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A B S T R A C T

This paper introduces a novel Multi-Objective Evolutionary Mating Algorithm (MOEMA) designed to address the 
inherent challenges of optimizing comfort index and energy consumption in smart building systems. While 
current Evolutionary Mating Algorithms (EMA) primarily focus on single-objective optimization and rely on 
weighted functions for handling multiple objectives, such approaches prove impractical for the complex trade- 
offs between comfort index and energy efficiency. The proposed MOEMA enhances the original EMA frame-
work through two key innovations: an improved crowding distance function inspired by the Non-dominated 
Sorting Genetic Algorithm (NSGA) to enhance solution diversity and selection pressure, and the integration of 
Levy flight mechanics to improve exploration efficiency by balancing local and global searches. These en-
hancements enable MOEMA to effectively navigate complex multi-objective landscapes, leading to more diverse 
and well-converged Pareto-optimal solutions. The algorithm’s performance is thoroughly assessed using the 
chosen benchmark functions and validated through practical applications in smart building environments. It 
simultaneously optimizes various comfort parameters, including temperature, illuminance, and air quality, while 
minimizing energy consumption and maximizing the comfort index. Comparative analysis against established 
algorithms, like NSGA-II demonstrates MOEMA’s effectiveness in achieving superior solution diversity and 
convergence characteristics. The results indicate that MOEMA offers a robust framework for handling the 
complex balance between the smart building’s comfort index and energy usage where it achieves 0.03 % better at 
comfort index and with 10.65 % lower energy consumption than NSGA-II. It contributing to the broader fields of 
building automation and sustainable development while aligning with Industry 4.0 initiatives.

1. Introduction

Multi-objective optimization remains a critical challenge across 
various scientific and engineering domains, particularly in scenarios 
characterized by conflicting objectives [1]. This challenge is especially 
significant in smart building systems, where optimizing both the comfort 
index and energy consumption involves inherently competing goals. 
Several studies have explored this issue. For instance, a recent study 
applied a multi-objective optimization approach to optimize Venetian 
blinds in office buildings, significantly reducing energy consumption by 

40–50 % while improving both visual and thermal comfort, demon-
strating the effective use of multi objective like Non-dominated Sorting 
Genetic Algorithm II (NSGA-II) in balancing energy efficiency and 
occupant comfort [2]. The study demonstrates the practical effective-
ness of multi-objective algorithms like NSGA-II in balancing energy ef-
ficiency and occupant comfort, reinforcing the relevance of 
multi-objective optimization techniques in smart building environ-
ments. Similarly, a sequential optimization approach has been demon-
strated as an effective and computationally efficient method for 
handling multiple objectives, optimizing thermal comfort and energy 
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demand in building performance design, and achieving a 91.2 % 
reduction in computational effort compared to traditional full factorial 
searches [3]. The importance of computational efficiency in real-world 
applications directly aligns with the motivation to develop an algo-
rithm that balances comfort and energy consumption while improving 
convergence efficiency.

Moreover, one method integrates a multi-objective evolutionary al-
gorithm with surrogate models to optimize building energy use and 
thermal comfort while lowering computational costs [4]. The approach 
emphasizes the necessity of balancing algorithmic complexity and per-
formance, a key consideration in the development of multi-objective 
optimization method. Similarly, research optimizing healthy buildings 
considers factors including energy usage, air quality, and aesthetic 
comfort [5], illustrating smart buildings’ multi-faceted optimization 
challenges. An improved NSGA-II provides the theoretical foundation 
for a building design model that enhances both comfort and energy ef-
ficiency through Pareto solutions [6]. The study demonstrates NSGA-II’s 
application in green building design. While NSGA-II remains widely 
used for multi-objective optimization, its limitations in solution di-
versity and convergence necessitate research for algorithmic improve-
ments. In addition, NSGA-II combined with machine learning has been 
used to optimize, assess, and predict light, energy use, and thermal 
comfort in educational building lifts [7]. Furthermore, a recent study 
integrates Radial Basis Function (RBF) neural networks with the 
NSGA-II algorithm and Nearest Neighbor Component Analysis (NCA) to 
create a comprehensive NCA-GA-RBF neural network approach. This 
technique optimizes Passive House designs in China by generating 
financially feasible solutions while simultaneously reducing occupant 
discomfort hours and overall energy demand [8].

In addition to multi objective optimization related to energy and 
comfort, a recent study on radiant floor heating in a net Zero Energy 
House achieved an 11.6 % energy reduction while maintaining thermal 
comfort via multi-objective optimization [9]. Similarly, research on 
Phase Change Materials (PCM) in hospital walls improved thermal 
comfort by 37–43 % and reduced energy demand by nearly 8 % [10]. 
The study highlights the necessity of considering comfort-related pa-
rameters alongside energy efficiency, reinforcing the multi-objective 
nature of the problem. Recent research also highlights the importance 
of intelligent multi-objective optimization methods, like genetic algo-
rithms and particle swarm optimization, in balancing energy use and 
comfort factors in smart buildings, improving occupant well-being and 
energy efficiency [11,12].

Furthermore, a study utilized a Multi-Objective Grey Wolf Optimizer 
(MOGWO) to optimize energy consumption schedules in residential 
environments. By integrating renewable energy systems, the research 
achieved improved energy efficiency and cost reduction while preser-
ving user comfort levels [13]. This further emphasizes the role of 
advanced metaheuristic algorithms in smart energy management, 
aligning with the goals of this paper. Furthermore, A smart home energy 
management study employed a multi-objective improved 
Biogeography-Based Optimization (IBBO) algorithm to optimize appli-
ance scheduling. By simultaneously minimizing electricity costs and 
peak-to-average ratio, the research reduced operational costs and peak 
loads, outperforming other optimization methods like Grey Wolf Opti-
mizer (GWO) and Whale Optimization Algorithm (WOA), emphasizing 
the potential of multi-objective optimization in smart home energy 
management [14]. Despite these advancements, significant limitations 
persist in addressing truly multi-objective optimization scenarios. A 
primary challenge lies in effectively balancing the delicate trade-offs on 
the Pareto front between maintaining optimal comfort levels and 
minimizing energy consumption.

Instead of multi-objective optimization, single objective optimiza-
tion has also addressed this issue. This is evident in the Bat Algorithm 
(BA), Evolutionary Mating Algorithm (EMA), and its variations, which 
have been suggested to maximize the comfort index and reduce energy 
consumption at the same time [15–17]. Nevertheless, single-objective 

optimization is often unsuitable for problems requiring trade-offs be-
tween competing goals, as it simplifies complex relationships into a 
single measure using arbitrary weightings. In the field of single objective 
optimization to solve the electricity consumption issue, this also can be 
seen in other study that employs single-objective optimization to derive 
optimal strategies for specific aspects of electricity supply chain man-
agement, such as minimizing electricity consumption costs or maxi-
mizing the Green Energy Coefficient (GEC), within a multi-period 
stochastic framework [18]. In this problem, the cost function reduces the 
problem to a single objective, but it requires pre-defined weights for the 
trade-offs. Multi-objective optimization gives designers richer informa-
tion, allowing them to make better compromise choices, whereas single 
objective optimization offers a direct solution for a given objective [19].

Moreover, some studies rely on parametric analysis or energy con-
servation approaches instead of formal optimization tools. For example, 
comparative analysis has been used to identify the best-performing 
strategies for balancing comfort and energy efficiency, but such 
methods lack the rigorous exploration capabilities of multi-objective 
optimization algorithms [20]. similarly, energy conservation mea-
sures, such as advanced glazing and LED lighting, have been explored in 
[21], aligning with official building guidelines. While effective, these 
strategies do not provide optimal configurations when multiple con-
flicting objectives are involved.

As demonstrated in recent studies of building performance, man-
aging multiple competing objectives poses significant challenges. For 
example, optimizing occupant comfort through cooling systems or 
building envelope modifications often increases energy consumption 
[22]. Conversely, strict energy reduction strategies may compromise 
comfort levels. This trade-off highlights the necessity of multi-objective 
optimization approaches capable of systematically balancing these 
competing objectives. Moreover, recent studies [23],emphasize that 
resource consumption in buildings is influenced by both operational 
decisions and user behavior, further complicating optimization efforts.

Beyond building scenarios, multi-objective approaches have also 
been widely applied in various fields beyond. For instance, the concept 
has been utilized in Cyber-Physical Power Systems (CPPSs) to model 
stealthy False Data Injection Attacks (FDIA) as a multi-objective opti-
mization problem. The approach optimizes both the minimization of 
contaminated measurements and maximization of the attack impact, 
solved using NSGA-II [24]. This highlights the flexibility of 
multi-objective algorithms in addressing complex trade-offs in different 
domains. Other than that, multi-objective optimization has been applied 
in deep learning models for SAR image classification, where a robust 
convolutional neural network (MoAR-CNN) was developed to optimize 
the trade-off between clean accuracy and adversarial robustness. The 
study introduced NSGA-II to automatically search for optimal neural 
architectures and hyperparameters, showcasing the adaptability of 
NSGA-II in optimizing diverse problem spaces [25].

In the field of optimization, the increasing complexity of real-world 
problems has driven the demand for algorithms capable of balancing 
multiple conflicting objectives. Numerous single objective algorithms 
have recently been developed and enhanced with specialized operators 
to effectively handle multi-objective problems. Notable examples 
include the MOGWO [26], Multi-Objective Ant Lion Optimizer (MALO) 
[27], and Multi-Objective Grasshopper Optimization Algorithm 
(MOGOA) [28], among others. Nature-inspired algorithms have gained 
prominence in tackling multi-objective optimization challenges due to 
their robustness and ability to explore complex solution landscapes. 
Among these, Particle Swarm Optimization (PSO) [29] and GA [30] 
have been extensively applied. PSO mimics social behavior patterns in 
bird flocks and fish schools, while GA emulates biological evolution 
through selection, crossover, and mutation—both effectively evolving 
populations of solutions toward optimality. However, despite their 
success, traditional nature-inspired algorithms often struggle with 
maintaining diversity among solutions and efficiently converging to the 
Pareto front, especially in high-dimensional and highly conflicting 
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objective spaces [31]. The additional information about various 
multi-objective applications and utilising algorithms inspired by nature 
helps researchers in developing new algorithms or improving existing 
ones.

The optimization principle of the No Free Lunch (NFL) theorem, 
proposed by Macready and Wolpert [32] emphasizes the continuous 
need for novel algorithmic approaches. It demonstrates that not every 
optimization problem can be resolved by a single optimization algo-
rithm, thereby encouraging researchers to create fresh algorithms or 
improve ones that already exist. This concept can be applied to both 
single- and multi-objective optimization strategies, which encourages 
continuous advancement in the area. This concept is particularly rele-
vant in smart buildings, where traditional optimization methods strug-
gle to balance the complex relationship between comfort indices 
(including temperature, illuminance, and air quality) and energy con-
sumption patterns.

Multi-objective optimization algorithm design involves tackling two 
key challenges: guaranteeing solutions that are evenly spaced along the 
front and reaching convergence to the actual Pareto front. Significant 
advancements have been made in multi-objective optimization, leading 
to the creation of various algorithms designed to tackle the complexities 
of solving problems with multiple objectives. NSGA [33] stands as one of 
the most prominent and successful variations of Genetic Algorithms, 
widely adopted for multi-objective optimization problems. Other 
well-established techniques in this field include Multi-Objective Ant 
Colony Optimization (MOACO) [34], Multi-Objective Differential Evo-
lution (MODE) [35,36], Multi-Objective Grasshopper Optimization Al-
gorithm (MOGOA) [37,38], and Multi-Objective Particle Swarm 
Optimization (MOPSO) [39,40], among many others. These algorithms 
have proven effective in identifying non dominated solutions and 
approximating the pareto front across a range of optimization problems. 
However, real-world applications often demand tailored approaches to 
address specific objectives and problem structures effectively.

Expanding on this knowledge, A novel Multi-Objective Evolutionary 
Mating Algorithm (MOEMA) is presented in this study, which draws 
inspiration from the EMA foundation [41] designed to address existing 
gaps in multi-objective optimization techniques, with specific applica-
tion to smart building systems. MOEMA sets itself apart with two pri-
mary strategies: first, it employs an enhanced crowding distance 
function inspired by the NSGA to achieve more refined solution differ-
entiation. Second, it implements the integration of Levy flight mechanics 
for enhanced exploration capabilities. To enhance its performance and 
exploration capabilities, MOEMA, a more sophisticated algorithm 
designed with non-dominated sorting, Levy flights, and an archive up-
date mechanism in mind for multi-objective optimization problems. 
Whereas EMA uses a single-objective optimization technique to find a 
single optimal solution that maximises the weighted sum of user comfort 
and energy consumption, MOEMA uses a multi-objective optimization 
technique to find a set of Pareto optimal solutions that balance the two 
competing objectives [16]. EMA approaches prove impractical for the 
complex trade-offs between comfort index and energy efficiency.

Levy flight mechanics, characterized by random walks with step 
lengths following a power-law distribution, have been incorporated into 
optimization algorithms to enhance exploration capabilities [29,42]. 
This stochastic process allows algorithms to perform both local and 
long-distance searches, thereby avoiding local optima and improving 
the likelihood of discovering globally optimal solutions [43]. Integrating 
Levy flights into MOEMA offers a promising avenue for enhancing their 
ability to traverse rugged fitness landscapes and maintain diversity, 
which is particularly beneficial for applications requiring a delicate 
balance between multiple conflicting objectives, such as in smart 
building systems [44]. Levy flight was chosen for its ability to balance 
local and global search through power-law step distribution, making it 
ideal for smart building optimization with competing comfort and en-
ergy objectives. Its stochastic nature helps MOEMA escape local optima 
and explore diverse solution regions, effectively handling the nonlinear 

relationships between occupant comfort and energy efficiency.
Zitzler-Deb-Thiele (ZDT) benchmark functions [45] have emerged as 

the gold standard for evaluation, and rigorous methodologies are 
necessary for the validation of multi-objective optimization algorithms. 
These functions offer a methodical framework for evaluating an algo-
rithm’s ability to find and approximate Pareto-optimal solutions. 
Numerous algorithms have attempted to solve these benchmark prob-
lems, such as Multi-Objective Flower Pollination Algorithm (MOFPA), 
MOALO, MOPSO, NSGA-II, and many more [46–51]. In smart building 
optimization, challenges include managing nonlinear relationships and 
balancing comfort with energy efficiency. ZDT functions serve as valu-
able benchmarks because they simulate real-world conditions through 
varied Pareto front shapes and complex interactions like building dy-
namics. Testing optimization algorithms like MOEMA on these functions 
helps validate their effectiveness before deploying them in actual smart 
building applications.

The application of MOEMA to smart building systems addresses a 
critical need in modern infrastructure management. Most of the energy 
used worldwide is consumed by buildings, optimizing their operations 
while maintaining the comfort index represents a crucial challenge in 
sustainable development. Building systems represent a critical applica-
tion area for multi-objective optimization, where the optimization of 
comfort index and energy consumption often presents conflicting ob-
jectives. Comfort index metrics, including temperature, illumination, 
and air quality, require precise regulation to ensure a conducive indoor 
environment [52]. Simultaneously, minimizing energy usage is imper-
ative for sustainability and cost reduction. Traditional optimization 
methods, such as linear programming and single-objective evolutionary 
algorithms, often fall short in effectively balancing these objectives 
because they are unable to depict the intricate interdependencies and 
dynamic nature of smart building environments [53].

The primary limitations of existing EMA and NSGA-II in the context 
of smart building optimization lie in their handling of multi-objective 
trade-offs. Traditional EMAs focus on single-objective optimization, 
relying on a weighted sum approach to combine multiple objectives into 
a single function. This method proves impractical for balancing con-
flicting objectives, such as comfort index and energy efficiency, as it 
often leads to suboptimal solutions that Favor one objective over the 
other. On the other hand, while NSGA-II is a well-established multi- 
objective optimization algorithm, its crowding distance mechanism can 
struggle to maintain solution diversity in highly complex search spaces. 
This limitation can result in premature convergence, restricting its 
ability to explore the solution space effectively and find an optimal 
balance between comfort and energy consumption. To address these 
challenges, MOEMA introduces two key innovations: an enhanced 
crowding distance function inspired by NSGA, which improves solution 
differentiation and ensures better distribution of Pareto-optimal solu-
tions, and the integration of Levy flight mechanics, which enhances 
exploration capabilities, prevents premature convergence, and enables a 
more thorough search of the solution space. By explicitly overcoming 
these gaps, MOEMA provides a more robust multi-objective optimiza-
tion framework for smart buildings, achieving a more effective trade-off 
between user comfort and energy efficiency.

By rigorously testing MOEMA against established ZDT benchmark 
functions and applying it to real-world building scenarios, the purpose of 
this study is to show how well the algorithm finds the best trade-offs 
between comfort index and energy consumption. Furthermore, the 
study aligns with broader national objectives in artificial intelligence 
and Industry Revolution 4.0, highlighting its significance beyond purely 
theoretical contributions to practical applications in sustainable build-
ing management.

The following summarises the contributions made by this paper: 

a) Development of the Multi-Objective Evolutionary Mating Algorithm 
(MOEMA): MOEMA introduces a novel approach to multi-objective 
optimization, specifically designed to enhance comfort and energy 
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efficiency in smart buildings. It addresses the limitations of tradi-
tional methods by improving both convergence and solution 
diversity.

b) Algorithmic Enhancements for Improved Optimization: MOEMA 
integrates an improved crowding distance function for better solu-
tion differentiation. It incorporates Levy flight mechanics to enhance 
exploration, balancing local and global search capabilities for supe-
rior performance.

c) Validation and Application to Smart Buildings: MOEMA is evaluated 
against ZDT benchmark functions, demonstrating its effectiveness in 
solving multi-objective problems. It is applied to smart building 
systems, optimizing comfort metrics (temperature, illuminance, air 
quality) while reducing energy consumption, achieving superior 
performance compared to NSGA-II.

2. Multi-objective Evolutionary Mating Algorithm

The Multi-Objective Evolutionary Mating Algorithm (MOEMA) is an 
enhancement of the EMA created to solve multi-objective optimization 
issues. EMA is a metaheuristic algorithm that draws inspiration from 
organisms or the mating process [41]. The method is developed using 
the Hardy-Weinberg (HW) concepts, which are discussed in [54]. EMA 
begins with an initialization phase, similar to many other metaheuristic 
algorithms. Next, a selection phase takes place, followed by the repro-
duction of new offspring.

MOEMA enhances the original EMA framework through two key 
innovations: an improved crowding distance function inspired by the 
NSGA, and the integration of Levy flight mechanics for enhanced 
exploration capabilities. The research will develop a process for finding 
approximations near the actual Pareto optimal solutions. A key 
component of this method is the implementation of an improved 
crowding distance approach, inspired by NSGA. This enhanced crowd-
ing distance will be embedded into the EMA framework to better solve 
Pareto optimal problems. The method aims to improve upon the initial 
definition of crowding distance, addressing its limitations in dis-
tinguishing between solutions with similar crowding distances but 
different qualities. To improve the algorithm’s capacity for exploration, 
the research will incorporate Levy flight randomization into the MOEMA 
framework. Step lengths in Levy flights, a kind of random walk, follow a 
heavy-tailed probability distribution. The algorithm should be able to 
explore the solution space more effectively with this method, which 
could result in the finding of better optimal solutions. The integration of 
Levy flights will replace the simple random number generation used in 
the original EMA, with the goal of preventing early convergence to local 
optima and broadening the range of possible solutions.

Levy flight was selected due to its ability to balance local and global 
search efficiency, which is crucial in optimizing smart building envi-
ronments where multiple conflicting objectives (comfort index and en-
ergy consumption) exist. Unlike traditional random walk or Gaussian- 
based search strategies, Levy flight introduces a power-law step distri-
bution that allows for both short-distance exploitation and long-distance 
exploration. This property is particularly beneficial in complex multi- 
objective optimization problems, such as smart building systems, 
where solutions often exist in diverse regions of the search space.

Furthermore, Levy flight’s stochastic nature helps MOEMA escape 
local optima, ensuring broader exploration of the Pareto front and 
improving convergence to optimal trade-offs. This characteristic makes 
it particularly suitable for handling the dynamic and nonlinear nature of 
smart building environments, where achieving a fine balance between 
occupant comfort and energy efficiency requires adaptive search 
behaviour.

To clearly highlight the improvements introduced by the proposed 
MOEMA over the traditional EMA, a summarized comparison is pre-
sented in Table 1. While EMA is primarily designed for single-objective 
optimization, MOEMA incorporates multi-objective optimization prin-
ciples, enabling it to effectively balance the trade-off between comfort 

index and energy consumption in smart buildings. Additionally, 
MOEMA enhances solution diversity through an improved crowding 
distance function and strengthens its exploration capabilities by inte-
grating Levy flight mechanics. Furthermore, unlike EMA, which relies 
on weighted sum approaches that may introduce bias, MOEMA employs 
Pareto-based optimization and a non-dominated sorting strategy to 
ensure a well-distributed set of optimal solutions. The key differences 
between the two algorithms are summarized in the table below. 

A. Initialization

Like other evolutionary algorithms, MOEMA starts with an initiali-
zation procedure that creates a matrix-based population of search 
agents. The candidate of solution X included two groups for initializa-
tion: males, represented by Xm and women are identified by Xf, as 
defined in Eqs. (1) and (2). This ensures diversity and prepares the 
mating pools for subsequent iterations. This can be defined as follows: 

Xm =

⎡

⎢
⎢
⎣

x1
1 ⋯ xd

1

⋮ ⋱ ⋮
x1

n/2 ⋯ xd
n/2

⎤

⎥
⎥
⎦ (1) 

Xf =

⎡

⎢
⎢
⎢
⎣

x1
n
2+1 ⋯ xd

n
2+1

⋮ ⋱ ⋮

x1
n ⋯ xd

n

⎤

⎥
⎥
⎥
⎦

(2) 

In this case, the number of populations is n, and d is the dimension of 
the problem. Each population’s objective or fitness function is assessed 
following the initialization procedure. After that, the best answer from 
each group is determined and stored. 

B. Mating Process

The mating selection procedure is conducted at random. In this case, 
mating is assumed to occur based on the likelihood of adoption or the 
probability of sexual selection, Imates which is represented as follows and 
discussed in Equations (3): 

Imates = Isex ratio + [ ∗ Imates(t) − ∗ Imates(k)] (3) 

In this context, Isex_ratio is assigned the value of 1 to indicate a 
balanced sex ratio with an equal count of males and females within the 
population. The variables *Imates(t) and *Imates(k) represent the weighted 
probabilities affecting sexual selection, attributed to variations in female 
availability across time (t) and space (k), respectively. The term Imates 
encompasses the overall diversity in mating success, distinguished by 
various selective opportunities stemming from (i) fluctuations in the sex 

Table 1 
Summarized comparison EMA and MOEMA.

Feature Traditional EMA MOEMA (Proposed)

Optimization 
Type

Single-objective 
optimization

Multi-objective optimization

Handling of 
Objectives

Uses a weighted sum 
approach, leading to 
potential bias towards one 
objective

Uses Pareto-based 
optimization to balance 
comfort index and energy 
consumption

Solution Diversity Limited diversity due to 
reliance on weighted 
functions

Enhanced diversity using an 
improved crowding distance 
function

Exploration 
Mechanism

Basic evolutionary mating 
process

Integration of Levy flight for 
better global search

Selection Strategy Best solution chosen based 
on fitness

Non-dominated sorting with 
archive update

Performance in 
Smart Buildings

Less adaptable to dynamic 
comfort-energy trade-offs

More effective in balancing 
comfort index and energy 
consumption
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ratio throughout the breeding period, (ii) the temporal and spatial 
accessibility of potential mates, and (iii) the general availability of 
mates, as referenced in [41]. This algorithm modifies these two factors 
to reflect the differential in fitness between males and females, thereby 
influencing the likelihood of sexual selection for each gender. Conse-
quently, this adjustment has led to a revision in Eq. (3). 

Imates = 1 +
[
var
(

XT
m,∗

)
− var

(
XT

f ,∗

)]
(4) 

Here, var(Xm,*
T ) and var(Xf,*

T ), denote the variance in selection for males 
and females, respectively, at iteration T. It should be noted that ’t’ and 
’k’ previously denoted the temporal and spatial variations in the avail-
ability of females, but these symbols have been removed to simplify the 
notation. In the updated version, refer to, Xm,* and Xf,* instead. Ac-
cording to Eqs. (1) and (2), Xm,* and Xf,* represent the selected in-
dividuals from the male and female groups, respectively, during the 
mating process. This selection is essential for producing new offspring in 
each iteration, wherein the value of Imates can be positive or negative. 
When generating new offspring, the Hardy-Weinberg equilibrium is 
applied, and the new offspring Xchild

T can be expressed as follows: 

XT
child =

⎧
⎨

⎩

p. ∗ XT
m,∗ + q. ∗ xT

f ,∗ for Imates ≥ 0

p. ∗ XT
f ,∗ + q. ∗ xT

m,∗ for Imates < 0
(5) 

where the normal random distribution, denoted by p, is written as fol-
lows: 

p = randn(1, d) (6) 

In this context, q is defined as (1-p). When the variance of Xf,*
T is 

notably higher than that of Xm,*
T as indicated by a negative value in Eq. 

(4), the characteristics of Xf,*
T will predominantly influence the traits of 

the new offspring, governed by the probability p. It’s worth noting that 
the terms p and q are connected to the Hardy-Weinberg principle, which 
has been previously explained. These values correspond to the genetic 
contributions from the mother and father, respectively. It is crucial to 
understand that, given the use of a normal distribution, the value of p 
could potentially be negative. Nevertheless, the Hardy-Weinberg equi-
librium is still adhered to, maintaining the invariant that the sum of p 
and q is always 1.

This allows for both the increase and decrease of traits inherited from 
the mother or father, which can help the offspring generation solve 
optimization problems. Although a single mating can result in multiple 
offspring in nature, this algorithm assumes that each mating will result 
in one offspring. However, it may be substituted for both in that iteration 
process if the offspring’s fitness is superior to that of the chosen mother 
and father.

Additionally, the current best solution that was saved during the 
initialisation process and at each iteration can also have an impact on 
the dimension of the offspring that are produced. Consequently, the new 
child is created in the manner described below: 

XT
child = K. ∗ XT

child.j + Xbest
j . ∗ (1 − K), j − 1,2,…d (7) 

Here, Xj
best represents the optimal solution identified at a given iteration, 

and the value of K can be determined using the following formula: 

K = randn(1, d) < Cr (8) 

where Cr is the crossover probability’s predetermined value as it applies 
to DE. In this manner, the decision to swap out each dimension 
component with the optimal solution can be made at random. Eq. (7)
will then be used to evaluate the offspring, calculating and comparing 
their objective function or fitness to that of their parents. The produced 
offspring is added to the parent pool if the offspring’s fitness is higher. It 
is important to note that the offspring may replace the parents (either 
one or both) that lead the quick, ideal search process if it computes a 

higher level of fitness. 

C. Exploration process

In nature, environmental factors like food, source dispersion, pre-
dation, sociality, etc., have an unavoidable impact on the evolution of 
the mating system [41]. These environmental factors are modelled in the 
EMA to improve the algorithm’s capacity for exploration, especially in 
the presence of predators.

An organism must choose whether to face or flee from the predator 
when it encounters them during the mating process. Whether the 
offspring is presumed to be alive or dead, this will drastically alter the 
best solution’s characteristics. An organism is presumed to be alive if its 
fitness value has the potential to increase, and dead if it has a lower 
fitness value. The likelihood of running into the predator, r, in EMA must 
be adjusted in accordance with the optimization issues that must be 
resolved. The following rules govern how the exploration process is 
enforced at each iteration: 

XT+1
child = rand(1, d). ∗ Xbest

j for r <∈ [0,1] (9) 

The user sets the preset value, such as 0.2, that determines the 
likelihood of running into the predator. If the random number r is less 
than 0.2 at a given iteration, the Eq. (9) is enforced, causing exploration 
to take place. Apart from the population size and the maximum number 
of iterations, only two parameters—Cr and r—need to be adjusted based 
on the development.

In addition to this, Levy flight randomization further enhances 
exploration by generating large steps that can span distant regions of the 
solution space. The algorithm can break out of local optima and inves-
tigate new, possibly more promising regions thanks to Levy flight. A 
Levy distribution, which has the power-law formula L(s) ~ |s|^(− 1− β), 
where 0 < β ≤ 2 is an index, is used to determine the step length for Levy 
flight. Beginning at a single, well-known spot, the algorithm will pro-
duce an entirely new generation at randomly distributed distances based 
on Levy flights. The most promising member of the new generation will 
then be chosen after evaluation. Until the criteria for stopping are ful-
filled, the procedure is repeated. Only the best option is selected. As a 
result, the equation for the new generation will be altered as follows: 

XT
child = Xbest

j + Levy(N) (10) 

where the following formula is used to calculate Levy flight: 

Levy(N) = 0.01 X
r1 X σ

|r2|
1
β

(11) 

Where σ is determined as follows, r1 and r2 are random numbers [0–1], 
and β is a constant in the value of 1.5. 

σ =

⎛

⎜
⎜
⎜
⎜
⎝

τ(1 + β) × sin
(

πβ
2

)

τ
(

1+β
2

)

× β × 2

(
β− 1

2

)

⎞

⎟
⎟
⎟
⎟
⎠

1
β (12) 

Levy flight randomization complements Eq. (9) by enabling long 
jumps, ensuring that the search spans both local and global regions of 
the solution space effectively. The fitness of the new offspring is assessed 
and contrasted with that of the parents after it is created using either 
Levy flight or Eq. (9). By replacing one or both parents if the offspring is 
more fit, exploration helps to expand the pool of potential solutions. The 
exploration phase in EMA strikes a balance between local diversification 
and global search by combining these mechanisms predator in-
teractions, which are modelled by Eq. (9) and Levy flight randomization 
and greatly improving the algorithm’s ability to find the best answers. 

D. Archive and Crowding Distance
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The archive in the MOEMA serves as a repository of non-dominated 
solutions, which, in terms of Pareto optimality, are the best options. 
During the algorithm’s execution, new candidate solutions (offspring) 
are generated and evaluated. After that, the archive is updated by 
adding solutions that don’t conflict with any already-existing solutions, 
ensuring that the algorithm retains only the most diverse and optimal 
solutions in terms of both objectives. This procedure aids in maintaining 
a collection of superior solutions that reflect a variety of trade-offs be-
tween the various goals. The archive’s size is capped to maintain a 
manageable number of solutions and prevent the algorithm from 
becoming too computationally expensive. This size limit is typically 
enforced using crowding distance as a mechanism to prioritize solutions 
that are spread out across the objective space.

To maintain diversity among the solutions stored in the archive, 
crowding distance is used to measure the spacing between solutions 
within the objective space. This method ensures that the archive en-
compasses a representative coverage of the Pareto front by assigning 
preference to solutions that are more distant from one another in terms 
of their objective values. The crowding distance for a solution is ob-
tained by sorting the population based on each objective and then 
measuring the distance between adjacent solutions in the sorted list. The 
crowding distance, denoted as di, for a specific solution i, is computed in 
the following manner: 

di =
∑M

m=1

(
fi,m+1 − fi,m− 1

fmax,m − fmin,m

)

(13) 

Since boundary solutions (those at the extremes of the population in 
each objective) are the most extreme in terms of objective values, the 
crowding distance gives them an infinite distance. Once the crowding 
distance for each solution has been calculated, the population is ar-
ranged in descending crowding distance order. This keeps the archive 
diverse by ensuring that solutions with greater crowding dis-
tances—those that are more dispersed—are kept. Only the most varied 
solutions—those with the greatest crowding distances—are retained if 
the archive grows beyond its maximum size. By using a crowding 
distance-based selection method, the archive is guaranteed to contain 
evenly distributed solutions across the Pareto front.

3. Problem formulation

This chapter presents the problem formulation used to assess the 
effectiveness of the suggested MOEMA. The formulation includes two 
critical aspects: testing on standard multi-objective benchmark func-
tions and practical use in smart building systems to maximise user 
comfort and energy efficiency.

The proposed MOEMA algorithm will first be rigorously tested using 
the ZDT benchmark functions, which are frequently used to assess an 
algorithm’s effectiveness, consistency, and capacity to approximate 
Pareto-optimal solutions in multi-objective optimization. These func-
tions provide a starting point for evaluating MOEMA’s ability to handle 
a variety of multi-objective problems with different features.

Following this, the application of MOEMA in a real-world scenario is 
introduced, concentrating on maximizing user comfort and energy use 
in a smart building setting. The aim is to achieve an optimal balance 
between user comfort and energy efficiency, considering environmental 
factors such as temperature, Illumination, and indoor air quality. This 
dual-objective optimization problem not only demonstrates the practical 
significance of MOEMA but also highlights its effectiveness in addressing 
real-world challenges.

The problem formulation in this chapter provides a foundation for 
implementing and evaluating MOEMA, ensuring a systematic approach 
to validate its performance in both theoretical and practical contexts.

3.1. ZDT benchmark functions

The proposed MOEMA will be rigorously tested using ZDT bench-
mark. The performance of MOEMA is assessed and compared using the 
well-known ZDT benchmark functions (ZDT1 through ZDT6), which 
were first presented by Zitzler, Deb, and Thiele [45]. Two opposing 
objective functions, f1 and f2, are used in the design of each ZDT 
function to produce a variety of Pareto front shapes, including convex, 
concave, and discontinuous fronts. In the context of smart buildings, 
optimization challenges involve nonlinearity, trade-offs between con-
flicting objectives (comfort index vs. energy efficiency), and the need to 
maintain solution diversity across a range of feasible settings. The ZDT 
functions capture these key aspects through diverse Pareto Front shapes, 
including convex, concave, and discontinuous Pareto fronts, which 
mimic the varying relationships between comfort parameters and en-
ergy consumption in real-world buildings. Some ZDT functions intro-
duce deceptive properties, non-uniform search spaces, and variable 
interaction effects—like how external environmental factors and 
building dynamics impact optimization in smart buildings. By testing 
MOEMA on these benchmark functions before applying it to real-world 
smart building problems, we ensure that the algorithm effectively han-
dles different types of multi-objective landscapes.

While ZDT functions do not capture all the complexities of real-world 
building environments, their mathematical diversity provides a 
controlled yet challenging evaluation framework. To further bridge this 
gap, we also validate MOEMA through real-world smart building sim-
ulations, demonstrating its applicability beyond theoretical 
benchmarks.

The objective functions of ZDT1, ZDT2, and ZDT3 are based on a 
straightforward linear or sinusoidal relationship, whereas ZDT4 adds 
multimodality, and ZDT6 poses problems with non-uniform distribu-
tion. Researchers can measure convergence efficiency, analyse solution 
diversity along the Pareto front, and evaluate algorithms’ ability to 
reach a true Pareto-optimal set by using the ZDT functions, which pro-
vide known Pareto front shapes. These functions are fundamental to the 
study of multi-objective optimization because they aid in the evaluation 
and enhancement of algorithms, which enable their application to multi- 
objective problems in the real world. Table 2 below show the mathe-
matical formulation for these ZDT’s functions.

3.2. MOEMA for optimizing user comfort and energy consumption

The optimization process in this study is driven by a multi-objective 
cost function aimed at reducing energy use while increasing user 

Table 2 
Mathematical formulation for ZDT’s.

Function Mathematical formulation D Range

ZDT1 F1 = x1, F2 = g
(

1 −
̅̅̅̅̅̅̅̅
F1/g

√ )
, g = 1+

9
d − 1

∑d
i=2

xi

30 xi ∈ [0,1]

ZDT2 F1 = x1, F2 = g(1 − (F1/g)), g = 1+

9
d − 1

∑d
i=2

xi

30 xi ∈ [0,1]

ZDT3 F1 = x1, F2 = g
(

1 −
̅̅̅̅̅̅̅̅
F1/g

√
− F1/gsin(10πF1)

)
,

g = 1+
9

d − 1
∑d

i=2
x1

30 xi ∈ [0,1]

ZDT4 F1 = x1, F2 = g
(

1 −
̅̅̅̅̅̅̅̅
F1/g

√ )
, g = 1+ 10(d −

1)+
∑d

i=2

(
x2

i − 10cos(4πx1)
)

10 x1 ∈ [0,1]
xi ∈ [ − 5,
5]
i = 1,…,D

ZDT6 F1 = 1 − exp( − 4x1)sin6(6πx1), F2 = g
(

1 −

(F1/g)2
)
,

g = 1+ 9

(∑d
i=2x1

d − 1

)0.25

30 xi ∈ [0,1]
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comfort in a building environment. This function leverages data 
collected from [15], specifically temperature in Celsius, Illumination, 
and Indoor Air Quality readings. These data serve as reference points 
and scaling coefficients within the cost calculation, ensuring the opti-
mization is grounded in real-world conditions rather than relying on 
abstract assumptions.

The cost function evaluates proposed control settings for each of the 
48 time periods under consideration, determining both a comfort index 
based on deviations from desired temperature (22.78◦C), illuminance 
(800 lux) and IAQ (800) and the associated energy consumption by 
measuring the absolute differences between the control settings and 
observed values. The objective is to find control settings, defined by a 
vector of temperature, lux and IAQ values for each time period, that 
balance the two conflicting objectives of maximizing user comfort 
(minimizing the negative of average comfort index) and minimizing 
energy consumption (minimizing average energy consumption).

In this way, the use of real-world data from the environment shapes 
the cost function and provides a context-specific optimization tailored to 
the reading behaviour of the environment under test, and penalizing 
control values that drastically deviate from the current environment 
conditions in terms of energy consumption.

In a smart building environment, the multi-objective cost function 
seeks to strike the best possible balance between energy use and user 
comfort. This cost function is intended to be used in a multi-objective 
optimization framework that aims to optimize these two conflicting 
objectives at the same time. Here is a detailed examination of each goal: 

A. User Comfort (Objective 1)

The degree of comfort that building occupants experience is 
measured by the comfort index. It is typically influenced by factors such 
as temperature, illuminance levels, and indoor air quality. Each of these 
factors contributes to overall comfort, and deviations from desired set-
points can decrease comfort.

The comfort index (CI) for each period combines three compo-
nents—temperature (T), LUX (L), and IAQ (I)—weighted equally with 
coefficients p1=1/3, p2=1/3, p3=1/3. The comfort for each component 
is calculated based on the deviation of the decision variables from 
desired setpoints. The comfort index seeks to measure the level of 
comfort that the building’s occupants experience. It considers three 
factors: First on how close the current temperature (Tk) is to a desired 
temperature (Td). Second is how close the current illuminance level (Lk) 
is to a desired illuminance level (Ld). And third on how close the current 
IAQ level (Ik) is to a desired IAQ level (Id). The desired value for each of 
the factor is as: desired temperature Td = 22.78, desired Lux Ld = 800, 
desired IAQ Id = 800. For each period k the comfort for each variable is 
expressed as: 

Ti = 1 −

(
Tk − Td

Tc

)2

, Li = 1 −

(
Lk − Ld

Lc

)2

, Ii = 1 −

(
Ik − Id

Ic

)2

(14) 

Here, Tc, Lc, and Ic are scaling coefficients for each variable, representing 
acceptable ranges that appears to be time varying. These coefficients 
likely represent the sensitivity or range of acceptable values for each 
factor at a given time. The comfort index scaling coefficients (Tc, Lc, Ic) 
are dynamically extracted from the dataset for each of the 48 time pe-
riods, allowing the comfort model to adapt to real-world conditions 
instead of using static values [15]. This approach accounts for variations 
in occupant preferences, external climate conditions, and building 
operational constraints. For instance, a higher Tc value during certain 
periods might indicate lower temperature sensitivity due to adaptive 
occupant behavior or external heat gain.

By incorporating time-dependent coefficients, the model ensures a 
more robust comfort-energy trade-off across diverse operating condi-
tions. Future improvements could involve real-time learning mecha-
nisms to further refine these coefficients using sensor feedback, making 

the optimization framework more responsive to environmental dy-
namics and occupant needs. The comfort index CI(k) for period k is then: 

CI(k) = p1 . Ti + p2 . Li + p3 . Ii (15) 

The individual components are combined using weights (p1, p2, p3), 
which determine the relative importance of temperature, Illumination, 
and IAQ to overall comfort. In the study, these are all set to 1/3, indi-
cating equal importance.

The score ranges from 0 (least comfortable) to 1 (most comfortable). 
The overall comfort objective is the average of the CI values across all 
periods, CIavg. 

B. Energy Consumption (Objective 2)

The energy consumption component estimates how much energy is 
used to maintain the desired comfort levels. It’s calculated based on the 
difference between the current settings (Tk, Lk, Ik) and the coefficients 
(Tc(k), Lc(k), Ic(k)), which might represent ambient or initial conditions.

The energy consumption (EC) for each period k is computed as the 
weighted sum of absolute deviations of each variable from their baseline 
coefficients, using weights pT =9 for temperature, pL =9, and pI =1 for 
IAQ. This weight reflects the significant energy demands of temperature 
regulation compared to illuminance and indoor air quality systems. 
Heating and cooling systems (HVAC) are typically the most energy- 
intensive components in a building, consuming substantially more 
power than illuminance or air quality management systems. By assign-
ing a much higher weight to temperature (9) relative to illuminance (1) 
and IAQ (1), the optimization algorithm acknowledges the dispropor-
tionate energy cost of thermal management.

This weighting approach ensures that the multi-objective optimiza-
tion algorithm is particularly cautious about temperature modifications. 
Small changes in temperature require extensive energy input from 
heating or cooling systems, whereas adjusting illuminance levels or air 
quality can be achieved with minimal energy expenditure. The 9:1:1 
ratio effectively communicates that a degree of temperature change is 
nine times more energetically significant than an equivalent change in 
illuminance or indoor air quality. Consequently, the algorithm will 
prioritize energy efficiency by minimizing unnecessary temperature 
fluctuations, while allowing more flexibility in illuminance and air 
quality adjustments.

The practical implication of these weights is a more nuanced and 
energy-conscious approach to building climate control. Instead of 
making frequent, small temperature changes that would consume 
considerable energy, the optimization strategy will seek solutions that 
maintain thermal comfort with minimal energy overhead. This approach 
aligns with modern sustainable building design principles, where energy 
efficiency is a critical consideration alongside occupant comfort.

Each component’s energy use is proportional to the absolute differ-
ence between the current setting and the coefficient, scaled by a weight 
(pT, pL, pI). The absolute difference is used because energy is consumed 
whether you are heating or cooling, increasing or decreasing illumi-
nance, etc. 

ET = pT . |Tk − Tc|, EL = pL . |Lk − Lc|, EI = pI . |Ik − Ic| (16) 

The total energy consumption EC(k) for each period is: 

EC(k) = ET + EL + EI (17) 

The total energy consumption for that time period is calculated by 
adding the energy consumption for temperature, illumination, and IAQ. 
The average energy consumption across all periods, ECavg, represents 
the energy consumption objective. The energy consumption values for 
all 48 periods are averaged to get a single measure of average energy 
consumption. 

C. Objective Formulation
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In multi-objective optimization, the function returns a vector with 
two objectives that are Maximizing Comfort: This is represented as 
minimizing the negative of the average comfort index: -CIavg and Mini-
mizing Energy Consumption: This is represented directly as minimizing 
ECavg. Thus, the objectives vector is given by: 

objectives =
[
− CIavg, ECavg

]
(18) 

This dual-objective setup enables a Pareto optimization process, 
allowing the algorithm to find trade-offs between reducing energy use 
and increasing comfort.

The process flowchart is displayed in Fig. 1. This flowchart illustrates 
the workflow of the MOEMA, created to maximise energy use and user 
comfort in smart building systems. The process begins with loading the 
dataset, followed by parameter initialization and defining a multi- 
objective fitness function. The algorithm iterates through multiple 
runs, initializing the population, evaluating the initial population 
against the objectives, and maintaining an archive using non-dominated 
sorting and crowding distance.

Each iteration involves generating offspring through the mating 
process, exploring with Levy flights for diversity, and updating the 
archive. After all iterations and runs, the algorithm evaluates the best 
run based on spacing and diversity of solutions. It then plots the Pareto 
front, identifies the most balanced point, and displays results, including 
user comfort and energy consumption at the selected point. Finally, the 
temperature, lux, and IAQ are analysed post-optimization, then a 
comparative analysis concluding the process. This structured flow en-
sures a comprehensive approach to solving multi-objective optimization 
challenges in smart building systems.

4. Results and discussion

This section gives a detailed description of the experimental setup, 
shows the results, and discusses the findings in detail.

4.1. Experiment setup

Simulations for this study were conducted using MATLAB on a 
Windows 11 platform. To ensure an equitable comparison, Table 3
outlines the configuration of parameters for both the MOEMA and 
NSGA-II, where the NSGA-II information in [55] were used in this 
comparison. Both algorithms were set up with a population size of 50 
and a maximum of 500 iterations.

The study assessed the best, average, median, worst, and standard 
deviation metrics for Generational Distance (GD), Inverted Generational 
Distance (IGD), and spacing to analyse and contrast the effectiveness of 
MOEMA and NSGA-II. To confirm each algorithm’s robustness, these 
metrics were computed for the ZDT benchmark functions. The GD, IGD 
and spacing were used because they allow us to comprehensively eval-
uate MOEMA’s performance in terms of convergence, diversity, and 
uniformity relative to a known true Pareto front. These metrics ensure 
that the algorithm can effectively handle theoretical multi-objective 
optimization challenges before being applied to real-world scenarios.

For the real-world test function in building scenario aimed at maxi-
mizing comfort index and energy savings, the study focused solely on the 

Fig. 1. MOEMA flowchart.

Table 3 
Parameter setting for MOEMA and NSGA-II.

Algorithm Parameter setting

Both 
algorithms

Simulation runs = 20, maximum iteration = 500, 
Population size = 50,

MOEMA Best Environment Impact Rate, Cr = 0.1 (probability for each 
dimension), 
Exploration Rate, r = 0.2 (uses archive’s solutions and Levy flights 
with a 0.20 probability) 
Levy flights, β = 1.5

NSGA-II Crossover Probability = 0.9, Distribution Index (eta_c) = 20
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Spacing metric. This is because a true Pareto front is typically unavai-
lable in practical applications, limiting direct comparisons on metrics 
like GD and IGD. Thus, Spacing serves as an essential indicator of so-
lution distribution quality in these scenarios. For this implementation, 
spacing metrics were chosen because it is more sensitive to the quality of 
local distribution, ensuring that solutions remain well-distributed, it 
complements the crowding distance-based archive update mechanism, 
further improving diversity maintenance, it is more stable across 
different Pareto front shapes, making it suitable for the irregular and 
dynamic nature of real-world smart building optimization, it is less 
sensitive to the scale of objective functions, which is important when 
optimizing diverse comfort parameters and energy efficiency and it 
provides a good balance between uniformity and diversity, ensuring a 
well-spread set of optimization trade-offs for practical decision-making. 
Compared it to other metric like spread metrics, while both Spacing and 
Spread measure solution diversity, Spacing is more suitable for our 
smart building application because it’s more sensitive to local distri-
butions of comfort-energy trade-offs, remains consistent across various 
Pareto front shapes common in building dynamics, shows greater 
robustness to objective function scaling, and complements our algo-
rithm’s crowding distance mechanism. Unlike Spread, which focuses 
mainly on extreme points, Spacing provides better insight into inter-
mediate solution distributions, ensuring more reliable diversity evalu-
ation in smart building optimization where true Pareto fronts are 
typically unavailable.

To ensure the robustness of MOEMA, a sensitivity analysis was 
conducted to determine the optimal value for the Best Environment 
Impact Rate (Cr), Exploration Rate (r) and Levy flight parameter (β). For 
instance, the choice of β =1.5 was based on prior research indicating 
that this value provides a balance between exploration and exploitation 
in optimization problems. To validate this setting, we conducted mul-
tiple simulation runs with different values of β (ranging from 1.1 to 2.0) 
and observed its impact on solution diversity and convergence. The re-
sults indicated that β =1.5 provided the best trade-off between explo-
ration and convergence speed, ensuring MOEMA’s effectiveness in 
handling the comfort-energy trade-off in smart buildings. Additionally, 
other key parameters were fine-tuned to enhance MOEMA’s perfor-
mance. Best Environment Impact Rate (Cr = 0.1) and Exploration Rate (r 
= 0.2) were carefully selected based on multiple simulation runs to 
ensure optimal solution diversity. Once the best parameter settings were 
finalized, 20 independent simulation runs were conducted to validate 
the algorithm’s consistency and determine the best trade-off between 
comfort index and energy consumption. These parameter settings were 
established to provide a fair comparison with NSGA-II while maximizing 
MOEMA’s effectiveness in smart building optimization.

Assessment criteria for multi-objective optimization algorithms need 
to thoroughly examine both the solution quality and their spread across 
the Pareto front. For the evaluation of the MOEMA, three essential 
performance indicators are utilized. One of these metrics is the Gener-
ational Distance (GD), which gauges the precision of convergence by 
determining the mean Euclidean distance from the solutions on the 
identified Pareto front to their nearest points on the actual Pareto front, 
as cited in reference [56]. A smaller GD value signifies improved prox-
imity to the true Pareto front. Generational Distance (GD) is calculated 
using the following equation: 

GD =

(
1
|P|

∑|P|

i=1
dp

i

)1
p

(19) 

Moreover, the Inverted Generational Distance (IGD) employs the 
Manhattan distance to measure the average distance from each point on 
the actual Pareto front to its nearest counterpart on the obtained front, 
thereby evaluating both convergence and diversity [57]. IGD effectively 
assesses how well the obtained solutions cover the entire true Pareto 
front. Unlike GD, IGD flips the perspective and calculates distances from 
the true Pareto front to the obtained solutions: 

IGD =

(
1
|P∗|

∑|P
∗|

J=1
dq

j

)1
q

(20) 

The Spacing metric evaluates the evenness of the distribution of 
solutions along the resulting Pareto front by calculating the standard 
deviation of distances between consecutive solutions [56]. According to 
Schott, this metric quantifies the variability in distances between adja-
cent non-dominated solutions identified thus far [58]. A smaller Spacing 
value suggests a more consistent spread of solutions. The formula used 
to calculate the Spacing metric is as follows: 

Spacing =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
|P| − 1

∑|P|

i=1
(di − d)2

√
√
√
√ (21) 

4.2. ZDT benchmark function result

The performance analysis of the pareto front for MOEMA and NSGA- 
II using the ZDT benchmark functions is as figures below. These func-
tions, which are widely used in multi-objective optimization, are made 
especially to evaluate the effectiveness, reliability, and precision of 
optimization algorithms when they approximate Pareto-optimal 
solutions.

By applying MOEMA and NSGA-II to the ZDT suite, which encom-
passes a diverse range of problem characteristics such as non-convex, 
discontinuous, and multimodal Pareto fronts, The purpose of this 
study is to thoroughly assess its capacity to resolve challenging multi- 
objective issues. The results obtained from these tests provide a foun-
dational benchmark for comparing MOEMA’s performance against other 
state-of-the-art optimization techniques.

Based on the analysis of all the figures, it appears that MOEMA and 
NSGA-II each demonstrate distinct strengths across different ZDT 
benchmark functions. These observations provide insights into their 
respective abilities to handle the diversity and convergence challenges 
presented by various kinds of optimization problems with multiple 
objectives.

For the ZDT1 function as in Fig. 2, which features a convex Pareto 
front, both MOEMA and NSGA-II achieve reasonably accurate repre-
sentations of the true Pareto front. However, MOEMA distinguishes itself 
by producing a smoother and more continuous Pareto front. The dis-
tribution of solutions from MOEMA is notably uniform, ensuring a better 
spread across the front. NSGA-II, on the other hand, exhibits minor 
discontinuities and scattered points, which indicate some inconsistency 
in convergence or crowding-distance mechanisms. This suggests that 
MOEMA’s selection and variation operators might be more effective at 
maintaining diversity and avoiding clustering of solutions. The unifor-
mity achieved by MOEMA enhances its ability to approximate the true 
Pareto front comprehensively.

Regarding ZDT2, as shown in Fig. 3, both algorithms successfully 
capture the concave nature of the Pareto front. Both MOEMA and NSGA- 
II successfully converge to the true Pareto front, showcasing their ability 
to handle concave surfaces. Nevertheless, the smoothness and continuity 
of MOEMA’s front are again superior. While NSGA-II performs 
adequately in capturing the overall concave shape, it exhibits minor 
irregularities in solution spacing, leading to some areas being denser 
than others. MOEMA’s solutions, in contrast, are more uniformly 
distributed along the curve. This consistency highlights MOEMA’s 
robustness in handling concave Pareto fronts and its ability to avoid 
solution crowding or gaps.

The ZDT3 benchmark function as in Fig. 4, which is known for its 
challenging disconnected Pareto front, provides a critical test of an al-
gorithm’s ability to preserve solution diversity across multiple segments. 
MOEMA demonstrates clear superiority here by accurately defining the 
disconnected segments with well-spaced solutions and distinct bound-
aries between regions. NSGA-II, while capable of identifying the 
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Fig. 2. Comparison pareto front MOEMA vs NSGA-II for ZDT1.

Fig. 3. Comparison pareto front MOEMA vs NSGA-II for ZDT2.

Fig. 4. Comparison pareto front MOEMA vs NSGA-II for ZDT3.

M.N.B. Nordin et al.                                                                                                                                                                                                                           Franklin Open 11 (2025) 100286 

10 



discontinuous nature of the front, produces more scattered solutions 
near the disconnection points. This scattering suggests potential chal-
lenges in maintaining stability during the search process, particularly 
near the edges of the disjointed regions. MOEMA’s ability to maintain 
clarity in the disconnected areas underscores its robustness in preserving 
diversity and convergence simultaneously.

For ZDT4 as in Fig. 5, notorious for its numerous local Pareto fronts, 
presents one of the most difficult challenges for multi-objective opti-
mization algorithms. Both MOEMA and NSGA-II demonstrate compa-
rable performance in terms of convergence to the global Pareto front, 
effectively avoiding the traps of local fronts. However, MOEMA pro-
duces a smoother and more continuous Pareto curve, indicating better 
exploitation of the objective space. NSGA-II, while achieving similar 
convergence, displays slightly more scattered solutions, particularly in 
regions where the problem’s ruggedness introduces additional diffi-
culty. This scattered distribution suggests that NSGA-II may struggle 
with maintaining diversity under such challenging conditions, whereas 
MOEMA appears more resilient.

Finally, for ZDT6 as in Fig. 6, with its biased and non-uniform 
mapping of the search space, reveals marked differences in the algo-
rithms’ capabilities. MOEMA excels by producing a consistent and well- 
defined Pareto front, with solutions distributed uniformly across the 
objective space. This performance indicates that MOEMA effectively 
overcomes the search space bias and ensures comprehensive coverage of 
the front. NSGA-II, in contrast, struggles significantly with ZDT6, as 
evidenced by its scattered solutions and non-uniform distribution. The 
higher regions of the objective space, in particular, exhibit greater 
dispersion, suggesting that NSGA-II’s diversity preservation mechanisms 
may falter in biased environments.

Overall, MOEMA demonstrates superior performance in terms of 
solution uniformity, continuity, and convergence across the test func-
tions. Its ability to produce smooth and well-distributed Pareto fronts is 
particularly evident in the more challenging cases of ZDT3 and ZDT6. 
This suggests that MOEMA’s design is inherently better suited to handle 
complex multi-objective landscapes, including those with discontinu-
ities or non-uniform biases. NSGA-II, while competitive in simpler cases 
such as ZDT1 and ZDT2, shows signs of instability or reduced efficiency 
in problems with higher complexity.

These findings imply that MOEMA may be more robust and reliable 
for real-world multi-objective problems, particularly those requiring 
precise and uniform Pareto front approximations in challenging 
environments.

Three critical metrics—generational distance (GD), inverted gener-
ational distance (IGD), and spacing—were employed to evaluate and 

compare the performance of MOEMA and NSGA-II, as presented in 
Table 4. For the ZDT1 problem, MOEMA exhibited significantly better 
results, achieving a GD average of 0.0083, far lower than NSGA-II’s 
0.0518, highlighting improved convergence towards the true Pareto 
front. This was further supported by MOEMA’s lower IGD value (0.0027 
vs. 0.0509) and superior spacing metric (0.0038 vs. 0.0052), indicating 
a more uniform solution distribution.

For ZDT2, MOEMA again demonstrated notable superiority, with a 
GD average of 0.0006 compared to 0.0093 for NSGA-II. Similar trends 
were observed in IGD (0.0029 vs. 0.0110) and spacing (0.0042 vs. 
0.0047), underscoring MOEMA’s higher solution quality and distribu-
tion uniformity. Additionally, MOEMA’s lower standard deviations 
across all metrics reflected its consistent and reliable performance.

In tackling the ZDT3 problem, characterized by a discontinuous 
Pareto front, MOEMA maintained its advantage, achieving much better 
GD (0.0031 vs. 0.0739), IGD (0.0042 vs. 0.1464), and spacing (0.0048 
vs. 0.0086) values. Furthermore, the markedly lower standard deviation 
for MOEMA (e.g., GD: 0.0001 vs. 0.0422) signified more stable and 
consistent results. For the ZDT4 problem, known for its numerous local 
Pareto fronts, MOEMA demonstrated exceptional performance, partic-
ularly in GD (0.0084 vs. 0.5892) and IGD (0.0027 vs. 0.5467). While the 
spacing metrics were closer (0.0030 vs. 0.0060), MOEMA still main-
tained an edge. The large disparity in standard deviations highlighted 
MOEMA’s robustness in handling multimodal optimization challenges.

Finally, in the ZDT6 problem, characterized by non-uniform map-
ping, MOEMA showcased its most pronounced advantage. The GD 
(0.0184 vs. 1.2658) and IGD (0.0023 vs. 1.0450) values clearly indi-
cated MOEMA’s superior convergence and diversity. Additionally, the 
spacing metrics (0.0041 vs. 0.0174) reaffirmed MOEMA’s ability to 
achieve better solution distribution. Overall, MOEMA consistently out-
performed NSGA-II across all test cases, achieving superior best, 
average, median, and worst values while maintaining lower standard 
deviations, which emphasized its robustness and reliability. This 
comprehensive performance analysis highlights MOEMA as a more 
effective algorithm for solving multi-objective optimization problems, 
particularly in terms of stability, convergence precision, and solution 
diversity.

4.3. Optimizing energy consumption and user comfort in smart building 
systems problem result

Subsequently, the application of MOEMA in a real-world scenario is 
discussed, focusing on enhancing user comfort while reducing energy 
usage in a building. The problem considers various environmental 

Fig. 5. Comparison pareto front MOEMA vs NSGA-II for ZDT4.
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factors such as temperature, illumination levels measured in lux, and 
indoor air quality (IAQ) to achieve the optimal trade-off between user 
comfort and energy efficiency. This dual-objective optimization 

challenge highlights not only the practical application of MOEMA in 
addressing complex issues but also demonstrates its efficacy in actual 
implementation.

Fig. 6. Comparison pareto front MOEMA vs NSGA-II for ZDT6.

Table 4 
Performance results of MOEMA vs NSGA-II for ZDTs benchmark functions.

Evaluation metrics ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

MOEMA NSGA-II MOEMA NSGA-II MOEMA NSGA-II MOEMA NSGA-II MOEMA NSGA-II

GD Best 0.0077 0.0146 0.0005 0.0031 0.0029 0.0137 0.0078 0.0078 0.0042 0.7708
Ave 0.0083 0.0518 0.0006 0.0093 0.0031 0.0739 0.0084 0.5892 0.0184 1.2658
Median 0.0083 0.0493 0.0006 0.0094 0.0031 0.0668 0.0084 0.5637 0.0046 1.2300
Worst 0.0091 0.1092 0.0007 0.0162 0.0034 0.1511 0.0091 1.2219 0.2818 1.7399
Std Dev 0.0004 0.0265 0.0001 0.0044 0.0001 0.0422 0.0003 0.2909 0.0620 0.3136

IGD Best 0.0024 0.0131 0.0027 0.0049 0.0035 0.0769 0.0023 0.0038 0.0019 0.7350
Ave 0.0027 0.0509 0.0029 0.0110 0.0042 0.1464 0.0027 0.5467 0.0023 1.0450
Median 0.0027 0.0489 0.0029 0.0106 0.0040 0.1511 0.0026 0.5261 0.0022 1.0204
Worst 0.0030 0.1046 0.0030 0.0189 0.0059 0.2110 0.0030 1.1142 0.0026 1.5628
Std Dev 0.0002 0.0255 0.0001 0.0050 0.0006 0.0458 0.0002 0.2654 0.0002 0.2485

Spacing Best 0.0033 0.0043 0.0036 0.0041 0.0045 0.0034 0.0027 0.0054 0.0036 0.0092
Ave 0.0038 0.0052 0.0042 0.0047 0.0048 0.0086 0.0030 0.0060 0.0041 0.0174
Median 0.0039 0.0053 0.0042 0.0042 0.0048 0.0050 0.0030 0.0060 0.0041 0.0143
Worst 0.0042 0.0060 0.0046 0.0068 0.0058 0.0401 0.0033 0.0066 0.0045 0.0408
Std Dev 0.0002 0.0006 0.0003 0.0008 0.0003 0.0111 0.0002 0.0004 0.0002 0.0098

Fig. 7. Comparison pareto front MOEMA vs NSGA-II for building problem.
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The main goals of this issue are to improve user comfort and reduce 
energy usage. Below is an analysis comparing the Pareto fronts produced 
by MOEMA and NSGA-II in the context of smart building systems. The 
test was run 20 times ensures a robust, unbiased, and statistically reli-
able evaluation, allowing for meaningful comparisons between MOEMA 
and NSGA-II. Then the best spacing pareto front are selected for com-
parison. The spacing metric is a valid strategy for selecting the best 
Pareto front because it measures the distribution and uniformity of 
solutions.

Spacing metrics were used for this implementation because it’s more 
sensitive to local distribution quality, works well with the current 
archive update mechanism that uses crowding distance, more stable for 
problems with varying front shapes, less sensitive to the scale of 
objective functions and provides a good balance between diversity and 
uniformity.

Fig. 7 compares the Pareto fronts of the MOEMA and NSGA-II algo-
rithms for building optimization, highlighting their distinct performance 
characteristics. The MOEMA algorithm demonstrates a more densely 
populated and uniform Pareto front, with solutions ranging from 
approximately -0.998 to -0.996 on the x-axis (negative comfort index) 
and 195 to 220 on the y-axis (energy consumption). In contrast, NSGA-II 
exhibits a slightly wider spread but less uniform distribution of solu-
tions, spanning from about -0.998 to -0.995 on the comfort index axis 
and 210 to 260 on the energy consumption axis. The MOEMA’s Pareto 
front shows superior convergence characteristics, evidenced by its lower 
energy consumption values for similar comfort levels, with its solutions 
consistently achieving energy consumption values below 220 units 
compared to NSGA-II’s higher range extending up to 260 units.

The multi-objective cost function, which balances user comfort and 
energy consumption, reveals that MOEMA achieves more efficient trade- 
offs between these competing objectives. This is particularly evident in 
the lower region of the Pareto front, where MOEMA maintains better 
energy efficiency while preserving comfort levels. The comfort index 
calculation, incorporating weighted components for temperature 
(p1=1/3), lux (p2=1/3), and IAQ (p3=1/3), demonstrates that both al-
gorithms successfully maintain high comfort standards (as indicated by 
values close to -1), but MOEMA achieves this with notably lower energy 
consumption. This superior performance can be attributed to MOEMA’s 
more effective exploration of the solution space, particularly in regions 
where marginal improvements in comfort require significant energy 
investments.

From an implementation perspective, MOEMA appears to be the 
more suitable choice for smart building optimization. Its pareto not only 
indicates better overall performance in terms of the energy-comfort 
trade-off but also provides decision-makers with a more consistent and 
a widely dispersed collection of ideal solutions. The denser distribution 
of solutions in MOEMA’s Pareto front also suggests greater reliability 
and stability in the optimization process, making it a more robust choice 
for practical applications in smart building management systems.

Table 5 shows the comparison between MOEMA and NSGA-II’s 
spacing performance on smart building systems. The spacing metric 
evaluation reveals that MOEMA demonstrates significantly better solu-
tion distribution compared to NSGA-II across all statistical measures. 
MOEMA achieves a best spacing value of 0.0406, which is substantially 
lower than NSGA-II’s best value of 0.2295. This indicates that MOEMA 

produces more uniformly distributed solutions along its Pareto front. 
The average spacing value for MOEMA (0.0935) is approximately four 
times better than NSGA-II (0.3667), suggesting consistently superior 
distribution of solutions across multiple runs.

Looking at the median values, MOEMA maintains its advantage with 
0.0804 compared to NSGA-II’s 0.3568, reinforcing the algorithm’s 
consistent performance in maintaining uniform spacing. The worst-case 
spacing scenario for MOEMA (0.1743) is still considerably better than 
NSGA-II’s worst case (0.6200), indicating that even in suboptimal con-
ditions, MOEMA maintains more reliable solution distribution. 
Furthermore, MOEMA’s lower standard deviation (0.0368 vs 0.0835) 
demonstrates more stable and predictable spacing performance across 
different optimization runs, making it a more dependable option for 
real-world uses in optimization issues with buildings environment.

These spacing metrics strongly support the visual analysis of the 
Pareto fronts and confirm that MOEMA provides a more evenly 
distributed and reliable set of optimal solutions compared to NSGA-II in 
the context of smart building optimization. Any point on the Pareto front 
plot can be selected for analysis. Typically, the balance point on the 
Pareto front is chosen as a reference to evaluate the performance of the 
algorithm. The "balance point" or "knee point" on the Pareto front is 
often chosen as a reference because it represents a solution were 
improving one objective significantly worsens another. This point can be 
used as a standard to assess how well an optimization algorithm per-
forms and is typically regarded as a good trade-off between the 
objectives.

Fig. 8 show the comparison the balance point for MOEMA and NSGA- 
II. Looking at the balance points, MOEMA shows a balance point at 
coordinates (-0.997604, 205.81), while NSGA-II’s balance point is at 
(-0.997359, 230.351). The comparison reveals that MOEMA achieves a 
better trade-off between comfort and energy consumption. In terms of 
comfort index, both algorithms perform similarly with only a 0.03 % 
difference (MOEMA at -0.997604 vs NSGA-II at -0.997358). However, 
for energy consumption, MOEMA demonstrates significantly better ef-
ficiency, requiring 205.81 units compared to NSGA-II’s 230.351 units - a 
reduction of 24.541 units or approximately 10.65 % lower energy con-
sumption. This indicates that MOEMA finds a more efficient compromise 
between the two objectives, providing an optimal solution that main-
tains nearly identical user comfort while achieving over 10 % better 
energy efficiency at the critical balance point.

The observed 10.65 % reduction in energy consumption achieved by 
MOEMA has significant practical implications for real-world building 
optimization. In a typical commercial building setting, where energy 
consumption is a major operational cost, this improvement translates to 
substantial reductions in electricity usage while maintaining occupant 
comfort. For example, if a building using NSGA-II requires 230 energy 
units for optimal operation, switching to MOEMA reduces this require-
ment to approximately 205.81 units. This improvement directly leads to 
lower energy costs and decreased carbon emissions, contributing to 
sustainable and cost-effective building management. When applied 
across large-scale buildings such as office complexes, hotels, or univer-
sity campuses, these savings accumulate, resulting in considerable 
financial and environmental benefits. Furthermore, the enhanced en-
ergy efficiency achieved by MOEMA supports compliance with energy 
regulations and sustainability certifications, making it a highly effective 
solution for smart building operations. By optimizing the trade-off be-
tween comfort and energy use, MOEMA provides a practical and scal-
able approach to improving building efficiency without compromising 
occupant well-being.

The selection of the balance point in Fig. 8 is based on identifying the 
optimal trade-off between user comfort and energy consumption. This 
balance is determined by normalizing both comfort and energy values 
and computing their Euclidean distance from the ideal scenario, which 
represents maximum comfort with minimal energy usage. The results 
indicate that MOEMA achieves a more efficient balance compared to 
NSGA-II, maintaining nearly identical comfort levels (-0.997604 vs. 

Table 5 
MOEMA and NSGA-II’s spacing performance on building systems.

Evaluation metrics BUILDING SYSTEMS

MOEMA NSGA-II

Spacing Best 0.0406 0.2295
Ave 0.0935 0.3667
Median 0.0804 0.3568
Worst 0.1743 0.6200
Std Dev 0.0368 0.0835
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-0.997359) while significantly reducing energy consumption by 
approximately 10.65 %. By deriving specific temperature, illuminance 
(lux), and indoor air quality (IAQ) settings from the balance point, the 
study provides practical guidelines for smart building management. 
These optimized parameters ensure a comfortable indoor environment 
while reducing energy costs and improving sustainability. The extracted 
settings can be dynamically adapted across different time periods, 
allowing for real-world implementation in energy-efficient building 
operations without compromising occupant well-being.

The balanced solution is defined as the point closest to the ideal 
scenario of maximum comfort and minimum energy use. By calculating 
the Euclidean distance from the normalized scale, the study derives a set 
of operational parameters that harmonize comfort and energy objec-
tives. These optimized settings for temperature, lighting, and IAQ can be 
reshaped into a format applicable across different time periods, sup-
porting sustainable building management by maintaining comfort while 
reducing energy consumption. These values are crucial design parame-
ters from the optimization’s decision variables at those balance points. 
The comparison of MOEMA and NSGA-II algorithms at their respective 
balance points reveals distinct performance characteristics across all 
three control parameters.

Fig. 9 show the Temperature Before and After Optimization at 

Balanced point. For temperature comparison, both algorithms demon-
strate effective regulation around the desired setpoint of 22.78◦C, with 
MOEMA exhibiting slightly more stable control with fewer fluctuations 
compared to NSGA-II. The temperature variations for MOEMA generally 
stay within a narrower band, suggesting more consistent thermal com-
fort for occupants. Moema achieves an average temperature of 22.713◦C 
while NSGA-II achieves an average temperature of 22.518◦C. This shows 
that Moema performs better than NSGA-II because Moema is closer to 
the desired value of 22.78◦C, with only a 0.067◦C difference.

Fig. 10 show the illuminance (Lux) before and after optimization at 
balanced point. In terms of illuminance, where the desired setpoint is 
800 lux, both algorithms show dynamic responses to varying conditions. 
MOEMA demonstrates more aggressive adjustments to maintain optimal 
lux, as evidenced by its sharper transitions, while NSGA-II shows slightly 
smoother but less precise control. The MOEMA algorithm appears to 
track the setpoint more closely during peak demand periods, particu-
larly noticeable in the time intervals between 25-35, where it maintains 
tighter control around the desired 800 lux level. MOEMA achieves an 
average Lux of 802.17 while NSGA-II achieves an average Lux of 793.16. 
This show that MOEMA is closer to desired value.

Fig. 11 show the IAQ before and after optimization at balanced point. 
For Indoor Air Quality (IAQ) control, both algorithms maintain values 

Fig. 8. Balance point for MOEMA vs NSGA-II for building problem.

Fig. 9. Temperature before and after optimization at balanced point.
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near the desired setpoint of 800, but with distinct control strategies. 
MOEMA’s control pattern shows more responsive adjustments with 
shorter deviation periods from the setpoint, while NSGA-II exhibits a 
more conservative approach with gentler transitions but longer periods 
of slight deviation. The MOEMA algorithm demonstrates superior per-
formance in rapidly returning to the setpoint after disturbances, 
particularly evident in the periods between 15–25 and 35–45 time in-
tervals. The average IAQ for MOEMA is 801.84, whereas the average 
IAQ for NSGA-II is 795.43. Because MOEMA is closer to the target value 
of 800, this indicates that MOEMA outperforms NSGA-II. Overall, 
MOEMA’s more precise control across all three parameters contributes 
to its better energy efficiency while maintaining comparable comfort 
levels, as reflected in the earlier analysed balance point metrics. The 
comparison of temperature, Lux and IAQ at the balance point prove that 
the comfort index for MOEMA is slightly better than NSGA-II with only 
0.03 % comfort difference as shown in the Fig. 8.

To validate the effectiveness of the proposed MOEMA against NSGA- 
II, the study conducted statistical significance tests on the optimization 
results for energy consumption and user comfort in smart building sys-
tems. Specifically, the study employed both the two-tailed t-test and the 
Wilcoxon rank test to compare the performance of the two algorithms 
across both objectives. The results, as shown in Table 6, indicate that 

MOEMA significantly outperforms NSGA-II in both objectives. For the t- 
test, the p-values obtained for objective 1 (comfort index) and objective 
2 (energy consumption) were 4.9040E-06 and 2.7651E-15, respectively, 
both of which are well below the commonly accepted significance 
threshold of 0.05. This confirms that the observed performance differ-
ences are statistically significant. Similarly, the Wilcoxon rank test 
yielded p-values of 0.000077 and 0 for objectives 1 and 2, respectively, 
further reinforcing the conclusion that MOEMA provides a statistically 
significant improvement over NSGA-II. These results demonstrate that 

Fig. 10. LUX before and after optimization at balanced point.

Fig. 11. IAQ before and after optimization at balanced solution.

Table 6 
statistical test for MOEMA vs NSGA-II.

Statistical test p-value (two- 
tail)

Significant? (α =
0.05)

Conclusion

t-test (objective 1) 4.9040E-06 Yes Significant 
difference

t-test (objective 2) 2.7651E-15 Yes Significant 
difference

Wilcoxon rank test 
(objective 1)

7.7000E-5 Yes Significant 
difference

Wilcoxon rank test 
(objective 2)

0 Yes Significant 
difference
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MOEMA achieves superior optimization in balancing comfort and en-
ergy efficiency in smart buildings, highlighting its potential as an 
effective approach for real-world applications.

5. Conclusion

In conclusion, the proposed MOEMA has demonstrated significant 
advantages over NSGA-II in both theoretical benchmarks and practical 
smart building applications. Through extensive testing on ZDT bench-
mark functions, MOEMA consistently outperformed NSGA-II across all 
evaluation metrics, showing superior convergence, diversity, and sta-
bility as evidenced by better GD, IGD, and spacing values with notably 
smaller standard deviations. This theoretical superiority translated 
effectively to real-world applications in smart building optimization, 
where MOEMA achieved remarkable results in balancing comfort and 
energy efficiency. The algorithm’s enhanced performance is particularly 
evident in its ability to maintain nearly identical comfort levels 
(-0.997604 vs -0.997359) while reducing energy consumption by 10.65 
% compared to NSGA-II. This energy efficiency improvement has sig-
nificant practical implications, as it directly translates to reduced 
operational costs and lower carbon emissions in real-world building 
management. By optimizing the trade-off between comfort and energy 
use, MOEMA enables more sustainable and cost-effective building op-
erations, making it particularly valuable for commercial buildings, of-
fices, and large-scale smart infrastructures.

MOEMA’s superior control precision was further demonstrated in its 
management of specific environmental parameters, achieving closer 
adherence to desired setpoints for temperature (22.713◦C vs 22.518◦C), 
illumination (802.17 vs 793.16 lux), and indoor air quality (801.84 vs 
795.43). These results validate that MOEMA’s innovative integration of 
improved crowding distance function and Levy flight mechanics creates 
a more robust and efficient optimization framework for complex multi- 
objective problems, particularly in smart building systems where it 
successfully balances the competing demands of occupant comfort and 
energy efficiency. This advancement represents a significant contribu-
tion to both evolutionary computation and sustainable building man-
agement within the context of Industry 4.0.

Implementing MOEMA in real-world smart building optimization 
requires addressing computational complexity and scalability. The al-
gorithm’s computational demand scales with population size, iterations, 
and problem complexity, necessitating a balance between solution 
quality and efficiency. Potential improvements include parallel 
computing techniques like distributed processing and GPU acceleration, 
as well as hierarchical optimization strategies that optimize individual 
zones before aggregating building-wide solutions. Cloud-based deploy-
ment and edge computing integration could enable real-time optimiza-
tion, allowing MOEMA to dynamically adapt to changing environmental 
conditions. Future research may explore adaptive population sizing and 
hybrid approaches with surrogate models to reduce computational 
overhead while maintaining solution accuracy, ensuring the algorithm’s 
practicality for large-scale smart building applications.

Future research on MOEMA can explore both its applicability to 
diverse optimization scenarios and potential algorithmic enhancements. 
Beyond smart building management, MOEMA’s adaptability makes it 
suitable for optimizing energy-efficient HVAC systems in smart grids, 
industrial process control, and transportation networks, where 
balancing multiple conflicting objectives is crucial. Furthermore, 
MOEMA can be extended to domains such as medical decision-making, 
supply chain logistics, and financial portfolio optimization, where 
effective trade-offs between risk, cost, and performance are essential. 
From an algorithmic perspective, MOEMA could benefit from adaptive 
parameter tuning, particularly for the Levy flight parameter β, to 
dynamically adjust exploration-exploitation trade-offs based on problem 
complexity. Hybrid approaches, such as integrating MOEMA with sur-
rogate modelling or reinforcement learning techniques, could enhance 
its efficiency in high-dimensional and computationally expensive 

problems. Additionally, refining its diversity preservation mechanisms, 
such as clustering-based improvements to crowding distance calcula-
tions, could further optimize Pareto front distribution and convergence 
behaviour. These advancements will expand MOEMA’s versatility and 
effectiveness, making it a robust framework for solving complex multi- 
objective optimization problems across various domains.
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