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A B S T R A C T

The Internet of Things (IoTs) increasingly depends on Wireless Sensor Networks (WSNs) for real time data 
collection and communication. However, due to the limited battery capacity of sensor nodes, energy efficiency 
remains a critical challenge, especially since data transmission consumes the most energy. This study introduces 
an enhanced energy aware clustering approach that combines an improved K-Means algorithm with an adaptive 
distance threshold to optimize relay node selection and cluster formation. The method considers node proximity, 
residual energy, and overall network conditions to achieve balanced energy distribution across the network. The 
proposed approach was evaluated against established protocols including Hybrid Energy-Efficient Distributed 
Clustering (HEED), Threshold-Sensitive Energy-Efficient Sensor Network (TEEN), and previous versions of the 
Energy Efficient Cluster and Routing (EECR) protocol under three different deployment scenarios. Experimental 
results show that the enhanced EECR protocol reduces energy consumption by 5 % and significantly extends 
network lifetime, outperforming conventional techniques. The inclusion of adaptive distance thresholds proves 
effective in minimizing unnecessary energy drain and improving the reliability of data transmission. These re
sults highlight the method’s potential as a scalable and energy efficient solution for future IoT applications 
involving large scale sensor networks.

1. Introduction

The rapid expansion of IoTs applications has positioned WSNs as a 
fundamental technology for real-time data collection, processing, and 
transmission across interconnected systems. In such networks, energy 
efficiency remains a primary concern due to the limited battery life of 
sensor nodes, especially in remote or inaccessible environments. Clus
tering techniques have emerged as a key solution, where the selection of 
optimal Cluster Heads (CHs) is crucial to balancing network load and 
reducing energy consumption. However, conventional clustering 
methods often fall short in dynamic or dense network conditions, 
resulting in uneven energy distribution and reduced network lifetime. 
These challenges have led to increased research efforts to design smarter 
clustering algorithms that adapt to real-time conditions and maximize 
the operational lifespan of WSNs [1].

WSNs are often deployed in settings where replacing or recharging 
nodes is impractical, such as agricultural fields, industrial zones, or 
military applications [2]. To address the energy constraint, recent 
studies have explored adaptive CH selection strategies that consider 

residual energy, communication distance, and signal quality. Among the 
notable protocols, HEED and TEEN have been widely adopted for their 
energy-aware features. HEED utilizes residual energy and intra-cluster 
communication cost for CH election, while TEEN introduces 
threshold-based mechanisms to reduce transmission frequency. Despite 
their effectiveness, both approaches exhibit limitations in load 
balancing and long-term energy optimization, particularly in large-scale 
or heterogeneous networks [3].

Another key challenge in WSNs lies in the placement and number of 
relay nodes, which significantly impact both energy efficiency and 
communication reliability. Relay nodes serve as intermediaries to 
reduce direct transmissions to the base station, but their effectiveness 
depends heavily on optimal positioning and selection criteria. Poorly 
placed relays can lead to increased energy drain, particularly when 
nodes are far from the base station or when data paths are congested. 
Multi-hop communication helps mitigate energy loss, but if not carefully 
managed, it may also accelerate the energy depletion of intermediate 
nodes [4]. Thus, designing a mechanism that dynamically selects relay 
nodes based on energy levels, proximity, and centrality is essential for 
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achieving balanced energy consumption and longer network life.
To address these gaps, this study introduces an improved K-Means 

clustering algorithm integrated with an adaptive distance threshold to 
enhance relay node selection and energy efficiency in WSNs. The pro
posed method takes into account node density, distance to the base 
station, and residual energy, resulting in more balanced cluster forma
tions and smarter data routing. Unlike traditional static approaches, this 
adaptive model responds to changing network conditions, effectively 
extending the network lifetime and reducing node failures.

The key contributions in this study are as follows. 

1. An improved K-Means algorithm optimizes centroid selection, 
ensuring balanced energy consumption across nodes. Optimal 
network lifetime is achieved with seven relay nodes in Tier-1 and 
twelve in Tier-2, reducing energy consumption by 5 %. Adjusting the 
distance threshold (15 m in Tier-1, 30 m in Tier-2) extends network 
lifetime by 27 % compared to EECR 2.

2. The EECR scheme prioritizes relay nodes based on centrality, prox
imity to the base station, and residual energy, thereby minimizing 
communication costs. The proposed path selection strategy also 
prevents node conflicts by selecting routes with the highest energy 
and shortest distance.

3. EECR demonstrates superior performance, extending network life
time by 84 % over HEED and 63 % over TEEN. Evaluations based on 
First Node Dead (FND), Last Node Dead (LND), cluster count, and 
residual energy across multiple scenarios confirm its effectiveness 
under various network conditions.

The remainder of the paper is structured as follows. Section 2 dis
cusses related works, while Section 3 presents the network model. Sec
tion 4 details the proposed improved k-means clustering technique, 
followed by an explanation of the adaptive distance threshold in Section 
5. Section 6 discusses the energy consumption model, and Section 7
provides simulation results and analysis. Section 8 presents the experi
mental findings, while Section 9 concludes the study.

2. Related works

In WSNs, managing energy consumption remains one of the most 
critical challenges, as it directly influences how long a network can 
operate effectively. Most sensor nodes are powered by small batteries 
and are often deployed in environments where replacing or recharging 
them is not practical. Since different nodes perform different roles, from 
sensing to data forwarding, the amount of energy they consume can vary 
significantly. Among all activities, data transmission uses the most en
ergy. The way data is routed through the network plays a key role here, 
especially since network conditions can change frequently due to node 
failures, mobility, or signal interference [5]. These changes demand 
frequent updates to routing paths, which increases energy use even 
further. As a result, factors like residual energy, signal strength, and 
communication range must be considered carefully to keep the network 
running smoothly.

The structure of the network itself also plays a major role in energy 
efficiency [6]. In most WSNs, sensor nodes send data either directly to a 
base station (BS) or through a series of other nodes such as cluster heads 
(CHs). When the BS is located far away from the sensors, the energy 
needed for communication increases sharply. Placing the BS more cen
trally can help reduce this burden [7]. Likewise, using a single hop to 
send data over long distances consumes more energy compared to multi 
hop communication, where data is relayed through nearby nodes [8]. 
However, using too many relay nodes or placing them inefficiently can 
result in duplicated transmissions and wasted energy [9]. This is why 
selecting the right number and position of relay nodes is so important for 
maintaining a balanced and energy aware network.

Cluster Based Routing (CBR) is a popular strategy that improves both 
energy efficiency and data handling in WSNs. This method involves two 

steps: selecting cluster heads and forming clusters. Sensor nodes are 
grouped into clusters, and each CH is responsible for collecting data 
from its group and forwarding it to the BS. Well known CBR protocols 
such as Low Energy Adaptive Clustering Hierarchy (LEACH) [10], HEED 
[11], Power Efficient Gathering in Sensor Information System (PEGA
SIS) [12], Clustering with Routing Protocol Design (CRPD) [13], and 
Energy Efficient Cluster Based Secure Routing (EECSR) [14] all aim to 
extend network lifetime by using energy more wisely. Studies have 
shown that using multi hop communication between sensor nodes and 
CHs is often more energy efficient than direct communication [8]. 
However, when CHs are located far from the BS, they need to transmit 
data with greater power, which can lead to faster energy depletion. To 
address this, threshold based relay selection can help reduce the load. 
Other improved protocols such as multi hop LEACH [15], TEEN [16], 
and Energy Efficient LEACH-C (EELEACH-C) [17] have demonstrated 
how effective relay strategies can further enhance energy performance.

In most deployments, sensor nodes are randomly scattered across the 
area, resulting in some being much closer to the BS than others. This 
uneven placement creates an energy hole problem, where nodes closer 
to the BS run out of energy faster because they handle more data for
warding [9]. CBR typically splits communication into three parts which 
from the node to the cluster head, from the cluster head to a relay node, 
and then from the relay to the BS. Breaking long transmissions into 
smaller steps helps conserve energy, since the power needed for trans
mission increases with distance. Still, many studies focus on the shortest 
physical path without accounting for the actual signal loss that occurs in 
wireless environments [18]. Since real world signal loss is not always 
linear, optimizing routing based solely on distance can be misleading. A 
better approach involves segmenting communication paths in a way that 
minimizes both distance and signal loss.

In practice, relay nodes are often placed in tough environments, and 
some end up too far from the BS. To keep energy usage efficient, these 
nodes should ideally be placed as close as possible to the BS, and only the 
minimum number necessary should be used. Some methods choose relay 
nodes based on how close they are to the BS using distance metrics. For 
example [19], used Euclidean distance to select optimal relay nodes, 
assuming the BS has accurate location data from each node, potentially 
using Global Positioning System (GPS) coordinates.

Recent studies have increasingly focused on addressing two long
standing challenges in WSNs which are uneven energy consumption and 
node failure [20]. introduced a clustering technique that aims to 
distribute the workload more evenly across the network. This helps to 
reduce the dependence on a small number of relay nodes and prevents 
premature depletion of any particular node. Their approach contributes 
to greater network stability and longer operational lifetime. In a similar 
effort [21], examined fault tolerance within CBR protocols. Acknowl
edging that sensor nodes are susceptible to environmental stress, battery 
depletion, and physical wear, their method involves a two-step process 
that monitors node status and reallocates failed nodes to neighbouring 
clusters. This avoids the need for complete reconfiguration of the 
network. Although the strategy improves overall resilience, it may oc
casionally lead to cluster heads being required to transmit over longer 
distances which could increase energy consumption in some areas of the 
network.

These challenges have inspired the development of more adaptive 
and intelligent clustering protocols. One of the most widely cited is 
HEED which selects cluster heads based on residual energy and 
communication cost [22]. Unlike earlier protocols such as LEACH that 
rely on random selection, HEED uses a more systematic approach that 
achieves better energy balancing particularly in heterogeneous net
works. Despite these advantages, HEED still presents several limitations. 
The iterative process required for cluster head selection increases con
trol messaging and introduces additional energy overhead [23]. More
over, while HEED improves load distribution when compared to LEACH, 
it does not fully resolve the hotspot problem where cluster heads located 
near the base station experience faster energy drain due to increased 
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data forwarding duties. Its static clustering model also makes it less 
flexible in environments with mobile nodes or variable network den
sities. These constraints suggest a continued need for clustering mech
anisms that can dynamically adapt to changing network conditions.

In parallel to deterministic protocols like HEED, reactive methods 
such as TEEN offer another perspective for managing energy in WSNs 
especially in time sensitive applications. TEEN reduces unnecessary 
communication by allowing nodes to transmit only when a sensed value 
exceeds a preset threshold [16]. This significantly reduces energy con
sumption and prolongs network lifetime which is particularly useful for 
applications such as disaster response, industrial control, and military 
operations. However, the reliance on fixed thresholds means that some 
important data may be missed if changes remain below the reporting 
limit making TEEN unsuitable for applications requiring continuous 
monitoring such as environmental sensing. Furthermore, TEEN also 
employs static clustering which over time can lead to uneven energy 
depletion as certain cluster heads are tasked with more communication 
responsibilities. In response to these limitations, an enhanced version 
known as Adaptive TEEN (APTEEN) has been proposed. This protocol 
combines event driven reporting with periodic data transmission to 
strike a better balance between responsiveness and energy efficiency 
[24].

3. Network model

The communication of this network model is based on Time Division 
Multiple Access (TDMA) mode. In this network model, it consists of the 
BS, the sensor nodes, the relay nodes, and the CHs. The network model 
representation of EECR is based on as shown in Fig. 1.

The deployment of sensor nodes was determined based on the total 
number of nodes and the geographical dimensions of the network area. 
As an illustrative example, for a configuration involving 100 nodes, the 
distribution was allocated as 25 nodes in Tier-1 and 75 nodes in Tier-2. 
The communication model implemented within the network follows a 
multi-tier architecture. Tier-2 adopts a quad hop communication 
structure, while Tier-1 operates on a triple hop mechanism. In Tier-2, 
sensor nodes transmit data to their respective cluster heads. The data 
is then relayed through nodes within the same tier and subsequently 
forwarded to relay nodes located in Tier-1. This hierarchical forwarding 
continues until the data ultimately reaches the base station. In Tier-1, 
the process is relatively more direct, where sensor nodes send their 
data to both the cluster heads and nearby relay nodes, which then 

handle the final transmission to the base station. This tiered and hop 
based communication model is designed to optimize energy usage and 
ensure more efficient data delivery across the network.

4. Improved K-means algorithm for clustering

The improved K-Mean is used for clustering where each cluster is 
defined and formed by its respective centre. In traditional K-Means 
clustering algorithm, some cluster could be overlapped to each other. 
Therefore, the improved K-Means can address such issues by assigning 
each cluster head to specific relay nodes in multi-tier environment. 
Moreover, the nodes are not forced to join the cluster but rather they will 
be assigned to join any clusters based on the probabilities between 0 and 
1. The membership probabilities of the nodes at the edge maybe low so 
that it close to the centre of the cluster.

This gives more advantage to improved K-Means as opposed to 
traditional K-Means clustering algorithm. The improved K-Means is 
utilized for the CHs to form cluster with its child nodes. There are a few 
steps involved as follows. 

1. Initial steps: The initial step is to identify and determine the point (i. 
e., count of relay nodes in Tier-1 and Tier-2).

2. Relay Node Selection: The selection to choose the relay nodes is build 
and based on K-Optimal approach as follows:

R=

( ̅̅̅̅̅̅
Ii

2π

√ )

*

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
αfs

βmp

)√
√
√
√ *

I
d2 (1) 

where Ii displays the number of the sensor nodes, I displays the number 
of nodes in Tier-1 and Tier-2, αfs displays the amplification energy in the 
free space model; where the power loss is proportional to d2, εmp is the 
amplification energy in the multi-path fading model where the power 
loss scale with d4, and d is presents the mean distance among the nodes 
and BS. Therefore, it can determine the sets of =

{
r1,r2…..rn

}
. By 

considering the set of nodes N = {n1, n2….nk}, the cost function is 
measured as: 

f(X,V, L)=
∑j

s=1

∑s

t=1
mst ||xt − ∂s||

2 (2) 

where L = (∂s; s= 1,…….j) is the clusters’ centroid and X =

(mst ; s= 1,…….j; t= 1, ..s) displays the probability value of X. 

3. The mst is the probability value of the tth node to the sth clusters. It 
mst can be defined as:

mst =
θ− μ||xt − ∂s ||

2

∑j

k
θ− μ||xt − ∂s ||

2
(3) 

where θ represents the stiffness parameter, which effects the likelihood 
of node membership. An optimal clustering outcome is achieved by 
minimizing t. This approach deviates from traditional k-means by 
incorporating weighted squared errors into the cost function, as opposed 
to mere squared errors. The outcome of the improved k-means algorithm 
is contingent upon selected value of θ, which will be explored further in 
the discussion of simulation results. 

4. To satisfy with the objective function in (2), the mst need to meet 
with the following:

• Each node is assigned a probabilistic membership value, which 
ranges from 0 to 1, indicating its likelihood of association with a 
given cluster.

mst ∈ [0,1], s = 1,…..j, k = 1,…..n (4) 
Fig. 1. The N-tier network Partition.
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• The cumulative membership probabilities for a particular given node 
across all clusters adds to unity.

∑j

s=1
mst =1, t = 1,…..n. (5) 

• At least one node in each cluster should have a probability greater 
than “0” for being a part of that cluster.

∑s

t
mst > 0, s = 1, ..., j (6) 

• The coordinates of the cluster centres can be determined by opti
mizing the respective objective function, as:

∂s =

∑n

t=1
mstxt

∑n

t=1
mst

(7) 

4.1. The influence of the stiffness parameter (θ) in the improved K-means 
algorithm

In the improved K-Means clustering algorithm, the stiffness param
eter denoted as θ plays an important role in deciding how sensor nodes 
are grouped into clusters. This directly affects the accuracy of clustering 
and the energy efficiency of the network. Essentially, θ controls how 
“soft” or “strict” the cluster boundaries are. When tuned properly, it 
helps strike a balance: nodes are assigned in a way that avoids constant 
reassignments but still adapts well to the network structure. The ulti
mate goal is to reduce energy usage while keeping the network running 
longer.

The probability that a sensor node i belongs to a specific cluster j, 
written as Pij, can be calculated using: 

Pij =
exp
(
− θ⋅d2

ij

)

∑C

k=1
exp
(
− θ⋅d2

ik

)
(8) 

Here, dij is the distance between the node and the cluster center, and C is 
the total number of clusters. When θ is small, the probability values are 
more spread out. This means nodes can belong to more than one cluster 
with similar likelihood, which makes the clustering flexible especially 
for nodes near the border of two clusters. But if θ is too low, this flexi
bility can become a problem. Nodes may switch clusters too frequently, 
wasting energy.

On the other hand, when θ is large, the probability distribution be
comes sharp. A node is very likely to belong to just one cluster. This 
reduces cluster switching and improves stability. However, this also 
means that nodes at the edge might be forced to join a distant cluster, 
which increases their communication energy.

This balance is shown in the clustering cost function: 

J=
∑N

i=1

∑C

j=1
Pθ

ij⋅d
2
ij (9) 

Where. 

• J is the total clustering cost (a measure of how well the clustering 
configuration performs)

• N is the total number of sensor nodes in the network
• C is the total number of clusters
• Pij is the probability that node i belongs to cluster j, based on the 

stiffness parameter

• θ id the stiffness parameter that controls the sharpness of the mem
bership distribution

• dij is the Euclidean distance between node i and cluster centre j

To get the best results from the improved K-Means clustering, the 
stiffness parameter θ should not be fixed. Instead, it should be adjusted 
dynamically based on the current state of the network. Factors such as 
node density, remaining energy, and communication load can influence 
the ideal value of θ. For example, in dense areas where most nodes have 
high energy, a larger θ can improve clustering stability by reducing 
unnecessary reassignments. On the other hand, in sparse or low-energy 
zones, a smaller θ allows for more flexible clustering, helping to 
distribute the workload more evenly. This kind of adaptive tuning en
sures that the clustering mechanism remains efficient under changing 
conditions, avoids excessive energy drain, and supports a longer, more 
stable network operation. The stiffness parameter θ may seem like a 
small setting, but it has a big impact. By adjusting it smartly, the 
improved K-Means algorithm can create cluster structures that are both 
efficient and adaptable, leading to better energy usage and a longer- 
lasting network. The improved K-Means clustering algorithm effec
tively handles outliers to ensure balanced energy consumption, but the 
stiffness parameter (θ) is critical in determining cluster assignments. An 
improper θ value may cause inefficient routing or frequent reassign
ments, leading to energy imbalances. To address this, the proposed 
method dynamically adjusts θ based on node density, residual energy, 
and transmission load, rather than using a fixed value. This adaptive 
tuning ensures optimal cluster formation, prevents energy drain, and 
maintains network stability.

5. Adaptive distance threshold

This section presents the adaptive distance threshold mechanism 
integrated into the (EECR protocol, which serves as a foundation for an 
enhanced energy management model in WSNs. Rather than relying on 
arbitrary relay node selection, as seen in conventional approaches, EECR 
introduces a more structured and data-driven method. The protocol 
determines threshold distances based on optimal node counts identified 
during cluster formation in both Tier-1 and Tier-2. Relay nodes are then 
selected through the K-Optimal process, but only if they fall within the 
specified threshold distance. This strategy ensures that node selection is 
not only proximity aware but also energy conscious, contributing to 
improved network balance and extended operational lifetime.

Empirical results suggest that the deployment of 7 relay nodes in 
Tier-1 and 12 in Tier-2 provides an optimal configuration. Introducing 
additional relay nodes beyond this configuration does not necessarily 
enhance performance and can, in fact, be counterproductive. An 
excessive number of relay nodes tends to increase redundant trans
missions and leads to higher contention among nodes, ultimately 
resulting in greater energy consumption and reduced efficiency. 
Conversely, too few relay nodes can create communication bottlenecks, 
overburdening individual nodes and accelerating energy depletion. By 
applying the K-Optimal method dynamically, the network is able to 
adjust relay deployment in real time, promoting a balanced workload 
and preserving energy across the communication tiers.

To further enhance transmission efficiency, the relay nodes are 
deployed within tier specific distance thresholds that are adaptively 
determined. These thresholds are calculated based on the average dis
tance between each node and its nearest neighbours, ensuring optimal 
coverage while minimizing communication range. Reducing the 
threshold below the recommended tier radius narrows each relay’s 
coverage area and limits its effectiveness. Therefore, strategic placement 
within the computed threshold is essential to reduce the hop distance to 
the base station and avoid unnecessary energy expenditure. The decision 
making process for relay selection is detailed in Algorithm 1 for Tier-1 
and Algorithm 2 for Tier-2, both of which illustrate the criteria used 
for selecting relay nodes based on proximity, centrality, and energy 
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availability.

Algorithm 1: Relay Selection Proposed Algorithm in Tier-1

1 Input: i = tier, Ui = nodes, d = distance, d1 = distance threshold
2 Initialize d1 dynamically based on the centrality of the nodes
3 While (i ≤ 1) do
4 Update d1 centrality of the nodes
5 For (every nodes, Ui)
6 If (Ui is alive) and (d < d1)
7 Selects the Relay Nodes using K-Optimum
8 Connects Relay Nodes with CHs in Tier-1
9 else
10 Child nodes and CHs perform data transmission
11 end if
12 end while

Algorithm 1 outlines the process for selecting relay nodes within 
Tier-1, excluding CHs. The K-Optimal formula serves as the foundation 
for this selection, ensuring an optimal number of relays. However, this 
selection is exclusively applied to nodes situated within a distance 
threshold. This threshold is established as the average distance sepa
rating each node from its nearest neighbours. Subsequently, the chosen 
relay nodes collaborate with CHs to form clusters, facilitating efficient 
data transmission. Centrality, a metric employed in the selection pro
cess, represents the cumulative distance between a node and its neigh
bours, normalized by the overall total number of nodes. The Euclidean 
distance formula, depicted as Equation (10), is utilized to calculate the 
distance between node i and node j, thereby contributing to the cen
trality value. 

di,j =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
((

xi − xj
)2

+
(

yi − yj

)2)(
xi − xj

)2
+
(

yi − yj

)2
√

(10) 

Where 
(
xi and yi

)
represents the position of the node i and 

(
xj, yj

)

represents the position of node j which is distributed in the network. 
Hence, based on Eq. (10), the centrality of node Cs can be defined as: 

Centrality(Cs)=

( ∑v
r=1di,j

)

n
(11) 

Where k represents the count of nodes in the network, di,j represents the 
distance between node i and node j. The di,j is 0 when the node is a CH. 
Therefore, based on this value, it can be utilized to setup the far, along 
with the satisfactory and near centrality. Within this formula, v signifies 
the total number of nodes encompassed within the whole network. The 
term di,j displays the distance separating node i from node j, as calculated 
using the Euclidean distance formula. Notably, the centrality value be
comes 0 (Centrality(i) = 0) when the node under consideration is 
designated as a CH. This characteristic allows for the classification of 
nodes into three categories based on their centrality values: ’far,’ 
’satisfactory,’ and ’near.’

Algorithm 2: Relay Selection Proposed Algorithm in Tier-2

1 Input: i = tier, Ui = nodes, d = distance, d2 = distance threshold
2 Initialize d2 dynamically based on the centrality of the nodes.
3 While (i > 1 && i ≤ 2) do
4 Update d2 centrality of the nodes.
5 For (every nodes, Ui)
6 If (Ui is alive) and (d < d2)
7 Select (Relay Nodes) using K-Optimum
8 Connects the Relay Nodes to the CHs- in Tier-2
9 else
10 Child nodes and CHs perform data transmission
11 end if
12 end while

Similarly, Algorithm 2 shows the same method of relay node selec

tion in Tier-1. The relay nodes in Tier-2 formed clusters with CHs in Tier- 
2 for data transmission to BS. The quad-hop and triple-hop transmission 
are utilized to obtain the shortest path to the BS. A routing table is 
regularly updated to maintain current paths with a small number of 
forwarding neighbour nodes. The total count of established nodes, the 
path of the nodes, and the average distance to the BS are taken into 
considerations to provide more accurate energy estimation. Let Sq is a 
square area. dr is an average distance between nodes and relay nodes 
and dBS is an average distance between nodes and BS. It can be calcu
lated as: 

dr =

∫dBS

sq

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2 + y2 1
sq

dsq

√

(12) 

dBS =

∫∫ ( ̅̅̅̅̅̅̅̅̅
x2+

√
y2
)

β(x, y)dxdy (13) 

dr and dBS can be utilized to calculate the energy dissipated per round as: 

γr =C*
(
2T*εe +T*εd + v+ εm* dr +T*εf *dBS

)
(14) 

Where C is the number of clusters formed, v represents the number of 
bits, εd represents the data aggregation of the relay node, εm displays the 
amplifier energy of multi-path fading, and εf represents the amplifier 
energy of free space model. The energy of the nodes in Tier-1 (γ1) and 
Tier-2 (γ2) can be measured as: 

γ1 = γs(f) + γr(g) + γs(g)

= vEe + vεmd(f , g)2
+ vεe + vEe + vεmd(g, h)2 

= 3vEe + vεmd
[
d(f , g)2

+ d(g, h)
]2

(15) 

γ2 = γs(e) + γr(f) + γs(f) + γs(g) + γr(h)

= vEe + vεmd(e, f)2
+ kEelect + kEelect + kεmpd(f , g)2

+ kEelect + kεmpd(g, h)2 

[
d(i, j)2

+ d(j, k)
]2

+ d(k, l)
]2

(16) 

The computation of the next hop for Tier-1 and Tier-2 is based on the 
weight function as shown in equation (17) and equation (18) as follows: 

H(f , g)=
[

v(f).E
v(f).max

]

+

[
d(f , g)2

+ d(g, h)2]

d(f , h)2 (17) 

W(e, h)=
[

v(e).E
v(e).max

]

+

[
d(e, f)2

+ d(f , g)2
+ d(g, h)2]

d(e, h)2 (18) 

Here, k(i).max depicts the initial energy of relay node The v.(f).E and 
v.(e)E are the remaining energy of the relay nodes in Tier-1 and of Tier-2 
respectively. The weight function is used to calculate and determine the 
relay nodes with the closest distance with source and highest remaining 
energy.

6. Energy consumption model

In WSNs, most energy is used when sending data. Unlike wired 
networks, where only the sender uses energy, both the sending and 
receiving nodes use energy in WSNs. This is because radio communi
cation, used for data transmission in WSNs, consumes energy on both 
sides, as shown in Fig. 2.

This model for energy consumption during data transmission in 
EECR comes from Ref. [25]. In their model, the energy used by trans
mitter nodes is heavily influenced by both the size (v bits) of the data 
packet being sent and also including the distance it travels. The formula 
to calculate this energy consumption as follows: 
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Cm(v.d)=
{

v*Ee + v*εe*d2, d ≤ do
v*Ee + v*εm*d4, d ≥ do

(19) 

Where. 

• Ctx is the total transmission energy cost,
• v is the data packet size in bits,
• Ee is the electronics energy per bit (fixed at 50 nJ/bit),
• εf is the free-space amplifier energy coefficient,
• εm is the multipath fading amplifier energy coefficient,
• d is the distance between transmitter and receiver,

• do is the threshold distance, calculated as do =
̅̅̅̅
εf
εm

√

The formula includes several factors affecting energy use. Cm rep
resents the total transmission cost. Distance d between transmitter and 
receiver is factored in. There’s also an energy term Ee representing en
ergy lost per data bit v-bits due to aspects like modulation and signal 
processing. To simplify calculations, a fixed value of 50 nJ/bit was used 
for Ee. The formula also considers amplifier energy consumption based 
on distance. When the distance falls lesser than a specific threshold, a 
fixed energy consumption per bit, εe applies. The formula then uses a 
different fixed energy consumption per bit, εm for distances exceeding 
the threshold. The value do is calculated as 

̅̅̅̅̅̅̅̅̅̅̅̅
εf/εm

√
. Upon data recep

tion, energy consumption was computed as: 

CX = v*Ee (20) 

In WSN simulations, factors like distance between nodes, transmitter 
power, and number of packets affect total energy use. However, most 
simulations ignore the receiver’s power consumption, which is needed 
for signal quality measurement. This can lead to inaccurate energy es
timates. The text proposes using Received Signal Strength Indicator 
(RSSI) as an alternative for measuring signal strength, addressing this 
shortcoming. Additionally, it highlights that CHs in WSNs use more 
energy than regular nodes due to tasks like data aggregation. The energy 
of CH loses during transmission is calculated as: 

C
ch=

(
K
W− 1

)

*v*Ee+
K
W*k*Ea+v*Ee+v*εf *d2

(21) 

In this equation. 

• K is the total number of deployed sensor nodes,
• W is the number of clusters,
• d is the average distance between CHs and the BS,
• k is the number of signals being aggregated,
• Ea is the energy required for data aggregation, typically set to 5 nJ/ 

bit/signal,
• εf is the free-space amplifier energy coefficient.

Where W represents the number of clusters, the d displays the 
average distance between CHs and the BS. The term Ea captures the 
energy used for the data aggregation, that is a constant value of 5nJ/bit/ 
signal. Finally, total number of sensor nodes established/deployed in the 
network are presented as K.

7. Simulation results and analysis

This section validates the efficiency of our proposed EECR model 
against the existing methods (i.e., HEED and TEEN). Final results were 
examined and evaluated under three scenarios, including also the 
number of the nodes (i.e., 100, 200 and 800 nodes) which are shown in 
Fig. 3. The BS is positioned at the centre of the network to give fair 
transmission among the nodes.

7.1. Simulation settings

Within the simulated environment, sensor nodes were emulated as 
stationary wireless devices deployed in two network configurations 
which are Tier-1 and a Tier-2 architecture. An initial set of experiments 
employed 100 sensor nodes, a common practice for preliminary in
vestigations (X, Y). However, to evaluate the system’s scalability and 
analyze energy consumption across varying network sizes, the count 
number of sensor nodes was subsequently raised to 800. Our simulation 
is based on the first-order radio model, which is widely used in WSN 
studies. Table 1 provides a detailed breakdown of the key parameters 
used in our simulation experiments.

Additionally, the simulation environment employs quad-hop 
communication for Tier-2 and triple-hop communication for Tier-1, 
allowing for efficient multi-hop data transmission towards the BS. The 
relay node selection process is optimized based on the K-Optimal 
approach, ensuring balanced energy distribution and efficient routing 
paths.

The effectiveness of the EECR protocol was evaluated through 
computer simulations, focusing on network performance. Its reliability 
was further assessed by comparing it to EECR 2 (which omits the dis
tance threshold implementation) and the HEED and TEEN protocols. 
The evaluation considered three key performance metrics: FND, which 
represents the time elapsed before the first sensor node depletes its en
ergy reserves, LND, which indicates when the final node becomes 
inoperable, and Standard Deviation of Residual Energy (SDRE), which 
measures the distribution of remaining energy per node across each 
simulation iteration. These metrics provide a comprehensive analysis of 
the protocol’s efficiency and its impact on network longevity.

8. Experimental results

8.1. Improved K-means analysis

This section evaluates the energy balancing capabilities of the EECR 
2 protocol by incorporating the K-Means clustering approach. The 
analysis considers two network sizes, comprising 100 and 200 sensor 
nodes, to represent typical and high-density deployment scenarios, 
respectively. To assess the uniformity of energy distribution across the 
network, the SDRE is employed as the primary evaluation metric. A 
lower SDRE value indicates a more balanced energy consumption 
pattern among the nodes, which is essential for extending the overall 
network lifetime and minimizing the risk of premature node failures. By 
analysing the SDRE under different network densities, this evaluation 
provides insight into how effectively EECR 2 manages energy balance 
when integrated with the K-Means clustering strategy.

Figs. 4–6 shows the SDRE of EECR 2 with and without K-Means 
approach with 100, 200 and 800 nodes. As shown in Fig. 4, the EECR 2 
with K-Means outperforms EECR 2 without K-Means with low value of 
SDRE. At about the 3000th iteration, there was sharp decrease of SDRE 
for EECR 2 with K-Means of 100 nodes. The value of SDRE decreased 
from 0.0346 to 0.0089. The SDRE of EECR with K-Means is nearly 94 % 
more efficient in terms of energy balance than EECR without K-Means at 
the 5000th iteration. On the other hand, the SDRE for EECR 2 without K- 
Means of 100 nodes showed a steady increase until the 5000th iteration. 
Similarly, it showed a steady increase in SDRE for EECR 2 without K- 
Means when the nodes increased to 200 nodes. For EECR 2 with K- 

Fig. 2. Energy consumption model.
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Means, the same trends with 100 nodes were shown. There was a sharp 
decrease at the 4000th to 5000th iterations. It can be compared that the 
value of SDRE in EECR with K-Means with 200 nodes was lower than 
EECR without K-Means. In contrast, the SDRE of EECR without K-Means 
with 200 nodes was higher as compared to 100 nodes. In fact, the graphs 
showed opposite trends between them. For 800 nodes, the SDRE pattern 
follows a similar trend to what we saw with 100 and 200 nodes. The 
EECR 2 with K-Means consistently performs better, maintaining a lower 
SDRE value, which means it balances energy more efficiently. In 
contrast, EECR 2 without K-Means shows a steady increase in SDRE as 
the iterations go up, indicating a decline in energy efficiency. By the 

Fig. 3. The Node density.

Table 1 
The simulation parameters settings.

Parameter Value

Number of sensor nodes 100, 200, 800
Network area 100m × 100m
Base station position Centre (50,50)
Initial node energy 1 J, 2 J
Tier-1 radius 25m
Tier-2 radius 50m
Distance threshold (Tier-1) 15m
Distance threshold (Tier-2) 30m
Eelect 5 nJ/bit/signal

Fig. 4. The SDRE with 100 nodes.

Fig. 5. The SDRE with 200 nodes.
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time it reaches 5000 iterations, the version with K-Means is clearly 
outperforming the one without it. This reinforces the idea that using K- 
Means in EECR 2 significantly improves energy distribution, especially 
as the number of nodes grows.

For a network with 800 nodes, EECR 2 with K-Means maintains its 
advantage over the non-K-Means by ensuring better energy distribution 
and lower energy imbalance. However, as the network grows, chal
lenges such as increased data traffic, relay node congestion, and higher 
energy consumption will become more pronounced. While EECR 2 with 
K-Means has already shown significant improvements in energy balance 
for 100 and 200 nodes, the efficiency gap may slightly narrow at larger 
scales due to the higher workload on relay nodes. Without K-Means, 
energy distribution is likely to become even more uneven, leading to 
rapid energy depletion in some nodes while others remain underutilized. 
To sustain performance at higher node densities, an adaptive relay node 
placement strategy will be crucial, ensuring that energy usage is evenly 
spread across the network. Additionally, multi-hop routing could further 
optimize energy consumption by preventing excessive strain on relay 
nodes and reducing long-distance transmissions. Overall, while EECR 2 
with K-Means remains the more energy-efficient and stable approach, 
fine-tuning relay placement and clustering mechanisms will be essential 
to maximize network lifetime and maintain efficiency as the network 
scales up.

The results showed that EECR 2 with improved K-Means performed 
better than EECR 2 without K-Means. The K-Means approach in EECR 
was more energy balanced as compared to the other ones due to the 
following reasons. The optimal number of relay nodes acquired by uti
lizing the K-Optimal in EECR 2 gave the perfect value of θ in improved K- 
Means in order to produce similar probabilities among the cluster. The 
unsuitable value of k in K-Means resulted in high variance of the dis
tance among relay nodes and CHs. Moreover, it can be noted that when 
the number of k was unsuitable (i.e. non-optimal number of relay 
nodes), high variation was observed, which meant the CHs might pass 
data to farther relay nodes. Finally, EECR 2 with K-Means was sensitive 
to outlier nodes. The relay node was centralised among CHs to balance 
energy consumption over relay paths to BS. In other words, high vari
ance of residual energy among the nodes indicated instability of the 
network. This was due to unbalanced data transmission among the 
nodes. When unbalanced communication occurs, some nodes would 
have more burden in receiving and transmitting the data. This led to 
quick energy depletion and hence consumed high energy. This experi
ment corroborated that the K-Means approach in EECR provided energy 
balance in reducing energy consumption with small and high count of 
nodes in the network. The network lifetime of EECR 2 could be signifi
cantly improved using distance threshold for relay node placement.

8.2. Network lifetime of EECR 2

The current investigation focuses on the network lifetime and also on 
the energy balance of the EECR 2 protocol. This evaluation aims to 
elucidate the impact of varying count of relay nodes and the K-Means 
clustering approach employed within EECR 2 on these crucial network 

performance metrics. In this experiment, the number of relay nodes in 
(Tier 1 as well as in Tier 2) were varied as: (1,1), (1,3), (1,7), (1,15), 
(3,1), (3,3), (3,7), (3,12), (3,15), (7,1), (7,3), (7,7), (7,12), (7,15), 
(12,1), (12,3), (12,7), (12,12), (12,15), (15,1), (15,3), (15,7), (15,12), 
and (15,15) to investigate their network lifetime.

The overall lifespan of a WSNs is closely influenced by the number 
and arrangement of relay nodes within its architecture. As illustrated in 
Fig. 7, network lifetime varies significantly across different configura
tions of relay node deployment. The configuration involving seven relay 
nodes in Tier-1 and twelve in Tier-2 resulted in the highest recorded 
network lifetime of 6131 rounds, outperforming all other tested sce
narios. In contrast, the shortest network lifetime of 5420 rounds was 
observed when only one relay node was deployed in each tier. Notably, 
across all configurations within Tier-1, the presence of seven relay nodes 
consistently yielded higher network longevity. For instance, when 
combined with varying relay node counts in Tier-2, the following life
spans were achieved: 5521 (7,1), 5625 (7,3), 5823 (7,7), 6491 (7,12), 
and 6002 (7,15). These results clearly indicate that the (7,12) setup 
offers optimal performance, with configurations such as (7,7) and (7,15) 
following closely behind. Interestingly, increasing the number of relay 
nodes in Tier-1 beyond seven—such as to 12 or 15 led to a gradual 
decline in network lifetime, regardless of the Tier-2 configuration.

This trend underscores the importance of strategic relay node 
deployment, which in this study is guided by the K-Optimal methodol
ogy. This method takes into account both the total number of deployed 
nodes and their average distances to the base station, enabling the 
identification of an optimal relay configuration for both tiers. The 
integration of the K-Optimal approach into the EECR 2 protocol provides 
a systematic way to balance energy consumption and minimize over
head. Complementing this, the use of the K-Means clustering algorithm 
plays a critical role in managing data transmission between cluster 
heads and relay nodes. Together, these two techniques which K-Optimal 
relay selection and K-Means based clustering form a cohesive strategy 
for enhancing the energy efficiency and sustainability of the network.

On the other hand, deploying an excessive number of relay nodes, as 
seen in configurations such as (15,7), (15,12), and (15,15), does not 
guarantee improved performance. Although a 2-Tier architecture 
inherently requires a considerable number of relay nodes, simply 
increasing their count can lead to diminishing returns. The energy 
consumption per node rises proportionally with the total number of 
active relays, resulting in inefficiencies and unnecessary overhead. In 
such cases, excessive relay deployment can lead to underutilization and 
energy wastage, while also accelerating battery depletion in nodes 
tasked with frequent communication. Conversely, configurations with 
too few relay nodes fail to distribute the workload evenly, placing 
disproportionate demands on individual nodes. Taken together, the 
findings confirm that the combination of seven relay nodes in Tier-1 and 
twelve in Tier-2, paired with the K-Means clustering strategy, represents 
the most energy efficient and balanced setup for prolonging network 
lifetime under the EECR 2 framework.

Fig. 6. The SDRE with 800 nodes.

Fig. 7. Network lifetimes with Different Number of RNs.
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8.3. Adaptive distance threshold (EECR 3)

This section investigates the effect of the relay placement using 
adaptive distance thresholds. The distance threshold for Tier-1 and Tier- 
2 were set as (5m,5m), (15m,30m), (20m,40m), (25m,45m) and 
(25m,50m) as used by Refs. [26,27] for distance evaluation. Fig. 8 shows 
the results of network lifetime for varied distance threshold.

It can be observed that a distance threshold between a sensor node 
and the BS has a significant impacts on network lifetime. The longest 
network life (7029) was achieved with a threshold of 15 m–30 m. As the 
threshold increased, the network lifetime decreased: 6576 for 20m–40m 
and 6718 for 25m–45m. Without a threshold (25m–50m), the lifetime 
dropped to 6106. The shortest lifetime (5432) occurred when nodes 
were closest to the BS (5m–5m). Interestingly, a wider threshold 
(25m–45m) performed better than a narrower one (20m–40m).

This study revealed that placing relay nodes very close (close vicin
ity) to the BS was not the most effective strategy for EECR 3. The closest 
threshold (5m–5m) resulted in the worst performance due to a phe
nomenon called the hotspot problem. The best network lifetime was 
achieved with a threshold of 15 m–30 m for a couple of reasons. First, 
keeping the BS and CHs close together significantly improved network 
lifetime in EECR 3. This is because the energy used for communication 
between two nodes increases with the square of the distance between 
them. So, as the threshold distance increased, the network lifetime 
decreased, except in the case of the closest threshold (5m–5m). Second, 
the threshold of 15m–30m allowed for an optimal number of relay 
nodes, which balanced energy consumption and workload distribution. 
Therefore, using a threshold of 15m–30m for relay node selection in 
EECR 3 was generally beneficial.

The threshold of 25m–45m achieved a better network lifetime than 
20m–40m because it was closer to the ideal tier radius in EECR 3 
(25m–50m). The 20m–40m threshold resulted in uneven load distribu
tion within the transmission radius, resulting to a shorter network life
time as compared to the 25m–45m threshold. Overall, a threshold of 
15m–30m is recommended for EECR 3 to minimize the distance of 
communication between relay nodes and BS.

8.4. Performance evaluation of HEED, TEEN, EECR 2 and EECR 3

In this section, EECR 2, EECR 3, TEEN, and HEED were evaluated 
based on network lifetime, the number of dead nodes, and residual en
ergy. The primary objective of this experiment was to compare the en
ergy consumption of nodes among EECR 2, EECR 3, TEEN, and HEED.

Figs. 9 and 10 illustrate performance enhancements in terms of FND 
and LND for EECR 2, EECR 3, TEEN, and HEED protocols. Across all 
three scenarios (i.e., 1, 2, and 3), EECR 3 achieved the latest FND, with 

iterations reaching 4,098th, 4,123rd, and 4,734th, respectively. 
Furthermore, EECR 3 demonstrated a network lifetime improvement of 
2 %, 3 %, and 1 % compared to EECR 2, TEEN, and HEED based on the 
FND metric in Scenarios 1, 2, and 3, respectively. Similar trends were 
observed for EECR 2, where FND occurred at the 4,005th, 4,018th, and 
4,695th iterations. Meanwhile, TEEN achieved FND at the 3,711th, 
3,854th, and 4,600th iterations, while HEED exhibited earlier FND at 
3698th, 3814th, and 4554th iterations, respectively. These results sug
gest that EECR 3 outperformed all other protocols in terms of FND, 
demonstrating superior energy efficiency and network stability.

When evaluating LND as a network lifetime metric, EECR 3 once 
again emerged as the most efficient protocol, achieving the longest 
network lifetimes of 7,032nd, 7,283rd, and 12,542nd iterations in 
Fig. 11 as Scenario 1, Fig. 12 as Scenario 2, and Fig. 13 as Scenario 3, 
respectively. Compared to EECR 2, TEEN, and HEED, EECR 3 exhibited 
improvements of 21 %, 40 %, and 44 % in Scenario 1, 21 %, 34 %, and 
44 % in Scenario 2, and 12 %, 63 %, and 84 % in Scenario 3, respec
tively. These findings confirm that EECR 3 provides a more energy- 
efficient clustering mechanism, significantly enhancing network life
time and reducing premature node depletion compared to TEEN and 

Fig. 8. Network lifetime of various distance threshold.

Fig. 9. Fnd of EECR 2, EECR 3, TEEN, and HEED.

Fig. 10. Lnd of EECR 2, EECR 3, TEEN, and HEED.

Fig. 11. Number of dead nodes for Scenario 1.
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HEED.
The performance analysis of HEED, TEEN, EECR 2, and EECR 3 

highlights the clear advantage of the EECR 3 protocol in enhancing 
network lifetime and energy efficiency. Across all three scenarios, EECR 
3 consistently achieved the latest occurrence of FND and LND. For 
example, in Scenario 1, the FND for EECR 3 occurred at iteration 4098, 
outperforming EECR 2 at 4005, TEEN at 3711, and HEED at 3698. This 
upward trend continued in Scenario 3, where EECR 3 reached the LND at 
iteration 12,542, significantly higher than EECR 2 at 11,118, TEEN at 
7654, and HEED at 6789. These findings suggest that EECR 3 is more 
effective in delaying node depletion and sustaining overall network 
activity.

A closer examination of the number of dead nodes over time further 
reinforces the superiority of EECR 3. The results demonstrate that HEED 
experienced the fastest increase in node deaths, indicating unbalanced 
energy usage and rapid depletion. TEEN showed a more gradual trend, 
yet still lagged behind in sustaining node activity. EECR 2 performed 
better by integrating enhanced clustering, but it was EECR 3 that 
showed the slowest rate of node failures throughout all three scenarios. 
This improvement can be attributed to the combination of adaptive 
relay node placement and intelligent clustering using improved K- 
Means. By optimizing the placement of nodes based on residual energy 
and proximity to the base station, EECR 3 successfully maintained en
ergy balance and extended node survival.

Overall, the results indicate that EECR 3 offers a more reliable and 
energy-conscious solution for WSNs. Its ability to dynamically adapt to 
network conditions through distance threshold tuning and optimal relay 
node selection ensures efficient communication and prolonged network 
lifetime. While EECR 2 also demonstrates commendable performance, it 
lacks the adaptive thresholding feature that provides EECR 3 with its 
distinct advantage. Comparatively, TEEN and HEED are less effective in 
managing energy distribution over time. Therefore, EECR 3 stands out as 
a robust protocol for real-world sensor deployments where sustainabil
ity and energy efficiency are essential.

9. Conclusion

This research introduces two enhanced techniques under the EECR 
protocol, aimed at improving energy efficiency and network longevity in 
WSNs. The first enhancement involves an improved K-Means clustering 
algorithm, which employs probabilistic membership values to achieve 
balanced cluster formation and reduce the frequency of re-clustering. 
The second is an adaptive distance threshold mechanism that dynami
cally selects optimal relay nodes based on node proximity and residual 
energy, effectively lowering communication costs and enhancing energy 
distribution. Simulation results demonstrated that EECR significantly 
outperformed other protocols such as HEED and TEEN, particularly in 
terms of delaying node depletion and extending network lifetime. By 
maintaining a slower increase in the number of dead nodes and 
achieving higher values for both FND and LND metrics, EECR has proven 
to be a more sustainable and energy conscious protocol. Future research 
could explore incorporating real-time network dynamics, mobility pat
terns, and environmental factors into the relay node selection process to 
further optimize performance. These findings contribute meaningfully 
to the development of scalable, long-lasting IoT communication sys
tems, where energy conservation and operational stability are critical 
for real-world deployment.
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