
MethodsX 15 (2025) 103466 

Contents lists available at ScienceDirect 

MethodsX 

journal homepage: www.elsevier.com/locate/methodsx 

Integrated deep learning for cardiovascular risk assessment and 

diagnosis: An evolutionary mating algorithm-enhanced 

CNN-LSTM 

✩ 

Ahmed Mohammed Ahmed Alsarori, Mohd Herwan Sulaiman 

∗ 

Faculty of Electrical & Electronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), 26600 Pekan Pahang, 

Malaysia 

a r t i c l e i n f o 

Method name: 

Dual Output CNN-LSTM-EMA 

Keywords: 

Cardiovascular disease 
Machine learning 
Deep learning 
Hybrid model 
Convolutional neural network 
Long Short-Term Memory 
Evolutionary mating algorithm 

a b s t r a c t 

Cardiovascular diseases (CVD) remain the leading cause of mortality worldwide, emphasizing 
the urgent need for accurate and efficient predictive models. This study proposes a dual-output 
deep learning model based on a hybrid Convolutional Neural Network–Long Short-Term Mem- 
ory (CNN-LSTM) model, optimized using the Evolutionary Mating Algorithm (EMA). The model 
predicts both a continuous risk score and a binary diagnostic outcome, supporting both quanti- 
tative assessment and early clinical decision-making. EMA was applied for hyperparameter opti- 
mization, demonstrating improved convergence and generalization over conventional methods. 
Performance was benchmarked against CNN-LSTM models optimized using Particle Swarm Opti- 
mization (PSO) and Barnacle Mating Optimization (BMO). The EMA-based model achieved supe- 
rior results, with a Mean Absolute Error (MAE) of 0.018, Mean Squared Error (MSE) of 0.0006, 
Root Mean Squared Error (RMSE) of 0.024, and a coefficient of determination (R2 ) of 0.98 for risk 
prediction. For the diagnostic task, the model attained 70 % accuracy and 80 % precision. These 
findings validate EMA’s effectiveness in tuning dual-output deep learning models and highlight 
its potential in enhancing cardiovascular risk stratification and early diagnosis in clinical settings. 

• Dual-output CNN-LSTM model optimized using EMA. 
• Continuous risk scores and binary diagnostic classification predictions. 
• EMA outperformed PSO and BMO in predictive accuracy and model robustness. 

 

Specifications table 

Subject area: Engineering 
More specific subject area: Machine Learning and Deep Learning 
Name of your method: Dual Output CNN-LSTM-EMA 
Name and reference of original method: 
Resource availability: Cardiovascular dataset, [online] https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset 

Background 

Chronic diseases represent a profound and escalating global health challenge, accounting for approximately 74 % of all deaths 
worldwide. In 2023 alone, non-communicable diseases (NCDs) were responsible for over 41 million deaths, underscoring their per- 
vasive impact across populations [ 1 ]. In the United States, nearly 88 % of individuals aged 65 and above are affected by at least one
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Table 1 

Dataset variable. 

Feature Variable Missing Values 

ID id Non 
Age Age Non 
Height Height Non 
Weight Weight Non 
Gender Gender Non 
Systolic blood pressure ap_hi Non 
Diastolic blood pressure ap_lo Non 
Cholesterol Cholesterol Non 
Glucose Gluc Non 
Smoking Smoke Non 
Alcohol intake Alco Non 
Physical activity Active Non 
Cardiovascular disease Cardio Non 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

chronic condition, emphasizing the critical need for timely diagnosis, continuous monitoring, and personalized intervention strategies 
[ 2 ]. Among the most burdensome of these conditions are cardiovascular diseases (CVD), diabetes, cancer, and stroke [ 3 ]. Although
chronic diseases are often preventable or manageable, their effective control hinges on early detection and accurate risk stratification
[ 4 ]. 

Recent advancements in Artificial Intelligence (AI), particularly in machine learning (ML), have shown promise in improving 
disease prediction and clinical decision support systems [ 5–10 ]. Deep learning —a subset of ML —has demonstrated exceptional per-
formance in capturing complex, nonlinear relationships in medical data. Deep Neural Networks (DNNs), with their hierarchical 
architecture, are capable of learning abstract representations from high-dimensional data [ 11–14 ]. Within this framework, Convolu- 
tional Neural Networks (CNNs) are proficient at extracting spatial features, while Long Short-Term Memory (LSTM) networks excel 
at modeling temporal dependencies in sequential data. The integration of CNN and LSTM layers into a unified architecture enables
robust modeling of both spatial and temporal dynamics in patient health records, making it particularly suitable for CVD prediction
tasks [ 15–18 ]. 

Despite their effectiveness, deep learning models are highly sensitive to hyperparameter configurations, which can significantly 
influence predictive performance [ 19 ]. Conventional optimization techniques —such as grid search and random search —are often 
computationally intensive and inefficient in navigating large, multimodal search spaces [ 20 ]. In response to these challenges, recent
research has turned to bio-inspired metaheuristic algorithms for hyperparameter tuning. 

This study investigates the Evolutionary Mating Algorithm (EMA) [ 21–26 ], a novel recombination-based evolutionary technique 
designed to enhance diversity in the search process. EMA introduces dynamic mating strategies to avoid local optima and promote
broader exploration of the solution landscape. By integrating EMA with a hybrid CNN-LSTM architecture, we propose a dual-output
deep learning framework capable of simultaneously predicting (i) a continuous risk score for cardiovascular disease and (ii) a binary
diagnosis classification. This dual-task approach not only enables fine-grained risk assessment but also supports early diagnostic 
decision-making. 

To benchmark its effectiveness, the proposed CNN-LSTM-EMA model is compared against alternative optimization methods, in- 
cluding Particle Swarm Optimization (PSO) and Barnacle Mating Optimization (BMO). The goal is to demonstrate the superiority of
EMA in enhancing both predictive accuracy and generalizability for dual-output cardiovascular disease modeling . 

Method details 

This paper utilizes a cardiovascular disease dataset and all relevant information with regards to the dataset and how it would be
utilized could be read in this chapter. Table 2 provides the data configuration details used for training and testing. 

Data collection 

It is to be noted that the risk assessment would be a continuous variable, while the early diagnosis would be a binary variable.
The risk assessment variable is a percentile variable meaning that it could range from 0 – 100 theoretically, while the early diagnosis
variable would be a binary variable predicting and/or indicating the presence of a cardiovascular disease. All of these are to be
used at the discretion of the medical practitioner. The utilization of these assessments should be exercised with the careful judgment
and discretion of a medical professional. It is imperative that a qualified healthcare practitioner assess and interpret the information
provided by these models, considering their expertise and the unique circumstances of each case. 

The dataset utilized for this research comprises 70,000 patient records, acquired from Kaggle, a trusted and open source for
datasets, and its link is in the reference [ 27 ] along with their corresponding features outlined in the provided Table 1 . 

Table 1 exhibits the 13 initial features or variables within the dataset before undergoing preprocessing. While most of these features
are self-explanatory, it is crucial to emphasize that the feature ID, which is linked to patient identification, will not be employed in
any model throughout this study. Furthermore, to utilize the data from this dataset for the deep learning algorithm proposed in this
2
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paper, it needs to be normalized and transposed before providing it to the models. Normalizing and transposing would be conducted
after preprocessing the data and introducing any feature-engineered features/variables. 

Exploratory data 

The data processing steps were initiated by conducting a thorough examination for missing or duplicate data. To maintain data
integrity, no feature selection methods such as PCA or LASSO regression were applied. The dataset was kept unchanged in its original
form, ensuring that all features were preserved for deep learning modeling. However, preprocessing steps were applied to handle 
missing values, outliers, and noise: 

• Missing Values : The data was searched and checked for any missing data, but nothing was missing. 
• Outliers : Extreme outliers, detected using the interquartile range (IQR) method, where values for “ap_hi ”, “ap_lo ”, “weight ”, and

“height ” fell outside the 2.5 % to 97.5 % range, were systematically eliminated. 
• Noise Handling : Data smoothing techniques, including moving averages, were applied where necessary to mitigate inconsisten- 

cies. 

By incorporating the segmentation of continuous input into discrete groups or bins, the algorithm gained the capability to discern
subtle variations among different data classes. An illustrative example is the age variable, initially provided in days, which was
subsequently converted to the default age format (in years) [ 28–30 ]. 

Feature engineering 

Beyond addressing outliers, a comprehensive understanding of the dataset used in this paper was gathered, encompassing the type 
of data and complete dataset statistics. The introduction of new variables was undertaken for utilization in the paper, with MAP and
BMI identified as crucial variables in all risk assessment models while the risk variable served as the target for these models. 

In the field of medicine, mean arterial pressure (MAP) refers to the average blood pressure experienced by an individual over a
single cardiac cycle. This feature serves as a crucial indicator of both peripheral resistance and cardiac output and is expressed as
follows: 

𝑀𝑒𝑎𝑛 𝐴𝑟𝑡𝑒𝑟𝑖𝑎𝑙 𝑃 𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ( 𝑚𝑎𝑝 ) = 2 𝑎𝑝_𝑙𝑜 + 𝑎𝑝_ℎ𝑖 
3 

(1) 

Cardiovascular Disease (CVD) risk is notably elevated among those classified as overweight or obese. The classification of weight
could be acquired using Body Mass Index (BMI) and is expressed as follows: 

𝐵𝑜𝑑𝑦 𝑀𝑎𝑠𝑠 𝐼𝑛𝑑𝑒𝑥 ( 𝑏𝑚𝑖 ) = 𝑤𝑒𝑖𝑔ℎ𝑡 

ℎ𝑒𝑖𝑔ℎ𝑡2 
(2) 

The unique aspect of this study lies in its focus on the risk variable, aiming to evaluate the likelihood of a patient developing
CVD [ 31–34 ]. The rationale behind selecting these components stems from the recognition, supported by previous medical studies
[ 2 ], that age and cholesterol play pivotal roles in identifying CVD. This variable comprises all the elements such as “Age ”, “MAP ”,
“cholesterol ”, and “BMI ”, as well as all the other features/elements in the dataset that would be used in the model and could be
expressed as follows: 

𝑅𝑖𝑠𝑘 =
∑

𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 ∑
𝐻𝑖𝑔ℎ𝑒𝑠𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

× 100 (3) 

Table 2 shows all the variables that would be used in this study after analysis and preprocessing have been completed. 
Figs. 1 and 2 show all the inputs and outputs before transposing them. It clearly shows the distribution of data within the dataset.

It shows which of the variables would be used as inputs and how they are provided as well as how the output would be, in terms of
what prediction values it would produce. 

Hyperparameters optimization 

To accomplish the goal of this paper, 4 hyperparameters of the CNN-LSTM (Convolutional neural network and long short-term 

memory network) model are optimized by means of utilizing Evolutionary Mating Algorithm to lower the Mean Absolute Error 
(MAE). These four parameters, as shown in Table 3 , are the number of filters, filter size, LSTM units, and dropout rate parameters.
Acceptable ranges have been provided based on relevant information. 

MAE serves as the objective function for enhancing optimization results, which is expressed as follows: 

𝑀𝐴𝐸 = 1 
𝑛 

𝑛 ∑
𝑖 =1 

||𝑦𝑖 − �̄�𝑖 
|| (4) 

where; 

n – stands for the number of observations 
yi – stands for actual values 
�̄�𝑖 – stands for optimized values 
3
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Table 2 

Input and Output Variables. 

Feature Variable Missing Values Preview Input/Output 

Age Age Non 55, 76, 62, 42 Input 
Body Mass Index BMI Non 1 – Normal 

2 – Overweight 
3 – Obese 

Input 

Mean Arterial Pressure MAP Non 1 – Normal 
2 –Elevated 
3 – Elevated (within early 
stage 1 hypertension) 
4 – Stage 1 Hypertension 
5 – Stage 2 hypertension 

Input 

Gender Gender Non 1 – Male 
2 - Female 

Input 

Cholesterol Cholesterol Non 1 - normal 
2 - high 
3 – very high 

Input 

Glucose Gluc Non 1 - normal 
2 – high 
3 – very high 

Input 

Smoking Smoke Non 0 – non-smoker 
1 - smoker 

Input 

Alcohol intake Alco Non 0 – doesn’t drink 
1 - drinks 

Input 

Physical activity Active Non 0 – not active 
1 - active 

Input 

Risk factor Risk Non 64.32, 88.15, 72.98 
(percentiles) 

Output 

Early diagnosis Cardio Non 0 – not diagnosed 
1 - diagnosed 

Output 

Fig. 1. Input Variables. 

 

 

This paper utilizes the Evolutionary Mating Algorithm (EMA) as a method to optimize and adjust the hyperparameters of the
proposed CNN-LSTM model, which in the context of this paper, would be the base deep learning model as shown in Fig. 3 . This
optimization is carried out by embedding the EMA function into the CNN-LSTM framework and automating hyperparameter tuning 
to select the best ones to be used. 
4
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Fig. 2. Output Variables. 

Table 3 

Hyperparameters. 

Parameters Range Details 

Number of 
filters 

(8–64) Number of filters in the convolutional layer (lower than 8 leads to poor learning while higher than 64 might risk overfitting) 

Filter size (2–5) Kernel sizes (size of filters) in the convolutional layer (small kernels, 2–3, might be good for sequential data and learning 
fine-grained data while 4–5 learns more contextual information) 

LSTM units (32–128) Number of units in the LSTM layer, the memory capacity to learn long-term dependencies (the larger and complex the dataset, 
the more units would be needed. Lower than 32 risks than learning the long-term dependencies efficiently while higher than 
128 risks overfitting and increased training time) 

Dropout rate (0.1–0.5) Dropout rate for regularization. (lower than 0.1 leads to overfitting while higher than 0.5 may cause underfitting) 

 

 

 

 

 

 

EMA combines elements of genetic algorithms and natural mating processes to function. It is a recently established metaheuristic
algorithm that stems from Hardy-Weinberg (HW) principles and is inspired by the mating process in organisms. 

𝑥𝑚 =
⎡ ⎢ ⎢ ⎢ ⎣ 
𝑥1 1 ⋯ 𝑥𝑑 

1 
⋮ ⋱ ⋮ 

𝑥1 𝑛 ∕2 
⋯ 𝑥𝑑 

𝑛 ∕2 

⎤ ⎥ ⎥ ⎥ ⎦ (5) 

𝑥𝑓 =
⎡ ⎢ ⎢ ⎢ ⎣ 
𝑥1 𝑛 

2 +1 
⋯ 𝑥𝑑 

𝑛 

2 +1 

⋮ ⋱ ⋮ 
𝑥1 
𝑛 

⋯ 𝑥𝑑 
𝑛 

⎤ ⎥ ⎥ ⎥ ⎦ (6) 

𝐼𝑚𝑎𝑡𝑒𝑠 = 1 +
[
𝑣𝑎𝑟

(
𝑥𝑇 
𝑚, ∗ 

)
− 𝑣𝑎𝑟

(
𝑋𝑇 

𝑓 , ∗ 

)]
(7) 

𝑋𝑇 
𝑐ℎ𝑖𝑙𝑑 

=

{ 

𝑝. ∗ 𝑋𝑇 
𝑚, ∗ + 𝑞. ∗ 𝑋𝑇 

𝑓 , ∗ 𝑓𝑜𝑟 𝐼𝑚𝑎𝑡𝑒𝑠 ≥ 0 
𝑝. ∗ 𝑋𝑇 

𝑓 , ∗ + 𝑞. ∗ 𝑋𝑇 
𝑚, ∗ 𝑓𝑜𝑟 𝐼𝑚𝑎𝑡𝑒𝑠 < 0 (8) 

𝑝 = 𝑟𝑎𝑛𝑑𝑛( 1 , 𝑑 ) (9) 

𝑞 = ( 1 − 𝑝 ) (10) 

This algorithm starts by initializing a population of possible solutions. This is generally the data available. Based on Eq. (5) , which
is at the initialization stage, two groups are observed. These two groups are acquired after the candidate solution X is split into two
as observed from Eqs. (5) and (6) : with Xm representing the males’ group while Xf represents the females, n referring to the size of
the population, and d the dimension of the equation\problem. After initialization is completed, the fitness function is next. It would
be evaluated for each member of the population and based on the results acquired, the best solutions from both Xm and Xf would be
identified and recorded. Fitter solutions would be favored. 
5
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Fig. 3. CNN-LSTM-EMA flowchart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A crossover would then be performed to produce an offspring solution. This step is the combination of the two selected parent
solutions to produce a new solution, the offspring solution. This could be seen in Eq. (7) where Imates is the mating process in EMA
based on the opportunity for sexual selection and the var ( 𝑥𝑇 

𝑚, ∗ ) and var ( 𝑥𝑇 
𝑓 , ∗ ) are the variance of the selected male and female to be

mated, respectively at iteration T. 
Once the mating process concludes, the next process from Eq. (8) , the production of new offsprings ( 𝑋𝑇 

𝑐ℎ𝑖𝑙𝑑 
) starts. Here, p refers

to normal random distribution, which could further be expressed in Eq. (9) while q could be expressed in Eq. (10) . The resulting
offspring solutions would then be evaluated based on the fitness functions and the best solutions would be kept, then introduced as
parent solutions for the next batch. This process would continue to be repeated for several generations (cycles) until convergence.
Furthermore, two parameters would need to be tuned to consider the effects the environment might have, such as predators. These
two parameters are Cr and r. Of these two parameters, Cr refers to the probability of crossovers while r refers to predator encountering
probability. With environmental changes, the best solution’s characteristics would significantly be altered, since the offspring could 
be assumed to be dead or alive. 

It utilizes the evolutionary mating algorithm to train, evaluate, and improve parameters by means of evolving it to the most
suitable ones by running it until the maximum number of iterations has been completed. Hyperparameter tuning was performed using
an adaptive search mechanism , evaluating model performance iteratively through validation loss reduction. A cross-validation 

approach was not ultimately used due to computational constraints, even though it had realistically the best results; instead, a 60–40

train-test split was determined as the most effective based on preliminary experiments comparing 70–30, and 80–20 splits. 

Proposed model (CNN-LSTM) 

After the optimization is completed, it would then be used to train the deep learning model proposed for this paper from scratch
(using the training dataset). It would then be evaluated using unseen data from the testing dataset. 

Convolutional Neural Networks (CNNs) are generally a type of deep learning model particularly effective for analyzing visual 
data, meaning images [ 35–38 ]. Below is an equation of a normal CNN model. 

( 𝑓 ∗ 𝑔 ) ( 𝑥, 𝑦 ) =
𝑘 ∑

𝑖 =− 𝑘 

𝑘 ∑
𝑗=− 𝑘 

𝑓 ( 𝑥 + 𝑖, 𝑦 + 𝑗 ) ⋅ 𝑔( 𝑖, 𝑗 ) (11) 

In this equation, ƒ is the input image or feature map, representing the input image or the output from the previous layer in the
CNN. Each value in this matrix corresponds to a pixel’s intensity in the case of an image or a feature in a feature map. ɡ is the filter
or kernel, representing a smaller matrix that slides over the input feature map. Each value in the filter corresponds to a weight that
is applied to the input feature map. ( x,y ) is the position in the output feature map, k defines the size of the filter. 

In the case of models with no images, the conventional CNN equation won’t work. In that case, a non-image equation, which uses
1-dimensional data (word/number-based datasets), would be utilized and is expressed as follows: 

( 𝑓 ∗ 𝑔 ) ( 𝑡) =
𝑘 ∑

𝑖 =− 𝑘 
𝑓 ( 𝑡 + 𝑖 ) ⋅ 𝑔( 𝑖) (12) 

In this equation, ƒ is the input sequence or time series data, representing a 1D array or a higher-dimensional tensor representing
the input data. For instance, in time series analysis, each value could represent data at a specific time point. ɡ is the filter or kernel,
6
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Fig. 4. Convergence Plot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

designed to detect specific patterns or features in the input data. t is the position in the output sequence whereas k defines the size of
the filter. 

𝑧𝑡 = 𝑓

( 

𝑘 −1 ∑
𝑖 =0 

𝑤𝑖 ⋅ 𝑥𝑡 + 𝑖 + 𝑏 

) 

(13) 

With regards to this paper, the deep learning model used is a hybrid of CNN, a Convolutional Neural Network combined with a Long
Short-Term Memory network (CNN-LSTM). It functions by extracting features (CNN component) then sequence modeling it (LSTM 

component). It integrates the spatial feature extraction capabilities of CNNs, as shown in Eq. (13) , where xt + i represents the input
data at certain points ( t + i ), wi and b represents the weights and biases, k is the kernel size, f ∙ represents activation functions and zt 

is the output, the feature extracted at certain points ( t ), with the temporal sequence modeling strengths of LSTMs. This combination
is particularly effective for non-image sequential data where capturing both local patterns and long-term dependencies is crucial. 
After extracting the features, it would flow into the forget gate where it would determine which information would be discarded by
understanding the amount of memory needed to be filtered which would then be processed to the input gate where it would select
new information to be added. Then it would be released by the output gate where output based on the information provided by the
input gate has been processed [ 39–41 ] 

Statistical analysis 

The performance metrics, mean absolute error, mean squared error, root mean squared error, standard deviation, coefficient of 
determination, and max error are utilized in this study for risk assessment while accuracy and precision for diagnosis assessment
[ 42 ]. The models run under each partition have been compared to select which partition would be the best suited for this paper. The
Wilcoxon signed-rank test was incorporated to statistically evaluate model performance differences, along with boxplots to illustrate 
the stability of the models across multiple test runs [ 43 ] . 

Method validation 

The study was conducted using MATLAB on a laptop with an Intel Core i7 processor, Intel Iris Xe graphics, and 16GB RAM. Matlab
was employed as the primary tool for processing the dataset and constructing the models. 

Hyperparameters 

The efficiency and convergence of each optimization of hyperparameters in each model are shown in Fig. 4 . It shows the efficiency
and convergence of the 60:40 partition as it was the best splitting ratio after trials had been completed. The results of this data partition
can be inferred in Table 5 . It shows how well each model’s optimizer selects their hyperparameter for their model. It is to be noted
that each model has been trained a minimum of 10 times. Table 4 shows the best parameters selected via each optimizer while Table 5
shows the statistical evaluation of the models after the hyperparameters are included in. 

The convergence plot in Fig. 4 illustrates the optimization behavior of BMO, PSO, and EMA in minimizing the Mean Absolute
Error (MAE) across 100 iterations. While BMO achieves the fastest and lowest training convergence, it is important to contextualize
this with overall model performance. Despite EMA showing a slower and less optimal convergence curve —stabilizing at a slightly
higher MAE compared to BMO during training —it ultimately outperforms both BMO and PSO in predictive evaluation metrics, as
inferred in Table 5 . 
7



A.M. Ahmed Alsarori and M.H. Sulaiman MethodsX 15 (2025) 103466

Table 4 

Hyperparameters (Optimized). 

Parameters EMA Fitness (MAE) BMO Fitness (MAE) PSO Fitness (MAE) 

Number of filters 22.247 0.196 64 0.194 64 0.195 
Filter size 3.749 4 4 
LSTM units 105.53 32 126 
Dropout rate 0.1 0.211 0.292 

Table 5 

Optimized CNN-LSTM algorithms. 

CNN-LSTM-BMO CNN-LSTM-PSO CNN-LSTM-EMA CNN-LSTM-EMA 

At 60:40 5-fold Cross-validation 

R2 (Risk Prediction) 0.93 0.95 0.98 0.99 

MAE (Risk Prediction) 0.038 0.028 0.018 0.01 

MSE (Risk Prediction) 0.002 0.0014 0.0006 0.0002 

RMSE (Risk Prediction) 0.045 0.037 0.024 0.015 

Max Error (Risk Prediction) 0.27 0.21 0.2 0.15 

Std. Deviation (Risk Prediction) 0.032 0.034 0.023 0.015 

Accuracy (Binary Prediction) 0.7 0.7 0.70 0.72 

Precision (Binary Prediction) 0.74 0.7 0.8 0.8 

Computational time 3 h and 25 min 3 h 4 hours 22 h 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Statistical analysis results 

The results presented in Table 5 showcase a comparative evaluation of three optimization techniques —Barnacle Mating Opti- 
mization (BMO), Particle Swarm Optimization (PSO), and the Evolutionary Mating Algorithm (EMA) —based on their Mean Squared 
Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Coefficient of Determination (R2), Standard Deviation 
(STD) for the risk variable, accuracy and precision for the analysis variable and computational time for both variables at the best
data partition ratio. 

The CNN-LSTM-EMA model demonstrates superior performance in risk prediction across all evaluation metrics. With an R2 of 
0.98, it explains nearly all the variance in the data, outperforming CNN-LSTM-PSO (0.95) and CNN-LSTM-BMO (0.93). Its lower MAE
(0.018), MSE (0.0006), and RMSE (0.024) indicate a more precise and consistent prediction capability, with minimal average and
squared errors. Additionally, the lowest standard deviation (0.023) and maximum error (0.2) highlight the EMA-optimized model’s 
robustness and reduced susceptibility to outlier-induced deviations. In contrast, the BMO-optimized model lags with the highest 
error values and variability, suggesting less reliable performance. While PSO offers moderate improvements over BMO, it still falls
short of EMA’s predictive accuracy and stability. For binary diagnosis, all three models achieve comparable accuracy (0.7). However,
the CNN-LSTM-EMA model attains the highest precision (0.8), indicating better performance in correctly identifying positives and 
reducing false positives. BMO (precision = 0.74) and PSO (0.7) follow, with diminishing precision. 

When extended to a 5-fold cross-validation framework, the CNN-LSTM-EMA model achieves even stronger generalization, record- 
ing an R2 of 0.99, MAE of 0.01, MSE of 0.0002, RMSE of 0.015, StD of 0.015, and Max error of 0.15. For binary diagnosis, the model
attains a marginally improved accuracy of 0.72, while maintaining the highest precision of 0.80 among all tested variants. These
results confirm EMA’s superior capability in hyperparameter tuning, particularly in avoiding local minima and enabling effective 
exploration of the optimization landscape. 

While the 5-fold cross-validated CNN-LSTM-EMA model provides the highest performance metrics, it incurs a computational time 
of approximately 22 h, which may limit its feasibility for real-time or large-scale clinical deployment. In contrast, the 60/40 train-test
split CNN-LSTM-EMA model completes in a significantly shorter computational time of approximately 4 h, while still achieving highly 
competitive performance. This renders it a more pragmatic option for applications where computational efficiency is critical. 

This indicates that faster convergence does not necessarily correlate with superior generalization. EMA’s relatively higher MAE 
during training is compensated by its enhanced capability to escape local minima and achieve better global optimization of hyperpa-
rameters. This results in the CNN-LSTM-EMA model achieving the best R2 scores, lowest RMSE, and superior precision (0.8) in actual
testing scenarios. 

Prediction plots 

The Evolutionary Mating Algorithm (EMA) has demonstrated significant advantages in optimizing CNN-LSTM models, particularly 
in terms of achieving better distribution and precision in risk predictions. When compared to other optimization methods, EMA ensures
a closer alignment between the predicted and actual risk outputs, as shown in Fig. 5 . The bar plot (a snapshot of the complete plot)
provides a comparative visualization of actual versus predicted cardiovascular risk values for a subset of test samples, highlighting
the performance of CNN-LSTM models optimized by EMA, BMO, and PSO. It is to be noted that the bar plot did not include the 5-fold
cross-validated EMA. Across the selected indices, the CNN-LSTM-EMA model (orange) consistently demonstrates the closest alignment 
8
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Fig. 5. Risk assessment Actual vs Predicted. 

Fig. 6. Risk assessment Actual vs Predicted (Line Plot). 

 

 

 

 

 

 

 

 

 

with the actual risk values (blue), reinforcing its superior predictive accuracy and reduced deviation. In contrast, the CNN-LSTM-BMO
model (yellow) shows more pronounced over- or under-estimations, suggesting a less reliable generalization. The CNN-LSTM-PSO 

model (purple) performs moderately, offering improved accuracy over BMO but still falling short of EMA’s precision. 
These visual trends corroborate earlier statistical findings, where EMA achieved the lowest MAE (0.018), MSE (0.0006), and RMSE

(0.024), along with the highest R2 (0.98). The bar plot thus visually substantiates the quantitative evaluation, validating EMA as the
most reliable optimization strategy among those evaluated. 

The provided line plot in Fig. 5 is a compressed version of the earlier bar plot in Fig. 5 , offering a continuous visualization of
the prediction performance of all the models compared to actual values with the actual values represented by blue, CNN-LSTM-BMO
represented by red, CNN-LSTM-PSO represented by green and CNN-LSTM-EMA represented by magenta. This plot allows for a clearer 
comparison of how well each predictive model tracks the actual risk values over a broader dataset. The compressed format of the
plot provides an overall trend but loses some granularity compared to the bar plot in Fig. 5 . While the bar plot facilitated direct
comparisons at specific observations, the line plot in Fig. 6 effectively illustrates fluctuations over a broader range. 

Statistical significance testing and feature importance 

Fig. 7 depicts the feature importance of all the variables utilized in the optimized CNN-LSTM model and how it impacts the
results acquired. Achieved through Shapley Additive explanations (SHAP) analysis. Fig. 7 above presents a SHAP analysis for feature 
importance, illustrating the contribution of different features to the model’s predictive capability. From visualization, the feature Age 
exhibits the highest SHAP value, signifying its dominant role in the model’s decision-making process. This suggests that this feature
has the most significant impact on risk prediction. 
9
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Fig. 7. SHAP Analysis- Feature importance. 

Fig. 8. Boxplot (significance test). 

 

 

 

 

 

 

 

 

 

Fig. 8 presents a boxplot comparison of absolute errors for three models, evaluated using the Wilcoxon signed-rank test. The
x-axis represents the three models, while the y-axis denotes the absolute error values. The boxplots display the median (red line),
interquartile range (IQR) (blue box), and outliers (red points), offering insight into the distribution and variability of absolute errors
across different models. 

From the visualization, Model 1 (EMA-optimized) demonstrates the most favorable error distribution, characterized by a narrow 

interquartile range, low median absolute error, and minimal variability —indicating stable and consistent predictive performance. 
Model 3 (PSO-optimized) follows though it presents slightly higher dispersion and a greater number of outliers. In contrast, Model 2
(BMO-optimized) exhibits a wider spread and higher median error, reflecting reduced robustness. The presence of outliers across all
models, most notably in Model 3 —highlights occasional deviations, yet EMA’s tighter error bounds reinforce its superior reliability
in risk prediction. 

The Wilcoxon signed-rank test, a non-parametric statistical test used to compare paired samples, was employed to determine 
whether significant differences exist in the absolute error distributions between the models. The obtained p-values for all three 
comparisons were < 0.05, and the test statistic h = 1, indicating that the differences between the models are statistically significant.
This suggests that at least one model significantly outperforms the others in terms of error minimization. Given these findings, Models
1 and 3 demonstrate superior predictive accuracy compared to Model 2. 

Limitations 

The findings in this paper underscore EMA’s utility in optimizing deep learning models for multifaceted medical prediction tasks,
enabling both precise risk assessment and reliable disease diagnostic classification. However, computational demands remain a notable 
limitation, as does the model’s slightly higher performance bias toward the regression component. 
10
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While the 5-fold cross-validated CNN-LSTM-EMA configuration yields the highest performance metrics, it incurs significantly 
longer training times compared to the more efficient 60/40 split variant. This challenge could be addressed in future studies by incor-
porating further algorithmic refinements or leveraging high-performance computing environments to reduce runtime without com- 
promising accuracy. Future work should address these limitations through architectural enhancements and advanced multi-objective 
optimization techniques. To address the performance bias, future work could mitigate it through architectural enhancements, such 
as the integration of multi-task learning frameworks and customized loss functions (e.g., weighted or multi-objective loss functions) 
to facilitate equitable learning across heterogeneous output types and enhance the model’s capacity for balanced optimization. To 
ensure clinical applicability, future research should focus on validating the model across diverse populations and institution-specific 
and real-time datasets such as real-world electronic health records (EHRs) systems. To further strengthen predictive performance and 
real-world relevance, future research could incorporate multi-modal data, including ECG signals, imaging, and genetic biomarkers, 
to further improve predictive robustness and potentially improve diagnostic precision, advancing the development of AI-driven tools 
for early CVD detection and personalized patient care. 

Limitations in this paper include the following: 

1. Its computational cost, which could be mitigated by optimizing the algorithm further or utilizing high-performance computing 
resources. 

2. Due to its nature of predicting 2 outputs of different types (continuous/regression for risk and binary for diagnosis), the model
mostly favors the regression type, thus not performing as well for the second type of output. This could be mitigated by further
optimizing the algorithm to better process dual outputs. 

3. While the proposed model demonstrates strong predictive performance, its real-world deployment requires further validation 
across different populations to ensure fairness and reliability. 
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