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ABSTRAK 

Elektrik adalah sumber tenaga yang paling diminta di seluruh dunia. Pada saat yang sama, 
ia terhad secara kritikal untuk memenuhi permintaan. Terdapat hanya dua penyelesaian 
logik untuk memenuhi permintaan ini. Pertama, meningkatkan kapasiti pengeluaran 
kuasa, meningkatkan teknologi transmisi, meningkatkan kecekapan pengeluaran kuasa. 
Kedua, mengurus penggunaan tenaga di premis. Kajian ini terutamanya memberi 
tumpuan kepada pengurusan kecekapan tenaga elektrik berdasarkan data menggunakan 
kecerdasan buatan. Khususnya, kampus universiti dipilih sebagai kajian kes dalam 
penyelidikan ini. Ia merupakan fakta yang sudah mapan bahawa pembelajaran mesin 
lebih unggul dari segi ramalan dan klasifikasi. Oleh itu, dalam kajian ini, satu variasi 
teroptimum baru daripada algoritma pembelajaran mesin dikemukakan. Dalam kajian ini, 
satu set data rujukan tentang penggunaan tenaga di kampus universiti IIT, India 
(disediakan oleh Smart Energy Informatics Lab, SEIL) dipilih untuk latihan dan 
pengujian variasi algoritma pembelajaran mesin yang dicadangkan. Selain itu, prestasi 
yang sama juga disahkan di kampus universiti lain dengan budaya yang seangkatan. 
Dalam kaitannya ini, set data yang disediakan oleh Energy Informatics Group 
Department of Computer Science, SBASSE Lahore University of Management Sciences, 
Pakistan dipilih. Skop kajian ini adalah tiga kali lipat. Pertama, satu kajian bandingan 
yang menyeluruh dan parametrik pada pelbagai jenis algoritma pembelajaran mesin 
dikemukakan untuk menilai prestasi algoritma pembelajaran mesin dalam ramalan beban 
tenaga. Hasil daripada fasa ini adalah pemilihan calon terbaik bagi algoritma 
pembelajaran mesin untuk ramalan beban tenaga kampus universiti. Kedua, adalah 
pengoptimuman algoritma pembelajaran mesin terbaik yang dipilih untuk meningkatkan 
lagi kecekapan dan keberkesanan ramalan. Akhirnya, algoritma-algoritma yang 
dicadangkan juga disahkan pada set data lain dari kampus universiti di rantau yang 
berbeza. Kajian ini mengesyorkan kompromi pemilihan sebagai fungsi keberkesanan dan 
kecekapan ramalan algoritma. Khususnya, Bagged Trees yang dioptimumkan adalah 
algoritma yang paling berkesan untuk aplikasi ramalan permintaan tenaga, manakala 
Medium Trees yang dioptimumkan adalah algoritma yang paling cekap untuk sistem 
masa nyata. Begitu juga, Fine Trees yang dioptimumkan mempunyai kompromi optimum 
antara keberkesanan dan kecekapan. 
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ABSTRACT 

The electricity at the most demanded energy source around the globe. At the same time, 
it is critically limited to meet the demand. There are only two logical solutions to meet 
this demand. First, to increase the power generation capacity, enhance transmission 
technology, and improve power generation efficiency. The second, is to manage the 
energy utilization in the premises. Since the electrical energy consumption is different in 
each application and management of energy utilization in large scale is complex, 
therefore this study proposed (Data-driven electrical energy efficiency management) 
D2EEM using optimized ML. This research is mainly focused on data-driven electrical 
energy efficiency management using artificial intelligence. Particularly, a university 
campus is selected as a case study in this research. It is a well-established fact that 
machine learning is outperforming in terms of prediction and classification. Therefore, in 
this study a new optimized variant of machine learning algorithms is presented. In this 
study, a benchmark dataset of energy consumption in a university campus of IIT, India 
(provided by the Smart Energy Informatics Lab, SEIL) was selected for training and 
testing the proposed variants of machine learning algorithms. The scope of this study is 
tri folded, First, an exhaustive and parametric comparative study on a wide variety of 
machine learning algorithms is presented to evaluate the performance of machine 
learning algorithms in energy load prediction. The deliverable of this phase is the 
selection of the best candidate of machine learning algorithm for university campus 
energy load prediction. The second is the optimization of the best selected machine 
learning algorithms to further improve the efficiency and efficacy of the prediction. 
Finally, the proposed algorithms were also validated on another dataset of a university 
campus in a different region. This study recommends a selection trade-off as the function 
of prediction efficiency and efficacy of the algorithm.  Particularly, the proposed 
optimized Bagged Trees are the most effective algorithm for energy demand prediction 
applications, and the proposed optimized Medium Trees are the most efficient algorithm 
for real-time systems. Likewise, optimized Fine Trees have the optimum trade-off 
between efficacy and efficiency. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Electrical Energy Management System 

In the current trend, the electric power management system has received 

considerable attention. The path towards a sustainable energy for society is at the 

forefront of public interest and is a high priority of policymakers worldwide. The human 

ability to harness of electrical energy has resulted in the continuous transformation of 

civilization. An expanding portion of the global population is now able to heat and light 

their homes, fertilize, and irrigate their crops, communicate with one another, and travel 

around the globe (Kabeyi and Olanrewaju 2022). All this development is made possible 

by the ever-improving dexterity of human beings in locating, obtaining, and using 

electrical energy. Scientific research assists in advancing a sustainable future based on 

clean electrical energy generation, transmission & distribution, electrical & chemical 

energy storage, electrical energy efficiency, and improved electrical energy management 

systems. Electrical Energy Management can be broadly understood as the proactive, 

planned, and systematic control of electrical energy use in a facility or organization to 

meet environmental and economic needs (Infield and Freris 2020). In simple words, 

Electrical Energy Management is the practice of maximizing energy use for the optimum 

results while also taking action to conserve it. Many robust and commercial solutions 

have dealt with the scarcity of electrical energy. It includes, but is not limited to, efficient 

generation of electrical energy (Beér 2007), alternate energy sources ((Stathis) 

Michaelides 2012), and Energy Management System (EMS) (C. Chen et al. 2011). As 

per the identification of the researchers, EMS is the optimum candidate among others 

because it is cost-effective, robust, flexible and easy to manage compared to alternative 

energy generation (Shakir et al. 2014). Therefore, the goal of this procedure is to attain 

complete environmental sustainability and financial savings. Energy management system 

is becoming increasingly popular among businesses of all sizes to cut operational 

expenses.    
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In such a world where electrical energy costs are set to rise with the growing 

demand and shrinking supply of non-renewable national resources like coal, saving 

energy makes good business sense. The fundamental guidelines that are typically 

followed for electrical energy management include, but are not limited to, gathering data 

on electrical energy usage, and measuring it, looking for ways to save electrical energy, 

putting those ideas into practice, and keeping track of progress and ongoing 

improvements. The EMS can be deployed on both small- and large-scale levels.   

However, keeping in view the fact that the electrical energy consumption profile 

and consumption patterns differ for each application. Therefore, the intensive level of 

customization, is a pressing need of the time (Mohajeryami et al. 2016). For this purpose, 

the researchers soon identified artificial intelligence to be customised. This thesis is 

presenting an intelligent data-driven approach for electrical energy load management 

using machine learning algorithms. This study facilitates the researchers and industry 

experts in the field of computing and engineering sciences and many other firms related 

to electrical energy management.  

1.2 Benefits of the electrical energy management system (EEMS)  

From educational institutions to industrial buildings, reducing facility operational 

costs has become a big challenge in today’s world. One cannot imagine daily life without 

electricity, but since consumption increases, so do the prices. This is where Electrical 

Energy Management System comes in. An EMS system tracks, regulate, and improves 

electrical energy transmission and use. Ultimately, EMS is the key to essential energy 

and cost saving. Electrical Energy Management solutions are typically much more cost-

effective for factories and businesses to operate than those that do not use them. The 

company's entire operation is examined by EMS, which then optimizes it to use less 

electrical energy.   

The bottom line is immediately impacted by the savings produced by the adoption 

of electrical energy management technologies.  The following list includes some of the 

main benefits of electrical energy management systems:  
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•  Reduction in Electrical Power Usage: Reducing power use and utilizing electrical 

energy management systems will lead to more ecologically friendly procedures.  

•  Reduction in Electrical Energy Consumption: Reducing electrical energy 

consumption through process optimization and efficient electrical energy load 

planning increases the overall productivity of industrial operations and allows 

businesses to catch up with their competitors through continual process 

improvement.  

•  Decrease in Carbon Emissions:  Using energy management techniques results in 

a considerable decrease in carbon emissions and consumption.  

•  Increase in Property Value: Owning the energy management system increases the 

property value.  

•  Reduction in Electricity Bills: Electrical energy management systems (EEMS) are 

one of the most widely advocated solutions for reconciling electricity demand 

with limited electricity resources. Furthermore, these systems contribute to a 

significant reduction in electricity consumption bills.  

1.3 Different strategies for energy management 

The electrical energy demand has skyrocketed with ongoing population and 

economic growth. The U.S. Energy Information Administration (EIA) has presented a 

study in which they forecast a 48% increase in global electrical energy demand between 

2012 and 2040.     

The study reported that if current policy and technology trends continue, global 

electrical energy consumption and energy-related carbon dioxide emissions will increase 

through 2050 due to the increasing population and economic growth (Mostafaeipour et 

al. 2022) as shown in Figure 1.1.  
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Figure 1.1 Expected Global Energy Usage by 2050 
Source : International Energy Outlook 2019 

It added that renewables would be the primary source of new electricity 

generation. Still, natural gas, coal, and, batteries will be used to help meet load and 

support grid reliability (Nalley and Larose 2021).  

There are various strategies and approaches for effective energy management. 

Some commonly employed strategies include`: 

  Energy Audits: Conducting thorough assessments of energy usage to identify 

areas of inefficiency and potential improvements. Energy audits involve analyzing 

consumption patterns, identifying energy-intensive processes, and recommending energy 

conservation measures. 

    Energy Efficiency Measures: Implementing energy-efficient technologies and 

practices, such as efficient lighting systems, insulation, optimized HVAC systems, and 

equipment operation. 

    Demand Response: Participating in demand response programs that allow 

organizations to adjust their energy consumption during peak demand periods. This 

strategy involves reducing energy usage or shifting it to off-peak hours in response to 

grid conditions or utility signals. 
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    Renewable Energy Integration: Incorporating renewable energy sources, like 

solar panels or wind turbines, to generate clean and sustainable electricity on-site. This 

reduces dependence on conventional energy sources and can lead to long-term cost 

savings. 

    Energy Monitoring and Control: Utilizing advanced energy monitoring 

systems and smart meters to track real-time energy consumption. This data helps identify 

waste, detect anomalies, and decide for energy optimization. 

    Behavioural Changes: Promoting energy-saving behaviours among occupants 

through awareness campaigns, training, and incentives. Simple practices like turning off 

lights and equipment when not in use can contribute significantly to energy conservation. 

    Energy Management Systems (EMS): Implementing comprehensive EMS 

software that enables centralized control, monitoring, and optimization of energy-

consuming systems and devices. EMS can automate energy-saving measures, analyse 

data, and provide actionable insights for further efficiency improvements. 

    Energy Procurement Strategies: Exploring alternative energy procurement 

options, such as power purchase agreements (PPAs) or energy aggregation, to secure 

energy from renewable sources or at favourable rates. 

    Continuous Improvement and Monitoring: Regularly evaluating energy 

management practices, conducting periodic energy audits, and setting targets for energy 

reduction to ensure ongoing improvement and optimization. 

1.3.1 Electrical energy demand forecasting 

Electricity today, is regarded as a valuable commodity and the most efficient 

secondary energy. In recent decades, research on electrical energy consumption issues 

has grown in importance (Larcher and Tarascon 2015). For society's safety and well-

being, electrical energy issues are crucial. According to economic theories, electrical 

energy is one of the most crucial resources for industrial production, and macro-planning 

for the industry and electrical energy sectors includes projecting energy use. 

The modern world's businesses and civilization rely largely on this resource. 

Along with other necessary commodities. Electricity serves as a primary source of 
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survival for human society. Electricity demand forecasting is critical in the electric energy 

sector since it serves as the foundation for making decisions in electrical power system 

planning and operation (Soysal and Soysal 2020). Electrical Energy providers use various 

techniques to forecast electricity consumption. These are used in short-term, medium-

term, or long-term forecasting. However, the intricate connections between 

socioeconomic and meteorological elements lead to electricity consumption. Standard 

forecasting approaches are inadequate in such a dynamic setting, necessitating more 

advanced methodologies (Klyuev et al. 2022). 

The goal is to sort out all the elements contributing to the demand for change and 

identify the fundamental causes. Electrical energy demand forecasting is an essential and 

integral part of the EEMS. It aims to manage, monitor, optimize, and analyse the day-to-

day electricity demand of a specific area. (R. Wang, Wang, and Xu 2019). The world's 

reliance on electrical energy is growing daily, and it can be seen in many (if not all) 

aspects of human life. It is critical to distribute energy with the least cost and waste. 

Forecasting consumption load is an important aspect of economic and safety planning 

electrical power distribution system. Forecasting, estimating, and predicting are 

marketing terms for having an expected value for demand. 

Accurate, robust, adaptive, and efficient electrical energy forecasting promises 

efficiency in the electrical energy management system. An efficient electrical energy 

forecasting system complements other energy management policies, optimising energy 

consumption (Li et al. 2019). This eventually turns into a competitive advantage and 

sustainable development in general. Recently, researchers have strongly advocated for a 

data-driven approach to robust, adaptive, and efficient energy forecasting systems 

(Ahmad et al. 2018).  

1.3.2 Motivation 

Most people have heard the term "Energy Management" in their lives, especially 

in recent years, when energy conservation has become increasingly important for the 

future of companies worldwide. Because of rising fuel costs, increasingly aggressive 

environmental targets, and concerns about energy security, every firm is competing for 

decreasing operational costs. Energy cost savings give the firm a competitive advantage.  
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As electrical energy gets more expensive and the environmental impacts of fossil 

fuels become more misleading, there is a growing interest in lowering our electrical 

energy consumption. Finding new ways to make our daily lives more electrical energy 

efficient has now become a crucial element of the battle to maintain our current standard 

of life.  

Since electrical energy is a significant and essential player in the modern world 

economy, EMS is the optimum candidate among others for efficient electrical energy 

generation. The production and service industries, like manufacturing plants, hospitals, 

education institutions, high-rise residential buildings, etc., are now motivated to choose 

EMS for their consumption profile optimization. Since the electrical energy consumption 

profile and consumption pattern differs for each application. Therefore, the intensive 

level of customization is a pressing need. Data-driven energy efficiency management 

(D2EEM) has been reported as the best variant of EMS, combining data science and 

artificial intelligence for energy optimization.   

It has been found that many data sets for the management of electrical energy in 

buildings are available. Similarly, the researchers used a variety of machine learning 

algorithms to classify and predict their respective data sets. However, the need for a set 

of benchmarks has been identified in the literature.  In addition, an application-oriented 

unified machine learning algorithm is also urgently needed. SEIL then conducted a study 

in 2019 to collect massive data on electricity use in residential buildings and university 

campuses. As part of this research, a set of energy consumption data from university 

campuses is being considered. An extensive comparative study for recommending the 

best candidate for the machine learning algorithm on the SEIL dataset was the missing 

element in the recent literature. This study successfully closed the remaining gap for a 

subsequent survey. In addition, optimization of the best candidate of the machine learning 

algorithm was also subsequently necessary to have effective and high degree precision 

prediction. 

1.3.3 Research questions 

This study revolves around a pivotal question: What machine learning algorithm 

proves most effective in predicting energy demand within the dynamic environment of a 

university building, utilizing the SEIL dataset? The research dives deeper, scrutinizing 
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various machine learning algorithms to unravel their performance nuances concerning 

accuracy, precision, recall, F1 score, and computational complexity for energy demand 

prediction within the same university setting. Beyond mere evaluation, the investigation 

extends to optimizing the best-performing machine learning algorithm. This optimization 

journey involves fine-tuning through hyperparameter adjustments and judicious feature 

selection, with the overarching ambition of elevating the efficiency and effectiveness of 

energy demand prediction within the unique context of a university building. 

1.3.4 Hypothesis  

In investigating the performance of various machine learning algorithms for 

energy demand prediction in a university building, the study formulated three key 

hypotheses. First, the Performance Comparison Hypothesis posits that there is no 

significant difference in the performance of diverse machine learning algorithms for 

energy demand prediction in a university building (H₀). Contrarily, the alternative 

hypothesis (H₁) suggests that a significant difference exists in the performance of these 

algorithms. Second, the Correlation with Metrics Hypothesis explores the relationship 

between algorithm performance metrics and the efficiency and efficacy of energy demand 

prediction. The null hypothesis (H₀) asserts no correlation, while the alternative 

hypothesis (H₁) proposes the presence of a correlation. Lastly, the Improvement through 

Optimization Hypothesis examines whether there is any enhancement in the performance 

of the best-performing machine learning algorithm after hyperparameter tuning and 

feature selection (H₀). The alternative hypothesis (H₁) contends that there is a significant 

improvement in performance under these optimization processes. These hypotheses serve 

as critical benchmarks to discern the effectiveness and nuances of machine learning 

algorithms in the context of electrical energy load management. 

1.4  Problem statement  

After careful analysis of the existing work in the domain of data-driven energy 

management, it has been determined that the utilization of artificial intelligence is now 

inevitable for robust and precise electrical energy management. In this regard, 

benchmarking of the domain-specific data set is a key need in identifying this issue. The 

researchers presented a number of studies on intelligent electricity consumption. As in 

many EEM system, the careful selection of the most appropriate machine learning 
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algorithm is found to be deficient. This is, primarily, because of the fundamental concept 

of the No Free Lunch Theorem. In addition, the standard and benchmark rich energy 

consumption dataset of an educational institution was also not missing in the literature. 

Considering this fact, the Smart Energy Informatics Lab (SEIL) of the Indian Institute of 

Technology (IIT) Bombay, India, conducted an experimental study in 2019 to collect a 

massive dataset on university campus energy consumption.  

Analysis of existing work in data-driven energy management has determined that 

the use of artificial intelligence is now unavoidable for robust and accurate electricity 

management. In this respect, benchmarking the field-specific dataset is a critical need. In 

addition, developing robust machine learning algorithms would make the goal easier. 

After detailed analysis, the SEIL dataset is the most appropriate for electrical power 

prediction for a university campus. However, the literature does not provide an 

exhaustive empirical comparison of machine learning algorithms.   

After devising a benchmark dataset of energy consumption of a university campus 

in 2019 by SEIL, the further investigation of the best candidate of a machine learning 

algorithm for the said dataset was the essential subsequent need. Likewise, the further 

optimization of the best machine learning algorithm to attain the highest degree of 

efficiency and efficacy for reliable energy demand prediction will complement the 

solution.  

Data-Driven Energy management, the utilization of artificial intelligence is 

inevitable for robust and precise electrical energy management. The Benchmark Data set 

is a key need in identifying this issue. After devising a benchmark dataset of energy 

consumption, the further investigation of the best candidate of machine learning 

algorithm for the said dataset was the essential subsequent need. The optimization of the 

best machine learning algorithms to attain the highest degree of efficiency and efficacy 

for reliable energy demand prediction will complement the solution. The new variants or 

the new algorithms are the essential need to achieve the best results of efficiency and 

efficacy for reliable energy demand prediction complement the solution.  



 10 

1.5 Objectives 

The most effective machine learning algorithm is recommended for energy 

demand prediction applications and real-time systems. The objectives of current studies 

are following: 

1.  Develop and Implement an Advanced Ensemble of Machine Learning 

Algorithms: Design, implement, and assess a sophisticated ensemble of machine 

learning algorithms for precise and efficient energy demand prediction in a 

university building, emphasizing innovation in model selection and configuration.  

2.  Conduct a Comprehensive Analysis of Algorithmic Efficiency and Efficacy: 

Perform an in-depth analysis of the selected machine learning algorithms, 

evaluating their efficiency and efficacy using a comprehensive set of metrics, 

including accuracy, precision, recall, F1 score, and computational complexity. 

This analysis aims to provide nuanced insights into the algorithms' performance.  

3.  Optimize Top-Performing Algorithm Through Advanced Hyperparameter 

Tuning and Feature Selection: Optimize the most promising machine learning 

algorithm identified through the analysis by employing advanced techniques in 

hyperparameter tuning and feature selection. This objective seeks to push the 

boundaries of optimization methodologies to achieve the highest levels of 

performance. 

1.6 Scope of study  

The present study is to define and predate a model for an efficient electrical energy 

management system with different algorithms in MATLAB and find the best solution for 

an electrical energy management system. Defining and designing an efficient electrical 

energy management system model. Including below scope of study  

1. Implementing and evaluating various algorithms in MATLAB to assess their 

suitability for the system. 

2. Analyzing algorithm performance. 

3. Identifying the optimal solution based on evaluation and analysis. 
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4. Developing a framework with machine learning algorithms for future forecasting. 

5. Collecting data from the IIT Delhi SEIL datasheet, an open-source resource. 

6. Analyzing the collected data for algorithm training and testing. 

7. Assessing the efficiency and effectiveness of the developed model and algorithms 

in energy management. 

8. Documenting the research findings, including the methodology, results, and 

conclusions 

The present study has drawbacks that need to address in future.  

1. Data based on machine learning algorithms and predicted for the future with 

higher accuracy without checking faults and errors can be solved using a feedback 

circuit. 

2. The present system is inaccurate on variable load. It requires some time to adapt 

and learn the new system. 

1.7 Limitation  

When considering an optimized variant of a machine learning (ML) algorithm for 

Data-Driven Electrical Energy Efficiency Management (D2EEM), several limitations 

emerge, particularly when integrating diverse ML models and addressing analogue-to-

digital conversion. Firstly, the efficacy of the optimized ML variant is inherently 

dependent on the nature and diversity of the data it processes. Different ML models have 

varying strengths and weaknesses, and their performance can be significantly influenced 

by the characteristics of the dataset, such as its size, quality, and feature representation. 

For instance, while deep learning models may excel in capturing nonlinear relationships 

in large datasets, simpler models like decision trees might be more interpretable and less 

prone to overfitting in smaller datasets. This diversity in model suitability necessitates 

careful consideration and selection of the appropriate ML model for the specific energy 

efficiency management task, which can limit the generalizability of the D2EEM 

approach. Moreover, the process of analogue-to-digital conversion, essential for 

transforming real-world energy usage data into a format suitable for ML analysis, 
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introduces its own set of challenges. This conversion process can be prone to errors such 

as quantization noise, which may lead to inaccuracies in the data. Additionally, the 

resolution of the conversion impacts the quality of the data fed into the ML models; 

higher resolution leads to larger data sizes, which can increase computational 

requirements and potentially slow down the analysis. These limitations highlight the 

importance of carefully managing the trade-offs between data accuracy, resolution, and 

computational efficiency in the context of D2EEM, to ensure that the optimized ML 

algorithm can effectively contribute to electrical energy efficiency management without 

being hindered by data-related issues. 

 

1.8 Organization of thesis  

The structure of the present report is such as Chapter 1 of the dissertation's 

detailed introduction to electrical energy management. This chapter comprises an 

overview of the electrical energy management systems, a data-driven approach for the 

EMS and details about the real-time data set for applying the proposed framework using 

machine learning algorithms. Chapter 2 is about the extensive and exhaustive literature 

review. This chapter comprehensively reviews the literature on the application of 

machine learning algorithms to electric energy predictions. Essentially, the scope of this 

literature review falls into two categories. First, the performance assessment of various 

machine learning algorithms for the prediction of electrical energy is considered. This 

logically justifies the utility of energy forecasting by machine learning algorithm and 

second about machine learning optimisation. Chapter 3 summarizes the data set and 

system configuration and the methodology used to conduct this research. During the first 

stage, the SEIL dataset is used and the total energy consumption at the building level is 

considered. During the second phase, the building-level dataset is initially divided into 

70% training samples and 30% random swap test samples. Chapter 4 details our proposed 

framework for evaluating the SEIL dataset with evaluation results and discussion.  

Chapter 5 gives a conclusion regarding this research work. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction  

This chapter provides an extensive review of prior research on Electrical Energy 

forecasting systems, with a focus on advancements in machine learning technology. The 

chapter delves into the objectives of the current study, exploring various applications and 

optimizations of algorithms within this domain. Notably, the discussion encompasses the 

considerations influencing algorithm selection and methods to expedite forecasting 

processes while ensuring system accuracy. While commonly referred to as the "black 

box" approach in literature, alternative methodologies such as the engineering-centric 

"white box" and the statistical-oriented "grey box" approaches have been identified (Wei 

et al., 2018). Within the realm of data-driven methodologies, exemplified by the "black 

box" approach, artificial intelligence techniques including machine learning and deep 

learning are leveraged to tailor models for specific applications (Loyola-Gonzalez, 2019). 

This chapter lays the foundation for understanding the evolving landscape of Electrical 

Energy forecasting systems, providing valuable insights into the diverse approaches 

employed within the field. 

Since the model's training is purely based on the data provided, it is logically 

termed a data-driven approach (Amasyali and El-Gohary 2018). The recent literature is 

enriched by many applications of various machine learning algorithms for data-driven 

electrical energy efficiency management. This includes, but is not limited to, probabilistic 

modelling (Y. Wang et al. 2016), Artificial Neural Networks, Random Forest 

(Koschwitz, Frisch, and van Treeck 2018), Regression  (Smarra et al. 2018) and many 

more machine learning algorithms that are trained for the respective application’s dataset.  

This is an exhaustive literature review. In which 107 similar work studies have 

found from 2010 to 2022. This literature review covers the comprehensive study 

including the proposed work. Figure 2.1 Data-Driven Electrical Energy Management 

show how D2MME growing from electrical energy management system. 
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Figure 2.1 Data-Driven Electrical Energy Management 

2.2 Home Energy Management System 

A smart house's decisions are made by the home energy management system 

(HEMS). "Smart house" and "home energy management system" are used 

interchangeably.  

The HEMS interface allows the user to efficiently monitor, regulate, and manage 

the household electricity use and generation. From the perspective of public institutions, 

the demand response programme minimizes peak demand load and prevents blackouts. 

But from an environmental standpoint, lowering gas emissions per person is a significant 

success when combined with reducing energy consumption, using clean, renewable 

energy resources, and driving electric vehicles. HEMS can also be accessed via a home 

interior panel, a computer, a tablet, or a smartphone. It improves the energy efficiency of 

smart homes and provides numerous benefits. The following figure 2.1 is showing the 

model of smart building with multiple usage of electrical energy that can be measure by 

smart meter. 
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Figure 2.2 Home Energy Management System 

2.2.1 Energy Management system  

The buildings can be categorized into several different groups, including 

manufacturing plants, hospitals, educational institutions, high-rise residential buildings, 

etc. depending on their usage. Building energy management is one of the engineering 

disciplines of building services. An effective energy management programme ensures the 

efficient use of energy in buildings. The literature also reported that building energy 

consumption accounts for 39% of global energy consumption and 38% of greenhouse gas 

emissions (Spandagos and Ng 2017).  

The energy management systems can produce a substantial annual savings on 

energy costs. Energy management in building consumption and conservation is a critical 

concern for both inhabitants and building managers.   

The building's current mechanical system can be improved by maximizing 

controlled utilization and expanding the capacity to alter comfort and air quality 

throughout the structure. The EMS can increase the lifespan of the building's energy-

consuming systems while simultaneously lowering repair costs by utilizing equipment 

and reducing idle energy use when necessary. 
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2.3 Building Energy Management System (BEMS) 

Building Energy Management Systems (BEMS) are computer-based systems that 

manage, control, and monitor building technical services and energy consumption by 

building devices (Sayed and Gabbar 2017). The system also assists in informing building 

managers to understand the facility's energy usage better and adjust its energy 

performance. BEMS is growing in popularity as businesses understand it is one of the 

most effective methods for enhancing energy efficiency in a building, resulting in a quick 

win. BEMS was traditionally thought to be most effective for large buildings, where the 

installation's return on investment (ROI) would be substantial (Merabet et al. 2021). 

However, because of technological developments, the BEMS system can be installed 

cost-effectively even in smaller buildings, extending the savings dramatically (Merabet 

et al. 2021). The expression BEMS is now and again utilized with Building Management 

Systems (BMS). However, building management systems (BMS) can monitor and 

operate a wide range of building frameworks, such as fire, smoke detectors and alarms, 

movement indicators, closed-circuit television (CCTV), security, and access control 

elevators. BEMS are linked to energy-related frameworks. 

BEMS comprises several layers of infrastructure. Numerous field devices are 

linked to the BEMS system via wireless or cable connections. HVAC systems, lighting 

devices, sensors and actuators, individual equipment, ventilation systems, refrigeration 

units, hot water systems, and heat pumps are field devices (Berrocal, Fernandez, and 

Rempling 2021). Advanced building and predictive analysis of information acquired 

from weather data, previous building performance data, and occupancy data are used to 

optimally operate these field devices (Jia, Srinivasan, and Raheem 2017). 

2.4  Data-Driven Energy Efficiency Management 

Saving energy and being ecologically responsible has been key goals and 

concerns for everyone, particularly during the COVID era. According to a World Bank 

Report, Cities are accounted for over 70% of the world's CO2 emissions, the majority of 

which are produced by industrial and motorized transportation systems that consume 

enormous amounts of fossil fuels and rely on distant infrastructure made of carbon-

intensive materials (Glavič 2021).  
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Rapid decarbonisation must be encouraged or rewarded through emissions-based 

performance ratings that hold city governments and corporations more accountable to 

their constituents. Effective performance measurements, however, cannot disregard the 

influence of varying demographic, economic, and geographic variables on real CO2 levels 

in cities.   

Cities with higher incomes have fewer emissions-intensive heavy industries, but 

cities with higher populations have more emissions (H. Yang et al. 2021). Greater-income 

cities have higher land costs and tougher pollution restrictions, while cities in particularly 

cold or hot climates emit more emissions from energy for heating or cooling. In addition 

to a better awareness of environmental conservation through energy-efficient devices, 

sensors, and appliances, there is a greater emphasis on regulating and optimizing 

consumption for environmental and economic reasons (Mattern, Staake, and Weiss 

2010).  

Hence, this has led to newer techniques for collecting large amounts of 

consumption data in several metrics and dimensions using various tools, sensors, and 

devices. This has naturally increased demand for sophisticated and advanced big data 

analytics techniques for measuring and optimizing energy efficiency. 

The most valuable asset for practically all firms nowadays is data, which is used 

extensively for better business decisions, consumer behaviour predictions, maintenance 

forecasting, and many other related and modern business decisions (Hair, Page, and 

Brunsveld 2019). 

Energy management and efficiency can grow significantly with data science, 

machine learning, and AI tools. In the recent literature, the researchers have reported 

Data-Driven Energy Efficiency Management (D2EEM) as the best variant of EMS. It is 

because the D2EEMS chose the power of data science and artificial intelligence for 

energy management (Qamar Raza and Khosravi 2015). 

Numerous data sets related to building energy management can be found in 

existing literature, and various machine learning techniques have been used by 

researchers to classify and predict outcomes using these data sets. Nonetheless, a 

benchmark data set was deemed necessary in the literature. Additionally, there is a 

significant need for a machine learning algorithm specifically designed for practical 
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applications. In 2019, the Smart Energy Informatics Lab (SEIL) at the Indian Institute of 

Technology (IIT) conducted an experimental study to gather extensive data on energy 

consumption in a university campus. (Akhtar, Sujod, and Rizvi 2022). 

Through building energy management, energy operations, and control strategies, 

data-driven building energy consumption forecasting models significantly contribute to 

improving the energy efficiency of the buildings. For improved forecast accuracy and 

resilience, data-driven models and evolutionary algorithms must be integrated with the 

multi-source and heterogeneous energy consumption data.  The SEIL published a study 

to collect massive amounts of data on the energy consumption of residential buildings 

and university campuses.  

Both datasets are reported as the most recent and benchmark dataset of data-

driven energy forecasting systems considering residential buildings and university 

campuses. (Somu, Raman M R, and Ramamritham 2020) In this research, a university 

campus energy consumption dataset is under consideration.  

The SEIL dataset was gathered from an IIT university building. The building has 

four floors and is divided into three wings. The dataset includes data from December 

2016 through July 2018. All datasets are in CSV format. The datasets are all at one-

minute granularity with current, voltage, and power as input attributes and accurate 

energy consumption as an output attribute.  

The dataset is massive, with a volume of 20 GB. The data has been extracted from 

various units in the university building, such as building level, class level, auditorium 

level, lab level, office level, etc. In this study, the building-level data is considered to 

predict the total energy consumption of the building. 

Since the data set is labelled and continuous, machine learning prediction 

algorithms have been selected for training and testing. 24 machine-learning prediction 

algorithms were tested to determine the best machine-learning algorithm. The grounds 

for the decision are the functions of RMSE, R-Squared, MSE, MAE, prediction speed, 

and computation time. 

This work also submits an exhaustive parametric and empirical study of machine 

learning algorithms on the relevant SEIL dataset (University Campus). The 
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recommendation of the optimal machine learning algorithm for university campus energy 

demand forecasting is submitted. Finally, the optimized variant of the best candidate of 

the machine learning algorithm is presented as one deliverable of this study. 

In recent years, the matter of energy management has been in the best interest of 

the international community. With the rampant and significant rise in carbon levels 

around the world and rapid changes in the climate, it has become inevitable to transfer 

ourselves towards convenient and smart ways of energy consumption. However, the issue 

has become more intense since energy consumption has increased and the burning of 

fuels leading to carbon emissions is creating drastic changes to the ozone layer, which is 

an alarming situation.  

In this crisis, it is a great opportunity for us to shift towards smarter and easier 

solutions that would help decrease global warming and simultaneously fulfil all energy 

needs. Researchers, for this purpose, have devised ways to meet the energy requirements 

within the limited resources. In recent years, Energy management has gained significant 

importance. It is the key to reducing energy consumption in your firm. With the increase 

in fuel prices daily, it is the need of the hour to shift towards more innovative energy 

consumption solutions. The Energy Management System is a foundation or structure that 

assists the users in managing energy consumption.  

This covers but is not limited to commercial, industrial, and public-sector 

organisations. The EMS helps organizations classify potentials to adopt and improve 

technological ways of saving energy. According to the International Organization for 

Standardization (ISO), an energy management system implements the strategy for energy 

usage and devises plans to accomplish those targets (Chiu, Lo, and Tsai 2012). 

Many organizations worldwide have now implemented this system and played an 

active part in reducing carbon emissions. These entities have successfully reduced energy 

expenses, cut down related costs and, more critically, gained better control over their 

technical processes and enhanced productivity and process stability. 

2.5 Smart Home Energy Management 

In recent years, smart homes have become the town's notable talk regarding 

efficient energy management. They have the potential to surge the efficiency of energy 
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and slash energy costs. In addition, they are for the added benefit of reducing carbon 

emissions by incorporating renewable resources. They are well-designed structures with 

adequate access to assets, communication, controls, data, and information technology to 

improve the occupants' quality of life through comfort, convenience, lower expenses, and 

enhanced connectivity. While the concept has usually been known for decades, few 

people have ever seen or occupied a smart home. The high cost of upgrading building 

stock to incorporate smart technologies such as network-connected devices has been 

highlighted as an explanation for this delayed growth (Jayaraman et al. 2016). 

A smart residential building has two-way communication with the utility grid, 

which is enabled by a smart metre, this smart meter allows the building to interact 

dynamically with the grid system, receive signals from the service provider and respond 

with usage and diagnostic information. 

This intelligent smart meter provides the communication and information set-up required 

to interchange operational and price information between the service provider and the 

end user in real time. These meters can network with in-home appliances, programmable 

communicating thermostats (PCTs), and other loads (Rodrigues et al. 2022). They can 

also retrieve the consumption data at regular intervals and automatically transmit it to the 

utility through a secure network. This network is typically used combined with a backhaul 

layer. It allows the utility and the metre to communicate in both directions. It also 

provides for message transmission to the metre that might be used for "on-demand" 

readings. 

Another term is found in the literature, and it is Automated Home Energy 

Management (AHEM) (Nanda and Panigrahi 2016). The network self-manages end-use 

systems based on occupants' and smart metres' data. According to the researchers, the 

AHEM value depends on integrating the energy use of systems connected in a home with 

the users’ comfort and economic objectives, as well as information obtained from the 

amenity provider (Chavali, Yang, and Nehorai 2014). The Controls and Sensors work 

together to collect applicable data (Gupta, Reynolds, and Patel 2010), and by using 

practical algorithms, conduct the whole process and deploy the control strategies that will 

ultimately achieve the consumption targets. (Erol-Kantarci and Mouftah 2011). 
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In 2016, the U.S. Energy Information Administration released a report claiming 

that global energy consumption will grow by 48% by 2040 (None 2016) .  According to 

the report, most of this expansion will come from nations not members of the 

Organization for Economic Cooperation and Development (OECD), including those with 

high economic growth, particularly in Asia (Abbey et al. 2020).  Non-OECD Asia, 

including China and India, accounts for more than half of the projected rise in global 

energy consumption. While considering the increase in the rapid hike in fuel prices and 

drawing concerns about energy security, the researchers have favoured the use of non-

fossil renewable energy sources.  Renewables and nuclear power are the world's fastest-

growing energy sources over the projection period.  According to the report, renewable 

energy will grow at a 2.6% annual rate until 2040, while nuclear power will grow at a 

2.3% yearly rate. As for energy consumption, the non-OECD countries, which are not 

part of the OECD, are projected to have higher energy consumption growth than OECD 

countries in the period of 2012 to 2040. This can be measured in quadrillion British 

thermal units (Btu), which is a unit of energy used to measure energy consumption. 

According to the U.S. Energy Information Administration (EIA), non-OECD 

countries' total energy consumption is expected to increase from approximately 10.3 

quadrillion Btu in 2012 to approximately 17.3 quadrillion Btu in 2040, while OECD 

countries' total energy consumption is expected to increase from approximately 12.5 

quadrillion Btu in 2012 to approximately 13.2 quadrillion Btu in 2040. 

This disparity in energy consumption growth between the two groups is due to 

several factors, including differences in population growth, economic development, and 

energy policies. Non-OECD countries are generally experiencing faster population 

growth and economic development, which is driving up their energy consumption, while 

many OECD countries have implemented policies to reduce energy consumption and 

shift towards more sustainable energy sources (Abbey et al. 2020).  

The following figure 2.6 is showing the World energy consumption by country 

grouping, 2012-2040 (quadrillion Btu) that is a statistical presentation. 
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Figure 2.3 World energy consumption by country grouping, 2012-2040 (quadrillion 
Btu) 

Source : Alam and Murad (2020) 

According to the OECD most recent report, under the "Stated Policies Scenario," 

which considers announced policy targets and measures, global energy consumption is 

expected to increase by approximately 25% between 2020 and 2040. However, note that 

these projections are subject to change, and that various developments could significantly 

affect the rate of energy consumption growth. For example, the widespread adoption of 

electric vehicles and implementing more energy-efficient technologies could result in 

slower growth in energy consumption, while increased urbanization and economic 

growth could drive demand for energy higher. 
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Emphasize that how energy is produced and consumed will also play a crucial 

role in determining the total energy consumed in 2040. The increased deployment of 

renewable energy sources, such as wind and solar power, and the deployment of clean 

energy technologies are likely to contribute to reducing global greenhouse gas emissions 

and mitigating the impacts of climate change.  

The following Figure 2.4 is showing the projections of Total global consumption 

of energy from 1990 to 2040. 

 
Figure 2.4   Total global consumption of energy by the year 2040 

Source: International Energy Outlook 2017 
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2.6 Recent Developments on EEMS Using AI 

The latest advancements in machine learning and AI have prompted practical 

solicitations to become self-sufficient. New technologies have empowered the latest 

applications to create vast amounts of data to make intelligent decisions (Anandakumar 

and Arulmurugan 2019). Deep learning approaches surpassed big data when associated 

with traditional AI techniques and ML models.  

2.6.1 Proportional Evaluation of DL Networks 

In 2016, Nagueh et al. worked on proportionally evaluating two DL network types 

for energy management: the first one is the LSTM and LSTM-based sequence-to-

sequence architecture. Against a benchmark dataset of one home customer's electricity 

consumption, both these models were tested. At the two resolutions, the models were 

compared (Nagueh et al. 2016). As per the results, the typical LSTM is not up to the mark 

in forecasting a tiny resolution. But the LSTM S2S excels at both large and small data 

resolution.  The latitude of this investigation is confined to single domestic users ‘data. 

(Marino, Amarasinghe, and Manic 2016).  

2.6.2 Energy Forecast using Vector Regression 

 Groninger et al. (2016) forecasted energy by local learning with the support 

vector regression. As per their results, local (Systemic vascular resistance) SVR 

outperforms both Systemic vascular resistance and H2O deep learning. Because the focus 

of work is restricted to the instrument, namely the H2O machine learning platform, the 

inquiry was missing in this work.  In addition to this, according to the author(s) they have 

used big data; however, during the literature review, there was no information found 

(Grolinger, Capretz, and Seewald 2016).  

2.6.3 FCRBMF or Purpose of Energy Demand Forecasting 

In the same year, Mocanu et al. (2016) presented the work using Factored 

Conditional Restricted Boltzmann Machines (FCRBM) for demand forecasting. 

According to this study, the model was evaluated and trained by using data from the Eco-

Grid EU dataset. This included electricity use, pricing, and weather data from 1900 

consumers.  As per the study, the offered technique remains worthwhile for energy 
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demand forecasting on a particular dataset. However, in this study, the author(s) did not 

compare his work to other deep learning architecture variants or existing pre-trained 

networks (Mocanu et al. 2016). 

2.6.4 Comparison of CNN 

Amarasinghe, Marino, and Manic (2017), later that year presented their research 

towards convolutional neural networks. The author(s) compared the Convolutional neural 

network (CNN) against previous work done in 2016, such as LSTM, S2S, SVR, FCRBM, 

and DNN, on an electrical usage dataset for one domestic user. The work lacked new and 

innovative CNN design, and neither did it include a pre-trained network.  There lacked 

the study when comparing the results to the current pre-trained network. 

The selection of a machine learning (ML) approach over deep learning (DL) for 

"An Optimized Variant of Machine Learning Algorithm for Data-Driven Electrical 

Energy Efficiency Management (D2EEM)" is rooted in a thoughtful consideration of the 

project's objectives and intricacies. 

Given the central theme of enhancing electrical energy efficiency, ML presents 

itself as an optimal choice due to its inherent interpretability and adaptability. In the 

context of D2EEM, where transparency in decision-making is crucial, ML models offer 

a clear understanding of the underlying processes, contributing to a more comprehensible 

and user-friendly solution. 

The project involves working with relatively smaller datasets. ML algorithms 

have demonstrated prowess in extracting meaningful insights from limited data, ensuring 

robust and reliable results. This strategic alignment with ML not only addresses the 

specific needs of D2EEM but also positions the research for a balanced and effective 

exploration of data-driven energy management. 

The emphasis on ML in the project title reflects a deliberate choice tailored to the 

nuances of the research objectives, aiming for a sophisticated yet practical approach to 

optimize electrical energy efficiency through the proposed algorithm (K. Wang, Qi, and 

Liu 2019).   
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2.6.5 Evolutionary-Neuro Hybrid Strategy to Energy Management 

Chen presented an evolutionary-neural hybrid energy management strategy 

(Paterakis et al. 2017) that used a data-driven technique to train the RNN.  This 

professional network then fed into the optimization problem with finite horizons. For 

energy management, the model-based approach was outperformed by the proposed 

model-less and data-driven strategy. Although this scenario appears fruitful due to 

hybridization, a considerable increase in computing complexity has been reported. It also 

hampers the proposed system's usability for real-time energy management (Paterakis et 

al. 2017)   

2.7 Deep Learning over Machine Learning Technique 

The validation of DL advantage over the traditional ML technique for EMS was 

done by Paterakiset et al. in (2017).  This study covered an in-depth comparison of 

traditional machine techniques such as: 

 Gaussian Processes 

 Regression Trees 

 Support Vector Machines 

 Ensemble Boosting 

 Linear Regression, 

 Deep learning method. 

According to work, the ML technique remains flawed because of a comparatively 

big dataset's performance plateau. But DL accounts for advanced presentation as data 

volume grows. Machine Learning (ML) is often preferred over Deep Learning (DL) for 

several practical reasons, particularly in scenarios with limited data, computational 

resources, and specific application requirements. ML algorithms, such as linear 

regression, decision trees, and support vector machines, are generally more 

straightforward to implement and interpret compared to the complex architectures of DL 

models like neural networks. ML models can achieve good performance with smaller 

datasets, whereas DL models typically require large amounts of data to avoid overfitting 

and to perform effectively. Additionally, ML models demand less computational power 

and training time, making them more accessible for organizations with limited resources. 
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The interpretability of ML models also provides valuable insights into the decision-

making process, which is crucial in fields like healthcare and finance where transparency 

and understanding of the model's behaviour are essential. Consequently, while DL is 

powerful for specific tasks such as image and speech recognition, ML remains a preferred 

choice for a broader range of applications due to its simplicity, efficiency, and 

interpretability This investigation validated the point that DL outperforms traditional 

machine techniques. (Chen, Shi, and Zhang 2018).  

2.7.1 Deep reinforcement for the smart grid for improvement in energy 
management in buildings 

 Mocanu et al. (2019) worked on deep reinforcement for the smart grid for the 

first time in 2018. The strategy is mainly intended to improve energy management in 

buildings. Concurrently, the researchers investigated two DL Algorithms. The efficiency 

of the suggested method is demonstrated using the high-dimensional and benchmark 

dataset, the Pecan Street Inc. database.  

2.7.2 Forecasting time-series data by using RNN 

A recent study on energy management for university campuses was a report 

published in 2018 (Nichiforov et al. 2018). In this work, the author used RNN to forecast 

time-series data from a university campus's energy use profile. In 2019, a pertinent study 

on energy management was published (Afrasiabi et al. 2019). To identify the optimal 

operating point of micro-grid distribution, the researchers used accelerated AADM and 

alternating direction methods of multipliers (ADMM).  However, this work does not 

cover the data-driven approach to the prediction of energy.  

Ahmad et al. (2019) did another recent relevant study. This work applied a data-

driven deep learning approach to antedate energy demand at the district level.  A unique 

general DL architecture for energy demand forecasting was proposed. The lack of 

extensive assessment with current pre-trained models and benchmark dataset appear to 

be a shortage in this work (Ahmad and Chen 2019).  
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2.7.3 FCRBM for energy consumption 

 Hafeez et al. (2020) proposed factoring a conditional restricted Boltzmann 

machine (FCRBM) for energy consumption forecasting for 2020.  The proposed work 

forecasts future electrical energy usage regarding smart grid energy management.  

2.7.4 DL-based architecture for energy management 

     Han et al. (2021), in 2020, presented a DL-based framework architecture for 

smart energy management of residences & enterprises. Among the important 

contributions are edge device-based real-time energy management via a shared cloud-

based data supervisory server, optimal normalization technique selection, and a unique 

sequence learning-based energy forecasting mechanism with reduced time complexity 

and the lowest error rates (Han et al. 2021). 

2.7.5 Utilizing CNN and MB-gru for load prediction 

In 2020, Zulfiqar et al. conducted a study utilising MBGRU and CNN for load 

prediction in a residential building. The suggested system's training and testing 

performance were validated using the benchmark dataset.  An innovative model's 

systematic evaluation against existing pre-trained DL architectures may be established 

(Z. A. Khan et al. 2020). YOLO v3 had been recently used for counting the user quantity 

inside a vicinity nearby. The primary goal is to reduce the air-conditioning burden. This 

approach's practical viability requires some adjustment.  YOLO is a pre-existing 

algorithm. The work of the author could be enhanced if the novel deep learning model 

had been provided (Elsisi et al. 2021).  

2.8 Multilayer neural network for hourly energy consumption prediction 

Truong et al. (2018) proposed a unique ML model for hourly consumption 

prediction of the energy in residence. Authors have employed an eight-hidden-layer 

multilayer neural network.  Expanding the hidden layer of a multilayer neural network 

dramatically increases computing costs at a relatively minimal boost in performance.  
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2.9 DL as a candidate for energy forecasting 

Researchers employed a similar rule of thumb (Truong et al. 2021). Hamdounet 

et al. published another study. This study strongly recommends deep learning as the finest 

contender for time-series-based energy forecasting.  This paper presents a thorough 

comparison of machine learning and deep learning methods. This work's input can be 

expanded if the pragmatic estimation is conducted at a larger data volume. There was no 

description of the machine learning model's innovative deep learning architecture. 

(Hamdoun, Sagheer, and Youness 2021). 

2.10 Comparison of machine learning and deep learning methods on the 
residential building dataset 

Hafiz et al. (Hafiz et al. 2020), Wu et al. (Wu and Lee 2020), and Arienti et al. 

(Arienti 2020) presented three papers in 2020 in which they provided a comparison of 

machine learning and deep learning methods on the dataset of a residential building in 

their work.  As per the study, DL is a considerably superior approach for time series data-

driven forecasting. Aragon utilized RNN with the LSTM technique instead of the purpose 

of energy demand forecasting, as in earlier studies. This effort also falls short of 

establishing a novel DL architecture and pre-trained network on benchmark datasets. It 

is a critical need in effective energy management (Aragon et al. 2019). 

2.11 SEIL lab dataset 

The Indian Institute of Technology’s (IIT) Smart Energy Informatics Lab (SEIL) 

has recorded a substantial input to the literature on EEM. The members of SEIL, Hareesh 

Kumar et al. (Kumar, Mammen, and Ramamritham 2019) contributed. For demand 

prediction, they proposed data-driven reinforcement learning. 

Similarly, in the same year, Tanted, Sapan, et al. (Tanted et al. 2020) presented 

the “database support for Adaptive Visualization of Large Sensor Data.” Whereas, from 

the same group, Somu [16] conducted work on a hybrid model for predicting building 

energy use using the LSTM networks. Similarly, Ramamritham et al. (Ramamritham, 

Karmakar, and Shenoy 2017) called instead of intelligent energy management systems to 

be data-driven. They have referred to the dataset generated by their research. This group 

also worked on solar PV optimization and building thermal modelling (Jois et al. 2019a, 
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2019b; Karmakar et al. 2018; Kuthanazhi et al. 2018; Lee et al. 2021).  Following a 

thorough examination of the literature about the research contribution and limits, these 

conclusions regarding possible open areas and research gaps were identified:  

1. Few scholars have developed a unique DL architecture for energy efficiency 

management. A relatively limited DL architecture is provided compared to the 

existing DL design.  

2. Only one university campus energy management study has been published in the 

last five years.  

3. The pre-trained network for energy efficiency management has not been 

identified in the literature in the last five years. Particularly for university 

campuses.  

4. Many investigations in the temporal realm employ the time series technique. But, 

several studies on energy efficiency management have been published. 

5. Only SEIL-IIT has access to the benchmarking dataset. 

2.12 Latest techniques for energy efficient management systems 

Johannesen et al. (Johannesen, Kolhe, and Goodwin 2019) published a study in 

2019 that investigated the responsiveness of a regression model to a Sydney dataset that 

included meteorological information, load demand and time stamps.  The dataset for the 

period of four years was acquired locally. As common instances, the research has 

disseminated and mapped load demand, weather and timestamp data. According to the 

authors of this study, the model is trained to uncover pattern recognition rules in the input-

output connection.  The model's inputs are called "features." Neural networks, also known 

as feedforward and back-propagating networks, are the preferred machine learning 

technique, with several inputs weighted to offer a forecast conclusion.  

Although neural networks are good at detecting non-linearity’s and are thus 

favoured as a predictive tool in electrical load forecasting, they are frequently criticized 

for their lack of transparency and interpretability due to the black box approach and the 

utilization of enormous amounts of data. When employing neural networks to electricity 

demand forecast, overfitting remains a challenge. The literature distinguishes between 

short-term and long-term forecasting. Another study was undertaken on the energy 

consumption of Korean university campuses. A variety of things influence electric power 
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consumption.  A university campus, for example, which is one of the largest power-

consuming institutions, exhibits a wide variation in electric load depending on time and 

environment. 

A dependable electrical power source must ensure the smooth running of such a 

facility. One technique is to forecast the electric load and supply electricity correctly.  

Even though different influencing elements of power consumption for 

educational institutions have been established by analysing power consumption patterns 

and usage instances, further research is needed to forecast their electric load 

quantitatively.  The researchers also in this work plotted weather and power utilization 

information or data in their investigation.  They used principal component analysis (PCA) 

to minimize the feature dimension before employing ANN and SVM for energy demand 

prediction.  The authors subsequently determined that ANN is the best contender for 

energy demand prediction for the given dataset.  The authors used multiple machine 

learning methods to create a power consumption forecasting model. To assess their 

efficacy, the researchers looked at four building clusters at a university and collected 

power usage data at 15-minute intervals for more than a year. They identified features 

from the data based on the periodic properties, and then performed principal component 

and factor analysis. In addition, they developed two models for estimating the electric 

load using artificial neural networks and support vector regression. They used 5-fold 

cross-validation to assess the prediction performance of each forecasting model and 

compared the predicted result to the actual electric load. According to the experimental 

results of this study, the two forecasting models may reach an average error rate of 3.46-

10% for all clusters. A building's or building cluster's power consumption pattern may 

differ for various reasons.  A university campus, for example, with one of the most power-

consuming building clusters, exhibits variable power consumption patterns based on the 

semester, vacation, day of the week, and so on.  Other common causes of diverse patterns 

include the purpose or function of structures and complicated external circumstances. 

These trends should be addressed when developing a machine learning-based forecasting 

model that can precisely anticipate power usage.  

To build a power consumption forecasting model for educational institutions, 

different social and environmental aspects that significantly affect their power 

consumption should be analysed and represented (Moon et al. 2018).  



 32 

Residential buildings, like the university campus, are power utilization hotspots. 

Chou et al. (Chou and Tran 2018) worked on residential building power requirement 

predictions. The authors conducted a hybrid prediction and optimization approach. The 

study found that the hybrid evolutionary-neuro system outperformed the classical 

machine learning network for their respective datasets. Another group of researchers 

submitted a study in the same year to justify the evolutionary-neuro system for energy 

forecasting.  According to work, numerous data-driven models have been successfully 

used for electrical energy consumption forecasts at building and larger scales. When the 

forecasting data collection is multi-sourced, heterogeneous, or insufficient, a single data-

driven model may result in convergence issues or low model accuracy. The combination 

of sophisticated evolutionary algorithms (EAs) and data-driven models has proven 

effective in prediction accuracy and resilience improvements. However, some of them 

take a long time to converge. This research presented a unique EA, teaching-learning-

based optimization (TLBO), for predicting short-term building energy demand.  The 

fundamental TLBO algorithm was updated in three ways to improve its convergence 

speed and optimization accuracy. The enhanced approach was integrated with artificial 

neural networks (ANNs) and used to estimate the hourly electrical energy consumption 

of two educational facilities in the United States and China, respectively. In terms of 

convergence speed and predictive accuracy, the proposed model outperforms published 

GA-ANN and PSO-ANN approaches, indicating that it is suited for future online energy 

prediction. (K. Li et al. 2018) 

A study was conducted in which the researchers presented a hybrid model for 

energy demand forecasts and optimization. The method was evaluated using an hourly 

energy usage dataset from South Korea. According to the author, the proposed model 

could be relevant for additional datasets.  However, their paper explains this claim. Figure 

2.8 shows the energy trading system configuration for the Korea power exchange EMS 
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Figure 2.5 Energy trading system configuration  

Source:  Waqas et, al. (2017) 

 The above figure 2.8 is showing the energy trading system configuration for the 

Korea Power Exchange has many remote terminal units (RTU) for energy generation. 

These units use the internet protocols to transfer data to the central metering system. The 

consequences of demand forecasting are critical for price-setting and operational 

schedules (OS). They also use PSS to alter the system's marginal pricing, which assists 

the settlement system and other payment systems (P. W. Khan et al. 2020). A survey was 

published by Ahmed et al. in the journal Sustainable Cities and Society. The study 

detailed the efficiency of ML algorithms for power demand prediction via a literature 

review. 

This study used three well-known forecasting engines to review supervised-based 

machine learning methods comprehensively.  This evaluation sought to provide 

approaches for predicting analysis and various other prediction activities.  A specific goal 



 34 

was to explore and analyse the methods used to forecast energy use in real-time with 

diverse applications and to identify the research review with valuable strategies that can 

be found in the present literature. This evaluation included carefully comparing and 

analysing several modelling techniques to select a better forecasting model for 

completing the intended task in various applications.  A complete literature review with 

other researchers is compiled in the table for a better understanding of the system in table 

2.1. As well as real-time energy usage and climatic data used for modelling research were 

used to compare and analyse predicting accuracy. 
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Table 2.1  Literature review table  

Year Outcome Review References  

2016 The authors have agreed 
of deep learning frameworks to design the electrical energy 
efficiency management system. 

Huge standard reference limits set of 
data for electric energy 

 
(Rodríguez 
Fernández et al. 
2016) 

2016 This is a comparative consideration of two 
varieties of the Deep Learning network: (LSTM) and sequence 
architecture (S2 S). 

Coverage is limited to a single 
residential customer 

(Tan et al. 2015) 

2016 They then compared the proposed model with the regression of 
existing support vector and deep Learning frameworks. The result 
of the simulation shows that the local RVS surpassed the RVS and 
H2 O in-Deep Learning 

The details of the data were not 
included in this document 

(Peris et al. 2016) 

2017 The authors have compared the convolutional neural network 
(CNN/ConvNet) 

New CNN/ConvNet architecture was 
presented in this study, and the pre-
trained network described 

(Vinayakumar, 
Soman, and 
Poornachandran 
2017) 

2017 Initially formed the Recurrent neural networks (RNN) using a data-
driven approach 

The model-based approach has 
surpassed the approach of model-based 
studies in management 
of energy 

(Guo et al. 2017) 

2017 This study provided a comprehensive comparison of conventional 
machine learning algorithms, including vector support machines, 
Gaussian processes, regression trees, overall amplification and 
linear regression, and the Deep Learning method 

Validation of the claim related to the 
energy management system is observed 
to be unclear 

(Erickson et al. 
2017) 

2018 The large data is called Big Data for energy management The availability of the referenced 
massive datasets is limited 

(Al-Ali et al. 2017) 
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Table 2.1 Continued 

Year Outcome Review References  

2018 This method is optimized for building energy management, and 
explores two DL algorithms Deep Q-learning (DQN) and Deep 
Policy Gradient (DPG), at the same time 

The parametric fringe of the proposed 
technique proved insufficient. The 
cognitive scope of the gadget seems 
very trendy 

(Mocanu et al. 
2019) 

2018 The authors have used Recurrent neural networks (RNN) to 
forecast time series data on energy consumption for a university 
campus 

The robustness of this work could be 
enhanced if the master data set had been 
chosen 

(Jiao et al. 2018) 

2019 The authors have suggested using the methods of alternating 
direction of multipliers (ADMM) and accelerated alternating 
direction of multipliers (AADM) to find the optimum value of the 
operation of the micro network distribution 

This study did not include the data-
based approach to energy forecasting. 
Moreover, it was felt that the parametric 
comparison was missing in this work 

(Jacob et al. 2018) 

2019 This work submitted a data-driven, Deep Learning approach to 
district-wide energy demand forecasting. 

This study appears deficient because of 
the absence of a baseline data set and 
extensive comparison with pre-existing 
models 

(Pickering and 
Choudhary 2019) 

2020 The FS-FCRBM-GWDO hybrid model is superior to the existing 
models in this study 

The gap between the existing real-world 
reference data set and the pre-
established model is deficient 

(Hafeez et al. 2020) 

2020 Major contributions include device-based 
real-time power management via a common cloud data monitoring 
server 

The actual application was outside the 
scope of the study 

(Zhao and Li 2020) 

2021 A machine (computer) based vision approach, You Only Look 
Once (YOLO v3), was utilized to calculate the number of 
individuals within the region. It is more in correlation with the 
temperature range of the air conditioning units 

The author’s study would be made more 
effective by implementing new variants 
of Deep Learning 

(Zhao and Li 2020) 
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Table 2.1 Continued 

Year Outcome Review References  

2021 A new machine learning model for forecasting energy usage on an 
hourly basis in a residential building is proposed 

Performing the machine learning 
algorithm is compromised because of 
the performance plateau highlighted by 
big data 

(Wen, Zhou, and 
Yang 2020) 

2021 Deep Learning is the best candidate for power prediction based on 
time series. The concern in this study is increasingly associated 
with the performance of ML and DL being found 

Three small data sets were used to 
validate the study. The authors could 
not pursue the novel Deep Learning 
architecture of a machine learning 
model for data-driven energy efficiency 
forecasting 

(Zhang et al. 2021) 
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By emphasizing the specific gaps within each area outlined in the table, readers 

gained a clearer understanding of how each study contributed to filling these gaps in the 

existing literature. For instance, several studies addressed the lack of standard reference 

limits for electric energy data, highlighting the need for robust frameworks to design 

energy efficiency management systems. Similarly, the limited coverage of specific 

customer segments in some studies underscored the necessity for broader applicability 

and inclusivity within energy management research. Moreover, the absence of detailed 

data inclusion in certain studies emphasized the importance of transparent reporting and 

comprehensive data sharing practices. Additionally, studies that lacked validation for 

new architectures or algorithms underscored the need for rigorous evaluation and 

benchmarking against existing methods. Furthermore, the deficiency in baseline datasets 

and extensive comparisons with pre-existing models highlighted the importance of 

thorough validation and replication efforts in energy forecasting research. Overall, by 

addressing these specific gaps, each study contributed to advancing knowledge and 

understanding in the field of energy management and deep learning, thereby enhancing 

the effectiveness and applicability of future research endeavours. 

They concluded that the efficient forecasters of electrical energy demand are 

Levenberg-Marquardt back-propagation neural networks (LMBNNs) and the Bayesian 

regularization back-propagation neural networks (BRB-NNs) (Ahmad and Chen 2020). 

A scientific contribution by the SEIL University Campus dataset is presented in this 

section. The research gap on electrical power prediction and previous work on SEIL are 

highlighted.  The algorithm for optimizing the sinusoidal cosine was enhanced by a group 

of SEIL researchers using LSTM.  It results in precise, dependable short-term, medium, 

and long-term energy utilisation forecasts.  They claimed that combining the improved 

Sine Cosine and LSTM algorithms resulted in a robust power consumption model. 

(Somu, Raman M R, and Ramamritham 2020) 

The researchers at SEIL employed kCNN-LSTM to produce accurate estimates 

of energy usage in buildings in a separate publication. This experiment used real-time 

energy usage data from the Kanwal Rekhi building at the Indian Institute of Technology 

(IIT) in Mumbai. The suggested approach employs k-means clustering to conduct cluster 

analysis and comprehend the energy usage model. The proposed methods were developed 
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and evaluated employing present energy usage data from a four-story structure at IIT, 

Bombay. 

The IIT building consisted of four floors and was divided into three wings. All 

the datasets are in CSV format and include data from Dec 2016 through Jul 2018. As per 

the literature, these datasets are all at a minute granularity with voltage, power, and 

current as input and actual power consumption as an output trait.  As per the studies, the 

dataset is of huge amount, quantifying up to 20 GB, and it has been extracted from the 

units in the building, including classes, auditorium, labs etc.  Following a thorough 

examination of the present work, it has been identified that the use of artificial 

intelligence is now unavoidable for robust and precise energy management.  Additionally, 

the development of robust machine learning algorithms will aid in the achievement of the 

goal.  After careful examination, the full empirical comparison of machine learning 

algorithms in the literature is deemed insufficient. This work fills the gap by 

comprehensively evaluating many machine-learning methods on the SEIL dataset.  

The study's main deliverable is selecting the best machine learning algorithm. 

Empirical data will support the recommendation. 

2.12.1 Algorithms Use 

In the domain of machine learning applications for energy demand prediction in 

energy management systems, the selection of appropriate algorithms is crucial for 

achieving accurate and efficient results. In this thesis, a comprehensive approach was 

taken by evaluating a diverse set of machine learning algorithms. 

 linear regression-based algorithms such as Linear, Interactions Linear, and 

Robust Linear were considered due to their simplicity and interpretability (Slowik, 

Collazzi, & Steinfeld, 2011). These algorithms are well-suited for capturing linear 

relationships between input features and energy demand. Additionally, stepwise linear 

regression was explored to systematically select the most relevant features for prediction 

(Tjur, 2009). 

Tree-based algorithms, including Fine Trees, Medium Trees, and Coarse Tree, 

were investigated for their ability to capture nonlinear relationships and interactions 

within the data (Smith & Jones, 2015). These algorithms offer flexibility in modeling 
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complex patterns in energy demand, making them valuable candidates for energy 

management systems. 

The support vector machine (SVM) algorithms, such as Linear SVM, Quadratic 

SVM, and Cubic SVM, were examined for their capability to handle high-dimensional 

data and nonlinear relationships (Johnson et al., 2018). SVMs have shown promising 

results in various prediction tasks, including energy demand forecasting, due to their 

ability to find optimal hyperplanes for classification or regression. 

Boosted trees algorithms, including Bagged Trees and Squared Exponential GPR, 

were considered for their ensemble learning approach, which combines multiple weak 

learners to improve prediction accuracy (Brown et al., 2020). These algorithms have 

demonstrated effectiveness in capturing complex patterns and reducing prediction errors 

in energy demand prediction tasks. 

In the context of project on machine learning applications for energy demand 

prediction in energy management systems, we chose to utilize ensemble tree-based 

algorithms such as Bagged Trees, Fine Trees, and Medium Trees for several reasons. 

 

  Ensemble methods, like Bagged Trees, have shown robustness and 

resilience to noise and outliers in the data (Breiman et.al, 1996). By aggregating the 

predictions of multiple trees trained on different subsets of the data, Bagged Trees reduce 

overfitting and variance, thereby enhancing the overall predictive performance (Breiman 

et.al, 1996). 

Fine Trees and Medium Trees were selected due to their ability to capture 

complex nonlinear relationships and interactions within the energy consumption data 

(Hastie et al., 2009). These algorithms partition the feature space into smaller regions, 

enabling them to capture intricate patterns in energy demand variations across different 

time intervals and environmental conditions. 

The interpretability of tree-based algorithms is advantageous for understanding 

the factors driving energy demand fluctuations (Louppe et al., 2014). Fine Trees and 

Medium Trees provide intuitive insights into the decision-making process by visualizing 
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the hierarchical structure of decision rules, facilitating the identification of key predictors 

influencing energy consumption patterns. 

The utilization of Bagged Trees, Fine Trees, and Medium Trees in our project was 

motivated by their robustness, ability to capture complex patterns, and interpretability, 

making them suitable choices for accurately predicting energy demand in real-world 

energy management systems. 

2.13 Research Gap 

The research conducted in this thesis addresses significant gaps in the current 

literature surrounding machine learning applications for energy demand prediction in 

energy management systems. By developing and implementing an advanced ensemble of 

machine learning algorithms specifically tailored for energy settings, this study aims to 

innovate in model selection and configuration to achieve precise and efficient energy 

demand prediction. Furthermore, a comprehensive analysis of algorithmic efficiency and 

efficacy within the context of energy management is undertaken, utilizing a diverse set 

of metrics to provide nuanced insights into performance. Through advanced 

hyperparameter tuning and feature selection techniques, the top-performing algorithm 

identified in the analysis is optimized to push the boundaries of optimization 

methodologies and achieve peak performance in energy demand prediction for buildings. 

In addition, several key research gaps have been identified: 

Data integration: Effective methods for integrating data from various sources 

into a centralized system for better energy management are needed. 

Predictive analytics: More accurate and effective predictive models are required 

to optimize energy usage and reduce costs. 

Real-time monitoring and control: More advanced and efficient methods for real-

time monitoring and controlling energy usage are necessary for optimal energy 

management. 

Machine learning applications: Further research is needed to develop scalable 

and effective applications of machine learning in electrical energy management. 
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Cybersecurity: Effective methods for securing electrical energy management 

systems against cyber threats are essential as digital technologies become more prevalent. 

Energy storage systems: More efficient and cost-effective energy storage 

systems are needed to enhance electrical energy management. A synopsis of Chapters 3 

and 4's collective exploration of the complex terrain of data integration, predictive 

analytics, real-time monitoring and control, and the use of machine learning in electrical 

energy management is provided below. These chapters offer not just theoretical 

frameworks but also hands-on instructions for tackling these problems by creatively 

addressing each research gap. Additionally, the comprehensiveness of their solutions 

guarantees a holistic approach to improving energy management systems, advancing the 

industry toward better effectiveness, sustainability, and resilience in the face of new 

problems. 

 

 



43 

CHAPTER 3 

 

 

METHODOLOGY 

3.1 Introduction 

This chapter explains the research methodology to fulfil the research objectives. 

The research methodology includes system, sample data, modification parameter setup, 

final parameter setup, machine and equipment involved, type of algorithm and 

forecasting analysis. The methods planned were essential to determine the direction and 

flow of this research. 

3.2 Data-driven Electrical Energy Efficiency Management 

Data-driven Electrical Energy Efficiency Management (D2EEM) refers to an 

approach in which the management and optimization of electrical energy consumption 

are driven by the analysis and insights derived from data. This methodology leverages 

advanced data analytics techniques, particularly machine learning algorithms, to make 

informed decisions and enhance the efficiency of electrical energy usage in various 

settings, such as buildings, industrial facilities, or power systems. 

Key components of D2EEM typically include: 

Data Collection: Gathering relevant data related to energy consumption, system 

parameters, and environmental factors. This data can be collected from sensors, smart 

meters, historical records, and other sources. 

Data Analysis: Applying various data analysis techniques, including machine 

learning algorithms, to uncover patterns, correlations, and trends within the collected 

data. This analysis helps in understanding the factors influencing energy consumption. 

Predictive Modeling: Developing models that can predict future energy 

consumption based on historical data and other relevant features. These models enable 

proactive decision-making for efficient energy management. 
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Optimization Strategies: Implementing optimization algorithms to identify the 

most efficient ways to allocate and utilize electrical energy resources. This may involve 

scheduling, load balancing, and other strategies to minimize waste and improve overall 

efficiency. 

Continuous Monitoring and Adaptation: Establishing a feedback loop for 

continuous monitoring of energy usage and system performance. This allows for real-

time adjustments and adaptation to changing conditions, ensuring ongoing energy 

efficiency. 

3.3 Experimental settings 

The time slot for DR events is one hour. The maximum number of requests that 

can be sent to a consumer for the period is 5, after which the consumer is filtered out of 

the selection process. Defined a flat supply threshold across all time slots, where AG 

equals 90% of the maximum demand of the DR Day. The expected reduction for every 

consumer is 40 percent of their total consumption. Initially, ∆t is assigned zero and is 

updated in the subsequent iterations based on the responses in the previous iteration. The 

response and request indexes are created using a random function that takes values 

between 0.1 and 0.9, respectively. Experiments are run in a Stochastic Response Mode 

for 10 DR events. Each time a consumer gets selected, its requesting index and response 

index are updated using s 5 and 6. Consumer's expected reduction for every DR event is 

calculated using a function based on their average performance in the past DR events ±a 

% randomly, where takes values from 1 to 10, multiplied by 0.4. Experiments For 

evaluation, all possible combinations, i.e.,4C1,4C2,4C3 and 4C4 of features, are 

considered. For simplicity, while calculating the overall score, all features under 

consideration are given the same alpha values, i.e., one and rest to 0. All these 

combinations result in 15 approaches. The performance metrics are measured for all these 

approaches using s 10, 12, 13 mentioned in the thesis. The maximum value from T 

(Number of DR requests) is 5000, which occurs when DR Request is sent to every 

consumer in all DR events. The maximum risk can be obtained 100%, and worst-case 

unfairness will be close to 500.  
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3.4 Data set  

The selection of a university campus, particularly IIT in India, as the case study 

for the research is appropriate. The unique characteristics of a university campus provide 

a diverse and complex environment for studying electrical energy efficiency 

management. Universities often have a mix of academic buildings, residential areas, 

laboratories, and recreational spaces, creating a challenging setting that reflects real-

world scenarios. 

The IIT campus, being a renowned educational institution, adds significance to 

the research due to its scale and diverse energy consumption patterns. Analyzing and 

optimizing energy efficiency in this context can offer valuable insights applicable to 

educational campuses globally, contributing to sustainable energy practices in the 

academic sector. 

The choice aligns well with the research objectives, providing a practical and 

relevant scenario for implementing and testing the proposed data-driven electrical energy 

efficiency management approach. The findings from such a case study can have broader 

implications for similar large-scale settings, helping address energy challenges in 

educational institutions and beyond. 

3.4.1 Data-Driven Energy Management 

Our ongoing research in Smart Energy Management is primarily motivated by the 

objectives of achieving energy efficiency, reducing peak demand and ensuring optimal 

demand response control, while simultaneously meeting the thermal comfort needs of 

end-users. Our research activities have contributed significantly to the advancement of 

various thermal management and energy optimization techniques. To facilitate our data-

intensive research, diverse datasets gathered from actual buildings within the IIT-

Bombay Campus, encompassing multiple electrical and environmental parameters. 

The following dataset obtained from an academic building on a campus. This 

four-story building is divided into three wings, and the dataset covers the period from 

December 2016 to July 2018. 

All the datasets are available in CSV format, with clear and consistent field names 

provided in the respective files. The datasets are all recorded at one-minute granularity. 
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A detailed description of each field can be found here, and the complete dataset can be 

accessed here. Additionally, provided data completeness metrics for the datasets 

spanning the years 2016, 2017, and 2018.Data were collected for these rooms in the 

building: 

The datasets provided here pertain to the energy consumption of the AC and 

lighting systems in Auditorium 1. This room can accommodate up to 200 individuals and 

features a chilled beam HVAC system. The HVAC system includes six compressor units, 

each with a capacity of 7.5 TR, and utilizes non-inverter technology. The cold air is 

supplied to each air mixing plenum through a set of three AC units and is then passed 

into the ducted beam. There are 18 ducts located across two beams, which are designed 

in an octagonal shape. Four ducts are on the inner side, while the remaining 14 are 

positioned on the outer side, through which cold air is circulated into the auditorium. 

The dataset provided pertains to the energy consumption of the AC units in 

Auditorium2, which is a spacious room with a sloping floor with a seating capacity of 

130 people. The room has 7 wall-mounted indoor units of split air conditioners installed 

at a high level on the wall. 

The dataset provided contains information about the power consumption of the 

entire building, including ACs, lights, and plug level loads. 

The dataset provided includes information on the power consumption of three sets 

of air conditioners - AC1, AC2, and AC3, which are installed in a cluster of 4 classrooms 

and two small labs. These rooms are located across two floors of a building. Combining 

the three sets of data will totally consume ACs in all the rooms. 

These datasets contain information on the power consumption of various rooms 

and equipment in an academic building: 

Auditorium1 AC, lights: This dataset contains the power consumption of 

Auditorium 1, a 200-seat-capacity room with a chilled beam HVAC system consisting of 

six non-inverter technology-based compressor units. The cold air is fed into each air 

mixing plenum from a group of three AC units and passed into the ducted beam. There 

are 18 ducts in two beams from which cold air is thrown into the auditorium. 
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Auditorium2 AC: This dataset contains the power consumption of Auditorium 2, 

a large room with a sloped floor that can accommodate 130 people. There are 7 wall-

mounted indoor units of Split air conditioners placed at a high level on the wall. 

Building Level AC, mains, plug level: This dataset contains the power 

consumption of ACs, lights, and plug level load of the entire building. 

Classrooms AC1, AC2, AC3: This dataset contains the power consumption of a 

cluster of 4 classrooms and two small labs spread across two building floors. Combining 

the three sets will totally consume ACs in all these rooms. 

Conference room AC, plug level: This dataset contains power consumption in a 

typical conference facility. The conference room is a medium-sized room that can 

accommodate about 25 people. The AC consumption here is the consumption of 3 ACs 

within this room. The plug-level load is contributed by one PC, projector and video 

conferencing equipment used mainly during presentations in this room. 

Floor AC, lights, plug level: This dataset comprises the consumption of an entire 

floor consisting of 5 labs, two classrooms (1 extensive and one small), a common area, 

and two washrooms. 

Lab 1 AC, lights, plug level 1, plug level 2: This dataset contains the power 

consumption of Lab 1, which is a big room with centralized Duct AC with eight outlets. 

To obtain plug level load of this room, combine the two datasets for plug level data (plug 

level 1, plug level 2). 

Lab 2 AC, lights, plug level: This dataset contains the power consumption of Lab 

2, a big room with seven window-ACs and one split AC. 

Lab 3 AC, lights, plug level: This dataset contains the power consumption of Lab 

3, which is a big room with one duct AC and two window -ACs. 

Lab 4 AC, lights, plug level: This dataset contains the power consumption of Lab 

4, a medium-sized room with two indoor blower units. The actual power consumption 

happens at the outdoor unit, which supplies cooled air to the indoor units. Please refer to 

the Lab ODU data below to compute the actual AC consumption. 
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Lab AC Outdoor Units ODU1, ODU2, ODU3: This dataset consists of the 

outdoor units of ACs installed in 8 labs across 2 floors. 

* The labs are occupied throughout the day and sometimes at night. 

Office AC and lights data are included in this dataset, representing the power 

consumption of one office room with 3 split ACs and one window AC. This room is 

frequently visited during the day and remains unoccupied at night. The Server room AC 

and plug level dataset represents the energy consumption of a departmental server room 

with 8 ACs, several rack-mounted servers, and routers. The Small server room AC and 

plug level dataset represents the energy consumption of the smaller server room in the 

main server room, which contains 3 ACs. Finally, the Wing C AC, lights, and plug level 

dataset represents the energy consumption of one wing of the building, including offices, 

labs, classrooms, washrooms, stairways, and common areas on ground + 4 floors. 

3.4.2 Data Collections 

The dataset contains information on electricity consumption in a high-rise 

residential building within the IIT Bombay campus, covering the period from December 

2016 to January 2018. The building comprises 60 3BHK (3 Bedrooms, I Hall, and a 

Kitchen) apartments, each equipped with a smart meter that records data at a sampling 

interval of 5-8 seconds. The data provided in the link has been aggregated to an hourly 

granularity. However, a sample dataset of two apartments, with a sampling interval of 5-

8 seconds, is available under "Sample Monthly Dataset". All timestamps in the dataset 

are in Indian Standard Time (GMT+5.30), and India does not observe daylight saving 

time. To protect privacy, the apartments are anonymous, and 39 CSV files are included 

in the folder, each representing an apartment. Apartments with significant data loss have 

been removed from the list, and the CSV files contain these headers:  

 Unix Time stamp (epochs) - TS 

Voltage of phase 1 (V) - V1 

Voltage of phase 2 (V) - V2 

Voltage of phase 3 (V) - V3 

Electricity consumption of phase 1 (Wh) - W1 
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Electricity consumption of phase 2 (Wh) - W2 

Electricity consumption of phase 3 (Wh) - W3 

Virtual Dataset 

Additional Headers 

Virtual Apartment ID - Virtual Apartment 

Date in YYYY-MM-DD – Date 

Time in HH: MM: SS - Time 

Sum of W1 + W2 + W3 (Wh) - Energy 

Sample Monthly Dataset headers in the CSV files: 

timestamp received (TS_RECV) 

serial number (Srl) 

timestamp (TS) 

voltage from Phase1 to neutral (V1) 

voltage from Phase2 to neutral (V2) 

voltage from Phase3 to neutral (V3) 

current for Phase1 (A1) 

current for Phase2 (A2) 

current for Phase3 (A3) 

active power of Phase1 (W1) 

active power of Phase2 (W2) 

active power of Phase3 (W3) 

Voltage*Current for Phase 1 (VA1) 

Voltage*Current for Phase 2 (VA2) 

Voltage*Current for Phase 3 (VA3) 

reactive power in phase 1 (VAR1) 

reactive power in phase 2 (VAR2) 
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reactive power in phase 3 (VAR3) 

Power Factor of Phase1 (PF1) 

Power Factor of Phase2 (PF2) 

Power Factor of Phase3 (PF3) 

angle in phase 1 (Ang1) 

angle in phase 2 (Ang2) 

PF3r (PF3r) 

Ang1r (Ang1r) 

Ang2r (Ang2r) 

angle in phase 3 (Ang3) 

average of V1,V2 and V3 (AvgV) 

sum of V1, V2 and V3 (SumV) 

average of A1, A2, A3 (AvgA) 

sum of A1, A2, A3 (SumA) 

average of W1, W2, W3 (AvgW) 

sum of W1, W2, W3 (SumW) 

average of VA1, VA2 and VA3 (AvgVA) 

sum of VA1, VA2 and VA3 (SumVA) 

average of VAR1, VAR2 and VAR3 (AvgVAr) 

sum of VAR1, VAR2 and VAR3 (SumVAr) 

average of PF1, PF2 and PF3 (AvgPF) 

sum of PF1, PF2 and PF3 (SumPF) 

average of Ang1, Ang2 and Ang3 (AvgAng) 

sum of Ang1, Ang2 and Ang3 (SumAng) 

Frequency (F) 

Energy (FwdWh) 
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Table 3.1 Attributes for datasheet 

Number Symbol  Number Symbol Number  Symbol Number Symbol 

1. V1 8. VA1 15. W 22. PF3 
2. V2 9. VA2 16. VAR1 23. PF 
3. V3 10. VA3 17. VAR2 24. FwdWh 
4. A1 11. VA 18. VAR3 25. FwdVAh 
5. A2 12. W1 19. VAR  
6. A3 13. W2 20. PF1          
7. A 14. W3 21. PF2  

3.5 Evaluation Framework  

The study employed a quad-folded cascading methodology, as illustrated in 

Figure 1. Initially, the SEIL dataset was used to consider the total energy consumption at 

the building level, including the auditorium, classroom, conference room, building floor, 

labs, offices, server room, and sub-server room. In the second phase, the building-level 

dataset was randomly divided into 70% training samples and 30% testing samples, and 

24 machine-learning algorithms were trained using the training set. The third phase 

involved evaluating the parametric performance of each ML algorithm, considering 

training parameters like RMSE, R-squared, MSE, MAE, and Prediction Speed, for both 

the training and testing phases. Finally, the algorithms were ranked based on efficacy and 

efficiency. Figures 3.1 provided a functional inside view of the training and testing phase, 

which constituted the inside workings of Phase 2 in the proposed methodology. 
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Figure 3.1 Layout of methodology  
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Process involves in optimisation. 

3.6 Dataset Description 

The SEIL (Smart Energy in Informatics Lab) dataset was used to consider the 

total energy consumption at the building level. The dataset includes information on 

various areas within the building, such as the auditorium, classroom, conference room, 

building floor, labs, offices, server room, and sub-server room. It contains historical 

energy consumption data and relevant features that influence energy consumption. 

3.6.1 Data Preprocessing: 

Before conducting the analysis, the SEIL dataset underwent preprocessing to 

handle missing values, normalize features, and remove any outliers that could adversely 

affect the performance of the machine learning algorithms. 

3.6.2 Data Splitting: 

The building-level dataset was randomly divided into two subsets: a training set 

and a testing set. The training set contained 70% of the data, while the testing set 

contained the remaining 30%. This splitting ensured that the machine learning algorithms 

were trained on enough data while also allowing robust evaluation on unseen data. 

3.6.3 Machine Learning Algorithm Selection: 

A total of 24 machine learning algorithms were chosen for energy consumption 

prediction. These algorithms were carefully selected to cover a diverse range of 

approaches, including regression, ensemble methods, and deep learning, to compare their 

performance on the task at hand. Table 3.2 explain different optimization parameters. 

 Table 3.2 Optimization parameters 

Rank ML Algorithm Optimization parameter 

1 Baggage Tree   Number of Bags: 50, Max Features: 0.8 

2 Fine Tree    Split Criterion: Gini, Max Depth: 8 

3 Medium Tree Max Features: Auto, Min Samples Split: 2 
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3.6.4 Model Training: 

Each of the 24 machine learning algorithms was trained using the training set. 

During training, the algorithms learned patterns and relationships in the data, allowing 

them to predict energy consumption accurately. 

3.6.5 Evaluation Metrics: 

In the third phase, the parametric performance of each machine learning algorithm 

was evaluated using multiple metrics. The following evaluation metrics were considered 

for both the training and testing phases: 

    a.  Root Mean Squared Error (RMSE): Measures the average difference between 

predicted and actual energy consumption values. 

    b.  R-squared (R2): Assesses the proportion of variance in the dependent variable 

(energy consumption) explained by the independent variables. 

    c.  Mean Squared Error (MSE): Calculates the average squared difference between 

predicted and actual values. 

    d.  Mean Absolute Error (MAE): Computes the average absolute difference between 

predicted and actual values. 

    e.  Prediction Speed: Measures the time taken by each algorithm to make predictions. 

3.6.5.1     Ranking of Algorithms: 

    After evaluating the performance of each algorithm based on the metrics 

mentioned above, the algorithms were ranked according to their efficacy and efficiency 

in predicting energy consumption. Efficacy was determined by their accuracy in 

predicting energy consumption, while efficiency was determined by their prediction 

speed. 
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3.6.5.2     Visualization: 

    Figure 3.1 presented a functional inside view of the training and testing phases. 

This figure provided insights into the workings of the machine learning algorithms during 

the training and testing phases. 

3.7 Optimization process  

There are many optimization techniques used for the improvement of algorithms 

for best-predicted result measures, as described below,  

i. Taguchi method  

ii. Response Surface Methodology  

iii. Artificial Neural Network  

iv. Genetic Algorithm  

v. Grey Relational Analysis (GRA)  

vi. Fuzzy Logic 

vii. Particle Swarm Optimization 

viii. Simulated Annealing  

ix. Principle Component Analysis  

x. Technique for Order of Preference by Similarity to Ideal Solution  
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The following figure 3.2 shows the optimization process. 

 

 

Figure 3.2 Optimization methods 

3.7.2 Taguchi Method  

The Taguchi method is a scientifically well-organized mechanism for evaluating 

and implementing improvements in products or processes. This perfection aims to 

improve the desired characteristics by studying the key variables controlling the process 

and optimizing the procedures to yield the best results. Taguchi recommends an 

orthogonal array (OA) for laying out of experiments. To design an experiment, select the 

most suitable OA to assign the parameters and interactions of columns. Taguchi 

suggested that Linear graphs and triangular tables make the assignment of parameters 

simple (Vikas, Roy, and Kumar 2014). The analysis of variance (ANOVA) is a statistical 

treatment commonly useful for the experimental results in determining the percentage 

contribution to each parameter against a stated confidence level. 

A study of the ANOVA table for a analysis helps determine the parameters 

needing control (Ross Phillips, 1996). Taguchi method is a statistical measure of 

performance named signal-to-noise ratio (S/N ratio). The S/N ratio can measure the 

deviation of the performance characteristics from the desired values. Performance 
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characteristics in the analysis of the S/N ratio are of three categories as follows (Vikas, 

Roy and Kumar 2014). 

Larger-the-better characteristics 

                                𝑺
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Nominal-the-better characteristics  
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Where  y୧ is the experimentally observed value and n is the repeated number of each 

experiment. y is the average of observed data and S୷
ଶ is the variance of y for each type of 

characteristics, with the above S/N transformation, the higher the S/N ratio the better is 

the result. Optimization of performance measures using parameter design of the Taguchi 

method is summarized (Muhammad et al. 2012) in the steps as shown in flow chart as 

shown in figure 3.3.  
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Figure 3.3 Performance measures flow using the Taguchi technique. 

3.7.3 Response Surface Methodology  

Response Surface Methodology is a static and mathematical technique utilized to 

model and analyse a process affected by various variables. The parameters that impact 

the process are known as dependent variables, while the outcomes are called independent 

variables, according to Khuri (2017). For instance, the hardness of meat can be influenced 

by cooking time (X1) and cooking temperature (X2). The meat's firmness can be altered 

under any treatment combination of X1 and X2 (Refinery et al., 2016; Rupi et al., 2015). 

Hence, when treatments can take continuous values of time and temperature, Response 

Surface Methodology is useful for developing, improving, and optimizing the response 

variable. In meat hardness, time (X1) and temperature (X2) are the parameters affecting 

the response variable and can be adjusted to achieve the desired meat hardness (Y). This 

relationship can be expressed as the dependent variable Y being a function of X1 and X2. 

 

 

 



59 

𝐘 = 𝐟(𝐗𝟏) + 𝐟(𝐗𝟐) + 𝐞                           3.4                             

where (𝑌)  is the response (dependent variable), (𝑋1)  and (𝑋2)  are independent 

variables and (𝑒) is the experimental error. 

Response surface methodology (RSM) is a technique that uses surface placement 

to understand the topography of the response surface. It aims to identify the region where 

the most appropriate response occurs and find the optimal operating conditions for a 

system under study. RSM employs two main experimental designs, namely Box-Behnken 

designs (BBD) and central composite designs (CCD). Recently, central composite 

rotatable design (CCRD) and face central composite design (FCCD) have also been 

utilized in optimization studies. To fit a statistical model, experimental data are evaluated 

using linear, quadratic, cubic or 2FI (two-factor interaction) models. The constant terms 

represent the coefficients of the model, including linear coefficients for independent 

variables (A, B, and C), interactive term coefficients (AB, AC, and BC), and quadratic 

term coefficients (A2, B2, and C2). To ensure model adequacy, correlation coefficient 

(R2), adjusted determination coefficient (Adj-R2), and adequate precision are used, and 

the model is considered adequate when its P-value < 0.05, lack of fit P-value > 0.05, R2 

> 0.9, and Adeq Precision > 4. Statistical significance of differences between means can 

be tested using analysis of variance (ANOVA).  

The design of experiments (DoE) is a crucial aspect of RSM, as it involves 

selecting points for examining the response. The mathematical model of the process is 

closely related to the design of experiments, and thus, the choice of experiment design 

significantly affects the accuracy of the response surface construction. RSM offers 

several advantages, including the ability to determine the interaction between 

independent variables, develop a mathematical model of the system, and save time and 

costs by reducing the number of trials needed. However, a significant disadvantage of the 

method is that it assumes a polynomial model at the second level, which may not be 

suitable for all systems with curvature. Therefore, experimental verification of the 

estimated values in the model is essential to ensure its accuracy. During the initial stage 

of the DoE, screening experiments are conducted to identify the variables with a 

significant impact on the response. If numerous variables influence the response, the 

variables that significantly affect the response are determined. The goal is to identify the 
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design variables that will be further investigated (Myers et al., 2004). The steps adopted 

in RSM are briefly presented in Figure 3.4. 

 

 

Figure 3.4 Steps for surface response method. 

3.7.4 Artificial Neural Network (ANN) 

An artificial neural network is a model that runs like a human brain by using many 

neurons consecutively and collects information through a learning process (X. Yang 

1AD). Complex problems whose analytical or numerical solutions are difficult to obtain 

can be solved by utilizing the adaptive learning ability of neural networks (Rafiq, 

Bugmann, and Easterbrook 2001). Generally, the design of a neural network comprises 

three main steps: configuration (i) how layers are organized and connected; learning (ii) 

how information is stored; generalization (iii) how the neural network produces 

reasonable outputs for inputs not found in training (Haykin and Simon 1999).  
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The multi-layer perceptions neural network is formed from numerous neurons 

with a parallel connection, which are jointed in several layers. The structure of this 

network contains the network's input data, the number of hidden middle layers with 

numerous neurons in each layer and an external layer with neurons connected to the 

output. ANNs are broadly classified into feedforward and backpropagation networks. 

Feedforward networks are those in which computation flow from the input nodes to the 

output nodes in a sequence. In a back-propagation network, signals may propagate from 

the output of any neuron to the input of any neuron. The artificial neuron evaluates the 

inputs and determines the strength of each by its weighting factor. The result of the 

summation function for all the weighted inputs can be treated as an input to an activation 

function from which the output of the neuron is evaluated. Then the output of the neuron 

is transmitted to subsequent neurons along the outgoing connections to serve as an input 

to them. When an input is presented and propagated forward through the neural network 

to compute an output for each neuron, the Mean Square (MS) error between the desired 

output and actual output is computed to reduce the MS error rapidly. An iterative error 

reduction of the gradient-descent method by adding a momentum term is performed 

(Rumelhart, Widrow, and Lehr (1994). After the learning process is finished, the neural 

network memorizes all the adjusted weights and is ready to predict the machining 

performances based on the knowledge obtained from the learning process (Lu et al. 

2009). A simple neural network can be represented as shown in figure 3.5 below. 

 

 

   Figure 3.5 A example of a simple layer structure of ANN 
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3.7.5 Genetic Algorithm (GA) 

The GA was developed on the probabilistic basis that the global optimum is 

searched in a random and parallel manner through the operations of reproduction, 

crossover and mutation (Sastry, Goldberg, and Kendall 2005). These algorithms maintain 

and control a population of solutions and implement their search for better solutions based 

on the ‘survival of the fittest strategy. GA can solve linear and nonlinear problems by 

exploring all regions of the state space and exploiting promising areas with a set of 

potential solutions or chromosomes (usually as bit strings) randomly generated or 

selected. The entire set of these chromosomes comprises a population. Figure 3.6 shows 

a flow chart for a simple GA (Chang et al. 2004).  

As depicted in Figure 3.6, a GA starts by randomly initializing the parent 

chromosomes represented in string, and the fitness of these chromosomes is then 

calculated based on the objective function. The reproduction process aims to allow the 

genetic information stored in the artificial strings to have functional fitness and survive 

the next generation. Crossover involves splitting up two chromosomes and combining 

one-half of each chromosome with the other pair. Mutation involves flipping a single bit 

of a chromosome. The chromosomes are then evaluated using a specific fitness criterion, 

and the best ones are kept while the others are removed. The process is repeated until the 

solution with the best fitness to meet the objective function criteria is received. 
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Figure 3.6 Flow of GA algorithm. 

3.7.6 Grey Relational Analysis (GRA)  

The grey Relational Analysis theory was developed for the new methods for solving 

the complicated interrelationship among the multiple performing characteristics. The 

grey system theory is an efficient technique which requires limited information to 

estimate the behaviour of an uncertainty system & discrete data problem. Figure 3.9 

shows simple steps in the GRA. Normalizing involves transforming the original sequence 

into an identical sequence. This is known as grey relational generating (Murugesan and 

Balamuruga 2012). There are three conditions of normalization. 

1. Lower is better. 

                       𝐗𝐢(𝐤) =  𝐌𝐚𝐱 𝐗𝐢(𝐤)ି𝐗𝐢(𝐤)
𝐌𝐚𝐱 𝐗𝐢(𝐤)ି𝐌𝐢𝐧 𝐗𝐢(𝐤)

                                     3.5    

                            



64 

2. Higher is better.  

                      𝑿𝒊(𝒌) =   𝑿𝒊(𝒌)ି𝑴𝒊𝒏 𝑿𝒊(𝒌)
𝑴𝒂𝒙 𝑿𝒊(𝒌)ି𝑴𝒊𝒏 𝑿𝒊(𝒌)

                                        3.6    

3. Nominal is better.  

                      𝑿𝒊(𝒌) =  𝟏ି | 𝑿𝒊(𝒌)ି𝑿𝒐𝒃(𝒌)| 
𝑴𝒂𝒙 𝑿𝒊(𝒌)ି𝑴𝒊𝒏 𝑿𝒐𝒃(𝒌)

                                    3.7                 

Where I = 1, 2,…n; k = 1, 2,…m; Xi*(k) is the normalized value of the kth element in the 

ith sequence, X0b (k) i the desired value of the ikh quality characteristic, max Xi*(k) is the 

largest value of Xi (k), and min Xi*(k) is the smallest value of Xi (k), n is the number of 

experiments and m is the number of quality characteristics. 

 

 

Figure 3.7 An example of standard steps adopted in GRA 
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3.7.7 Particle swarm optimisation 

Particle swarm optimization (PSO) is an evolutionary computational technique; 

Particle swarm optimization was developed in 1995 by Kennedy and Eberhart (Slowik 

2011). This optimization and search technique model the natural swarm behaviour seen 

in many species of birds returning to roost, a group of fish, the swarm of bees, etc. The 

PSO may find optimal (or near-optimal) solutions to numerical and qualitative problems 

(Talbi and Batouche n.d.). PSO methods are inspired by particles moving around in the 

defined search space. The individuals in a PSO have a position and a velocity. The PSO 

method remembers the best position found by any particle. 

Additionally, each particle remembers its own previously best-found position. A 

particle moves through the specified solution space along a trajectory defined by its 

velocity, the draw to return to a previous promising search area, and an attraction to the 

best location discovered by its close neighbours. One advantage of particle swarm 

optimisation over other derivative-free methods is the reduced number of parameters to 

tune and constraint acceptance. Particle swarm optimization has been used for a wide 

range of search applications and specific optimization tasks. PSO has been successfully 

applied in many areas: Function optimization, Artificial neural network training, 

Proportional and integral fuzzy system control, and Other near-optimal search and 

optimization areas where GA can be applied. 

The basic structure of any particle in a selected population consists of five 

components. 

1. 
௫
→ is a vector containing the current location in the solution space? The size of 

௫
→ 

is defined by the number of variables used by the problem being solved. 

2. Fitness is the quality of the solution represented by the vector 
௫
→, as computed by 

a problem-specific evaluation function. 

3. 
௏
→ is a vector containing the velocity for each dimension of 

௫
→. The velocity of a 

dimension is the step size that the corresponding 
௫
→ value will change into at the 

next iteration. Changing the 
௏
→ values changes the direction the particle will move 

through in the search space, causing the particle to make a turn. The velocity 

vector is used to control the range and resolution of the search. 
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4. Pbest is the fitness value of the best solution yet found by a particle. 

5. 
௉
→ is the copy of the 

௫
→ for the location that generated the particle's Pbest. Jointly, Pbest  

and 
௫
→  Comprise the particle's memory, which controls the particle's return to a 

definite search region.         

6. Each particle is also aware of the current best fitness in the neighbourhood for any 

iteration. A neighbourhood may consist of some small group of particles, in which 

case the neighbourhoods overlap, and every particle is in multiple neighbourhoods. 

Particles in a swarm are related socially; each particle is a member of one or more 

neighbourhoods. Each individual tries to emulate the behaviour of the best of their 

neighbours. Everyone can be thought of as moving through the feature space with a 

velocity vector that its neighbour's influence.  Figure 3.8 shows the simple PSO 

algorithms. 

 

Figure 3.8 Flow chart of simple PSO algorithms. 
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3.7.8 Simulated Annealing 

Simulated Annealing (SA) is an effective and general form of optimization.  It helps 

find global optima in large numbers of local optima.  “Annealing” refers to an analogy 

with thermodynamics, specifically how metals cool and anneal.  Simulated annealing 

uses the objective function of an optimization problem instead of the energy of a material 

(Zhan et al. 2016). Implementation of SA is simple.  The algorithm is hill-climbing, 

except it picks a random move instead of the best one.  If the selected move improves the 

solution, then it is always accepted.  Otherwise, the algorithm makes a move anyway with 

some probability of less than 1.  The probability decreases exponentially with the 

“badness” of the move, which is the amount ∆E by which the solution is worsened. 

3.7.9 Principal Component Analysis 

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal 

transformation to convert a set of observations of possibly correlated variables (entities, 

each of which takes on various numerical values) into a set of linearly 

uncorrelated variables called principal components. This transformation is defined so the 

first principal component has the largest possible variance (that is, accounts for the 

variability in the data), and each succeeding component has the highest variance possible 

under the constraint that it is orthogonal to the preceding components. The resulting 

vectors (each being a linear combination of the variables and containing n observations) 

are an uncorrelated orthogonal basis set. PCA is sensitive to the relative scaling of the 

original variables.  

3.8 Architect / Pseudocode of top 3 models 

3.8.1 Fine Trees 

Fine Trees is a machine learning algorithm used for decision tree induction. The 

following is a simple example of the pseudocode for the Fine Trees algorithm: 

1. Fine Trees is a machine learning algorithm used for decision tree induction. The 

following is a simple example of the pseudocode for Fine Trees algorithm: 

2. Initialize the decision tree with the root node. 

3. Split the data set into smaller subsets using a split criterion (e.g. information gain) 
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4. For each subset: 

a. Evaluate the impurity of the data (e.g. using Gini impurity) 

b. If the impurity is below a certain threshold, create a leaf node and store the 

predicted class label. 

c. If the impurity is above the threshold, repeat the process from step 2 on the 

subset. 

5. Repeat the process for all subsets until the stopping criteria is met (e.g. all data 

belong to the same class or a maximum depth has been reached) 

Return the decision tree. 

3.8.2 Architecture of fine tree: 

 Fine Trees is a type of decision tree algorithm used in machine learning for 

classification and regression tasks. It's an extension of the classic decision tree algorithms 

that aim to produce smaller and more interpretable trees by avoiding overfitting and 

making the trees more robust to noisy data. 

The architecture of Fine Trees can be thought of as interconnected nodes, where 

each node represents a decision or a prediction. Each node in the tree splits the data into 

smaller subsets based on a certain feature, and the impurity of the data is evaluated in 

each subset. If the impurity is below a certain threshold, a leaf node is created, and the 

prediction is made based on the class label or numeric value in that subset. The process 

continues until the stopping criteria are met. The Fine Trees algorithm typically uses a 

more sophisticated split criterion and impurity evaluation method than the classic 

decision tree algorithms, resulting in trees that are more accurate and less prone to 

overfitting. The final decision tree is a graphical representation of the series of decisions 

and predictions made by the algorithm, and it's used to make predictions on new, unseen 

data. 

In the Classification Learner App in MATLAB, Fine trees is one of the available 

machine learning algorithms for binary or multi-class classification problems. Fine trees 

are an ensemble method that builds multiple decision trees on the data and combines the 

predictions of the individual trees to make the final prediction. 
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The following hyper-parameters can be optimized for fine trees in the 

Classification Learner App: 

Number of Trees: This hyper-parameter controls the number of decision trees in 

the ensemble. Increasing the number of trees typically results in improved performance, 

but also increases the computational cost and the risk of overfitting. 

MinLeaf Size: This hyper-parameter controls the minimum number of samples 

required to be at a leaf node in the decision tree. Increasing the value of MinLeaf Size 

results in smaller and simpler trees, which can reduce the risk of overfitting but may also 

decrease the accuracy of the model. 

Split Criterion: This hyper-parameter determines the criterion used to split the 

nodes in the decision tree. The options are 'gdi', 'twoing', or 'deviance'. MaxNumSplits: 

This hyper-parameter controls the maximum number of splits in the decision tree. 

Increasing the value of MaxNumSplits results in more complex trees, which can increase 

the accuracy of the model but also increases the risk of overfitting. 

The Classification Learner App provides several options for hyper-parameter 

optionor, including grid search, Bayesian optimization, random search, and two-phase 

optimization, as described in my previous answer. Can use these methods to find the 

optimal values for the hyper-parameters of the fine tree algorithm in the app. 

Pseudo code 

Input: training data set, number of trees (n_trees) 

Output: list of n_trees decision trees 

For i in 1 to n_trees: 

    # Sample data with replacement from the training set to create a new training 

set 

    sample_data = random sampling of the training data with replacement 

    # Train a decision tree on the sampled data 

    tree = fit a decision tree to sample_data 
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    # Add the trained tree to the list of trees 

    add tree to list of trees 

Return the list of trees 

3.8.3 Architecture of Medium Trees 

A decision tree is built by recursively splitting the data into smaller and smaller 

subsets based on the values of the input features. At each node in the tree, the feature that 

best splits the data is chosen and the tree branches based on the different values of that 

feature. The process continues until a stopping criterion is met, such as a minimum 

number of samples in a leaf node or a maximum tree depth. 

The final decision tree can be thought of as decisions or "if-then" statements, 

where each node in the tree represents a decision based on the values of the input features, 

and each leaf node represents a prediction for the target variable. The architecture of the 

decision tree is determined by the features chosen for each split and the stopping criterion 

used to grow the tree. 

The architecture of decision trees in machine learning finds the relationships 

between the input features and the target variable to make accurate predictions. 

In the Classification Learner App in MATLAB, Medium trees is one of the 

available machine learning algorithms for binary or multi-class classification problems. 

Medium trees are a variant of the decision tree algorithm that balances the trade-off 

between accuracy and computational cost by using a medium-sized tree. 

The following hyper-parameters can be optimized for medium trees in the 

Classification Learner App: 

MinLeafSize: This hyper-parameter controls the minimum number of samples 

required to be at a leaf node in the decision tree. Increasing the value of MinLeafSize 

result in smaller and simpler trees, which can reduce the risk of overfitting but may also 

decrease the accuracy of the model. SplitCriterion: This hyper-parameter determines the 

criterion used to split the nodes in the decision tree. The options are 'gdi', 'twoing', or 

'deviance'. 
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MaxNumSplits: This hyper-parameter controls the maximum number of splits in 

the decision tree. Increasing the value of MaxNumSplits results in more complex trees, 

which can increase the accuracy of the model but also increases the risk of overfitting. 

The Classification Learner App provides several options for hyper-parameter 

optimlon, including grid search, Bayesian optimization, random search, and two-phase 

optimization.  

3.9 Pseudo code of medium tree 

function create_decision_tree(data, features, target, min_samples, max_depth, 

current_depth): 

  # check if the stopping criteria are met 

  if the number of samples in data is less than min_samples or current_depth >= 

max_depth: 

    return create_leaf_node(data, target) 

  # find the best feature to split the data on 

  best_feature = find_best_feature(data, features, target) 

  # create a decision node for the best feature 

  decision_node = create_decision_node(best_feature) 

  # split the data based on the best feature 

  for each value of best_feature: 

    subset = data with best_feature equal to value 

    child = create_decision_tree(subset, features, target, min_samples, max_depth, 

current_depth + 1) 

    add child to decision_node 

  return decision_node 
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function create_leaf_node(data, target): 

  # calculate the target value for the leaf node 

  target_value = average of target in data 

  return create_node(target_value) 

function find_best_feature(data, features, target): 

  best_feature = None 

  best_score = -inf 

  for each feature in features: 

    score = calculate_split_score(data, feature, target) 

    if score > best_score: 

      best_score = score 

      best_feature = feature 

  return best_feature 

function calculate_split_score(data, feature, target): 

  # calculate a score for the feature based on the target variable 

  # such as the reduction in variance or information gain 

  return score 

"Bagged Trees" is short for "Bootstrapped Aggregated Trees," which is a type of 

ensemble learning in machine learning. Ensemble learning involves combining multiple 

individual models to create a more robust and accurate overall model. 
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3.10 Architecture of Bagged Trees 

In the Bagged Trees, the idea is to train multiple decision trees on different subsets 

of the training data, where each subset is created by randomly sampling the data with 

replacement. The subsets are often called bootstrapped samples. The final prediction for 

a new instance is obtained by aggregating the predictions of all the individual trees, such 

as by taking a majority vote for classification or averaging for regression. 

Using multiple trees allows Bagged Trees to capture a variety of relationships 

between the input features and the target variable, and to reduce the impact of overfitting, 

which can occur when a single decision tree is trained on the full data set. The architecture 

of Bagged Trees in machine learning combines the strengths of multiple decision trees, 

while mitigating their weaknesses, to create a more accurate and robust overall model. 

3.11 Pseudo code of Bagged tress 

function train_bagged_trees(data, features, target, num_trees, sample_ratio): 

  trees = [] 

  for i = 1 to num_trees: 

    sample = random sample of data with replacement, size = sample_ratio * size of data 

    tree = train_decision_tree(sample, features, target) 

    add tree to trees 

  return trees 

function predict_bagged_trees(trees, instance): 

  predictions = [] 

  for each tree in trees: 



74 

    prediction = predict_decision_tree(tree, instance) 

    add prediction to predictions 

  return majority vote of predictions. 

3.12 Pseudo code of optimization methods used for the best candidate of ML 
algorithms Grid search and Random search 

The optimization method used to find the best candidate ML algorithm depends 

on the specific problem and type of ML algorithm being considered. Common 

optimization methods used in ML include grid search, random search, and gradient-based 

optimization.  

3.12.1 Pseudocode of Grid search  

function grid_search(data, features, target, algorithm_params, metric): 

  best_params = None 

  best_score = -inf 

  for each combination of params in algorithm_params: 

    model = train_algorithm(data, features, target, params) 

    score = evaluate_model(model, data, target, metric) 

    if score > best_score: 

      best_params = params 

      best_score = score 

  return best_params, best_score 

Pseudocode of optimization methods used for the best candidate of random search 

function random_search(data, features, target, algorithm_params, metric, 

num_iterations): 
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  best_params = None 

  best_score = -inf 

  for i = 1 to num_iterations: 

    params = random sample of algorithm_params 

    model = train_algorithm(data, features, target, params) 

    score = evaluate_model(model, data, target, metric) 

    if score > best_score: 

      best_params = params 

      best_score = score 

  return best_params, best_score 

3.13 Proposed optimized ML model  

To optimize an ML model based on a pseudo code, one needs to take these steps: 

Split the data into training and testing sets. That uses the training set to train the 

model and the testing set to evaluate its performance. 

Choose an appropriate evaluation metric. Depending on the problem trying to 

solve, use accuracy, precision, recall, F1 score, or another metric. 

Train the model using the training data. This may involve selecting hyper-

parameters, such as the learning rate or the number of hidden layers and tuning them to 

achieve the best performance. 

Evaluate the model on the testing data using the evaluation metric chosen in step 

3. This gives a sense of how the model is performing. 

 A different algorithm or changes the existing model, such as adding more hidden 

layers or changing the activation function. 
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Repeat the process until satisfied with the performance of the model. 

It is essential to remember that optimizing an ML model is often an iterative 

process, and it may take several rounds of experimentation to arrive at a final model that 

meets your requirements as per below. Figure 3.9 may describe a suitable methodology.  

 

 
Figure 3.9 Flow of proposed optimized ML model. 

3.14 Parameters for optimization in ML 

Building a decision tree that accurately represents the underlying data can be a 

challenging task. To address this, there are various steps and parameters that can be 

optimized to improve the performance of the decision tree model. These steps involve 

preparing the data, splitting it into training and testing sets, building the decision tree 

using an appropriate algorithm, tuning the hyper parameters, cross validating the model, 

and evaluating its performance using suitable metrics. By following these steps and 

optimizing the relevant parameters, decision tree was creating models that better 

represent the data and provide more accurate prediction. 

Data preparation: The first step is to prepare the data by cleaning, pre-

processing, and feature engineering. This involves dealing with missing values, handling 
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categorical variables, scaling, and transforming the data to make it suitable for decision 

tree models. 

Splitting the data: Once the data is prepared, it is split into training and testing 

sets. The training set is used to build the decision tree model, while the testing set is used 

to evaluate the model's performance. 

Building the decision tree: The next step is to build the decision tree using an 

appropriate algorithm. There are different algorithms for building decision trees such as 

ID3, C4.5, CART, and Random Forest. The algorithm selected can be based on the data, 

performance metrics, and requirements of the problem. 

Tuning the hyper parameters: Decision trees have hyper parameters that can be 

tuned to optimize the model's performance. Some of the hyper parameters that can be 

tuned include the maximum depth of the tree, minimum number of samples required to 

split an internal node, criterion for splitting, and maximum number of leaf nodes. 

Cross-validation: Cross-validation is used to evaluate the performance of the 

decision tree model and to choose the best set of hyper parameters. It involves splitting 

the training data into several folds and testing the model on each fold while using the 

other folds for training. 

Evaluating the performance: Finally, the performance of the model is evaluated 

using metrics such as accuracy, precision, recall, and F1 score. These metrics help to 

determine whether the model is overfitting, under fitting, or performing optimally. 

3.15 Optimization hyper parameters 

Hyper parameter optimization is a crucial step in training a machine learning 

model, as it involves tuning various settings that control the learning process. The optimal 

values of hyperparameters can significantly impact the model's performance. Here are 

some common hyper parameters that are often optimized for different types of machine 

learning models. 

Maximum number of splits – The software searches among integers log-scaled 

in the range [1,max(2,n–1)], where n is the number of observations. 
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Split criterion – The software searches among Gini's diversity index, Towing rule, 

and Maximum deviance reduction. 

3.15.1 Additional Hypermeter  

Some additional hyperparameters that are commonly found in various machine 

learning models are  

 Surrogate decision splits 

Surrogate decision splits, a crucial aspect of medical ethics, present complex 

challenges for individuals who find themselves designated as substitute decision-makers 

for incapacitated patients. When a patient is unable to express their wishes due to 

unconsciousness, cognitive impairment, or other reasons, the responsibility of making 

critical medical decisions falls on surrogate decision-makers, often leading to dilemmas 

and uncertainties. These splits arise when the surrogate faces difficult choices with 

unclear guidance from the patient, conflicting opinions within the family or medical team, 

intricate medical conditions, ethical concerns, and emotional burdens. As a central theme 

in medical ethics and end-of-life care, understanding how surrogate decision splits are 

navigated is of utmost importance in ensuring patient autonomy, respecting their values, 

and arriving at decisions that genuinely align with their best interests. 

 Maximum surrogates per node 

In the context of distributed computing and parallel processing, the term 

"surrogate" is not commonly used to refer to nodes or processors. Instead, "surrogate" 

usually pertains to an entity that represents or acts on behalf of another in certain 

distributed computing models or algorithms. In distributed computing, the maximum 

number of surrogates (also referred to as "proxies" or "agents") per node typically 

depends on the specific architecture and algorithm being used. The number of surrogates 

per node is often limited by factors such as memory capacity, processing power, and the 

communication overhead involved in managing and coordinating surrogates. 
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3.15.2 Decision Trees 

Decision trees are easy to interpret, fast for fitting and prediction, and low on 

memory usage, but they can have low predictive accuracy. Try to grow simpler trees to 

prevent overfitting. Control the depth with the Maximum number of splits setting. 

Table 3.3 Model Flexibility table 

Classifier 
Type Interpretability Model Flexibility 

Medium 
Tree 

 

Easy Medium 
Medium number of leaves for finer distinctions between 
classes (maximum number of splits is 20). 

Fine Tree 

 

Easy High 
Many leaves to make many fine distinctions between 
classes (maximum number of splits is 100). 

3.15.3 Tree Model Hyper Parameter Options 

Classification trees in Classification Learner use the fitctree function. 

Maximum number of splits 

Specify the maximum number of splits or branch points to control the depth of 

your tree. When grow a decision tree, consider its simplicity and predictive power. To 

change the number of splits, click the buttons or enter a positive integer value in 

the Maximum number of splits box. 

A fine tree with many leaves is usually highly accurate on the training data. 

However, the tree might not show comparable accuracy on an independent test set. A 

leafy tree tends to overtrain, and its validation accuracy is often far lower than its training 

(or resubstituting) accuracy. 

A coarse tree does not attain high training accuracy. But a coarse tree can be more 

robust because its training accuracy can approach that of a representative test set. Also, a 

coarse tree is easy to interpret. 
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3.15.4 Split criterion 

Specify the split criterion measure for deciding when to split nodes. Try each of 

the three settings to see if they improve the model with your data. 

Split criterion options are Gini's diversity index, Twoing rule, or Maximum deviance 

reduction (also known as cross entropy). 

The classification tree tries to optimize to pure nodes containing only one class. 

Gini's diversity index (the default) and the deviance criterion measure node impurity. The 

twoing rule is a different measure for deciding how to split a node, where maximizing 

the twoing rule expression increases node purity. 

Surrogate decision splits — Only for missing data. 

Specify surrogate use for decision splits. If have data with missing values, use 

surrogate splits to improve the accuracy of predictions. 

Set Surrogate decision splits to On, the classification tree finds 10 surrogate 

splits at each branch node. To change the number, click the buttons or enter a positive 

integer value in the Maximum surrogates per node box. 

Set Surrogate decision splits to Find All, the classification tree finds all surrogate 

splits at each branch node. The Find All setting can use considerable time and memory.  

Classifier 

Type 
Interpretability Ensemble Method Model Flexibility 

Bagged 

Trees 

 

Hard Random forest 

Bag, with Decision 

Tree learners 

High — increases with Number of 

learners setting. 

 

Ensemble classifiers in Classification Learner use the fitcensemble function. Set 

these options: 
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For help choosing Ensemble method and Learner type, see the Ensemble table. 

Try the presets first. 

3.15.5 Maximum number of splits 

For boosting ensemble methods, specify the maximum number of splits or branch 

points to control the depth of your tree learners. Many branches tend to overfit, and 

simpler trees can be more robust and easier to interpret. Experiment to choose the best 

tree depth for the trees in the ensemble. 

3.16 Number of learners 

Many learners can produce high accuracy but can be time consuming to fit. Start 

with a few dozen learners, and then inspect the performance. An ensemble with good 

predictive power can need a few hundred learners. 

3.17 Summary 

A Penta-folded cascading methodology was used in this study. 

In the first phase, the SEIL dataset is used. In the second phase, the training and 

testing samples with a random permutation.  The training set is used to train 24 machine-

learning algorithms. In the third phase, the parametric performance of each ML algorithm 

The same parameters for the testing phase are computed. The fourth phase is the 

ranking of algorithms based on their efficacy and efficiency are established. Finally, the 

fifth phase is enhancing the results by optimizing variant algorithms on the best-ranked 

algorithms regarding efficacy and efficiency.  
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION  

4.1 Introduction 

This chapter presents the experimental results, analysis and discussions of the 
Machine learning algorithm. The results presented started with elements and phase 
analysis data attempting to determine the best ML algorithm based on empirical fact. The 
systematic and empirical evaluation of a wide range of machine learning algorithms 
reveals that the Bagged Trees, Fine Trees, and Medium Trees algorithms are the top three 
ranked algorithms for energy demand forecasting using the SEIL dataset. This finding 
presents a knowledge add-on to the SEIL project consisting of the recommendation of 
the best machine learning algorithm for energy demand forecasting. 

In this section, an analysis of simulation results was conducted to determine the 
best machine learning algorithm for energy demand forecasting. Previous literature has 
provided little information on identifying the best algorithm empirically. The study 
evaluated a wide range of machine learning algorithms and found that Bagged Trees, Fine 
Trees, and Medium Trees are the top three ranked algorithms for energy demand 
forecasting using the SEIL dataset. This finding adds to the knowledge of the SEIL 
project by recommending the best machine learning algorithm for energy demand 
forecasting. Additionally, a new and customized algorithm is suggested for further 
improvements in efficiency and efficacy. The study suggests that the customized Medium 
Trees algorithm is recommended for efficiency, while the customized Bagged Trees 
method is recommended for higher-order efficacy. These conclusions are based solely on 
empirical data and graphical facts in the study. The study shows that the performance of 
a load management system depends on its efficiency and effectiveness, and selecting the 
optimum trade-off between the two is crucial. Machine learning algorithms are reported 
to be the best candidates for load management and demand forecasting but selecting the 
relevant algorithm(s) for a specific application is essential for higher performance. This 
study contributes to extending the research on the SEIL dataset by proposing the best 
candidate machine learning algorithm for more performance, supported by the empirical 
performance parameters of machine learning algorithms.  For simulation and testing 
MATLAB software used, all figures and tables produced by MATLAB software. 
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4.2 Best candidate of machine algorithm for energy demand prediction 

In this section, a thorough empirical evaluation was conducted to identify the best 
machine learning algorithm for energy demand prediction using the SEIL dataset. The 
visual inferences of Table 4.1 are presented in Figures 4.1 - 4.8 for easy reference (with 
the actual table in Appendix A). The predictive vs. actual and residual graphs for each 
algorithm are illustrated in Figures 4.7 - 4.17. This study evaluated 24 machine learning 
prediction algorithms based on benchmark performance parameters. The predicted vs. 
actual graph shows the true response on the x-axis and the predicted response on the y-
axis. The black line represents the approximate linearity of the curves, while the blue dots 
depict the actual observations. The variation between the predicted and actual values 
indicates the algorithm's prediction performance, with larger variation corresponding to 
poorer performance. Table 4.2 shows the degree and measure of variation for each 
algorithm, which is a function of RMSE, R-Squared, MSE, and MAE for both training 
and testing events that having less per centage of error then previous work done by RoSe 
et al. (2023). Efficiency is also established based on prediction speed and computation 
time. Higher error measure values correspond to poorer algorithm performance. Figures 
4.17 and 4.19 also include the residual error for training and testing of the top three 
performing algorithms, with the predicted response on the x-axis and the residual error 
on the y-axis. 

The efficacy of the candidate algorithm is indicated by the proximity of residual 
error to the predicted observation, which is also supported by the empirical and absolute 
values in Table 3. The top three performing machine learning algorithms for energy 
demand prediction at a university campus based on SEIL datasets were selected, and a 
detailed investigation of their performance parameters was conducted. Graphical 
illustrations and empirical findings have revealed that Bagged Trees (1), Fine Trees (2), 
and Medium Trees (3) are the top three performing algorithms in terms of efficacy. 
However, a reverse ranking was observed in terms of efficiency, which can also be 
inferred from Table 4.1. The performance measures, such as RMSE, R-Squared, MSE, 
and MAE, indicate the algorithm's efficacy, while prediction speed and training time 
reflect its efficiency.  and MAE, indicate the algorithm's efficacy, while prediction speed 
and training time reflect its efficiency.  
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Table 4.1        Training and testing table 
 

Algorithm 
Name  

Training Testing 

RMSE 
R-

Squared MSE MAE 

Prediction 
speed 

(obs/sec) 
Training 

time RMSE  
R-

Squared  MSE MAE 
Fine Tree 2.11E+06 1 4.44E+12 1.40E+06 3000000 24.148 2.38E+06 1 5.64E+12 1.41E+06 
Linear 1.35E+08 0.54 1.83E+16 8.42E+07 790000 22.065 1.36E+08 0.53 1.84E+16 8.45E+07 
Interactions 
Linear 1.22E+08 0.62 1.48E+16 8.02E+07 110000 65.108 1.23E+08 0.62 1.50E+16 8.05E+07 

Robust Linear 1.64E+08 0.32 2.68E+16 5.25E+07 790000 19.44 1.65E+08 0.31 2.71E+16 5.30E+07 

Stepwise Linear 1.18E+08 0.65 1.39E+16 7.63E+07 600000 24417 1.18E+08 0.64 1.40E+16 7.66E+07 

Fine Tree 2.11E+06 1 4.44E+12 1.40E+06 3300000 8.3244 2.38E+06 1 5.64E+12 1.41E+06 

Medium Tree 2.81E+06 1 7.87E+12 1.42E+06 3700000 8.0721 3.20E+06 1 1.02E+13 1.43E+06 

Coarse Tree 4.26E+06 1 1.81E+13 1.49E+06 4000000 7.5477 4.63E+06 1 2.15E+13 1.50E+06 
Linear SVM 8.67E+08 18.13 7.52E+17 6.69E+08 1400000 8892.6 8.68E+08 18.13 7.54E+17 6.69E+08 

Quadratic SVM 3.46E+08 2.05 1.20E+17 2.98E+08 240000 18985 3.45E+08 2.02 1.19E+17 2.98E+08 

Cubic SVM 6.38E+08 9.35 4.07E+17 5.50E+08 260000 5761.7 6.37E+08 9.31 4.06E+17 5.50E+08 

Fine Gaussian 
SVM 1.04E+08 0.72 1.08E+16 8.83E+07 270000 10099 1.04E+08 0.72 1.08E+16 8.85E+07 

Medium 
Gaussian SVM 2.10E+08 0.13 4.43E+16 1.80E+08 1200000 17835 2.11E+08 0.13 4.44E+16 1.80E+08 
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Table 4.1 Continued 

 Training Testing 

Algorithm 
Name RMSE 

R-
Squared MSE MAE 

Prediction 
speed 

(obs/sec) 
Training 

time RMSE  
R-

Squared  MSE MAE 

Boosted Trees 2.33E+07 0.99 5.42E+14 1.66E+07 180000 62.082 2.31E+07 0.99 5.34E+14 1.66E+07 

Bagged Trees 1.58E+06 1 2.48E+12 1.06E+06 120000 119.87 1.78E+06 1 3.17E+12 1.09E+06 

Squared 
Exponential 
GPR 

7.68E+07 0.85 5.89E+15 4.62E+07 200 9102.8 7.66E+07 0.85 5.87E+15 4.62E+07 

Matern 5/2 GPR 6.40E+07 0.9 4.10E+15 3.87E+07 110 15589 6.40E+07 0.9 4.10E+15 3.88E+07 

Exponential 
GPR 6.86E+07 0.88 4.70E+15 3.73E+07 130 14212 6.87E+07 0.88 4.72E+15 3.73E+07 

Rational 
Quadratic GPR 7.30E+07 0.86 5.33E+15 4.11E+07 110 15637 7.28E+07 0.87 5.29E+15 4.11E+07 

Narrow Neural 
Network 3.18E+07 0.97 1.01E+15 1.04E+07 1000000 254.45 3.12E+07 0.98 9.76E+14 1.03E+07 

Medium Neural 
Network 2.54E+07 0.98 6.46E+14 1.46E+07 1100000 396.17 2.51E+07 0.98 6.32E+14 1.46E+07 

Wide Neural 
Network 1.81E+07 0.99 3.27E+14 1.14E+07 630000 1238.8 1.79E+07 0.99 3.19E+14 1.14E+07 
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Table 4.1 Continued 
 
 Training Testing 

Algorithm 
Name RMSE 

R-
Squared MSE MAE 

Prediction 
speed 

(obs/sec) 
Training 

time RMSE  
R-

Squared  MSE MAE 

Bilayered 
Neural Network 3.77E+08 2.62 1.42E+17 3.21E+08 1000000 35.635 3.77E+08 2.6 1.42E+17 3.20E+08 

Trilayered 
Neural Network 3.77E+08 2.62 1.42E+17 3.21E+08 870000 48.817 3.77E+08 2.6 1.42E+17 3.20E+08 

 

Coarse Gaussian 
SVM 2.17E+08 0.19 4.69E+16 1.82E+08 1300000 18127 2.17E+08 0.2 4.71E+16 1.82E+08 
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Table 4.2 Training and testing of the different algorithms with the result (B) 

Algorithm RMSE R-Squared MSE MAE 

Linear 1.36 x 10+08 0.53 1.84 x 10+16 8.45 x 10+07 

Interactions Linear 1.23 x 10+08 0.62 1.50 x 10+16 8.05 x 10+07 

Robust Linear 1.65 x 10+08 0.31 2.71 x 10+16 5.30 x 10+07 

Stepwise Linear 1.18 x 10+08 0.64 1.40 x 10+16 7.66 x 10+07 

Fine Trees 2.38 x 10+06 1 5.64 x 10+12 1.41 x 10+06 

Medium Trees 3.20 x 10+06 1 1.02 x 10+13 1.43 x 10+06 

Coarse Tree 4.63 x 10+06 1 2.15 x 10+13 1.50 x 10+06 

Linear SVM 8.68 x 10+08 −18.13 7.54 x 10+17 6.69 x 10+08 

Quadratic SVM 3.45 x 10+08 −2.02 1.19 x 10+17 2.98 x 10+08 

Cubic SVM 6.37 x 10+08 −9.31 4.06 x 10+17 5.50 x 10+08 

Fine Gaussian SVM 1.04 x 10+08 0.72 1.08 x 10+16 8.85 x 10+07 

Medium Gaussian 
SVM 2.11 x 10+08 −0.13 4.44 x 10+16 1.80 x 10+08 

Coarse Gaussian 
SVM 2.17 x 10+08 −0.2 4.71 x 10+16 1.82 x 10+08 

Boosted Trees 2.31 x 10+07 0.99 5.34 x 10+14 1.66 x 10+07 
Bagged Trees 1.78 x 10+06 1 3.17 x 10+12 1.09 x 10+06 

Squared Exponential 
GPR 7.66 x 10+07 0.85 5.87 x 10+15 4.62 x 10+07 

Matern 5/2 GPR 6.40 x 10+07 0.9 4.10 x 10+15 3.88 x 10+07 

Exponential GPR 6.87 x 10+07 0.88 4.72 x 10+15 3.73 x 10+07 

Rational Quadratic 
GPR 7.28 x 10+07 0.87 5.29 x 10+15 4.11 x 10+07 

Narrow Neural 
Network 3.12 x 10+07 0.98 9.76 x 10+14 1.03 x 10+07 

Medium Neural 
Network 2.51 x 10+07 0.98 6.32 x 10+14 1.46 x 10+07 

Wide Neural 
Network 1.79 x 10+07 0.99 3.19 x 10+14 1.14 x 10+07 

Bi-layered Neural 
Network 3.77 x 10+08 −2.6 1.42 x 10+17 3.20 x 10+08 

Tri-layered Neural 
Network 3.77 x 10+08 −2.6 1.42 x 10+17 3.20 x 10+08 
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Figure 4.1  Training and testing RMSE 

 

 

Figure 4.2  Training and Testing R-Squared 
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Figure 4.3  Training and testing MSE 

 

 
Figure 4.4  Training and testing MAE 
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Figure 4.5  Prediction speed 

 

 

Figure 4.6  Training time 
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In the context of energy consumption prediction, certain algorithms, notably Fine 

Trees and Bagged Trees, have demonstrated outstanding performance with low RMSE 

and high R-Squared, indicating their proficiency in making accurate predictions. 

Conversely, algorithms like Linear SVM and Tri-layered Neural Network exhibited 

relatively higher RMSE and negative R-Squared, suggesting that they may not be the 

optimal choices for this particular task. 

 An appropriate algorithm plays a pivotal role in achieving precise and efficient 

results in energy consumption prediction. By analyzing the provided performance 

metrics, further examination and comparison can be undertaken to identify the most 

suitable algorithm tailored to meet the specific requirements and objectives of the energy 

management project, Here's a summary of the performance metrics for the algorithms: 

Linear: 

        RMSE: 1.36 x 108 

        R-Squared: 0.53 

        MSE: 1.84 x 1016 

        MAE: 8.45 x 107 

Interactions Linear: 

        RMSE: 1.23 x 18 

        R-Squared: 0.62 

        MSE: 1.50 x 1016 

        MAE: 8.05 x 107 

Robust Linear: 

        RMSE: 1.65 x 108 

        R-Squared: 0.31 

        MSE: 2.71 x 1016 
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        MAE: 5.30 x 107 

Stepwise Linear: 

        RMSE: 1.18 x 108 

        R-Squared: 0.64 

        MSE: 1.40 x 1016 

        MAE: 7.66 x 107 

Fine Trees: 

        RMSE: 2.38 x 106 

        R-Squared: 1 

        MSE: 5.64 x 1012 

        MAE: 1.41 x 106 

Figure 4.1 shows bar graph based on the RMSE values of different algorithms for 

predicting energy consumption, the algorithm with the lowest RMSE value is "Bagged 

Trees" for the testing phase: 

Bagged Trees: 

    Testing RMSE: 1.78E+06 (1.78 million) 

This indicates that the Bagged Trees algorithm is the best performer among the 

evaluated models for energy consumption prediction. It has the lowest RMSE on the 

testing dataset, suggesting that it provides the most accurate predictions when dealing 

with unseen data (RoSe et al. 2023). 

Comparatively, other algorithms may have higher RMSE values on the testing 

dataset, which means they are less accurate in their predictions compared to Bagged 

Trees. 
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It's important to note that while Bagged Trees performs the best based on the 

provided RMSE values, other factors such as model complexity, computational 

efficiency, and interpretability should also be considered when selecting the most suitable 

algorithm for practical applications. 

 Based on the RMSE values, Bagged Trees is the best-performing algorithm for 

energy consumption prediction among the evaluated models. However, further analysis 

and considerations are necessary to make a well-informed decision for its deployment in 

real-world energy management projects. 

R-squared is a statistical metric that measures how well a regression model fits 

the data. It indicates the proportion of variance in the dependent variable it explained by 

a bar graph in Figure 4.2 (energy consumption in this case) that is explained by the 

independent variables (features) used in the model. R-squared ranges from 0 to 1, where 

0 means the model explains none of the variance, and 1 means it explains all the 

variances. 

Higher R-squared values indicate that the model's predictions align closely with 

the actual values, suggesting a better fit to the data. 

Let's compare and analyse the R-squared values for different algorithms: 

Bagged Trees: 

        Training R2: 1 (100%) 

        Testing R2: 1 (100%) 

Bagged Trees have the highest R-squared values for both the training and testing 

phases, indicating that the model explains all the variance in energy consumption in both 

datasets. This suggests that Bagged Trees provide an excellent fit to the data and 

accurately predict energy consumption. 

Fine Trees: 

        Training R2: 1 (100%) 

        Testing R2: (99%) 
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Fine Trees also have a perfect R-squared value for the training phase, indicating 

an excellent fit to the training data.  

Linear: 

        Training R2: 0.54 (54%) 

        Testing R2: 0.53 (53%) 

Linear model's R-squared values are relatively lower compared to Bagged Trees, 

indicating that the model explains only around 54% of the variance in the training data 

and 53% in the testing data. This suggests that the linear model might not be capturing 

all the underlying patterns in the data as effectively as Bagged Trees. 

Interactions Linear: 

        Training R2: 0.62 (62%) 

        Testing R2: 0.62 (62%) 

Interactions Linear shows slightly higher R-squared values than the Linear model, 

but still lower than Bagged Trees. It explains around 62% of the variance in both the 

training and testing datasets. 

Robust Linear: 

        Training R2: 0.32 (32%) 

        Testing R2: 0.31 (31%) 

Robust Linear has lower R-squared values compared to the previous models, 

indicating that it explains only about 32% of the variance in the training data and 31% in 

the testing data. This suggests that the model might not be capturing the underlying 

patterns in the data well. 

Coarse Tree: 

        Training R2: 1 (100%) 

        Testing R2: 1 (100%) 
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Coarse Tree has perfect R-squared values for both the training and testing phases, 

suggesting an excellent fit to the data and accurate predictions. 

From the provided R-squared values, Bagged Trees and Coarse Tree models stand 

out with perfect R-squared values for both training and testing, indicating accurate and 

robust predictions. Linear models, on the other hand, have lower R-squared values, 

indicating less effective performance in explaining the variance in the data. 

 Bagged Trees and Coarse Tree models demonstrate superior performance in 

explaining the variance in energy consumption and providing accurate predictions. These 

models could be considered the best performers among the evaluated algorithms for 

energy consumption prediction (Reddy et al. 2023). 

Figure 4.3 explained MSE relation with the help of bar graph, Bagged Trees and 

Fine Trees appear to be the best-performing algorithms based on the MSE values, as they 

demonstrate lower prediction errors compared to the other models. These findings have 

implications for the selection of suitable algorithms for energy consumption prediction 

in real-world applications. Further analysis will be conducted to explore the strengths and 

weaknesses of these algorithms and consider additional factors like computational 

efficiency and interpretability to make an informed decision for practical energy 

management projects. 

Figure 4.4 From the MAE values, Bagged Trees and Fine Trees have relatively 

low training and testing MAE, indicating better performance in predicting energy 

consumption with smaller errors compared to other algorithms. Linear and Interactions 

Linear models show higher training and testing MAE, suggesting they may not be as 

effective in capturing the underlying patterns in the data. Linear SVM, on the other hand, 

exhibits extremely high MAE values, indicating significant discrepancies between 

predicted and actual energy consumption. 

Bagged Trees and Fine Trees appear to be the best-performing algorithms based 

on the MAE values, as they demonstrate lower prediction errors compared to the other 

models. These findings are essential in the selection of suitable algorithms for energy 

consumption prediction in real-world applications.  
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From the training prediction speed values Figure 4.5 and 4.6.  Fine Trees have the 

highest speed, being able to process 3 million observations per second. Coarse Tree also 

demonstrates high training prediction speed, processing 4 million observations per 

second. On the other hand, Linear SVM has a relatively slower training prediction speed, 

processing 1.4 million observations per second. 

 Fine Trees and Coarse Tree models stand out with higher training prediction 

speeds, indicating faster processing capabilities compared to other algorithms. All value 

calculated based on table 4.1 and result calculated based on table 4.2. 

4.2.1 Predicted vs Actual results  

In the described graph Figure 4.7 and Figure 4.8, a model that is performing well 

have most of its data points following a clear linear trend along the perfect fit line. 

Approximately 90% of the data points will fall within a narrow band around the perfect 

fit line, indicating that the predictions are very close to the actual values. 

On the other hand, around 10% of the data points might deviate from the perfect 

fit line, going slightly above or below it. These deviations represent the model's prediction 

errors, which are inevitable in any real-world predictive modelling task. 

 Most data points are scattered around the perfect fit line, and only a small 

percentage deviate slightly, it suggests that the model is making accurate predictions and 

capturing the underlying patterns in the data effectively. This is a desirable outcome as it 

indicates a strong and reliable predictive model.     

Figures 4.9 and 4.10 explain relation between predicted and residuals of training 

and testing most of the data points cluster around the y-axis (Residual = 0), indicating 

that the model's predictions are accurate, and the errors are centred around zero. This 

implies that the model is capturing the underlying patterns in the data and making reliable 

predictions for the training dataset and this result is supported by Akhtar, Sujod, and Rizvi 

(2022). 

 Around 10% of the data points deviate slightly from the y-axis, either going 

above or below. These deviations represent the model's prediction errors, which expected 

in any real-world predictive modelling task. A well-performing model have a small 
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percentage of deviations, and these errors are typically random and not indicative of any 

systematic bias. 

A Residual Training graph with most data points close to the y-axis (Residual = 

0) and around 10% of the data points slightly deviating above and below indicates a well-

fitted regression model. It suggests that the model is accurately predicting the target 

variable for the training dataset, with minimal systematic bias and consistent error 

distribution. However, it's important to note that while most of the data points should be 

close to the y-axis, there may still be some variability in the distribution of the Residuals. 

This is normal and can be influenced by factors such as the complexity of the data or the 

nature of the problem being modelled. If the general trend shows most Residuals near the 

y-axis and approximately 10% deviating above and below, it is an encouraging sign of a 

reliable regression model. 

 
Figure 4.7  Fine Trees Prediction vs. Actual training  

In Figure 4.7 the performance of the machine learning model is visually evaluated 

based on its ability to predict target values against observed values. Starting with Figure 

4.7, a model demonstrating strong performance exhibits most of its data points adhering 

closely to a linear trend along the ideal fit line. Around 90% of the data points are 



98 

expected to fall within a narrow band around this perfect fit line, indicating consistent 

and accurate predictions. However, it's important to note that approximately 10% of the 

data points might deviate slightly from the ideal fit line, representing prediction errors 

inherent in real-world scenarios.  

 
Figure 4.8  Fine Trees Prediction vs. Actual testing 

Moving to Figure 4.8, the distribution of data points around the perfect fit line 

further illustrates the model's ability to capture underlying patterns effectively. Despite 

the presence of some deviations, the bulk of the data points remain closely aligned with 

the ideal fit line, emphasizing the model's overall accuracy and reliability.  Figures 4.7 

and 4.8 collectively demonstrate the proficiency of the model in making accurate 

predictions and capturing underlying data patterns. These observations highlight the 

development of a robust and dependable predictive model, essential for successful 

applications in various domains. The alignment of most data points along clear linear 

trends, coupled with the tight clustering around the ideal fit line, signifies the model's 

precision and consistency. While minor deviations exist, they do not detract from the 

model's overall efficacy, highlighting its robustness and reliability in real-world 

predictive modelling scenarios. 
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Figure 4.9  Fine Trees Residual training. 

In Figure 4.9, we are presented with a visualization of the residuals generated by 

a tree-based machine learning model during the training phase. Residuals represent the 

differences between the observed target values and the predicted values generated by the 

model. These residuals provide valuable insights into the performance and behaviour of 

the model during training. In this visualization, the residuals are plotted against the 

predicted values generated by the model. Each data point on the graph represents an 

individual data instance from the training dataset. The position of a data point relative to 

the x-axis (predicted values) indicates whether the model under- or over-predicted the 

target variable for that instance. Observing the distribution of data points in Figure 4.9, 

note that there is a clear pattern emerging. Specifically, observe that there are five data 

points located above the x-axis (positive residuals) and six data points located below the 

x-axis (negative residuals). When data points lie above the x-axis, it indicates that the 

model has under-predicted the target variable for those instances. Conversely, when data 

points lie below the x-axis, it signifies that the model has over-predicted the target 

variable. The presence of more data points with negative residuals compared to those 

with positive residuals suggests that, on average, the model tends to overestimate the 

target variable during the training phase. This could be attributed to various factors such 

as model complexity, bias-variance trade-off, or the inherent nature of the dataset. 
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Additionally, the pattern observed in the distribution of residuals can provide valuable 

insights into potential areas for model improvement. For instance, if there are consistent 

patterns or trends in the residuals, it may indicate areas where the model is systematically 

underperforming and where adjustments or refinements could be made to enhance its 

predictive accuracy. Figure 4.9 provides a visual representation of the residuals generated 

by a tree-based machine learning model during the training phase. The distribution of 

residuals allows us to assess the model's performance and identify areas for potential 

improvement, thereby informing the iterative process of model development and 

refinement. 

 
Figure 4.10  Fine Trees Residual testing. 

In Figure 4.10, we continue our examination of the residuals generated by the 

tree-based machine learning model, transitioning from the testing phase to a subsequent 

analysis. Building upon the insights gained from Figure 4.9, this visualization offers a 

deeper understanding of the model's performance and behaviour across different phases 

of evaluation. Like the preceding figure, Figure 4.10 plots the residuals against the 

predicted values, with each data point representing an individual instance from the testing 

dataset. This approach allows for a direct comparison of the model's predictions with the 

actual observed values, facilitating a comprehensive assessment of its accuracy and 

generalization ability. Upon close inspection of the graph, we observe that the distribution 
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of residuals exhibits distinct characteristics compared to both the training and testing 

phases depicted in Figures 4.9 and 4.10. Specifically, there are noticeable differences in 

the number and distribution of data points on either side of the x-axis (predicted values). 

In this visualization, we observe four data points located above the x-axis (positive 

residuals) and six data points situated below the x-axis (negative residuals). This 

distribution mirrors the pattern observed in the testing phase, indicating a consistent trend 

in the model's performance across multiple evaluation stages. 

4.2.1.1 Medium Trees Prediction vs. Actual training 

The "Predicted vs. Actual" graph for the Medium Trees model in the training 

dataset represents a visual comparison between the predicted values and the actual 

(observed) values of the target variable in Figures 4.11 to 4.14 (e.g., energy 

consumption). In this graph, each data point represents an individual instance or 

observation in the training dataset. 

The graph is described as "going most online" when the majority of the data points 

cluster around a straight line with a slope of 1, which is the "perfect fit" line. The perfect 

fit line represents a scenario where the model's predictions exactly match the actual 

values. When most data points follow this line, it indicates that the Medium Trees model 

is making accurate predictions for the training dataset. 

The graph is described as "14% going above and below perfect condition" when 

around 10% of the data points deviate slightly from the perfect fit line, going either above 

or below it. These deviations represent the model's prediction errors, which are normal in 

any real-world predictive modelling task. 

For the Medium Trees model in the training dataset: Most Data Points on Line: 

The majority of the data points cluster around the perfect fit line, indicating that the 

Medium Trees model's predictions align closely with the actual values. This suggests that 

the model is performing well and capturing the underlying patterns in the training dataset. 

    Approximately 14% Deviating Above and Below: Around 10% of the data 

points deviate slightly from the perfect fit line, indicating some prediction errors. These 

deviations are expected and are typical in real-world modelling scenarios. 
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 The "Predicted vs. Actual" graph for the Medium Trees model in the training 

dataset shows that most data points align closely with the perfect fit line, while around 

14% deviate slightly from it. This indicates that the Medium Trees model is providing 

accurate predictions for the training dataset, with only a small proportion of prediction 

errors. Such performance is a positive sign, demonstrating the model's effectiveness in 

predicting energy consumption in the training data. 

  

 
Figure 4.11  Medium Trees Prediction vs. Actual training 
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Figure 4.12  Medium Trees Prediction vs. Actual testing 

 
Figure 4.13  Medium Trees Residual training. 
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Figure 4.14  Medium Trees Residual testing 

4.2.1.2 Bagged Trees Prediction vs. Actual training 

The "Predicted vs. Actual" graph from Figures 4.15 to 4.19 for the Bagged Trees 

model in the training dataset represents a visual comparison between the predicted values 

and the actual (observed) values of the target variable (e.g., energy consumption). Each 

data point on the graph represents an individual instance or observation in the training 

dataset. 

In this graph, the phrase "going most on line" indicates that the majority of the 

data points closely align with a straight line, typically with a slope of 1. This line 

represents the "perfect fit" line, where the model's predictions exactly match the actual 

values. When most data points follow this line, it indicates that the Bagged Trees model 

is making accurate predictions for the training dataset, the phrase "5% going above and 

below perfect condition" implies that approximately 5% of the data points deviate slightly 

from the perfect fit line, going either above or below it.  

For the Bagged Trees model in the training dataset: Most Data Points on Line: 

The majority of the data points cluster around the perfect fit line, indicating that the 

Bagged Trees model's predictions closely match the actual values in the training dataset. 
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This suggests that the model is performing well and capturing the underlying patterns in 

the data. 

    Approximately 5% Deviating Above and Below: Around 5% of the data points 

deviate slightly from the perfect fit line, indicating some prediction errors. While the 

model is making mostly accurate predictions, these deviations represent instances where 

the model's predictions differ from the actual values. This is normal and expected in real-

world scenarios. 

 The "Predicted vs. Actual" graph for the Bagged Trees model in the training 

dataset shows that most data points align closely with the perfect fit line, while around 

5% deviate slightly from it. This indicates that the Bagged Trees model is providing 

accurate predictions for the training dataset, with only a small percentage of prediction 

errors.  

 
Figure 4.15  Bagged Trees Prediction vs. Actual training  

Figure 4.15: The "Predicted vs. Actual" graph for the Bagged Trees model in the 

training dataset illustrates the model's performance by comparing predicted values with 
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actual observed values. The majority of data points align closely with the perfect fit line, 

indicating accurate predictions. Approximately 5% of data points deviate slightly from 

this line, suggesting minor prediction errors.  

 
Figure 4.16  Bagged Trees Prediction vs. Actual testing 

Similar to Figure 4.15, Figure 4.16 depicts the performance of the Bagged Trees 

model on the training dataset. Most data points align with the perfect fit line, indicating 

accurate predictions. However, a small percentage of data points deviate from this line, 

reflecting prediction errors.  
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Figure 4.17  Bagged Trees Residual training 

In Figure 4.17, the "Predicted vs. Actual" graph continues to demonstrate the 

Bagged Trees model's performance on the training dataset. The majority of data points 

cluster around the perfect fit line, signifying accurate predictions. A minor proportion of 

data points deviate from this line, indicating prediction errors.  

 
Figure 4.18  Bagged Trees Residual testing 
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 Figure 4.18 provides further insight into the Bagged Trees model's performance 

on the training dataset. Most data points closely align with the perfect fit line, suggesting 

accurate predictions. However, a small subset of data points exhibits deviations from this 

line, reflecting prediction errors.  

 

Figure 4.19 Bagged Trees Residual prediction. 

 Figure 4.19 showcases the Bagged Trees model's performance on the training 

dataset. The majority of data points adhere closely to the perfect fit line, indicating 

accurate predictions. A small fraction of data points deviates from this line, highlighting 

prediction errors. The "Predicted vs. Actual" graphs for the Bagged Trees model across 

Figures 4.15 to 4.19 consistently demonstrate the model's ability to make accurate 

predictions on the training dataset. Most data points align closely with the perfect fit line, 

indicating strong performance. However, a small percentage of data points deviate from 

this line, reflecting minor prediction errors. Overall, these findings suggest that the 

Bagged Trees model performs well in predicting target variables in the training dataset, 

with only minimal discrepancies between predicted and actual values. 
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4.2.2 Research objectives Vs. Research deliverables. 

The Table 4.3 shown a comparative evaluation of Machine learning for energy 
predications for efficacy ranking and efficiency ranking, that allows to optimization of 
different algorithm.  

Explanation of Higher RMSE Value in the Table 4.1 and 4.2: 

The value of Root Mean Square Error (RMSE) can indeed be in millions 
depending on the scale of the data being analyzed. RMSE is a measure of the differences 
between predicted and observed values in a dataset, and its unit is the same as the unit of 
the observed values. Therefore, if the observed values are in millions, the RMSE can also 
be in millions. 

For instance, in large-scale financial models or economic forecasts where the 
values are often in millions or billions, the RMSE can naturally reach millions. This is 
because RMSE is calculated as the square root of the average of the squared differences 
between predicted and observed values. If these differences are large, the RMSE will also 
be large. 

In practical applications such as predicting the gross calorific value of coal or the 
higher heating value of biomass, the RMSE values are typically smaller, reflecting the 
precision of the models used in these contexts. However, in scenarios involving large 
datasets with high-value observations, such as urban geospatial information acquisition 
or large-scale economic predictions, RMSE values can indeed be in the millions. Thus, 
the magnitude of RMSE is directly tied to the scale of the data it measures. 

R-Squared (R² or the coefficient of determination) be Greater than 1: 

In standard linear regression, 𝑅2 values are typically expected to range between 0 
and 1. The value of R2 in my results is more than 1 in five Algorithms (Linear SVM, 
Quadratic SVM, Cubic SVM, Bilayered Neural Network, Trilayered Neural Network). It 
is possible due to the outfit in modelling, under certain circumstances, particularly when 

using a regression model without an intercept, the 𝑅2 value can exceed Here's 
explanation: 

The coefficient of determination, denoted as 𝑅2, is a statistical measure that 
indicates the proportion of the variance in the dependent variable that is predictable from 
the independent variable(s). It is a key metric in regression analysis, providing insight 
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into the goodness of fit of a model. Typically, 𝑅2 values range from 0 to 1, where 0 
indicates that the model explains none of the variability of the response data around its 
mean, and 1 indicates that the model explains all the variability of the response data 
around its mean. 

The question of whether 𝑅2 can be greater than 1, particularly in the context of 
overfitting, is intriguing. Overfitting occurs when a model is too complex, capturing the 
noise in the dataset rather than the underlying pattern. This can lead to a model that 
performs well on training data but poorly on unseen data. However, the conventional 
understanding of 𝑅2 does not accommodate values greater than 1, as these would imply 
that the model explains more variability than is present in the data, which is not logically 

consistent with the definition of 𝑅2. 

In the realm of Bayesian regression models, an alternative definition of 𝑅2 has 
been proposed due to the issue that the usual definition (variance of the predicted values 
divided by the variance of the data) can result in the numerator being larger than the 
denominator. This situation can arise in Bayesian fits, suggesting a conceptual space 
where 𝑅2 might exceed 1, but this is more a reflection of the need for alternative 
definitions in specific contexts rather than an indication that 𝑅2 values greater than 1 are 
meaningful within conventional interpretations. 

Moreover, the presence of a negative 𝑅2 in some models, such as those involving random 
forests, indicates potential overfitting. This suggests that while 𝑅2 can indeed fall outside 
its typical range of 0 to 1, particularly in complex models or those with poor predictive 
power, the interpretation of such cases requires careful consideration of the model and 
the context. Negative 𝑅2 values, rather than values greater than 1, are typically associated 
with models that do not perform well.  While 𝑅2 is fundamentally bounded between 0 
and 1 within the traditional framework of regression analysis, discussions around its value 
exceeding 1, particularly in the context of Bayesian models, highlight the complexities 
of model evaluation and the need for context-specific interpretations. The concept of 𝑅2 

exceeding 1 does not align with its conventional interpretation and instead points to the 
necessity of adapting our understanding and metrics to suit different modelling 
approaches and statistical paradigms. 
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Table 4.3 Performance evaluation of machine learning algorithm for energy prediction on SEIL dataset 

  

Training Testing 

RMSE R-Squared MSE MAE 

Prediction 
speed 

(obs/sec) 
Training 

time RMSE  R-Squared  MSE MAE 
Fine Tree 2.11E+06 1 4.44E+12 1.40E+06 3000000 24.148 2.38E+06 1 5.64E+12 1.41E+06 

Linear 1.35E+08 0.54 1.83E+16 8.42E+07 790000 22.065 1.36E+08 0.53 1.84E+16 8.45E+07 
Interactions 

Linear 1.22E+08 0.62 1.48E+16 8.02E+07 110000 65.108 1.23E+08 0.62 1.50E+16 8.05E+07 

Robust Linear 1.64E+08 0.32 2.68E+16 5.25E+07 790000 19.44 1.65E+08 0.31 2.71E+16 5.30E+07 

Stepwise 
Linear 1.18E+08 0.65 1.39E+16 7.63E+07 600000 24417 1.18E+08 0.64 1.40E+16 7.66E+07 

Fine Tree 2.11E+06 1 4.44E+12 1.40E+06 3300000 8.3244 2.38E+06 1 5.64E+12 1.41E+06 

Medium Tree 2.81E+06 1 7.87E+12 1.42E+06 3700000 8.0721 3.20E+06 1 1.02E+13 1.43E+06 

Coarse Tree 4.26E+06 1 1.81E+13 1.49E+06 4000000 7.5477 4.63E+06 1 2.15E+13 1.50E+06 
Linear SVM 8.67E+08 18.13 7.52E+17 6.69E+08 1400000 8892.6 8.68E+08 18.13 7.54E+17 6.69E+08 

Quadratic 
SVM 3.46E+08 2.05 1.20E+17 2.98E+08 240000 18985 3.45E+08 2.02 1.19E+17 2.98E+08 

Cubic SVM 6.38E+08 9.35 4.07E+17 5.50E+08 260000 5761.7 6.37E+08 9.31 4.06E+17 5.50E+08 

Fine Gaussian 
SVM 1.04E+08 0.72 1.08E+16 8.83E+07 270000 10099 1.04E+08 0.72 1.08E+16 8.85E+07 

Medium 
Gaussian SVM 2.10E+08 0.13 4.43E+16 1.80E+08 1200000 17835 2.11E+08 0.13 4.44E+16 1.80E+08 

Coarse 
Gaussian SVM 2.17E+08 0.19 4.69E+16 1.82E+08 1300000 18127 2.17E+08 0.2 4.71E+16 1.82E+08 

Boosted Trees 2.33E+07 0.99 5.42E+14 1.66E+07 180000 62.082 2.31E+07 0.99 5.34E+14 1.66E+07 
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Table 4.3 Continued 

 Training Testing 

 
RMSE R-Squared MSE MAE 

Prediction 
speed 

(obs/sec) 
Training 

time RMSE  R-Squared  MSE MAE 

Bagged Trees 1.58E+06 1 2.48E+12 1.06E+06 120000 119.87 1.78E+06 1 3.17E+12 1.09E+06 

Squared 
Exponential 

GPR 
7.68E+07 0.85 5.89E+15 4.62E+07 200 9102.8 7.66E+07 0.85 5.87E+15 4.62E+07 

Matern 5/2 
GPR 6.40E+07 0.9 4.10E+15 3.87E+07 110 15589 6.40E+07 0.9 4.10E+15 3.88E+07 

Exponential 
GPR 6.86E+07 0.88 4.70E+15 3.73E+07 130 14212 6.87E+07 0.88 4.72E+15 3.73E+07 

Rational 
Quadratic 

GPR 
7.30E+07 0.86 5.33E+15 4.11E+07 110 15637 7.28E+07 0.87 5.29E+15 4.11E+07 

Narrow Neural 
Network 3.18E+07 0.97 1.01E+15 1.04E+07 1000000 254.45 3.12E+07 0.98 9.76E+14 1.03E+07 

Medium 
Neural 

Network 
2.54E+07 0.98 6.46E+14 1.46E+07 1100000 396.17 2.51E+07 0.98 6.32E+14 1.46E+07 

Wide Neural 
Network 1.81E+07 0.99 3.27E+14 1.14E+07 630000 1238.8 1.79E+07 0.99 3.19E+14 1.14E+07 

Bilayered 
Neural 

Network 
3.77E+08 2.62 1.42E+17 3.21E+08 1000000 35.635 3.77E+08 2.6 1.42E+17 3.20E+08 

Trilayered 
Neural 

Network 
3.77E+08 2.62 1.42E+17 3.21E+08 870000 48.817 3.77E+08 2.6 1.42E+17 3.20E+08 
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Table 4.4 Table Efficacy vs Efficiency ranking. 

Algorithm Efficacy Ranking Efficiency Ranking 

Bagged Trees                    1st                  3rd 
Fine Trees                    2nd                 2nd 
Medium Trees                    3rd                  1st 

 

Table 4.4 presents an interesting finding that Bagged Trees is the most effective 

algorithm for predicting electrical energy demand on university campuses using the SEIL 

dataset. But Medium Trees is the most efficient algorithm for this task, and Fine Trees 

balance efficacy and efficiency. Bagged Trees outperforms Fine Trees by 75%, 56%, and 

76% in terms of RMSE, MSE, and MAE for both training and testing, respectively. 

Similarly, compared to Medium Trees, Bagged Trees shows a 56%, 32%, and 75% 

improvement in RMSE, MSE, and MAE for both training and testing, respectively. These 

metrics represent the percentage of improvement in efficacy between the algorithms. In 

terms of efficiency, Medium Trees is 32 times more efficient in prediction speed and 14.8 

times more efficient in training time than Bagged Trees. Medium Trees is 1.3 times more 

efficient in prediction speed and three times more efficient in training time than Fine 

Trees. These comparative metrics are illustrated in Figure 4.20. 

 

Figure 4.20 Comparative graph of Fine Trees, Medium Trees, Bagged tress and 
actual.  
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CHAPTER 5 

 

 

CONCLUSION 

5.1 Introduction 

The study, conducted in 2018-2023, aimed to implement various machine 

learning algorithms for efficient electrical energy load management in a building. 

Performance evaluation focused on both efficacy and efficiency to identify the optimal 

algorithm for energy load prediction and management. Results from the study indicate 

that the Bagged Trees algorithm excelled in efficacy, ranking first in performance 

evaluation with remarkable accuracy in predicting energy consumption. For efficiency, 

the Medium Trees algorithm proved to be the most optimized and resource-efficient, 

securing the top rank. Additionally, the Fine Trees algorithm demonstrated strong 

performance, ranking second in both efficacy and efficiency, offering a balanced trade-

off between accuracy and computational resources. 

 This study comprehensively analysed and compared machine learning 

algorithms for electrical energy load management, providing valuable insights for 

practical implementation in real-world energy management systems. Furthermore, the 

proposed approach was validated on another dataset, reinforcing algorithm credibility. 

This work lays the foundation for developing an optimized variant of the best-performing 

algorithm, with potential implications for enhancing energy efficiency in educational 

institutions and contributing to energy conservation and environmental preservation. 

Looking ahead, future research endeavors should focus on expanding datasets to 

include more renewable sources and diverse building types globally. Additionally, 

implementing various machine learning algorithms, including regression, decision trees, 

and neural networks, could significantly impact energy management in academic 

buildings, leading to financial savings, increased energy efficiency, and a reduction in 

carbon footprint. Moreover, there is a need to explore more advanced assessment 

measures and incorporate new data sources, such as weather patterns and occupancy 
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levels, to enhance energy demand projections and optimize energy distribution and 

allocation decisions. 

5.2 Future Recommendation  

Implementing various machine learning algorithms could alter how electrical 

energy is managed in academic buildings. Regression, decision trees, and neural 

networks, among other cutting-edge methodologies, can accurately estimate energy 

demand and to help with energy allocation and distribution decisions. This might lead to 

significant financial savings, increased energy efficiency, and a decrease in the 

university's carbon footprint. Additionally, machine learning algorithms are simple to 

modify and update, allowing for long-term progress in energy management. The use of 

machine learning algorithms for electrical energy load management in university 

buildings is a critical step towards a future with more sustainable and effective energy. 

To reach its full potential, there is still significant work to be done. Possible 

directions for future research include: 

Predictions of energy consumption can be made more accurately, but there is still 

potential for improvement with the present machine learning algorithms. More 

investigation into the creation of complex algorithms, like deep learning, may result in 

estimates of energy demand that are even more accurate. 

Including new data sources: More data sources can be included in the algorithms 

so that energy distribution and allocation decisions can be made with even greater 

knowledge. To improve energy demand projections, for instance, information on weather 

patterns, occupancy levels, and building usage patterns could be employed. 

The next stage is to allocate and distribute energy in the most effective and 

efficient manner feasible after energy demand projections have been made. The 

development of algorithms that may optimise energy distribution and allocation based on 

a variety of parameters, such as cost, energy efficiency, and environmental impact, may 

be the main goal of future research in this field. 

Creation of more advanced assessment measures: While existing measurements, 

like accuracy and precision, are an excellent place to start when assessing the 
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performance of ML algorithms, more advanced metrics are required that can take a wider 

range of considerations, like computing time and scalability. 

A lot of effort needs to be done to compare algorithms' performances across many 

domains, although ML algorithms have been used to solve a variety of issues. For 

instance, an algorithm that performs well in one domain may not perform as well in 

another domain with distinct characteristics. 

Deep learning is advancing: This fast-developing area has demonstrated 

considerable promise in a variety of applications, including image identification and 

natural language processing. Deep learning algorithms will need to be evaluated in terms 

of efficiency and efficacy and compared to other kinds of machine learning algorithms 

as they continue to develop. 

The best candidate machine learning algorithm should be tuned to improve its 

effectiveness and efficiency across a variety of applications. Performing the algorithm 

can be improved and made even more efficient by utilising cutting-edge methods like 

hyper-parameter tweaking, ensembling, and model selection. This can therefore result in 

enhanced scalability, faster computing, and better accuracy. Additionally, one of the main 

forces behind innovation and development in the field is the capacity to develop 

optimised variants of machine learning (ML) algorithms. This capability enables 

researchers and practitioners to continuously enhance already-existing solutions and take 

on new, more challenging problems. 
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APPENDIX A: TRAINING AND TESTING TABLE 

Link for data: https://drive.google.com/drive/folders/1ih4zktiHzAc8oQkHF0HRVc2KMYhdyh0c 

 Training Testing 

 RMSE R-
Squared 

MSE MAE Prediction 
speed 

(obs/sec) 

Training 
time 

RMSE R-Squared MSE MAE 

Fine Tree 2.11E+06 1 4.44E+12 1.40E+06 3000000 24.148 2.38E+06 1 5.64E+12 1.41E+06 
Linear 1.35E+08 0.54 1.83E+16 8.42E+07 790000 22.065 1.36E+08 0.53 1.84E+16 8.45E+07 

Interactions Linear 1.22E+08 0.62 1.48E+16 8.02E+07 110000 65.108 1.23E+08 0.62 1.50E+16 8.05E+07 
Robust Linear 1.64E+08 0.32 2.68E+16 5.25E+07 790000 19.44 1.65E+08 0.31 2.71E+16 5.30E+07 

Stepwise Linear 1.18E+08 0.65 1.39E+16 7.63E+07 600000 24417 1.18E+08 0.64 1.40E+16 7.66E+07 
Fine Tree 2.11E+06 1 4.44E+12 1.40E+06 3300000 8.3244 2.38E+06 1 5.64E+12 1.41E+06 

Medium Tree 2.81E+06 1 7.87E+12 1.42E+06 3700000 8.0721 3.20E+06 1 1.02E+13 1.43E+06 
Coarse Tree 4.26E+06 1 1.81E+13 1.49E+06 4000000 7.5477 4.63E+06 1 2.15E+13 1.50E+06 
Linear SVM 8.67E+08 18.13 7.52E+17 6.69E+08 1400000 8892.6 8.68E+08 18.13 7.54E+17 6.69E+08 

Quadratic SVM 3.46E+08 2.05 1.20E+17 2.98E+08 240000 18985 3.45E+08 2.02 1.19E+17 2.98E+08 
Cubic SVM 6.38E+08 9.35 4.07E+17 5.50E+08 260000 5761.7 6.37E+08 9.31 4.06E+17 5.50E+08 

Fine Gaussian 
SVM 1.04E+08 0.72 1.08E+16 8.83E+07 270000 10099 1.04E+08 0.72 1.08E+16 8.85E+07 

Medium Gaussian 
SVM 2.10E+08 0.13 4.43E+16 1.80E+08 1200000 17835 2.11E+08 0.13 4.44E+16 1.80E+08 

Coarse Gaussian 
SVM 2.17E+08 0.19 4.69E+16 1.82E+08 1300000 18127 2.17E+08 0.2 4.71E+16 1.82E+08 

Boosted Trees 2.33E+07 0.99 5.42E+14 1.66E+07 180000 62.082 2.31E+07 0.99 5.34E+14 1.66E+07 
Bagged Trees 1.58E+06 1 2.48E+12 1.06E+06 120000 119.87 1.78E+06 1 3.17E+12 1.09E+06 

Squared 
Exponential GPR 7.68E+07 0.85 5.89E+15 4.62E+07 200 9102.8 7.66E+07 0.85 5.87E+15 4.62E+07 

Matern 5/2 GPR 6.40E+07 0.9 4.10E+15 3.87E+07 110 15589 6.40E+07 0.9 4.10E+15 3.88E+07 
Exponential GPR 6.86E+07 0.88 4.70E+15 3.73E+07 130 14212 6.87E+07 0.88 4.72E+15 3.73E+07 
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Rational Quadratic 
GPR 7.30E+07 0.86 5.33E+15 4.11E+07 110 15637 7.28E+07 0.87 5.29E+15 4.11E+07 

Narrow Neural 
Network 3.18E+07 0.97 1.01E+15 1.04E+07 1000000 254.45 3.12E+07 0.98 9.76E+14 1.03E+07 

Medium Neural 
Network 2.54E+07 0.98 6.46E+14 1.46E+07 1100000 396.17 2.51E+07 0.98 6.32E+14 1.46E+07 

Wide Neural 
Network 1.81E+07 0.99 3.27E+14 1.14E+07 630000 1238.8 1.79E+07 0.99 3.19E+14 1.14E+07 

Bilayered Neural 
Network 3.77E+08 2.62 1.42E+17 3.21E+08 1000000 35.635 3.77E+08 2.6 1.42E+17 3.20E+08 

Trilayered Neural 
Network 3.77E+08 2.62 1.42E+17 3.21E+08 870000 48.817 3.77E+08 2.6 1.42E+17 3.20E+08 
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APPENDIX B  

% Data Cleansing and pre-processing 

clc 

clear all; 

close all; 

% Load CSV 

[FileName,FilePath]=uigetfile('C:\Dr Sajjad Research\Energy Prediction\Dr Shamim\SEIL 
Dataset', 'Select Data CSV File' ); 

ExPath = [FilePath FileName]; 

raw_data=readtable(ExPath); 

% Setps of Data Pre-processing 

% 1. clean missing data and replace with estimated values 

[cleanedData,missingIndices] = fillmissing(raw_data,'linear'); 

num2str(nnz(missingIndices)); 

% 2. Clean Outliears 

cleanedData = filloutliers(cleanedData,'linear'); 

% 3. Smoothen the data 

cleanedData = smoothdata(cleanedData,'movmean','SmoothingFactor',0.25); 

cleanedData=table2array(cleanedData); 

% divide data in training and testing 



129 

idx=randperm(length(cleanedData)); 

idx=idx'; 

training_offset = round(length(idx)*0.7); 

Training=cleanedData(idx(1:training_offset),:); 

Testing= cleanedData(idx(training_offset+1:length(idx)),:); 

save ('Training.mat','Training'); 

save ('Testing.mat','Testing'); 

 

% Testing Code 

clc 

clear all; 

close all; 

% Load CSV 

[FileName,FilePath]=uigetfile('C:\', 'Select the Trained Model File' ); 

ExPath = [FilePath FileName]; 

load(ExPath); 

[FileName1,FilePath1]=uigetfile('C:\', 'Select Testing Data' ); 

ExPath1 = [FilePath1 FileName1]; 

load(ExPath1); 
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yfit = Linear_Regression.predictFcn(Testing(:,1:26)) ; 

 

[x y]=find(abs(Testing(:, 28)-yfit(:))<30000); 

Test_accuracy=length(x)/length(Testing)*100 

row=idx(1:50); 

figure 

plot(yfit(row),'r'); 

hold on 

plot(Testing(idx(1:50),28),'b'); 

legend('Predicted Value','Actual Value'); 

 

 

 

 




