A SIMPLIFICATION OF READING FLUID PROPERTIES USING MICROSOFT EXCEL

MOHD ASRI BIN IBRAHIM

Report submitted in partial fulfillment of the requirements for the award of Bachelor of Mechanical Engineering

> Faculty of Mechanical Engineering UNIVERSITI MALAYSIA PAHANG

> > JUNE 2012

UNIVERSITI MALAYSIA PAHANG FACULTY OF MECHANICAL ENGINEERING

I certify that the project entitled "A Simplification of Reading Fluid Properties Using *Microsoft Excel*" is written by *Mohd Asri bin Ibrahim*. I have examined the final copy of this project and in my opinion; it is fully adequate in terms of scope and quality for the award of the degree of Bachelor of Engineering. I herewith recommend that it be accepted in partial fulfillment of the requirements for the degree of Bachelor of Mechanical Engineering.

Mr. Muhammad Hatifi bin Mansor Examiner

Signature

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this project report and in my opinion this project is adequate in terms of scope and quality for the award of the Degree of Bachelor of Mechanical Engineering.

Signature:Name of Supervisor:MR. IDRIS BIN MAT SAHATPosition:LECTURERDate:21 JUNE 2012

STUDENT'S DECLARATION

I hereby declare that the work in this report is my own except for quotations and summaries which have been duly acknowledged. The project has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature:Name:MOHD ASRI BIN IBRAHIMID Number:MA09006Date:21 JUNE 2012

ACKNOWLEDGEMENTS

I would like to appreciation to all those who gave me the assistance to complete this project especially to my supervisor Mr. Idris bin Mat Sahat who help, support, advise and encouragement me in doing this project and writing this report. He had given me the entire guide that I need in order to complete my project and understand the purpose of this project.

My sincere thanks go to everybody who gives their assistance in the execution of this project especially to all my friends. I also would like to appreciation to Faculty of Mechanical Engineering that involve assisting me to complete my project.

I acknowledge my sincere gratitude indebtedness to my parents for their support, love, care, patience, understanding and sacrifice throughout my life. I also would like acknowledge to my family, who support and encouraged me during study in Universiti Malaysia Pahang.

ABSTRACT

This project deals with simplification reading fluid properties using Microsoft Excel. The objective of this project to develop an excel file to easily obtain fluid properties without manual reading from table. The types of fluid are saturated water, saturated refrigerant-134a, saturated ammonia, saturated propane and air at 1 atm pressure while the fluid properties are density, dynamic viscosity, kinematic viscosity and friction The formula in Microsoft Excel, INDEX, MATCH, INDIRECT, IF, AND, factor. ISBLANK, NA and DROPDDOWLIST are used to build a combine formula that can obtain fluid properties from property tables. The combined formula was constructed step by step starting the listed value, followed by listed and unlisted value for SI units only and then the listed and unlisted value for SI units and English units in the property tables. Finally, one more combined formula was constructed to obtain friction factor based on Colebrook equation by using bisection method to solve that equation. Validation results were conducted where compared the results from manual reading and excel file. The error from both results was observed where all the error results are below 5 % and can be accepted. The different results from manual reading and excel file only occur for result in value decimal places. It can be comprehend that, to obtain fluid properties from property tables can be using Microsoft Excel by constructed a excel file. The developed excel file for future work is highly recommended for adding more properties, more type of fluid and using Visual Basic for Applications for advance editing.

ABSTRAK

Projek ini berkaitan meringkaskan cara membaca sifat-sifat bendalir menggunakan Microsoft Excel. Objektif projek ini untuk membangunkan satu fail Microsoft Excel untuk memudahkan mendapat sifat-sifat bendalir tanpa membaca secara manual dari jadual. Jenis-jenis bendalir adalah air tepu, bahan pendingin-134a tepu, ammonia tepu, propana tepu dan udara pada tekanan 1 atm manakala sifat-sifat bendalir adalah ketumpatan, kelikatan dinamik, kelikatan kinematik dan faktor geseran. Formula dalam Microsoft Excel, INDEX, MATCH, INDIRECT, IF, AND, ISBLANK, NA dan DROPDDOWLIST digunakan untuk membina satu gabungan fomula untuk mendapatkan sifat-sifat bendalir dari jadual sifat-sifat bendalir. Gabungan fomula dibina peringkat demi peringkat dimulakan dengan nilai tersenarai, diikuti dengan nilai tersenarai dan tidak tersenarai untuk SI unit dan kemudiannya nilai tersenarai dan nilai tidak tersenarai untuk SI unit dan English unit dalam jadual sifat-sifat bendalir. Akhir sekali, satu lagi gabungan formula dibina untuk mendapatkan faktor geseran berdasarkan persamaan Colebrook dengan menggunakan kaedah pembahagian dua sama bagi menyelesaikan persamaan itu. Pengesahan keputusan telah dijalankan di mana membandingkan keputusan dari bacaan secara manual dan keputusan dari fail excel. Ralat dari kedua-dua keputusan telah diperhatikan di mana semua ralat adalah di bawah 5 % dan boleh diterima. Keputusan yang berbeza dari bacaan secara manual dan fail excel hanya berlaku pada nila tempat perpuluhan. Ia boleh difahami bahawa, untuk mendapatkan sifat-sifat bendalir dari jadual sifat-sifat bendalir boleh menggunakan Microsoft Excel dengan membina satu fail excel. Bagi penambahbaikkan projek ini pada masa hadapan, disyorkan menambah lebih banyak sifat-sifat bendalir, jenis-jenis bendalir dan menggunakan Visual Basic for Applications (VBA) untuk penambaikkan yang lebih baik.

TABLE OF CONTENTS

		Page					
APPR	OVAL DOCUMENT	ii					
SUPERVISOR'S DECLARATION							
STUDENT'S DECLARATION							
ACKNOWLEDGEMENTS							
ABST	RACT	vi					
ABST	RAK	vii					
TABL	E OF CONTENTS	viii					
LIST	OF TABLES	xi					
LIST	OF FIGURES	xiv					
LIST	OF SYMBOLS	xvii					
LIST	OF ABBREVIATIONS	xviii					
CHAP	TER 1 INTRODUCTION	1					
1.1	Project Background	1					
1.2	Problem Statement	1					
1.3	Objective	2					
1.4	Scopes of The Project	2					
CHAP	TER 2 LITERATURE REVIEW	3					
2.1	Introduction	3					
2.2	History of Property Tables	3					
2.3	History of Moody Chart	6					
2.4	History of Microsoft Excel	7					
2.5	Existing Software or Calculator for fluid property Tables and Moody Chart	10					

CHAPTER 3 METHODOLOGY

3.1	Introd	16	
3.2	Flow	17	
3.3	Form	ula Construction	19
	3.3.1	Formula in Microsoft Excel	19
3.4	How	the Formula Work	19
	3.4.1	Formula for Exact Value in Data Sheet for SI Units Only	20
	3.4.2	Unlisted Value for SI Units Only	23
	3.4.3	Formula to Obtain Value for Listed and Unlisted Value for SI Units and English Units	28
	3.4.4	Graph for Fluid Properties Result	33
2.5	5.4.5	Formula to Obtain Darcy Friction Factor	33
3.5	Interfa	ace Excel File	39
	3.5.1	Interface of Fluid Properties and Friction Eactor	40
	3.5.2	Interface of Fluid Properties for Graph	43
СНАРТЕ	R 4	RESULTS AND DISCUSSION	46
4.1	User I	Manual	46
4.2	Resul	ts	53
	4.2.1 4.2.2 4.2.3	Result for Listed Value from Property Tables Result for Unlisted Value from Property Tables Result for Darcy Friction Factor	53 59 64
4.3	Valida	ation of Excel File	66
	4.3.1 4.3.2 4.3.3	Manual Reading from Property Tables Manual Interpolation Calculation Manual Reading Darcy Friction Factor from Moody Chart	66 70 76
СНАРТЕ	R 5	CONCLUSION	80
5.1		90	
	Concl	usion	80

REFERENCES	82	
APPENDICES		83
A	Gantt Chart for Final Year Project 1	83
В	Gantt Chart for Final Year Project 2	84

LIST OF TABLES

Table No.	Title	Page
2.1	The various versions of Microsoft Excel	9
3.1	Formula in Microsoft Excel	19
3.2	Steps of formula evaluation for water at 5°C (liquid density)	21
3.3	Steps of formula evaluation for water at 5.5°C (liquid density)	22
3.4	Description of the symbol	24
3.5	Description of the formula	25
3.6	Steps of formula evaluation for ammonia at 7.5°C (liquid density)	26
3.7	Steps of formula evaluation for ammonia at 7.5°F (liquid density)	30
3.8	Steps of formula evaluation to obtain Darcy friction factor from friction factor worksheet	36
3.9	Steps of formula evaluation to calculate Colebrook equation	38
3.10	Steps of formula evaluation to find answer in the bisection method	39
3.11	Description of fluid properties part interface	40
3.12	Description of friction factor part interface	42
3.13	Description of fluid properties for graph interface	44
4.1	Result for saturated water	54
4.2	Result for saturated refrigerant-134a	54
4.3	Result for saturated ammonia	55
4.4	Result for saturated propane	55
4.5	Result for air at 1 atm pressure	56
4.6	Result for saturated water	56

4.7	Result for saturated refrigerant-134a	57
4.8	Result for saturated ammonia	57
4.9	Result for saturated propane	58
4.10	Result for air at 1 atm pressure	58
4.11	Result for saturated water	59
4.12	Result for saturated refrigerant-134a	60
4.13	Result for saturated ammonia	60
4.14	Result for saturated propane	61
4.15	Result for air at 1 atm pressure	61
4.16	Result for saturated water	62
4.17	Result for saturated refrigerant-134a	62
4.18	Result for saturated ammonia	63
4.19	Result for saturated propane	63
4.20	Result for air at 1 atm pressure	64
4.21	Result for Darcy friction factor using method 1	65
4.22	Result for Darcy friction factor using method 2	65
4.23	Result from manual reading and excel file for temperature equal to 100°C and type of fluid is saturated water	66
4.24	Result from manual reading and excel file for temperature equal to 80°C and type of fluid is saturated refrigerant-134a	67
4.25	Result from manual reading and excel file for temperature equal to 5°C and type of fluid is saturated ammonia	67
4.26	Result from manual reading and excel file for temperature equal to 600°F and type of fluid is saturated water	68
4.27	Result from manual reading and excel file for temperature equal to -120°F and type of fluid is saturated propane	68
4.28	Result from manual reading and excel file for temperature equal to 200°F and type of fluid is air at 1 atm pressure	69

4.29	Error for manual reading and excel file result	70
4.30	Result from manual interpolation calculation and excel file for temperature equal to 73°C and type of fluid saturated water	72
4.31	Result from manual interpolation calculation and excel file for temperature equal to -29°C and type of fluid saturated refrigerant-134a	72
4.32	Result from manual interpolation calculation and excel file for temperature equal to 52°C and type of fluid saturated ammonia	73
4.33	Result from manual interpolation calculation and excel file for temperature equal to 297°F and type of fluid saturated water	73
4.34	Result from manual interpolation calculation and excel file for temperature equal to 4°F and type of fluid saturated propane	74
4.35	Result from manual interpolation calculation and excel file for temperature equal to 488°F and type of fluid saturated air at 1 atm	74
4.36	Error for manual interpolation calculation and excel file result	75
4.37	Result for Darcy friction factor using method 1	76
4.38	Result for Darcy friction factor using method 2	77
4.39	Error for manual reading and excel file result	79

LIST OF FIGURES

Figure No.	Title	Page
2.1	Sample of fluid properties tables	5
2.2	Moody Chart	7
2.3	View of Microsoft Excel 2007	8
2.4	View of fluid properties calculator	10
2.5	View of fluid property calculator	11
2.6	View of steam97 v4.0 demo software	12
2.7	View of StmProps	13
2.8	View of moody chart calculator	14
2.9	View of Darcy friction factor calculator	14
3.1	Process flow chart final year project 1	17
3.2	Process flow chart final year project 2	18
3.3	The result for listed value for temperature equal to 5°C and type of fluid is water	20
3.4	The result for unlisted value for temperature equal to 5.5°C and type of fluid is water	20
3.5	Data of fluid properties for water	22
3.6	Linear interpolation graph	23
3.7	The result for unlisted value for temperature equal to 7.5°C and type of fluid is ammonia	25
3.8	Data of ammonia fluid properties	27
3.9	Interpolation result for temperature equal to 7.5°C and type of fluid is ammonia	30
3.10	Data of ammonia fluid properties for SI units and English units	32
3.11	Data of ammonia fluid properties for English units	32

3.12	Result for fluid properties	34
3.13	Graph density versus temperature	34
3.14	Bisection method to find Darcy friction factor	35
3.15	Result for Darcy friction factor by using method 1	36
3.16	Default fluid properties part interface	40
3.17	Data sheet of water interface	41
3.18	Default friction factor part interface	41
3.19	Friction factor interface	43
3.20	Default fluid properties interface for graph	43
3.21	Graph interface	44
4.1	Interface for fluid properties	46
4.2	Interface for friction factor	47
4.3	Choose type of unit	47
4.4	Choose type of fluid	47
4.5	Key in temperature value	48
4.6	Reference table A and B	48
4.7	The results appear	48
4.8	Choose method 1 or method 2	49
4.9	Key in roughness and diameter value	49
4.10	Table C	50
4.11	Key in Reynolds number	50
4.12	Key in velocity value	50
4.13	Key in tolerance	51
4.14	Result	51
4.15	Interface for "INTERFACE(Graph)"	51

4.16	Choose type of unit	52
4.17	Choose type of fluid	52
4.18	Key in temperature value	52
4.19	Interface for graph	53
4.20	Properties of saturated water	71
4.21	Manual reading from Moody Chart	77
4.22	Manual reading from Moody Chart	78

LIST OF SYMBOLS

f	Friction factor
$f_{\rm D}$	Darcy friction factor
$f_{ m F}$	Fanning friction factor
ε	Roughness
D	Diameter
Re	Reynolds number
ρ	Density
μ	Dynamic viscosity
V	Kinematic viscosity
Т	Temperature
V	Velocity

LIST OF ABBREVIATIONS

ASME	American Society of Mechanical Engineers
IST	International Skeleton Tables
ICPS	International Conference on the Properties of Steam
IFC	International Formulating Committee
IAPS	International Association for the Properties of Steam
IAPWS	International Association for the Properties of Water and Steam
SI	International System of Units
atm	Atmosphere
VBA	Visual Basic for Applications

CHAPTER 1

INTRODUCTION

1.1 PROJECT BACKGROUND

Fluid property tables are important to be referred by engineer to obtain the properties value to solve engineering problems. This project is simplification reading fluid properties without manually reading from table for some of the properties in the fluid property tables. Easier read the property table will shorten the time to solve problems.

Microsoft Excel is the software to simplification reading property tables. An excel file will construct where properties of fluid can be easily read simply by inserting the value of temperature in a certain cell and various fluid properties will automatically appear on any designated cells. The formulas in excel such as Match, Index, Indirect, If, And, Isblank, Na and Dropdownlist and other will use to obtain the properties.

1.2 PROBLEM STATEMENT

For manual reading property tables, it is quite difficult when interpolation is required if the value of the parameter is unlisted in the table and the time is very short. Interpolation calculation for unlisted value in property tables will cause the longer time taken to obtain that value in order to solve engineering task and problem. For Moody Chart, it is difficult to read manually because the Moody Chart is complicated that will increase the possibility to read the wrong value.

1.3 OBJECTIVE

The objective of this project is:

i. To develop an excel file to easily obtain fluid properties without manual reading from table

1.4 SCOPE OF THE PROJECT

The scopes of this project are limited to:

- i. Fluid will be used are water, ammonia, refrigerant 134a, propane and air
- ii. Fluid properties such as density, dynamic viscosity, kinematic viscosity and friction factor
- iii. Based on table of fluid properties (McGraw Hill, 2006, Cengel Y.A and Cimbala J.M)
- iv. Use Microsoft Excel 2007 software
- v. Validation of results

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

This chapter discuss about literature review of the history of property tables, Moody Chart and Microsoft excel. Besides that, this chapter also discusses the existing software or calculator to obtain value from property tables and friction factor.

2.2 HISTORY OF PROPERTY TABLES

Property tables are important tool in the engineering field. Thermodynamics property tables and Fluid Mechanics property tables are the common use in mechanical engineering. The history of fluid property table is difficult to find compare to the history of steam table. The main used of property tables is for the industrial application and to solve the engineering problems especially in education.

In the history of steam table, James Watt in 1763 probably constructed the first steam table where he constructed a curve relating temperature and saturation pressure of water. There are four major steam tables were available in the middle of 1920s by Mark and Davis, by Goodenough, by Moiler and by Callendar where each table constructed density of steam as a function of temperature and pressure. Those four major steam tables had difference in published data and became a problem in the industry equipment performance. (Sifner, 2004)

Thus, to counter this problem, American Society of Mechanical Engineers (ASME) had a program of research that addresses the problem properties of steam in 1921. The program joined by Professor Callendar and followed by the German Research Authority. In the first World Power Conference, the country Czechoslovakia immediately invited after knowing Czechoslovakia had the research of properties of steam. (Sifner, 2004)

In 1929, the First International Steam-Table Conference was held in London, the second conference in Berlin in 1930 and in 1934, the third conference was held in Washington. In 1934, after many discussions and debates, engineers and scientist agreed the first International Skeleton Tables, IST'34 where this table only for limited range of temperature and pressure. This table become an important tool for engineer and famous as steam tables. (Sifner, 2004)

World war two was interrupted the international cooperation about 20 years. The steam tables needed to be extended due to increasing pressure and temperature of the power generating equipment. The fourth conference was renamed to the International Conference on the Properties of Steam (ICPS) was held in Philadelphia in 1954 while fifth conference in London in 1956 and sixth conference in New York in 1963. These conferences were discussed and developed of new standards for water and steam properties. (Sifner, 2004)

The seventh conference ICPS was held in Tokyo adopted two final versions namely The 1967 IFC Formulation for Industrial Use for simpler equations but sufficient accuracy and The 1968 IFC Formulation for Scientific and General Use for accurate description of properties. International Association for the Properties of Steam (IAPS) was established at the seventh conference and now known as International Association for the Properties of Water and Steam (IAPWS). (Tremaine et al., 2008)

The eighth conference was held in Giens, France in 1974 to construct new tables of viscosity and thermal conductivity. In that conference, it also discussed to prepare the surface tension formulation. Ninth conference was held in Munich in 1979 to discuss new tables and new thermodynamic formulations. In 1984, the tenth conference was held in Moscow adopted a new thermodynamic standard for general and scientific use. (Sifner, 2004)

Eleventh conference was held in Prague, Czechoslovakia in 1989 while the twelfth conference was held in Orlando, USA in 1994. In 1995, the new Formulation for Industrial Use known as IAPWS-95 was adopted to replace previous version while in 1997 the new Formulation for Scientific and General Use was adopted known as IAPWS-IFC97. The thirteenth conference was held in Toronto, Canada in 1999, fourteenth conference was held in Kyoto in 2004 and fifteenth conference was held in Berlin in 2008. (Tremaine et al., 2008)

Proper	ties of satura	ted wa	ater											
Tomp	Saturation Pressure	[Density , kg/m²	Enthalpy of Vaporization	Specif Hea c _p , J/kj	ic t g · K	Thermal Conductivity K k, W/m · k		Dynamic Viscosity v. ke/m · s		Prandti Number Pr		Volume Expansion Coefficient β, 1/Κ	
7, 9C	P _{sat} , kPa	Liquio	i Vapor	h _e , kJ/kg	Liquid	Vapor	Liquid	Vapor	Liquid	\\apor	Liquid	Vapor	Liquid	
0.01	0.6113	999.8	0.0048	2501	4217	1854	0.561	0.0171	1.792×10^{-3}	0.922× 10⊸	13.5	1.00	-0.068×10^{-1}	
5	0.8721	999.9	0.0068	2490	4205	1857	0.571	0.0173	1.519×10^{-3}	0.934 × 10 ⁻⁶	11.2	1.00	0.015×10^{-1}	
10	1.2276	999.7	0.0094	2478	4194	1862	0.580	0.0176	1.307×10^{-3}	0.946 × 10-6	9.45	1.00	0.733×10^{-1}	
15	1.7051	999.1	0.0128	2466	4185	1863	0.589	0.0179	1.138×10^{-3}	0.959×10⊸	8.09	1.00	0.138 × 10~	
20	2.339	998.0	0.0173	2454	4182	1867	0.598	0.0182	1.002×10^{-3}	0.973×10⊸	7.01	1.00	0.195 × 10~	
25	3.169	997.0	0.0231	2442	4180	1870	0.607	0.0186	0.891×10^{-3}	0.987×10⊸	6.14	1.00	0.247 × 10 ⁻	
30	4.246	996.0	0.0304	2431	4178	1875	0.615	0.0189	0.798×10^{-3}	1.001×10^{-6}	5.42	1.00	0.294×10^{-1}	
35	5.628	994.0	0.0397	2419	4178	1880	0.623	0.0192	0.720×10^{-3}	1.016× 10⊸	4.83	1.00	0.337 × 10~	
40	7.384	992.1	0.0512	2407	4179	1885	0.631	0.0196	0.653×10^{-s}	1.031 × 10⊸	4.32	1.00	0.377×10^{-1}	
45	9.593	990.1	0.0655	2395	4180	1892	0.637	0.0200	0.596×10^{-3}	1.046 × 10-6	3.91	1.00	0.415×10^{-1}	
50	12.35	988.1	0.0831	2383	4181	1900	0.644	0.0204	0.547×10^{-3}	1.062× 10⊸	3.55	1.00	0.451 × 10~	
55	15.76	985.2	0.1045	2371	4183	1908	0.649	0.0208	0.504×10^{-3}	1.077× 10⊸	3.25	1.00	0.484×10^{-1}	
60	19.94	983.3	0.1304	2359	4185	1916	0.654	0.0212	0.467×10^{-3}	1.093× 10⊸	2.99	1.00	0.517×10^{-1}	
65	25.03	980.4	0.1614	2346	4187	1926	0.659	0.0216	0.433×10^{-3}	1.110 × 10-6	2.75	1.00	0.548 × 10	
70	31.19	977.5	0.1983	2334	4190	1936	0.663	0.0221	0.404×10^{-3}	1.126 × 10 ⁻⁶	2.55	1.00	0.578×10^{-1}	
75	38.58	974.7	0.2421	2321	4193	1948	0.667	0.0225	0.378×10^{-3}	1.142× 10⊸	2.38	1.00	0.607 × 10~	
80	47.39	971.8	0.2935	2309	4197	1962	0.670	0.0230	0.355×10^{-3}	1.159×10⊸	2.22	1.00	0.653 × 10-	
85	57.83	968.1	0.3536	2296	4201	1977	0.673	0.0235	0.333×10^{-3}	1.176 × 10 €	2.08	1.00	0.670 × 10 ^{-,}	
90	70.14	965.3	0.4235	2283	4206	1993	0.675	0.0240	0.315×10^{-3}	1.193×10-6	1.96	1.00	0.702 × 10 ⁻	
95	84.55	961.5	0.5045	2270	4212	2010	0.677	0.0246	0.297 × 10 ⁻³	1.210 × 10 ≤	1.85	1.00	0.716 × 10-	
100	101.33	957.9	0.5978	2257	4217	2029	0.679	0.0251	0.282 × 10 ⁻³	1.227×10⊸	1.75	1.00	0.750 × 10-	
110	143.27	950.6	0.8263	2230	4229	2071	0.682	0.0262	0.255×10^{-3}	1.261 × 10-6	1.58	1.00	0.798 × 10 ⁻	
120	198.53	943.4	1.121	2203	4244	2120	0.683	0.0275	0.232×10^{-3}	1.296 × 10 ⁻⁶	1.44	1.00	0.858×10^{-1}	
1 30	270.1	934.6	1.496	2174	4263	2177	0.684	0.0288	0.213 × 10-3	1.330 × 10-4	1.33	1.01	0.913×10^{-1}	
140	361.3	921.7	1.965	2145	4286	2244	0.683	0.0301	0.197×10^{-3}	1.365 × 10 €	1.24	1.02	0.970 × 10~	
150	475.8	916.6	2.546	2114	4311	2314	0.682	0.0316	0.183×10^{-3}	1.399 × 10 ⁻⁶	1.16	1.02	1.025×10^{-1}	
160	617.8	907.4	3.256	2083	4340	2420	0.680	0.0331	0.170×10^{-3}	1.434 × 10-6	1.09	1.05	1.145×10^{-1}	
170	791.7	897.7	4.119	2050	4370	2490	0.677	0.0347	0.160×10^{-3}	1.468 × 10 ≤	1.03	1.05	1.178×10^{-1}	
180	1.002.1	887.3	5.153	2015	4410	25.90	0.673	0.0364	0.150×10^{-3}	1.502 × 10 -≤	0.983	1.07	1.210×10^{-1}	
190	1 254 4	876.4	6.388	1979	4460	2710	0.669	0.0382	0.142×10^{-3}	1.537 × 10 ⁻⁶	0.947	1.09	1.280 × 10 ⁻	
200	1 553 8	864.3	7.852	1941	4500	2840	0.663	0.0401	0.134×10^{-3}	1.571 × 10 ⁻⁶	0.910	1.11	1.350 × 10 ⁻¹	
220	2.318	840.3	11.60	1859	4610	3110	0.650	0.0442	0.122 × 10 ⁻³	1.641 × 10-5	0.865	1.15	1.520 × 10-	
240	3 344	813.7	16.73	1767	4760	3520	0.632	0.0487	0.111 × 10 ⁻³	1.712 × 10-5	0.836	1.24	1.720 × 10-	
260	4 688	783.7	23.69	1663	4970	40.70	0.609	0.0540	0 102 × 10 ⁻³	1 788 × 10 ⁻⁶	0.832	1.35	2 000 × 10-	
280	6.412	750.8	33.15	1544	5280	4835	0.581	0.0605	0.094 × 10 ⁻³	1.870 × 10-5	0.854	1 4 9	2.380 × 10-	
300	8.581	713.8	46.15	1405	5750	5980	0.548	0.0695	0.086 × 10-3	1.965 × 10 €	0.902	1.69	2.950 × 10~	
320	11 274	667.1	64.57	1239	6540	7900	0.509	0.0836	0 078 × 10-3	2.084 × 10 €	1.00	1.97		
340	14 586	610.5	92.62	1028	8240	11.870	0.469	0.110	0.070 × 10 ⁻³	2.255 × 10 €	1.23	2 4 3		
360	18 651	528.3	144.0	720	14 690	25,800	0.427	0.178	0.060 × 10-3	2 571 × 10 ⁻⁶	2.06	3.73		
374 14	22,090	317.0	317.0	.20					0.043 × 10-3	4.313 × 10 €	2.00	0.70		

Figure 2.1: Sample of fluid property tables

Source: Cengel and Cimbala (2006)

Figure 2.1 show the sample of fluid property tables that are important tool as the reference in industry for engineer to solve engineering problem. International Association for the Properties of Water and Steam (IAPWS) is the association that concern with the properties of water and steam.

2.3 HISTORY OF MOODY CHART

Moody Chart or Moody Diagram was used by engineering worker and engineering student since 1940s. Lewis F. Moody was the responsible person which had developed Moody Chart in 1944 and this Moody Chart was published by American Society of Mechanical Engineers (ASME). Moody Chart is semi-empirical that related to the Darcy friction factor, relative roughness and Reynolds number. (McGovern, 2003)

Cyril F. Colebrook in 1939 was developed Colebrook equation where that equation comes from combined available data for transition and turbulent flow in smooth. The Colebrook equation is:

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{\varepsilon/D}{3.7} + \frac{2.51}{\operatorname{Re}\sqrt{f}}\right)$$
(2.1)

The American engineer, Hunter Rouse in 1942 had verified Colebrook equation and developed a graphical plot of friction factor, f as a function of Reynolds number, Re. From Rouse diagram, Lewis F. Moody redrew that diagram and produced the Moody Chart. (Cengel and Cimbala, 2006)

There are two common of friction factor which the first Darcy friction factor, f_D and the second Fanning friction factor f_{F} . Fanning friction factor equal to one quarter of the Darcy friction factor shows in equation below: (McGovern, 2003)

$$f_{\rm F} = \frac{f_{\rm D}}{4} \tag{2.2}$$

The Moody chart for the friction factor for fully developed flow in circular pipes for use in the head loss relation $\Delta P_L = f \frac{L}{D} \frac{\rho V^2}{2}$. Friction factors in the turbulent flow are evaluated from the Colebrook equation $\frac{1}{\sqrt{f}} = -2\log_{10}\left(\frac{dD}{3.7} + \frac{2.51}{\text{Re}\sqrt{f}}\right)$.

Figure 2.2: Moody Chart

Source: Cengel and Cimbala (2006)

Figure 2.2 show the Moody Chart that was included in many mechanical engineering books like Fluid Mechanics and Heat Transfer. From Moody Chart, known the value of Reynolds number and relative roughness, the friction value can be obtained.

2.4 HISTORY OF MICROSOFT EXCEL

Microsoft Excel is one of the spreadsheet program that allow user to organize, format, calculate data with formula, graphing tools, pivot tables and macro programming language called visual basic for application. Once an excel file was constructed, the contents can modified by adding and deleting where the result recalculated automatically. In 1979, Dan Bricklin constructed the first spreadsheet program on a personal computer was called visible interactive calculator (VisiCalc). (Martin, 2010)

	t PY	Calibri	* 11	• A A	= =	= >>-	⊒ ² Wrap	Text	General						P 🗊	Σ AutoS	um * Az	° A
° 🛷 Fo	rmat Painter	BI	0 - 🖽 -	<u>Ga - A</u> -	88		Merg	e & Center *	\$ - %	• 365 ÷.	Formatt	ing + as Tabl	e * Styles *	insert L	felete Pormat	📿 Clear	Filter	· Select
Clipboa	rd Iv		Font			Align	ment		Nu Nu	nber	<u>× </u>	Styles			Cells		Editing	
A	в	L	D	E	F	G	н		1	ĸ	L	M	N	0	P	Q	к	5
	•																	

Figure 2.3: View of Microsoft Excel 2007

Figure 2.3 show view of Microsoft Excel 2007 that developed by Microsoft. In 1975, Paul Allen and Bill Gates formed a company namely Microsoft. In 1982, Microsoft released spreadsheet program known as Multiplan. Then, Microsoft was released first version of excel in 1985 but for Macintosh operating system only. In 1987, second version of excel was released for the first Windows operating system. (Pearson, 2011)

Excel third version was released in 1990 with new features included worksheets. In 1992, Excel fourth version was released with included lots of usability features and become the first popular version. Excel fifth version was released in 1993 with new features included multiple worksheets and support visual basic for applications. (Power, 2004)

New version of Excel was rebranded as Excel 95 in 1995 along with other Microsoft Office 95 programs. Excel 95 was the seventh version where there was no sixth version of excel. This Excel 95 was the 32 bit version. Then, Excel 97 was released in 1997 with new visual basic for applications and new features included user forms and data validation. In 1999, new excel was released known as Excel 2000. Excel 97 was the eighth version and Excel 2000 was the ninth version. (Pearson, 2011)

Excel 2002 was released in 2001 while Excel 2003 was released in 2003 where Excel 2002 was the tenth version and Excel 2003 was the eleventh version. Excel 2007 was released in 2007 with a lot of improvements. Excel 2010 was the latest Excel version builds on Excel 2007 with not any major changes. Excel 2007 was the twelfth version and Excel 2010 was the fourteenth version where there was no thirteenth version of excel. Table 2.1 shows the various versions of Microsoft Excel. (Pearson, 2011)

Version	Released	Comments
1	1985	For Macintosh operating system
2	1987	First for Windows operating system
3	1990	Features included worksheets, toolbar, outlining and
		drawing capabilities
4	1992	Lots of usability features and first popular version
5	1993	Included multiple worksheets and visual basic for
		applications
6	-	There was no sixth version
7	1995	32-bit first version, rebranded as Excel 95
8	1997	New visual basic for applications, user forms and data
		validation interface namely as Excel 97
9	1999	Known as Excel 2000
10	2001	A lot of new features namely as Excel 2002
11	2003	Namely as Excel 2003
12	2007	A lot of improvements namely as Excel 2007
13	-	There was no thirteenth version
14	2010	Builds on Excel 2007 with not any major changes
		namely as Excel 2010

 Table 2.1: The various versions of Microsoft Excel

Source: Pearson (2011)

2.5 EXISTING SOFTWARE OR CALCULATOR FOR FLUID PROPERTY TABLES AND MOODY CHART

There are a lot of software or calculator to obtain fluid property tables and Moody Chart in the market. However, majority of the software is commercial that require user to buy the software. Some of the software must be paid before download or utilize for trial version and use it for certain period. For the calculator, internet connection is required to use it because there is no requirement to download and install it into the computer. This software or calculator has their own advantages and disadvantages. There is the several existing software or calculator for fluid in property tables and Moody Chart:

i. Fluid Properties Calculator

I	nput Va	lues	Results					
Fluid:	Air	•	Density: 🛐	1.2047	(kg/m^3) 💌			
Temperature:			Dynamic Viscosity: 🛐	1.8205E-5	(kg/m.s) 💌			
remperature.	20	(degrees C) 💌	Kinematic Viscosity: 🛐	1.5111E-5	(m^2/s) 💌			
Digits:	5 💌	March 1990	Specific Heat: c _p	1.0061E+3	(J/kg.K)			
Calculate			Conductivity: k	0.025596	(W/m.K) 💌			
			Prandtl number:	0.71559				
			Thermal Diffusivity:	2.1117E-5	(m^2/s) 🔻			
			Thermal Expansion Coefficient: 📝	3.4112E-3	(1/K) -			

Figure 2.4: View of fluid properties calculator

Source: Yovanovich et al. (1998)

Figure 2.4 shows the fluid properties calculator was developed by Microelectronics Heat Transfer Laboratory. For properties of air, argon, nitrogen and hidrogen, it calculated based on correlations developed by F. McQuillan while for properties of carbon dioxide, water and the ethylene glycols it calculated based on the

correlations developed by Tom Lemczyk. The temperature is use as the input and requires internet connection to use this calculator. The advantage of this calculator is it can be used either in International units or English units.

ii. Fluid Property Calculator

	International Units C English Unit
Step 1. Choose a fluid to model:	Ammonia 💌
Step 2. Enter two conditions: Temperature 100 °C Abs. Pressure 3975.1 kPa Step 3. Press Calculate: Calculate Properties	Molar Weight: 17.03 Triple Point Temperature: -77.7 °C Normal Boiling Point: -33.3 °C Gas Phase Dipole at NBP: 1.47 debye Acentric Factor: 0.256 Critical Temperature: 132 °C Critical Pressure: 11300 kPa Critical Density: 225 kg/m ³ Gas Constant: 8.31 J/mol-K
Temperature: 100 °C Pressure: 3980 kPa Density: 27.5 kg/m³ Volume: 0.0364 m³/kg Quality: Superheated Vapor Internal Energy: 1410000 J/kg Enthalpy: 1550000 J/kg Entropy: 4730 J/kg-K Isochoric Heat Capacity: 2320 J/kg-K Isobaric Heat Capacity: 3800 J/kg-K Surface Tension: 0.00515 N/m	Thermal Expansion: 0.00601 1/K Sound Speed: 424 m/s Ammonia Fugacity: 3290 kPa Viscosity: 12.8 microPa-s Thermal Conductivity: 0.0393 W/m-K Prandtl Number: 1.24 Helmholtz Energy: -358000 J/kg Gibbs Free Energy: -213000 J/kg

Figure 2.5: View of fluid property calculator

Source: Reindl et al. (2009)

Figure 2.5 shows the property fluid calculator that was developed by Industrial Refrigeration Consortium, IRC. Types of fluid available in this calculator are ammonia, carbon dioxide, R134a, R22, R404a, R410a, R507a, water. The range of temperature is between 195.5 K until 700 K as the input. The source of this calculator based on the most accurate pure fluid and mixture models. Internet connection is required and the user is able to choose either using International units or English units.

iii. Steam97 v4.0 Demo

) 🚅 🖬									100	Steam97 - U	Intitled		2			2.2	1000	- 0	X
0	T	lome																		Sty	le * 🕜
Nev	0	ipen S	ave	Save As	Cle Main	ear Form	Select All	✓ Status✓ Captio✓ Output	Bar in Bar it Pane	Print	SI Units	its <u>View Help</u>	ort								
		File			Da	ita	Clipboard	Viev	v	Print	Units	Help									
i :	Steam	Tables -	Therr	nodynar	nic and	Transpo	rt Properties of	Water and	Steam -	based on	IAPWS-IF97	Options									×
🤣 G	eneral	l Propertie	5	🔐 Satu	iration	Propertie	is 🔀 T-S D	iagram	🕢 т.н р	iagram	🔁 H-S Diagra	m 📄 H-S Vapo	r Diagram	🗭 P-T Di	agram 🚫 lo	ig P-S Dia	gram 🔇	log P-H Di	agram	н	1 D H
	r Inp	put <u>D</u> at	a							1											
56	sect ru	anction:			0.1	function 01.22	(p, t)	Lup.		ļ	<u>Calcu</u>	late									
1.	Pressu	ure (absolui	iej:		100	0133		MPa	•	J	E Pagin	tor									
۷.	rempe	erature:			100	,			•		Coole	x.oi								MegaWatSoft	
	Pro	perty Nan	ne					Propert	y ID Re	ults		Units (SI)		Constants	used in calculat	ion					*
23	Isot	hermal Jo	ule-Tł	homson	coeffic	ient		UTC		÷	137.9165438975	i kJ/(kg·Mpa)									
24	Joul	le-Thoms	on co	efficient				ЛС	DEI	MO		K/MPa									
25	Dyn	namic visc	osity					dv	DEI	мо		µPa∘s									
26	Kine	ematic vis	cosity					kv	DEI	NO		µm²/s									
27	The	ermal con	ductiv	ity				tc	DEI	мо		W/(K·m)									
28	The	rmal diffu	isivity					td	DEI	мо		µm²/s									E
29	Prar	ndtl numt	per					Pr	DEI	MO		dimensionless									
30	Surf	face tensio	on					Sigma	DEI	NO		mN/m									
Outpu	ut Pan	e																			а×
20 B	a 🦚)																			
	Point	t Name		Show	/Hide	p [bar]		t [°C]		d [kg/m	1 ²]	v [m³/kg]	h [kJ/l	:g]	s [kJ/(kg-K)]		u [kJ/kg]		cp [kJ/(kg·K)]	cv [kJ/(k	g·K)] 🔺
1							1.0133		10	10	0.597609	1.67	34 DEMO			7.3545		2506.03	DEMO	DEMO	1
2																					
3																					
•			_			_															F .
H	ЪЫ	SI Units		English U	Inits																
Stear	m97 Ar	pplication	v4.0																	MegaWat9	oft Inc.

Figure 2.6: View of steam97 v4.0 demo software

Source: Steam97 v4.0 demo software

Figure 2.6 shows the steam97 v4.0 demo property table software was developed by Mega WatSoft Inc. IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (IAPWS-IF97) is used as the source of calculated in this software. The advantage of this software is able to choose either using in International units or English units.

The disadvantage of this software is required the user to buy this software while for demo version, only certain results value appear. However, this software suitable for Thermodynamics properties although, some fluid properties such as density, dynamic viscosity and kinematic viscosity available in this software.

iv. StmProps (Steam Properties)

elect Input and Compute Resu	ults	
C IP Engineering Unit	s 📀 9	61 Engineering Units
 IFC-97 (IAPWS Formulation 	on) O IFC-6	7 (ASME Formulation)
▼ Temperature:	100.00	°C 💌
Pressure:	101.330	kPa 💌
🔲 Quality (L=0, V=1):	1.000	
Enthalpy:	2675.5840	kJ/kg 💌
Entropy:	7.35451	kJ/kg-K 💌
Specific Volume	1.673340	m²/kg 💌
Density	0.59761	kg/m³ 💌
Isobaric Heat Capacity	2.0773	kJ/kg-K 💌
Isochoric Heat Capacity	1.5536	kJ/kg-K 🗨
Viscosity	0.00001	N-s/m² 💌
Thermal Conductivity	0.02479	W/m-K 💌
Surface Tension	0.000	dyn/cm 💌
Critical Velocity	472.3	m/s 💌
Prandtl Number	1.027	•.0] .001
Isentropic Exponent	1.337	.000

Figure 2.7: View of StmProps

Source: StmProps (Steam Properties) software

Figure 2.7 shows the StmProps property table software was developed by G&P Engineering Software for Windows based computer systems. The results calculation based on IFC-97 and IFC-67 formulations and the user is able to choose either using one of these formulations. The input parameters can be temperature, pressure, quality, enthalpy or entropy.

The advantage of this software is the ability to choose either using in International units (SI) or US Imperial (IP) units. However, this is a commercial software where only allow the user to use as trial version for 14 days. Besides that, this software is suitable for Thermodynamics properties although, only some fluid properties are available. v. Moody Chart Calculator

Moody Chart Calculator							
Reyolds:							
relative roughness:							
Са	Iculate						
friction factor:							
friction factor:							

Figure 2.8: View of moody chart calculator

Source: Maley (undated)

Figure 2.8 shows the Moody Chart calculator was developed by Michael Maley's Engineering Site. The user is required to key in Reynolds number and relative roughness value to obtain friction factor. Friction factor calculation based on Colebrook equation and requires internet connection to use this calculator.

vi. Darcy Friction Factor Calculator

Pipe diameter: Roughness boight (s)	0	cm 💌
Reynolds number:	0	
Darcy friction factor:	Wait	
	Calculate!	Add 🕀

Figure 2.9: View of Darcy friction factor calculator

Source: Andy and Steve (2008)

Figure 2.9 shows the Darcy friction factor calculator was developed by CalcTool. The user is required to key in pipe diameter, roughness and Reynolds number value. Friction factor calculation based on Colebrook equation and requires internet connection to use this calculator. The advantage of this calculator is able to choose either using in International units or English units.

CHAPTER 3

METHODOLOGY

3.1 INTRODUCTION

This chapter discusses and explains about the method use and the flow progress of this project. Methodology is the most important element to be considered to make sure the smoothness of the project. Throughout this chapter, it explains how the formulas of Microsoft Excel work to obtain the properties from fluid property tables of saturated water, saturated refrigerant 134-a, saturated ammonia, saturated propane and air at 1 atm pressure. Besides that, this chapter explains how to obtain friction factor based on Colebrook equation.

Figure 3.1: Process flow chart final year project 1

Figure 3.2: Process flow chart final year project 2
3.3 FORMULA CONSTRUCTION

3.3.1 Formula in Microsoft Excel

In Microsoft Excel, there are a lot of formulas that has their own function. This formulas can be combined together to construct a new function. In this project, several numbers of formulas is used to obtain data from property tables and obtain friction factor based on Colebrook equation. Table 3.1 shows the description of the formulas that use in this project.

Formula	Description
MATCH	Locate specified item in a range cells to tell that item from which
	row or column number.
INDEX	Returns value based on row and column number.
INDIRECT	Locate the specified item in a cell from a range of data.
IF	Returns true value if condition evaluates true and returns false value
	if condition evaluates to false.
AND	Returns true if all arguments evaluate to true and returns false if
	have arguments evaluate to false.
NA	Returns the error value that means no available value.
ISBLANK	To avoid function refer as zero value for blank cell.
DROP-DOWN LIST	To make easier to choose value from a list.

Table 3.1: Formula in Microsoft Excel

Source: Microsoft Excel 2007 software

3.4 HOW THE FORMULA WORK

In Microsoft Excel, formula should be constructed to obtain data from property tables for SI units and English units. There are some steps starting with the listed value in the table and followed by listed and unlisted value in the table for SI units only. Then, for value listed and unlisted for SI units and English units. After that, continue

plot the graph for fluid properties and finally to obtain Darcy friction factor based on Colebrook equation.

3.4.1 Formula for Exact Value in Data Sheet for SI Units Only

This formula only obtains the value listed in the property tables for SI units only. If the temperature value inserted by user is unlisted in the property tables, the results shows #N/A mean not available which is shown in figure 3.4. For example, the formula for density (liquid) is:

=INDEX(INDIRECT(C5&"!B6:I45"),MATCH(B5,INDIRECT(C\$5&"!B6:B45"),0),3)

For figure 3.3, the temperature equal to 5°C that is listed in property tables which translated into data sheet shown in figure 3.5, so the results appear for density, dynamic viscosity and kinematic viscosity. For figure 3.4, the temperature equal to 5.5° C that is unlisted in property tables and the results show #N/A that mean not available in the data sheet.

Temperature (T°C)	Type of Fluid	Density (ρ, kg/m^3)		Dynamic Viscosity (μ, kg/m · s)		Kinematic Viscosity (v, m^2/s)	
		Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
5	Water	999.9	0.0068	1.519E-03	9.340E-06	1.519E-06	1.374E-03

Figure 3.3: The result for listed value for temperature equal to 5°C and type of fluid is water

Temperature (T°C)	Type of Fluid	Density (ρ, kg/m^3)		Dynamic Viscosity (µ, kg/m · s)		Kinematic Viscosity (v, m^2/s)	
		Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
5.5	Water	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A

Figure 3.4: The result for unlisted value for temperature equal to 5.5°C and type of fluid is water

Table 3.2 shows how the formula works to obtain properties for listed value while table 3.3 shows how the formula works for unlisted value. These tables show steps of formula evaluation which show how Microsoft Excel read the formula. This formula refers the data of water fluid properties shown in figure 3.5.

Evaluation:Cell $C5 =$ Water, so the formula refers water worksheet between B6:I45. To be select by userEvaluation:Cell B5 = 5, this is temperature value. User definedEvaluation:Cell B5 = 5, this is temperature value. User definedEvaluation:T (°C) = 5, so INDIRECT function refer water worksheet between B6:B45Evaluation:MATCH function refer value for
INDEX(INDIRECT(CSX 186:145), Waterrefers water worksheet between B6:145. To be select by userEvaluation: INDEX(Water1\$8\$\$6:\$1\$45,MATCH(85,1) 5Cell B5 = 5, this is temperature value. User definedEvaluation: INDEX(Water1\$8\$\$6:\$1\$45,MATCH(5,INDIRECT(*Water!86:845)) (,0),3)T (°C) = 5, so INDIRECT function refer water worksheet between B6:B45Evaluation: MATCH function refer value for
Evaluation: $Cell B5 = 5$, this is temperature value. User definedEvaluation: $Cell B5 = 5$, this is temperature value. User definedEvaluation: $T (°C) = 5$, so INDIRECT function refer water worksheet between B6:B45Evaluation: $T (°C) = 5$, so INDIRECT function refer value for
Evaluation:Cell $B5 = 5$, this is temperature value. User defined $\overline{DDEX(Water!$8$$6:I45,MATCH(85,I)}{5}$ T (°C) = 5, so INDIRECT function refer water worksheet between B6:B45Evaluation:Evaluation: $\overline{DDEX(Water!$8$$6:I45,MATCH(5,INDIRECT("Water!B6:B45")})}$ Evaluation:MATCH function refer value for
INDEX(Water $\frac{1}{5}$ value. User definedEvaluation:T (°C) = 5, so INDIRECTINDEX(Water $\frac{1}{5}$ function refer water worksheet $1,0,3$ between B6:B45Evaluation:MATCH function refer value for
Evaluation: T (°C) = 5, so INDIRECT INDEX(Water!\$8\$6:\$I\$45,MATCH(5,INDIRECT("Water!B6:B45") function refer water worksheet between B6:B45 between B6:B45 Evaluation: MATCH function refer value for
INDEX(Water!\$8\$6:\$1\$45,MATCH(5,INDIRECT(Water!B6:B45)) function refer water worksheet between B6:B45 Evaluation:
Evaluation: MATCH function refer value for
Evaluation: MATCH function refer value for
INDEX(Water!\$B\$6:\$I\$45, <u>MATCH(5,<i>Water</i>!\$B\$6:\$B\$45,0)</u> ,3) $T(^{\circ}C) = 5$ and match at row
number 2. Refer figure 3.5
Evaluation: So, INDEX function refers row
INDEX(Water!\$B\$6:\$1\$45,2,3) number 2 and column number 3.
Column number 3 is set in the
formula.
Evaluation: So, the answer for ρ (liquid) =
999.9 kg/m ³ in row number 2 and
column number 3. Refer figure
3.5

Table 3.2: Steps of formula evaluation for water at 5°C (liquid density)

Eyaluation:Cell C5 = Water, so the formula refers water worksheet between B6:I45. To be select by userEyaluation:Cell B5 = 5.5, this is temperature value. User definedEyaluation:Cell B5 = 5.5, this is temperature value. User definedEyaluation:T (°C) = 5.5, so INDIRECT function refer water worksheet between B6:B45Eyaluation:MATCH function refer value for T (°C) = 5.5 and not match at any row. Refer figure 3.5Eyaluation:MATCH function for column is #N/AEyaluation:So, the answer for ρ (liquid) =	Evaluate Formula	Description				
INDEX(INDIRECT(CS&1B6:145)), Waterrefers water worksheet between B6:145. To be select by userEvaluation: INDEX(Water1\$\$\$\$6:\$1\$45,MATCH(\$5, 5.5Cell B5 = 5.5, this is temperature value. User definedEvaluation: INDEX(Water1\$\$\$\$6:\$1\$45,MATCH(5.5,INDIRECT(Water185)), 3)T (°C) = 5.5, so INDIRECT function refer water worksheet between B6:B45Evaluation: INDEX(Water1\$\$\$\$6:\$1\$45,MATCH(5.5,Water1\$\$56:\$55\$45,0),3)MATCH function refer value for T (°C) = 5.5 and not match at any row. Refer figure 3.5Evaluation: INDEX(Water1\$\$56:\$1\$45,#W/A,3)So, INDEX function for column is #N/AEvaluation: INDEX(Water1\$\$56:\$1\$45,#W/A,3)So, the answer for ρ (liquid) =	E <u>va</u> luation:	Cell $C5 =$ Water, so the formula				
IndexB6:I45. To be select by user $E_{valuation:}$ $1NDEX(Water!$B$6:$I$45,MATCH(B5,5.5Cell B5 = 5.5, this is temperaturevalue. User definedE_{valuation:}INDEX(Water!B6:I45,MATCH(5.5,INDIRECT(Water!B6)B6:I45.T (°C) = 5.5, so INDIRECTfunction refer water worksheetbetween B6:B45E_{valuation:}INDEX(Water!B6:I45,MATCH(5.5,Water!B6:B45,0),3)MATCH function refer value forT (°C) = 5.5 and not match at anyrow. Refer figure 3.5E_{valuation:}INDEX(Water!B6:I45,MATCH(5.5,Water!B6:B45,0),3)So, INDEX function for columnis #N/AE_{valuation:}INDEX(Water!B6:I45, #W/A,3)So, the answer for \rho (liquid) =$	INDEX(INDIRECT(C5&'!B6:145'),	refers water worksheet between				
Evaluation: INDEX(Water!\$B\$6:\$1\$45,MATCH(B5, 5.5Cell B5 = 5.5, this is temperature value. User definedEvaluation: INDEX(Water!\$B\$6:\$1\$45,MATCH(5.5,INDIRECT(Water!B6) B45],0),3)T (°C) = 5.5, so INDIRECT function refer water worksheet between B6:B45Evaluation: INDEX(Water!\$B\$6:\$1\$45,MATCH(5.5,Water!\$B\$6:\$8\$\$45,0),3)MATCH function refer value for T (°C) = 5.5 and not match at any row. Refer figure 3.5Evaluation: INDEX(Water!\$B\$6:\$1\$45,#NATCH(5.5,Water!\$B\$6:\$1\$45,#N/A,3)So, INDEX function for column is #N/AEvaluation: INDEX(Water!\$B\$6:\$1\$45,#N/A,3)So, the answer for ρ (liquid) =	Water	B6:I45. To be select by user				
Indext(rule: spectrum)value. User defined 5.5 value. User definedEvaluation:T (°C) = 5.5, so INDIRECT $100EX(Water!$8$6:$1$45,MATCH(5.5,INDIRECT('Water!55)function refer water worksheetbetween B6:B45between B6:B45Evaluation:MATCH function refer value for1NDEX(Water!$8$6:$1$45,MATCH(5.5,Water!$8$6:$8$45,0),3)T (°C) = 5.5 and not match at anyrow. Refer figure 3.5Evaluation:So, INDEX function for columnis #N/AEvaluation:So, the answer for \rho (liquid) =$	Evaluation:	Cell $B5 = 5.5$, this is temperature				
Evaluation:T (°C) = 5.5, so INDIRECTINDEX(Water!\$B\$6:\$I\$45,MATCH(5.5,INDIRECT(`Water!B6' B6:B45)function refer water worksheet between B6:B45Evaluation:MATCH function refer value for T (°C) = 5.5 and not match at any row. Refer figure 3.5Evaluation:So, INDEX function for column is #N/AEvaluation:So, the answer for p (liquid) =	5.5	value. User defined				
INDEX(Water!\$8\$\$6:\$I\$45,MATCH(5.5,INDIRECT('Water!B6')function refer water worksheet $\underline{B45}$,0),3)between B6:B45Evaluation:MATCH function refer value forINDEX(Water!\$8\$6:\$I\$45,MATCH(5.5,Water!\$B56:\$B545,0),3)T (°C) = 5.5 and not match at any row. Refer figure 3.5Evaluation:So, INDEX function for column is #N/AEvaluation:So, the answer for ρ (liquid) =	Evaluation:	$T(^{\circ}C) = 5.5$, so INDIRECT				
Evaluation:between B6:B45INDEX(Water!\$8\$6:\$I\$45,MATCH(5.5,Water!\$8\$6:\$8\$\$45,0),3)MATCH function refer value for T (°C) = 5.5 and not match at any row. Refer figure 3.5Evaluation:So, INDEX function for column is $\#N/A$ Evaluation:So, the answer for ρ (liquid) =	INDEX(Water!\$B\$6:\$I\$45,MATCH(5.5, <u>INDIRECT(<i>"Water!B6</i> :<i>B45"</i>]</u> ,0),3)	function refer water worksheet				
Evaluation:MATCH function refer value for T (°C) = 5.5 and not match at any row. Refer figure 3.5Evaluation:So, INDEX function for column is $\#N/A$ Evaluation:So, the answer for ρ (liquid) =		between B6:B45				
INDEX(Water!\$8\$6:\$I\$45,MATCH(5.5,Water!\$8\$6:\$8\$45,0),3)T (°C) = 5.5 and not match at any row. Refer figure 3.5Evaluation:So, INDEX function for column is $\#N/A$ Evaluation:So, the answer for ρ (liquid) =	Evaluation:	MATCH function refer value for				
Evaluation:row. Refer figure 3.5INDEX(Water1\$B\$6:\$I\$45, #N/A,3)So, INDEX function for column is #N/AEvaluation:So, the answer for ρ (liquid) =	INDEX(Water!\$B\$6:\$I\$45, <u>MATCH(5.5,<i>Water!\$B\$6:\$B\$45</i>,0)</u> ,3)	T (°C) = 5.5 and not match at any				
Evaluation:So, INDEX function for column is $\#N/A$ INDEX(Water!\$B\$6:\$I\$45, $\#N/A$,3)So, the answer for ρ (liquid) =		row. Refer figure 3.5				
INDEX(Water!\$8\$6:\$I\$45, #N/A,3)is #N/AEvaluation:So, the answer for ρ (liquid) =	Evaluation:	So, INDEX function for column				
Evaluation: So, the answer for ρ (liquid) =	INDEX(Water!\$B\$6:\$I\$45, #N/A,3)	is #N/A				
and a	E <u>v</u> aluation:	So, the answer for ρ (liquid) =				
# N/A #N/A (not available).	#N/A	#N/A (not available).				

Table 3.3: Steps of formula evaluation for water at 5.5°C (liquid density)

	Cotomation	Saturation Pressure ρ, kg/m ³		Dynamic	Viscosity	Kinematic Viscosity		
Temp.	Pressure			μ, kg	/m ·s	v, m ² /s		
T, °C Psat, kPa		Liquiđ	Vapor	Liquid	Vapor	Liquid	Vapor	
0.01	0.6113	999.8	0.0048	1.792E-03	9.220E-06	1.792E-06	1.921E-03	
5	0.8721	999.9	0.0068	1.519E-03	9.340E-06	1.519E-06	1.374E-03	
10	1.2276	999. 7	0.0094	1.307E-03	9.460E-06	1.307E-06	1.006E-03	
15	1.7051	999.1	0.0128	1.138E-03	9.590E-06	1.139E-06	7.492E-04	
20	2.339	998.0	0.0173	1.002E-03	9.730E-06	1.004E-06	5.624E-04	
25	3.169	997.0	0.0231	8.910E-04	9.870E-06	8.937E-07	4.273E-04	
30	4.246	996.0	0.0304	7.980E-04	1.001E-05	8.012E-07	3.293E-04	
35	5.628	994.0	0.0397	7.200E-04	1.016E-05	7.243E-07	2.559E-04	
40	7.384	992.1	0.0512	6.530E-04	1.031E-05	6.582E-07	2.014E-04	
45	9.593	990.1	0.0655	5.960E-04	1.046E-05	6.020E-07	1.597E-04	
50	12.35	988.1	0.0831	5.470E-04	1.062E-05	5.536E-07	1.278E-04	
55	15.76	985.2	0.1045	5.040E-04	1.077E-05	5.116E-07	1.031E-04	

Figure 3.5: Data of fluid properties for water

3.4.2 Formula to Obtain Properties for Listed and Unlisted Value for SI Units Only

In property table, not all values are listed. To find a value for unlisted temperature, interpolation is required to find the properties. Interpolation is a method to estimate the value between two known values. In this project, linear interpolation is adapted where the unlisted temperature is estimated to the straight line between two adjacent values.

Figure 3.6: Linear interpolation graph

Source: Ahmad et al., (2011)

In linear interpolation, the gradient of unlisted temperature is considered equal for two adjacent temperatures. To make it simpler, table 3.4 constructed to describe the symbol of the following formula. From figure 3.6, point y0, x0, y1 and x1 is known values from the property table while point x and y is new value. The equation to known y value is:

$$\frac{y-y_0}{x-x_0} = \frac{y_1-y_0}{x_1-x_0} \tag{3.1}$$

$$(y - y0) = (x - x0)\frac{y1 - y0}{x1 - x0}$$
(3.2)

$$y = y0 + (x - x0) \frac{y1 - y0}{x1 - x0}$$
 (3.3)

Symbol	Description
У	The value either density, dynamic viscosity or kinematic viscosity
y0	Value either density, dynamic viscosity or kinematic viscosity that
	lower than y value
y1	Value either density, dynamic viscosity or kinematic viscosity that
	higher than y value
Х	Temperature value (Define by user)
x0	Temperature value that slightly lower than x value listed in data
	sheet
x1	Temperature value that slightly higher than x value listed in data
	sheet

 Table 3.4: Description of the symbol

Equation 3.3 is required to construct the formula in Microsoft Excel to obtain the listed or unlisted value from property tables. For figure 3.7, it shows the result of unlisted value for temperature equal to 7.5°C and type of fluid is ammonia. For example, the formula for density (liquid) is:

=IF(D16="NO","Out of Range",INDEX(INDIRECT(D15&"!B6:I47"),MATCH(C15,INDIRECT(D15&" !B6:B47"),1),3)+(C15-INDEX(INDIRECT(D15&"!B6:I47"),MATCH(C15,INDIRECT(D15&"!B6:B4 7"),1),1))*(INDEX(INDIRECT(D15&"!B6:I47"),MATCH(C15,INDIRECT(D1 5&"!B6:B47"),1)+1,3)-INDEX(INDIRECT(D15&"!B6:I47"),MATCH(C15,INDIRECT(D15&"!B6:B4 7"),1),3))/(INDEX(INDIRECT(D15&"!B6:I47"),MATCH(C15,INDIRECT(D15 &"!B6:B47"),1)+1,1)-INDEX(INDIRECT(D15&"!B6:I47"),MATCH(C15,INDIRECT(D15&"!B6:B4 7"),1),3))) Table 3.5 shows description of symbol based on equation 3.3 and the excel formula. In this method, formula INDEX, INDIRECT, MATCH is used.

Actual Formula	Excel Formula
y0	INDEX(INDIRECT(D15&"!B6:I47"),MATCH(C15,INDIRE CT(D15&"!B6:B47"),1),3)
Х	C15
x0	INDEX(INDIRECT(D15&"!B6:I47"),MATCH(C15,INDIRE CT(D15&"!B6:B47"),1),1)
y1	INDEX(INDIRECT(D15&"!B6:I47"),MATCH(C15,INDIRE CT(D15&"!B6:B47"),1)+1,3)
y0	INDEX(INDIRECT(D15&"!B6:I47"),MATCH(C15,INDIRE CT(D15&"!B6:B47"),1),3)
x1	INDEX(INDIRECT(D15&"!B6:I47"),MATCH(C15,INDIRE CT(D15&"!B6:B47"),1)+1,1)
x0	INDEX(INDIRECT(D15&"!B6:I47"),MATCH(C15,INDIRE CT(D15&"!B6:B47"),1),1)

Table 3.5: Description of the formula

When temperature equal to 7.5°C and type of fluid is ammonia:

y = y0 + (x-x0) x (y1-y0) / (x1-x0)y = 631.7 + (7.5-5) x ((624.6-631.7) / (10-5)) $y = 628.15 \text{ kg/m}^3$

y for liquid density result

Temperature (T°C)	Type of Fluid	Der (p, k	nsity g/m ³)	Dynamic (µ, kg	Viscosity /m · s)	Kinematic Viscosity (v, m ² /s)	
		Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
7.5	Ammonia	628.1500	4.4930	1.746E-04	9.689E-06	2.778E-07	2.170E-06

Figure 3.7: The result for unlisted value for temperature equal to 7.5°C and type of fluid is ammonia

Table 3.6 shows how the formula works for interpolation in excel. This table shows steps of formula evaluation which show how Microsoft Excel read the formula. This formula refers data of ammonia fluid properties shown in figure 3.8.

Table 3.6: Steps	of formula	evaluation f	or ammonia	at 7.5°C	(liquid	density)

L'unduité i ormana	Description			
Evaluation: Ce	Cell $D15 = Ammonia$, so the formula			
IF(FALSE, OUT OF Range , INDEX(INDIRECT(D15)	efers Ammonia worksheet between			
Be	6:I47. To be select by user			
Evaluation:	cell $C15 = 7.5$, this is temperature			
IF(FALSE, #N/A,INDEX(Ammonia!\$B\$6:\$I\$47,MATCH(C15,	alue and refer as x value. User			
de	efined			
Evaluation: y0	0 = 631.7, this is density (liquid)			
IF(FALSE,#N/A, <i>631.7</i> + Va	alue that lower and nearest y value.			
Re	efer figure 3.8			
Evaluation: X	= 7.5, this is temperature value.			
IF(FALSE,#N/A,631.7+(<i>7.5</i> -) Re	Refer figure 3.7			
Evaluation: x0	0 = 5, this is temperature value that			
IF(FALSE, #N/A,631.7+(<u>7.5-5</u>) lo	ower and nearest than x value. Refer			
ព៍រួ	gure 3.8			
Evaluation: y1	y1 = 624.6, this is density (liquid)			
IF(FALSE, #N/A,631.7+2.5*(624.6- Va	alue that higher and nearest y value.			
Re	efer figure 3.8			
Evaluation: y0	0 = 631.7, this is density (liquid)			
IF(FALSE, #N/A, 631.7+2.5*(<u>624.6-<i>631.2</i>)</u> , Va	alue that lower and nearest y value.			
Re	efer figure 3.8			
Evaluation: x1	1 = 10, this is temperature value			
IF(FALSE, #N/A,631.7+-17.750000000001/(<i>10</i> - th:	hat higher and nearest x value. Refer			
ព៍រួ	gure 3.8			
Evaluation: x0	0 = 5, this is temperature value that			
IF(FALSE, #N/A,631.7+-17.750000000001/(<u>10-5</u>))	ower and nearest x value. Refer			
fig	gure 3.8			

Evaluate Formula

Description

E<u>v</u>aluation: 628.1500 So, the answer for ρ (liquid) =

628.15 kg/m³

PROPERTIES OF SATURATED AMMONIA

SI unit							
	Saturation	Den	sity	Dynamic	Viscosity	Kinematio	e Viscosity
Temp.	Pressure	ρ, k	g/m ³	μ, kg	/mr ·s	v, m ² /s	
T, °C	Prot, kPa	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
-40	71.66	690.2	0.6435	2.926E-04	7.957E-06	4.239E-07	1.237E-05
-30	119.4	677.8	1.037	2.630E-04	8.311E-06	3.880E-07	8.014E-06
-25	151.5	671.5	1.296	2.492E-04	8.490E-06	3.711E-07	6.551E-06
-20	190.1	665.1	1.603	2.361E-04	8.669E-06	3.550E-07	5.408E-06
-15	236.2	658.6	1.966	2.236E-04	8.851E-06	3.395E-07	4.502E-06
-10	290.8	652.1	2.391	2.117E-04	9.034E-06	3.246E-07	3.778E-06
-5	354.9	645.4	2.886	2.003E-04	9.218E-06	3.104E-07	3.194E-06
0	429.6	638.6	3.458	1.896E-04	9.405E-06	2.969E-07	2.720E-06
5	516	631.7	4.116	1.794E-04	9.593E-06	2.840E-07	2.331E-06
10	615.3	624.6	4.870	1.697E-04	9.784E-06	2.717E-07	2.009E-06
15	728.8	617.5	5.729	1.606E-04	9.978E-06	2.601E-07	1.742E-06
20	857.8	610.2	6.705	1.519E-04	1.017E-05	2.489E-07	1.517E-06
25	1003	602.8	7.809	1.438E-04	1.037E-05	2.386E-07	1.328E-06
30	1167	595.2	9.055	1.361E-04	1.057E-05	2.287E-07	1.167E-06
35	1351	587.4	10.46	1.288E-04	1.078E-05	2.193E-07	1.031E-06
40	1555	579.4	12.03	1.219E-04	1.099E-05	2.104E-07	9.135E-07
45	1782	571.3	13.8	1.155E-04	1.121E-05	2.022E-07	8.123E-07
50	2033	562.9	15.78	1.094E-04	1.143E-05	1.944E-07	7.243E-07
55	2310	554.2	18.00	1.037E-04	1.166E-05	1.871E-07	6.478E-07
60	2614	545.2	20.48	9.846E-05	1.189E-05	1.806E-07	5.806E-07
65	2948	536.0	23.26	9.347E-05	1.213E-05	1.744E-07	5.215E-07
70	3312	526.3	26.39	8.879E-05	1.238E-05	1.687E-07	4.691E-07
75	3709	516.2	29.90	8.440E-05	1.264E-05	1.635E-07	4.227E-07
80	4141	505.7	33.87	8.030E-05	1.292E-05	1.588E-07	3.815E-07
85	4609	494.5	38.36	7.646E-05	1.322E-05	1.546E-07	3.446E-07
90	5116	482.8	43.48	7.284E-05	1.354E-05	1.509E-07	3.114E-07
95	5665	470.2	49.35	6.946E-05	1.389E-05	1.477E-07	2.815E-07
100	6257	456.6	56.15	6.628E-05	1.429E-05	1.452E-07	2.545E-07

Figure 3.8: Data	of amr	nonia fluid	properties
------------------	--------	-------------	------------

3.4.3 Formula to Obtain Value for Listed and Unlisted Value for SI Units and English Units

The formula to obtain the value for SI units and English units in property tables was constructed based on formula for listed and unlisted value for SI units. Some change are conducted which is adding new function to the formula to obtain value from either table SI units or English units. In this section, user is free to choose which unit they would refer. Figure 3.9 shows the result for temperature equal to 7.5°C and type of fluid is ammonia for English units. For example, the formula for liquid density is:

=IF(C17="SI unit",IF(D18="NO","Out of

Range",INDEX(INDIRECT(E17&"!B9:I51"),MATCH(D17,INDIRECT(E17&" !B9:B51"),1),3)+(D17-

INDEX(INDIRECT(E17&"!B9:I51"),MATCH(D17,INDIRECT(E17&"!B9:B5 1"),1),1))*(INDEX(INDIRECT(E17&"!B9:I51"),MATCH(D17,INDIRECT(E17 &"!B9:B51"),1)+1,3)-

INDEX(INDIRECT(E17&"!B9:I51"),MATCH(D17,INDIRECT(E17&"!B9:B5 1"),1),3))/(INDEX(INDIRECT(E17&"!B9:I51"),MATCH(D17,INDIRECT(E17 &"!B9:B51"),1)+1,1)-

INDEX(INDIRECT(E17&"!B9:I51"),MATCH(D17,INDIRECT(E17&"!B9:B5 1"),1),1))),IF(D19="NO","Out of

Range",INDEX(INDIRECT(E17&"!L9:S51"),MATCH(D17,INDIRECT(E17&" !L9:L51"),1),3)+(D17-

INDEX(INDIRECT(E17&"!L9:S51"),MATCH(D17,INDIRECT(E17&"!L9:L5 1"),1),1))*(INDEX(INDIRECT(E17&"!L9:S51"),MATCH(D17,INDIRECT(E1 7&"!L9:L51"),1)+1,3)-

INDEX(INDIRECT(E17&"!L9:S51"),MATCH(D17,INDIRECT(E17&"!L9:L5 1"),1),3))/(INDEX(INDIRECT(E17&"!L9:S51"),MATCH(D17,INDIRECT(E17 &"!L9:L51"),1)+1,1)-

INDEX(INDIRECT(E17&"!L9:S51"),MATCH(D17,INDIRECT(E17&"!L9:L5 1"),1),1))) For the above formula, the IF function was added to choose either SI units or English units. If choose SI units, it refer to value if true and if choose English units, it refer value if false in syntax IF shown below.

IF(logical_test, value_if_true, [value_if_false])

From syntax IF above, logical test refer to:

C17="SI unit"

From syntax IF above, value if true refer to:

IF(D18="NO","Out of Range",INDEX(INDIRECT(E17&"!B9:I51"),MATCH(D17,INDIRECT(E17&" !B9:B51"),1),3)+(D17-INDEX(INDIRECT(E17&"!B9:I51"),MATCH(D17,INDIRECT(E17&"!B9:B5 1"),1),1))*(INDEX(INDIRECT(E17&"!B9:I51"),MATCH(D17,INDIRECT(E17 &"!B9:B51"),1)+1,3)-INDEX(INDIRECT(E17&"!B9:I51"),MATCH(D17,INDIRECT(E17&"!B9:B5 1"),1),3))/(INDEX(INDIRECT(E17&"!B9:I51"),MATCH(D17,INDIRECT(E17 &"!B9:B51"),1)+1,1)-INDEX(INDIRECT(E17&"!B9:I51"),MATCH(D17,INDIRECT(E17&"!B9:B5 1"),1),1)))

From syntax IF above, value if false refer to:

IF(D19="NO","Out of Range",INDEX(INDIRECT(E17&"!L9:S51"),MATCH(D17,INDIRECT(E17&" !L9:L51"),1),3)+(D17-INDEX(INDIRECT(E17&"!L9:S51"),MATCH(D17,INDIRECT(E17&"!L9:L5 1"),1),1))*(INDEX(INDIRECT(E17&"!L9:S51"),MATCH(D17,INDIRECT(E1 7&"!L9:L51"),1)+1,3)-INDEX(INDIRECT(E17&"!L9:S51"),MATCH(D17,INDIRECT(E17&"!L9:L5 1"),1),3))/(INDEX(INDIRECT(E17&"!L9:S51"),MATCH(D17,INDIRECT(E17 &"!L9:L51"),1)+1,1)-INDEX(INDIRECT(E17&"!L9:S51"),MATCH(D17,INDIRECT(E17&"!L9:L5 1"),1),1))))

Type of Unit	Type of Fluid	Temperature	Density (ρ, lbm/ft³)	Dynamic Viscos	ity (μ, lbm/ft · s)	Kinematic Vis	cosity (v, ft²/s)
		(°F)	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
English Unit	Ammonia	7.5	41.0025	0.1302	1.481E-04	5.961E-06	3.611E-06	4.617E-05
Step 1: Choose either SI unit or English Unit	Step 2: Choose type of fluid	Step 3: Key in temperature value (Refer table A or B)	For Friction Factor, Continue with Step 4			5		

Figure 3.9: Interpolation result for temperature equal to 7.5°C and type of fluid is ammonia

Table 3.7 shows how the formula works for SI units and English units based on data sheet shown in figure 3.10. This table shows steps of formula evaluation which show how Microsoft Excel read the formula. This formula refers data of ammonia fluid properties for English units shown in figure 3.11.

 Table 3.7: Steps of formula evaluation for ammonia at 7.5°F (liquid density)

Evaluate Formula	Description
Evaluation:	From syntax IF, IF(logical_test,
English Unit	value_if_true, [value_if_false]), for
	formula, cell C17 = SI unit, but cell
	C17 = English unit, it shows false
	for cell $C17 = SI$ unit, so it refer
	English unit table. To be select by
	user
Evaluation:	Cell E17 = Ammonia, so the
IF(FALSE, #N/A, IF() E17&"!L9:S51"),MA	formula refers Ammonia
+(D1/-INDEX(INDIF INDIRECT(E17&"L9	worksheet between L9:S51. To be
Ammonia	select by user

Evaluation:Cell D17 = 7.5, this is temperate value and refer as x value. User (INDIRECT(E17&*!L :L51*),1,1))*(INDE (D17.INDIRECT(E1) 7.5Cell D17 = 7.5, this is temperate value and refer as x value. User definedEvaluation: $y0 = 41.34$, this is density (liquid value that lower and nearest y	ure d)
IF(FALSE, #N/A, IF(f) ,MATCH(D17, INDIR (INDIRECT(E17&"!L) :L51"), 1, 1))*(INDE (D17, INDIRECT(E17)value and refer as x value. User 	d)
$\begin{array}{l} (INDIRECT(E17&TL \\ :L51^{\circ},1),1))^{*}(INDE \\ (D17.INDIRECT(E17) \\ \hline 7.5 \end{array} \qquad $	d)
Evaluation: $y0 = 41.34$, this is density (liquid value that lower and nearest yIF(FALSE, #N/A, IF(FALSE, #N/A, 41.34+(D17- value that lower and nearest y	d)
IF(FALSE, #N/A, IF(FALSE, #N/A, 41.34+(D17-) value that lower and nearest y	
value. Refer figure 3.11	
Evaluation: $x = 7.5$, this is temperature value).
Refer figure 3.11	
Evaluation: $x0 = 0$, this is temperature value	
$\frac{11}{11} + \frac{11}{11} + 11$	lue.
Refer figure 3.11	
Evaluation: $y_1 = 40.89$, this is density (liquid	d)
value that higher and nearest y	
value. Refer figure 3.11	
Evaluation: $y_0 = 41.34$, this is density (liquid	d)
$ 1^{-(FALSE, \#N/A, 1^{-(FALSE, \#N/A, 41.34+7.5^{-(40.89-41.34)})}$ value that lower and nearest y	
value. Refer figure 3.11	
Evaluation: $x1 = 10$, this is temperature value	e
IF(FALSE,#N/A,IF(FALSE,#N/A,41.34+-3.3750000000002/(10) that higher and nearest x value.	
Refer figure 3.11	
Evaluation: $x0 = 0$, this is temperature value	
$\frac{ 1-(FALSE, \#N/A, 1F(FALSE, \#N/A, 41.34+-3.3750000000002/(10)}{-0})$ that lower and nearest x value.	
Refer figure 3.11	
Evaluation: So, the answer for ρ (liquid) =	
41.0025 41.0025 kg/m ³	

Table 3.7: Continued

SI unit]							English unit							
		Den	sity	Dynamic	Viscosity	Kinemati	e Viscosity		a	Der	nsity	Dynamic	Viscosity	Kinematio	e Viscosity
Temp.	Deserves	ρ, k	g/m ³	μ, kg	/m ·s	υ, 1	m²/s	Temp.	Beasuration	ρ, 1b	m/ft ³	μ, 1bn	n/ft ·s	v, f	ít²/s
T, ℃	Pressure Pres, kPa	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	T, °F	Pres, psia	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
-40	71.66	690.2	0.6435	2.926E-04	7.957E-06	4.239E-07	1.237E-05	-40	10.4	43.08	0.0402	1.966E-04	5.342E-06	4.564E-06	1.329E-04
-30	119.4	677.8	1.037	2.630E-04	8.311E-06	3.880E-07	8.014E-06	-30	13.9	42.66	0.0527	1.853E-04	5.472E-06	4.344E-06	1.038E-04
-25	151.5	671.5	1.296	2.492E-04	8.490E-06	3.711E-07	6.551E-06	-20	18.3	42.33	0.0681	1.746E-04	5.600E-06	4.125E-06	8.223E-05
-20	190.1	665.1	1.603	2.361E-04	8.669E-06	3.550E-07	5.408E-06	-10	23.7	41.79	0.0869	1.645E-04	5.731E-06	3.936E-06	6.595E-05
-15	236.2	658.6	1.966	2.236E-04	8.851E-06	3.395E-07	4.502E-06	0	30.4	41.34	0.1097	1.549E-04	5.861E-06	3.747E-06	5.343E-05
-10	290.8	652.1	2.391	2.117E-04	9.034E-06	3.246E-07	3.778E-06	10	38.5	40.89	0.1370	1.458E-04	5.994E-06	3.566E-06	4.375E-05
-5	354.9	645.4	2.886	2.003E-04	9.218E-06	3.104E-07	3.194E-06	20	48.2	40.43	0.1694	1.371E-04	6.125E-06	3.391E-06	3.616E-05
0	429.6	638.6	3.458	1.896E-04	9.405E-06	2.969E-07	2.720E-06	30	59.8	39.96	0.2075	1.290E-04	6.256E-06	3.228E-06	3.015E-05
5	516	631.7	4.116	1.794E-04	9.593E-06	2.840E-07	2.331E-06	40	73.4	39.48	0.2521	1.213E-04	6.389E-06	3.072E-06	2.534E-05
10	615.3	624.6	4.870	1.697E-04	9.784E-06	2.717E-07	2.009E-06	50	89.2	38.99	0.3040	1.140E-04	6.522E-06	2.924E-06	2.145E-05
15	728.8	617.5	5.729	1.606E-04	9.978E-06	2.601E-07	1.742E-06	60	107.7	38.50	0.3641	1.072E-04	6.656E-06	2.784E-06	1.828E-05
20	857.8	610.2	6.705	1.519E-04	1.017E-05	2.489E-07	1.517E-06	70	128.9	37.99	0.4332	1.008E-04	6.786E-06	2.653E-06	1.566E-05
25	1003	602.8	7.809	1.438E-04	1.037E-05	2.386E-07	1.328E-06	80	153.2	37.47	0.5124	9.486E-05	6.922E-06	2.532E-06	1.351E-05
30	1167	595.2	9.055	1.361E-04	1.057E-05	2.287E-07	1.167E-06	90	180.8	36.94	0.6029	8.922E-05	7.056E-06	2.415E-06	1.170E-05
35	1351	587.4	10.46	1.288E-04	1.078E-05	2.193E-07	1.031E-06	100	212.0	36.40	0.7060	8.397E-05	7.189E-06	2.307E-06	1.018E-05
40	1555	579.4	12.03	1.219E-04	1.099E-05	2.104E-07	9.135E-07	110	247.2	35.83	0.8233	7.903E-05	7.325E-06	2.206E-06	8.897E-06
45	1782	571.3	13.8	1.155E-04	1.121E-05	2.022E-07	8.123E-07	120	286.5	35.26	0.9564	7.444E-05	7.458E-06	2.111E-06	7.798E-06
50	2033	562.9	15.78	1.094E-04	1.143E-05	1.944E-07	7.243E-07	130	330.4	34.66	1.1074	7.017E-05	7.594E-06	2.025E-06	6.858E-06
55	2310	554.2	18.00	1.037E-04	1.166E-05	1.871E-07	6.478E-07	140	379.4	34.04	1.2786	6.617E-05	7.731E-06	1.944E-06	6.046E-06
60	2614	545.2	20.48	9.846E-05	1.189E-05	1.806E-07	5.806E-07	150	433.2	33.39	1.4730	6.244E-05	7.867E-06	1.870E-06	5.341E-06
65	2948	536.0	23.26	9.347E-05	1.213E-05	1.744E-07	5.215E-07	160	492.7	32.72	1.6940	5.900E-05	8.006E-06	1.803E-06	4.726E-06
70	3312	526.3	26.39	8.879E-05	1.238E-05	1.687E-07	4.691E-07	170	558.2	32.01	1.9460	5.578E-05	8.142E-06	1.743E-06	4.184E-06
75	3709	516.2	29.90	8.440E-05	1.264E-05	1.635E-07	4.227E-07	180	630.1	31.26	2.2346	5.278E-05	8.281E-06	1.688E-06	3.706E-06
80	4141	505.7	33.87	8.030E-05	1.292E-05	1.588E-07	3.815E-07	190	708.5	30.47	2.5670	5.000E-05	8.419E-06	1.641E-06	3.280E-06
85	4609	494.5	38.36	7.646E-05	1.322E-05	1.546E-07	3.446E-07	200	794.4	29.62	2.9527	4.742E-05	8.561E-06	1.601E-06	2.899E-06
90	5116	482.8	43.48	7.284E-05	1.354E-05	1.509E-07	3.114E-07	210	887.9	28.70	3.4053	4.500E-05	8.703E-06	1.568E-06	2.556E-06
95	5665	470.2	49.35	6.946E-05	1.389E-05	1.477E-07	2.815E-07	220	989.5	27.69	3.9440	4.275E-05	8.844E-06	1.544E-06	2.242E-06
100	6257	456.6	56.15	6.628E-05	1.429E-05	1.452E-07	2.545E-07	230	1099.0	25.57	4.5987	4.064E-05	8.989E-06	1.589E-06	1.955E-06
								240	1219.4	25.28	5.4197	3.864E-05	9.136E-06	1.528E-06	1.686E-06

Figure 3.10: Data of ammonia fluid properties for SI units and English units

English unit								
	0-1	Der	nsity	Dynamie	Viscosity	Kinematic Viscosity		
Temp.	Pressure	ρ, 1b	m/ft ³	μ, lbn	n/ft ·s	v, f	t²/s	
T, °F	Prot, psia	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	
-40	10.4	43.08	0.0402	1.966E-04	5.342E-06	4.564E-06	1.329E-04	
-30	13.9	42.66	0.0527	1.853E-04	5.472E-06	4.344E-06	1.038E-04	
-20	18.3	42.33	0.0681	1.746E-04	5.600E-06	4.125E-06	8.223E-05	
-10	23.7	41.79	0.0869	1.645E-04	5.731E-06	3.936E-06	6.595E-05	
0	30.4	41.34	0.1097	1.549E-04	5.861E-06	3.747E-06	5.343E-05	
10	38.5	40.89	0.1370	1.458E-04	5.994E-06	3.566E-06	4.375E-05	
20	48.2	40.43	0.1694	1.371E-04	6.125E-06	3.391E-06	3.616E-05	
30	59.8	39.96	0.2075	1.290E-04	6.256E-06	3.228E-06	3.015E-05	
40	73.4	39.48	0.2521	1.213E-04	6.389E-06	3.072E-06	2.534E-05	
50	89.2	38.99	0.3040	1.140E-04	6.522E-06	2.924E-06	2.145E-05	
60	107.7	38.50	0.3641	1.072E-04	6.656E-06	2.784E-06	1.828E-05	
70	128.9	37.99	0.4332	1.008E-04	6.786E-06	2.653E-06	1.566E-05	
80	153.2	37.47	0.5124	9.486E-05	6.922E-06	2.532E-06	1.351E-05	
90	180.8	36.94	0.6029	8.922E-05	7.056E-06	2.415E-06	1.170E-05	
100	212.0	36.40	0.7060	8.397E-05	7.189E-06	2.307E-06	1.018E-05	
110	247.2	35.83	0.8233	7.903E-05	7.325E-06	2.206E-06	8.897E-06	
120	286.5	35.26	0.9564	7.444E-05	7.458E-06	2.111E-06	7.798E-06	
130	330.4	34.66	1.1074	7.017E-05	7.594E-06	2.025E-06	6.858E-06	
140	379.4	34.04	1.2786	6.617E-05	7.731E-06	1.944E-06	6.046E-06	
150	433.2	33.39	1.4730	6.244E-05	7.867E-06	1.870E-06	5.341E-06	
160	492.7	32.72	1.6940	5.900E-05	8.006E-06	1.803E-06	4.726E-06	
170	558.2	32.01	1.9460	5.578E-05	8.142E-06	1.743E-06	4.184E-06	
180	630.1	31.26	2.2346	5.278E-05	8.281E-06	1.688E-06	3.706E-06	
190	708.5	30.47	2.5670	5.000E-05	8.419E-06	1.641E-06	3.280E-06	
200	794.4	29.62	2.9527	4.742E-05	8.561E-06	1.601E-06	2.899E-06	
210	887.9	28.70	3.4053	4.500E-05	8.703E-06	1.568E-06	2.556E-06	
220	989.5	27.69	3.9440	4.275E-05	8.844E-06	1.544E-06	2.242E-06	
230	1099.0	25.57	4.5987	4.064E-05	8.989E-06	1.589E-06	1.955E-06	
240	1219.4	25.28	5.4197	3.864E-05	9.136E-06	1.528E-06	1.686E-06	

Figure 3.11: Data of ammonia fluid properties for English units

3.4.4 Graph for Fluid Properties Result

The formula fluid properties results to plot the graph were constructed based on formula for fluid properties. Some change are conducted which is replaced word "Out of Range" to new NA function. This function to prevent the graph plots the blank cell or result out of range where in the range of selected data of graph. In this section, user is free to choose the number of fluid properties results until ten maximum results. For example, the formula for liquid density is:

=IF(\$B\$17="SI

unit",IF(F18="NO",NA(),INDEX(INDIRECT(\$C\$17&"!B9:I51"),MATCH(F17 ,INDIRECT(\$C\$17&"!B9:B51"),1),3)+(F17-

INDEX(INDIRECT(\$C\$17&"!B9:I51"),MATCH(F17,INDIRECT(\$C\$17&"!B 9:B51"),1),1))*(INDEX(INDIRECT(\$C\$17&"!B9:I51"),MATCH(F17,INDIRE CT(\$C\$17&"!B9:B51"),1)+1,3)-

INDEX(INDIRECT(\$C\$17&"!B9:I51"),MATCH(F17,INDIRECT(\$C\$17&"!B 9:B51"),1),3))/(INDEX(INDIRECT(\$C\$17&"!B9:I51"),MATCH(F17,INDIRE CT(\$C\$17&"!B9:B51"),1)+1,1)-

INDEX(INDIRECT(\$C\$17&"!B9:I51"),MATCH(F17,INDIRECT(\$C\$17&"!B 9:B51"),1),1))),IF(F19="NO",NA(),INDEX(INDIRECT(\$C\$17&"!L9:S51"),M ATCH(F17,INDIRECT(\$C\$17&"!L9:L51"),1),3)+(F17-

INDEX(INDIRECT(\$C\$17&"!L9:S51"),MATCH(F17,INDIRECT(\$C\$17&"!L 9:L51"),1),1))*(INDEX(INDIRECT(\$C\$17&"!L9:S51"),MATCH(F17,INDIRE CT(\$C\$17&"!L9:L51"),1)+1,3)-

INDEX(INDIRECT(\$C\$17&"!L9:S51"),MATCH(F17,INDIRECT(\$C\$17&"!L 9:L51"),1),3))/(INDEX(INDIRECT(\$C\$17&"!L9:S51"),MATCH(F17,INDIRE CT(\$C\$17&"!L9:L51"),1)+1,1)-

INDEX(INDIRECT(\$C\$17&"!L9:S51"),MATCH(F17,INDIRECT(\$C\$17&"!L 9:L51"),1),1))))

Type of Unit	Type of Fluid	Step 3: Key in temperature value (Refer	Temperature	Density ((ρ, kg/m ³)	Dynamic Visco	sity (µ, kg/m · s)	Kinematic Vis	cosity (v, m²/s)
		table A or B). Up to 10 values	(°C)	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
SI Unit	Water	to plot the graph	90	965.3000	0.4235	3.150E-04	1.193E-05	3.263E-07	2.817E-05
Step 1: Choose either SI unit or	Step 2: Choose type of fluid	0	110	950.6000	0.8263	2.550E-04	1.261E-05	2.683E-07	1.526E-05
	Step	4: Click graph	130	934.6000	1.4960	2.130E-04	1.330E-05	2.279E-07	8.890E-06
٠	graph		150	916.6000	2.5460	1.830E-04	1.399E-05	1.997E-07	5.495E-06
	0 1	~	170	897.7000	4.1190	1.600E-04	1.468E-05	1.782E-07	3.564E-06
A			190	876.4000	6.3880	1.420E-04	1.537E-05	1.620E-07	2.406E-06
		o	210	852.3000	9.7260	1.280E-04	1.606E-05	1.501E-07	1.708E-06
	_	50	230	827.0000	14.1650	1.165E-04	1.677E-05	1.408E-07	1.219E-06
		-	250	798.7000	20.2100	1.065E-04	1.750E-05	1.333E-07	8.890E-07
0		~	270	767.2500	28.4200	9.800E-05	1.829E-05	1.277E-07	6.594E-07

Figure 3.12: Result for fluid properties

For figure 3.12, it shows the result for temperature equal to 90°C, 110°C, 130°C, 150°C, 170°C, 190°C, 210°C, 230°C, 250°C, 270°C and type of fluid water for SI units. Based on these results, the graph was plotted by using of x y scatter with straight line and marks type. There are three graphs which are density versus temperature, dynamic viscosity versus temperature and kinematic viscosity versus temperature. For example, figure 3.13 shows the graphs density versus temperature.

Figure 3.13: Graph density versus temperature

3.4.5 Formula to Obtain Darcy Friction Factor

This part obtain Darcy friction factor based on Colebrook equation where bisection method was used as the method to solve this equation. There are two methods where method 1 by key in roughness, diameter and Reynolds number value while method 2 by key in temperature, roughness, diameter and velocity value.

Based on the Moody Chart, Darcy friction factor is between 0.008 until 0.1 where this value used in bisection method as lower and higher value. One worksheet in Microsoft Excel was used to calculate Darcy friction factor by using bisection method shown in figure 3.14.

				-		-				
Iteration	xl	xr	xu	f(xl)	f(xr)	f(xu)	f(xl).f(xr)	Sign	ε _a	Answer
1	0.008000000	0.0540000000	0.1000000000	-6.87276	0.59240	1.88555	-4.07144	-	-	-
2	0.008000000	0.0310000000	0.0540000000	-6.87276	-0.93774	0.59240	6.44485	+	74.1935483871	NO
3	0.0310000000	0.0425000000	0.0540000000	-0.93774	-0.01948	0.59240	0.01827	+	27.0588235294	NO
4	0.0425000000	0.0482500000	0.0540000000	-0.01948	0.31325	0.59240	-0.00610	-	11.9170984456	NO
5	0.0425000000	0.0453750000	0.0482500000	-0.01948	0.15462	0.31325	-0.00301	-	6.3360881543	NO
6	0.0425000000	0.0439375000	0.0453750000	-0.01948	0.06966	0.15462	-0.00136	-	3.2716927454	NO
7	0.0425000000	0.0432187500	0.0439375000	-0.01948	0.02564	0.06966	-0.00050	-	1.6630513377	NO
8	0.0425000000	0.0428593750	0.0432187500	-0.01948	0.00322	0.02564	-0.00006	-	0.8384979949	NO
9	0.0425000000	0.0426796875	0.0428593750	-0.01948	-0.00810	0.00322	0.00016	+	0.4210140948	NO
10	0.0426796875	0.0427695313	0.0428593750	-0.00810	-0.00243	0.00322	0.00002	+	0.2100648461	NO
11	0.0427695313	0.0428144531	0.0428593750	-0.00243	0.00039	0.00322	0.00000	-	0.1049222207	NO
12	0.0427695313	0.0427919922	0.0428144531	-0.00243	-0.00102	0.00039	0.00000	+	0.0524886465	NO
13	0.0427919922	0.0428032227	0.0428144531	-0.00102	-0.00031	0.00039	0.00000	+	0.0262374374	NO
14	0.0428032227	0.0428088379	0.0428144531	-0.00031	0.00004	0.00039	0.00000	-	0.0131169979	NO
15	0.0428032227	0.0428060303	0.0428088379	-0.00031	-0.00013	0.00004	0.00000	+	0.0065589291	NO
16	0.0428060303	0.0428074341	0.0428088379	-0.00013	-0.00005	0.00004	0.00000	+	0.0032793570	NO
17	0.0428074341	0.0428081360	0.0428088379	-0.00005	0.00000	0.00004	0.00000	+	0.0016396516	NO
18	0.0428081360	0.0428084869	0.0428088379	0.00000	0.00002	0.00004	0.00000	-	0.0008198191	YES
19	0.0428081360	0.0428083115	0.0428084869	0.00000	0.00001	0.00002	0.00000	-	0.0004099112	YES
20	0.0428081360	0.0428082237	0.0428083115	0.00000	0.00000	0.00001	0.00000	-	0.0002049560	YES
21	0.0428081360	0.0428081799	0.0428082237	0.00000	0.00000	0.00000	0.00000	-	0.0001024781	YES
22	0.0428081360	0.0428081579	0.0428081799	0.00000	0.00000	0.00000	0.00000	+	0.0000512391	YES
23	0.0428081579	0.0428081689	0.0428081799	0.00000	0.00000	0.00000	0.00000	+	0.0000256195	YES
24	0.0428081689	0.0428081744	0.0428081799	0.00000	0.00000	0.00000	0.00000	-	0.0000128098	YES
25	0.0428081689	0.0428081716	0.0428081744	0.00000	0.00000	0.00000	0.00000	+	0.0000064049	YES
26	0.0420001716	0.0400001700	0.0420001744	0.00000	0.00000	0.00000	0.00000		0.0000022024	VEC

BISECTION METHOD TO FIND DARCY FRICTION FACTOR

Figure 3.14: Bisection method to find Darcy friction factor

For figure 3.15, it shows the result for method 1 where roughness equal to 0.00026 m, diameter equal to 0.05 m and Reynolds number equal to 5000. The formula to obtain Darcy friction factor from friction factor worksheet is:

=IF(I30="Not Available","Not Available",INDEX('Friction Factor'!B5:L104,MATCH("YES",'Friction Factor'!L5:L104,0),2))

Figure 3.15: Result for Darcy friction factor by using method 1

Table 3.8 shows how the formula works to obtain Darcy friction factor from friction factor worksheet. This table shows steps of formula evaluation which show how Microsoft Excel read the formula.

 Table 3.8: Steps of formula evaluation to obtain Darcy friction factor from friction

 factor worksheet

Evaluate Formula	Description
Evaluation: IF(I30="Not Available", "Not Available", INDEX('Friction Factor'!. IF(H30=" Method 1: Reynolds Number", I34, I39) Method 1: Reynolds Number	Cell H30 = Method 1: Reynolds Number, so the formula refers to method 1. To be select by user
E <u>v</u> aluation: IF(<i>FALSE</i> , "Not Available", INDEX('Friction Factor'!B5:L104, MATCH("YES", 'Friction Factor'!L5:L104,0), 2))	MATCH function find "YES" between L5:L104 in the friction factor worksheet for the answer

Table 3.8: Continued

Evaluate Formula	Description
Evaluation:	"YES" find in the row 18, so
	INDEX function refer to column 2
	between B5:L104
Evaluation:	Cell \$C\$22 in the friction factor
IF(FALSE, #IN/A, Friction Factor (\$C\$22)	worksheet is the answer
Evaluation:	So, the answer for Darcy friction
0.0428081360	factor = 0.0428081360

Figure 3.14 shows bisection method calculated by Microsoft Excel to find Darcy friction factor. For f(xl), f(xr) and f(xu), this calculation based on Colebrook Equation. Table 3.9 shows how the formula work to calculate Colebrook Equation for f(xl). This table shows steps of formula evaluation which show how Microsoft Excel read the formula.

Colebrook equation:

$$\frac{1}{\sqrt{f}} = -2\log_{10}\left(\frac{\varepsilon/D}{3.7} + \frac{2.51}{\text{Re}\sqrt{f}}\right)$$
(3.4)

$$-\frac{1}{\sqrt{f}} - 2\log_{10}\left(\frac{\varepsilon/D}{3.7} + \frac{2.51}{\text{Re}\sqrt{f}}\right) = 0$$
(3.5)

Formula in Microsoft Excel based on Colebrook equation for f(xl):

=-(1/(SQRT(E5)))-(2*LOG((((INTERFACE!\$I\$31/INTERFACE!\$I\$32)/3.7)+(2.51/(INTERFACE !\$I\$30*SQRT(E5))))))

Evaluate Formula	Description			
E <u>v</u> aluation: -(1/(SQRT(C5)))-(2*LOC 0.0080000000	Cell C5 = 0.008 , this is xl			
Evaluation:	I31 in the interface worksheet refer			
0.00026	to roughness value equal to			
	0.00026			
Evaluation:	I32 in the interface worksheet refer			
-11.1803398874989-(2*LOG((((0.00026/INTERFACE!\$I\$32)/	to diameter value equal to 0.05			
Evaluation:	I30 in the interface worksheet refer			
INTERFACE!\$1\$30*5	to Reynolds number value equal to			
	5000			
Evaluation:	Microsoft Excel calculate all this			
-11.1803398874989-(2*LOG((0.0014054054054054+(2.51/(5000* <i>0.0894427190999916</i>)))))	value			
E <u>v</u> aluation: -6.87276	So, the answer for $f(xl) = -6.87276$			

Table 3.9: Steps of formula evaluation to calculate Colebrook equation

Table 3.10 shows how the formula works to find answer in the bisection method. This table shows steps of formula evaluation which show how Microsoft Excel read the formula. Formula for Microsoft Excel to find answer in the Bisection Method is:

=IF(K5<INTERFACE!\$I\$41,"YES","NO")

Evaluate Formula	Description
	K6 refer to absolute approximate
IF(<u>KB</u> <interface!\$i\$41, no)<="" th="" yes,=""><td>error, ε_a</td></interface!\$i\$41,>	error, ε_a
Evaluation:	K6 = 74.1935483870968. For
IF(<i>74.1935483870968</i> < <u>INTERFACE!\$I\$41</u> , YES", NO")	INTERFACE!\$I\$41 refer to
	tolerance where set by user
Evaluation:	From syntax IF, IF(logical_test,
IF(<u>74.1935483870968<<i>0.001</i></u> ,"YES","NO")	value_if_true, [value_if_false]), if
	74.1935483870968 less than 0.001,
	the answer is YES because it is
	true, while if 74.1935483870968
	not less than 0.001, the answer is
	NO because it is false
Evaluation:	So, the answer is NO because
IND	74.1935483870968 not less than
	0.001

Table 3.10: Steps of formula evaluation to find answer in the bisection method

3.5 INTERFACE EXCEL FILE

Interface is interaction between a user and a computer program. It is a display screen on computer when open that program file which the user can click, choose or type in the program. The design of interface will make the program easier and user friendly to use. In this excel file, the user are free to key in value and choose the type of data. This excel file consist of "INTERFACE", "INTERFACE(Graph)", "Graph", "Water", "Refrigerant134a", "Ammonia", "Propane", "Air" and "Friction Factor" worksheets.

A simplification of reading fluid properties.xlsx - Microsoft Exce A Times New F J Fill BIU Q Clea A SIMPLIFICATION OF READING FLUID PROPERTIES Referenc Table A Table B English unit Range of Temperature Value (°F) Range of Temp ire Value (°C) Type of Fluid Type of Fluid Lowest Value Highest Value 0.01 374.14 est Value | Highest Valu Los Water Water Refrigerant134a -40 100 Refrigerant134 -40 210 -40 Ammonia -120 180 90 Propane 200 Propane -150 2000 Air 000 0 10 Density (p, kg/m³) Dynamic Viscosity (µ, kg/m · s Kinematic Viscosity (v, m²/s) Temperature (°C) Type of Unit Type of Fluid Liquid Vapor Liquid Vapor Liquid Vapor Out of Ran Water Out of Range Out of Range Out of Range Out of Range Out of Rang SI Unit ep 1: Choose ner SI unit or Friction Factor, NOTE: Properties of water, refri nt-134a, ammonia and propane are in saturated condition while properties of air at 1 atm pres

3.5.1 Interface of Fluid Properties and Friction Factor

Figure 3.16: Default fluid properties part interface

Figure 3.16 show default fluid properties interface part to obtain density, dynamic viscosity and kinematic viscosity while table 3.11 show the description of interface where the user can key in the value, choose type of data and lastly seen the results. The results are obtain from data sheet in the worksheet "Water", "Refrigerant134a", "Ammonia", "Propane" and "Air" where the example data sheet of water shown in figure 3.17.

 Table 3.11: Description of fluid properties part interface

Cell	Description
Type of Unit	Choose type of unit either SI units or English units.
	Select by user
Type of Fluid	Choose type of fluid either water, refrigerant-134a,
	ammonia, propane or air. Select by user
Temperature	Key in temperature value. Define by user
Density	Results

Table 3.11: Continued

Cell	Description
Dynamic Viscosity	Results
Kinematic Viscosity	Results

Figure 3.17: Data sheet of water interface

	(u) •	Contraction of the local division of the loc		A simplification of rea	ding fluid properties.xlsx	- Microsoft Excel		1	- 0 ×
Home	insert Page Layo	out Formulas	Data Review	View					🕜 _ = ×
Paste Clipboar	t py mat Painter	Rom • 10 • A A A		ि Wrap Text हिंह बुद्धि Merge & Center Ignment	× % • 1 *:0	Conditional F Formatting * as Sty	ormat Cell Table - Styles - Ics	Insert Delete Format Cells	Σ AutoSum * Α Fill * Z A Clear * Soft & Find & Filter * Select * Editing
	FRICTION FA	CTOR		-	Step 4 For Me 6 - step For Me	: Choose either meth thod 1: Step 1 - step 7 - step 9 thod 2: Step 1 - step	od 1 or method 2 o 4 - step 5 - ste o 2 - step 3 - ste	2. p	
-	Reference Table C	T	6-2		4 - step	0 5 - step 6 - step 8 -	step 9	2	
	Material	Roughness, e (m)	Roughness, e (ft)	2020	Method	Method 1: Reynolds Number	0.0000	Step 5: Key in roug	hness
	Glass, plastic	0	0			Roughness, ε (m)		value (Refer table C)	
	Concrete	0.0009-0.009	0.003-0.03	1000	~	Diameter, D (m)		Step 6: Key in diam	eter
>	Wood stave	0.0005	0.0016	4	40.		0		
	Rubber, smoothed	0.00001	0.000033	1	Method 1: Reynolds Number	Reynolds Number		Step 7, If method Key in Reynolds Num	1: ber
	Copper or brass tubing	0.0000015	0.000005						
	Cast iron	0.00026	0.00085		Method 2: Equation (Re = $\rho VD/\mu$)	$Density\left(\rho,kg/m^{3}\right)$	Out of Range		
	Galvanized iron	0.00015	0.0005			Velocity, V (m/s)		Step 8, If method	2:
	Wrought iron	0.000046	0.00015			Dynamic Viscosity (µ, kg/m · s)	Out of Range	Key in velocity value	
	Stainless steel	0.000002	0.000007			$Re = \rho VD/\mu$	Not Available		(
	Commercial steel	0.000045	0.00015			11		Step 9: Set toleran	ce
		(Graph) Graph	Nater Refrigerant	134a / Ammonia / Pi	RESULT	Tolerance Friction Factor	0.001 #N/A	(Default: 0.001)	

Figure 3.18: Default friction factor part interface

Figure 3.18 show default friction factor interface part to obtain Darcy friction factor where figure 3.16 and 3.18 are in the same "INTERFACE" worksheet. For table 3.12, it shows the description of interface friction factor part. The results are obtained from "Friction Factor" worksheet shown in figure 3.19.

Cell	Description
Type of Unit	Choose type of unit either SI units or English units. To
	be select by user
Method	Choose method 1 or method 2. To be select by user
Roughness	Key in roughness value. User defined
Diameter	Key in diameter value. User defined
Reynolds number	Key in Reynolds number value. User defined
Density	Value obtain from fluid properties interface
Velocity	Key in velocity value. User defined
Dynamic Viscosity	Value obtain from fluid properties interface
$Re=\rho VD/\mu$	Value obtain from Microsoft Excel calculation
Tolerance	Set tolerance. User defined
Friction Factor	Result

 Table 3.12: Description of friction factor part interface

-) ~ (2 ~)•		_	A	sımplificati	on of readin	g tluid prop	erties.xlsx -	 Microsoft Excel 						
Home Inse	ert Page Layo	ut Formulas	Data Rev	iew Viev	v				26						
Cut Copy	Times New R	tom - 12 - A			Wrap T	lext	Text		✓ I≦tion	al Format		nsert D	elete Format	Σ AutoSum	Sort & F
🛿 Format Paint	er D 2 U			= [5% S%	and werge	& Center *	3 70	, 00	Formatting	* as Table * St	yles -	*	* *	📿 Clear 🕤	Filter * S
							Nun								
В	C	D	E	F	G	Н	1	1	к	L	M	N	0 P	Q	R
									_	1					
BISE	CTION N	IETHOD	TO FINI) DAR	CY FR	LICTIO	ON FA	CTO	R						
Iteration	xl	xr	xu	f(xl)	f(xr)	f(xu)	f(xl).f(xr)	Sign	E _a	Answer					
1	0.0080000000	0.0540000000	0.100000000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	-	-					
2	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
3	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
4	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
5	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
6	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
7	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
8	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
9	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
10	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
11	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
12	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
13	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
14	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
15	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
16	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
17	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
18	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
19	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
20	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
21	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
22	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
23	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
24	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
25	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
26	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
27	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					
28	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!					

Figure 3.19: Friction factor interface

3.5.2 Interface of Fluid Properties for Graph

) . · · ·	•		As	implification of reading	fluid properties.xlsx - Micr	osoft Excel				٥
Home In:	sert Page Layout	Formulas Data	Review View						C	0
Clipboard	Times New Rom * B Z U *		= = ≫- 5 = = i≢ 5≢ Alignme	FWrap Text Merge & Center - nt R	Text • • • • • • • • • • • • • •	Conditional Format Formatting - as Table Styles	Cell Styles -	elete Format τ τ Cells	AutoSum * A Fill * Sort & F Clear * Filter * So Editing	ind & elect *
		A SIMPLI	FICATION	OF READIN	NG FLUID PH	ROPERTIE	S			
1	Reference	and the second second			Reference					
	Table A				Table B					
1000	31 цац	Range of Tempe	rature Value (°C)		English tulit	Range of Tempe	rature Value (°F)	ř		
and the second second	Type of Fluid	Lowest Value	Highest Value		Type of Fluid	Lowest Value	Highest Value			
and the second	Water	0.01	374.14		Water	32.02	705.44			
	Refrigerant134a	-40	100		Refrigerant134a	-40	210			
	Ammonia	-40	100		Ammonia	-40	240			
	Propane	-120	90		Propane	-200	180			
-	Air	-150	2000	Sec.	Air	-300	4000			
	A STREET COLOR	00	>						and a second as	
Type of Unit	Type of Fluid	Step 3: Key in temperature value (Refer	Temperature	Density	(p, kg/m³)	Dynamic Viscosity (µ, kg/m · s)		Kinematic Viscosity (v, m²/s		
		table A or B).	((C)	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	
SI Unit	Water	to plot the graph		#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	
tep 1: Choose	Step 2: Choose type of fluid	0		#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	-
o C	Step	4: Click graph sheet to see the		#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	0
	graph			#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	2
IN TERFAC	INTERFACE(Grap	h) Graph Water	Refrigerant134a	Ammonia Propan	ie / Air / Enction Facto	1 22	4			

Figure 3.20: Default fluid properties interface for graph

Figure 3.20 shows default fluid properties for graph interface where it has ten cells for key in temperature value. The user is free to key in how much the number of temperature value until ten maximum values where the results used to plot the graph in

the "Graph" worksheet. Table 3.13 shows description of fluid properties for graph interface.

Cell	Description
Type of Unit	Choose type of unit either SI units or English units. To
	be select by user
Type of Fluid	Choose type of fluid either water, refrigerant-134a,
	ammonia, propane or air. To be select by user
Temperature	Key in temperature value. Define by user (maximum ten
	temperature value)
Density	Results
Dynamic Viscosity	Results
Kinematic Viscosity	Results

 Table 3.13: Description of fluid properties for graph interface

Figure 3.21: Graph interface

Figure 3.21 shows graph interface in the "Graph' worksheet. On the top interface shows type of unit and type of fluid where this guide can help the user. There are three graphs in this worksheet where the first graph is density versus temperature, second graph is dynamic viscosity versus temperature and third graph is kinematic viscosity versus temperature.

CHAPTER 4

RESULTS AND DISCUSSION

4.1 USER MANUAL

The user manual help the user how to use this excel file. By using this excel file, the user are simply to get value from property tables and obtain friction factor. This is the steps how to use this excel file:

i. Open the excel file and interface appear as shown in figure 4.1. This part to obtain fluid properties of density, dynamic viscosity and kinematic viscosity.

Figure 4.1: Interface for fluid properties

ii. Scroll down the excel file, interface for friction factor shown as figure 4.2.

Figure 4.2: Interface for friction factor

iii. Click this cell to choose either SI units or English units.

Type of Unit	Type of Fluid	d Temperature (°C)	Density (ρ, kg/m³)	Dynamic Visco	s <mark>ity (μ, kg/m · s)</mark>	Kinematic Viscosity (v, m²/s)		
			Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	
SI Unit	Water		Out of Range	Out of Range	Out of Range	Out of Range	Out of Range	Out of Range	
SI Unit English Unit English Unit	tep 2: Choose	Step 3: Key in temperature value (Refer table A or B)	For Moody Chart, Continue with Step 4	2	-	R	all and a second	A	
This c	ell								

Figure 4.3: Choose type of unit

iv. Click this cell to choose the type of fluid either water, refrigerant-134a, ammonia, propane or air.

Type of Unit	Type of Fluid	Temperature	Density (ρ, kg/m³)	Dynamic Visco	sity (μ <mark>, kg</mark> /m · s)	Kinematic Viscosity (v, m²/s)	
		(°C)	Liquid	Vapor	Vapor Liquid		Liquid	Vapor
SI Unit	Water 🔺		Out of Range	Out of Range	Out of Range	Out of Range	Out of Range	Out of Range
Step 1: Choose either SI unit or English Unit	Water Refrigerant134a Ammonia Propane Air	tep 3: Key in mperature lue (Refer table or B)	For Moody Chart, Continue with Step 4			Z	111	A
	This of	cell						

Figure 4.4: Choose type of fluid

v. Key in temperature value in this cell and press enter on keyboard. Refer table A or B for the range of temperature as shown in figure 4.6.

	Thi	s cell						
Type of Unit	Type of Fluid	Temperature	Density (ρ, kg/m³)	Dynamic Viscos	sity (µ, <mark>kg/m · s</mark>)	Kinematic Viscosity (v, m²/s)	
		(°C)	Liquid	Vapor	Liquid	Liquid Vapor		Vapor
SI Unit	Water	¥	Out of Range	Out of Range	Out of Range	Out of Range	Out of Range	Out of Range
Step 1: Choose either SI unit or English Unit	Step 2: Choose type of fluid	Step 3: Key in temperature value (Refer table A or B)	For Moody Chart, Continue with Step 4	Por le		S.	199	A

Figure 4.5: Key in temperature value

Reference Table A SI unit		R		Reference Table B English unit	0	
Town of Theid	Range of Temper	rature Value (°C)		True of Flyid	Range of Temper	rature Value (°F)
Type of Fluid	Lowest Value	Highest Value	0	Type of Fluid	Lowest Value	Highest Value
Water	0.01	374.14		Water	32.02	705.44
Refrigerant134a	-40	100		Refrigerant134a	-40	210
Ammonia	-40	100		Ammonia	-40	240
Propane	-120	90		Propane	-200	180
Air	-150	2000	900	Air	-300	4000

Figure 4.6: Reference table A and B

vi. The results for density, dynamic viscosity and kinematic viscosity appear as shown in figure 4.7.

				-1	Resul	ts		-	
Type of Unit	Type of Fluid	Temperature	Density (p	Density (p, kg/m³)		it <mark>y (μ, k</mark> g/m · s)	Kinematic Viscosity (v, m²/s)		
		(°C)	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	
SI Unit	Water	100	♥957.9000	♦ 0.5978	▼ 2.820E-04	▼1.227E-05	₹2.944E-07	₹2.053E-05	
Step 1: Choose either SI unit or English Unit	Step 2: Choose type of fluid	Step 3: Key in temperature value (Refer table A or B)	For Moody Chart, Continue with Step 4		- CA	R	-Ele	A	

Figure 4.7: The results appear

vii. To obtain friction factor, continue this step. Click this cell to choose either Method 1: Reynolds Number or Method 2: Equation ($\text{Re} = \rho \text{VD}/\mu$). Method I require the user to key in roughness, diameter and Reynolds number value while method 2 require the user to key in temperature, roughness, diameter and velocity value. For method 2, Reynolds number obtains from Microsoft Excel calculation where user must key in temperature and choose type of fluid in fluid properties part.

Step 4 For Me 6 - step For Me 4 - step	: Choose either metho thod 1: Step 1 - step 9 7 - step 9 thod 2: Step 1 - step 9 5 - step 6 - step 8 - s	od 1 or method 2. 9 4 - step 5 - step 9 2 - step 3 - step step 9		
Method	Method 1: Reynolds Number	0.0000	Step 5: Key in roughness	This cell
	Method 1: Reynolds Nu	iml	value (Refer table C)	
	Diameter D (m)		Step 6: Key in diameter	
		<	value	
Method 1: Reynolds Number	Reynolds Number		Step 7, If method 1: Key in Reynolds Number	
-				
Method 2: Equation (Re = ρ VD/ μ)	Density (p, kg/m³)	Out of Range		
	Velocity, V (m/s)		Step 8, If method 2:	
	Dynamic Viscosity (µ, kg/m · s)	Out of Range	Key in velocity value	
	$Re = \rho VD/\mu$	Not Available		
	11		(Charles Catholic and Ca	
-	Tolerance	0.001	(Default: 0.001)	
RESULT	Friction Factor	#N/A	RESULT	
	Field.			

Figure 4.8: Choose method 1 or method 2

viii. Key in roughness and diameter value in these cells. For roughness value, refer table C as shown in figure 4.10.

			These cells
Step 4 For Me 6 - step For Me 4 - step	Choose either method thod 1: Step 1 - step 4 7 - step 9 thod 2: Step 1 - step 5 5 - step 6 - step 8 - st	l 1 or method 2. 4 - step 5 - step 2 - step 3 - step ep 9	
Method	Method 1: Reynolds Number	0.0000	Step 5: Key in roughness
	Roughness, ε (m)	×	value (Refer table C)
	Diameter, D (m)	*	Step 6: Key in diameter

Figure 4.9: Key in roughness and diameter value

Reference Table C	T	
Material	Roughness, ε (m)	Roughness, ε (ft)
Glass, plastic	0	0
Concrete	0.0009-0.009	0.003-0.03
Wood stave	0.0005	0.0016
Rubber, smoothed	0.00001	0.000033
Copper or brass tubing	0.0000015	0.000005
Cast iron	0.00026	0.00085
Galvanized iron	0.00015	0.0005
Wrought iron	0.000046	0.00015
Stainless steel	0.000002	0.000007
Commercial steel	0.000045	0.00015

Figure 4.10: Table C

ix. If method 1, key in Reynolds number value in this cell. If method 2, skip to step x.

			This	cell	
Met	hod 1: Reynolds Number	Reynolds Number			Step 7, If method 1: Key in Reynolds Number

Figure 4.11: Key in Reynolds number

x. If method 2, key in velocity value in this cell.

Method 2: Equation (Re = ρVD/μ)	$Density\left(\rho,kg/m^3\right)$	Out of Range	This cell
	Velocity, V (m/s)		Step 8, If method 2: Key in velocity value
	Dynamic Viscosity (µ, kg/m · s)	Out of Range	
	$Re = \rho VD/\mu$	Not Available	

Figure 4.12: Key in velocity value

xi. Key in tolerance in this cell and press enter. The default value is set to 0.001. It is possible to change other value where the small tolerance, the more accurate the result value.

Figure 4.13: Key in tolerance

xii. The result for friction factor appears.

Figure 4.14: Result

vii. To plot graph for fluid properties, click worksheet "INTERFACE(Graph)" as shown in figure 4.15.

C	A-A simplification of reading fluid properties using microsoft excel								0 23	
Home	isert Page Layout	Formulas Data	Review View						(🔊 _ 🖙 🗙
Paste Format Pal	nter	· 12 · A A ■	E = ≥ ≫- E = E E E	∰ Wrap Text	General -	Conditional Format Formatting * as Table	Cell Styles *	Delete Format	AutoSum * A Fill * ZU U Clear * Filter * S	nd & elect *
E29	- (? fx	130								*
		A SIMPLI	FICATION	OF READI	NG FLUID PI	ROPERTIE	S]		^
	Reference				Reference					-
	Table A				Table B					
	SI unit		-		English unit					
	Type of Fluid	Range of Temper	rature Value (°C)		Type of Fhid	Range of Tempe	rature Value (°F)			
	Water	0.01	374.14		Water	32.02	705.44			_
	Refrigerant134a	-40	100		Refrigerant134a	-40	210	1		_
A CONTRACTOR	Ammonia	-40	100		Ammonia	-40	240			_
	Propane	-120	90		Propane	-200	180	1		
and the second second	Air	-150	2000	Sec.	Air	-300	4000	1		_
		100	•	Contraction of the second						
Type of Unit	Type of Unit Type of Fluid Step 3: Key in temperature Tem		Temperature	Density	/ (ρ, kg/m³)	Dynamic Visco	Dynamic Viscosity (µ, kg/m · s)		Kinematic Viscosity (v, m²/s)	
	table A or B).	((0)	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	States of the local division of the local di	
SI Unit	Water	to plot the graph	50	988.1000	0.0831	5.470E-04	1.062E-05	5.536E-07	1.278E-04	
Step 1: Choose either SI unit or English Unit	Step 2: Choose type of fluid	0	70	977.5000	0.1983	4.040E-04	1.126E-05	4.133E-07	5.678E-05	
o	Step	4: Click graph sheet to see the	90	965.3000	0.4235	3.150E-04	1.193E-05	3.263E-07	2.817E-05	-
	INTERFACE(Grap	h) Graph Water	Refrigerant134a	Ammonia Propa	ne / Air / Friction Pact	or / 🖭	4			

Figure 4.15: Interface for "INTERFACE(Graph)"

viii. Click this cell to choose either SI units or English units.

Figure 4.16: Choose type of unit

ix. Click this cell to choose type of fluid either water, refrigerant-134a, ammonia, propane or air.

Figure 4.17: Choose type of fluid

x. Key in temperature value in these cells. The user is free to define the number of temperature values until ten maximum.

Figure 4.18: Key in temperature value

xi. After finish key in temperature values, click worksheet "Graph" as shown in figure 4.19. The graphs appear.

Figure 4.19: Interface for graph

4.2 **RESULTS**

4.2.1 Result for Listed Value from Property Tables

The result for SI units and English units for listed value from the property tables that obtain from excel file has been taken. Each type of fluid, ten sample results has been taken from the range of temperature. Table 4.1 - 4.5 for SI units while table 4.6 - 4.10 for English units that shows the result for listed value obtains from excel file.

Temperature	Density (ρ, kg/m³)		Dynamic	Viscosity	Kinematic Viscosity		
			(µ, kg	/m · s)	$(v, m^2/s)$		
(C) _	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	
0.01	999.8	0.0048	1.792E-3	9.220E-6	1.792E-6	1.921E-3	
25	997.0	0.0231	8.910E-4	9.870E-6	8.937E-7	4.273E-4	
50	988.1	0.0831	5.470E-4	1.062E-5	5.536E-7	1.278E-4	
100	957.9	0.5978	2.820E-4	1.227E-5	2.944E-7	2.053E-5	
150	916.6	2.5460	1.830E-4	1.399E-5	1.997E-7	5.495E-6	
200	864.3	7.8520	1.340E-4	1.571E-5	1.550E-7	2.001E-6	
240	813.7	16.7300	1.110E-4	1.712E-5	1.364E-7	1.023E-6	
300	713.8	46.1500	8.600E-5	1.965E-5	1.205E-7	4.258E-7	
360	528.3	144.0000	6.000E-5	2.571E-5	1.136E-7	1.785E-7	
374.14	317.0	317.0000	4.300E-5	4.313E-5	1.356E-7	1.361E-7	

 Table 4.1: Result for saturated water

 Table 4.2: Result for saturated refrigerant – 134a

Temperature	Density (ρ, kg/m³)		Dynamic	Viscosity	Kinematic Viscosity		
			(µ, kg	/m · s)	(v, m²/s)		
(C)	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	
-40	1418.0	2.773	4.878E-4	2.550E-6	3.440E-7	9.196E-7	
-30	1389.0	4.429	4.178E-4	3.504E-6	3.008E-7	7.911E-7	
-20	1359.0	6.787	3.614E-4	4.651E-6	2.659E-7	6.853E-7	
0	1295.0	14.420	2.761E-4	7.471E-6	2.132E-7	5.181E-7	
20	1226.0	27.770	2.142E-4	1.075E-5	1.747E-7	3.871E-7	
40	1147.0	50.080	1.660E-4	1.408E-5	1.447E-7	2.812E-7	
60	1053.0	87.380	1.260E-4	1.704E-5	1.197E-7	1.950E-7	
80	928.2	155.300	9.011E-5	1.982E-5	9.708E-8	1.276E-7	
90	837.7	217.800	7.203E-5	2.187E-5	8.599E-8	1.004E-7	
100	651.7	376.300	4.765E-5	2.833E-5	7.312E-8	7.529E-8	
Tomorouting	Dongity	Donsity (a kg/m ³)		Dynamic Viscosity		Kinematic Viscosity	
-------------	-----------	--------------------------------	----------	-------------------	-----------	---------------------	--
	Density (р, кg/ш-)	(µ, kg	/m · s)	(v, m²/s)		
(()	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	
-40	690.2	0.6435	2.926E-4	7.957E-6	4.239E-7	1.237E-5	
-30	677.8	1.0370	2.630E-4	8.311E-6	3.880E-7	8.014E-6	
-20	665.1	1.6030	2.361E-4	8.669E-6	3.550E-7	5.408E-6	
0	638.6	3.4580	1.896E-4	9.405E-6	2.969E-7	2.720E-6	
20	610.2	6.7050	1.519E-4	1.017E-5	2.489E-7	1.517E-6	
40	579.4	12.0300	1.219E-4	1.099E-5	2.104E-7	9.135E-7	
60	545.2	20.4800	9.846E-5	1.189E-5	1.806E-7	5.806E-7	
80	505.7	33.8700	8.030E-5	1.292E-5	1.588E-7	3.815E-7	
90	482.8	43.4800	7.284E-5	1.354E-5	1.509E-7	3.114E-7	
100	456.6	56.1500	6.628E-5	1.429E-5	1.452E-7	2.545E-7	

Table 4.3: Result for saturated ammonia

 Table 4.4: Result for saturated propane

Tomporature	Donsity	Donsity (o. ka/m ³)		Viscosity	Kinematio	c Viscosity
	Density	(p, kg/m ⁻)	(µ, kg	/m · s)	(v, m²/s)	
(C)	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
-120	664.7	0.0141	6.136E-4	4.372E-6	9.231E-7	3.105E-4
-90	633.8	0.1870	3.635E-4	5.143E-6	5.735E-7	2.750E-5
-60	601.5	1.0810	2.430E-4	5.956E-6	4.040E-7	5.510E-6
-40	578.8	2.6290	1.926E-4	6.529E-6	3.328E-7	2.483E-6
-20	554.7	5.5030	1.551E-4	7.136E-6	2.796E-7	1.297E-6
0	528.7	10.3600	1.259E-4	7.794E-6	2.381E-7	7.523E-7
20	500.0	18.1300	1.022E-4	8.534E-6	2.044E-7	4.707E-7
50	448.5	38.7900	7.343E-5	9.950E-6	1.637E-7	2.565E-7
70	403.2	64.0200	5.649E-5	1.138E-5	1.401E-7	1.778E-7
90	329.1	118.6000	3.807E-5	1.448E-5	1.157E-7	1.221E-7

Tomporatura (°C)	Donsity (a kg/m3)	Dynamic Viscosity	Kinematic
Temperature (C)	Density (p, kg/m)	(μ, kg/m · s)	Viscosity (v, m ² /s)
-150	2.8660	8.636E-6	3.013E-6
-50	1.5820	1.474E-5	9.319E-6
0	1.2920	1.729E-5	1.338E-5
50	1.0920	1.963E-5	1.798E-5
100	0.9458	2.181E-5	2.306E-5
250	0.6746	2.760E-5	4.091E-5
500	0.4565	3.563E-5	7.806E-5
800	0.3289	4.362E-5	1.326E-4
1000	0.2772	4.826E-5	1.741E-4
2000	0.1553	6.630E-5	4.270E-4

 Table 4.5: Result for air at 1 atm pressure

 Table 4.6: Result for saturated water

Tomporatura	Donsity (Density (a lhm/ft^3)		Viscosity	Kinematio	c Viscosity
(°F)	Density (j	5, 10111/11 <i>)</i>	(µ, lbn	n/ft · s)	$(\mathbf{v}, \mathbf{ft}^2/\mathbf{s})$	
(F)	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
32.02	62.41	0.0003	1.204E-3	6.194E-6	1.929E-5	2.065E-2
70	62.30	0.0012	6.556E-4	6.556E-6	1.052E-5	5.701E-3
120	61.71	0.0049	3.744E-4	7.111E-6	6.067E-6	1.442E-3
200	60.12	0.0297	2.036E-4	8.083E-6	3.387E-6	2.722E-4
300	57.31	0.1545	1.236E-4	9.389E-6	2.157E-6	6.077E-5
400	53.65	0.5359	8.833E-5	1.066E-5	1.646E-6	1.989E-5
500	48.95	1.4790	6.833E-5	1.200E-5	1.396E-6	8.114E-6
550	45.96	4.2680	6.083E-5	1.280E-5	1.324E-6	2.999E-6
650	37.31	6.1520	4.639E-5	1.542E-5	1.243E-6	2.507E-6
705.44	19.79	19.7900	2.897E-5	2.897E-5	1.464E-6	1.264E-6

Temperature	Density (o, lbm/ft ³)	Dynamic	Viscosity	Kinematic Viscosity	
(°F)		, ,	(µ, lbn	n/ft · s)	$(\mathbf{v}, \mathbf{ft}^2/\mathbf{s})$	
(1)	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
-40	88.51	0.1731	3.278E-4	1.714E-6	3.704E-6	9.902E-6
-20	86.48	0.2905	2.762E-4	2.433E-6	3.194E-6	8.375E-6
0	84.38	0.4635	2.345E-4	3.314E-6	2.779E-6	7.150E-6
30	81.08	0.8660	1.883E-4	4.906E-6	2.322E-6	5.665E-6
60	77.51	1.5090	1.522E-4	6.725E-6	1.964E-6	4.457E-6
100	72.17	2.9350	1.149E-4	9.222E-6	1.592E-6	3.142E-6
140	65.72	5.4550	8.464E-5	1.144E-5	1.288E-6	2.097E-6
170	59.47	8.7620	6.450E-5	1.298E-5	1.085E-6	1.481E-6
190	53.75	12.5300	5.119E-5	1.431E-5	9.524E-7	1.142E-6
210	43.19	21.1800	3.483E-5	1.787E-5	8.064E-7	8.437E-7

 Table 4.7: Result for saturated refrigerant – 134a

Table 4.8: Result for saturated ammonia

Temperature	Density (a	Density (o. lbm/ft ³)		Viscosity	Kinematic Viscosity	
(°F)	Density (<i>,</i> 10111/10 <i>)</i>	(µ, lbn	n/ft · s)	$(\mathbf{v}, \mathbf{ft}^2/\mathbf{s})$	
(1)	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
-40	43.08	0.0402	1.966E-4	5.342E-6	4.564E-6	1.329E-4
-20	42.33	0.0681	1.764E-4	5.600E-6	4.125E-6	8.223E-5
0	41.34	0.1097	1.549E-4	5.861E-6	3.747E-6	5.343E-5
30	39.96	0.2075	1.290E-4	6.256E-6	3.228E-6	3.015E-5
60	38.50	0.3641	1.072E-4	6.656E-6	2.784E-6	1.828E-5
100	36.40	0.7060	8.397E-5	7.189E-6	2.307E-6	1.018E-5
140	34.04	1.2786	6.617E-5	7.731E-6	1.944E-6	6.046E-6
180	31.26	2.2346	5.278E-5	8.281E-6	8.281E-6	3.706E-6
210	28.70	3.4053	4.500E-5	8.703E-6	1.568E-6	2.556E-6
240	25.28	5.4197	3.864E-5	9.136E-6	1.528E-6	1.686E-6

Tommonotomo	Dongity (Donsity (a lbm/ft ³)		Viscosity	Kinematic Viscosity	
1 emperature	Density (), 10111/1t <i>)</i>	(µ, lbn	n/ft · s)	$(\mathbf{v}, \mathbf{ft}^2/\mathbf{s})$	
(Г)	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
-200	42.06	0.0003	5.012E-4	2.789E-6	1.192E-5	9.297E-3
-120	39.20	0.0170	2.252E-4	3.556E-6	5.745E-6	2.092E-4
-70	37.32	0.0793	1.569E-4	4.067E-6	4.204E-6	5.129E-5
-30	35.73	0.2041	1.217E-4	4.497E-6	3.406E-6	2.203E-5
0	34.46	0.3703	1.018E-4	4.842E-6	2.954E-6	1.308E-5
30	33.10	0.6259	8.561E-5	5.211E-6	2.586E-6	8.326E-6
70	31.11	1.1659	6.794E-5	5.764E-6	2.184E-6	4.944E-6
120	28.13	2.3562	5.000E-5	6.644E-6	1.777E-6	2.820E-6
160	24.98	4.1145	3.733E-5	7.719E-6	1.494E-6	1.876E-6
180	22.79	5.6265	3.083E-5	8.617E-6	1.353E-6	1.532E-6

 Table 4.9: Result for saturated propane

 Table 4.10: Result for air at 1 atm pressure

Tomporature (°F)	Dangity (a lbm/ft ³)	Dynamic Viscosity	Kinematic
Temperature (F)	Density (p, 10m/1t)	$(\mu, lbm/ft \cdot s)$	Viscosity (v, ft ² /s)
-300	0.2484	4.039E-6	1.625E-5
-50	0.0968	1.006E-5	1.039E-4
0	0.0863	1.102E-5	1.278E-4
100	0.0709	1.281E-5	1.809E-4
200	0.0601	1.446E-5	2.406E-4
500	0.0413	1.878E-5	4.544E-4
1000	0.0272	2.467E-5	9.080E-4
1500	0.0202	2.957E-5	1.460E-3
2000	0.0161	3.379E-5	2.095E-3
4000	0.0089	4.651E-5	5.229E-3

4.2.2 Result for Unlisted Value from Property Tables

The result for SI units and English units for unlisted value from the table that obtain from excel file has been taken. Each type of fluid, ten sample results has been taken from the range of temperature. Table 4.11 - 4.15 for SI units while table 4.16 - 4.20 for English units that shows the result for interpolation value obtains from excel file.

Tomporatura	Donsity ($a ka/m^{3}$	Dynamic	Viscosity	Kinematic Viscosity	
(°C)	Density (р, к <u>g</u> /ш)	$(\mu, kg/m \cdot s)$		(v, m²/s)	
(C)	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
1	999.8198	0.0052	1.738E-3	9.244E-6	1.738E-6	1.812E-3
23	997.4000	0.0208	9.354E-4	9.814E-6	9.378E-7	4.813E-4
47	989.3000	0.0725	5.764E-4	1.052E-5	5.826E-7	1.469E-4
99	958.6200	0.5791	2.850E-4	1.224E-5	2.973E-7	2.122E-5
146	918.6400	2.3136	1.886E-4	1.385E-5	2.053E-7	6.076E-6
201	863.1000	8.0394	1.334E-4	1.575E-5	1.545E-7	1.971E-6
254	792.7000	21.6020	1.047E-4	1.765E-5	1.320E-7	8.353E-7
302	709.1300	47.9920	8.520E-5	1.977E-5	1.201E-7	4.155E-7
348	577.6200	113.1720	6.600E-5	2.381E-5	1.142E-7	2.175E-7
374	319.0921	315.2871	4.317E-5	4.296E-5	1.354E-7	1.365E-7

Table 4.11: Result for saturated water

	Danaita	Donsity (a kg/m ³)		Viscosity	Kinematic Viscosity	
	Density	р, кg/ш ⁻)	(μ, kg	/m · s)	(v, m²/s)	
(()	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
-39	1415.00	2.9232	4.804E-4	2.641E-6	3.395E-7	9.061E-7
-31	1391.80	4.2480	4.244E-4	3.404E-6	3.049E-7	8.034E-7
-17	1349.40	7.6876	3.468E-4	5.037E-6	2.570E-7	6.574E-7
-2	1301.40	13.4800	2.835E-4	7.166E-6	2.178E-7	5.332E-7
18	1233.20	26.1620	2.198E-4	1.042E-5	1.782E-7	3.993E-7
44	1129.40	56.1440	1.575E-4	1.470E-5	1.395E-7	2.624E-7
57	1068.00	80.6180	1.317E-4	1.662E-5	1.233E-7	2.068E-7
83	903.54	171.5000	8.479E-5	2.035E-5	9.378E-8	1.192E-7
96	748.34	290.7000	5.905E-5	2.463E-5	7.873E-8	8.546E-8
99	675.86	354.9000	5.050E-5	2.740E-5	7.452E-8	7.783E-8

 Table 4.12: Result for saturated refrigerant – 134a

 Table 4.13: Result for saturated ammonia

Tomporatura	Dongity	Density (o. kg/m ³)		Viscosity	Kinematic Viscosity	
(°C)	Density (р, кg/m ⁻)	(µ, kg	/m · s)	$(v, m^2/s)$	
(C)	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
-38	687.72	0.7222	2.867E-4	8.028E-6	4.168E-7	1.150E-5
-32	680.28	0.9583	2.689E-4	8.240E-6	3.952E-7	8.885E-6
-19	663.80	1.6756	2.336E-4	8.705E-6	3.519E-7	5.227E-6
1	637.22	3.5896	1.876E-4	9.443E-6	2.943E-7	2.642E-6
17	614.58	6.1194	1.571E-4	1.005E-5	2.556E-7	1.652E-6
43	574.54	13.0920	1.181E-4	1.112E-5	2.055E-7	8.528E-7
64	537.84	22.7040	9.447E-5	1.208E-5	1.756E-7	5.333E-7
86	492.16	39.3840	7.574E-5	1.328E-5	1.539E-7	3.380E-7
92	477.76	45.8280	7.149E-5	1.368E-5	1.496E-7	2.994E-7
98	462.04	53.43	6.755E-5	1.413E-5	1.462E-7	2.653E-7

Tommonotomo	Donaity	Donsity (a kg/m3)		Viscosity	Kinematio	e Viscosity
1 emperature	Density	(p, kg/m ⁻)	(μ, kg	/m · s)	$(v, m^2/s)$	
(())	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
-117	661.64	0.0212	5.811E-4	4.448E-6	8.778E-7	2.541E-4
-93	636.92	0.1575	3.820E-4	5.064E-6	5.995E-7	3.576E-5
-64	605.90	0.9062	2.568E-4	5.846E-6	4.236E-7	6.834E-6
-39	577.62	2.7525	1.906E-4	6.559E-6	3.299E-7	2.412E-6
-22	557.16	5.1752	1.586E-4	7.074E-6	2.846E-7	1.391E-6
3	524.56	11.3380	1.221E-4	7.900E-6	2.327E-7	6.998E-7
18	503.00	17.2180	1.044E-4	8.456E-6	2.075E-7	4.929E-7
56	435.90	45.3120	6.829E-5	1.033E-5	1.565E-7	2.304E-7
71	400.18	66.0460	5.563E-5	1.149E-5	1.389E-7	1.748E-7
88	337.88	111.7360	4.004E-5	1.408E-5	1.182E-7	1.273E-7

Table 4.14: Result for saturated propane

Table 4.15: Result for air at 1 atm pressure

Tomporature (°C)	Dongity (o lyg/m3)	Dynamic Viscosity	Kinematic
Temperature (°C)	Density (p, kg/m ⁻)	(μ, kg/m · s)	Viscosity (v, m ² /s)
-147	2.8163	8.189E-6	3.182E-6
-51	1.5911	1.447E-5	9.249E-6
2	1.2828	1.739E-5	1.356E-5
49	1.0954	1.959E-5	1.788E-5
103	0.9386	2.193E-5	2.338E-5
254	0.6699	2.774E-5	4.145E-5
506	0.4534	3.580E-5	7.909E-5
757	0.3434	4.254E-5	1.243E-4
1245	0.2389	5.312E-5	2.320E-4
1983	0.1568	6.602E-5	4.224E-4

Tomporature	Dongity (hm/ft^3	Dynamic	Viscosity	Kinematio	e Viscosity	
1 emperature	Density (j), 10111/1t <i>)</i>	(µ, lbn	n/ft · s)	$(\mathbf{v}, \mathbf{ft}^2/\mathbf{s})$		
(1)	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	
33	62.4112	0.0003	1.217E-3	6.204E-6	1.950E-5	2.038E-2	
73	62.2760	0.0013	6.318E-4	6.589E-6	1.015E-5	5.256E-3	
116	61.7700	0.0045	3.898E-4	7.067E-6	6.310E-6	1.608E-3	
211	59.8450	0.0366	1.906E-4	8.236E-6	3.184E-6	2.251E-4	
294	57.5020	0.2652	1.268E-4	9.306E-6	2.205E-6	4.068E-5	
393	53.9335	0.4980	9.018E-5	1.057E-5	1.672E-6	2.145E-5	
489	49.5022	1.3534	7.029E-5	1.185E-5	1.419E-6	9.066E-6	
577	43.9944	3.9807	5.708E-5	1.334E-5	1.296E-6	3.374E-6	
658	35.7052	7.3181	4.443E-5	1.622E-5	1.245E-6	2.349E-6	
705	20.3958	19.2764	2.939E-5	2.828E-5	1.447E-6	1.468E-6	

Table 4.16: Result for saturated water

 Table 4.17: Result for saturated refrigerant – 134a

Tommonotomo	Domoitry ((e_4^3)	Dynamic	Viscosity	Kinematic Viscosity			
(° F)	Density (j	J, IDIII/I ()	(µ, lbn	n/ft · s)	$(\mathbf{v}, \mathbf{ft}^2/\mathbf{s})$			
(F)	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor		
-38	88.3080	0.1836	3.223E-4	1.782E-6	3.649E-6	9.740E-6		
-23	86.7860	0.2711	2.835E-4	2.319E-6	3.266E-6	8.590E-6		
-1	84.4860	0.4541	2.365E-4	3.268E-6	2.799E-6	7.209E-6		
27	81.4160	0.8190	1.925E-4	4.737E-6	2.364E-6	5.802E-6		
64	77.0060	1.6230	1.481E-4	6.977E-6	1.923E-6	4.314E-6		
111	70.5340	3.4927	1.060E-4	9.871E-6	1.503E-6	2.830E-6		
135	66.6000	5.0670	8.820E-5	1.118E-5	1.324E-6	2.215E-6		
182	56.2300	10.8260	5.657E-5	1.379E-5	1.006E-6	1.279E-6		
206	45.8140	18.9360	3.849E-5	1.690E-5	8.374E-7	9.029E-7		
209	43.8460	20.6150	3.574E-5	1.763E-5	8.142E-7	8.585E-7		

Temperature	Density (ρ, lbm/ft ³)		Dynamic	Viscosity	Kinematio	· Viscosity
(° F)) /	(µ, lbn	n/ft · s)	(v, f	t^2/s)
	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
-37	42.9540	0.0440	1.932E-4	5.381E-6	4.498E-6	1.242E-4
-26	42.5280	0.0589	1.810E-4	5.523E-6	4.256E-6	9.519E-5
-2	41.4300	0.1051	1.568E-4	5.835E-6	3.785E-6	5.593E-5
34	39.7680	0.2253	1.259E-4	6.309E-6	3.166E-6	2.823E-5
63	38.3470	0.3848	1.053E-4	6.695E-6	2.745E-6	1.750E-5
109	35.8870	0.8116	7.952E-5	7.311E-6	2.216E-6	9.026E-6
148	33.5200	1.4341	6.319E-5	7.840E-6	1.885E-6	5.482E-6
187	30.7070	2.4673	5.083E-5	8.378E-6	1.655E-6	3.408E-6
198	29.7900	2.8756	4.794E-5	8.533E-6	1.609E-6	2.975E-6
231	231 25.5410		4.044E-5	9.004E-6	1.583E-6	1.028E-6

Table 4.18: Result for saturated ammonia

 Table 4.19: Result for saturated propane

Temperature	Density (p	o, lbm/ft ³)	Dynamic	Viscosity	Kinematic Viscosity		
(° F)			(µ, 101	1/1t · s)	(v, it /s)		
	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	
-189	41.6750	0.0007	4.423E-4	2.891E-6	1.060E-5	5.671E-3	
-135	39.7475	0.0101	2.558E-4	3.408E-6	6.432E-6	3.752E-4	
-83	37.8140	0.0559	1.714E-4	3.930E-6	4.533E-6	7.138E-5	
-38	36.0500	0.1721	1.279E-4	4.408E-6	3.546E-6	2.579E-5	
-7	34.7610	0.3255	1.061E-4	4.760E-6	3.051E-6	1.472E-5	
38	32.7160	0.7144	8.177E-5	5.316E-6	2.499E-6	7.468E-6	
64	31.4220	1.0691	7.038E-5	5.676E-6	2.239E-6	5.332E-6	
132	27.2660	2.8027	4.615E-5	6.924E-6	1.691E-6	2.504E-6	
161	161 24.8705 4.19		3.701E-5	7.764E-6	1.487E-6	1.859E-6	
176	23.2280	5.321	3.213E-5	8.437E-6	1.381E-6	1.600E-6	

Tomponotuno (°E)	Dangity (a lbm/ft ³)	Dynamic Viscosity	Kinematic
Temperature (F)	Density (p, 1011/11)	$(\mu, lbm/ft \cdot s)$	Viscosity (v, ft ² /s)
-272	0.2216	4.804E-6	2.411E-5
-59	0.0993	9.877E-6	9.995E-5
36	0.0800	1.169E-5	1.461E-4
121	0.0683	1.318E-5	1.929E-4
217	0.0587	1.473E-5	2.515E-4
488	0.0419	1.862E-5	4.450E-4
943	0.0283	2.405E-5	8.514E-4
1395	0.0217	2.854E-5	1.344E-3
2273	0.0146	3.582E-5	2.479E-3
3804	0.0093	4.545E-5	4.893E-3

Table 4.20: Result for air at 1 atm pressure

4.2.3 Result for Darcy Friction Factor

There are two methods as the input to obtain Darcy friction factor. For each method, ten sample results have been taken where results for method 1 considered for SI units while result for method 2 considered for English units. Table 4.21 shows the result for Darcy friction factor using method 1 while table 4.22 shows the result for Darcy friction factor using method 2. For method 2, considered type of fluid is water and temperature equal to 70° F.

Type of	Roughness,	Diameter, D	Reynolds Number,	Friction
Material	ε (m)	(m)	Re	Factor
Glass, plastic	0	0.015	5000	0.0373922424
Concrete	0.0009	0.020	7000	0.0715237427
Wood stave	0.0005	0.025	10000	0.0522747192
Rubber, smoothed	0.00001	0.040	20000	0.0264232330
Copper or brass tubing	0.0000015	0.050	50000	0.0209996185
Cast iron	0.00026	0.080	100000	0.0280039215
Galvanized iron	0.00015	0.100	200000	0.0228028107
Wrought iron	0.000046	0.150	500000	0.0163272171
Stainless steel	0.000002	0.200	1000000	0.0118694229
Commercial steel	0.000045	0.250	30000000	0.0134797668

 Table 4.21: Result for Darcy friction factor using method 1

Table 4.22: Result for Darcy friction factor using method 2

Type of	Roughness,	Diameter,	Velocity,	Reynolds	Friction
Material	ε (ft)	D (ft)	(ft/s)	Number, Re	Factor
Glass, plastic	0	0.083	3.5	27605.4759	0.0239483185
Concrete	0.003	0.167	3.6	57130.5064	0.0474189453
Wood stave	0.0016	0.250	3.8	90276.0830	0.0336535492
Rubber, smoothed	0.000033	0.333	4.0	126576.5711	0.0171970520
Copper or brass tubing	0.000005	0.417	4.4	174356.3758	0.0161561279
Cast iron	0.00085	0.500	4.7	223314.5210	0.0233334503
Galvanized iron	0.0005	0.583	5.1	282545.1342	0.0200527496
Wrought iron	0.00015	0.667	5.5	348608.2215	0.0161831512
Stainless steel	0.000007	0.833	6.5	514526.1592	0.0132140961
Commercial steel	0.00015	1.000	8.5	807733.3740	0.0143276672

4.3 VALIDATION OF EXCEL FILE

Validation result is important part to prevent the result from excel file different with manual reading and manual calculation. A few samples of manual reading or manual calculation results have been taken to compare with excel file results.

4.3.1 Manual Reading from Property Tables

For manual reading from property tables, 6 samples of manual reading have been taken where 3 samples for SI units and 3 sample for English units. This samples result compare with excel file result to investigate the result. Table 4.23 - 4.25 shows the result for SI units while table 4.26 - 4.28 shows the result for English units.

 Table 4.23: Result from manual reading and excel file for temperature equal to 100°C and type of fluid is saturated water

Excel	File
-------	------

Type of Unit	Type of Fluid	Temperature	Density (Density (p, kg/m³)		sity (μ, kg/m · s)	Kinematic Viscosity (v, m²/s)		
		(°C)	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	
SI Unit	Water	100	957.9000	0.5978	2.820E-04	1.227E-05	2.944E-07	2.053E-05	

Table 4.24: Result from manual reading and excel file for temperature equal to 80°C
and type of fluid is saturated refrigerant-134a

						Ι	Aanu	al Rea	ading					
Temp.	Sp Saturation Density of Η mp. Pressure ρ, kg/m ³ Vaporization <u>Cp</u> .		Sре Н 1_ <i>с_р, J</i>	cific eat /kg · K	Thermal Conductivity Dynamic K <u>k,</u> W/m · K µ, kg		Dynamic Viscosity μ, kg/m · s		andtl mber 'r	Volume Expansion Coefficient Su	Surface Tension,			
<i>T</i> , ℃	P, kPa	Liquid	Vapor	h _{fg} , kJ/kg	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	N/m
80	2635.2	928.2	155.3	106.4	2056	1948	0.0521	0.02133	$9.011 imes 10^{-5}$	$1.982 imes 10^{-5}$	3.558	1.810	0.01031	0.00160
							Ex	cel Fi	le					

Type of Unit	Type of Fluid	Temperature	Density ($(\rho, kg/m^3)$	Dynamic Viscos	ity (μ, kg/m · s)	Kinematic Viscosity (v, m²/s)		
		(°C)	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	
SI Unit	J nit Refrigerant134a 80		928.2000	155.3000	9.011E-05	1.982E-05	9.708E-08	1.276E-07	

Table 4.25: Result from manual reading and excel file for temperature equal to 5°C and type of fluid is saturated ammonia

	Manual Reading													
Temp.	Saturation	De ρ, Ι	nsity kg/m ³	Enthalpy of Vaporizatio	Spe He n <i>c_p</i> , J	cific eat /kg · K	Th Cond <i>k</i> , W	ermal uctivity //m · K	Dynamic μ, kg/r	Viscosity n.∙s	Prai Nur F	ndtl nber Pr	Volume Expansion Coefficient B. I/K	Surface Tension,
<i>T</i> , ℃	<i>P</i> , kPa	Liquid	Vapor	h _{fg} , kJ/kg	Liquid	l Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	N/m
5	516	631.7	4.116	1244	4645	2749	0.5274	0.02341	$1.794 imes10^{-4}$	$9.593 imes 10^{-6}$	1.580	1.126	0.00223	0.02566

Type of Unit	Type of Fluid	Temperature	Density ($(\rho, kg/m^3)$	Dynamic Viscos	sity (μ, kg/m · s)	Kinematic Viscosity (v, m²/s)		
		(°C)	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	
SI Unit	Ammonia	5	631.7000	4.1160	1.794E-04	9.593E-06	2.840E-07	2.331E-06	

Table 4.26: Result from manual reading and excel file for temperature equal to 600°F
and type of fluid is saturated water

	Manual Reading													
Temp.	Saturation Pressure	Density $ ho$, lbm/ft ³		Enthalpy of Vaporization	Specific Heat c₀, Btu/Ibm·R		Thermal Conductivity k, Btu/h-ft- R		Dynamic Viscosity µ, Ibm/ft⋅s		Prandtl Number Pr		Volume Expansion Coefficient B. 1/R	
<i>T</i> , °F	P _{sat} , psia	Liquid	Vapor	h _{fg} , Btu/Ibm	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	
600	1541	42.32	3.736	550	1.509	1.759	0.299	0.0461	$5.389 imes10^{-5}$	$1.380 imes10^{-5}$	0.979	1.90	$1.883 imes 10^{-3}$	
							Excel	File						

Type of Unit	Type of Fluid	Temperature	Density (ρ, lbm/ft³)	Dynamic Viscos	ity (μ, lbm/ft · s)	Kinematic Viscosity (v, ft²/s)		
		(**)	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	
English Unit	Water	600	42.3200	3.7360	5.389E-05	1.380E-05	1.273E-06	3.694E-06	

Table 4.27: Result from manual reading and excel file for temperature equal to-120°F and type of fluid is saturated propane

	Manual Reading													
Temp.	Saturation Pressure	Der p, II	nsity bm/ft ³	Enthalpy of Vaporization	Spe He c _p , Bt	ecific eat tu/Ibm∙R	The Cond k, Bt	ermal uctivity u/h•ft•R	Dynamie μ, II	c Viscosity bm/ft·s	Pra Nu	andtl mber Pr	Volume Expansion Coefficient β, 1/R	Surface Tension
<i>T</i> , °F	P _{sat} , psia	Liquid	Vapor	h _{ig} , Btu/Ibm	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	lbf/ft
-120	1.389	39.20	0.0170	200.5	0.4982	0.2971	0.0906	0.00465	2.252×10^{-4}	3.556×10^{-6}	4.457	0.817	0.00094	0.001455

Excel File

Type of Unit	Type of Fluid	Temperature	Density (ρ, lbm/ft³)	Dynamic Viscos	ity (μ, lbm/ft · s)	Kinematic Viscosity (v, ft²/s)		
		(**)	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	
English Unit	Propane	-120	39.2000	0.0170	2.252E-04	3.556E-06	5.745E-06	2.092E-04	

	Manual Reading											
	Temp. <i>T</i> , °F	Density $ ho$, Ibm/ft ³	Specific Heat c₀, Btu/Ibm⋅R	Thermal Conductivity <i>k</i> , Btu/h·ft·R	Thermal Diffusivity α , ft ² /s	Dynar Viscos μ , Ibm	nic I sity /ft·s	Kinematic Viscosity ν, ft²/s	Prandtl Number Pr			
200 0.06013		0.2409	0.01761 3.377 × 10 ⁻		1.446 × 1	0 ⁻⁵ 2.406	$6 imes 10^{-4}$	0.7124				
]	Excel File							
		-		-				1				
	Type of Unit	Type of Flu	id Temperature	Densi	ty (ρ, lbm/ft³)	Dynamic Viscos	ity (μ, lbm/ft · s)	Kinematic Vi	scosity (v, ft²/s)			

Gas

0.0601

Table 4.28: Result from manual reading and excel file for temperature equal to 200°Fand type of fluid is air at 1 atm pressure

From table 4.23 - 4.28, almost all the results for manual reading and excel file shows the same result. Only one result shows the different result but the different only occur for value decimal places. From observations, result from manual tables shows not consistently decimal places for density while for dynamic viscosity show three decimal places. From excel file, result for density only set four decimal places while for dynamic viscosity and kinematic viscosity set three decimal places.

From the results for manual reading and excel file, if the error below 5 %, the result accepted. The equation to calculate error is:

$$Error = \left| \frac{Excel file-Manual reading}{Manual reading} \right| \times 100 \%$$
(4.1)

Gas

1.446E-05

Gas 2.406E-04

Sample calculation:

English Unit

Air

200

From table 4.24, the result from manual reading vapor dynamic viscosity equal to 1.982E-5 kg/m³ while the result from excel equal to 1.982E-5 kg/m³.

$$Error = \left| \frac{(1.982E - 5) - (1.982E - 5)}{(1.982E - 5)} \right| \times 100 \% = 0 \%$$

	Error (%)											
Table No	Den	sity	Dynamic Viscosity									
	Liquid	Vapor	Liquid	Vapor								
4.23	0	0	0	0								
4.24	0	0	0	0								
4.25	0	0	0	0								
4.26	0	0	0	0								
4.27	0	0	0	0								
4.28	0.05	0	0	0								

Table 4.29: Error for manual reading and excel file result

Table 4.29 show the error results for manual reading and excel file results. From observations, all the error results are below 5 % where almost all the results show the same result. From property tables, there are no data for kinematic viscosity, where the data obtain from equation $v = \mu / \rho$. However, from excel file the data for kinematic viscosity are already calculated and stated in the data sheet.

4.3.2 Manual Interpolation Calculation

For manual interpolation calculation for unlisted value from property tables, 6 samples of manual interpolation calculation have been taken where 3 samples for SI units and 3 sample for English units. This samples result compare with excel file result to investigate the result. Table 4.30 - 4.32 shows the result for SI units while table 4.33 - 4.35 shows the result for English units.

This sample manual interpolation calculation to find density for liquid value and type of fluid is saturated water. This calculation based on temperature equal to 73°C and for SI units. The step manual interpolation calculation is:

Temp	Saturation Pressure	Dei p, l	nsity vg/m ³	Enthalpy of Vaporization	Specifi Heat _{cp} , J/kg	с - К	The Condu k, W/	rmal ctivity m · k	Dynamic µ, kj	: Viscosity g/m ⋅ s	Pra Nun P	ndtl nber r	Volume Expansion Coefficient β, 1/K
<i>T</i> , ℃	<i>P</i> _{sat} , kPa	Liquid	Vapor	<i>h</i> fg, kJ/kg	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid
0.01 5 10 15 20 25 30 35 40 45 55 60 65	0.6113 0.8721 1.2276 1.7051 2.339 3.169 4.246 5.628 7.384 9.593 12.35 15.76 19.94 25.03	999.8 999.9 999.7 999.1 998.0 997.0 996.0 992.1 990.1 988.1 985.2 988.3 985.2	0.0048 0.0068 0.0094 0.0128 0.0173 0.0231 0.0304 0.0397 0.0512 0.0655 0.0831 0.1045 0.1304 0.1614	2501 2490 2478 2466 2454 2431 2419 2407 2395 2383 2371 2359 2346	4217 4205 4194 4185 4182 4180 4178 4178 4179 4180 4181 4183 4185 4187	1854 1857 1862 1863 1867 1870 1875 1880 1885 1892 1900 1908 1916 1926	0.561 0.571 0.580 0.598 0.607 0.615 0.623 0.631 0.631 0.637 0.644 0.649 0.654	0.0171 0.0173 0.0176 0.0179 0.0182 0.0186 0.0189 0.0192 0.0190 0.0200 0.0204 0.0208 0.0212 0.0216	$\begin{array}{c} 1.792 \times 10^{-3} \\ 1.519 \times 10^{-3} \\ 1.307 \times 10^{-3} \\ 1.138 \times 10^{-3} \\ 1.022 \times 10^{-3} \\ 0.891 \times 10^{-3} \\ 0.798 \times 10^{-3} \\ 0.653 \times 10^{-3} \\ 0.653 \times 10^{-3} \\ 0.596 \times 10^{-3} \\ 0.504 \times 10^{-3} \\ 0.467 \times 10^{-3} \\ 0.473 \times 10^{-3} \end{array}$	$\begin{array}{c} 0.922 \times 10^{-5} \\ 0.934 \times 10^{-5} \\ 0.946 \times 10^{-5} \\ 0.959 \times 10^{-5} \\ 0.973 \times 10^{-5} \\ 0.987 \times 10^{-5} \\ 1.001 \times 10^{-5} \\ 1.016 \times 10^{-5} \\ 1.046 \times 10^{-5} \\ 1.062 \times 10^{-5} \\ 1.077 \times 10^{-5} \\ 1.110 \times 10^{-5} \end{array}$	13.5 11.2 9.45 8.09 7.01 6.14 5.42 4.83 4.32 3.91 3.55 3.25 2.99 2.75	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	$\begin{array}{c} -0.068 \times 10^{-3} \\ 0.015 \times 10^{-3} \\ 0.733 \times 10^{-3} \\ 0.193 \times 10^{-3} \\ 0.195 \times 10^{-3} \\ 0.294 \times 10^{-3} \\ 0.377 \times 10^{-3} \\ 0.377 \times 10^{-3} \\ 0.415 \times 10^{-3} \\ 0.445 \times 10^{-3} \\ 0.484 \times 10^{-3} \\ 0.517 \times 10^{-3} \\ 0.517 \times 10^{-3} \end{array}$
70 75 80	31.19 38.58 47.39	977.5 974.7 971.8	0.1983 0.2421 0.2935	2334 2321 2309	4190 4193 4197	1936 1948 1962	0.663 0.667 0.670	0.0221 0.0225 0.0230	$\begin{array}{l} 0.404 \times 10^{-3} \\ 0.378 \times 10^{-3} \\ 0.355 \times 10^{-3} \end{array}$	$\begin{array}{c} 1.126 \times 10^{-5} \\ 1.142 \times 10^{-5} \\ 1.159 \times 10^{-5} \end{array}$	2.55 2.38 2.22	1.00 1.00 1.00	$0.578 imes 10^{-3} \\ 0.607 imes 10^{-3} \\ 0.653 imes 10^{-3}$

Figure 4.20: Properties of saturated water

Source: Cengel and Cimbala (2006)

From figure 4.20, the temperature equal to 73° C is between 70° C and 75° C. The new density for liquid value refer to letter y while new temperature value refer to letter x. x0 and y0 refer the lower value than x and y value while x1 and y1 is the higher value than x and y value. The x, x0, x1, y0 and y1 are the known value. So, the equation to known y value is:

$$\frac{(y-y0)}{(x-x0)} = \frac{(y1-y0)}{(x1-x0)}$$
$$(y-y0) = (x-x0)\left(\frac{y1-y0}{x1-x0}\right)$$
$$y = y0 + (x-x0)\left(\frac{y1-y0}{x1-x0}\right)$$
$$y = 977.5 + (73-70)\left(\frac{974.7-977.5}{75-70}\right)$$

 $y = 975.82 \text{ kg/m}^3$

Density (liquid), $\rho = 975.82 \text{ kg/m}^3$

	Manual Interpolation Calculation												
Torrangersturg	Donaity	$(a lra/m^3)$	Dynamic	viscosity	Kinematic Viscosity								
(°C)	Density (p, kg/m ⁻)		$(\mu, kg/m \cdot s)$		$(v, m^2/s)$								
(0)	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor							
73	975.82	0.22458	3.884E-4	1.1356E-5	3.98E-7	5.1014E-5							
]	Excel File										

Table 4.30: Result from manual interpolation calculation and excel file for temperatureequal to 73°C and type of fluid saturated water

Type of Unit	Type of Fluid	Temperature (°C)	Density (p, kg/m³)		Dynamic Viscosity (µ, kg/m · s)		Kinematic Viscosity (v, m²/s)	
			Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
SI Unit	Water	73	975.8200	0.2246	3.884E-04	1.136E-05	3.980E-07	5.102E-05

Table 4.31: Result from manual interpolation calculation and excel file for temperatureequal to -29°C and type of fluid saturated refrigerant-134a

	Manual Interpolation Calculation												
Temperature	Density ($k a/m^3$	Dynamic	Viscosity	Kinematic Viscosity								
(°C)	ture Density (p, kg/m)		(μ, kg/	m · s)	$(v, m^2/s)$								
(0)	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor							
-29	1386	4.645	4.1188E-4	3.614E-6	2.9714E-7	7.8006E-7							
			Excel File										

Type of Unit	Type of Fluid	Temperature (°C)	Density (p, kg/m³)		Dynamic Viscosity (µ, kg/m · s)		Kinematic Viscosity (v, m²/s)	
			Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
SI Unit	Refrigerant134a	-29	1386.0000	4.6450	4.119E-04	3.614E-06	2.971E-07	7.801E-07

	Manual Interpolation Calculation												
T	Dongity ($a \frac{1}{2} \left(\frac{1}{2} \frac{m^3}{m^3} \right)$	Dynamic	Viscosity	Kinematic Viscosity								
(°C)	Density (p, kg/m ⁻)		(µ, kg	/m · s)	$(v, m^2/s)$								
(0)	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor							
52	559.42	16.668	1.0712E-4	1.1522E-5	1.9148E-7	6.937E-7							
	Excel File												

Table 4.32: Result from manual interpolation calculation and excel file for temperature

 equal to 52°C and type of fluid saturated ammonia

Type of Unit	Type of Fluid	Temperature (°C)	Density (p, kg/m³)		Dynamic Viscosity (µ, kg/m · s)		Kinematic Viscosity (v, m²/s)	
			Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
SI Unit	Ammonia	52	559.4200	16.6680	1.071E-04	1.152E-05	1.915E-07	6.937E-07

Table 4.33: Result from manual interpolation calculation and excel file for temperatureequal to 297°F and type of fluid saturated water

	Manual Interpolation Calculation												
Tommonotumo	Density ($a_{\rm lbm}/ft^{3}$	Dynamic	Viscosity	Kinematic Viscosity								
(°F)	Density (p, 1011/11)		(µ, lbn	n/ft · s)	$(v, ft^2/s)$								
(1)	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor							
297	57.406	0.20985	1.2519E-4	9.3473E-6	2.181E-6	5.0726E-5							
			Excel File										

Type of Unit	Type of Fluid	Temperature (°F)	Density (p, lbm/ft³)		Dynamic Viscos	ity (μ, lbm/ft · s)	Kinematic Viscosity (v, ft²/s)	
			Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
English Unit	Water	297	57.4060	0.2099	1.252E-04	9.347E-06	2.181E-06	5.072E-05

	Manual Interpolation Calculation												
T	Demeiter	a 11am (ft3)	Dynamic	Viscosity	Kinematic Viscosity								
(°F)	Density (p, 10m/1t ³)		(µ, lbn	n/ft · s)	$(v, ft^2/s)$								
(1)	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor							
4	34.284	0.39982	9.9504E-5	4.8896E-6	2.902E-6	1.2316E-5							
			Excel File										

Table 4.34: Result from manual interpolation calculation and excel file for temperatureequal to 4°F and type of fluid saturated propane

Type of Unit	Type of Fluid	Temperature (°F)	Density (p, lbm/ft³)		Dynamic Viscosity (µ, lbm/ft · s)		Kinematic Viscosity (v, ft²/s)	
			Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
English Unit	Propane	4	34.2840	0.3998	9.950E-05	4.890E-06	2.902E-06	1.231E-05

Table 4.35: Result from manual interpolation calculation and excel file for temperatureequal to 488°F and type of fluid saturated air at 1 atm

	Manual Inter	polation Calculation								
	Density	Dynamic Viscosity	Kinematic Viscosity							
Temperature (°F)	$(\rho, lbm/ft^3)$	$(\mu, lbm/ft \cdot s)$	$(v, ft^2/s)$							
	Gas	Gas	Gas							
488	0.04188	1.86216E-5	4.4508E-4							
	Excel File									

Type of Unit	Type of Fluid	Temperature (°F)	Density (p, lbm/ft³)		Dynamic Viscosity (µ, lbm/ft · s)		Kinematic Viscosity (v, ft²/s)	
			Gas		Gas		Gas	
English Unit	Air	488	0.0419		1.862E-05		4.450E-04	

From table 4.30 - 4.35, the results for manual interpolation calculation and excel file shows the almost same result. The different only occur for value decimal places result. From observations, result from manual interpolation calculation shows not consistently decimal places. From excel file, result for density only set four decimal places while for dynamic viscosity and kinematic viscosity set three decimal places.

From the results for manual interpolation calculation and excel file, if the error below 5 %, the result accepted. The equation to calculate error is:

$$Error = \left| \frac{Excel file-Manual interpolation calculation}{Manual interpolation calculation} \right| \times 100 \%$$
(4.2)

Sample calculation:

From table 4.33, the result from manual interpolation calculation liquid dynamic viscosity equal to 1.2519E-4 lbm/ft·s while the result from excel equal to 1.252E-4 lbm/ft·s.

$$Error = \left| \frac{(1.252E - 4) - (1.2519E - 4)}{(1.2519E - 4)} \right| \times 100 \% = 0.008 \%$$

Error (%)												
Table No	Den	sity	Dynamic	Viscosity	Kinematic Viscosity							
1000100.	Liquid	Vapor Liquid 0.0089 0 0 0.0040	Vapor	Liquid	Vapor							
4.30	0	0.0089	0	0.0352	0	0.0118						
4.31	0	0	0.0049	0	0.0135	0.0051						
4.32	0	0	0.0187	0.0174	0.0104	0						
4.33	0	0.0238	0.0080	0.0032	0	0.01118						
4.34	0	0.0050	0.0040	0.0082	0	0.0487						
	Gas		Gas		Gas							
4.35	0.0478		0.0086		0.0180							

Table 4.36: Error for manual interpolation calculation and excel file result

Table 4.36 show the error results for manual interpolation calculation and excel file results. From observations, all the error results are below 5 % where the only small errors occur. Although there are no data for kinematic viscosity from property tables, by doing calculation, the results for kinematic viscosity interpolation can be obtain and compare results from excel file.

4.3.3 Manual Reading Darcy Friction Factor from Moody Chart

For manual reading Darcy friction factor from Moody Chart, 6 samples of manual reading have been taken where 3 samples for SI units and 3 sample for English units. This samples result compare with excel file result to investigate the result. Table 4.37 shows the result for SI units while table 4.38 shows the result for English units obtain from manual reading and excel file. Figure 4.21 shows the result for SI units while figure 4.22 shows the result for English units obtains from manual reading. Considered result for SI units using method 1 while for English units using method 2, type of fluid is water and temperature equal to 70°F.

Type of Material	Roughness, ε (m)	Diameter, D (m)	Relative Roughness, ۶ /D	Reynolds Number, Re	Friction Factor								
		Ma	c / D										
Glass, plastic	0	0.015	0	5000	0.0365								
Cast iron	0.00026	0.080	0.00325	100000	0.0280								
Stainless steel	0.000002	0.200	0.00001	1000000	0.0118								
			Excel File										
Glass, plastic	0	0.015	0	5000	0.0373922424								
Cast iron	0.00026	0.080	0.00325	100000	0.0280039215								
Stainless steel	0.000002	0.200	0.00001	1000000	0.0118694229								

Table 4.37: Result for Darcy friction factor using method 1

Figure 4.21: Manual reading from Moody Chart

Type of Material	Roughness ε (ft)	Diameter D (ft)	Relative Roughness ε/D	Velocity (ft/s)	Reynolds Number Re	Friction Factor							
Manual Reading													
Commercial steel	0.00015	0.083	0.0018	3.5	27605.48	0.0271							
Copper or brass tubing	0.000005	0.250	0.00002	3.8	90276.08	0.0182							
Galvanized iron	0.0005	0.500	0.001	4.7	223314.52	0.0210							
			Excel File										
Commercial steel	0.00015	0.083	0.0018	3.5	27605.4759	0.0280288391							
Copper or brass tubing	0.000005	0.250	0.00002	3.8	90276.08298	0.0184811859							
Galvanized iron	0.0005	0.500	0.001	4.7	223314.521	0.0209017029							

Fable 4.38: Result for Darc	y friction	factor using	method 2
------------------------------------	------------	--------------	----------

Figure 4.22: Manual reading from Moody Chart

From table 4.37 - 4.38, the results for manual reading and excel file shows the almost same result. From manual reading, it is only possible to read four decimal places result while for excel file is set ten decimal places result.

From the results for manual reading and excel file, if the error below 5 %, the result accepted. The equation to calculate error is:

$$Error = \left| \frac{Excel file-Manual reading}{Manual reading} \right| \times 100 \%$$
(4.3)

Sample calculation:

From table 4.37, the result from manual reading friction factor for cast iron equal to 0.0280 while the result from excel equal to 0.0280039215.

$$Error = \left| \frac{(0.0280039215) - (0.0280)}{(0.0280)} \right| \times 100 \% = 0.014 \%$$

Error ((%)
Type of Material	Friction Factor
Glass, plastic	2.4445
Cast iron	0.0140
Stainless steel	0.5883
Commercial steel	3.4275
Copper or brass tubing	1.5450
Galvanized iron	0.4681

Table 4.39: Error for manual reading and excel file result

Table 4.39 show the error results for manual reading from Moody Chart and excel file results. From observations, all the error results are below 5 % where the highest error is 3.4275 % for commercial steel while the lowest is 0.0140 % for cast iron. The highest error occurs for commercial steel because for this data required to construct curve line in Moody Chart that possibility increase the error.

CHAPTER 5

CONCLUSION

5.1 CONCLUSION

This project successfully achieves the objective to develop an excel file to easily obtain fluid properties without manual reading from table. Through excel file, the user can simplify obtain value from property table and obtain friction factor without manual reading or manual calculation. Besides that, this excel file will decrease the time to obtain the properties value and decrease the error from manual reading and manual calculation.

From the beginning until the end of this project, Microsoft Excel has a lot of function where allow manipulating the data and constructing new function by using formula that have in Microsoft Excel. In this project, the functions are modified by adding and deleting the formula to meet the function to obtain the data from property tables.

5.2 RECOMMENDATION

This excel file for future work can upgrade by adding more fluid properties such as specific heat, thermal conductivity, Prandtl number and volume expansion coefficient. Besides that, this excel file can adding more type of fluid like properties of liquids, properties of metals, properties of gases at 1 atm pressure and properties of the atmosphere at high altitude. By upgrade, this excel file will be better and more useful for user. Advance editing by using Visual Basic for Applications (VBA) will upgrade this excel file to more interesting and functionally. Besides that, the interface will look better than compare by using normal function in Microsoft Excel. Visual Basic for Applications is a program that allows the user to automate the function in Microsoft Excel.

REFERENCES

- Sifner, O. 2004. 75 Years of International Cooperation in Research and Standardization of Thermophysical of Water and Steam, pp. 757-764.
- Tremaine, P., Kretzschmar, H.J. and Weber, I. 2008. *International Association for the Properties of Water and Steam History*.
- Cengel, Y.A. and Cimbala, J.M. 2006. *Fluid Mechanics Fundamental and Applications*. Singapore: McGraw Hill.
- Mottl, R.L. 2006. Applied Fluid Mechanics. Pearson Education, Inc.
- Brown, G.O. (undated). *The History of the Darcy-Weisbach Equation for Pipe Flow Resistance*, pp.34-43.
- Moody L.F. and Princeton, N.J. 1944. Friction Factor for Pipe Flow. pp. 671-684.
- McGovern, J. 2011. *Technical Note: Friction Factor Diagrams for Pipe Flow*. Dublin Institute of Technology.
- Syrstad, T. and Jelen, B. 2011. Using Microsoft Excel 2010. USA: Pearson Education, Inc.
- Martin, E.G. 2010. Discovering Microsoft Excel 2010. USA: John Wiley & Sons, Inc.
- Pearson J.F. (undated). Spreadsheets A brief History of Spreadsheets and How Excel Got to Be No 1.
- Power, D.J. 2004. A Brief History of Spreadsheets.
- Ahmad, A., Salinet, J.L., Brown, P., Tuan, J.H., Stafford, P., Ng, G.A. and Schlindwein, F.S. 2011. QRS Subtraction for Atrial Electrograms: Flat, Linear and Spline Interpolation. pp. 1322-1328.
- Guha, S. and Srivastava, R. 2010. *Numerical Methods for Engineering and Science*. India: Oxford University Press.
- Yovanovich, M.M., Culham, J.R., Teertstra, P. and Zaghloul, A. 1998. *Fluid Properties Calculator*. Microelectronics Heat Transfer Laboratory.
- Reindl, D., Jekel, T., Dettmers, D., Denkmann, J.L. and Klein, S. 2009. *Fluid Property Calculator*. Industrial Refrigeration Consortium.
- Maley, R.L. (undated). Moody Chart Calculator. Michael Maley's Engineering Site.

Andy and Steve 2008. Darcy Friction Factor Calculator. CalcTool.

APPENDIX A

GANTT CHART FOR FINAL YEAR PROJECT 1

Activity	Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Find Literature Review for history property	Plan															
table and Microsoft Excel	Actual															
Find property	Plan															
Mechanics	Actual															
Transfer data from property	Plan															
table into Microsoft Excel	Actual															
Compare existing	Plan															
software	Actual															
Study and construct formula to obtain the data	Plan															
for listed and not listed value	Actual															
Construct	Plan															
interface for user	Actual															
Report writing	Plan															
Report writing	Actual															
Report	Plan															
submission and presentation	Actual															

APPENDIX B

GANTT CHART FOR FINAL YEAR PROJECT 2

Week Activity		1	2	3	4	5	6	7	8	9	10	11	12	13	14
Construct formula for SI unit and	Plan														
English unit (fluid properties table)	Actual														
Construct graph	Plan														
for fluid properties	Actual														
Compare existing	Plan														
software (Fiction factor)	Actual														
Study to solve Colebrook	Plan														
equation using numerical method	Actual														
Study and construct formula	Plan														
factor	Actual														
Construct	Plan														
interface for user	Actual														
Peport writing	Plan														
	Actual														
Report submission	Plan														
and presentation	Actual														