
Electric vehicle battery state of charge estimation using 
metaheuristic-optimized CatBoost algorithms

Mohd Herwan Sulaiman a,d,* , Zuriani Mustaffa b , Ahmad Salihin Samsudin c,  
Amir Izzani Mohamed a, Mohd Mawardi Saari a

a Faculty of Electrical and Electronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), 26600 Pekan, Pahang, Malaysia
b Faculty of Computing, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), 26600 Pekan, Pahang, Malaysia
c Ionic Materials Team, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), 26300 Gambang, Pahang, Malaysia
d Center for Advanced Industrial Technology (AIT), Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), 26600 Pekan, Pahang, Malaysia

A R T I C L E  I N F O

Keywords:
Battery state of charge
CatBoost algorithm
Machine learning
Metaheuristic algorithms

A B S T R A C T

State of Charge (SoC) estimation plays a crucial role in battery management systems for electric vehicles, directly 
impacting their operational efficiency and reliability. This study presents a hybrid approach combining the 
CatBoost algorithm with metaheuristic optimization techniques to enhance SoC estimation accuracy and 
robustness. The methodology was validated using an extensive dataset collected from 72 real-world driving trips 
of a BMW i3 (60 Ah), comprising 1053,910 instances of battery and vehicle operation metrics. A comprehensive 
data preprocessing pipeline was implemented, including missing value treatment, outlier removal, and feature 
normalization using Min-Max scaling. Three distinct metaheuristic algorithms were investigated: Barnacles 
Mating Optimizer (BMO), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Whale Optimization 
Algorithm (WOA), each integrated with CatBoost to optimize critical parameters including learning rate, tree 
depth, regularization, and bagging temperature. Experimental results demonstrate that the BMO–CatBoost 
approach achieved superior performance with best-case metrics of RMSE = 6.1031, MAE = 4.1303, and R² =
0.8211, outperforming both PSO–CatBoost, GA-CatBoost, and WOA-CatBoost implementations. The frame-
work’s effectiveness was validated through rigorous testing, establishing its potential for real-world electric 
vehicle applications. This research contributes to the advancement of battery management technology, offering 
promising implications for electric vehicle energy management and broader energy storage applications.

1. Introduction

Battery Electric Vehicles (EVs) are essential for sustainable trans-
portation, reducing emissions, lowering fuel costs, and promoting en-
ergy efficiency for cleaner futures. Accurate estimation of battery State 
of Charge (SoC) is critical for optimizing battery performance and 
ensuring reliable operation in various applications, from electric vehi-
cles to renewable energy systems [1,2]. Precise SoC estimation allows 
for better energy management, preventing overcharging and deep dis-
charging, which can degrade battery health and shorten lifespan [3]. It 
also supports accurate range predictions, enhancing user confidence and 
system efficiency. Advanced SoC estimation techniques help avoid 
costly downtimes and safety issues by providing real-time data for 
effective monitoring and maintenance. Thus, accurate SoC estimation is 
essential for maximizing battery reliability, safety, and overall 

performance in energy storage solutions [4,5].
Battery SoC estimation plays a crucial role in modern battery man-

agement systems. Industrial applications typically categorize SoC esti-
mation methods into five main groups: Coulomb counting methods, 
Voltage methods, Kalman Filter-based methods, machine learning ap-
proaches, and hybrid methods [6]. These methods have evolved 
significantly over the past decade, offering distinct advantages for spe-
cific applications while addressing various technological challenges in 
battery monitoring and management [7]. Traditional methods, 
including voltage-based and Coulomb counting approaches, remain 
prevalent due to their simplicity and cost-effectiveness. Voltage-based 
methods estimate SoC through direct voltage measurements, while 
Coulomb counting tracks battery charge through current integration 
[8–10]. However, these methods often face accuracy limitations due to 
their sensitivity to environmental factors, particularly temperature 
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variations, and degradation in estimation quality as batteries age [11,
12].

Kalman filter-based methods are more sophisticated, employing 
mathematical models to adapt to changing conditions and battery 
characteristics [13]. These methods have demonstrated superior accu-
racy in various applications, particularly in electric vehicles where 
precise SoC estimation is critical [14–17]. Nevertheless, they present 
implementation challenges, requiring complex battery models and sig-
nificant computational resources to maintain real-time performance 
[18,19]. Machine learning approaches have gained significant attention 
due to their ability to capture complex, nonlinear relationships in bat-
tery behavior [20–22]. These methods excel in adaptability, learning 
from historical data to improve estimation accuracy over time [19]. In 
particular, recent studies have explored the application of deep neural 
networks [23,24], convolutional neural networks [25], long short-term 
memory (LSTM) architectures [25–27], and ensemble learning algo-
rithms such as XGBoost and CatBoost [28,29] for enhanced SoC pre-
diction accuracy. Such advancements demonstrate improved robustness 
against aging effects and variations in driving conditions. Recent ad-
vancements in deep learning architectures have further enhanced their 
capabilities in handling varying operating conditions and battery aging 
effects [30,31]. However, these approaches necessitate substantial 
training data and computational resources, potentially limiting their 
application in resource-constrained systems [32].

Combining multiple estimation techniques, hybrid methods repre-
sent the latest evolution in SoC estimation [2,12,33–36]. These ap-
proaches typically integrate the advantages of different methods while 
mitigating their individual limitations. For instance, combining machine 
learning with model-based approaches can enhance robustness while 
maintaining computational efficiency [37]. Furthermore, metaheuristic 
optimization algorithms have recently gained traction for hyper-
parameter tuning of machine learning models in battery applications, as 
they help automate and refine the learning process [38,39]. In this 
context, recent studies on intelligent active cell balancing in electric 
vehicle battery management have shown the potential for machine 
learning to optimize performance and enhance SoC accuracy, pointing 
to the growing importance of advanced algorithms in the Battery Man-
agement System (BMS) field [40]. Additionally, the application of ma-
chine learning for active balancing has provided insights into improving 
the overall performance of EV battery management [41]. Although 
hybrid methods often achieve superior accuracy and reliability, they 
require careful integration of different techniques and increased 
computational resources [12].

Building upon these developments and addressing existing gaps, this 
study proposes a novel hybrid approach that combines the CatBoost 
algorithm with metaheuristic optimization techniques, specifically the 
Barnacles Mating Optimizer (BMO), Particle Swarm Optimization 
(PSO), Genetic Algorithm (GA), and Whale Optimization Algorithm 
(WOA). The proposed methodology leverages CatBoost’s superior 
learning capabilities for handling complex, nonlinear relationships in 
battery behavior, while employing metaheuristic optimization to fine- 
tune the model’s hyperparameters. This integration aims to overcome 
the limitations of traditional methods by optimizing model performance 
through systematic parameter tuning, ultimately enhancing the accu-
racy and reliability of SoC estimation in real-world driving conditions. 
The approach was validated using extensive real-world data collected 
from BMW i3 electric vehicle operations, demonstrating its practical 
applicability in actual driving scenarios.

The main contributions of this paper are listed as follows:
Novel Hybrid Approach: 

• Development of a unique hybrid methodology combining the Cat-
Boost algorithm with metaheuristic optimization for SoC estimation

• Integration of advanced machine learning with optimization tech-
niques to enhance battery monitoring accuracy

Real-World Data Implementation: 

• Successful validation using extensive real-world data (72 driving 
trips from BMW i3)

• Processing and refinement of over 1 million data instances 
(1053,910), demonstrating practical applicability

Parameter Optimization Framework: 

• Implementation of metaheuristic optimization for fine-tuning critical 
CatBoost parameters

• Optimization of multiple parameters including learning rate, depth, 
regularization, and bagging temperature

Practical Applications: 

• Direct applicability to electric vehicle energy management systems
• Potential extensibility to broader battery management applications
• Contribution to the advancement of battery monitoring technology

The paper is organized as follows: Section 2 presents a concise 
development of the SoC estimation based on the CatBoost algorithm, 
followed by the methodology proposed in this paper in Section 3. Sec-
tion 4 details the selected metaheuristic algorithm as an optimizer of the 
parameters of CatBoost, and Section 5 discusses the results obtained. 
Finally, Section 6 provides the concluding remarks.

2. Battery state of charge estimation based on CatBoost 
algorithm

The CatBoost algorithm [42], short for Categorical Boosting, is a 
gradient boosting method particularly effective for handling categorical 
data and managing overfitting, making it well-suited for complex 
regression tasks like battery SoC estimation. CatBoost is an imple-
mentation of gradient-boosting decision trees (GBDT), where pre-
dictions are made by constructing an ensemble of weak learners, 
typically decision trees, sequentially. Each tree is trained to correct the 
errors of the preceding one, refining the model’s accuracy iteratively. 
The fundamental goal of gradient boosting is to minimize the loss 
function L(y, ŷ), where y is the actual SoC value, and ŷ is the predicted 
SoC. In each iteration t, a new tree ft(x) is added to minimize the loss, 
and the model is updated as: 

ŷ(t)
= ŷ(t− 1)

+ η⋅ft(x). (1) 

where η is the learning rate, which controls the contribution of each new 
tree, ensuring a balance between speed and accuracy. This sequential 
learning approach allows CatBoost to capture non-linear relationships in 
the battery data, which is essential for predicting SoC accurately, as 
battery dynamics often exhibit complex, non-linear patterns.

A notable feature of CatBoost is its unique handling of categorical 
features through its "ordered boosting" mechanism, which reduces pre-
diction bias and avoids overfitting, particularly important in SoC esti-
mation, where accurate and generalizable predictions are critical. 
CatBoost estimates the residuals by taking derivatives of the loss func-
tion with respect to the predictions, allowing it to update each tree based 
on the gradient of the error. Mathematically, for a given loss function L, 
the gradient g(t)i for a sample i at iteration t is computed as: 

g(t)i = −
∂L(yi, ŷ

(t− 1)
)

∂ŷ(t− 1) . (2) 

These gradients are then used to fit the new tree ft(x), effectively 
capturing and correcting errors in SoC estimation. Furthermore, Cat-
Boost incorporates L2 regularization, which penalizes large coefficients 
and reduces the risk of overfitting. This is particularly useful for SoC 
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estimation, where consistent performance across varying battery con-
ditions is desired. Overall, the algorithm’s robust handling of complex 
data patterns, categorical feature encoding, and regularization capa-
bilities make it an effective tool for modelling the highly variable and 
non-linear characteristics of battery SoC.

In this paper, key parameters of the CatBoost algorithm—such as 
learning rate, depth, regularization, subsample, features of each level, 
bagging temperature, and random strength—are optimized using 
advanced metaheuristic algorithms. These optimization methods, 
particularly metaheuristic approaches, are employed to enhance the 
CatBoost model’s performance for battery SoC estimation. The learning 
rate controls the contribution of each tree in the ensemble, while depth 
determines the complexity of individual trees. Regularization prevents 
overfitting by penalizing large model coefficients, and the subsample 
decides the fraction of data used to build each tree, thus introducing 
randomness for better generalization.

Other parameters like features of each level influence feature sam-
pling at each level of tree construction, while bagging temperature and 
random strength introduce controlled randomness to diversify trees in 
the ensemble. By utilizing metaheuristic optimization techniques, this 
study aims to systematically search for optimal parameter values, 
balancing model accuracy and generalization. This parameter tuning 
through metaheuristic algorithms enhances the robustness of the Cat-
Boost model for SoC estimation, enabling it to capture the complex, 
nonlinear relationships in battery data more effectively.

In the proposed optimization process, each metaheuristic algorithm 
is applied to tune the CatBoost parameters within predefined bounds. 
Each parameter was assigned a bounded search range based on prior 
knowledge and preliminary experiments—for instance, the learning rate 
was set within [0.01–0.1] and tree depth between [3–10]. The optimi-
zation process used Mean Square Error (MSE) as the objective function 
to evaluate each parameter combination. The final optimized values and 
their corresponding performance metrics, viz. Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), Standard Deviation (STD), and 
Coefficient of Determination (R²) for all approaches are summarized in 
Table 4. Further methodological details of the optimization setup, 
including the fitness function, algorithmic flow, and evaluation metrics, 
are elaborated in Section 3.

3. Methodology

This section outlines the methodology used for metaheuristic- 
CatBoost to estimate the SoC of lithium-ion batteries. It includes a 
description of the dataset, dataset analysis, data normalization, meta-
heuristic algorithms, and performance evaluation criteria. Fig. 1 visu-
alizes the metaheuristic-CatBoost for the SoC estimation framework.

The approach hybridizes the CatBoost algorithm with a meta-
heuristic optimizer to estimate the SoC in lithium-ion batteries. The 
dataset consists of real-world data collected from 72 trips, containing 
critical battery parameters such as voltage, current, temperature, and 
other operational metrics essential for accurate SoC predictions. For 
training and testing purposes, the dataset was divided into a 70 % 
training set and a 30 % testing set. The split was performed randomly to 
ensure the model was not biased by any particular trip or time period 
within the dataset.

The training data was used to train the CatBoost model, enabling it to 
capture the intricate relationships between input features and SoC. The 
testing data, which the model had not seen during training, was used to 
evaluate the model’s performance and generalization capability. To 
ensure randomization and avoid potential issues like temporal correla-
tion or overfitting, the data was randomly shuffled before the split. This 
shuffling process ensures that each subset contains a representative 
sample of the data from all 72 trips, which mitigates any sequential 
dependencies that might affect model performance. Metaheuristic al-
gorithms were then applied to fine-tune the CatBoost model’s hyper-
parameters iteratively. The optimization process continues until a 
termination criterion (such as a predefined number of iterations or 
convergence to a stable solution) is met, producing the final optimized 
model.

After parameter optimization, the model’s performance was assessed 
on the testing set, with performance metrics such as RMSE, MAE, STD, 
and R² used to evaluate the quality of SoC predictions. By combining 
CatBoost’s robust learning capabilities with metaheuristic optimization, 
this hybrid approach aims to deliver more precise and reliable SoC es-
timations than traditional models. Each component is discussed in detail 
in the following subsections.

Fig. 1. Metaheuristic-CatBoost for SoC Estimation Framework.
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3.1. Dataset description

Data quality is known to significantly impact machine learning 
model performance, making careful data collection and processing 
essential. In this study, data from 72 real-world driving trips of a BMW i3 
electric car with a battery capacity of 60 Ah, are used to validate a 
detailed vehicle model, accessible in [43,44]. The estimation model 
incorporates 10 input variables: air conditioning power (AC Power) in 
kW, longitudinal acceleration (LA) in m/s², regenerative braking signal 
(RBS), battery voltage (V_batt) in volts, battery current (I_batt) in amps, 
battery temperature (T_batt) in ◦C, heating power CAN in kW, throttle 
position (TP), motor torque (T_motor) in Nm, and cabin temperature 
(T_cabin). The output is the State of Charge (SoC) represented as a 
percentage. Compared to previous studies utilizing deep learning [2,20,
38] or random forest models [45], the present work incorporates an 
expanded set of ten real-world input features related to driving dy-
namics, thermal behavior, and auxiliary systems. These features, 
particularly AC power, heating power, cabin temperature, and motor 
torque have not been simultaneously considered in earlier SoC estima-
tion studies, enabling a more comprehensive modeling of electric 
vehicle energy behavior. The initial dataset included missing values and 
irregular entries, which were addressed through a structured pre-
processing process. Missing values, either denoted as ‘NaN’ or symbol-
ized with double dashes (‘–’) were handled using linear interpolation, 
particularly when they occurred sporadically within continuous 
time-series records. This approach was employed to maintain temporal 
consistency without introducing artificial bias.

With respect to outliers, no explicit statistical outlier removal was 
performed. This decision was guided by the inherent robustness of the 
CatBoost algorithm, which is designed to tolerate irregularities through 
its gradient boosting framework. Retaining such variations allows the 
model to generalize better under real-world conditions and avoids the 
risk of excluding meaningful edge-case patterns. After preprocessing, 
including removal of clearly invalid entries and interpolation of sparse 
missing data, the final cleaned dataset contained 1053,910 valid in-
stances, used for model training and testing. Table 1 presents a sample of 
these input parameters.

3.2. Data normalization and evaluation

To maintain consistent scaling and boost model performance, Min- 
Max normalization was applied to the dataset. This approach trans-
forms data to a predefined range, usually [0, 1], which supports nu-
merical stability and enhances optimization algorithm convergence [46,
47]. Min-Max normalization is selected for its straightforward yet 
effective approach to rescaling features uniformly. By compressing 
values within a fixed interval, this method prevents any large values 
from overpowering the learning process and ensures that the model’s 
parameters update consistently. This normalization technique is espe-
cially beneficial when data features differ in scale or units, promoting 
more stable and efficient training. The Min-Max normalization formula 
can be expressed as: 

xʹ =
x − min(x)

max(x) − min(x)
, (3) 

where x is the original value, min(x) is the minimum value of the 
feature, max(x) is the maximum value of the feature, and x’ is the 
normalized value.

For evaluation purposes, the performances of metaheuristic- 
CatBoost models were evaluated subject to the following metrics: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi )

2
√

, (4) 

MAE =
1
n
∑n

i=1
|yi − ŷi |, (5) 

STD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n − 1
∑n

i=1
((yi − ŷi) − e)2

√

, (6) 

R2 = 1 −

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 , (7) 

where n = 1, 2, …, n; yi = actual values; ŷi = predicted values while n is 
the number of training, validation, or test data.

The RMSE and MAE quantify average prediction error magnitude, 
with RMSE placing greater weight on larger errors. The STD captures the 
dispersion of the prediction error around its mean, providing insight into 
model stability and robustness. The R² score indicates the proportion of 
variance in the actual SoC that is captured by the model, offering a 
measure of goodness-of-fit. The use of these metrics ensures a holistic 
evaluation of model performance across multiple perspectives: accu-
racy, reliability, and error variability.

4. Metaheuristic algorithms

This section offers a concise overview of the chosen benchmarking 
techniques, including four hybrid CatBoost algorithms combined with 
metaheuristic optimization algorithms: namely BMO, PSO, GA and 
WOA.

4.1. Barnacles mating algorithm

BMO is a metaheuristic optimization algorithm inspired by the 
unique reproductive behaviors of barnacles [48]. This algorithm models 
the mating strategies and environmental adaptations of barnacles, 
simulating a population of candidate solutions that interact and “mate” 
based on their fitness levels. By mimicking genetic recombination and 
mutation, BMO guides the search for optimal solutions. Leveraging the 
natural behaviors of barnacles, BMO effectively explores and exploits 
the solution space, making it a versatile tool for solving complex opti-
mization problems. This approach has been successfully applied to 
various tasks, including engineering design and scheduling, demon-
strating its potential to address challenges where traditional methods 

Table 1 
Input-output sample.

Instance # AC Power (kW) LA (m/s2) RBS V_batt (V) I_batt (A) T_batt ( ◦C) heating power CAN (kW) TP T_motor (Nm) T_cabin SoC ( %)

15 0.4 − 0.03 0 391.4 − 2.2 21 0 0 0 24.5 80.3
16 0.4 0 0 391.4 − 2.21 21 0 0 0 24.5 80.3
17 0.4 − 0.01 0 391.4 − 2.26 21 0 0 0 24.5 80.3
18 0.4 − 0.03 0 391.4 − 2.3 21 0 0 0 24.5 80.28
19 0.4 − 0.03 0 391.4 − 2.3 21 0 0 0 24.5 80.23
20 0.4 − 0.01 0 391.4 − 2.3 21 0 0 0 24.5 80.2
21 0.4 − 0.01 0 391.4 − 2.3 21 0 0 0 24.5 80.2
22 0.4 − 0.03 0 391.4 − 2.31 21 0 0 0 24.5 80.2
23 0.4 − 0.01 0 391.4 − 2.36 21 0 0 0.38 24.5 80.2
24 0.4 − 0.01 0 391.4 − 2.37 21 0 0 0.12 24.5 80.2
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may fall short.
In BMO, new offspring are generated through a fertilization process 

involving neighboring solutions. Barnacles, known for their long penises 
adapted to their sedentary lifestyle and changing tides, serve as a model 
for this process. The selection of barnacle parents for creating new 
offspring is random, with the length of the barnacle’s penis, denoted as 
pl, acting as a tuning parameter. The exploitation process involves 
generating new offspring inspired by the Hardy-Weinberg principle, 
while exploration is guided by the sperm cast situation. BMO is partic-
ularly effective at maintaining population diversity and avoiding local 
optima in complex search spaces. This makes it well-suited for non- 
convex and highly nonlinear optimization tasks such as SoC predic-
tion, where multiple interacting parameters exist. However, BMO may 
require careful parameter tuning and can be computationally intensive 
in large-scale datasets.

4.2. Particle swarm optimization

PSO [49] is a robust optimization technique that mimics the social 
behavior of swarms to solve complex problems. Each particle in the 
swarm represents a potential solution and adjusts its position based on 
its own experience and the experiences of neighboring particles. This 
method leverages both social and cognitive behaviors to explore and 
exploit the solution space effectively. PSO is favored for its rapid 
convergence and minimal algorithm parameters [50]. Critical tuning 
parameters include the number of particles, which affects the algo-
rithm’s exploration and convergence behavior; the cognitive coefficient 
(c1), which influences a particle’s attraction to its own best-known po-
sition; and the social coefficient (c2), which determines the impact of the 
best-known position found by the swarm. The inertia weight (w) con-
trols the influence of a particle’s previous velocity on its current ve-
locity, balancing exploration and exploitation, while velocity limits set 
boundaries on particle movement to maintain effective search dy-
namics. These parameters are vital for guiding the swarm towards 
optimal solutions and ensuring an efficient search process. PSO offers 
rapid convergence and relatively low computational complexity, mak-
ing it highly efficient for problems requiring fast approximation, such as 
real-time SoC estimation. Its simplicity and ease of implementation are 
major strengths. However, PSO is more prone to premature conver-
gence, especially in high-dimensional or multimodal problems, unless 
diversity-enhancing mechanisms are introduced.

4.3. Genetic algorithm

GA represents a pioneering advancement in metaheuristic optimi-
zation, drawing its fundamental principles from biological evolution and 
natural selection processes. The foundation of GA was established by 
John Holland in the 1970s [51], with significant enhancements 
contributed by David E. Goldberg during the 1980s [52], leading to its 
widespread adoption across diverse domains of application. The 
evolutionary framework of GA operates through several key mecha-
nisms, including population dynamics and selection, genetic operators, 
and an iterative evolution process.

Population dynamics and selection in GA implement the “survival of 
the fittest” principle through strategic selection methods. Various 
techniques, such as tournament selection and roulette wheel selection 
are utilized to select individuals based on fitness metrics for subsequent 
generations. Genetic operators, including crossover (recombination) 
and mutation, play crucial roles in this process. Crossover mimics bio-
logical genetic recombination by combining genetic information from 
parent solutions to create new offspring, facilitating the exploration of 
the solution space. Mutation introduces random variations in genetic 
information, maintaining population diversity and enabling the explo-
ration of unexplored solution spaces through random modifications 
based on predetermined mutation rates.

The iterative evolution process in GA involves selection favoring 

higher fitness individuals, crossover combining beneficial traits, and 
mutation introducing necessary variability. This process continues until 
optimal or near-optimal solutions are reached. The theoretical founda-
tions established by Holland’s seminal work highlighted the critical role 
of population dynamics and genetic operators. Goldberg’s subsequent 
contributions expanded these concepts, providing both theoretical 
frameworks and practical implementation guidelines. Their combined 
work established GA as a robust optimization methodology, particularly 
effective in solving complex, multi-dimensional problems. This evolu-
tionary approach continues to influence modern optimization strategies, 
with applications ranging from engineering design to artificial intelli-
gence, demonstrating the enduring impact of Holland and Goldberg’s 
pioneering work in the field of evolutionary computation. GA excels in 
exploring wide and complex solution landscapes through its robust 
global search capability. This is advantageous for SoC optimization, 
where the input space may contain nonlinearity, noise, and uncertainty. 
Nonetheless, GA can be slower to converge than PSO and is sensitive to 
parameter settings like crossover and mutation rates. Additionally, 
without diversity control, GA may stagnate in later generations.

4.4. Whale optimization algorithm

The WOA is a population-based metaheuristic optimization method 
inspired by the social and hunting behavior of humpback whales, 
particularly their bubble-net feeding strategy [53]. Developed by Mir-
jalili and Lewis in 2016, WOA simulates the cooperative foraging 
mechanism of whales to search for optimal solutions in a 
high-dimensional space. The algorithm utilizes three primary operators: 
encircling prey, bubble-net attacking (exploitation phase), and search 
for prey (exploration phase). These operators are governed by mathe-
matical models that allow WOA to dynamically switch between explo-
ration and exploitation based on adaptive control parameters. This 
mechanism enables WOA to avoid local optima and achieve robust 
convergence towards global solutions.

WOA starts with a randomly initialized population and updates 
candidate solutions iteratively by modeling the whales’ spiral move-
ments and random encircling behavior. During the bubble-net feeding 
method, whales either follow a shrinking encircling mechanism or 
perform a spiral update to simulate the helix-shaped movement towards 
the prey. The transition between these strategies is probabilistic, pro-
moting a balance between intensification and diversification. Due to its 
simple structure and minimal control parameters, WOA is computa-
tionally efficient and has been applied successfully in various engi-
neering optimization domains, including feature selection, parameter 
tuning, and energy systems. However, its performance can be sensitive 
to problem dimensionality, and fine-tuning may be required for optimal 
effectiveness in specific applications such as battery SoC estimation.

5. Results and discussion

Table 2 outlines the parameter settings used for four metaheuristic 
algorithms: BMO, PSO, GA, and WOA in optimizing the CatBoost model 
for battery SoC estimation. All algorithms were set to a population size 
of 10 and a maximum of 10 iterations, with five simulation runs, 
ensuring consistency in experimental conditions. The BMO was 

Table 2 
Parameter settings used for all algorithms.

Algorithm Parameter setting

# All 
algorithms

Population size, pop size =10, maximum iteration =10, 
Simulation runs =5

BMO pl =9
GA Crossover rate =0.7; Mutation rate =0.1
PSO w = 1, wdamp=0.5, c1= 1.5 c2= 1.5
WOA Vector a linearly decreased from 2 to 0 throughout iteration.
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configured with a parameter pl set to 9, which influences the mating 
process within the solution space, encouraging a diverse search to avoid 
premature convergence. GA parameters included a crossover rate of 0.9 
and a mutation rate of 0.1, which promote exploration by allowing in-
formation exchange between solutions while avoiding local optima. PSO 
was tuned with an inertia weight (w) of 1, a damping factor (wdamp) of 
0.5, and acceleration coefficients (c1 and c2) set to 1.5. These settings 
enabled PSO to balance exploration and exploitation by adjusting par-
ticles’ movement towards optimal solutions. In addition, the WOA was 
also included, which does not require extensive parameter tuning. Its 
main control parameter, the coefficient vector a, is linearly decreased 
from 2 to 0 over the course of the iterations, guiding the search balance 
between exploration and exploitation.

This study is distinct in its integration of MATLAB and Python, where 
the metaheuristic algorithms are implemented in MATLAB and linked 
with CatBoost in Python. Such a hybrid platform approach leverages 
MATLAB’s robust optimization capabilities alongside Python’s 
advanced machine learning framework. This configuration facilitates an 
efficient search for CatBoost’s optimal parameters, thus enhancing 
model accuracy in SoC estimation while exploring the novel potential of 
multi-platform optimization in the field.

Table 3 presents the performance metrics for battery SoC estimation 
using hybridized CatBoost models optimized with BMO, PSO, GA, and 
WOA. For each metric: RMSE, MAE, STD DEV, and R², the 
BMO–CatBoost model demonstrates superior performance overall, 
achieving the lowest average RMSE (6.2247) compared to 
PSO–CatBoost (6.5490), GA-CatBoost (6.5039), and WOA-CatBoost 
(6.6362). BMO–CatBoost also achieves the lowest worst-case RMSE 
(6.4492), suggesting it maintains greater consistency across trials. This 
consistency is further reflected in MAE, where BMO–CatBoost also 
shows the lowest average value (4.1744) and the best-case value 
(4.1303), indicating that BMO effectively reduces prediction errors and 
enhances the accuracy of SoC estimation. Interestingly, WOA-CatBoost 
shows promising performance, outperforming both PSO and GA in 
best-case MAE (4.1563), though its average MAE (4.4287) remains 
higher than BMO’s. This suggests that while WOA can occasionally 
achieve highly accurate results, its stability over repeated runs is 
comparatively lower.

The implicit findings from Table 3 suggest that BMO not only pro-
vides more accurate estimates but also achieves a narrower range in 
terms of error variability when compared to PSO, GA, and WOA. 
Regarding standard deviation, BMO–CatBoost achieves a lower average 
STD DEV (5.8151), reflecting a stable performance across different runs, 
which is especially important in applications like SoC estimation that 
require reliable and repeatable results. PSO–CatBoost and GA-CatBoost 
have higher variability, with GA showing the highest worst-case STD 
DEV (6.2726). This variability might suggest that while PSO and GA are 
effective for certain types of optimization tasks, BMO’s unique mating- 
inspired mechanisms are more robust for the type of parameter tuning 
needed in CatBoost. Although WOA-CatBoost does not outperform BMO, 

it demonstrates a slightly lower best-case STD DEV (5.8149) than PSO 
and GA, indicating potential in achieving consistent results under ideal 
conditions. However, its higher average and worst-case STD DEV values 
suggest room for improvement in robustness.

A key insight from the R² values across algorithms highlights the 
explanatory power of each hybrid model. BMO–CatBoost achieves the 
highest average R² (0.8127) and best-case R² (0.8211), indicating a 
stronger fit of the model to the data compared to PSO–CatBoost, GA- 
CatBoost, and WOA-CatBoost. Although PSO–CatBoost and GA- 
CatBoost perform reasonably well, they fall slightly behind 
BMO–CatBoost in capturing the underlying patterns of the data. WOA- 
CatBoost, while not surpassing BMO, achieves a best-case R² of 0.8175, 
which is higher than both PSO and GA, highlighting its capacity to 
capture underlying data patterns effectively in certain runs. Its average 
R² (0.7768), however, remains the lowest among all compared models, 
emphasizing variability in its predictive accuracy. These results reveal 
that BMO–CatBoost not only achieves lower errors but also exhibits 
higher reliability and better interpretability, positioning it as a poten-
tially more effective hybrid model for SoC estimation tasks in electric 
vehicles. This advantage may stem from BMO’s unique approach to 
balancing exploration and exploitation, allowing it to achieve a more 
precise search for optimal hyperparameters within the CatBoost 
framework.

Table 4 provides a detailed breakdown of the optimized CatBoost 
hyperparameters using the BMO, PSO, GA, and WOA metaheuristic al-
gorithms. For the learning rate, BMO–CatBoost achieved an optimal 
value of 0.08 within the specified range (0.01–0.1), while 
PSO–CatBoost found a slightly lower rate at 0.05. GA-CatBoost, on the 
other hand, selected a learning rate just outside the upper bound, at 
0.104, which suggests a more aggressive training approach. Interest-
ingly, the WOA-CatBoost model selected a learning rate of 0.081, very 
close to BMO–CatBoost’s optimal value, suggesting convergence to-
ward this rate as potentially ideal for the dataset. The similar learning 
rates between BMO and WOA likely contributed to their comparable 
performance metrics, with both outperforming PSO and GA variants.

The regularization and subsample parameters show significant 
variance across the algorithms, highlighting different optimization ap-
proaches. For regularization, both BMO and GA settled on a value of 5, 
which balances model complexity and prevents overfitting. PSO set this 
parameter to the upper limit of 10, indicating a higher penalization of 
model weights. Notable is WOA-CatBoost’s selection of a much lower 
regularization value of 2, suggesting a less restrictive approach that still 
delivered strong performance with an R² of 0.8175, second only to 
BMO–CatBoost. This lower regularization in WOA may have allowed 
greater model expressiveness while maintaining effective generaliza-
tion. In terms of subsample, BMO–CatBoost selected the minimum 
value of 0.1, likely favoring a conservative approach to subsampling 
data for model training. WOA-CatBoost chose a similarly conservative 
value of 0.19, contrasting with PSO–CatBoost’s higher subsample rate 
of 0.72 and GA-CatBoost’s moderate rate of 0.50. The superior perfor-
mance of both BMO and WOA models suggests that more conservative 
subsampling strategies may be advantageous for this particular dataset.

Examining additional parameters like features of each level, bagging 
temperature, and random strength reveals further nuances. The features 
of each level value chosen are similar across algorithms, with BMO, PSO, 
and WOA selecting high values (0.83, 0.82, and 0.81, respectively), 
which emphasizes feature diversity within trees. GA-CatBoost’s choice 
of 0.74 indicates a slightly lower feature diversity per level, possibly 
influencing its lower R² value (0.8111) compared to BMO–CatBoost 
(0.8211) and WOA-CatBoost (0.8175). For bagging temperature, 
BMO–CatBoost set this parameter near the upper bound at 0.97, 
allowing for higher sample variability across iterations, while PSO chose 
0, and GA set it at 0.91. WOA-CatBoost selected a moderate value of 
0.50, striking a balance between exploration and exploitation. Lastly, 
random strength, which controls randomness in feature selection, is 
lowest in BMO–CatBoost at 1, suggesting minimal randomization, 

Table 3 
Performance of SoC Estimation using BMO, PSO, and GA-CatBoost Algorithms.

Metrics BMO–CatBoost PSO–CatBoost GA- 
CatBoost

WOA- 
CatBoost

RMSE Best 6.1031 6.3784 6.2992 6.2283
Worst 6.4492 6.7073 6.7893 7.0383
Average 6.2247 6.5490 6.5039 6.6362

MAE Best 4.1303 4.2184 4.2772 4.1563
Worst 4.3105 4.5116 4.5771 4.6659
Average 4.1744 4.3900 4.3832 4.4287

STD Best 5.7183 5.9760 5.8337 5.8149
Worst 5.9833 6.1627 6.2726 6.4859
Average 5.8151 6.0751 6.0164 6.1522

R2 Best 0.8211 0.8017 0.8111 0.8175
Worst 0.7919 0.7734 0.7652 0.7381
Average 0.8127 0.7849 0.7894 0.7768
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potentially enhancing precision. PSO, GA, and WOA opted for progres-
sively higher values (5, 6, and 9, respectively), with WOA’s higher 
random strength possibly contributing to its robust performance despite 
using less restrictive regularization. Overall, BMO–CatBoost’s param-
eter selections delivered superior performance across RMSE, MAE, and 
R², followed closely by WOA-CatBoost, which achieved the second-best 
performance in all metrics (RMSE: 6.2283, MAE: 4.1563, R²: 0.8175). 
This suggests that while BMO optimization remains the top performer, 
the WOA-based hybrid approach offers a compelling alternative that 
outperforms both PSO and GA variants.

The performances of all metaheuristic-CatBoost algorithms for SoC 
estimation are visualized in Figs. 2 to 5, covering approximately 
350,000 instances. Fig. 2 shows the results of BMO–CatBoost, while 
Figs. 3, 4, and 5 show the results of PSO–CatBoost, GA-CatBoost and 
WOA-CatBoost for the SoC estimation task, respectively. In the top plot 
of all figures, the actual SoC values are shown in blue, while the SoC 
values predicted by the BMO–CatBoost, PSO–CatBoost, and GA- 
CatBoost models are shown in red. All models appear to track the 
overall trend of the actual SoC reasonably well, capturing the major 

fluctuations over time. However, noticeable discrepancies between the 
predicted and actual SoC values can be observed at certain intervals, 
particularly between instances 1.7 × 10⁵ and 2.0 × 10⁵. These discrep-
ancies likely arise from rapid changes in operating conditions, such as 
abrupt shifts in current or temperature, which introduce nonlinear 
behavior that is challenging to capture accurately.

The bottom plots of Figs. 2 to 5 show the normalized error between 
the actual and predicted SoC values. The error fluctuates between − 0.4 
and 0.1, suggesting that the models’ predictions generally vary within 
this range compared to the actual SoC. Among all methods, 
BMO–CatBoost demonstrates the most stable error distribution and 
lowest error margins, indicating superior generalization and robustness 
under varying conditions. These results demonstrate that the hybrid 
BMO–CatBoost approach can provide a reasonably accurate estimation 
of the battery SoC, although the observed discrepancies highlight the 
need for further refinement. Moreover, these discrepancies are recog-
nized as inherent limitations of the current modeling framework, which 
are explicitly addressed in this paper. Specifically, improvements could 
be pursued by incorporating enhanced input features such as time- 

Table 4 
Results of optimized values based on metaheuristic-CatBoost algorithms.

Parameters Min-Max BMO–CatBoost PSO–CatBoost GA-CatBoost WOA-CatBoost

Learning rate [0.01–0.1] 0.08 0.05 0.104 0.081
Depth [3–10] 5 5 5 5
Regularization [1–10] 5 10 5 2
Subsample [0.1–1] 0.1 0.72 0.50 0.19
Feature of each level [0.1–1] 0.83 0.82 0.74 0.81
Bagging temperature [0–1] 0.97 0 0.91 0.50
Random strength [1–20] 1 5 6 9
RMSE 6.1031 6.3784 6.2992 6.2283
MAE 4.1303 4.2184 4.2772 4.1563
STD 5.7183 5.976 5.8337 5.8149
R2 0.8211 0.8017 0.8111 0.8175

Fig. 2. Soc Estimation using BMO–CatBoost.
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Fig. 3. Soc Estimation using PSO–CatBoost.

Fig. 4. Soc Estimation using GA-CatBoost.
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Fig. 5. Soc Estimation using WOA-CatBoost.

Fig. 6. Convergence curves of BMO–CatBoost, PSO–CatBoost, GA-CatBoost, and WOA-CatBoost.

M.H. Sulaiman et al.                                                                                                                                                                                                                           Franklin Open 11 (2025) 100293 

9 



series-based derivatives or dynamic load profile indicators to better 
capture temporal dependencies and evolving system dynamics. The 
adoption of advanced regularization techniques or ensemble learning 
strategies may further improve model adaptability under transient 
conditions by reducing overfitting and increasing robustness to outlier 
behaviors. Additionally, integrating external environmental parameters 
such as ambient temperature and humidity may aid in modeling com-
plex nonlinear interactions that affect battery performance, thereby 
enabling more precise SoC estimations under diverse operating sce-
narios. These directions are expected to significantly contribute to the 
development of a more resilient and accurate predictive framework.

Fig. 6 illustrates the convergence behavior of the BMO, PSO, GA, and 
WOA algorithms when hybridized with CatBoost for the training phase 
of State of Charge (SoC) estimation. The convergence curves reveal that 
BMO consistently outperforms the other algorithms, achieving the 
lowest final objective function value of 0.017396969. This suggests that 
BMO is particularly effective at minimizing the objective function, 
which is a critical aspect in enhancing the accuracy of SoC estimation. 
BMO’s superior performance in terms of convergence indicates its strong 
ability to explore and exploit the solution space efficiently, reaching 
optimal or near-optimal solutions with fewer iterations compared to 
PSO, GA, and WOA. WOA-CatBoost demonstrates interesting conver-
gence characteristics, starting with a relatively low MSE value 
(approximately 0.0185) and exhibiting a steady, incremental improve-
ment throughout the iterations. Unlike BMO’s sharp drop around iter-
ation 4, WOA shows a more gradual optimization path with a notable 
improvement at iteration 7, ultimately settling at a final objective 
function value of approximately 0.0179. This positions WOA-CatBoost 
as the third-best performer, behind BMO and GA but ahead of PSO in 
terms of final convergence value.

Although GA shows initially poor performance with the highest 
starting MSE values (around 0.0197), it demonstrates remarkable 
improvement over time with a final objective function value of 
0.01770694, eventually surpassing both PSO and WOA by the final it-
erations. This dramatic improvement highlights GA’s strong exploita-
tion capabilities in later iterations, despite its slower initial convergence. 
In contrast, PSO demonstrates a faster initial convergence rate compared 
to GA, yet it fails to achieve the same level of objective function mini-
mization as BMO and GA by the end of the training phase, settling at 
approximately 0.0178. A particularly noteworthy observation is the 
convergence pattern between iterations 2–3, where BMO, PSO, and 
WOA all demonstrate nearly identical objective function values before 
diverging significantly. BMO shows a steep improvement at iteration 4, 
whereas WOA maintains a more consistent, gradual improvement tra-
jectory throughout the optimization process. This suggests that while 
BMO excels at finding breakthrough improvements in specific iterations, 
WOA offers more predictable, stable convergence behavior that might 
be advantageous in certain applications where consistency is valued. 
These differences highlight the unique strengths of each algorithm; 
while PSO excels in rapid early convergence, BMO achieves both the 
fastest significant improvement and the best final result, GA demon-
strates powerful late-stage optimization despite poor initial perfor-
mance, and WOA offers stable, consistent improvement throughout the 
process. Overall, BMO’s convergence profile confirms its advantage as 
the most effective metaheuristic algorithm for optimizing CatBoost in 
the SoC estimation task, while WOA presents a compelling alternative 
with its steady convergence characteristics.

The results and analysis provided offer several key insights into the 
effectiveness and limitations of hybridized CatBoost models optimized 
with different metaheuristic algorithms for battery SoC estimation. 
Overall, the BMO–CatBoost model consistently outperforms the 
PSO–CatBoost, GA-CatBoost, and WOA-CatBoost models across various 
performance metrics, such as RMSE, MAE, STD DEV, and R². This sug-
gests that the BMO algorithm is highly effective at fine-tuning the Cat-
Boost parameters to reduce prediction errors and maintain stability 
across trials. This level of stability and precision is essential for SoC 

estimation, as it ensures the model can reliably track the battery’s per-
formance over time, making it suitable for real-world applications in 
electric vehicles. However, while the BMO–CatBoost model demon-
strates superior performance, the noticeable discrepancies between 
predicted and actual SoC values at specific time intervals, particularly 
between instances 1.7 × 10⁵ and 2.0 × 10⁵. These discrepancies suggest 
challenges in modeling dynamic transitions in battery behavior, which 
may result from unaccounted external factors such as temperature 
fluctuations, rapid load changes, or battery aging effects.

Despite its effectiveness, the hybrid BMO–CatBoost model still faces 
challenges that warrant further investigation. The deviations observed 
in the error plots suggest that there may be underlying dynamics in 
battery behavior that the current model configuration fails to capture 
fully. Future work could explore incorporating additional environ-
mental or operational data, such as temperature variations, charge/ 
discharge rates, and battery age, to enhance the model’s ability to 
generalize across a broader range of conditions. Moreover, while BMO’s 
approach to parameter tuning demonstrates promise, it may benefit 
from combining with adaptive optimization techniques or multi- 
objective frameworks to further balance between minimizing errors 
and enhancing model robustness. Integrating domain-specific knowl-
edge or applying regularization techniques could also help address the 
occasional overfitting issues that might arise from BMO’s parameter 
tuning.

Finally, while BMO–CatBoost shows clear advantages, the compu-
tational demands of using metaheuristic algorithms like BMO, PSO, GA, 
and WOA in the training phase present practical challenges. Meta-
heuristic optimization often requires significant computational re-
sources, especially when handling large datasets or complex parameter 
spaces. This limitation could impact the scalability of these models for 
large-scale applications or real-time systems. Therefore, one potential 
area for improvement is developing more computationally efficient 
optimization strategies, such as lightweight versions of BMO or hybrid 
models that utilize faster optimization algorithms during initial training 
phases, followed by fine-tuning with BMO. Additionally, examining the 
trade-offs between computational efficiency and predictive accuracy 
will be essential for advancing SoC estimation models and making them 
more feasible for widespread deployment in battery management 
systems.

In comparison with prior studies, which primarily employ standard 
machine learning methods such as Support Vector Machines (SVM) [54] 
and Random Forests (RF) for SoC estimation [45], the proposed 
BMO–CatBoost hybrid model demonstrates enhanced predictive accu-
racy and improved generalization performance. Traditional models 
often lack built-in mechanisms for handling categorical features and 
may suffer from overfitting when trained on large, high-dimensional 
datasets. The presented results indicate that CatBoost when effectively 
optimized using metaheuristic algorithms, can outperform these con-
ventional approaches by achieving lower error metrics (RMSE and MAE) 
and more stable performance across repeated trials. Additionally, while 
many previous works rely on limited or simulated datasets, this study 
utilizes over one million real-world driving instances from an actual 
electric vehicle, thereby strengthening the model’s practical relevance 
and applicability to real-time battery management systems.

Moreover, while this study focuses on enhancing CatBoost using 
metaheuristic algorithms, we acknowledge that alternative machine 
learning methods such as RF, XGBoost, and neural networks have also 
shown considerable promise in SoC estimation tasks. A comparative 
investigation involving these algorithms could offer further insights into 
model performance and suitability under various conditions. However, 
such an analysis is beyond the scope of this study and is proposed as part 
of our future research directions.

6. Conclusion

A hybrid approach for lithium-ion battery SoC estimation by 
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combining the CatBoost algorithm with metaheuristic optimization, 
aimed at enhancing predictive accuracy and robustness, has been pre-
sented in this study. Data from 72 real-world driving trips of a BMW i3 
electric car with a 60 Ah battery capacity were used, encompassing a 
comprehensive set of input features, including battery and vehicle 
operation metrics. Systematic data cleaning and processing addressed 
missing values and outliers, resulting in a refined dataset of 1053,910 
instances. Each input feature was normalized using Min-Max scaling, 
ensuring consistent scaling and numerical stability during model 
training. The CatBoost model was trained on this prepared dataset to 
capture complex relationships between features and SoC, with meta-
heuristic algorithms employed to optimize key parameters, including 
learning rate, depth, regularization, subsample, features by each level, 
bagging temperature, and random strength. This hybrid approach not 
only achieved a high level of predictive accuracy on the test dataset but 
also demonstrated enhanced generalization capabilities, providing a 
more robust and accurate SoC estimation compared to standalone 
methods.

Nonetheless, several limitations should be acknowledged. Firstly, the 
model’s complexity, particularly with the integration of metaheuristic 
optimization, increases the computational burden during training, 
which may limit real-time applicability. Secondly, although the dataset 
is extensive and based on real-world trips, it is constrained to a single 
vehicle model (BMW i3) and specific usage patterns, which may affect 
the generalizability of the findings to other battery chemistries, vehicle 
types, or driving behaviors. Moreover, the model’s performance could 
potentially vary under conditions or input distributions not represented 
in the training data.

From a practical standpoint, the proposed hybrid model offers a data- 
driven solution that enhances the accuracy and reliability of SoC esti-
mation in battery management systems. This can lead to improved range 
predictions, better charging control, and longer battery lifespan in 
electric vehicles. Moreover, the model’s ability to generalize across 
varied driving profiles makes it suitable for deployment in diverse real- 
world scenarios, including fleet management and energy storage ap-
plications. The robustness of the optimized CatBoost model also sup-
ports its integration into embedded BMS hardware, where predictive 
precision is crucial for safety and operational efficiency.

Future research could explore the application of additional feature 
engineering techniques or incorporate environmental variables, such as 
humidity and altitude, to further improve model performance. Addi-
tionally, extending this approach to other battery types or integrating 
real-time learning mechanisms may expand its utility across broader 
battery management applications. By leveraging the powerful learning 
capabilities of CatBoost with the stabilization benefits of metaheuristic 
optimization, this approach contributes a valuable method to the field of 
battery SoC estimation, with promising implications for electric vehicle 
energy management and other energy storage applications.
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