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A B S T R A C T

Accurate estimation of the state of charge (SoC) of lithium-ion batteries (LIBs) in electric vehicles (EVs) is crucial 
for optimizing performance, ensuring safety, and extending battery life. However, traditional estimation methods 
often struggle with the nonlinear and dynamic behavior of battery systems, leading to inaccuracies that 
compromise the efficiency and reliability of electric vehicles. This study proposes a novel approach for SoC 
estimation in BMW EVs by integrating a metaheuristic algorithm with deep neural networks. Specifically, 
teaching-learning based optimization (TLBO) is employed to optimize the weights and biases of the deep neural 
networks model, enhancing estimation accuracy. The proposed TLBO-deep neural networks (TLBO-DNNs) 
method was evaluated on a dataset of 1,064,000 samples, with performance assessed using mean absolute error 
(MAE), root mean square error (RMSE), and convergence value. The TLBO-DNNs model achieved an MAE of 
3.4480, an RMSE of 4.6487, and a convergence value of 0.0328, outperforming other hybrid approaches. These 
include the barnacle mating optimizer-deep neural networks (BMO-DNNs) with an MAE of 5.3848, an RMSE of 
7.0395, and a convergence value of 0.0492; the evolutionary mating algorithm-deep neural networks (EMA- 
DNNs) with an MAE of 7.6127, an RMSE of 11.2287, and a convergence value of 0.0536; and the particle swarm 
optimization-deep neural networks (PSO-DNNs) with an MAE of 4.3089, an RMSE of 5.9672, and a convergence 
value of 0.0345. Additionally, the TLBO-DNNs approach outperformed standalone models, including the 
autoregressive integrated moving average (ARIMA) model (MAE: 14.3301, RMSE: 7.0697) and support vector 
machines (SVMs) (MAE: 6.0065, RMSE: 8.0360). This hybrid TLBO-DNNs technique demonstrates significant 
potential for enhancing battery management systems (BMS) in electric vehicles, contributing to improved effi-
ciency and reliability in electric vehicle operations.

1. Introduction

Electric vehicles (EVs) have gained considerable attention in recent 
years as a means to reduce carbon emissions from road transportation, 
which accounted for 23% of global energy-related CO₂ emissions across 
economic sectors in 2019 [1]. Growing environmental concerns asso-
ciated with internal combustion engine (ICE) vehicles have accelerated 
the transition to EVs as a viable strategy for reducing greenhouse gas 
emissions in the transportation sector. Data from the United States 
Department of Energy (DOE) highlight this shift, showing that conven-
tional ICE vehicles produced approximately 4.5 times more annual CO₂ 
emissions (12,594 pounds in 2021) compared to all-electric vehicles (2, 

817 pounds in 2021). Notably, EVs running exclusively on electricity 
generate zero greenhouse gas emissions, including CO₂, methane (CH₄), 
and nitrous oxide (N₂O), during operation [2]. This trend reflects global 
efforts to mitigate climate change, driven by increasing concerns over 
the environmental impact of traditional combustion engines [3]. The 
transition from fossil fuel-powered vehicles to electric alternatives rep-
resents a critical step in reducing greenhouse gas emissions, which are a 
primary driver of global warming. While electricity generation has 
historically relied on centralized power plants, concerns over fossil fuel 
depletion and environmental sustainability have spurred the search for 
alternative, highly efficient energy production methods [4]. Govern-
ments worldwide are implementing policies and incentives to encourage 
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EV adoption, such as tax credits, rebates, and investments in charging 
infrastructure. Furthermore, advancements in battery technology and 
increased production efficiency are making EVs more affordable and 
accessible to a broader range of consumers. This transition in the 
transportation sector is part of a broader strategy to electrify various 
systems traditionally reliant on fossil fuels, contributing to overall car-
bon reduction goals. As more renewable energy sources are integrated 
into the power grid, the environmental benefits of EVs are expected to 
increase, further supporting the transition to a more sustainable and 
resilient energy future.

The widespread adoption of EVs has led to a significant reliance on 
lithium-ion batteries (LIBs) [5], highlighting the importance of accu-
rately estimating the state of charge (SoC). Proper SoC estimation is 
essential for ensuring battery reliability, safety, and longevity, as it helps 
manage energy usage and predicts the remaining driving range. Ad-
vances in battery management systems (BMS) and SoC estimation 
techniques are crucial for optimizing LIBs performance, enhancing 
driver convenience, and supporting the broader adoption of EVs. LIBs, 
known for their low self-discharge rate, high power density, and long 
cycle life, remain the leading choice for energy storage, further facili-
tating the shift toward sustainable transportation solutions [6]. These 
qualities have paved the way for advancements in the EVs market and 
driven the widespread adoption of portable electronic devices. Various 
SoC estimation methods, including Coulomb counting, model-based 
approaches, and data-driven techniques, have been developed to 
improve estimation accuracy. Coulomb counting estimates SoC by 
calculating the ratio of remaining charge to the total battery capacity 
[7]. While often combined with open-circuit voltage curves to mitigate 
self-discharge errors, this method struggles with error accumulation due 
to sensor inaccuracies. Model-based approaches, including empirical, 
electrical equivalent circuit, electrochemical, and electrochemical 
impedance models, as well as Kalman filter algorithms [8], help address 
current sensor measurement issues. However, their accuracy depends 
heavily on the precision of the battery model [9].

In recent decades, the implementation of machine learning models 
for SoC estimation has demonstrated significant advancements [10,11]. 
Machine learning techniques, particularly neural networks, have sub-
stantially improved accuracy and efficiency by capturing complex data 
patterns and interactions that traditional methods often overlook 
[12–14]. These capabilities have been effectively applied across various 
domains, including agricultural forecasting [15], commodity price 
prediction [16], carbon emissions pricing [17], and thermal coal futures 
trading volume prediction [18]. Similarly, machine learning has been 
leveraged to enhance SoC estimation. Various approaches, including 
supervised learning, neural networks, and ensemble methods, have been 
explored to predict battery SoC with high precision. For instance, the 
application of artificial neural networks (ANNs) and deep learning (DL) 
models has shown promising results in modeling battery behavior and 
improving SoC predictions. Research has highlighted the effectiveness of 
these models in capturing nonlinear relationships in battery data, 
leading to more accurate SoC estimates. Several studies [19,20] 
demonstrated how deep-learning models can enhance SoC estimation by 
incorporating historical data and battery characteristics. A related study 
[21] explored hybrid DL combined with metaheuristic optimization 
techniques for Nissan Leaf batteries, while Sulaiman et al. [22] 
employed an evolutionary mating algorithm (EMA) to optimize DL pa-
rameters. Early machine learning applications in SoC estimation 
included support vector regression (SVR), optimized using simulated 
annealing [23]. This model was integrated into a Kalman filter frame-
work and combined with an ampere-hour integration method to create a 
closed-loop SoC estimation system. The model was trained under spe-
cific conditions and tested at various temperatures to evaluate its per-
formance. A similar study [24], utilized SVR for state-of-health (SoH) 
estimation, predicting battery degradation and remaining useful life. 
This approach highlights the versatility of SVR in battery management 
applications, extending beyond SoC estimation to comprehensive health 

monitoring and prediction systems.
Additionally, support vector machines (SVMs) and other advanced 

machine learning techniques have been employed to refine SoC esti-
mation further. The study by Korkmaz [10] investigated various ma-
chine learning algorithms, including bagging and extra trees, for SoC 
estimation, comparing their performance under different conditions and 
incorporating filters for outlier removal. These advancements under-
score the growing role of machine learning in optimizing BMS and 
battery performance. Recent research has continued refining SoC esti-
mation techniques. For instance, Li et al. [11] presented a hybrid ma-
chine learning framework for joint SoC and SoH estimation of LIBs, 
assisted by fiber sensor measurements. Another study integrated con-
volutional neural networks with Gaussian process regression, demon-
strating that updating capacity estimation and incorporating advanced 
measurement techniques significantly enhance accuracy and reliability, 
reducing error and variability.

Other advancements include the use of recurrent neural networks 
(RNNs). Chen et al. [25] explored the application of gated recurrent 
neural networks (GRNNs) with Kalman filtering for SoC prediction. This 
study introduced the gated recurrent unit-adaptive Kalman filter 
(GRU-AKF), which effectively reduces SoC fluctuations and improves 
estimation accuracy across a wide temperature range. Another study 
[26] investigated a random search-optimized long short-term memory 
(RS-LSTM) network for SoC estimation. This approach highlights the 
effectiveness of the RS-LSTM approach in enhancing the estimation ac-
curacy by optimizing key parameters and incorporating critical features, 
achieving a mean absolute error of 0.221% and a root mean square error 
of 0.262% across various conditions and datasets. Furthermore, Feng 
et al. [27] explored the integration of ensemble learning methods with 
feature selection techniques to enhance SoC prediction models, offering 
a robust framework for addressing battery performance complexities 
under varying operating conditions.

Previous studies on SoC estimation have explored various methods, 
including Coulomb counting, model-based approaches, and machine 
learning techniques. While Coulomb counting and model-based 
methods such as Kalman filters and electrochemical models are widely 
used, they suffer from limitations such as error accumulation and reli-
ance on accurate battery models. Machine learning approaches, partic-
ularly ANNs, DL models, and hybrid methods incorporating 
optimization algorithms, have significantly improved estimation accu-
racy by capturing complex nonlinear relationships in battery data. 
Despite these advancements, challenges remain in optimizing hyper-
parameters, ensuring robustness across varying conditions, and 
reducing computational complexity. Recent developments have intro-
duced techniques such as gated RNNs, long short-term memory (LSTM) 
networks, and ensemble learning methods, which enhance performance 
under diverse conditions. However, many of these methods require fine- 
tuning numerous parameters, making them computationally expensive.

To improve SoC predictions, selecting an effective algorithm is 
essential. In this study, deep neural networks (DNNs) were employed 
due to their ability to effectively model complex data relationships [28]. 
DNNs offer superior learning and adaptability compared to traditional 
machine learning models, particularly for time-series prediction and 
analysis [29]. To enhance DNNs performance, the teaching-learning 
based optimization (TLBO) algorithm was applied to optimize the net-
work’s weights and biases. TLBO is widely recognized for its straight-
forward implementation and effectiveness across various optimization 
tasks. Its user-friendly nature and minimal prior knowledge re-
quirements render it practical for many applications [30]. Notably, it is 
free from algorithm-specific parameters [31], making it an attractive 
alternative to algorithms such as genetic algorithms (GA), which 
necessitate adjusting multiple parameters, including population size, 
number of generations, crossover probability, and mutation probability 
[32,33]. Moreover, TLBO exhibits strong convergence properties and 
delivers reliable solutions, making it a valuable tool for improving SoC 
prediction models [34].
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The main contributions of the proposed TLBO-DNNs method are as 
follows: 

i. By integrating DNNs with TLBO, the approach effectively addresses 
hyperparameter optimization challenges associated with traditional 
methods and reduces the risk of overfitting caused by minor varia-
tions in DNNs configurations.

ii. The TLBO-DNNs method outperformed established hybrid ap-
proaches, as demonstrated by experimental results on specific data-
sets, achieving significantly lower error rates compared with DNNs 
optimized by BMO, EMA, and particle swarm optimization (PSO).

The remainder of this paper is organized as follows: Section 2 pre-
sents the mathematical formulation of TLBO, followed by an overview of 
DNNs in Section 3. Section 4 details the methodology, including data 
collection, training, testing, the hybrid TLBO-DNNs model, and evalu-
ation. Section 5 discusses the results, and Section 6 provides concluding 
remarks.

2. TBLO

The TLBO algorithm is inspired by the teaching and learning process 
in a classroom, as developed in [35,36]. Like other metaheuristic algo-
rithms, TLBO follows a population-based approach, where the popula-
tion is viewed as a group of learners, the design variables represent 
subjects, and the learners’ performance corresponds to “fitness”. The 
knowledge acquisition process is divided into two phases: the teacher 
phase and the learner phase, with the teacher being the best solution 
identified thus far.

This section describes the mathematical model of the TLBO algo-
rithm, which consists of two main phases: teacher and learner.

2.1. Teacher phase

In this phase, Teacher T aims to improve the average performance of 
the class. The difference between the teacher’s and students’ average 
results for each subject is calculated as follows [35]: 

Differencej,k,i
mean = ri⋅

(
Xj,kbest,i − TFMj,i

)
(1) 

where Xj,kbest,i represents the best learner’s result in subject j during 
iteration i; k=1,2,…,n; Mj,i denotes the mean result of the learners in a 
specific subject j (j=1,2,…, m); m refers to the number of design vari-
ables (i.e., subjects); TF represents the teaching factor; ri is a random 
number between 0 and 1 that influences the updates; and α and β (see 
Section 4) directly control the magnitude of the updates in the proposed 
method. TF is calculated as follows [35]: 

TF = round[1+ rand(0,1)] (2) 

The performance of the TLBO improves when TF is set to 1 or 2. Based 
on Eq. (1), the updated solution is defined as follows [35]: 

Xʹ
j,k,i = Xj,k,i + Difference(j,k,i)mean (3) 

where Xʹ
j,k,i represents the updated value of Xj,k,i, which is accepted if it 

improves the functional value. All accepted values serve as inputs for the 
learner phase.

2.2. Learner phase

In this phase, learners randomly interact with each other to enhance 
their knowledge. Given a population size of n, two learners, P and Q, are 
randomly selected such that Xʹ

total− P,i∕=Xʹ
total− Q,i, where Xʹ

total− P,i and 
Xʹ

total− Q,i are the updated values of Xtotal− P,i and Xtotal− Q,i of P and Q at the 
end of teacher phase, respectively [35]: 

Xʹ́
j,P,i = Xʹ

j,P,i + ri
(
Xʹ

j,P,i − Xʹ
j,Q,i

)
, If Xʹ

total− P,i < Xʹ
total− Q,i (4) 

Xʹ́
j,P,i = Xʹ

j,P,i + ri
(
Xʹ

j,Q,i − Xʹ
j,P,i

)
, If Xʹ

total− Q,i < Xʹ
total− P,i (5) 

In the TLBO-DNNs hybrid model, the weights and biases of the DNNs 
correspond to Xj,k,i whereas the teaching factor (TF) and random factor 
(ri) control the magnitude of updates. Additionally, step sizes α and β are 
introduced to fine-tune the optimization for DNNs-specific applications.

3. Estimation based on DL

DL is a subset of machine learning that utilizes multi-layered neural 
networks, known as DNNs, to model complex patterns in data. These 
networks autonomously learn hierarchical features, making them highly 
effective for tasks such as image recognition, natural language pro-
cessing, and predictive modeling. DNNs consist of multiple layers of 
interconnected neurons, where each neuron processes inputs using 
learned weights and activation functions to produce an output. The 
network’s multi-layer architecture progressively extracts abstract fea-
tures as the data pass through.

This study focuses on optimizing DNNs by determining the optimal 
weights and biases to enhance their performance. A novel approach 
hybrids DNNs with the TLBO to improve learning efficiency and accu-
racy. By optimizing the neural network parameters, this hybrid method 
aims to achieve better predictive performance, particularly for SoC 
estimation.

The forward pass in DNNs, which is essential for computing outputs 
based on inputs, weights, and biases, is defined as follows: 

y = f
(
wxT + b

)
(6) 

where y represents the output (SoC), w denotes the weights, x is the 
input data (see Section 4), b is the bias term, and f is the activation 
function.

4. Methodology

This section outlines the methodology used by TLBO-DNNs to esti-
mate the SoCs of LIBs. It includes descriptions of the dataset, dataset 
analysis, data normalization, TLBO-DNNs, benchmarking techniques, 
and performance evaluation criteria. Fig. 1 illustrates the TLBO-DNNs 
framework for SoC estimation.

This study presents a hybrid approach that combines DNNs with a 
TLBO optimizer for SoC estimation in LIBs. It begins with a compre-
hensive dataset of battery parameters, including voltage, current, tem-
perature, and various operational metrics. The data were divided into 
training (70%) and testing (30%) sets. DNNs were initially trained on 
these data to learn the complex relationships between the input features 
and SoC. The TLBO optimizer then iteratively refines the weights and 
biases of the DNNs, improving their ability to generalize and reducing 
overfitting. This optimization process continues until a termination 
criterion is met, resulting in the final TLBO-DNNs model. The model was 
evaluated using the testing set, with the output representing the esti-
mated SoC percentage. This hybrid approach leverages the powerful 
learning capabilities of DNNs with the stabilizing effects of TLBO, of-
fering potentially more accurate and robust SoC estimations than 
traditional methods or standalone DNNs. Details of each component are 
described in the following sections.

4.1. Dataset description

The quality of data significantly affects the performance of machine 
learning models; therefore, careful data collection and processing are 
crucial. In this study, data from 72 real driving trips of the BMW i3 (60 
Ah) were used to validate a comprehensive vehicle model, which can be 
retrieved from [37]. The estimation model incorporated 10 input 
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parameters: air conditioning power (AC Power) (kW), longitudinal ac-
celeration (LA) (m⋅s− 2), regenerative braking signal (RBS), battery 
voltage (V_batt) (V), battery current (I_batt) (A), battery temperature 
(T_batt) (◦C), heating power CAN (kW), throttle position (TP), motor 
torque (T_motor) (Nm), and cabin temperature (T_cabin). The model 
output was the SoC, expressed as a percentage. Table 1 lists the input 
samples.

4.2. Data normalization

To ensure consistent scaling and improve model performance, min-
–max normalization was applied to the dataset. This technique trans-
forms the data into a specific range, typically [0, 1], helping maintain 
numerical stability and enhancing the convergence of optimization al-
gorithms [38,39]. Min–max normalization was chosen for its simplicity 
and effectiveness in rescaling features to a uniform range. By com-
pressing the data into a bounded interval, this method prevents large 
values from dominating the learning process and ensures that model 
parameters are updated uniformly. This normalization technique is 
particularly useful when features have varying scales or units, allowing 
for more stable and efficient model training. The min–max normaliza-
tion formula is expressed as follows: 

xʹ =
x − min(x)

max(x) − min(x)
(7) 

where x, min(x), max(x), and x’ are the original, minimum, maximum, 
and normalized values of the feature, respectively.

4.3. TBLO-DNNs model

This methodology employs a hybrid approach that integrates TLBO 
with DNNs to optimize their performance. TLBO is used to automatically 
adjust the weights and biases of DNNs, enhancing their accuracy and 
efficiency. The application of TLBO for optimization is crucial as it en-
ables effective exploration of the large and complex parameter space of 
deep neural networks. By automating the optimization process, TLBO 
efficiently identifies optimal or near-optimal values for weights and 
biases, a task that is otherwise challenging and time-consuming when 
performed manually. This approach not only improves DNNs perfor-
mance but also ensures the model is fine-tuned to accommodate various 
data characteristics and complexities, leading to more accurate and 
robust predictions. The hybrid TLBO-DNNs framework is illustrated in 
Fig. 2.

Fig. 2 depicts a hybrid algorithm that hybrids TLBO with DNNs 
(TLBO-DNNs) for SoC estimation. The process begins with the initiali-
zation of TLBO-DNNs, followed by parameter configuration and the 

Fig. 1. Teaching-learning based optimization-deep neural networks (TLBO-DNNs) framework for state of charge (SoC) estimation.

Table 1 
Sample input data.

AC power (kW) LA (m⋅s− 2) RBS V_batt (V) I_batt (A) T_batt (◦C) Heating power CAN (kW) TP T_motor (Nm) T_cabin

0.4 − 0.03 0 391.4 − 2.2 21 0 0 0 24.5
0.4 0 0 391.4 − 2.21 21 0 0 0 24.5
0.4 − 0.01 0 391.4 − 2.26 21 0 0 0 24.5
0.4 − 0.03 0 391.4 − 2.3 21 0 0 0 24.5
0.4 − 0.03 0 391.4 − 2.3 21 0 0 0 24.5
0.4 − 0.01 0 391.4 − 2.3 21 0 0 0 24.5
0.4 − 0.01 0 391.4 − 2.3 21 0 0 0 24.5
0.4 − 0.03 0 391.4 − 2.31 21 0 0 0 24.5
0.4 − 0.01 0 391.4 − 2.36 21 0 0 0.38 24.5
0.4 − 0.01 0 391.4 − 2.37 21 0 0 0.12 24.5

Note: AC power: air conditioning power; LA: longitudinal acceleration; RBS: regenerative braking signal; V_batt: battery voltage; I_batt: battery current; T_batt: battery 
temperature; TP: throttle position; T_motor: motor torque; T_cabin: cabin temperature.
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loading of driving-trip data from the BMW i3 dataset. After applying 
min–max normalization, the dataset is divided into training and testing 
sets. The TLBO process consists of two primary phases: initialization, 
teacher and learning.

4.3.1. Initialization phase
During the initialization phase, population parameters such as pop-

ulation size n, the number of teachers T, the number of learners L, and 
the maximum number of iterations Itermax are defined. In the context of 
DNNs, the population represents candidate sets of weights W and biases 
B, which correspond to the design variables in the TLBO framework. A 
random set of weights W0 and biases B0 is generated for the DNNs, 
where: 

W0 = rand
(
n, nweights

)
and B0 = rand(n, nbiases) (8) 

4.3.2. Teacher phase
In the teacher phase, the best-performing candidate (referred to as 

the “teacher”) is identified based on the DNN’s performance. The 
weights and biases of the learners are updated to move closer to the 
teacher’s solution. This process is governed by the teaching factor (TF), 
calculated as: 

TF = round[1+ rand(0,1)] (9) 

The update equations for weights and biases are: 

Wnew
learner = Wlearner+α⋅(Wteacher − Wlearner) (10) 

Bnew
learner = Blearner+α⋅(Bteacher − Blearner) (11) 

where α is the step size or learning rate, which controls the magnitude of 
the update. The learner’s weights and biases are adjusted to enhance 
performance relative to the teacher.

4.3.3. Learning phase
In the learning phase, random pairs of weight and bias sets are 

formed, and each set is updated by moving toward the better-performing 
set within the pair. The update is expressed as: 

Wnew
i = Wi + β⋅(WBest − Wi) (12) 

Bnew
i = Bi + β⋅(BBest − Bi) (13) 

where β is another step size that controls the magnitude of the update. 
This process iteratively refines the population by guiding the candidates 
toward improved solutions.

The optimization process continues iteratively, with model perfor-
mance evaluated after each cycle. The iterations proceed until the 
maximum number of iterations Itermax is reached. At this stage, the 
TLBO-DNNs algorithm outputs the optimal weight and bias sets, refining 
the DNNs model to enhance SoC estimation accuracy.

This hybrid approach effectively combines the optimization capa-
bilities of TLBO with the modeling strengths of DNNs, significantly 
improving the overall performance of the SoC estimation model.

4.4. Benchmarking techniques

This section provides a concise overview of the selected bench-
marking techniques, which include three hybrid DNNs combined with 
metaheuristic optimization algorithms, namely, BMO, EMA, and PSO, as 
well as standalone models such as ARIMA and SVM.

4.4.1. BMO
The BMO [40] is a metaheuristic optimization algorithm inspired by 

the unique mating behavior of barnacles. This algorithm simulates the 
reproductive processes of barnacles, which rely on specific mating 
strategies and environmental adaptations. BMO models a population of 
candidate solutions that interact and “mate” based on their fitness levels, 
guiding the search for optimal solutions through mechanisms akin to 
genetic recombination and mutation. By leveraging these natural be-
haviors, BMO effectively explores and exploits the solution space, 
making it well-suited for solving complex optimization problems. It has 
been successfully applied to engineering design, scheduling, and other 
challenging tasks where traditional methods may be insufficient.

In BMO, new offspring are generated through a fertilization process 

Fig. 2. Teaching-learning based optimization-deep neural networks (TLBO-DNNs) structure.
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involving a neighboring solution. Barnacles are known for their 
remarkably long penises—approximately seven times their body 
length—an adaptation that facilitates reproduction despite their 
sedentary lifestyle and changing tidal conditions. In BMO, the selection 
of barnacle parents for offspring generation is random, with the length 
of the barnacle’s penis, denoted as pl , serving as a tuning parameter. 
The exploitation process is inspired by the Hardy-Weinberg principle, 
while exploration is guided by sperm casting mechanisms.

4.4.2. EMA
The EMA [41] is another metaheuristic optimization technique 

inspired by biological mating processes, particularly those described by 
Hardy-Weinberg (HW) principles [42]. Like other evolutionary algo-
rithms, EMA consists of three fundamental stages: initialization, selec-
tion, and reproduction. However, it also incorporates environmental 
influences—specifically, the presence of predators—as an exploratory 
mechanism within its framework. Several key parameters influence the 
performance of EMA. These include population size, which determines 
the number of solutions per generation; the number of parents selected 
for mating, which affects genetic diversity; the mutation rate, which 
controls the frequency of random alterations in offspring; and the 
crossover rate, which dictates how often parent solutions combine to 
generate new offspring.

4.4.3. PSO
PSO [43] is a swarm-based metaheuristic algorithm in which a 

population of potential solutions, called particles, moves through the 
search space to find an optimal solution. Each particle represents a 
candidate solution to the optimization problem. In PSO, particles adjust 
their positions based on their own experiences and those of their 
neighbors, using both social and cognitive behaviors to explore and 
exploit the solution space efficiently. PSO is known for its rapid 
convergence and relatively few algorithmic parameters [44]. The key 
tuning parameters in PSO include the number of particles, which de-
termines the exploration and convergence behavior of the algorithm; the 
cognitive coefficient (c1), also known as the personal learning coeffi-
cient, which influences how much a particle is attracted to its own 
best-known position; the social coefficient (c2), also referred to as the 
global learning coefficient, which determines the impact of the 
best-known position found by the entire swarm; the inertia weight (w), 
which controls the influence of a particle’s previous velocity on its 
current velocity, balancing exploration and exploitation; and the ve-
locity limits, which define the upper and lower bounds for particle 
movement to ensure effective search dynamics. These parameters are 
crucial for guiding the swarm towards optimal solutions and ensuring an 
effective search process.

4.4.4. ARIMA
ARIMA is a widely used statistical model for time series forecasting 

and analysis. It combines three components—autoregressive (AR), in-
tegrated (I), and moving average (MA)—to model and predict future 
values based on past data. The ARIMA model is governed by three key 
parameters: AutoRegressive Order p, which defines the number of lag-
ged observations included in the model, determining how many past 
values are used to predict future values, with a higher value of p indi-
cating that more past values are considered; differencing order, d, which 
represents the number of differences needed to make the time series 
stationary and is used to remove trends or seasonality, making the data 
more suitable for modeling; and moving average order, q, which spec-
ifies the number of lagged forecast errors included in the model, helping 
smooth the time series by averaging past forecast errors.

4.4.5. SVM
SVMs are supervised machine learning algorithms widely used for 

classification, regression, and outlier detection. SVMs work by finding 
the optimal hyperplane that separates data points of different classes in a 

high-dimensional space. For non-linear problems, SVMs employ kernel 
functions, such as polynomial or radial basis function (RBF) kernels, to 
map the input data into a higher-dimensional space where a linear 
separator can be applied. Due to their robustness and ability to handle 
high-dimensional data, SVMs are particularly effective in scenarios with 
limited datasets and clear separation margins.

4.5. Parameter setting

Before conducting the experiments, the properties of the proposed 
technique and the identified techniques were defined, as shown in 
Table 2. This table presents the key configuration settings, including 
population size, iteration limit, and neuron parameters for the TLBO, 
EMA, BMO, and PSO prediction techniques used in this study. For 
ARIMA, the values of p, d, and q were determined based on experimental 
findings, with ranges of 0–5, 0–1, and 0–5, respectively.

4.6. Model performance evaluation

Selecting an appropriate performance evaluation metric is crucial for 
validating experimental results. In this study, two statistical indices 
were used: mean absolute error (MAE) and root mean square error 
(RMSE). While RMSE assigns greater weight to larger estimation errors, 
MAE treats all errors equally. The formulas for MAE and RMSE are as 
follows: 

MAE =
1
N

∑N

i=1
(yi − ỹi)

2 (14) 

RMSE =

̅̅̅̅
1
N

√
∑N

i=1
(yi − ỹi)

2 (15) 

where yi denotes the actual value, ỹ is the predicted value, and N is the 
total number of samples in the test set. It is widely accepted that lower 
MAE and RMSE values indicate greater predictive accuracy.

5. Results and discussion

To evaluate the performance of TLBO-DNNs, a series of experiments 
was conducted to determine the most suitable number of neurons for the 
network. This study employs the widely used heuristic formula 2n+1 to 
calculate the number of hidden neurons, where n represents the number 
of input neurons. This formula, inspired by the universal approximation 
theorem and related interpretations of Kolmogorov’s work [45,46], of-
fers a theoretical basis for representing continuous functions in a single 
hidden layer network. Based on this principle, the experiments tested 
configurations with 19, 21, and 23 neurons, corresponding to slight 

Table 2 
Parameters used for different SoC estimation optimization techniques.

Parameter TLBO EMA BMO PSO

Population size 30
Maximum iterations 500
Number of hidden layers 2
Number of neurons 21
Cr - 0.85 - -
R - < 0.35 - -
Pl - - 21 -
c1 - - - 1.5
c2 - - - 1.5
W - - - 0.7

Note: SoC: state of charge; TLBO: teaching-learning based optimization; EMA: 
evolutionary mating algorithm; BMO: barnacles mating optimizer; PSO: particle 
swarm optimization; cr: crossover probability; r: random number; pl: penis 
length; c1: cognitive coefficient; c2: social coefficient; w: inertia weight; - in-
dicates that the parameter is not applicable or utilized.
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variations in the calculated values. The primary goal of these experi-
ments was to mitigate the risks of overfitting and underfitting. Over-
fitting can occur if the network has too many neurons, leading to 
excessive reliance on training data and poor generalization to unseen 
data. Conversely, underfitting may arise if the network contains too few 
neurons, preventing it from capturing the complexity of the data. By 
testing these configurations, this study aims to identify an optimal bal-
ance that maximizes network performance while ensuring effective 
generalization.

Table 3 presents a comparison of MAE and RMSE for different neuron 
configurations (19, 21, and 23) in the TLBO-DNNs for SoC estimation. 
The results indicate that increasing the number of neurons led to a 
decrease in MAE, with optimal performance achieved using 21 neurons. 
This configuration resulted in the lowest MAE (3.4480) and RMSE 
(4.6487), indicating superior prediction accuracy. In comparison, the 
23-neuron configuration exhibited slightly higher MAE (3.8543) and 
RMSE (5.1796) values. The 19-neuron model performed the worst 
among the three, with the highest MAE (4.0500) and RMSE (5.3496), 
making it the least suitable for accurate SoC estimation. Based on these 
results, the experiment proceeded with the 21-neuron configuration, 
prioritizing overall prediction accuracy, which is crucial for reliable SoC 
estimation in BMS. From a practical standpoint, this finding suggests 
that designing a TLBO-DNNs model with 21 neurons strikes a balance 
between computational efficiency and prediction accuracy, making it a 
viable choice for deployment in BMS.

Table 4 presents the error metrics (MAE and RMSE) for the various 
models used in SoC estimation. The results indicate that TLBO-DNNs 
delivered the most accurate predictions, achieving the lowest MAE 
(3.4480) and RMSE (4.6487). This model demonstrated an optimal ar-
chitecture with 21 neurons, as deviations in either direction (increasing 
or decreasing the number of neurons) led to reduced accuracy. This 
observation underscores the importance of careful hyperparameter 
tuning for optimal performance. Compared with other neural network- 
based models, TLBO-DNNs consistently outperformed BMO-DNNs, 
EMA-DNNs, and PSO-DNNs. For instance, BMO-DNNs achieved an 
MAE of 5.3848 and RMSE of 7.0395, while PSO-DNNs performed 
slightly better than BMO-DNNs, with an MAE of 4.3089 and RMSE of 
5.9672. In contrast, EMA-DNNs exhibited the highest error rates among 
neural network-based approaches, with an MAE of 7.6127 and RMSE of 
11.2287, indicating slower convergence and less effective optimization.

ARIMA, a traditional statistical method, performed significantly 
worse, with an MAE of 14.3301 and RMSE of 17.0697. This stark 
contrast highlights the advantages of DL models in capturing the 
nonlinear relationships inherent in battery data. The superior perfor-
mance of TLBO-DNNs is particularly noteworthy, as they consistently 
achieved the lowest errors across all tested models and evaluation 
metrics.

The results presented in Table 4 not only confirm the effectiveness of 
TLBO-DNNs but also highlight the limitations of ARIMA. While ARIMA 
serves as a useful benchmark for linear modeling, it struggles to capture 
the complex and dynamic patterns observed in BMS. To further validate 
these findings, future work should explore additional datasets, conduct 
statistical validations, and consider other performance metrics, such as 
execution time and energy efficiency. Nevertheless, the current results 

establish TLBO-DNNs as a highly promising solution for accurate SoC 
estimation in BMS, with their optimized architecture and robust 
learning capabilities outperforming both neural-network-based com-
petitors and traditional methods.

For TLBO-DNNs, the results reveal a delicate balance between 
underfitting and overfitting. The model with 19 neurons exhibited 
slightly higher error rates than the 21-neuron model, suggesting mild 
underfitting, indicating that the 19-neuron architecture may lack the 
capacity to fully capture the complexity of SoC estimation. The optimal 
performance achieved with 21 neurons suggests that this configuration 
strikes a balance, effectively modeling the underlying patterns without 
overfitting to noise in the training data. However, the performance 
degradation observed when the number of neurons increased to 23 is a 
classic sign of overfitting. The additional complexity allowed the model 
to fit too closely to the training data, reducing its ability to generalize to 
new, unseen data.

Regarding the comparison across different models, the consistently 
superior performance of TLBO-DNNs suggests that they better capture 
the true underlying patterns of SoC behavior than other approaches. The 
progressively worse performances of BMO-DNNs, EMA-DNNs, and PSO- 
DNNs may indicate varying degrees of underfitting, with these models 
potentially lacking the necessary complexity or optimization strategies 
to fully capture SoC dynamics. The significantly poorer performance of 
ARIMA strongly suggests underfitting, likely due to its linear nature, 
which is unable to represent the nonlinear relationships in battery 
behavior. Figs. 3–7 illustrate the performance of TLBO-DNNs and other 
models.

Fig. 3 presents a visual comparison of actual and predicted energy 
values, along with the associated prediction errors for SoC estimation 
using TLBO-DNNs across approximately 350,000 instances. The top plot 
compares actual energy values (blue curve) with predicted values (or-
ange curve). The close alignment between these curves highlights the 
effectiveness of TLBO-DNNs in accurately capturing SoC variations 
across the dataset. The small discrepancies between the two curves 
indicate that the model performed consistently well, even in regions 
with sudden fluctuations or nonlinear energy trends. The bottom plot 
shows the error percentages, revealing that most errors were centered 
around zero, with the majority falling within a narrow range, further 
demonstrating the robustness of TLBO-DNNs. Although occasional 
spikes in error are observed at specific instances, they remain minimal 
and do not significantly impact overall prediction accuracy. The insights 
from Fig. 3 confirm that TLBO-DNNs deliver reliable SoC estimation 
while maintaining high accuracy across a large dataset. The model’s 
ability to handle both steady-state and transient energy variations 
further supports its suitability for real-world BMS.

In contrast, the error plot for BMO-DNNs (Fig. 4) exhibits significant 
fluctuations, with errors frequently exceeding ±10% and occasionally 
reaching ±40%, indicating substantial mispredictions. Even larger 
estimation errors are observed in Fig. 5, which illustrates the perfor-
mance of EMA-DNNs.

Table 3 
SoC estimation using different TLBO-DNNs model configurations with 19, 21, 
and 23 neurons.

Number of neurons MAE RMSE

19 4.0500 5.3496
21 3.4480 4.6487
23 3.8543 5.1796

Note: SoC: state of charge; TLBO-DNNs: teaching-learning based optimization- 
deep neural networks; MAE: mean absolute error; RMSE: root mean square 
error.

Table 4 
SoC estimation using DNNs optimized through metaheuristic algorithms and 
ARIMA.

Algorithms MAE RMSE

TLBO-DNNs 3.4480 4.6487
BMO-DNNs 5.3848 7.0395
EMA-DNNs 7.6127 11.2287
PSO-DNNs 4.3089 5.9672
ARIMA 14.3301 17.0697
SVM 6.0065 8.0360

Note: SoC: state of charge; DNNs: deep neural networks; TLBO: teaching- 
learning based optimization; BMO: barnacles mating optimizer; EMA: evolu-
tionary mating algorithm; PSO: particle swarm optimization; ARIMA: autore-
gressive integrated moving average; SVM: support vector machine; MAE: mean 
absolute error; RMSE: root mean square error.
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Fig. 3. State of charge (SoC) estimation using teaching-learning based optimization-deep neural networks (TLBO-DNNs).

Fig. 4. State of charge (SoC) estimation using barnacle mating optimizer–deep neural networks (BMO-DNNs).
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Fig. 5. State of charge (SoC) estimation using evolutionary mating algorithm-deep neural networks (EMA-DNNs).

Fig. 6. State of charge (SoC) estimation using particle swarm optimization–deep neural networks (PSO-DNNs).
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Fig. 7. State of charge (SoC) estimation using autoregressive integrated moving average (ARIMA).

Fig. 8. State of charge (SoC) estimation using support vector machine (SVM).
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Fig. 6 visualizes the SoC estimation using PSO-DNNs, which dem-
onstrates better accuracy than BMO-DNNs. However, it exhibits 
frequent error spikes exceeding ±20% and occasionally approaching 
±40%, in contrast to the more stable performance of TLBO-DNNs. 
Meanwhile, ARIMA showed poor performance for SoC estimation (see 
Fig. 7), with large errors, unstable predictions, and a clear inability to 
track actual energy levels accurately. These results reinforce the notion 
that ARIMA’s limited adaptability and difficulty in capturing nonlinear 
relationships within the data diminish its effectiveness [47]. SVM 
exhibited moderate performance in predicting SoC, as shown in Fig. 8. 
While it outperformed ARIMA, it fell short compared to hybrid DNN 
approaches such as TLBO-DNNs and PSO-DNNs, which achieved 
significantly lower error values.

Fig. 9 presents the convergence curves of the four optimization 
algorithms—TLBO, EMA, PSO, and BMO—applied to SoC estimation. 
Among these, TLBO demonstrated the best performance, achieving the 
lowest final objective function value of 0.0328 after approximately 450 
iterations, indicating its superior ability to minimize the objective 
function. PSO followed a similar convergence pattern but reached a 
slightly higher final value of 0.0345, demonstrating competitive per-
formance. In contrast, BMO and EMA converged more slowly to higher 
objective function values of 0.0492 and 0.0536, respectively. The figure 
also shows that TLBO consistently outperformed the other algorithms 
throughout the iterations, maintaining lower objective function values 
at nearly all points. This superior performance, combined with its rapid 
and steady convergence, suggests that TLBO is the most suitable algo-
rithm for this SoC estimation task. While PSO is a close competitor, BMO 
and EMA are less optimal due to their slower and less effective 
convergence behavior.

To further validate these observations and ensure robust model se-
lection, future work should incorporate cross-validation techniques, 
analyze learning curves, and evaluate the models on separate validation 
and test sets. This would provide a more comprehensive understanding 
of each model’s generalization capabilities and help fine-tune their ar-
chitectures to achieve an optimal balance between complexity and 
performance.

6. Conclusion

This study introduces an innovative hybrid TLBO-DNNs approach for 
estimating the SoC of LIBs in BMW EVs. The TLBO algorithm was used to 
optimize the weights and biases of the DNNs, thereby improving SoC 
estimation accuracy. To ensure effective training, the dataset was 
normalized using min-max scaling to address variations in value ranges. 
Experiments were conducted with different numbers of hidden neurons 
to prevent underfitting or overfitting. The TLBO-DNN method was 
evaluated using a dataset of 1,064,000 samples and achieved an MAE of 
0.34480 and an RMSE of 4.6487. Compared to other hybrid methods, 
such as BMO-DNNs, EMA-DNNs, and PSO-DNNs, as well as standalone 
models like ARIMA and SVM, TLBO-DNNs demonstrated superior per-
formance. This hybrid approach has significant potential for enhancing 
BMS in EVs, leading to more efficient and reliable operation.

Despite its strong performance, TLBO-DNNs exhibited some error 
spikes in specific instances, suggesting that the model may struggle 
under certain conditions. These deviations could result from variations 
in battery behavior or limitations in the model’s generalizability. 
Additionally, extreme conditions may challenge its predictive accuracy. 
To address these limitations, future work could focus on refining the 
model by incorporating more comprehensive features, exploring alter-
native data preprocessing techniques to better handle outliers, and 
improving its ability to generalize across diverse scenarios. Another 
avenue for improvement involves exploring advanced hybrid models or 
integrating domain-specific knowledge to enhance prediction accuracy 
in challenging situations. Strengthening these aspects would help ensure 
robust performance across a wider range of conditions, contributing to 
more accurate and reliable SoC estimation.
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