatial standardization techniques such as spher-
ical interpolation or spatial filtering could help maintain consistency across datasets. An alternative
approach would involve defining ordering mechanisms that consider geometric relationships between
electrode positions rather than strictly adhering to a row-wise lexicographic comparison. Future in-
vestigations should assess the robustness of the framework under different electrode configurations to
ensure its generalizability across various EEG recording setups. The concept of relative primeness in
EEG signal matrices extends classical number theory to a multidimensional setting. Two EEG signal
matrices are considered relatively prime if their only common divisor is the identity matrix, meaning
they do not share structural dependencies. This property has implications for neural signal processing,
particularly in cases where EEG signals arise from independent neural processes.
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The notion of relative primeness could provide insights into the statistical independence of EEG
sources. Independent component analysis (ICA) assumes that EEG signals result from mixed inde-
pendent sources, and relative primeness in EEG matrices may indicate that two neural sources are
independent [25]. In seizure detection, the ability to distinguish between seizure-related and back-
ground brain activity could improve classification accuracy and signal interpretation. Similarly, in
brain-computer interface applications, ensuring that EEG feature matrices are relatively prime could
enhance feature selection by reducing redundancy in extracted signals. Further experimental stud-
ies should examine whether GCD-derived features correlate with known neurophysiological markers,
particularly in conditions such as epilepsy, cognitive processing, and sleep studies. This study defines
divisibility using right-multiplication, aligning with the upper-triangular structure of the EEG matrices
under consideration. However, left-divisibility may produce different factorization results, particularly
when dealing with non-triangular matrices. While right-divisibility is mathematically justified within
this framework, further investigation into the differences between left- and right-divisibility could clar-
ify their respective roles in EEG matrix analysis. A comparative analysis should be conducted to
determine whether left-divisibility provides alternative structural insights into EEG data, especially in
cases where EEG matrices exhibit symmetric or banded structures [26].

4.2. Infinitely many elementary components of EEG signals

Theorem 6 establishes that there are infinitely many elementary components in EEG signals, drawing
an analogy with the fundamental theorem of arithmetic. This result suggests that EEG signals have
an intrinsic hierarchical structure, where fundamental building blocks can be systematically identified.
The presence of infinitely many elementary components implies that EEG signal decomposition could
reveal an unbounded set of underlying patterns, which may be particularly useful in studying neural os-
cillations. The hierarchical nature of EEG signals suggests that different brain states could correspond
to distinct elementary components, providing a new perspective for classifying mental states. Seizure
detection, for instance, may benefit from this structured approach by identifying seizure-specific ele-
mentary components that differentiate abnormal activity from baseline brain function. Additionally, in
cognitive neuroscience, EEG signal decomposition into elementary components may help characterize
different cognitive states and task-related brain activity. Establishing a clear connection between the
mathematical framework and neurophysiological phenomena remains an important direction for future
research.

While the presence of infinitely many elementary components enriches the theoretical framework,
it also introduces computational challenges. Classical signal decomposition techniques such as Fourier
transforms and wavelet analysis operate under the assumption of a predefined basis set [27], whereas
the proposed framework suggests an open-ended hierarchy of components. Efficient extraction of
relevant patterns from EEG data requires new algorithmic approaches that can isolate meaningful
components without excessive computational overhead. Adaptive feature extraction methods that
integrate machine learning techniques may provide an effective solution for managing high-dimensional
EEG datasets while preserving the structural properties identified through the GCD framework [28].

4.3. Practical challenges and future directions

EEG signals are often contaminated with artifacts from muscle activity, eye movements, and environ-
mental interference [29]. These artifacts may distort the precede operator’s comparisons, leading to
inaccuracies in the computed GCD. To improve robustness, future implementations should integrate
noise-reduction techniques such as independent component analysis (ICA) [30], wavelet denoising [31],
and adaptive filtering [32]. Evaluating the framework’s performance under different noise conditions is
necessary to ensure its practical reliability in clinical and experimental applications. The uniqueness
of factorization in the current framework is ensured by restricting the analysis to upper-triangular ma-
trices. However, in general matrix rings, unique factorization does not always hold [33]. Investigating
whether alternative matrix structures, such as symmetric or block matrices, can be incorporated while
preserving meaningful interpretations for EEG data is an important area for future research.
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Improving the computational feasibility of the proposed framework requires exploring parallel pro-
cessing, GPU acceleration, and efficient matrix factorization algorithms. Implementing heuristic ap-
proximations that reduce computational complexity while maintaining factorization accuracy could
further enhance the framework’s practical applicability. For the proposed framework to have clini-
cal relevance, it must be validated using real-world EEG recordings. Examining its ability to identify
seizure propagation patterns in epilepsy studies, differentiate cognitive states in task-based EEG record-
ings, and improve EEG classification in machine learning applications will be critical for establishing
its utility in neuroscience and medical research.

5. Conclusion

This research introduces a mathematical framework for analysing EEG signals by extending classical
concepts from number theory and linear algebra. By interpreting the elementary components of EEG
signals as analogous to prime numbers, the study provides a systematic methodology for investigating
the structural properties of EEG signal matrices. This framework simplifies analysis by guaranteeing
unique factorization of such matrices, akin to integer prime factorisation. The study demonstrates
that EEG signals are composed of infinitely many elementary components, revealing their inherent
mathematical complexity. Viewing EEG signals through this theoretical lens creates opportunities to
refine signal processing techniques, particularly for epilepsy diagnosis and management. The unique
factorisation property of EEG signal matrices may enhance the precision and computational efficiency
of automated systems for detecting seizure patterns’a critical advancement in neurological diagnostics.

However, translating this framework into clinical practice presents challenges, including the com-
putational demands of large-scale matrix operations and the need for robust decomposition algo-
rithms. Future work must prioritise the development of optimised algorithms capable of processing
high-dimensional EEG data efficiently. Integration with advanced machine learning methodologies may
expand the framework’s applicability in real-world clinical settings. Furthermore, extending these prin-
ciples to analyze other biomedical signals (e.g., magnetoencephalography or electromyography) could
yield novel insights and applications in medical signal processing. In conclusion, this study establishes
a foundational methodology for EEG signal analysis grounded in mathematical theory. By bridging
number theory and EEG signal processing, it opens new avenues for interdisciplinary exploration, with
potential to drive innovations in neuroscience and clinical diagnostics. Sustained interdisciplinary ef-
forts will be critical to overcoming computational barriers and realizing the practical utility of this
framework in healthcare.
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Структури, подiбнi до простих чисел, у матрицях EEG-сигналiв:
основа для аналiзу EEG-сигналiв при епiлепсiї
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Епiлепсiя — це неврологiчне захворювання, яке вражає мiльйони людей у всьому свiтi.
Вона характеризується рецидивуючими нападами. Електроенцефалографiя (EEG)
залишається одним iз важливих методiв дослiдження для дiагностики та лiкуван-
ня епiлепсiї, оскiльки вона вiзуалiзує електричну активнiсть мозку, щоб виявити за-
кономiрностi, що передують нападам. Математичне моделювання патернiв нападiв
вимагає iдентифiкацiї специфiчних попереднiх ознак нападiв в EEG-записах. Краще
розумiння таких патернiв може сприяти кращому лiкуванню та покращенню якос-
тi життя людей, якi страждають на це захворювання. Дослiдження пропонує нову
математичну концепцiю, в якiй простi EEG-сигнали можна уявити як аналог прос-
тих чисел, проводячи аналогiю з теорiєю чисел та лiнiйною алгеброю. Ця концепцiя
ґрунтується на визначеннi найбiльшого спiльного дiльника (GCD) для квадратних
матриць EEG-сигналiв та теоремi, що доведе iснування нескiнченної кiлькостi еле-
ментарних EEG-сигналiв. Описаний пiдхiд перетворює данi EEG у квадратнi мат-
рицi, а застосування алгебраїчних методiв дозволяє систематично аналiзувати су-
домну активнiсть. Результати свiдчать, що ця концепцiя забезпечує структурований
метод обробки EEG-сигналiв, пропонуючи потенцiйнi застосування в аналiзi нападiв
та пов’язаних неврологiчних дослiдженнях.

Ключовi слова: електроенцефалографiчний (EEG) аналiз сигналiв; матрична фак-
торизацiя; найбiльший спiльний дiльник квадратних матриць; подiльнiсть квад-
ратних матриць.
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