
 
 

 

 
Buildings 2025, 15, 1342 https://doi.org/10.3390/buildings15081342 

Article 

Safety Risk Assessment of Deep Excavation for Metro Stations 
Using the Second Improved CRITIC Cloud Model 
Wen Zhou 1,2, Amizatulhani Abdullah 1,* and Xinyu Xu 2 

1 Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), 
Kuantan 26300, Malaysia 

2 Faculty of Civil and Architectural Engineering, Tongling University, Tongling 244061, China 
* Correspondence: pdz23009@adab.umpsa.edu.my 

Abstract: The safety risk evaluation of foundation pit excavations in metro stations in-
volves multiple factors with randomness and fuzziness. This study improves the Second 
Improved CRITIC-Cloud Model for more precise risk assessment. The approach inte-
grates coefficients of variation-based weighting, absolute correlation adjustments, and 
multidimensional cloud modeling with set pair theory. A dynamic depth-based normali-
zation technique reduces indicator biases. Using Hefei Metro Line 7 Phase I as a case 
study, we analyzed seven indicators across nine construction stages. The results show that 
the building settlement (A2) and horizontal displacement of the support structure (A7) 
have the greatest impact. Comparative analysis with entropy-based methods confirms the 
model’s effectiveness in capturing risk transitions and improving decision making. 

Keywords: deep excavation evaluation; multidimensional connection cloud; second  
improved CRITIC cloud model; dynamic weighting; set pair theory 
 

1. Introduction 
With rapid urbanization and economic growth, numerous infrastructure projects, 

such as high-rise buildings, rail transit, utility corridors, and carbon reduction initiatives, 
have been developed. However, due to limited surface space, deep excavation for subway 
stations has become a representative example of efficient urban space utilization [1]. These 
deep excavation projects are often situated in areas with heavy traffic, high-rise buildings, 
and complex underground pipelines, making soil deformation during construction a 
common issue. If not properly controlled, it can have severe impacts on the surrounding 
environment, or even cause collapse [2]. Therefore, it is crucial to use scientific methods 
to assess the risks associated with damage in deep excavation projects. 

On-site monitoring is effective in managing the excavation process and implement-
ing appropriate measures. However, deep excavation is a complex and high-risk activity 
that requires advanced prediction and preventive strategies. Currently, most scholars rely 
on expert judgment and traditional evaluation methods for risk assessment, including 
single-factor evaluation [3], analytic hierarchy process (AHP) [4], fuzzy comprehensive 
evaluation (FCE) [5,6], grey relational analysis [7], set pair analysis [8,9], and cloud model 
methods [10–12]. 

Each of these methods has its strengths and limitations. Single-factor evaluation only 
considers individual indicators, failing to capture the comprehensive influence of multi-
ple factors. The AHP, which integrates both qualitative and quantitative analysis, has 
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been employed for risk assessment in deep foundation pit construction. Representative 
evaluation indicators include the lateral displacement of bridge pile foundations, internal 
forces within the piles, and ground settlement around the pile foundations. Although the 
resulting data are relatively straightforward to interpret, the construction of the pairwise 
comparison matrix is highly dependent on expert judgment, rendering the evaluation re-
sults susceptible to subjectivity [13]. The FCE method transforms qualitative assessments 
into quantitative outcomes through fuzzy set theory. However, the weight determination 
process is relatively complex and may lead to information distortion or loss. In the 
Huizhan Center Station project of Zhengzhou Metro Line 1 Phase I, a combined AHP-FCE 
approach was adopted. By monitoring key indicators such as the inclination of the retain-
ing wall, axial forces of support, settlement of columns, external groundwater levels, and 
surface settlement, a safety evaluation model of the foundation pit system was established 
[14]. The Grey Relational Analysis (GRA) method effectively captures the trend relation-
ships among factors, yet the selection of evaluation indices may introduce errors. The set 
pair analysis (SPA) method is capable of handling both certainty and uncertainty within 
complex systems. Nevertheless, it may overlook critical indicators with low assigned 
weights. In the Qi’anfu project, the partial derivatives of five connection number compo-
nents were utilized to evaluate dynamic construction risks; however, the non-universality 
of the index system and insufficient engineering data posed limitations [15]. Cloud models 
combine statistical analysis with fuzzy mathematics, but traditional normal cloud models 
require indicators to conform to a normal distribution over an infinite range. In practice, 
indicators are often distributed over a finite range, making it difficult to accurately reflect 
their relationship with evaluation levels. 

Safety risk assessment indicators for deep excavation often exhibit fuzziness and ran-
domness within a specific range. For example, one side may have an undefined boundary 
even though structural damage has already occurred. Measured indicators exhibit char-
acteristics of both certainty and uncertainty, as well as transitions between levels. Addi-
tionally, foundation pit excavation is a three-dimensional dynamic process, making it 
challenging to determine the trend of changes. Traditional evaluation methods struggle 
to describe the conversion dynamics of measured indicators between different levels, 
leading to discrepancies between the evaluation results and real-world situations [16]. 

Recently, the CRITIC method [17] has been widely used in safety assessments of hy-
draulic engineering and excavation projects. The CRITIC-TOPSIS method has proven ef-
fective in analyzing risk factors and ranking their impact. The CRITIC method’s ad-
vantage lies in its consideration of inter-indicator correlations, allowing for a scientific 
ranking of risk factors based on their degree of influence. However, while the CRITIC 
method can handle complex information, it still has room for improvement when address-
ing high degrees of fuzziness and uncertainty [18–20]. The improved CRITIC method, 
which integrates fuzzy sets and cloud models, further enhances its ability to handle un-
certain information. However, this improved method also has limitations, such as corre-
lation issues between different evaluation indicators and dealing with incomplete data. 
Future research should focus on optimizing the CRITIC method to enhance its precision 
and stability in various complex engineering applications, providing a more reliable basis 
for safety assessments in construction [21]. 

The cloud model, as a tool for handling uncertainty, has demonstrated strong adapt-
ability and potential in project and emergency management. Its advantage lies in combin-
ing qualitative evaluation with quantitative analysis, effectively addressing fuzziness and 
randomness to enhance the scientific and accurate nature of risk assessments. For exam-
ple, the cloud model, combined with the improved Dempster–Shafer evidence theory, has 
been successfully applied in subway excavation collapse risk assessments, resolving high-
conflict evidence fusion issues and significantly improving the reliability and efficiency of 
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data integration [22]. Furthermore, an improved combination weighting method integrat-
ing AHP and entropy weighting with the cloud model has been used to comprehensively 
evaluate metro station emergency management capabilities. Its practical application has 
validated the model’s effectiveness in complex system evaluations [23]. 

However, the cloud model faces certain challenges in practice. First, its sensitivity to 
parameters makes it vulnerable to subjective bias during expert weighting, resulting in 
unstable outcomes. Second, the model’s high computational complexity in big data sce-
narios can hinder real-time risk warnings. To address these issues, the improved CRITIC-
Cloud Model was developed, introducing an objective weighting strategy to reduce sub-
jectivity and enhance the rationality of indicator weight distribution and model adapta-
bility. In subway construction risk assessments, the combination of the improved CRITIC 
method and the cloud model effectively identifies risk factors and proposes targeted coun-
termeasures, mitigating potential losses [24,25]. 

This study adopts the Second Improved CRITIC weighting method based on cloud 
theory and set pair analysis (SPA) to construct a multidimensional normal cloud evalua-
tion model, effectively overcoming the limitations mentioned above. Specifically, the co-
efficient of variation is introduced to replace the standard deviation in measuring indica-
tor variability, and 𝑟௞௜ is replaced with |𝑟௞௜|, when calculating the quantitative coefficient 
of indicator independence, ensuring that correlations with the same absolute value are 
treated equally. This refinement constitutes the improved CRITIC method [26]. Addition-
ally, the unique characteristics of foundation pit evaluation, which involve a three-dimen-
sional dynamic process where evaluation indicators exhibit nonlinear changes with in-
creasing excavation depth and time, are considered. Traditional methods often assign dis-
proportionately large weights to indicators with inherently larger values, such as compar-
ing ground settlement (2 mm) to supporting axial force (1000 kN). To address this, the 
ratio method (numerical normalization) is introduced, using the ratio of monitored values 
to either depth or limit values as evaluation indicators. This approach not only avoids the 
complexities of three-dimensional dynamic studies (time and depth), but also prevents 
weight imbalances caused by significantly large indicator values, resulting in the Second 
Improved CRITIC method. Set pair analysis, also known as connection mathematics, is an 
analytical method for handling uncertainty by integrating qualitative and quantitative as-
pects of decision making [27]. It allows for the analysis of systems influenced by random-
ness, fuzziness, and incompleteness, uncovering implicit knowledge and revealing inter-
nal patterns. The cloud model employs multidimensional cloud integration to account for 
the influence of each indicator, minimizing errors from low-weight factors and reducing 
computational complexity. By incorporating the set pair theory’s same–difference–oppo-
site principle, the model reflects the uncertainty transition between different evaluation 
levels, providing a quantitative description of the relationship between measured indica-
tors and evaluation levels. Finally, in determining the safety risk level during deep exca-
vation, both the maximum certainty method and the Kp method are considered. Three 
different approaches to risk level determination are proposed, providing a reliable frame-
work for future risk assessments of deep excavation processes. 

2. Engineering Case and Methodology 
2.1. Engineering Case 

This study uses the Phase 1 project of Hefei Metro Line 7 as an example (Anhui  
Province, China). The project starts at Soglin Road Station in the west and ends at Tianjin 
Road Station. The total length is approximately 18.85 km, with 15 underground stations. 
The eastern end well section station is 293.21 m in length, with an excavation depth of 
17.45 m. The retaining structure of the foundation pit uses bored piles, while the horizon-
tal structure employs both concrete and partial steel supports. The geological conditions 
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along the route contain expansive soils characterized by water absorption and shrinkage 
upon drying, which can impact the excavation process. Additionally, the surrounding 
area features many high-rise buildings, roads, and a dense and complex network of un-
derground pipelines, imposing strict requirements on the overall safety and stability of 
the excavation, as shown in Figure 1. 

 

Figure 1. Location map of Hefei Metro Line 7. 

The monitoring data obtained during the excavation of the eastern end well section 
were selected and organized [28], as shown in Table 1. Given the prevalence of expansive 
soils, the large scale of the project, tight construction schedule, numerous surrounding 
buildings, and complex underground pipeline networks, this study identifies seven rep-
resentative indicators: ground subsidence (a1), adjacent building settlement (a2), horizontal 
displacement at the pile top (a3), pile top settlement (a4), axial force of internal support (a5), 
pipeline settlement (a6), and horizontal displacement of the support structure (a7). These 
indicators form the basis for the safety risk evaluation system. Collectively, they reflect 
surface responses, structural deformations, and environmental impacts, and are capable 
of comprehensively characterizing major risk factors associated with metro station deep 
excavation. Similar sets of indicators have been widely adopted in previous studies on 
risk assessment for deep foundation pits and subway projects, where ground and building 
settlement, retaining structure displacement, pile response, and support forces are com-
monly used to capture structural behavior and construction-induced disturbances [29–
31]. Pipeline deformation—given its critical role in urban infrastructure—is often consid-
ered a key indicator for evaluating construction risk [32,33]. The selected indicators are, 
thus, consistent with prior research and provide a representative practical basis for data-
driven risk identification and dynamic assessment. 
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Table 1. Monitoring data for foundation pit safety risk evaluation indicators. 

Excavation 
Depth Hi (m) a1 (mm) a2 (mm) a3 (mm) a4 (mm) a5 (kN) a6 (mm) a7 (mm) 

1 1.14 0.81 0.5 0.69 1346.59 0.62 0.2 
3 2.42 0.96 1.6 0.95 1406.52 1.63 1.3 
5 3.28 1.01 2.4 1.74 1612.21 2.06 3.65 
7 4.67 1.73 3.2 2.19 1655.23 3.38 3.99 
9 5.83 1.89 4.1 3.12 1726.77 4.33 4.02 

11 6.66 1.99 4.6 4.05 1772.86 5.06 4.23 
13 7.03 2.24 4.9 5.21 1780.54 5.88 5.88 
15 7.65 2.56 5.3 5.62 1810.7 6.72 6.98 

17.45 8.56 3.59 5.9 6.07 1778.59 6.97 7.51 

Based on the characteristics of this case, the project’s monitoring and control require-
ments, and the safety standards for building foundation pits, a safety risk level evaluation 
system was established by referencing the existing safety risk assessment criteria for deep 
excavation projects, as shown in Table 2 [34,35]. The safety risk levels are divided into 
three categories: Level I indicates a hazardous state, Level II a warning state, and Level III 
a safe state. During the calculation of the evaluation indicators, the excavation depth is set 
at 17.45 m, and the design value of the internal support axial force N is 4500 kN. ai denotes 
the monitored data, 𝐴𝑖 represents the normalized value obtained using the ratio method, 
and Hi refers to the corresponding excavation depth. 

Table 2. Safety risk assessment criteria for foundation pits. 

Evaluation Index Discriminate Index I II III 
a1 A1 = a1/H1 >2 0.4~2 <0.4 
a2 A2 = a2/H2 >2 0.4~2 <0.4 
a3 A3 = a3/H3 >7 2~7 <2 
a4 A4 = a4/H4 >2 0.4~2 <0.4 
a5 A5 = a5/N >1 0.8~1 <0.8 
a6 A6 = a6/H6 >2 0.4~2 <0.4 
a7 A7 = a7/H7 >7 2~7 <2 

Considering the variation of deformation with depth, and to facilitate a comparison 
between foundation pit monitoring data and evaluation standards, Table 1 can be modi-
fied as follows using Equation (6). Note that, except for A5, which is in units of kN/kN, all 
other Ai indicators are in units of mm/m, as shown in Table 3. 

Table 3. Discriminate index values of foundation pit safety risk monitoring data. 

Excavation Depth 
Hi (m) 

A1 A2 A3 A4 A5 A6 A7 

1 1.14 0.81 0.50 0.69 0.30 0.62 0.20 
3 0.81 0.32 0.53 0.32 0.31 0.54 0.43 
5 0.66 0.20 0.48 0.35 0.36 0.41 0.73 
7 0.67 0.25 0.46 0.31 0.37 0.48 0.57 
9 0.65 0.21 0.46 0.35 0.38 0.48 0.45 

11 0.61 0.18 0.42 0.37 0.39 0.46 0.38 
13 0.54 0.17 0.38 0.40 0.40 0.45 0.45 
15 0.51 0.17 0.35 0.37 0.40 0.45 0.47 

17.45 0.49 0.21 0.34 0.35 0.40 0.40 0.43 



Buildings 2025, 15, 1342 6 of 23 
 

2.2. Cloud Model 

The cloud model, first proposed by Academician Li Deyi of the Chinese Academy of 
Engineering [36], is a model for uncertain transformation between qualitative concepts 
and quantitative descriptions. It has been successfully applied in fields such as natural 
language processing, data mining, decision analysis, intelligent control, and image pro-
cessing [37]. 

In deep excavation risk analysis, existing methods have incorporated multi-source 
monitoring data (such as support structure displacement and ground surface settlement) 
to construct a benchmark and identify cloud models for risk level determination, which 
have been validated in practical engineering applications [38]. In the assessment of water 
inrush risk in tunnels, studies have introduced the normal cloud model combined with 
integrated weighting methods to establish multi-index evaluation systems, using cloud 
droplets and membership degrees to quantify fuzzy and uncertain information [39]. In 
addition, some researchers have combined set pair analysis with seismic prediction data, 
employing rock mass physical parameters (including P-wave velocity, rock mass integ-
rity, and Young’s modulus) to construct connection degree models for predicting the sta-
bility of tunnel surrounding rock [27]. These findings indicate that such methods offer 
strong engineering applicability and practical value for risk identification under complex 
geological conditions. 

The multidimensional cloud was developed from the one-dimensional cloud model 
[40], overcoming the computational complexity encountered in traditional models when 
dealing with multiple evaluation indicators, categories, and samples. It has been widely 
applied in qualitative analysis in fields such as water resources and agriculture. However, 
when determining the digital characteristics of the multidimensional normal cloud model, 
subjectivity can introduce errors into the results [41]. 

Set pair analysis (SPA) is used to analyze the certainty and uncertainty of the system, 
based on the principles of similarity, difference, and opposition [42]. The core concept of 
SPA is to analyze and handle the relationships between elements in complex and uncer-
tain systems. The theory divides the relationship between two systems or elements into 
three aspects: similarity (common points), difference (distinct points), and opposition 
(contradictory points). These three components are interdependent, forming a compre-
hensive framework for relationship analysis. Its advantage lies in considering similarities, 
differences, and oppositions within systems simultaneously, enabling a more comprehen-
sive analysis of complex systems and avoiding the limitations of single-dimensional ap-
proaches. The flexibility of SPA in handling uncertainty and fuzziness makes it effective 
in dealing with real-world complexity and diversity. By emphasizing holistic thinking and 
systemic analysis, SPA provides better insight into the essential characteristics and devel-
opment trends of systems through a comprehensive examination of similarities, differ-
ences, and oppositions. It has been widely applied in decision analysis, risk management, 
and systems engineering. Overall, the similarity–difference–opposition principle provides 
a powerful tool for understanding and managing complex uncertain systems, offering 
both theoretical and practical advantages [43]. 

The 3En rule of the cloud model represents the evaluation domain through the “3En 
rule” of the normal cloud [44], which is suitable for situations involving large datasets and 
is derived from the algebraic operations of the cloud. Specifically, 99.7% of cloud droplets 
fall within the interval [Ex − 3En, Ex + 3En], meaning that, for a qualitative concept, the 
probability of cloud droplets falling outside this interval is negligible. Thus, data in the 
core and edge regions of the cloud exhibit high similarity, while data in the outer regions 
exhibit low similarity. The cloud model uses three numerical characteristics to express 
concepts in natural language, capturing the uncertainty and indeterminacy inherent in 
natural language descriptions, particularly randomness and fuzziness. It has been 
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successfully applied in various fields, such as industry, transportation, and medicine, to 
study issues related to intelligent control, decision making, and forecasting. However, the 
3En rule of the cloud model has certain limitations. For instance, when dealing with high 
levels of uncertainty and fuzziness, the accuracy of the cloud model may be affected. To 
address this limitation, researchers have proposed several improvements to the cloud 
model, such as multilevel cloud models and fuzzy cloud models. These improvements 
have enhanced the cloud model’s performance in handling uncertainty problems to some 
extent, leading to the construction of a multidimensional cloud evaluation model. 

Suppose the research object can be divided into m(j = 1, 2, 3……m) categories, and 
there are n(i = 1, 2, 3……n) grades of corresponding evaluation indicators. Let U(x1, x2, …, 
xm) be an m-dimensional quantitative domain expressed in precise numerical values, and 
C be a qualitative concept on U(x1, x2, …, xm). If X(x1, x2, …, xm) satisfies X(x1, x2, …, 
xm)~N(Ex(Ex1, Ex2, …, Exm) and (En′(En′1, En′2, …, En′m))2), where En′(En′1, En′2, …, 
En′m)~N(En(En1, En2, …, Enm), (He(He1, He2, …, Hem))2), and X(x1, x2, …, xm), have a certainty 
degree u(x(x1, x2, …, xm)) ∈ (0, 1), then the certainty degree of x to C is as follows. 𝑢൫𝑥ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥௠ ሻ൯ = 𝑒𝑥𝑝 ൤−∑ (௫ೕିா௫ೕ)మଶ(ா௡ೕᇲ)మ௠௝ୀଵ ൨  (1)

Based on the ICD principle of SPA and the 3En rule of the cloud model, it is defined 
that, when the measured sample falls within the i grade interval [𝐶௠௜௡ ௜ ,𝐶௠௔௫௜ ], the relation-
ship is identity, and the cloud connection degree u ∈ [0.5, 1]; when the sample falls within 
[𝐸𝑥௜ − 3𝐸𝑛௜,𝐶௠௜௡௜ ] and [𝐶௠௔௫௜ ,𝐸𝑥௜ + 3𝐸𝑛௜], the relationship is discrepancy; when the sam-
ple falls in other intervals, the relationship is contrary. Therefore, the cloud connection 
degree quantitatively reflects the identity and discrepancy relationships between levels 
and the transition trends between different levels. When the cloud connection degree is 
less than 0.5, the certainty of the evaluation index for the level is small, indicating a trend 
of transition to other levels. When the cloud connection degree approaches 0.5, the uncer-
tainty of the evaluation index for the level is high, indicating a higher tendency for mutual 
transition. When the cloud connection degree approaches 1, the certainty of the evaluation 
index for the level is relatively high. The calculation formula for the connection cloud of 
the i-level for the j-th evaluation indicator is as follows [45]. 𝐸𝑥௝௜ = 𝐶௜௠௔௫ ௝ + 𝐶௜௠௜௡ ௝2  (2)

𝐸𝑛௝௜ = 𝐶௜௠௔௫ ௝ − 𝐸𝑥௝௜√𝑙𝑛 4  (3)

𝐻𝑒௝௜ = 𝑘𝐸𝑛௝௜ (4)

𝑢௜(𝑥௜(𝑥ଵ௜ , 𝑥ଶ௜ , … , 𝑥௠௜ )) = 𝑒𝑥𝑝 ൤−∑ (௫ೕ೔ିா௫ೕ೔)మଶ(ா௡ೕ೔ ᇱ)మ௠௝ୀଵ ൨  (5)

Here, 𝑥௝௜~Normrnd (𝐸𝑥௝௜ , (𝐸𝑛௝௜ ′)2) and 𝐸𝑛௝௜′~Normrnd (𝐸𝑛௝௜ , (𝐻𝑒௝௜)2), where the expecta-
tion 𝐸𝑥௝௜ represents the central value of the domain interval; the entropy 𝐸𝑛௝௜ represents 
the measure of randomness of the indicator; the hyper-entropy He୨୧ represents the fuzzi-
ness of the indicator; and 𝐶௠௔௫௝௜ ,𝐶௠௜௡௝௜  are the maximum and minimum boundaries of the 
i-th grade standard, respectively. The k value reflects the linear relationship between 

i
jEn  and i

jHe , adjusting the model’s degree of fuzziness, with k set to 0.1 in this study. 

As seen in Table 2, the safety risk evaluation standards for deep excavations indicate 
that the evaluation indicators can approach infinity or zero. However, actual engineering 
conditions must be considered, as the pit may already show signs of damage or even col-
lapse. Therefore, it is assumed that the grading standards for positive indicators in Levels 
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I, II, and III are (−∞, Cmin), (Cmin, Cmax), and (Cmax, +∞), respectively. The left boundary for 
Level I can be set to 0~(0.3~0.5) Cmin, and the right boundary for Level III to (2~4) Cmax. Since 
this study focuses on a major safety evaluation for deep excavations, conservative values 
of 0.5 Cmin and 2 Cmax are adopted [46]. 

2.3. The Second Improved CRITIC Methods 

Common methods for determining indicator weights include the analytic hierarchy 
process (AHP), Delphi method, and Grey Relational Analysis [47], as well as fuzzy com-
prehensive evaluation [48] and the entropy method [49]. The first three are subjective 
weighting methods, which are easily influenced by expert experience and human factors. 
The resulting weights can vary depending on the experts involved, leading to potential 
deviations from actual conditions. The latter three are objective weighting methods, which 
rely on data for calculation without requiring expert input. However, the entropy method 
cannot reduce the dimensionality of indicators and may overlook their importance, pos-
sibly resulting in weight outcomes that do not align with expectations. 

In contrast, the CRITIC method considers both the variation in indicator data and 
their correlations. It considers not only the impact of indicator variability on weights, but 
also the conflicts (correlations) between indicators, making it superior to the entropy 
method, which only considers variability. 

The CRITIC method was proposed by Diakoulaki, Mavrotas, and Papayannakis in 
1995 and is primarily used to determine the weights of attributes. In this method, the at-
tributes are non-conflicting with each other, and their weights are determined based on 
the decision matrix [50]. However, the CRITIC method has two main issues: (1) Since the 
dimensions and magnitudes of safety risk indicators in deep excavation differ, using 
standard deviation to measure variability is unreasonable. (2) The correlation between 
excavation safety risk indicators can be both positive and negative. Positive and negative 
correlations with the same absolute value reflect an equal degree of conflict between indi-
cators [51]. Therefore, this method has been improved in three main aspects: First, the 
coefficient of variation is introduced to replace the standard deviation for measuring the 
variability of indicators. Second, 𝑟௞௜ is replaced with |𝑟௞௜| when calculating the quanti-
tative coefficient of indicator independence, leading to the improved CRITIC method. 
Third, the ratio method is introduced to preliminarily process dynamic monitoring indi-
cators, resulting in the Second Improved CRITIC method. 

2.4. Determination of Evaluation Indicator Weights 

This study uses the Second Improved CRITIC method to determine the weights of 
indicators in the dynamic deep excavation process, as shown in Figure 2. The main steps 
are as follows. 
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Figure 2. Flowchart of calculation steps based on the Second Improved CRITIC method. 

1. Ratio method 

Assuming that the dynamic evaluation of the foundation pit can be divided into 𝑚 
objects with 𝑛 corresponding evaluation indicators, each monitored value 𝑥௝௜ , is normal-
ized to 𝑥௝௜, as follows. 𝑥௝௜ = 𝑥௝௜ ,

ℎ௞  (i = 1, 2, 3 … .n, 𝑗 = 1, 2, 3…m, k = 1, 2, 3….) (6)

2. Construct the original evaluation matrix 

The score xji of the i-th evaluation indicator for the j-th evaluation object constitutes 
the original evaluation matrix X = (xji)m×n. 

3. Normalize the original matrix 

In this study, the Z-score method is used due to its simplicity, ease of implementation 
in software programming, and its ability to avoid errors caused by differences in dimen-
sions and magnitudes [52]. The original matrix indicator values are standardized using 
the following formula. 𝑥௝௜∗ = 𝑥௝௜ − 𝑥௜ି𝑠௜  (i = 1, 2, 3....n, 𝑗 = 1, 2, 3...m) (7)

𝑥௜ି = ଵ௠∑ 𝑥௝௜ ௠௝ୀଵ   (8)

𝑠௜ = ට ଵ௠ିଵ∑ (𝑥௝௜ -௠௝ୀଵ  𝑥௜ି)  (9)

Here, ix
−

 is the mean of the i-th indicator and si is the standard deviation of the i-th 
indicator. The standardized evaluation matrix is X* = (xji)m×n. 

4. Calculate the coefficient of variation for each indicator 
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𝛿௜ = 𝑠௜𝑥 ௜ (𝑖 = 1, 2, 3. . . .𝑛) (10)

Here, iδ  is the coefficient of variation for the i-th indicator. 

5. Calculate the correlation coefficients between indicators 

(1) The Pearson correlation coefficient, as a key factor in the Second Improved CRITIC 
method, is primarily used to measure the conflict between evaluation indicators. First, the 
standardized matrix x* obtained from step (2) is used to calculate the correlation coeffi-
cient matrix R = rkl)n×n. 𝑟௞௟ = ∑ (௫ೕೖ∗ ି௫ೖ∗ష )(௫ೕ೗∗ ି௫೗ೖ∗ష )೘ೕసభට∑ (௫ೕೖ∗ ି௫ೖ∗ష )మ(௫ೕ೗∗ ି௫೗ೖ∗ష )మ೘ೕసభ  (k = 1, 2, ...n; l = k + 1, k + 2, ..., n) (11)

Here, *
jkx , *

jlx  are the standardized scores of the k-th and l-th indicators for the j-

th evaluation object, respectively, and 
−
*
kx , 

−
*
lx  are their means. 

(2) When the monitoring data do not satisfy the assumptions of linearity or normality 
required by the Pearson correlation, or involve ordinal variables or significant outliers, 
the Spearman rank correlation coefficient serves as a more robust alternative [53]. By rank-
ing the data prior to calculation, Spearman’s method reduces sensitivity to extreme values 
and is well suited for analyzing non-normal or nonlinear relationships, particularly those 
involving ranked or ordinal indicators. Unlike the Pearson correlation, which relies on 
raw values, the Spearman correlation replaces them with their ranks. In the case of ties, 
where identical values occur, average ranks are assigned to maintain consistency [54]. 

Compared to the Pearson correlation coefficient formula, the Spearman rank correla-
tion coefficient replaces the original variables 𝑥௝௞∗  and 𝑥௝௟∗  with their corresponding ranks 𝑅𝑥௝௞∗  and 𝑅𝑥௝௟∗ . Specifically, the variables 𝑥௝௞∗  and 𝑥௝௟∗  are first sorted in ascending order, 
and the assigned ranks are denoted as 𝑅𝑥௝௞∗  and 𝑅𝑥௝௟∗ , respectively. The formula is given 
as follows. 𝑟௞௟ = ∑ (ோ௫ೕೖ∗ ିோ௫ೖ∗ష )(ோ௫ೕ೗∗ ିோ௫೗ೖ∗ష )೘ೕసభට∑ (ோ௫ೕೖ∗ ିோ௫ೖ∗ష )మ(ோ௫ೕ೗∗ ିோ௫೗ೖ∗ష )మ೘ೕసభ  (k = 1, 2, … n; l = k + 1, k + 2, …, n) (12)

Based on matrix R, the independence coefficient for each indicator is calculated as 
follows. Δ௜ = ∑ (1 − |𝑟௞௜|௡௞ୀଵ ) (i = 1, 2, … n) (13)

6. Calculate the weights of the evaluation indicators 

First, calculate the comprehensive coefficient for each indicator. 𝐶௜ = 𝛿௜Δ௜     (i = 1, 2, … n) (14)

Then, determine the weight coefficient. 𝜔௜ = ஼೔∑ ஼೔೙೔సభ        (i = 1, 2, … n) (15)

2.5. Determination of Safety Risk Levels for Excavation Process 

After establishing the multidimensional cloud model and determining the indicator 
weights using the Second Improved CRITIC method, the next step in completing the 
safety risk evaluation for the Hefei Metro deep foundation pit project is to determine the 
specific risk level category. This categorization is essential for implementing appropriate 
safety measures to ensure construction safety. 
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Common methods for determining the risk level include the Maximum Comprehen-
sive Certainty Method and the Kp Method. This study adopts a combination of both meth-
ods to obtain the certainty values of each level based on the multidimensional connection 
cloud model. 

1. When one level’s comprehensive certainty in the sample is significantly larger than 
the othersʹ (the maximum value is at least twice the second largest), the level is de-
termined using the Maximum Comprehensive Certainty Method. 

U = max{u1, u2, …, un} (16)

2. When the difference between the maximum and second-largest comprehensive cer-
tainty values is small (relatively close), the Kp Method is used. The Kp value is defined 
as 0–1 for Level I, 1–2 for Level II, and so on for the iii-th level [55]. 



 ×
= n

i
i

n

i
i

p

i
K

μ

μ
 (17)

3. When the comprehensive certainty values for each level fall between the two cases 
mentioned above—some values are close, while others differ significantly—the exca-
vation is considered a high-risk project. In this situation, both the Maximum Com-
prehensive Certainty Method and the Kp Method are used, and the smaller value is 
taken to indicate a more dangerous state Kp. 

U = min[max{u1, u2, …, un}, Kp] (18)

2.6. Multidimensional Connection Cloud Model 

Based on monitoring data and the weights derived from the second improved 
CRITIC method, the cloud connection degree corresponding to each risk level of the deep 
foundation pit is calculated. The specific cloud connection degree model is defined as fol-
lows: 

1. When xi∈ [𝐸𝑥௜ − 3𝐸𝑛௜, 𝐸𝑥௜ + 3𝐸𝑛௜], it is considered as belonging to be in the iden-
tity or difference relationship: 

𝑢௜[𝑥௜( xଵ௜ , 𝑥ଶ௜ , … , 𝑥௠௜  ) ] = 𝑒𝑥𝑝 ቎−෍𝜔௝ (𝑥௝௜ − 𝐸𝑥௝௜)ଶ2(𝐸𝑛௝௜′)ଶ௠
௝ୀଵ ቏ (19)

2. When other intervals: 

𝑢௜[𝑥௜( xଵ௜ , 𝑥ଶ௜ , … , 𝑥௠௜  ) ] = 𝑒𝑥𝑝෍𝜔௝௠
௝ୀଵ × (−4.5) (20)

3. Results 
Deep excavation projects are typically located in urban centers with dense buildings, 

complex underground utilities, and limited construction space. Inadequate support may 
lead to ground settlement, pipeline damage, structural deformation, or even collapse, pos-
ing serious threats to safety and property. Additionally, construction activities often cause 
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noise, dust, and traffic disruption, affecting daily life. Therefore, a reliable risk assessment 
method is essential to ensure safety while minimizing the construction period [56,57]. 

3.1. Generating Evaluation Factor Cloud Model 

Based on the multidimensional connection cloud model and the foundation pit safety 
risk evaluation standards, the cloud numerical characteristics (Ex, En, He) of the evalua-
tion indicators are calculated using Equations (2)~(5), as shown in Table 4. Then, the con-
nection cloud for indicator j corresponding to level i is constructed using Equation (1). The 
safety risk evaluation cloud model for the metro station deep excavation process was gen-
erated using Python 3.9, as illustrated in Figure 3. In each cloud chart, the peak represents 
the degree of certainty, while the width indicates the value range and concentration of 
each indicator. For example, in Figure 3b, the purple region shows a high certainty within 
the interval (2, 7), with a width of 5, indicating a broader distribution. In contrast, in Figure 
3c, the purple region exhibits high certainty in the narrower interval of (0.8, 1), with a 
width of 0.2, reflecting a more concentrated distribution. Since the numerical characteris-
tics of evaluation indicators A1, A2, A4, and A6 are the same, they share the same cloud 
diagram with A1 as a representative. Similarly, as A3 and A7 have the same characteristics, 
A3 is chosen as a representative. 

 
(a) 

(b) 
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(c) 

Figure 3. Safety risk evaluation cloud model for subway station deep foundation pit excavation. (a) 
A1 (ground subsidence). (b) A3 (horizontal displacement at the pile top). (c) A5 (axial force of internal 
support). 

Table 4. Numerical characteristics of multi-dimensional correlation cloud for each evaluation index. 

Grade Numerical Char-
acteristics 

A1 A2 A3 A4 A5 A6 A7 

I 
Ex 3.000 3.000 10.500 3.000 1.500 3.000 10.500 
En 0.849 0.849 2.973 0.849 0.425 0.849 2.973 
He 0.085 0.085 0.297 0.085 0.042 0.085 0.297 

II 
Ex 1.200 1.200 4.500 1.200 0.900 1.200 4.500 
En 0.679 0.679 2.123 0.679 0.085 0.679 2.123 
He 0.068 0.068 0.212 0.068 0.008 0.068 0.212 

III 
Ex 0.260 0.260 1.300 0.260 0.520 0.260 1.300 
En 0.119 0.119 0.595 0.119 0.238 0.119 0.595 
He 0.012 0.012 0.059 0.012 0.024 0.012 0.059 

In Figure 4, the horizontal axis represents the values of evaluation indicators Ai, while 
the vertical axis represents the corresponding certainty. Additionally, in real-world sub-
way deep excavation projects, environmental conditions (e.g., geology, precipitation, and 
climate), management level, and construction factors also play a role. 
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Figure 4. Pie chart of weights using the Second Improved CRITIC method. 

3.2. Calculating Evaluation Index Weights 

This study uses the Second Improved CRITIC method to determine the weights of 
each evaluation indicator. The specific steps are as follows: First, the monitoring data in 
Table 3 are standardized using Equations (6)~(9). Next, Equation (10) is applied to calcu-
late the coefficient of variation for each evaluation indicator. The Pearson correlation co-
efficients between the indicators are then calculated based on the standardized data, with 
the results shown in Table 5. Using these values, the independence coefficients of the eval-
uation indicators are determined using Equation (13). Finally, the comprehensive coeffi-
cients of each indicator are calculated using Equation (14), based on the variation and in-
dependence coefficients. Subsequently, the weights of the evaluation indicators A1, A2, A3, 
A4, A5, A6, and A7 are obtained using Equation (15) as follows: w = [0.09, 0.25, 0.123, 0.176, 
0.047, 0.050, 0.264], as shown in Figure 4. 

Table 5. Pearson correlation coefficients between safety evaluation indices for the Hefei Metro. 

Evaluation 
Index 

A1 A2 A3 A4 A5 A6 A7 

A1 1.000 0.946 0.759 0.771 −0.920 0.921 −0.528 
A2 0.946 1.000 0.514 0.901 −0.813 0.868 −0.661 
A3 0.759 0.514 1.000 0.205 −0.855 0.673 −0.014 
A4 0.771 0.901 0.205 1.000 −0.533 0.698 −0.705 
A5 −0.920 −0.813 −0.855 −0.533 1.000 −0.828 0.319 
A6 0.921 0.868 0.673 0.698 −0.828 1.000 −0.680 
A7 −0.528 −0.661 −0.014 −0.705 0.319 −0.680 1.000 

In comparison, the weight obtained from the Improved CRITIC method are w = 
[0.112, 0.288, 0.069, 0.132, 0.092, 0.058, 0.249], as illustrated in Figure 5. It is observed that 
the weight rankings remain mostly consistent before and after the second improvement. 
However, the weight of indicator A3 (pile top horizontal displacement) has significantly 
increased, indicating that the second improvement gives more consideration to horizontal 
displacement, as shown in Figure 6. 
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Figure 5. Pie chart of weights using the Improved CRITIC method. 

 

Figure 6. Comparison of weights before and after the second improvement of the CRITIC method. 

Comprehensive analysis reveals that building settlement (A2) and horizontal dis-
placement of the support structure (A7) have the most significant impact on the safety risk 
of deep excavation, with their weights exceeding 0.2. Pile top settlement (A4), horizontal 
displacement at the pile top (A3), and ground subsidence (A1) follow, with weights be-
tween 0.1 and 0.2 or close to 0.1. The axial force of internal support (A5) and pipeline set-
tlement (A6) have minimal influence, with weights below 0.05. 

Based on the weights obtained after the second improvement, it is evident that sur-
rounding buildings, ground subsidence, vertical displacement of piles, horizontal dis-
placement at the pile top, and horizontal displacement of the support structure are the 
key factors to monitor in deep excavation projects. In contrast, pipeline settlement and 
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axial force of internal support are generally controllable, provided that the design and 
construction are executed properly. 

From the safety risk evaluation standards in Table 2, the values for A1, A2, A4, and A6 
are identical, indicating a correlation between them. If the requirements for surrounding 
buildings (A2) and ground subsidence (A1) are met, the additional load on the pipelines 
(A6) buried in the soil will not increase significantly, resulting in minimal settlement. For 
the axial force of internal support (A5), safety reserves are already factored into the design, 
and, if construction follows the standard procedures, it usually remains within acceptable 
limits. 

Similarly, both the horizontal displacement at the pile top (A3) and settlement (A4) of 
the piles should be closely monitored, aligning with common monitoring indicators for 
foundation pits. Before the second improvement, A3 (horizontal displacement at the pile 
top) was largely ignored. This adjustment is a key advantage of the improved method, 
contributing positively to the safety assessment of the excavation. 

3.3. Foundation Pit Safety Risk Evaluation 

Using the Second Improved CRITIC-Cloud Model and its formulas, the comprehen-
sive certainty values for three foundation pit safety risk levels across nine excavation 
stages were obtained, as shown in Figure 7. The final evaluation grades at different depths 
were then determined and compared with the multidimensional dynamic evaluation 
method based on information entropy from the literature in Table 6. 

 

Figure 7. Certainty line graph for three risk levels at different excavation depths. 

Table 6. Safety evaluation results and comparison for the east end shaft section of Hefei Metro Line 1. 

Excavation Depth 
Hi (m) 

Correlation Cloud Association Maximum Member-
ship Principle 

Kp 
Value 

This Pa-
per 

Information Entropy Multi-Dimen-
sional Dynamic Evaluation μ(I) μ(II) μ(III) 

1 0.013 0.333 0.043 0.333 / II III 
3 0.014 0.191 0.340 0.340 2.599 III III 
5 0.013 0.223 0.465 0.465 2.645 III III 
7 0.012 0.260 0.414 0.414 2.586 III III 
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9 0.014 0.198 0.403 0.403 2.633 III III 
11 0.013 0.249 0.313 0.313 2.522 III III 
13 0.013 0.273 0.372 0.372 2.546 III III 
15 0.012 0.277 0.375 0.375 2.547 III III 

17.45 0.012 0.188 0.482 0.482 2.690 III III 

Taking the comprehensive cloud model for 1 m excavation depth as an example, the 
calculation process for determining the certainty of Grades I~III is as follows: First, Equa-
tions (2)~(5) were used to calculate the numerical characteristics, as listed in Table 4. Then, 
the monitoring data values were substituted into Equations (19) and (20), yielding µ(I) = 
0.013, µ(II) = 0.333, and µ(III) = 0.043. Since µ(II) is significantly larger than the others, the 
maximum membership principle indicates that the safety risk of the 1m excavation be-
longs to Grade II. This suggests that the initial stage of excavation is relatively dangerous, 
mainly because the redistribution of soil stress can easily cause settlement or displace-
ment. Additionally, the support system is usually not fully established at this early stage, 
leading to lower stability. Groundwater seepage may further loosen the soil, increasing 
the risk of collapse. The concentration of construction loads also heightens the likelihood 
of pit instability, emphasizing the need for the careful monitoring of support and drainage 
measures during the early excavation phase. 

As another example, when the excavation depth reaches 13 m, µ(I) = 0.013, µ(II) = 
0.273, and µ(III) = 0.372. According to both the Kp Method and the maximum comprehen-
sive certainty principle, this stage is classified as Grade III. However, since µ(II) = 0.273 is 
relatively high, there is a tendency for the evaluation level to shift towards Grade II, indi-
cating the need for focused data monitoring. The calculation process for other samples is 
similar. 

4. Discussion 
For the safety evaluation of the eastern end well section of the Hefei Metro Line 7 

Phase 1 project, the cloud model evaluation method based on the Second Improved 
CRITIC method yields results largely consistent with the multidimensional dynamic eval-
uation method based on information entropy theory. This indicates good safety during 
the excavation process. The only discrepancy arises when the excavation reaches 1 m: this 
study’s evaluation classifies it as a Grade II warning state, while the information entropy 
theory classifies it as a Grade III safe state. This difference merits further attention. 

Analyzing individual factors based on the monitoring data, it is found that A1, A2, 
and A4 are at Grade II, while A3, A5, A6, and A7 are at Grade III. The fact that more indica-
tors fall into Grade II, particularly the key indicators A1, A2, and A4, suggests that classi-
fying the 1 m excavation depth as a Grade II warning state is more reasonable. Therefore, 
the cloud model evaluation method based on the Second Improved CRITIC method is 
effective and appropriate for assessing the safety of the excavation process. 

In summary, the cloud model evaluation method using the Second Improved CRITIC 
method comprehensively considers multiple evaluation indicators. It employs the iden-
tity–contrary–discrepancy (ICD) principle of set pair analysis (SPA) to determine the nu-
merical characteristics of the multidimensional normal cloud, allowing the evaluation to 
better reflect the actual distribution of data. Compared to the traditional cloud model, the 
Second Improved CRITIC method is used for weighing, introducing a quantitative coeffi-
cient of the independence degree for each indicator by replacing 𝑟௞௜ with |𝑟௞௜| and stand-
ardizing the indicators. This approach better addresses errors caused by differences in 
dimensions and magnitudes among safety risk control indicators in the deep foundation 
pit excavation process. The model processes multiple incompatible indicators and fuzzy 
characteristics through a multidimensional correlative cloud, reducing the influence of 
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secondary factors and the number of indicators requiring comprehensive consideration. 
Finally, the evaluation method combines the Maximum Comprehensive Certainty 
Method and the Kp Method to propose a relatively more reasonable way to determine 
safety risk levels during the excavation process. This approach simplifies complex prob-
lems by accounting for the randomness and fuzziness of evaluation indicators while re-
flecting transitions between evaluation levels. The simplified evaluation process and con-
venient algorithm make the method more objective and reliable by incorporating both the 
differences and correlations between indicators during the weighting process. Thus, the 
evaluation results are more credible. 

The cloud-model-based risk evaluation framework developed in this study demon-
strates strong applicability and effectiveness when applied to metro station deep excava-
tion projects. Among the selected indicators, building settlement (A2) and horizontal dis-
placement of the supporting structure (A7) were found to be particularly sensitive to over-
all risk levels, which is consistent with findings from previous studies. For example, the 
displacement of the retaining structure has been widely recognized as a key indicator for 
assessing excavation stability and real-time risk levels [38,58], while building settlement 
has long been used in metro and urban underground projects to evaluate ground response 
and construction safety [30,59]. The present findings further validate the significance of 
these indicators in complex excavation scenarios. 

In practice, the deformation control of deep excavations typically focuses on the cou-
pled behavior between retaining wall movement and surface settlement. Such interactions 
can be effectively captured within multi-source data-driven risk evaluation models 
[29,39]. Moreover, under varying geological and loading conditions, structural responses 
often exhibit nonlinear and delayed characteristics. Therefore, methods capable of ad-
dressing uncertainty and fuzziness—such as the cloud model—are particularly suitable 
for these applications [38,60]. 

Beyond technical contributions, the proposed framework has potential implications 
for both engineering practice and regulatory policy. It can provide quantitative support 
for real-time warning and support system optimization and construction planning. Fur-
thermore, dynamic risk evaluation based on monitoring data can enhance regulation by 
enabling performance-based supervision. If integrated into digital construction platforms 
such as BIM and IoT systems, the method could support intelligent risk perception and 
automatic warning mechanisms, thereby improving safety management in complex ur-
ban excavation environments [61,62]. 

5. Conclusions 
The safety risk control of deep excavation using the Second Improved CRITIC-Cloud 

Model is of great significance. Through the dynamic excavation process evaluation of the 
eastern end well section of Hefei Metro Line 7 Phase I, the results demonstrate that the 
proposed model is both effective and feasible for assessing the safety level of foundation 
excavation. It can quantitatively characterize the randomness and fuzziness of safety eval-
uation indicators, while also capturing the interrelationships and synergistic effects 
among them. Compared with the traditional cloud model, the introduction of the im-
proved CRITIC method enables the weight calculation to more fully reflect the contrast 
intensity and internal conflict among indicators, thus avoiding subjective weighting. By 
incorporating the concept of set pair analysis, the model’s adaptability to fuzziness and 
uncertainty is enhanced, effectively addressing the issue of the unclear classification of 
boundary samples in traditional cloud models. In terms of result expression, the improved 
model demonstrates greater stability and discrimination, contributing to more accurate 
risk level classification. The multidimensional connection cloud model not only compre-
hensively considers multiple evaluation indicators, but also effectively captures the 
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interrelationships among them, making it particularly suitable for evaluation and deci-
sion-making scenarios involving multi-factor coupling and complex information. It pro-
vides a reliable method for assessing the dynamic excavation process of foundation pits 
and the safety level based on multiple indicators. The specific findings are as follows. 

1. This study employs the Second Improved CRITIC method, which comprehensively 
measures the objective weights of indicators based on their comparative intensity 
and conflict. The weights of the evaluation indicators A1, A2, A3, A4, A5, A6, A7, were 
calculated as w = [0.09, 0.25, 0.123, 0.176, 0.047,0.050, 0.264]. It was found that building 
settlement (A2) and horizontal displacement of the support structure (A7) have the 
greatest impact on excavation safety risk, with weights exceeding 0.2. Pile top settle-
ment (A4), pile top horizontal displacement (A3), and ground settlement (A1) follow, 
with weights between 0.1 and 0.2 or close to 0.1. In contrast, internal support axial 
force (A5) and pipeline settlement (A6) have weights below 0.05, making this method 
more reasonable and suitable for foundation pit evaluation. 

2. Based on the Second Improved CRITIC-Cloud Model, a multidimensional connec-
tion cloud model was constructed that reflects the actual distribution and interaction 
of each evaluation indicator during the excavation process. For the eastern end well 
section of Hefei Metro Line 7 Phase 1, the evaluation results at all excavation depths 
are found to be classified as Grade III, except for a depth of 1m, which is Grade II, 
respectively. This outcome is more reasonable when compared to other methods, 
confirming the model’s effectiveness and feasibility in evaluating excavation safety 
risks. 

3. The proposed evaluation method quantitatively characterizes the randomness and 
fuzziness of evaluation indicators and reflects the interconnection and combined ef-
fect among indicators. It overcomes the limitations of traditional multidimensional 
connection models, providing a scientific basis for the accurate risk assessment of 
dynamic deep excavations and playing a crucial role in preventing risk events. 

4. Although a real-time early warning system was not directly developed in this study, 
the proposed methodology incorporates several design considerations aimed at im-
proving real-time applicability. Firstly, the Second Improved CRITIC method en-
hances computational efficiency by streamlining weight calculation through refined 
difference and conflict measures, thereby eliminating the need for complex matrix 
operations and allowing for incremental updates as new data become available. Sec-
ondly, the use of a numerical feature-based cloud model enables rapid and training-
free risk classification, relying solely on simple numerical matching rather than com-
putationally intensive models such as neural networks or Bayesian classifiers. Lastly, 
while validation was conducted using static monitoring data, the proposed frame-
work is algorithmically compatible with real-time data environments, providing a 
foundation for integration into future engineering monitoring platforms such as 
those based on IoT technologies. 

5. Although the Second Improved CRITIC-Cloud Model demonstrates strong compre-
hensive evaluation capabilities in terms of objective weight assignment and uncer-
tainty representation, it still presents certain limitations. On the one hand, the method 
heavily relies on the quality of raw data and is susceptible to the influence of outliers; 
on the other hand, its computational complexity and model stability may be chal-
lenged in high-dimensional and complex systems. Future research may consider in-
tegrating dimensionality reduction techniques and intelligent fusion mechanisms to 
enhance the robustness and generalization ability of the model, thereby improving 
its adaptability to dynamic and evolving evaluation scenarios. 
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