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ABSTRAK

Elektrik adalah sumber tenaga yang paling diminta di seluruh dunia. Pada saat yang sama,
ia terhad secara kritikal untuk memenuhi permintaan. Terdapat hanya dua penyelesaian
logik untuk memenuhi permintaan ini. Pertama, meningkatkan kapasiti pengeluaran
kuasa, meningkatkan teknologi transmisi, meningkatkan kecekapan pengeluaran kuasa.
Kedua, mengurus penggunaan tenaga di premis. Kajian ini terutamanya memberi
tumpuan kepada pengurusan kecekapan tenaga elektrik berdasarkan data menggunakan
kecerdasan buatan. Khususnya, kampus universiti dipilih sebagai kajian kes dalam
penyelidikan ini. Ia merupakan fakta yang sudah mapan bahawa pembelajaran mesin
lebih unggul dari segi ramalan dan klasifikasi. Oleh itu, dalam kajian ini, satu variasi
teroptimum baru daripada algoritma pembelajaran mesin dikemukakan. Dalam kajian ini,
satu set data rujukan tentang penggunaan tenaga di kampus universiti IIT, India
(disediakan oleh Smart Energy Informatics Lab, SEIL) dipilih untuk latihan dan
pengujian variasi algoritma pembelajaran mesin yang dicadangkan. Selain itu, prestasi
yang sama juga disahkan di kampus universiti lain dengan budaya yang seangkatan.
Dalam kaitannya ini, set data yang disediakan oleh Energy Informatics Group
Department of Computer Science, SBASSE Lahore University of Management Sciences,
Pakistan dipilih. Skop kajian ini adalah tiga kali lipat. Pertama, satu kajian bandingan
yang menyeluruh dan parametrik pada pelbagai jenis algoritma pembelajaran mesin
dikemukakan untuk menilai prestasi algoritma pembelajaran mesin dalam ramalan beban
tenaga. Hasil daripada fasa ini adalah pemilihan calon terbaik bagi algoritma
pembelajaran mesin untuk ramalan beban tenaga kampus universiti. Kedua, adalah
pengoptimuman algoritma pembelajaran mesin terbaik yang dipilih untuk meningkatkan
lagi kecekapan dan keberkesanan ramalan. Akhirnya, algoritma-algoritma yang
dicadangkan juga disahkan pada set data lain dari kampus universiti di rantau yang
berbeza. Kajian ini mengesyorkan kompromi pemilihan sebagai fungsi keberkesanan dan
kecekapan ramalan algoritma. Khususnya, Bagged Trees yang dioptimumkan adalah
algoritma yang paling berkesan untuk aplikasi ramalan permintaan tenaga, manakala
Medium Trees yang dioptimumkan adalah algoritma yang paling cekap untuk sistem
masa nyata. Begitu juga, Fine Trees yang dioptimumkan mempunyai kompromi optimum
antara keberkesanan dan kecekapan.
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ABSTRACT

The electricity at the most demanded energy source around the globe. At the same time,
it is critically limited to meet the demand. There are only two logical solutions to meet
this demand. First, to increase the power generation capacity, enhance transmission
technology, and improve power generation efficiency. The second, is to manage the
energy utilization in the premises. Since the electrical energy consumption is different in
each application and management of energy utilization in large scale is complex,
therefore this study proposed (Data-driven electrical energy efficiency management)
D2EEM using optimized ML. This research is mainly focused on data-driven electrical
energy efficiency management using artificial intelligence. Particularly, a university
campus is selected as a case study in this research. It is a well-established fact that
machine learning is outperforming in terms of prediction and classification. Therefore, in
this study a new optimized variant of machine learning algorithms is presented. In this
study, a benchmark dataset of energy consumption in a university campus of IIT, India
(provided by the Smart Energy Informatics Lab, SEIL) was selected for training and
testing the proposed variants of machine learning algorithms. The scope of this study is
tri folded, First, an exhaustive and parametric comparative study on a wide variety of
machine learning algorithms is presented to evaluate the performance of machine
learning algorithms in energy load prediction. The deliverable of this phase is the
selection of the best candidate of machine learning algorithm for university campus
energy load prediction. The second is the optimization of the best selected machine
learning algorithms to further improve the efficiency and efficacy of the prediction.
Finally, the proposed algorithms were also validated on another dataset of a university
campus in a different region. This study recommends a selection trade-off as the function
of prediction efficiency and efficacy of the algorithm. Particularly, the proposed
optimized Bagged Trees are the most effective algorithm for energy demand prediction
applications, and the proposed optimized Medium Trees are the most efficient algorithm
for real-time systems. Likewise, optimized Fine Trees have the optimum trade-off
between efficacy and efficiency.
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CHAPTER 1

INTRODUCTION

1.1 Electrical Energy Management System

In the current trend, the electric power management system has received
considerable attention. The path towards a sustainable energy for society is at the
forefront of public interest and is a high priority of policymakers worldwide. The human
ability to harness of electrical energy has resulted in the continuous transformation of
civilization. An expanding portion of the global population is now able to heat and light
their homes, fertilize, and irrigate their crops, communicate with one another, and travel
around the globe (Kabeyi and Olanrewaju 2022). All this development is made possible
by the ever-improving dexterity of human beings in locating, obtaining, and using
electrical energy. Scientific research assists in advancing a sustainable future based on
clean electrical energy generation, transmission & distribution, electrical & chemical
energy storage, electrical energy efficiency, and improved electrical energy management
systems. Electrical Energy Management can be broadly understood as the proactive,
planned, and systematic control of electrical energy use in a facility or organization to
meet environmental and economic needs (Infield and Freris 2020). In simple words,
Electrical Energy Management is the practice of maximizing energy use for the optimum
results while also taking action to conserve it. Many robust and commercial solutions
have dealt with the scarcity of electrical energy. It includes, but is not limited to, efficient
generation of electrical energy (Beér 2007), alternate energy sources ((Stathis)
Michaelides 2012), and Energy Management System (EMS) (C. Chen et al. 2011). As
per the identification of the researchers, EMS is the optimum candidate among others
because it is cost-effective, robust, flexible and easy to manage compared to alternative
energy generation (Shakir et al. 2014). Therefore, the goal of this procedure is to attain
complete environmental sustainability and financial savings. Energy management system
is becoming increasingly popular among businesses of all sizes to cut operational

expenses.



In such a world where electrical energy costs are set to rise with the growing
demand and shrinking supply of non-renewable national resources like coal, saving
energy makes good business sense. The fundamental guidelines that are typically
followed for electrical energy management include, but are not limited to, gathering data
on electrical energy usage, and measuring it, looking for ways to save electrical energy,
putting those ideas into practice, and keeping track of progress and ongoing

improvements. The EMS can be deployed on both small- and large-scale levels.

However, keeping in view the fact that the electrical energy consumption profile
and consumption patterns differ for each application. Therefore, the intensive level of
customization, is a pressing need of the time (Mohajeryami et al. 2016). For this purpose,
the researchers soon identified artificial intelligence to be customised. This thesis is
presenting an intelligent data-driven approach for electrical energy load management
using machine learning algorithms. This study facilitates the researchers and industry
experts in the field of computing and engineering sciences and many other firms related

to electrical energy management.

1.2 Benefits of the electrical energy management system (EEMS)

From educational institutions to industrial buildings, reducing facility operational
costs has become a big challenge in today’s world. One cannot imagine daily life without
electricity, but since consumption increases, so do the prices. This is where Electrical
Energy Management System comes in. An EMS system tracks, regulate, and improves
electrical energy transmission and use. Ultimately, EMS is the key to essential energy
and cost saving. Electrical Energy Management solutions are typically much more cost-
effective for factories and businesses to operate than those that do not use them. The
company's entire operation is examined by EMS, which then optimizes it to use less

electrical energy.

The bottom line is immediately impacted by the savings produced by the adoption
of electrical energy management technologies. The following list includes some of the

main benefits of electrical energy management systems:



1.3

Reduction in Electrical Power Usage: Reducing power use and utilizing electrical

energy management systems will lead to more ecologically friendly procedures.

Reduction in Electrical Energy Consumption: Reducing electrical energy
consumption through process optimization and efficient electrical energy load
planning increases the overall productivity of industrial operations and allows
businesses to catch up with their competitors through continual process

improvement.

Decrease in Carbon Emissions: Using energy management techniques results in

a considerable decrease in carbon emissions and consumption.

Increase in Property Value: Owning the energy management system increases the

property value.

Reduction in Electricity Bills: Electrical energy management systems (EEMS) are
one of the most widely advocated solutions for reconciling electricity demand
with limited electricity resources. Furthermore, these systems contribute to a

significant reduction in electricity consumption bills.

Different strategies for energy management

The electrical energy demand has skyrocketed with ongoing population and

economic growth. The U.S. Energy Information Administration (EIA) has presented a

study in which they forecast a 48% increase in global electrical energy demand between

2012 and 2040.

The study reported that if current policy and technology trends continue, global

electrical energy consumption and energy-related carbon dioxide emissions will increase

through 2050 due to the increasing population and economic growth (Mostafaeipour et

al. 2022) as shown in Figure 1.1.
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Figure 1.1 Expected Global Energy Usage by 2050
Source : International Energy Outlook 2019

It added that renewables would be the primary source of new electricity
generation. Still, natural gas, coal, and, batteries will be used to help meet load and

support grid reliability (Nalley and Larose 2021).

There are various strategies and approaches for effective energy management.

Some commonly employed strategies include':

Energy Audits: Conducting thorough assessments of energy usage to identify
areas of inefficiency and potential improvements. Energy audits involve analyzing
consumption patterns, identifying energy-intensive processes, and recommending energy

conservation measures.

Energy Efficiency Measures: Implementing energy-efficient technologies and
practices, such as efficient lighting systems, insulation, optimized HVAC systems, and

equipment operation.

Demand Response: Participating in demand response programs that allow
organizations to adjust their energy consumption during peak demand periods. This
strategy involves reducing energy usage or shifting it to off-peak hours in response to

grid conditions or utility signals.



Renewable Energy Integration: Incorporating renewable energy sources, like
solar panels or wind turbines, to generate clean and sustainable electricity on-site. This
reduces dependence on conventional energy sources and can lead to long-term cost

savings.

Energy Monitoring and Control: Utilizing advanced energy monitoring
systems and smart meters to track real-time energy consumption. This data helps identify

waste, detect anomalies, and decide for energy optimization.

Behavioural Changes: Promoting energy-saving behaviours among occupants
through awareness campaigns, training, and incentives. Simple practices like turning off

lights and equipment when not in use can contribute significantly to energy conservation.

Energy Management Systems (EMS): Implementing comprehensive EMS
software that enables centralized control, monitoring, and optimization of energy-
consuming systems and devices. EMS can automate energy-saving measures, analyse

data, and provide actionable insights for further efficiency improvements.

Energy Procurement Strategies: Exploring alternative energy procurement
options, such as power purchase agreements (PPAs) or energy aggregation, to secure

energy from renewable sources or at favourable rates.

Continuous Improvement and Monitoring: Regularly evaluating energy
management practices, conducting periodic energy audits, and setting targets for energy

reduction to ensure ongoing improvement and optimization.

1.3.1 Electrical energy demand forecasting

Electricity today, is regarded as a valuable commodity and the most efficient
secondary energy. In recent decades, research on electrical energy consumption issues
has grown in importance (Larcher and Tarascon 2015). For society's safety and well-
being, electrical energy issues are crucial. According to economic theories, electrical
energy is one of the most crucial resources for industrial production, and macro-planning

for the industry and electrical energy sectors includes projecting energy use.

The modern world's businesses and civilization rely largely on this resource.
Along with other necessary commodities. Electricity serves as a primary source of

5



survival for human society. Electricity demand forecasting is critical in the electric energy
sector since it serves as the foundation for making decisions in electrical power system
planning and operation (Soysal and Soysal 2020). Electrical Energy providers use various
techniques to forecast electricity consumption. These are used in short-term, medium-
term, or long-term forecasting. However, the intricate connections between
socioeconomic and meteorological elements lead to electricity consumption. Standard
forecasting approaches are inadequate in such a dynamic setting, necessitating more

advanced methodologies (Klyuev et al. 2022).

The goal is to sort out all the elements contributing to the demand for change and
identify the fundamental causes. Electrical energy demand forecasting is an essential and
integral part of the EEMS. It aims to manage, monitor, optimize, and analyse the day-to-
day electricity demand of a specific area. (R. Wang, Wang, and Xu 2019). The world's
reliance on electrical energy is growing daily, and it can be seen in many (if not all)
aspects of human life. It is critical to distribute energy with the least cost and waste.
Forecasting consumption load is an important aspect of economic and safety planning
electrical power distribution system. Forecasting, estimating, and predicting are

marketing terms for having an expected value for demand.

Accurate, robust, adaptive, and efficient electrical energy forecasting promises
efficiency in the electrical energy management system. An efficient electrical energy
forecasting system complements other energy management policies, optimising energy
consumption (Li et al. 2019). This eventually turns into a competitive advantage and
sustainable development in general. Recently, researchers have strongly advocated for a
data-driven approach to robust, adaptive, and efficient energy forecasting systems

(Ahmad et al. 2018).

1.3.2 Motivation

Most people have heard the term "Energy Management" in their lives, especially
in recent years, when energy conservation has become increasingly important for the
future of companies worldwide. Because of rising fuel costs, increasingly aggressive
environmental targets, and concerns about energy security, every firm is competing for

decreasing operational costs. Energy cost savings give the firm a competitive advantage.



As electrical energy gets more expensive and the environmental impacts of fossil
fuels become more misleading, there is a growing interest in lowering our electrical
energy consumption. Finding new ways to make our daily lives more electrical energy
efficient has now become a crucial element of the battle to maintain our current standard

of life.

Since electrical energy is a significant and essential player in the modern world
economy, EMS is the optimum candidate among others for efficient electrical energy
generation. The production and service industries, like manufacturing plants, hospitals,
education institutions, high-rise residential buildings, etc., are now motivated to choose
EMS for their consumption profile optimization. Since the electrical energy consumption
profile and consumption pattern differs for each application. Therefore, the intensive
level of customization is a pressing need. Data-driven energy efficiency management
(D2EEM) has been reported as the best variant of EMS, combining data science and

artificial intelligence for energy optimization.

It has been found that many data sets for the management of electrical energy in
buildings are available. Similarly, the researchers used a variety of machine learning
algorithms to classify and predict their respective data sets. However, the need for a set
of benchmarks has been identified in the literature. In addition, an application-oriented
unified machine learning algorithm is also urgently needed. SEIL then conducted a study
in 2019 to collect massive data on electricity use in residential buildings and university
campuses. As part of this research, a set of energy consumption data from university
campuses is being considered. An extensive comparative study for recommending the
best candidate for the machine learning algorithm on the SEIL dataset was the missing
element in the recent literature. This study successfully closed the remaining gap for a
subsequent survey. In addition, optimization of the best candidate of the machine learning
algorithm was also subsequently necessary to have effective and high degree precision

prediction.

1.3.3 Research questions

This study revolves around a pivotal question: What machine learning algorithm
proves most effective in predicting energy demand within the dynamic environment of a

university building, utilizing the SEIL dataset? The research dives deeper, scrutinizing

7



various machine learning algorithms to unravel their performance nuances concerning
accuracy, precision, recall, F1 score, and computational complexity for energy demand
prediction within the same university setting. Beyond mere evaluation, the investigation
extends to optimizing the best-performing machine learning algorithm. This optimization
journey involves fine-tuning through hyperparameter adjustments and judicious feature
selection, with the overarching ambition of elevating the efficiency and effectiveness of

energy demand prediction within the unique context of a university building.

1.3.4 Hypothesis

In investigating the performance of various machine learning algorithms for
energy demand prediction in a university building, the study formulated three key
hypotheses. First, the Performance Comparison Hypothesis posits that there is no
significant difference in the performance of diverse machine learning algorithms for
energy demand prediction in a university building (Ho). Contrarily, the alternative
hypothesis (Hi) suggests that a significant difference exists in the performance of these
algorithms. Second, the Correlation with Metrics Hypothesis explores the relationship
between algorithm performance metrics and the efficiency and efficacy of energy demand
prediction. The null hypothesis (Ho) asserts no correlation, while the alternative
hypothesis (H:) proposes the presence of a correlation. Lastly, the Improvement through
Optimization Hypothesis examines whether there is any enhancement in the performance
of the best-performing machine learning algorithm after hyperparameter tuning and
feature selection (Ho). The alternative hypothesis (H1) contends that there is a significant
improvement in performance under these optimization processes. These hypotheses serve
as critical benchmarks to discern the effectiveness and nuances of machine learning

algorithms in the context of electrical energy load management.

14 Problem statement

After careful analysis of the existing work in the domain of data-driven energy
management, it has been determined that the utilization of artificial intelligence is now
inevitable for robust and precise electrical energy management. In this regard,
benchmarking of the domain-specific data set is a key need in identifying this issue. The
researchers presented a number of studies on intelligent electricity consumption. As in

many EEM system, the careful selection of the most appropriate machine learning
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algorithm is found to be deficient. This is, primarily, because of the fundamental concept
of the No Free Lunch Theorem. In addition, the standard and benchmark rich energy
consumption dataset of an educational institution was also not missing in the literature.
Considering this fact, the Smart Energy Informatics Lab (SEIL) of the Indian Institute of
Technology (IIT) Bombay, India, conducted an experimental study in 2019 to collect a

massive dataset on university campus energy consumption.

Analysis of existing work in data-driven energy management has determined that
the use of artificial intelligence is now unavoidable for robust and accurate electricity
management. In this respect, benchmarking the field-specific dataset is a critical need. In
addition, developing robust machine learning algorithms would make the goal easier.
After detailed analysis, the SEIL dataset is the most appropriate for electrical power
prediction for a university campus. However, the literature does not provide an

exhaustive empirical comparison of machine learning algorithms.

After devising a benchmark dataset of energy consumption of a university campus
in 2019 by SEIL, the further investigation of the best candidate of a machine learning
algorithm for the said dataset was the essential subsequent need. Likewise, the further
optimization of the best machine learning algorithm to attain the highest degree of
efficiency and efficacy for reliable energy demand prediction will complement the

solution.

Data-Driven Energy management, the utilization of artificial intelligence is
inevitable for robust and precise electrical energy management. The Benchmark Data set
is a key need in identifying this issue. After devising a benchmark dataset of energy
consumption, the further investigation of the best candidate of machine learning
algorithm for the said dataset was the essential subsequent need. The optimization of the
best machine learning algorithms to attain the highest degree of efficiency and efficacy
for reliable energy demand prediction will complement the solution. The new variants or
the new algorithms are the essential need to achieve the best results of efficiency and

efficacy for reliable energy demand prediction complement the solution.



1.5

Objectives

The most effective machine learning algorithm is recommended for energy

demand prediction applications and real-time systems. The objectives of current studies

are following:

1.6

Develop and Implement an Advanced Ensemble of Machine Learning
Algorithms: Design, implement, and assess a sophisticated ensemble of machine
learning algorithms for precise and efficient energy demand prediction in a

university building, emphasizing innovation in model selection and configuration.

Conduct a Comprehensive Analysis of Algorithmic Efficiency and Efficacy:
Perform an in-depth analysis of the selected machine learning algorithms,
evaluating their efficiency and efficacy using a comprehensive set of metrics,
including accuracy, precision, recall, F1 score, and computational complexity.

This analysis aims to provide nuanced insights into the algorithms' performance.

Optimize Top-Performing Algorithm Through Advanced Hyperparameter
Tuning and Feature Selection: Optimize the most promising machine learning
algorithm identified through the analysis by employing advanced techniques in
hyperparameter tuning and feature selection. This objective seeks to push the
boundaries of optimization methodologies to achieve the highest levels of

performance.

Scope of study

The present study is to define and predate a model for an efficient electrical energy

management system with different algorithms in MATLAB and find the best solution for

an electrical energy management system. Defining and designing an efficient electrical

energy management system model. Including below scope of study

Implementing and evaluating various algorithms in MATLAB to assess their

suitability for the system.
Analyzing algorithm performance.

Identifying the optimal solution based on evaluation and analysis.
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4. Developing a framework with machine learning algorithms for future forecasting.

5. Collecting data from the IIT Delhi SEIL datasheet, an open-source resource.
6. Analyzing the collected data for algorithm training and testing.
7. Assessing the efficiency and effectiveness of the developed model and algorithms

in energy management.

8. Documenting the research findings, including the methodology, results, and

conclusions

The present study has drawbacks that need to address in future.

1. Data based on machine learning algorithms and predicted for the future with
higher accuracy without checking faults and errors can be solved using a feedback

circuit.

2. The present system is inaccurate on variable load. It requires some time to adapt

and learn the new system.

1.7 Limitation

When considering an optimized variant of a machine learning (ML) algorithm for
Data-Driven Electrical Energy Efficiency Management (D2EEM), several limitations
emerge, particularly when integrating diverse ML models and addressing analogue-to-
digital conversion. Firstly, the efficacy of the optimized ML variant is inherently
dependent on the nature and diversity of the data it processes. Different ML models have
varying strengths and weaknesses, and their performance can be significantly influenced
by the characteristics of the dataset, such as its size, quality, and feature representation.
For instance, while deep learning models may excel in capturing nonlinear relationships
in large datasets, simpler models like decision trees might be more interpretable and less
prone to overfitting in smaller datasets. This diversity in model suitability necessitates
careful consideration and selection of the appropriate ML model for the specific energy
efficiency management task, which can limit the generalizability of the D2EEM
approach. Moreover, the process of analogue-to-digital conversion, essential for

transforming real-world energy usage data into a format suitable for ML analysis,
11



introduces its own set of challenges. This conversion process can be prone to errors such
as quantization noise, which may lead to inaccuracies in the data. Additionally, the
resolution of the conversion impacts the quality of the data fed into the ML models;
higher resolution leads to larger data sizes, which can increase computational
requirements and potentially slow down the analysis. These limitations highlight the
importance of carefully managing the trade-offs between data accuracy, resolution, and
computational efficiency in the context of D2EEM, to ensure that the optimized ML
algorithm can effectively contribute to electrical energy efficiency management without

being hindered by data-related issues.

1.8 Organization of thesis

The structure of the present report is such as Chapter 1 of the dissertation's
detailed introduction to electrical energy management. This chapter comprises an
overview of the electrical energy management systems, a data-driven approach for the
EMS and details about the real-time data set for applying the proposed framework using
machine learning algorithms. Chapter 2 is about the extensive and exhaustive literature
review. This chapter comprehensively reviews the literature on the application of
machine learning algorithms to electric energy predictions. Essentially, the scope of this
literature review falls into two categories. First, the performance assessment of various
machine learning algorithms for the prediction of electrical energy is considered. This
logically justifies the utility of energy forecasting by machine learning algorithm and
second about machine learning optimisation. Chapter 3 summarizes the data set and
system configuration and the methodology used to conduct this research. During the first
stage, the SEIL dataset is used and the total energy consumption at the building level is
considered. During the second phase, the building-level dataset is initially divided into
70% training samples and 30% random swap test samples. Chapter 4 details our proposed
framework for evaluating the SEIL dataset with evaluation results and discussion.

Chapter 5 gives a conclusion regarding this research work.

12



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter provides an extensive review of prior research on Electrical Energy
forecasting systems, with a focus on advancements in machine learning technology. The
chapter delves into the objectives of the current study, exploring various applications and
optimizations of algorithms within this domain. Notably, the discussion encompasses the
considerations influencing algorithm selection and methods to expedite forecasting
processes while ensuring system accuracy. While commonly referred to as the "black
box" approach in literature, alternative methodologies such as the engineering-centric
"white box" and the statistical-oriented "grey box" approaches have been identified (Wei
et al., 2018). Within the realm of data-driven methodologies, exemplified by the "black
box" approach, artificial intelligence techniques including machine learning and deep
learning are leveraged to tailor models for specific applications (Loyola-Gonzalez, 2019).
This chapter lays the foundation for understanding the evolving landscape of Electrical
Energy forecasting systems, providing valuable insights into the diverse approaches

employed within the field.

Since the model's training is purely based on the data provided, it is logically
termed a data-driven approach (Amasyali and El-Gohary 2018). The recent literature is
enriched by many applications of various machine learning algorithms for data-driven
electrical energy efficiency management. This includes, but is not limited to, probabilistic
modelling (Y. Wang et al. 2016), Artificial Neural Networks, Random Forest
(Koschwitz, Frisch, and van Treeck 2018), Regression (Smarra et al. 2018) and many

more machine learning algorithms that are trained for the respective application’s dataset.

This is an exhaustive literature review. In which 107 similar work studies have
found from 2010 to 2022. This literature review covers the comprehensive study
including the proposed work. Figure 2.1 Data-Driven Electrical Energy Management

show how D2MME growing from electrical energy management system.
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Figure 2.1 Data-Driven Electrical Energy Management

2.2  Home Energy Management System

A smart house's decisions are made by the home energy management system
(HEMS). "Smart house" and "home energy management system" are used

interchangeably.

The HEMS interface allows the user to efficiently monitor, regulate, and manage
the household electricity use and generation. From the perspective of public institutions,
the demand response programme minimizes peak demand load and prevents blackouts.
But from an environmental standpoint, lowering gas emissions per person is a significant
success when combined with reducing energy consumption, using clean, renewable
energy resources, and driving electric vehicles. HEMS can also be accessed via a home
interior panel, a computer, a tablet, or a smartphone. It improves the energy efficiency of
smart homes and provides numerous benefits. The following figure 2.1 is showing the
model of smart building with multiple usage of electrical energy that can be measure by

smart meter.
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Figure 2.2 Home Energy Management System

2.2.1 Energy Management system

The buildings can be categorized into several different groups, including
manufacturing plants, hospitals, educational institutions, high-rise residential buildings,
etc. depending on their usage. Building energy management is one of the engineering
disciplines of building services. An effective energy management programme ensures the
efficient use of energy in buildings. The literature also reported that building energy
consumption accounts for 39% of global energy consumption and 38% of greenhouse gas

emissions (Spandagos and Ng 2017).

The energy management systems can produce a substantial annual savings on
energy costs. Energy management in building consumption and conservation is a critical

concern for both inhabitants and building managers.

The building's current mechanical system can be improved by maximizing
controlled utilization and expanding the capacity to alter comfort and air quality
throughout the structure. The EMS can increase the lifespan of the building's energy-
consuming systems while simultaneously lowering repair costs by utilizing equipment

and reducing idle energy use when necessary.
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2.3 Building Energy Management System (BEMS)

Building Energy Management Systems (BEMS) are computer-based systems that
manage, control, and monitor building technical services and energy consumption by
building devices (Sayed and Gabbar 2017). The system also assists in informing building
managers to understand the facility's energy usage better and adjust its energy
performance. BEMS is growing in popularity as businesses understand it is one of the
most effective methods for enhancing energy efficiency in a building, resulting in a quick
win. BEMS was traditionally thought to be most effective for large buildings, where the
installation's return on investment (ROI) would be substantial (Merabet et al. 2021).
However, because of technological developments, the BEMS system can be installed
cost-effectively even in smaller buildings, extending the savings dramatically (Merabet
et al. 2021). The expression BEMS is now and again utilized with Building Management
Systems (BMS). However, building management systems (BMS) can monitor and
operate a wide range of building frameworks, such as fire, smoke detectors and alarms,
movement indicators, closed-circuit television (CCTV), security, and access control

elevators. BEMS are linked to energy-related frameworks.

BEMS comprises several layers of infrastructure. Numerous field devices are
linked to the BEMS system via wireless or cable connections. HVAC systems, lighting
devices, sensors and actuators, individual equipment, ventilation systems, refrigeration
units, hot water systems, and heat pumps are field devices (Berrocal, Fernandez, and
Rempling 2021). Advanced building and predictive analysis of information acquired
from weather data, previous building performance data, and occupancy data are used to

optimally operate these field devices (Jia, Srinivasan, and Raheem 2017).

24 Data-Driven Energy Efficiency Management

Saving energy and being ecologically responsible has been key goals and
concerns for everyone, particularly during the COVID era. According to a World Bank
Report, Cities are accounted for over 70% of the world's CO> emissions, the majority of
which are produced by industrial and motorized transportation systems that consume
enormous amounts of fossil fuels and rely on distant infrastructure made of carbon-

intensive materials (Glavic¢ 2021).
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Rapid decarbonisation must be encouraged or rewarded through emissions-based
performance ratings that hold city governments and corporations more accountable to
their constituents. Effective performance measurements, however, cannot disregard the
influence of varying demographic, economic, and geographic variables on real CO; levels

in cities.

Cities with higher incomes have fewer emissions-intensive heavy industries, but
cities with higher populations have more emissions (H. Yang et al. 2021). Greater-income
cities have higher land costs and tougher pollution restrictions, while cities in particularly
cold or hot climates emit more emissions from energy for heating or cooling. In addition
to a better awareness of environmental conservation through energy-efficient devices,
sensors, and appliances, there is a greater emphasis on regulating and optimizing
consumption for environmental and economic reasons (Mattern, Staake, and Weiss

2010).

Hence, this has led to newer techniques for collecting large amounts of
consumption data in several metrics and dimensions using various tools, sensors, and
devices. This has naturally increased demand for sophisticated and advanced big data

analytics techniques for measuring and optimizing energy efficiency.

The most valuable asset for practically all firms nowadays is data, which is used
extensively for better business decisions, consumer behaviour predictions, maintenance
forecasting, and many other related and modern business decisions (Hair, Page, and

Brunsveld 2019).

Energy management and efficiency can grow significantly with data science,
machine learning, and Al tools. In the recent literature, the researchers have reported
Data-Driven Energy Efficiency Management (D2EEM) as the best variant of EMS. It is
because the D2EEMS chose the power of data science and artificial intelligence for

energy management (Qamar Raza and Khosravi 2015).

Numerous data sets related to building energy management can be found in
existing literature, and various machine learning techniques have been used by
researchers to classify and predict outcomes using these data sets. Nonetheless, a
benchmark data set was deemed necessary in the literature. Additionally, there is a
significant need for a machine learning algorithm specifically designed for practical
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applications. In 2019, the Smart Energy Informatics Lab (SEIL) at the Indian Institute of
Technology (IIT) conducted an experimental study to gather extensive data on energy

consumption in a university campus. (Akhtar, Sujod, and Rizvi 2022).

Through building energy management, energy operations, and control strategies,
data-driven building energy consumption forecasting models significantly contribute to
improving the energy efficiency of the buildings. For improved forecast accuracy and
resilience, data-driven models and evolutionary algorithms must be integrated with the
multi-source and heterogeneous energy consumption data. The SEIL published a study
to collect massive amounts of data on the energy consumption of residential buildings

and university campuses.

Both datasets are reported as the most recent and benchmark dataset of data-
driven energy forecasting systems considering residential buildings and university
campuses. (Somu, Raman M R, and Ramamritham 2020) In this research, a university

campus energy consumption dataset is under consideration.

The SEIL dataset was gathered from an IIT university building. The building has
four floors and is divided into three wings. The dataset includes data from December
2016 through July 2018. All datasets are in CSV format. The datasets are all at one-
minute granularity with current, voltage, and power as input attributes and accurate

energy consumption as an output attribute.

The dataset 1s massive, with a volume of 20 GB. The data has been extracted from
various units in the university building, such as building level, class level, auditorium
level, lab level, office level, etc. In this study, the building-level data is considered to

predict the total energy consumption of the building.

Since the data set is labelled and continuous, machine learning prediction
algorithms have been selected for training and testing. 24 machine-learning prediction
algorithms were tested to determine the best machine-learning algorithm. The grounds
for the decision are the functions of RMSE, R-Squared, MSE, MAE, prediction speed,

and computation time.

This work also submits an exhaustive parametric and empirical study of machine

learning algorithms on the relevant SEIL dataset (University Campus). The
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recommendation of the optimal machine learning algorithm for university campus energy
demand forecasting is submitted. Finally, the optimized variant of the best candidate of

the machine learning algorithm is presented as one deliverable of this study.

In recent years, the matter of energy management has been in the best interest of
the international community. With the rampant and significant rise in carbon levels
around the world and rapid changes in the climate, it has become inevitable to transfer
ourselves towards convenient and smart ways of energy consumption. However, the issue
has become more intense since energy consumption has increased and the burning of
fuels leading to carbon emissions is creating drastic changes to the ozone layer, which is

an alarming situation.

In this crisis, it is a great opportunity for us to shift towards smarter and easier
solutions that would help decrease global warming and simultaneously fulfil all energy
needs. Researchers, for this purpose, have devised ways to meet the energy requirements
within the limited resources. In recent years, Energy management has gained significant
importance. It is the key to reducing energy consumption in your firm. With the increase
in fuel prices daily, it is the need of the hour to shift towards more innovative energy
consumption solutions. The Energy Management System is a foundation or structure that

assists the users in managing energy consumption.

This covers but is not limited to commercial, industrial, and public-sector
organisations. The EMS helps organizations classify potentials to adopt and improve
technological ways of saving energy. According to the International Organization for
Standardization (ISO), an energy management system implements the strategy for energy

usage and devises plans to accomplish those targets (Chiu, Lo, and Tsai 2012).

Many organizations worldwide have now implemented this system and played an
active part in reducing carbon emissions. These entities have successfully reduced energy
expenses, cut down related costs and, more critically, gained better control over their

technical processes and enhanced productivity and process stability.

2.5 Smart Home Energy Management

In recent years, smart homes have become the town's notable talk regarding

efficient energy management. They have the potential to surge the efficiency of energy

19



and slash energy costs. In addition, they are for the added benefit of reducing carbon
emissions by incorporating renewable resources. They are well-designed structures with
adequate access to assets, communication, controls, data, and information technology to
improve the occupants' quality of life through comfort, convenience, lower expenses, and
enhanced connectivity. While the concept has usually been known for decades, few
people have ever seen or occupied a smart home. The high cost of upgrading building
stock to incorporate smart technologies such as network-connected devices has been

highlighted as an explanation for this delayed growth (Jayaraman et al. 2016).

A smart residential building has two-way communication with the utility grid,
which is enabled by a smart metre, this smart meter allows the building to interact
dynamically with the grid system, receive signals from the service provider and respond

with usage and diagnostic information.

This intelligent smart meter provides the communication and information set-up required
to interchange operational and price information between the service provider and the
end user in real time. These meters can network with in-home appliances, programmable
communicating thermostats (PCTs), and other loads (Rodrigues et al. 2022). They can
also retrieve the consumption data at regular intervals and automatically transmit it to the
utility through a secure network. This network is typically used combined with a backhaul
layer. It allows the utility and the metre to communicate in both directions. It also
provides for message transmission to the metre that might be used for "on-demand"

readings.

Another term is found in the literature, and it is Automated Home Energy
Management (AHEM) (Nanda and Panigrahi 2016). The network self-manages end-use
systems based on occupants' and smart metres' data. According to the researchers, the
AHEM value depends on integrating the energy use of systems connected in a home with
the users’ comfort and economic objectives, as well as information obtained from the
amenity provider (Chavali, Yang, and Nehorai 2014). The Controls and Sensors work
together to collect applicable data (Gupta, Reynolds, and Patel 2010), and by using
practical algorithms, conduct the whole process and deploy the control strategies that will

ultimately achieve the consumption targets. (Erol-Kantarci and Mouftah 2011).
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In 2016, the U.S. Energy Information Administration released a report claiming
that global energy consumption will grow by 48% by 2040 (None 2016) . According to
the report, most of this expansion will come from nations not members of the
Organization for Economic Cooperation and Development (OECD), including those with
high economic growth, particularly in Asia (Abbey et al. 2020). Non-OECD Asia,
including China and India, accounts for more than half of the projected rise in global
energy consumption. While considering the increase in the rapid hike in fuel prices and
drawing concerns about energy security, the researchers have favoured the use of non-
fossil renewable energy sources. Renewables and nuclear power are the world's fastest-
growing energy sources over the projection period. According to the report, renewable
energy will grow at a 2.6% annual rate until 2040, while nuclear power will grow at a
2.3% yearly rate. As for energy consumption, the non-OECD countries, which are not
part of the OECD, are projected to have higher energy consumption growth than OECD
countries in the period of 2012 to 2040. This can be measured in quadrillion British

thermal units (Btu), which is a unit of energy used to measure energy consumption.

According to the U.S. Energy Information Administration (EIA), non-OECD
countries' total energy consumption is expected to increase from approximately 10.3
quadrillion Btu in 2012 to approximately 17.3 quadrillion Btu in 2040, while OECD
countries' total energy consumption is expected to increase from approximately 12.5

quadrillion Btu in 2012 to approximately 13.2 quadrillion Btu in 2040.

This disparity in energy consumption growth between the two groups is due to
several factors, including differences in population growth, economic development, and
energy policies. Non-OECD countries are generally experiencing faster population
growth and economic development, which is driving up their energy consumption, while
many OECD countries have implemented policies to reduce energy consumption and

shift towards more sustainable energy sources (Abbey et al. 2020).

The following figure 2.6 is showing the World energy consumption by country
grouping, 2012-2040 (quadrillion Btu) that is a statistical presentation.
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Figure 2.3 World energy consumption by country grouping, 2012-2040 (quadrillion
Btu)

Source : Alam and Murad (2020)

According to the OECD most recent report, under the "Stated Policies Scenario,"
which considers announced policy targets and measures, global energy consumption is
expected to increase by approximately 25% between 2020 and 2040. However, note that
these projections are subject to change, and that various developments could significantly
affect the rate of energy consumption growth. For example, the widespread adoption of
electric vehicles and implementing more energy-efficient technologies could result in
slower growth in energy consumption, while increased urbanization and economic

growth could drive demand for energy higher.
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Emphasize that how energy is produced and consumed will also play a crucial
role in determining the total energy consumed in 2040. The increased deployment of
renewable energy sources, such as wind and solar power, and the deployment of clean
energy technologies are likely to contribute to reducing global greenhouse gas emissions

and mitigating the impacts of climate change.

The following Figure 2.4 is showing the projections of Total global consumption

of energy from 1990 to 2040.
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2.6  Recent Developments on EEMS Using Al

The latest advancements in machine learning and Al have prompted practical
solicitations to become self-sufficient. New technologies have empowered the latest
applications to create vast amounts of data to make intelligent decisions (Anandakumar
and Arulmurugan 2019). Deep learning approaches surpassed big data when associated

with traditional Al techniques and ML models.

2.6.1 Proportional Evaluation of DL Networks

In 2016, Nagueh et al. worked on proportionally evaluating two DL network types
for energy management: the first one is the LSTM and LSTM-based sequence-to-
sequence architecture. Against a benchmark dataset of one home customer's electricity
consumption, both these models were tested. At the two resolutions, the models were
compared (Nagueh et al. 2016). As per the results, the typical LSTM is not up to the mark
in forecasting a tiny resolution. But the LSTM S2S excels at both large and small data
resolution. The latitude of this investigation is confined to single domestic users ‘data.

(Marino, Amarasinghe, and Manic 2016).

2.6.2 Energy Forecast using Vector Regression

Groninger et al. (2016) forecasted energy by local learning with the support
vector regression. As per their results, local (Systemic vascular resistance) SVR
outperforms both Systemic vascular resistance and H2O deep learning. Because the focus
of work is restricted to the instrument, namely the H20 machine learning platform, the
inquiry was missing in this work. In addition to this, according to the author(s) they have
used big data; however, during the literature review, there was no information found

(Grolinger, Capretz, and Seewald 2016).

2.6.3 FCRBMF or Purpose of Energy Demand Forecasting

In the same year, Mocanu et al. (2016) presented the work using Factored
Conditional Restricted Boltzmann Machines (FCRBM) for demand forecasting.
According to this study, the model was evaluated and trained by using data from the Eco-
Grid EU dataset. This included electricity use, pricing, and weather data from 1900

consumers. As per the study, the offered technique remains worthwhile for energy
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demand forecasting on a particular dataset. However, in this study, the author(s) did not
compare his work to other deep learning architecture variants or existing pre-trained

networks (Mocanu et al. 2016).

2.6.4 Comparison of CNN

Amarasinghe, Marino, and Manic (2017), later that year presented their research
towards convolutional neural networks. The author(s) compared the Convolutional neural
network (CNN) against previous work done in 2016, such as LSTM, S2S, SVR, FCRBM,
and DNN, on an electrical usage dataset for one domestic user. The work lacked new and
innovative CNN design, and neither did it include a pre-trained network. There lacked

the study when comparing the results to the current pre-trained network.

The selection of a machine learning (ML) approach over deep learning (DL) for
"An Optimized Variant of Machine Learning Algorithm for Data-Driven Electrical
Energy Efficiency Management (D2EEM)" is rooted in a thoughtful consideration of the

project's objectives and intricacies.

Given the central theme of enhancing electrical energy efficiency, ML presents
itself as an optimal choice due to its inherent interpretability and adaptability. In the
context of D2EEM, where transparency in decision-making is crucial, ML models offer
a clear understanding of the underlying processes, contributing to a more comprehensible

and user-friendly solution.

The project involves working with relatively smaller datasets. ML algorithms
have demonstrated prowess in extracting meaningful insights from limited data, ensuring
robust and reliable results. This strategic alignment with ML not only addresses the
specific needs of D2EEM but also positions the research for a balanced and effective

exploration of data-driven energy management.

The emphasis on ML in the project title reflects a deliberate choice tailored to the
nuances of the research objectives, aiming for a sophisticated yet practical approach to
optimize electrical energy efficiency through the proposed algorithm (K. Wang, Qi, and
Liu 2019).

25



2.6.5 Evolutionary-Neuro Hybrid Strategy to Energy Management

Chen presented an evolutionary-neural hybrid energy management strategy
(Paterakis et al. 2017) that used a data-driven technique to train the RNN. This
professional network then fed into the optimization problem with finite horizons. For
energy management, the model-based approach was outperformed by the proposed
model-less and data-driven strategy. Although this scenario appears fruitful due to
hybridization, a considerable increase in computing complexity has been reported. It also
hampers the proposed system's usability for real-time energy management (Paterakis et

al. 2017)

2.7  Deep Learning over Machine Learning Technique

The validation of DL advantage over the traditional ML technique for EMS was
done by Paterakiset et al. in (2017). This study covered an in-depth comparison of

traditional machine techniques such as:

o Gaussian Processes

. Regression Trees

. Support Vector Machines
o Ensemble Boosting

. Linear Regression,

o Deep learning method.

According to work, the ML technique remains flawed because of a comparatively
big dataset's performance plateau. But DL accounts for advanced presentation as data
volume grows. Machine Learning (ML) is often preferred over Deep Learning (DL) for
several practical reasons, particularly in scenarios with limited data, computational
resources, and specific application requirements. ML algorithms, such as linear
regression, decision trees, and support vector machines, are generally more
straightforward to implement and interpret compared to the complex architectures of DL
models like neural networks. ML models can achieve good performance with smaller
datasets, whereas DL models typically require large amounts of data to avoid overfitting
and to perform effectively. Additionally, ML models demand less computational power

and training time, making them more accessible for organizations with limited resources.
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The interpretability of ML models also provides valuable insights into the decision-
making process, which is crucial in fields like healthcare and finance where transparency
and understanding of the model's behaviour are essential. Consequently, while DL is
powerful for specific tasks such as image and speech recognition, ML remains a preferred
choice for a broader range of applications due to its simplicity, efficiency, and
interpretability This investigation validated the point that DL outperforms traditional
machine techniques. (Chen, Shi, and Zhang 2018).

2.7.1 Deep reinforcement for the smart grid for improvement in energy
management in buildings

Mocanu et al. (2019) worked on deep reinforcement for the smart grid for the
first time in 2018. The strategy is mainly intended to improve energy management in
buildings. Concurrently, the researchers investigated two DL Algorithms. The efficiency
of the suggested method is demonstrated using the high-dimensional and benchmark

dataset, the Pecan Street Inc. database.

2.7.2 Forecasting time-series data by using RNN

A recent study on energy management for university campuses was a report
published in 2018 (Nichiforov et al. 2018). In this work, the author used RNN to forecast
time-series data from a university campus's energy use profile. In 2019, a pertinent study
on energy management was published (Afrasiabi et al. 2019). To identify the optimal
operating point of micro-grid distribution, the researchers used accelerated AADM and
alternating direction methods of multipliers (ADMM). However, this work does not

cover the data-driven approach to the prediction of energy.

Ahmad et al. (2019) did another recent relevant study. This work applied a data-
driven deep learning approach to antedate energy demand at the district level. A unique
general DL architecture for energy demand forecasting was proposed. The lack of
extensive assessment with current pre-trained models and benchmark dataset appear to

be a shortage in this work (Ahmad and Chen 2019).
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2.7.3 FCRBM for energy consumption

Hafeez et al. (2020) proposed factoring a conditional restricted Boltzmann
machine (FCRBM) for energy consumption forecasting for 2020. The proposed work

forecasts future electrical energy usage regarding smart grid energy management.

2.7.4 DL-based architecture for energy management

Han et al. (2021), in 2020, presented a DL-based framework architecture for
smart energy management of residences & enterprises. Among the important
contributions are edge device-based real-time energy management via a shared cloud-
based data supervisory server, optimal normalization technique selection, and a unique
sequence learning-based energy forecasting mechanism with reduced time complexity

and the lowest error rates (Han et al. 2021).

2.7.5 Utilizing CNN and MB-gru for load prediction

In 2020, Zulfigar et al. conducted a study utilising MBGRU and CNN for load
prediction in a residential building. The suggested system's training and testing
performance were validated using the benchmark dataset. An innovative model's
systematic evaluation against existing pre-trained DL architectures may be established
(Z. A. Khan et al. 2020). YOLO v3 had been recently used for counting the user quantity
inside a vicinity nearby. The primary goal is to reduce the air-conditioning burden. This
approach's practical viability requires some adjustment. YOLO is a pre-existing
algorithm. The work of the author could be enhanced if the novel deep learning model

had been provided (Elsisi et al. 2021).

2.8 Multilayer neural network for hourly energy consumption prediction

Truong et al. (2018) proposed a unique ML model for hourly consumption
prediction of the energy in residence. Authors have employed an eight-hidden-layer
multilayer neural network. Expanding the hidden layer of a multilayer neural network

dramatically increases computing costs at a relatively minimal boost in performance.
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2.9 DL as a candidate for energy forecasting

Researchers employed a similar rule of thumb (Truong et al. 2021). Hamdounet
et al. published another study. This study strongly recommends deep learning as the finest
contender for time-series-based energy forecasting. This paper presents a thorough
comparison of machine learning and deep learning methods. This work's input can be
expanded if the pragmatic estimation is conducted at a larger data volume. There was no
description of the machine learning model's innovative deep learning architecture.

(Hamdoun, Sagheer, and Youness 2021).

2.10 Comparison of machine learning and deep learning methods on the
residential building dataset

Hafiz et al. (Hafiz et al. 2020), Wu et al. (Wu and Lee 2020), and Arienti et al.
(Arienti 2020) presented three papers in 2020 in which they provided a comparison of
machine learning and deep learning methods on the dataset of a residential building in
their work. As per the study, DL is a considerably superior approach for time series data-
driven forecasting. Aragon utilized RNN with the LSTM technique instead of the purpose
of energy demand forecasting, as in earlier studies. This effort also falls short of
establishing a novel DL architecture and pre-trained network on benchmark datasets. It

is a critical need in effective energy management (Aragon et al. 2019).

2.11 SEIL lab dataset

The Indian Institute of Technology’s (IIT) Smart Energy Informatics Lab (SEIL)
has recorded a substantial input to the literature on EEM. The members of SEIL, Hareesh
Kumar et al. (Kumar, Mammen, and Ramamritham 2019) contributed. For demand

prediction, they proposed data-driven reinforcement learning.

Similarly, in the same year, Tanted, Sapan, et al. (Tanted et al. 2020) presented
the “database support for Adaptive Visualization of Large Sensor Data.” Whereas, from
the same group, Somu [16] conducted work on a hybrid model for predicting building
energy use using the LSTM networks. Similarly, Ramamritham et al. (Ramamritham,
Karmakar, and Shenoy 2017) called instead of intelligent energy management systems to
be data-driven. They have referred to the dataset generated by their research. This group

also worked on solar PV optimization and building thermal modelling (Jois et al. 2019a,
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2019b; Karmakar et al. 2018; Kuthanazhi et al. 2018; Lee et al. 2021). Following a
thorough examination of the literature about the research contribution and limits, these

conclusions regarding possible open areas and research gaps were identified:

1. Few scholars have developed a unique DL architecture for energy efficiency
management. A relatively limited DL architecture is provided compared to the
existing DL design.

2. Only one university campus energy management study has been published in the
last five years.

3. The pre-trained network for energy efficiency management has not been
identified in the literature in the last five years. Particularly for university
campuses.

4. Many investigations in the temporal realm employ the time series technique. But,
several studies on energy efficiency management have been published.

5. Only SEIL-IIT has access to the benchmarking dataset.

2.12  Latest techniques for energy efficient management systems

Johannesen et al. (Johannesen, Kolhe, and Goodwin 2019) published a study in
2019 that investigated the responsiveness of a regression model to a Sydney dataset that
included meteorological information, load demand and time stamps. The dataset for the
period of four years was acquired locally. As common instances, the research has
disseminated and mapped load demand, weather and timestamp data. According to the
authors of this study, the model is trained to uncover pattern recognition rules in the input-
output connection. The model's inputs are called "features." Neural networks, also known
as feedforward and back-propagating networks, are the preferred machine learning

technique, with several inputs weighted to offer a forecast conclusion.

Although neural networks are good at detecting non-linearity’s and are thus
favoured as a predictive tool in electrical load forecasting, they are frequently criticized
for their lack of transparency and interpretability due to the black box approach and the
utilization of enormous amounts of data. When employing neural networks to electricity
demand forecast, overfitting remains a challenge. The literature distinguishes between
short-term and long-term forecasting. Another study was undertaken on the energy

consumption of Korean university campuses. A variety of things influence electric power
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consumption. A university campus, for example, which is one of the largest power-
consuming institutions, exhibits a wide variation in electric load depending on time and

environment.

A dependable electrical power source must ensure the smooth running of such a

facility. One technique is to forecast the electric load and supply electricity correctly.

Even though different influencing elements of power consumption for
educational institutions have been established by analysing power consumption patterns
and usage instances, further research is needed to forecast their electric load
quantitatively. The researchers also in this work plotted weather and power utilization
information or data in their investigation. They used principal component analysis (PCA)
to minimize the feature dimension before employing ANN and SVM for energy demand
prediction. The authors subsequently determined that ANN is the best contender for
energy demand prediction for the given dataset. The authors used multiple machine
learning methods to create a power consumption forecasting model. To assess their
efficacy, the researchers looked at four building clusters at a university and collected
power usage data at 15-minute intervals for more than a year. They identified features
from the data based on the periodic properties, and then performed principal component
and factor analysis. In addition, they developed two models for estimating the electric
load using artificial neural networks and support vector regression. They used 5-fold
cross-validation to assess the prediction performance of each forecasting model and
compared the predicted result to the actual electric load. According to the experimental
results of this study, the two forecasting models may reach an average error rate of 3.46-
10% for all clusters. A building's or building cluster's power consumption pattern may
differ for various reasons. A university campus, for example, with one of the most power-
consuming building clusters, exhibits variable power consumption patterns based on the
semester, vacation, day of the week, and so on. Other common causes of diverse patterns
include the purpose or function of structures and complicated external circumstances.
These trends should be addressed when developing a machine learning-based forecasting

model that can precisely anticipate power usage.

To build a power consumption forecasting model for educational institutions,
different social and environmental aspects that significantly affect their power

consumption should be analysed and represented (Moon et al. 2018).
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Residential buildings, like the university campus, are power utilization hotspots.
Chou et al. (Chou and Tran 2018) worked on residential building power requirement
predictions. The authors conducted a hybrid prediction and optimization approach. The
study found that the hybrid evolutionary-neuro system outperformed the classical
machine learning network for their respective datasets. Another group of researchers
submitted a study in the same year to justify the evolutionary-neuro system for energy
forecasting. According to work, numerous data-driven models have been successfully
used for electrical energy consumption forecasts at building and larger scales. When the
forecasting data collection is multi-sourced, heterogeneous, or insufficient, a single data-
driven model may result in convergence issues or low model accuracy. The combination
of sophisticated evolutionary algorithms (EAs) and data-driven models has proven
effective in prediction accuracy and resilience improvements. However, some of them
take a long time to converge. This research presented a unique EA, teaching-learning-
based optimization (TLBO), for predicting short-term building energy demand. The
fundamental TLBO algorithm was updated in three ways to improve its convergence
speed and optimization accuracy. The enhanced approach was integrated with artificial
neural networks (ANNSs) and used to estimate the hourly electrical energy consumption
of two educational facilities in the United States and China, respectively. In terms of
convergence speed and predictive accuracy, the proposed model outperforms published
GA-ANN and PSO-ANN approaches, indicating that it is suited for future online energy
prediction. (K. Li et al. 2018)

A study was conducted in which the researchers presented a hybrid model for
energy demand forecasts and optimization. The method was evaluated using an hourly
energy usage dataset from South Korea. According to the author, the proposed model
could be relevant for additional datasets. However, their paper explains this claim. Figure

2.8 shows the energy trading system configuration for the Korea power exchange EMS
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Figure 2.5 Energy trading system configuration

Source: Wagqas et, al. (2017)

The above figure 2.8 is showing the energy trading system configuration for the
Korea Power Exchange has many remote terminal units (RTU) for energy generation.
These units use the internet protocols to transfer data to the central metering system. The
consequences of demand forecasting are critical for price-setting and operational
schedules (OS). They also use PSS to alter the system's marginal pricing, which assists
the settlement system and other payment systems (P. W. Khan et al. 2020). A survey was
published by Ahmed et al. in the journal Sustainable Cities and Society. The study
detailed the efficiency of ML algorithms for power demand prediction via a literature

review.

This study used three well-known forecasting engines to review supervised-based
machine learning methods comprehensively. This evaluation sought to provide

approaches for predicting analysis and various other prediction activities. A specific goal
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was to explore and analyse the methods used to forecast energy use in real-time with
diverse applications and to identify the research review with valuable strategies that can
be found in the present literature. This evaluation included carefully comparing and
analysing several modelling techniques to select a better forecasting model for
completing the intended task in various applications. A complete literature review with
other researchers is compiled in the table for a better understanding of the system in table
2.1. As well as real-time energy usage and climatic data used for modelling research were

used to compare and analyse predicting accuracy.
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Table 2.1 Literature review table

Year Outcome Review References

2016 The authors have agreed Huge standard reference limits set of
of deep learning frameworks to design the electrical energy data for electric energy (Rodriguez
efficiency management system. Fernandez et al.

2016)

2016 This is a comparative consideration of two Coverage is limited to a single (Tan et al. 2015)
varieties of the Deep Learning network: (LSTM) and sequence residential customer
architecture (S2 S).

2016 They then compared the proposed model with the regression of The details of the data were not (Peris et al. 2016)

existing support vector and deep Learning frameworks. The result  included in this document
of the simulation shows that the local RVS surpassed the RV'S and
H2 O in-Deep Learning

2017 The authors have compared the convolutional neural network New CNN/ConvNet architecture was (Vinayakumar,
(CNN/ConvNet) presented in this study, and the pre- Soman, and
trained network described Poornachandran
2017)
2017 Initially formed the Recurrent neural networks (RNN) using a data- The model-based approach has (Guo et al. 2017)
driven approach surpassed the approach of model-based
studies in management
of energy
2017 This study provided a comprehensive comparison of conventional = Validation of the claim related to the (Erickson et al.
machine learning algorithms, including vector support machines, energy management system is observed  2017)
Gaussian processes, regression trees, overall amplification and to be unclear
linear regression, and the Deep Learning method
2018 The large data is called Big Data for energy management The availability of the referenced (Al-Ali et al. 2017)

massive datasets is limited
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Table 2.1 Continued

Year Outcome Review References
2018 This method is optimized for building energy management, and The parametric fringe of the proposed (Mocanu et al.
explores two DL algorithms Deep Q-learning (DQN) and Deep technique proved insufficient. The 2019)
Policy Gradient (DPG), at the same time cognitive scope of the gadget seems
very trendy
2018 The authors have used Recurrent neural networks (RNN) to The robustness of this work could be (Jiao et al. 2018)
forecast time series data on energy consumption for a university enhanced if the master data set had been
campus chosen
2019 The authors have suggested using the methods of alternating This study did not include the data- (Jacob et al. 2018)
direction of multipliers (ADMM) and accelerated alternating based approach to energy forecasting.
direction of multipliers (AADM) to find the optimum value of the =~ Moreover, it was felt that the parametric
operation of the micro network distribution comparison was missing in this work
2019 This work submitted a data-driven, Deep Learning approach to This study appears deficient because of  (Pickering and
district-wide energy demand forecasting. the absence of a baseline data set and Choudhary 2019)
extensive comparison with pre-existing
models
2020 The FS-FCRBM-GWDO hybrid model is superior to the existing The gap between the existing real-world (Hafeez et al. 2020)
models in this study reference data set and the pre-
established model is deficient
2020 Major contributions include device-based The actual application was outside the (Zhao and Li 2020)
real-time power management via a common cloud data monitoring  scope of the study
server
2021 A machine (computer) based vision approach, You Only Look The author’s study would be made more (Zhao and Li 2020)

Once (YOLO v3), was utilized to calculate the number of
individuals within the region. It is more in correlation with the
temperature range of the air conditioning units

effective by implementing new variants
of Deep Learning
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Table 2.1 Continued

Year

Outcome

Review

References

2021

A new machine learning model for forecasting energy usage on an

hourly basis in a residential building is proposed

Performing the machine learning
algorithm is compromised because of
the performance plateau highlighted by
big data

(Wen, Zhou, and
Yang 2020)

2021

Deep Learning is the best candidate for power prediction based on
time series. The concern in this study is increasingly associated

with the performance of ML and DL being found

Three small data sets were used to
validate the study. The authors could
not pursue the novel Deep Learning
architecture of a machine learning
model for data-driven energy efficiency
forecasting

(Zhang et al. 2021)
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By emphasizing the specific gaps within each area outlined in the table, readers
gained a clearer understanding of how each study contributed to filling these gaps in the
existing literature. For instance, several studies addressed the lack of standard reference
limits for electric energy data, highlighting the need for robust frameworks to design
energy efficiency management systems. Similarly, the limited coverage of specific
customer segments in some studies underscored the necessity for broader applicability
and inclusivity within energy management research. Moreover, the absence of detailed
data inclusion in certain studies emphasized the importance of transparent reporting and
comprehensive data sharing practices. Additionally, studies that lacked validation for
new architectures or algorithms underscored the need for rigorous evaluation and
benchmarking against existing methods. Furthermore, the deficiency in baseline datasets
and extensive comparisons with pre-existing models highlighted the importance of
thorough validation and replication efforts in energy forecasting research. Overall, by
addressing these specific gaps, each study contributed to advancing knowledge and
understanding in the field of energy management and deep learning, thereby enhancing

the effectiveness and applicability of future research endeavours.

They concluded that the efficient forecasters of electrical energy demand are
Levenberg-Marquardt back-propagation neural networks (LMBNNSs) and the Bayesian
regularization back-propagation neural networks (BRB-NNs) (Ahmad and Chen 2020).
A scientific contribution by the SEIL University Campus dataset is presented in this
section. The research gap on electrical power prediction and previous work on SEIL are
highlighted. The algorithm for optimizing the sinusoidal cosine was enhanced by a group
of SEIL researchers using LSTM. It results in precise, dependable short-term, medium,
and long-term energy utilisation forecasts. They claimed that combining the improved
Sine Cosine and LSTM algorithms resulted in a robust power consumption model.

(Somu, Raman M R, and Ramamritham 2020)

The researchers at SEIL employed kCNN-LSTM to produce accurate estimates
of energy usage in buildings in a separate publication. This experiment used real-time
energy usage data from the Kanwal Rekhi building at the Indian Institute of Technology
(IIT) in Mumbai. The suggested approach employs k-means clustering to conduct cluster

analysis and comprehend the energy usage model. The proposed methods were developed
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and evaluated employing present energy usage data from a four-story structure at IIT,

Bombay.

The IIT building consisted of four floors and was divided into three wings. All
the datasets are in CSV format and include data from Dec 2016 through Jul 2018. As per
the literature, these datasets are all at a minute granularity with voltage, power, and
current as input and actual power consumption as an output trait. As per the studies, the
dataset is of huge amount, quantifying up to 20 GB, and it has been extracted from the
units in the building, including classes, auditorium, labs etc. Following a thorough
examination of the present work, it has been identified that the use of artificial
intelligence is now unavoidable for robust and precise energy management. Additionally,
the development of robust machine learning algorithms will aid in the achievement of the
goal. After careful examination, the full empirical comparison of machine learning
algorithms in the literature is deemed insufficient. This work fills the gap by

comprehensively evaluating many machine-learning methods on the SEIL dataset.

The study's main deliverable is selecting the best machine learning algorithm.

Empirical data will support the recommendation.

2.12.1 Algorithms Use

In the domain of machine learning applications for energy demand prediction in
energy management systems, the selection of appropriate algorithms is crucial for
achieving accurate and efficient results. In this thesis, a comprehensive approach was

taken by evaluating a diverse set of machine learning algorithms.

linear regression-based algorithms such as Linear, Interactions Linear, and
Robust Linear were considered due to their simplicity and interpretability (Slowik,
Collazzi, & Steinfeld, 2011). These algorithms are well-suited for capturing linear
relationships between input features and energy demand. Additionally, stepwise linear
regression was explored to systematically select the most relevant features for prediction

(Tjur, 2009).

Tree-based algorithms, including Fine Trees, Medium Trees, and Coarse Tree,
were investigated for their ability to capture nonlinear relationships and interactions

within the data (Smith & Jones, 2015). These algorithms offer flexibility in modeling
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complex patterns in energy demand, making them valuable candidates for energy

management systems.

The support vector machine (SVM) algorithms, such as Linear SVM, Quadratic
SVM, and Cubic SVM, were examined for their capability to handle high-dimensional
data and nonlinear relationships (Johnson et al., 2018). SVMs have shown promising
results in various prediction tasks, including energy demand forecasting, due to their

ability to find optimal hyperplanes for classification or regression.

Boosted trees algorithms, including Bagged Trees and Squared Exponential GPR,
were considered for their ensemble learning approach, which combines multiple weak
learners to improve prediction accuracy (Brown et al., 2020). These algorithms have
demonstrated effectiveness in capturing complex patterns and reducing prediction errors

in energy demand prediction tasks.

In the context of project on machine learning applications for energy demand
prediction in energy management systems, we chose to utilize ensemble tree-based

algorithms such as Bagged Trees, Fine Trees, and Medium Trees for several reasons.

Ensemble methods, like Bagged Trees, have shown robustness and
resilience to noise and outliers in the data (Breiman et.al, 1996). By aggregating the
predictions of multiple trees trained on different subsets of the data, Bagged Trees reduce
overfitting and variance, thereby enhancing the overall predictive performance (Breiman

et.al, 1996).

Fine Trees and Medium Trees were selected due to their ability to capture
complex nonlinear relationships and interactions within the energy consumption data
(Hastie et al., 2009). These algorithms partition the feature space into smaller regions,
enabling them to capture intricate patterns in energy demand variations across different

time intervals and environmental conditions.

The interpretability of tree-based algorithms is advantageous for understanding
the factors driving energy demand fluctuations (Louppe et al., 2014). Fine Trees and

Medium Trees provide intuitive insights into the decision-making process by visualizing
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the hierarchical structure of decision rules, facilitating the identification of key predictors

influencing energy consumption patterns.

The utilization of Bagged Trees, Fine Trees, and Medium Trees in our project was
motivated by their robustness, ability to capture complex patterns, and interpretability,
making them suitable choices for accurately predicting energy demand in real-world

energy management systems.

2.13 Research Gap

The research conducted in this thesis addresses significant gaps in the current
literature surrounding machine learning applications for energy demand prediction in
energy management systems. By developing and implementing an advanced ensemble of
machine learning algorithms specifically tailored for energy settings, this study aims to
innovate in model selection and configuration to achieve precise and efficient energy
demand prediction. Furthermore, a comprehensive analysis of algorithmic efficiency and
efficacy within the context of energy management is undertaken, utilizing a diverse set
of metrics to provide nuanced insights into performance. Through advanced
hyperparameter tuning and feature selection techniques, the top-performing algorithm
identified in the analysis is optimized to push the boundaries of optimization
methodologies and achieve peak performance in energy demand prediction for buildings.

In addition, several key research gaps have been identified:

Data integration: Effective methods for integrating data from various sources

into a centralized system for better energy management are needed.

Predictive analytics: More accurate and effective predictive models are required

to optimize energy usage and reduce costs.

Real-time monitoring and control: More advanced and efficient methods for real-
time monitoring and controlling energy usage are necessary for optimal energy

management.

Machine learning applications: Further research is needed to develop scalable

and effective applications of machine learning in electrical energy management.
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Cybersecurity: Effective methods for securing electrical energy management

systems against cyber threats are essential as digital technologies become more prevalent.

Energy storage systems: More efficient and cost-effective energy storage
systems are needed to enhance electrical energy management. A synopsis of Chapters 3
and 4's collective exploration of the complex terrain of data integration, predictive
analytics, real-time monitoring and control, and the use of machine learning in electrical
energy management is provided below. These chapters offer not just theoretical
frameworks but also hands-on instructions for tackling these problems by creatively
addressing each research gap. Additionally, the comprehensiveness of their solutions
guarantees a holistic approach to improving energy management systems, advancing the
industry toward better effectiveness, sustainability, and resilience in the face of new

problems.
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CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter explains the research methodology to fulfil the research objectives.
The research methodology includes system, sample data, modification parameter setup,
final parameter setup, machine and equipment involved, type of algorithm and
forecasting analysis. The methods planned were essential to determine the direction and

flow of this research.

3.2 Data-driven Electrical Energy Efficiency Management

Data-driven Electrical Energy Efficiency Management (D2EEM) refers to an
approach in which the management and optimization of electrical energy consumption
are driven by the analysis and insights derived from data. This methodology leverages
advanced data analytics techniques, particularly machine learning algorithms, to make
informed decisions and enhance the efficiency of electrical energy usage in various

settings, such as buildings, industrial facilities, or power systems.
Key components of D2EEM typically include:

Data Collection: Gathering relevant data related to energy consumption, system
parameters, and environmental factors. This data can be collected from sensors, smart

meters, historical records, and other sources.

Data Analysis: Applying various data analysis techniques, including machine
learning algorithms, to uncover patterns, correlations, and trends within the collected

data. This analysis helps in understanding the factors influencing energy consumption.

Predictive Modeling: Developing models that can predict future energy
consumption based on historical data and other relevant features. These models enable

proactive decision-making for efficient energy management.
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Optimization Strategies: Implementing optimization algorithms to identify the
most efficient ways to allocate and utilize electrical energy resources. This may involve
scheduling, load balancing, and other strategies to minimize waste and improve overall

efficiency.

Continuous Monitoring and Adaptation: Establishing a feedback loop for
continuous monitoring of energy usage and system performance. This allows for real-
time adjustments and adaptation to changing conditions, ensuring ongoing energy

efficiency.

3.3  Experimental settings

The time slot for DR events is one hour. The maximum number of requests that
can be sent to a consumer for the period is 5, after which the consumer is filtered out of
the selection process. Defined a flat supply threshold across all time slots, where AG
equals 90% of the maximum demand of the DR Day. The expected reduction for every
consumer is 40 percent of their total consumption. Initially, At is assigned zero and is
updated in the subsequent iterations based on the responses in the previous iteration. The
response and request indexes are created using a random function that takes values
between 0.1 and 0.9, respectively. Experiments are run in a Stochastic Response Mode
for 10 DR events. Each time a consumer gets selected, its requesting index and response
index are updated using s 5 and 6. Consumer's expected reduction for every DR event is
calculated using a function based on their average performance in the past DR events +a
% randomly, where takes values from 1 to 10, multiplied by 0.4. Experiments For
evaluation, all possible combinations, i.e.,4C1,4C2,4C3 and 4C4 of features, are
considered. For simplicity, while calculating the overall score, all features under
consideration are given the same alpha values, i.e., one and rest to 0. All these
combinations result in 15 approaches. The performance metrics are measured for all these
approaches using s 10, 12, 13 mentioned in the thesis. The maximum value from T
(Number of DR requests) is 5000, which occurs when DR Request is sent to every
consumer in all DR events. The maximum risk can be obtained 100%, and worst-case

unfairness will be close to 500.
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34 Data set

The selection of a university campus, particularly IIT in India, as the case study
for the research is appropriate. The unique characteristics of a university campus provide
a diverse and complex environment for studying electrical energy -efficiency
management. Universities often have a mix of academic buildings, residential areas,
laboratories, and recreational spaces, creating a challenging setting that reflects real-

world scenarios.

The IIT campus, being a renowned educational institution, adds significance to
the research due to its scale and diverse energy consumption patterns. Analyzing and
optimizing energy efficiency in this context can offer valuable insights applicable to
educational campuses globally, contributing to sustainable energy practices in the

academic sector.

The choice aligns well with the research objectives, providing a practical and
relevant scenario for implementing and testing the proposed data-driven electrical energy
efficiency management approach. The findings from such a case study can have broader
implications for similar large-scale settings, helping address energy challenges in

educational institutions and beyond.

3.4.1 Data-Driven Energy Management

Our ongoing research in Smart Energy Management is primarily motivated by the
objectives of achieving energy efficiency, reducing peak demand and ensuring optimal
demand response control, while simultaneously meeting the thermal comfort needs of
end-users. Our research activities have contributed significantly to the advancement of
various thermal management and energy optimization techniques. To facilitate our data-
intensive research, diverse datasets gathered from actual buildings within the IIT-

Bombay Campus, encompassing multiple electrical and environmental parameters.

The following dataset obtained from an academic building on a campus. This
four-story building is divided into three wings, and the dataset covers the period from

December 2016 to July 2018.

All the datasets are available in CSV format, with clear and consistent field names

provided in the respective files. The datasets are all recorded at one-minute granularity.
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A detailed description of each field can be found here, and the complete dataset can be
accessed here. Additionally, provided data completeness metrics for the datasets
spanning the years 2016, 2017, and 2018.Data were collected for these rooms in the
building:

The datasets provided here pertain to the energy consumption of the AC and
lighting systems in Auditorium 1. This room can accommodate up to 200 individuals and
features a chilled beam HVAC system. The HVAC system includes six compressor units,
each with a capacity of 7.5 TR, and utilizes non-inverter technology. The cold air is
supplied to each air mixing plenum through a set of three AC units and is then passed
into the ducted beam. There are 18 ducts located across two beams, which are designed
in an octagonal shape. Four ducts are on the inner side, while the remaining 14 are

positioned on the outer side, through which cold air is circulated into the auditorium.

The dataset provided pertains to the energy consumption of the AC units in
Auditorium2, which is a spacious room with a sloping floor with a seating capacity of
130 people. The room has 7 wall-mounted indoor units of split air conditioners installed

at a high level on the wall.

The dataset provided contains information about the power consumption of the

entire building, including ACs, lights, and plug level loads.

The dataset provided includes information on the power consumption of three sets
of air conditioners - AC1, AC2, and AC3, which are installed in a cluster of 4 classrooms
and two small labs. These rooms are located across two floors of a building. Combining

the three sets of data will totally consume ACs in all the rooms.

These datasets contain information on the power consumption of various rooms

and equipment in an academic building:

Auditoriuml AC, lights: This dataset contains the power consumption of
Auditorium 1, a 200-seat-capacity room with a chilled beam HVAC system consisting of
six non-inverter technology-based compressor units. The cold air is fed into each air
mixing plenum from a group of three AC units and passed into the ducted beam. There

are 18 ducts in two beams from which cold air is thrown into the auditorium.
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Auditorium2 AC: This dataset contains the power consumption of Auditorium 2,
a large room with a sloped floor that can accommodate 130 people. There are 7 wall-

mounted indoor units of Split air conditioners placed at a high level on the wall.

Building Level AC, mains, plug level: This dataset contains the power

consumption of ACs, lights, and plug level load of the entire building.

Classrooms AC1, AC2, AC3: This dataset contains the power consumption of a
cluster of 4 classrooms and two small labs spread across two building floors. Combining

the three sets will totally consume ACs in all these rooms.

Conference room AC, plug level: This dataset contains power consumption in a
typical conference facility. The conference room is a medium-sized room that can
accommodate about 25 people. The AC consumption here is the consumption of 3 ACs
within this room. The plug-level load is contributed by one PC, projector and video

conferencing equipment used mainly during presentations in this room.

Floor AC, lights, plug level: This dataset comprises the consumption of an entire
floor consisting of 5 labs, two classrooms (1 extensive and one small), a common area,

and two washrooms.

Lab 1 AC, lights, plug level 1, plug level 2: This dataset contains the power
consumption of Lab 1, which is a big room with centralized Duct AC with eight outlets.
To obtain plug level load of this room, combine the two datasets for plug level data (plug

level 1, plug level 2).

Lab 2 AC, lights, plug level: This dataset contains the power consumption of Lab

2, a big room with seven window-ACs and one split AC.

Lab 3 AC, lights, plug level: This dataset contains the power consumption of Lab

3, which is a big room with one duct AC and two window -ACs.

Lab 4 AC, lights, plug level: This dataset contains the power consumption of Lab
4, a medium-sized room with two indoor blower units. The actual power consumption
happens at the outdoor unit, which supplies cooled air to the indoor units. Please refer to

the Lab ODU data below to compute the actual AC consumption.
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Lab AC Outdoor Units ODU1, ODU2, ODU3: This dataset consists of the

outdoor units of ACs installed in 8 labs across 2 floors.
* The labs are occupied throughout the day and sometimes at night.

Office AC and lights data are included in this dataset, representing the power
consumption of one office room with 3 split ACs and one window AC. This room is
frequently visited during the day and remains unoccupied at night. The Server room AC
and plug level dataset represents the energy consumption of a departmental server room
with 8 ACs, several rack-mounted servers, and routers. The Small server room AC and
plug level dataset represents the energy consumption of the smaller server room in the
main server room, which contains 3 ACs. Finally, the Wing C AC, lights, and plug level
dataset represents the energy consumption of one wing of the building, including offices,

labs, classrooms, washrooms, stairways, and common areas on ground + 4 floors.

3.4.2 Data Collections

The dataset contains information on electricity consumption in a high-rise
residential building within the IIT Bombay campus, covering the period from December
2016 to January 2018. The building comprises 60 3BHK (3 Bedrooms, I Hall, and a
Kitchen) apartments, each equipped with a smart meter that records data at a sampling
interval of 5-8 seconds. The data provided in the link has been aggregated to an hourly
granularity. However, a sample dataset of two apartments, with a sampling interval of 5-
8 seconds, is available under "Sample Monthly Dataset". All timestamps in the dataset
are in Indian Standard Time (GMT+5.30), and India does not observe daylight saving
time. To protect privacy, the apartments are anonymous, and 39 CSV files are included
in the folder, each representing an apartment. Apartments with significant data loss have

been removed from the list, and the CSV files contain these headers:

Unix Time stamp (epochs) - TS

Voltage of phase 1 (V) - V1

Voltage of phase 2 (V) - V2

Voltage of phase 3 (V) - V3

Electricity consumption of phase 1 (Wh) - W1
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Electricity consumption of phase 2 (Wh) - W2
Electricity consumption of phase 3 (Wh) - W3

Virtual Dataset

Additional Headers

Virtual Apartment ID - Virtual Apartment
Date in YYYY-MM-DD — Date

Time in HH: MM: SS - Time

Sum of W1 + W2 + W3 (Wh) - Energy
Sample Monthly Dataset headers in the CSV files:
timestamp received (TS_RECV)

serial number (Srl)

timestamp (TS)

voltage from Phasel to neutral (V1)
voltage from Phase2 to neutral (V2)
voltage from Phase3 to neutral (V3)
current for Phasel (Al)

current for Phase2 (A2)

current for Phase3 (A3)

active power of Phasel (W1)

active power of Phase2 (W2)

active power of Phase3 (W3)
Voltage*Current for Phase 1 (VA1)
Voltage*Current for Phase 2 (VA2)
Voltage*Current for Phase 3 (VA3)
reactive power in phase 1 (VAR1)

reactive power in phase 2 (VAR2)
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reactive power in phase 3 (VAR3)

Power Factor of Phasel (PF1)

Power Factor of Phase2 (PF2)

Power Factor of Phase3 (PF3)

angle in phase 1 (Angl)

angle in phase 2 (Ang2)

PF3r (PF3r)

Anglr (Anglr)

Ang2r (Ang2r)

angle in phase 3 (Ang3)

average of V1,V2 and V3 (AvgV)

sum of V1, V2 and V3 (SumV)

average of Al, A2, A3 (AvgA)

sum of Al, A2, A3 (SumA)

average of W1, W2, W3 (AvgW)

sum of W1, W2, W3 (SumW)

average of VA1, VA2 and VA3 (AvgVA)
sum of VA1, VA2 and VA3 (SumVA)
average of VARI, VAR2 and VAR3 (AvgVAr)
sum of VARI, VAR2 and VAR3 (SumVAr)
average of PF1, PF2 and PF3 (AvgPF)

sum of PF1, PF2 and PF3 (SumPF)

average of Angl, Ang2 and Ang3 (AvgAng)
sum of Angl, Ang2 and Ang3 (SumAng)
Frequency (F)

Energy (FwdWh)
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Table 3.1 Attributes for datasheet

Number Symbol Number Symbol Number Symbol Number Symbol

1. \'2! 8. VAl 15. W 22. PF3

2. V2 9. VA2 16. VARI 23. PF

3. V3 10. VA3 17. VAR2 24. FwdWh
4. Al 11. VA 18. VAR3 25. FwdVAh
5. A2 12. W1 19. VAR

6. A3 13. W2 20. PF1

7. A 14. W3 21. PF2

3.5 Evaluation Framework

The study employed a quad-folded cascading methodology, as illustrated in
Figure 1. Initially, the SEIL dataset was used to consider the total energy consumption at
the building level, including the auditorium, classroom, conference room, building floor,
labs, offices, server room, and sub-server room. In the second phase, the building-level
dataset was randomly divided into 70% training samples and 30% testing samples, and
24 machine-learning algorithms were trained using the training set. The third phase
involved evaluating the parametric performance of each ML algorithm, considering
training parameters like RMSE, R-squared, MSE, MAE, and Prediction Speed, for both
the training and testing phases. Finally, the algorithms were ranked based on efficacy and
efficiency. Figures 3.1 provided a functional inside view of the training and testing phase,

which constituted the inside workings of Phase 2 in the proposed methodology.
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Process involves in optimisation.

3.6  Dataset Description

The SEIL (Smart Energy in Informatics Lab) dataset was used to consider the
total energy consumption at the building level. The dataset includes information on
various areas within the building, such as the auditorium, classroom, conference room,
building floor, labs, offices, server room, and sub-server room. It contains historical

energy consumption data and relevant features that influence energy consumption.

3.6.1 Data Preprocessing:

Before conducting the analysis, the SEIL dataset underwent preprocessing to
handle missing values, normalize features, and remove any outliers that could adversely

affect the performance of the machine learning algorithms.

3.6.2 Data Splitting:

The building-level dataset was randomly divided into two subsets: a training set
and a testing set. The training set contained 70% of the data, while the testing set
contained the remaining 30%. This splitting ensured that the machine learning algorithms

were trained on enough data while also allowing robust evaluation on unseen data.

3.6.3 Machine Learning Algorithm Selection:

A total of 24 machine learning algorithms were chosen for energy consumption
prediction. These algorithms were carefully selected to cover a diverse range of
approaches, including regression, ensemble methods, and deep learning, to compare their

performance on the task at hand. Table 3.2 explain different optimization parameters.

Table 3.2 Optimization parameters
Rank ML Algorithm Optimization parameter
1 Baggage Tree Number of Bags: 50, Max Features: 0.8
2 Fine Tree Split Criterion: Gini, Max Depth: 8
3 Medium Tree Max Features: Auto, Min Samples Split: 2
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3.6.4 Model Training:

Each of the 24 machine learning algorithms was trained using the training set.
During training, the algorithms learned patterns and relationships in the data, allowing

them to predict energy consumption accurately.

3.6.5 Evaluation Metrics:

In the third phase, the parametric performance of each machine learning algorithm
was evaluated using multiple metrics. The following evaluation metrics were considered

for both the training and testing phases:

a. Root Mean Squared Error (RMSE): Measures the average difference between

predicted and actual energy consumption values.

b. R-squared (R?): Assesses the proportion of variance in the dependent variable

(energy consumption) explained by the independent variables.

c. Mean Squared Error (MSE): Calculates the average squared difference between

predicted and actual values.

d. Mean Absolute Error (MAE): Computes the average absolute difference between

predicted and actual values.

e. Prediction Speed: Measures the time taken by each algorithm to make predictions.

3.6.5.1 Ranking of Algorithms:

After evaluating the performance of each algorithm based on the metrics
mentioned above, the algorithms were ranked according to their efficacy and efficiency
in predicting energy consumption. Efficacy was determined by their accuracy in
predicting energy consumption, while efficiency was determined by their prediction

speed.
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3.6.5.2 Visualization:

Figure 3.1 presented a functional inside view of the training and testing phases.
This figure provided insights into the workings of the machine learning algorithms during

the training and testing phases.

3.7  Optimization process

There are many optimization techniques used for the improvement of algorithms

for best-predicted result measures, as described below,

1. Taguchi method

il. Response Surface Methodology
iil. Artificial Neural Network

iv. Genetic Algorithm

V. Grey Relational Analysis (GRA)
Vi. Fuzzy Logic

vii.  Particle Swarm Optimization
viii.  Simulated Annealing

iX. Principle Component Analysis

X. Technique for Order of Preference by Similarity to Ideal Solution
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The following figure 3.2 shows the optimization process.

Optimizations Process

Principle Component Analysis
0. Technique for Order of Preference by
Similarity to Ideal Solution

1. Taguchi method

2. Response Surface Methodology
3. Artificial Neural Network

4. Genetic Algorithm

5. Grey Relational Analysis (GRA)
6. Fuzzy Logic

7. Particle Swarm Optimization

8. Simulated Annealing

9.

1

Figure 3.2 Optimization methods

3.7.2 Taguchi Method

The Taguchi method is a scientifically well-organized mechanism for evaluating
and implementing improvements in products or processes. This perfection aims to
improve the desired characteristics by studying the key variables controlling the process
and optimizing the procedures to yield the best results. Taguchi recommends an
orthogonal array (OA) for laying out of experiments. To design an experiment, select the
most suitable OA to assign the parameters and interactions of columns. Taguchi
suggested that Linear graphs and triangular tables make the assignment of parameters
simple (Vikas, Roy, and Kumar 2014). The analysis of variance (ANOVA) is a statistical
treatment commonly useful for the experimental results in determining the percentage

contribution to each parameter against a stated confidence level.

A study of the ANOVA table for a analysis helps determine the parameters
needing control (Ross Phillips, 1996). Taguchi method is a statistical measure of
performance named signal-to-noise ratio (S/N ratio). The S/N ratio can measure the

deviation of the performance characteristics from the desired values. Performance
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characteristics in the analysis of the S/N ratio are of three categories as follows (Vikas,

Roy and Kumar 2014).

Larger-the-better characteristics

S 1 1
N = —10 lOg(;Z:;l yiE) 3.1

Smaller-the-better characteristics

S 1
I = —10 109(52121 Vi 2) 3.2

Nominal-the-better characteristics

DS A Y
T 10log(5§) 33

Where y; is the experimentally observed value and n is the repeated number of each
experiment. y is the average of observed data and S}Z, 1s the variance of y for each type of
characteristics, with the above S/N transformation, the higher the S/N ratio the better is
the result. Optimization of performance measures using parameter design of the Taguchi
method is summarized (Muhammad et al. 2012) in the steps as shown in flow chart as

shown in figure 3.3.
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Identify the process parameters
and performance measures

¥

Identify number of levels for the process
parameters and possible interactions
between them

¥

Select the orthogonal array
and assign the process parameters

¥

Conduct the experiments based on the
orthogonal array

¥

Calculation of S/N ratio

¥

Analyze results using the S/N ratio and
ANOVA analysis

¥

Select optimal levels of process
parameters

'

Perform the confirmation
experiment to verify the results

Figure 3.3 Performance measures flow using the Taguchi technique.

3.7.3 Response Surface Methodology

Response Surface Methodology is a static and mathematical technique utilized to
model and analyse a process affected by various variables. The parameters that impact
the process are known as dependent variables, while the outcomes are called independent
variables, according to Khuri (2017). For instance, the hardness of meat can be influenced
by cooking time (X1) and cooking temperature (X2). The meat's firmness can be altered

under any treatment combination of X1 and X2 (Refinery et al., 2016; Rupi et al., 2015).

Hence, when treatments can take continuous values of time and temperature, Response
Surface Methodology is useful for developing, improving, and optimizing the response
variable. In meat hardness, time (X1) and temperature (X2) are the parameters affecting
the response variable and can be adjusted to achieve the desired meat hardness (Y). This

relationship can be expressed as the dependent variable Y being a function of X1 and X2.
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Y=fX1)+f(X2)+e 34

where (Y) is the response (dependent variable), (X1) and (X2) are independent

variables and (e) is the experimental error.

Response surface methodology (RSM) is a technique that uses surface placement
to understand the topography of the response surface. It aims to identify the region where
the most appropriate response occurs and find the optimal operating conditions for a
system under study. RSM employs two main experimental designs, namely Box-Behnken
designs (BBD) and central composite designs (CCD). Recently, central composite
rotatable design (CCRD) and face central composite design (FCCD) have also been
utilized in optimization studies. To fit a statistical model, experimental data are evaluated
using linear, quadratic, cubic or 2FI (two-factor interaction) models. The constant terms
represent the coefficients of the model, including linear coefficients for independent
variables (A, B, and C), interactive term coefficients (AB, AC, and BC), and quadratic
term coefficients (A2, B2, and C2). To ensure model adequacy, correlation coefficient
(R?), adjusted determination coefficient (Adj-R?), and adequate precision are used, and
the model is considered adequate when its P-value < 0.05, lack of fit P-value > 0.05, R?
> 0.9, and Adeq Precision > 4. Statistical significance of differences between means can

be tested using analysis of variance (ANOVA).

The design of experiments (DoE) is a crucial aspect of RSM, as it involves
selecting points for examining the response. The mathematical model of the process is
closely related to the design of experiments, and thus, the choice of experiment design
significantly affects the accuracy of the response surface construction. RSM offers
several advantages, including the ability to determine the interaction between
independent variables, develop a mathematical model of the system, and save time and
costs by reducing the number of trials needed. However, a significant disadvantage of the
method is that it assumes a polynomial model at the second level, which may not be
suitable for all systems with curvature. Therefore, experimental verification of the
estimated values in the model is essential to ensure its accuracy. During the initial stage
of the DoE, screening experiments are conducted to identify the variables with a
significant impact on the response. If numerous variables influence the response, the

variables that significantly affect the response are determined. The goal is to identify the
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design variables that will be further investigated (Myers et al., 2004). The steps adopted
in RSM are briefly presented in Figure 3.4.

Identification of the problem

!

Determination the dependent variables(Response)

!

Determination the independent variables(factor)

Decision of factor levels —»’ Screening experiment
Selection of proper design —W BBD,CCD,CCRD etc

v

Running experiment

v

Evaluation the model

|

Optimization of model

Chi-square test, student test,
Model of validation Experimental error rates etc

ANOVA test to check the
fitness of model

Figure 3.4 Steps for surface response method.

3.7.4 Artificial Neural Network (ANN)

An artificial neural network is a model that runs like a human brain by using many
neurons consecutively and collects information through a learning process (X. Yang
1AD). Complex problems whose analytical or numerical solutions are difficult to obtain
can be solved by utilizing the adaptive learning ability of neural networks (Rafiq,
Bugmann, and Easterbrook 2001). Generally, the design of a neural network comprises
three main steps: configuration (i) how layers are organized and connected; learning (ii)
how information is stored; generalization (iii)) how the neural network produces

reasonable outputs for inputs not found in training (Haykin and Simon 1999).
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The multi-layer perceptions neural network is formed from numerous neurons
with a parallel connection, which are jointed in several layers. The structure of this
network contains the network's input data, the number of hidden middle layers with
numerous neurons in each layer and an external layer with neurons connected to the
output. ANNs are broadly classified into feedforward and backpropagation networks.
Feedforward networks are those in which computation flow from the input nodes to the
output nodes in a sequence. In a back-propagation network, signals may propagate from
the output of any neuron to the input of any neuron. The artificial neuron evaluates the
inputs and determines the strength of each by its weighting factor. The result of the
summation function for all the weighted inputs can be treated as an input to an activation
function from which the output of the neuron is evaluated. Then the output of the neuron
is transmitted to subsequent neurons along the outgoing connections to serve as an input
to them. When an input is presented and propagated forward through the neural network
to compute an output for each neuron, the Mean Square (MS) error between the desired
output and actual output is computed to reduce the MS error rapidly. An iterative error
reduction of the gradient-descent method by adding a momentum term is performed
(Rumelhart, Widrow, and Lehr (1994). After the learning process is finished, the neural
network memorizes all the adjusted weights and is ready to predict the machining
performances based on the knowledge obtained from the learning process (Lu et al.

2009). A simple neural network can be represented as shown in figure 3.5 below.

Input 1 ‘ \_
‘ B ‘ Output 1
Input 2 ‘ '
Outputn......
Input n....+1
Input Layer Hidden Layer Output Layer

Figure 3.5 A example of a simple layer structure of ANN

o)}
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3.7.5 Genetic Algorithm (GA)

The GA was developed on the probabilistic basis that the global optimum is
searched in a random and parallel manner through the operations of reproduction,
crossover and mutation (Sastry, Goldberg, and Kendall 2005). These algorithms maintain
and control a population of solutions and implement their search for better solutions based
on the ‘survival of the fittest strategy. GA can solve linear and nonlinear problems by
exploring all regions of the state space and exploiting promising areas with a set of
potential solutions or chromosomes (usually as bit strings) randomly generated or
selected. The entire set of these chromosomes comprises a population. Figure 3.6 shows

a flow chart for a simple GA (Chang et al. 2004).

As depicted in Figure 3.6, a GA starts by randomly initializing the parent
chromosomes represented in string, and the fitness of these chromosomes is then
calculated based on the objective function. The reproduction process aims to allow the
genetic information stored in the artificial strings to have functional fitness and survive
the next generation. Crossover involves splitting up two chromosomes and combining
one-half of each chromosome with the other pair. Mutation involves flipping a single bit
of a chromosome. The chromosomes are then evaluated using a specific fitness criterion,
and the best ones are kept while the others are removed. The process is repeated until the

solution with the best fitness to meet the objective function criteria is received.
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Initialize population

Calculation of fitness

Reproduction

Crossover

Mutation

Converging

Figure 3.6 Flow of GA algorithm.

3.7.6 Grey Relational Analysis (GRA)

The grey Relational Analysis theory was developed for the new methods for solving
the complicated interrelationship among the multiple performing characteristics. The
grey system theory is an efficient technique which requires limited information to
estimate the behaviour of an uncertainty system & discrete data problem. Figure 3.9
shows simple steps in the GRA. Normalizing involves transforming the original sequence
into an identical sequence. This is known as grey relational generating (Murugesan and

Balamuruga 2012). There are three conditions of normalization.

1. Lower is better.

_ Max X;(®)-X;(k)
Xi (k) ~ Max X;(kK)—Min X; (k) *
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2. Higher is better.

X;(k)-Min X;(k)
Max X;(k)—Min X;(k)

X;(k) = 3.6

3. Nominal is better.

1- | Xi(k)—X,b (k)|
Max X;(k)—Min X,b(k)

Where /=1, 2,...n; k=1, 2,...m; Xi*(k) is the normalized value of the k™ element in the
i sequence, Xob (k) i the desired value of the ik" quality characteristic, max Xi*(k) is the
largest value of Xi (k), and min Xi*(k) is the smallest value of Xi (k), n is the number of

experiments and m is the number of quality characteristics.

Figure 3.7 An example of standard steps adopted in GRA



3.7.7 Particle swarm optimisation

Particle swarm optimization (PSO) is an evolutionary computational technique;
Particle swarm optimization was developed in 1995 by Kennedy and Eberhart (Slowik
2011). This optimization and search technique model the natural swarm behaviour seen
in many species of birds returning to roost, a group of fish, the swarm of bees, etc. The
PSO may find optimal (or near-optimal) solutions to numerical and qualitative problems
(Talbi and Batouche n.d.). PSO methods are inspired by particles moving around in the
defined search space. The individuals in a PSO have a position and a velocity. The PSO

method remembers the best position found by any particle.

Additionally, each particle remembers its own previously best-found position. A
particle moves through the specified solution space along a trajectory defined by its
velocity, the draw to return to a previous promising search area, and an attraction to the
best location discovered by its close neighbours. One advantage of particle swarm
optimisation over other derivative-free methods is the reduced number of parameters to
tune and constraint acceptance. Particle swarm optimization has been used for a wide
range of search applications and specific optimization tasks. PSO has been successfully
applied in many areas: Function optimization, Artificial neural network training,
Proportional and integral fuzzy system control, and Other near-optimal search and

optimization areas where GA can be applied.

The basic structure of any particle in a selected population consists of five

components.

l. 2 1s a vector containing the current location in the solution space? The size of 2
is defined by the number of variables used by the problem being solved.

2. Fitness is the quality of the solution represented by the vector ~,as computed by
a problem-specific evaluation function.

3. " is a vector containing the velocity for each dimension of e The velocity of a
dimension is the step size that the corresponding 2 value will change into at the
next iteration. Changing the 7 values changes the direction the particle will move

through in the search space, causing the particle to make a turn. The velocity

vector is used to control the range and resolution of the search.
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4. Pres: 1s the fitness value of the best solution yet found by a particle.

5. 2 is the copy of the — for the location that generated the particle's Ppes:. Jointly, Ppes:
X
and — Comprise the particle's memory, which controls the particle's return to a
X
definite search region.

6. Each particle is also aware of the current best fitness in the neighbourhood for any
iteration. A neighbourhood may consist of some small group of particles, in which
case the neighbourhoods overlap, and every particle is in multiple neighbourhoods.
Particles in a swarm are related socially; each particle is a member of one or more
neighbourhoods. Each individual tries to emulate the behaviour of the best of their
neighbours. Everyone can be thought of as moving through the feature space with a
velocity vector that its neighbour's influence. Figure 3.8 shows the simple PSO

algorithms.

( Start

|

Generation of initial condition of
each agent

.
g

Evaluation of searching point of

each agent

l

r Modification of each searching

points

Reach maximum

iteration

l Yes
Stop

Figure 3.8 Flow chart of simple PSO algorithms.
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3.7.8 Simulated Annealing

Simulated Annealing (SA) is an effective and general form of optimization. It helps
find global optima in large numbers of local optima. “Annealing” refers to an analogy
with thermodynamics, specifically how metals cool and anneal. Simulated annealing
uses the objective function of an optimization problem instead of the energy of a material
(Zhan et al. 2016). Implementation of SA is simple. The algorithm is hill-climbing,
except it picks a random move instead of the best one. If the selected move improves the
solution, then it is always accepted. Otherwise, the algorithm makes a move anyway with
some probability of less than 1. The probability decreases exponentially with the

“badness” of the move, which is the amount AE by which the solution is worsened.

3.7.9 Principal Component Analysis

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal
transformation to convert a set of observations of possibly correlated variables (entities,
each of which takes on various numerical values) into a set of linearly
uncorrelated variables called principal components. This transformation is defined so the
first principal component has the largest possible variance (that is, accounts for the
variability in the data), and each succeeding component has the highest variance possible
under the constraint that it is orthogonal to the preceding components. The resulting
vectors (each being a linear combination of the variables and containing n observations)
are an uncorrelated orthogonal basis set. PCA is sensitive to the relative scaling of the

original variables.

3.8  Architect / Pseudocode of top 3 models

3.8.1 Fine Trees

Fine Trees is a machine learning algorithm used for decision tree induction. The

following is a simple example of the pseudocode for the Fine Trees algorithm:

1. Fine Trees is a machine learning algorithm used for decision tree induction. The
following is a simple example of the pseudocode for Fine Trees algorithm:
2. Initialize the decision tree with the root node.

3. Split the data set into smaller subsets using a split criterion (e.g. information gain)
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4. For each subset:
a. Evaluate the impurity of the data (e.g. using Gini impurity)
b. If the impurity is below a certain threshold, create a leaf node and store the
predicted class label.
c. If the impurity is above the threshold, repeat the process from step 2 on the
subset.

5. Repeat the process for all subsets until the stopping criteria is met (e.g. all data
belong to the same class or a maximum depth has been reached)

Return the decision tree.

3.8.2 Architecture of fine tree:

Fine Trees is a type of decision tree algorithm used in machine learning for
classification and regression tasks. It's an extension of the classic decision tree algorithms
that aim to produce smaller and more interpretable trees by avoiding overfitting and

making the trees more robust to noisy data.

The architecture of Fine Trees can be thought of as interconnected nodes, where
each node represents a decision or a prediction. Each node in the tree splits the data into
smaller subsets based on a certain feature, and the impurity of the data is evaluated in
each subset. If the impurity is below a certain threshold, a leaf node is created, and the
prediction is made based on the class label or numeric value in that subset. The process
continues until the stopping criteria are met. The Fine Trees algorithm typically uses a
more sophisticated split criterion and impurity evaluation method than the classic
decision tree algorithms, resulting in trees that are more accurate and less prone to
overfitting. The final decision tree is a graphical representation of the series of decisions
and predictions made by the algorithm, and it's used to make predictions on new, unseen

data.

In the Classification Learner App in MATLAB, Fine trees is one of the available
machine learning algorithms for binary or multi-class classification problems. Fine trees
are an ensemble method that builds multiple decision trees on the data and combines the

predictions of the individual trees to make the final prediction.
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The following hyper-parameters can be optimized for fine trees in the

Classification Learner App:

Number of Trees: This hyper-parameter controls the number of decision trees in
the ensemble. Increasing the number of trees typically results in improved performance,

but also increases the computational cost and the risk of overfitting.

MinLeaf Size: This hyper-parameter controls the minimum number of samples
required to be at a leaf node in the decision tree. Increasing the value of MinLeaf Size
results in smaller and simpler trees, which can reduce the risk of overfitting but may also

decrease the accuracy of the model.

Split Criterion: This hyper-parameter determines the criterion used to split the
nodes in the decision tree. The options are 'gdi', 'twoing', or 'deviance'. MaxNumSplits:
This hyper-parameter controls the maximum number of splits in the decision tree.
Increasing the value of MaxNumSplits results in more complex trees, which can increase

the accuracy of the model but also increases the risk of overfitting.

The Classification Learner App provides several options for hyper-parameter
optionor, including grid search, Bayesian optimization, random search, and two-phase
optimization, as described in my previous answer. Can use these methods to find the

optimal values for the hyper-parameters of the fine tree algorithm in the app.
Pseudo code

Input: training data set, number of trees (n_trees)

Output: list of n_trees decision trees

Foriin 1 ton_trees:

# Sample data with replacement from the training set to create a new training

set
sample data = random sampling of the training data with replacement
# Train a decision tree on the sampled data

tree = fit a decision tree to sample data
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# Add the trained tree to the list of trees
add tree to list of trees

Return the list of trees

3.8.3 Architecture of Medium Trees

A decision tree is built by recursively splitting the data into smaller and smaller
subsets based on the values of the input features. At each node in the tree, the feature that
best splits the data is chosen and the tree branches based on the different values of that
feature. The process continues until a stopping criterion is met, such as a minimum

number of samples in a leaf node or a maximum tree depth.

The final decision tree can be thought of as decisions or "if-then" statements,
where each node in the tree represents a decision based on the values of the input features,
and each leaf node represents a prediction for the target variable. The architecture of the
decision tree is determined by the features chosen for each split and the stopping criterion

used to grow the tree.

The architecture of decision trees in machine learning finds the relationships

between the input features and the target variable to make accurate predictions.

In the Classification Learner App in MATLAB, Medium trees is one of the
available machine learning algorithms for binary or multi-class classification problems.
Medium trees are a variant of the decision tree algorithm that balances the trade-off

between accuracy and computational cost by using a medium-sized tree.

The following hyper-parameters can be optimized for medium trees in the

Classification Learner App:

MinLeafSize: This hyper-parameter controls the minimum number of samples
required to be at a leaf node in the decision tree. Increasing the value of MinLeafSize
result in smaller and simpler trees, which can reduce the risk of overfitting but may also
decrease the accuracy of the model. SplitCriterion: This hyper-parameter determines the
criterion used to split the nodes in the decision tree. The options are 'gdi', 'twoing', or

'deviance'.
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MaxNumSplits: This hyper-parameter controls the maximum number of splits in
the decision tree. Increasing the value of MaxNumSplits results in more complex trees,

which can increase the accuracy of the model but also increases the risk of overfitting.

The Classification Learner App provides several options for hyper-parameter
optimlon, including grid search, Bayesian optimization, random search, and two-phase

optimization.

39 Pseudo code of medium tree

function create decision_tree(data, features, target, min samples, max_ depth,

current_depth):
# check if the stopping criteria are met

if the number of samples in data is less than min_samples or current _depth >=

max_depth:

return create leaf node(data, target)
# find the best feature to split the data on
best feature = find best feature(data, features, target)
# create a decision node for the best feature
decision_node = create_decision_node(best_feature)
# split the data based on the best feature
for each value of best feature:

subset = data with best feature equal to value

child = create_decision_tree(subset, features, target, min_samples, max_depth,

current_depth + 1)
add child to decision node

return decision_node
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function create leaf node(data, target):
# calculate the target value for the leaf node
target value = average of target in data
return create node(target value)
function find best feature(data, features, target):
best feature = None
best score = -inf
for each feature in features:
score = calculate_split score(data, feature, target)
if score > best_score:
best score = score
best feature = feature
return best_feature

function calculate_split score(data, feature, target):

# calculate a score for the feature based on the target variable

# such as the reduction in variance or information gain

return score

"Bagged Trees" is short for "Bootstrapped Aggregated Trees," which is a type of

ensemble learning in machine learning. Ensemble learning involves combining multiple

individual models to create a more robust and accurate overall model.
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3.10 Architecture of Bagged Trees

In the Bagged Trees, the idea is to train multiple decision trees on different subsets
of the training data, where each subset is created by randomly sampling the data with
replacement. The subsets are often called bootstrapped samples. The final prediction for
a new instance is obtained by aggregating the predictions of all the individual trees, such

as by taking a majority vote for classification or averaging for regression.

Using multiple trees allows Bagged Trees to capture a variety of relationships
between the input features and the target variable, and to reduce the impact of overfitting,
which can occur when a single decision tree is trained on the full data set. The architecture
of Bagged Trees in machine learning combines the strengths of multiple decision trees,

while mitigating their weaknesses, to create a more accurate and robust overall model.

3.11 Pseudo code of Bagged tress

function train_bagged trees(data, features, target, num_trees, sample ratio):

trees = []

fori=1 to num_trees:

sample = random sample of data with replacement, size = sample ratio * size of data

tree = train_decision_tree(sample, features, target)

add tree to trees

return trees

function predict bagged trees(trees, instance):

predictions = []

for each tree in trees:
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prediction = predict_decision_tree(tree, instance)

add prediction to predictions

return majority vote of predictions.

3.12 Pseudo code of optimization methods used for the best candidate of ML
algorithms Grid search and Random search

The optimization method used to find the best candidate ML algorithm depends
on the specific problem and type of ML algorithm being considered. Common
optimization methods used in ML include grid search, random search, and gradient-based

optimization.

3.12.1 Pseudocode of Grid search

function grid_search(data, features, target, algorithm params, metric):
best params = None
best score = -inf
for each combination of params in algorithm params:
model = train_algorithm(data, features, target, params)
score = evaluate_model(model, data, target, metric)
if score > best_score:
best_params = params
best_score = score
return best_params, best_score

Pseudocode of optimization methods used for the best candidate of random search
function random search(data, features, target, algorithm params, metric,

num_iterations):

74



best params = None
best score = -inf
fori=1 to num_iterations:
params = random sample of algorithm_params
model = train_algorithm(data, features, target, params)
score = evaluate_model(model, data, target, metric)
if score > best_score:
best params = params
best score = score

return best_params, best_score

3.13 Proposed optimized ML model

To optimize an ML model based on a pseudo code, one needs to take these steps:

Split the data into training and testing sets. That uses the training set to train the

model and the testing set to evaluate its performance.

Choose an appropriate evaluation metric. Depending on the problem trying to

solve, use accuracy, precision, recall, F1 score, or another metric.

Train the model using the training data. This may involve selecting hyper-
parameters, such as the learning rate or the number of hidden layers and tuning them to

achieve the best performance.

Evaluate the model on the testing data using the evaluation metric chosen in step

3. This gives a sense of how the model is performing.

A different algorithm or changes the existing model, such as adding more hidden

layers or changing the activation function.
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Repeat the process until satisfied with the performance of the model.

It is essential to remember that optimizing an ML model is often an iterative
process, and it may take several rounds of experimentation to arrive at a final model that

meets your requirements as per below. Figure 3.9 may describe a suitable methodology.

To Validate the proposed approach
on another allied dataset

To Create optimize variant of best
candidate of machine learning
algorithm

To Analyses the performances of
ML algorithms in term of its
efficiency and efficacy

Predication
time

: R‘SM | MSE Training time

ML Algorithms

Implement different machine learning
algorithms for efficient and effective
electrical energy load managementin
building
Medium tree Fine Tree; Bagged Tree; Coarse Tree; Linear

Figure 3.9 Flow of proposed optimized ML model.

3.14 Parameters for optimization in ML

Building a decision tree that accurately represents the underlying data can be a
challenging task. To address this, there are various steps and parameters that can be
optimized to improve the performance of the decision tree model. These steps involve
preparing the data, splitting it into training and testing sets, building the decision tree
using an appropriate algorithm, tuning the hyper parameters, cross validating the model,
and evaluating its performance using suitable metrics. By following these steps and
optimizing the relevant parameters, decision tree was creating models that better

represent the data and provide more accurate prediction.

Data preparation: The first step is to prepare the data by cleaning, pre-

processing, and feature engineering. This involves dealing with missing values, handling
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categorical variables, scaling, and transforming the data to make it suitable for decision

tree models.

Splitting the data: Once the data is prepared, it is split into training and testing
sets. The training set is used to build the decision tree model, while the testing set is used

to evaluate the model's performance.

Building the decision tree: The next step is to build the decision tree using an
appropriate algorithm. There are different algorithms for building decision trees such as
ID3, C4.5, CART, and Random Forest. The algorithm selected can be based on the data,

performance metrics, and requirements of the problem.

Tuning the hyper parameters: Decision trees have hyper parameters that can be
tuned to optimize the model's performance. Some of the hyper parameters that can be
tuned include the maximum depth of the tree, minimum number of samples required to

split an internal node, criterion for splitting, and maximum number of leaf nodes.

Cross-validation: Cross-validation is used to evaluate the performance of the
decision tree model and to choose the best set of hyper parameters. It involves splitting
the training data into several folds and testing the model on each fold while using the

other folds for training.

Evaluating the performance: Finally, the performance of the model is evaluated
using metrics such as accuracy, precision, recall, and F1 score. These metrics help to

determine whether the model is overfitting, under fitting, or performing optimally.

3.15 Optimization hyper parameters

Hyper parameter optimization is a crucial step in training a machine learning
model, as it involves tuning various settings that control the learning process. The optimal
values of hyperparameters can significantly impact the model's performance. Here are
some common hyper parameters that are often optimized for different types of machine

learning models.

Maximum number of splits — The software searches among integers log-scaled

in the range [1,max(2,n-1)], where n is the number of observations.
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Split criterion — The software searches among Gini's diversity index, Towing rule,

and Maximum deviance reduction.

3.15.1 Additional Hypermeter

Some additional hyperparameters that are commonly found in various machine

learning models are

e Surrogate decision splits

Surrogate decision splits, a crucial aspect of medical ethics, present complex
challenges for individuals who find themselves designated as substitute decision-makers
for incapacitated patients. When a patient is unable to express their wishes due to
unconsciousness, cognitive impairment, or other reasons, the responsibility of making
critical medical decisions falls on surrogate decision-makers, often leading to dilemmas
and uncertainties. These splits arise when the surrogate faces difficult choices with
unclear guidance from the patient, conflicting opinions within the family or medical team,
intricate medical conditions, ethical concerns, and emotional burdens. As a central theme
in medical ethics and end-of-life care, understanding how surrogate decision splits are
navigated is of utmost importance in ensuring patient autonomy, respecting their values,

and arriving at decisions that genuinely align with their best interests.

e Maximum surrogates per node

In the context of distributed computing and parallel processing, the term
"surrogate" is not commonly used to refer to nodes or processors. Instead, "surrogate"
usually pertains to an entity that represents or acts on behalf of another in certain
distributed computing models or algorithms. In distributed computing, the maximum
number of surrogates (also referred to as "proxies" or "agents") per node typically
depends on the specific architecture and algorithm being used. The number of surrogates
per node is often limited by factors such as memory capacity, processing power, and the

communication overhead involved in managing and coordinating surrogates.
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3.15.2 Decision Trees

Decision trees are easy to interpret, fast for fitting and prediction, and low on
memory usage, but they can have low predictive accuracy. Try to grow simpler trees to

prevent overfitting. Control the depth with the Maximum number of splits setting.

Table 3.3 Model Flexibility table

Classifier . e

- Interpretability Model Flexibility

Medium Easy Medium

Tree Medium number of leaves for finer distinctions between

classes (maximum number of splits is 20).

Fine Tree  Easy High
Many leaves to make many fine distinctions between

classes (maximum number of splits is 100).

3.15.3 Tree Model Hyper Parameter Options

Classification trees in Classification Learner use the fitctree function.

Maximum number of splits

Specify the maximum number of splits or branch points to control the depth of
your tree. When grow a decision tree, consider its simplicity and predictive power. To
change the number of splits, click the buttons or enter a positive integer value in

the Maximum number of splits box.

A fine tree with many leaves is usually highly accurate on the training data.
However, the tree might not show comparable accuracy on an independent test set. A
leafy tree tends to overtrain, and its validation accuracy is often far lower than its training

(or resubstituting) accuracy.

A coarse tree does not attain high training accuracy. But a coarse tree can be more
robust because its training accuracy can approach that of a representative test set. Also, a

coarse tree is easy to interpret.
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3.15.4 Split criterion

Specify the split criterion measure for deciding when to split nodes. Try each of

the three settings to see if they improve the model with your data.

Split criterion options are Gini's diversity index, Twoing rule, Or Maximum deviance

reduction (also known as cross entropy).

The classification tree tries to optimize to pure nodes containing only one class.
Gini's diversity index (the default) and the deviance criterion measure node impurity. The
twoing rule is a different measure for deciding how to split a node, where maximizing

the twoing rule expression increases node purity.

Surrogate decision splits — Only for missing data.

Specify surrogate use for decision splits. If have data with missing values, use

surrogate splits to improve the accuracy of predictions.

Set Surrogate decision splits to On, the classification tree finds 10 surrogate
splits at each branch node. To change the number, click the buttons or enter a positive

integer value in the Maximum surrogates per node box.

Set Surrogate decision splits to Find All, the classification tree finds all surrogate

splits at each branch node. The Find All setting can use considerable time and memory.

Classifier
Interpretability Ensemble Method Model Flexibility
Type
Bagged  Hard Random forest High — increases with Number of
Trees Bag, with Decision ~ learners setting.

Tree learners

Ensemble classifiers in Classification Learner use the fitcensemble function. Set

these options:
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For help choosing Ensemble method and Learner type, see the Ensemble table.

Try the presets first.

3.15.5 Maximum number of splits

For boosting ensemble methods, specify the maximum number of splits or branch
points to control the depth of your tree learners. Many branches tend to overfit, and
simpler trees can be more robust and easier to interpret. Experiment to choose the best

tree depth for the trees in the ensemble.

3.16 Number of learners

Many learners can produce high accuracy but can be time consuming to fit. Start
with a few dozen learners, and then inspect the performance. An ensemble with good

predictive power can need a few hundred learners.

3.17 Summary

A Penta-folded cascading methodology was used in this study.

In the first phase, the SEIL dataset is used. In the second phase, the training and
testing samples with a random permutation. The training set is used to train 24 machine-

learning algorithms. In the third phase, the parametric performance of each ML algorithm

The same parameters for the testing phase are computed. The fourth phase is the
ranking of algorithms based on their efficacy and efficiency are established. Finally, the
fifth phase is enhancing the results by optimizing variant algorithms on the best-ranked

algorithms regarding efficacy and efficiency.

81



CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

This chapter presents the experimental results, analysis and discussions of the
Machine learning algorithm. The results presented started with elements and phase
analysis data attempting to determine the best ML algorithm based on empirical fact. The
systematic and empirical evaluation of a wide range of machine learning algorithms
reveals that the Bagged Trees, Fine Trees, and Medium Trees algorithms are the top three
ranked algorithms for energy demand forecasting using the SEIL dataset. This finding
presents a knowledge add-on to the SEIL project consisting of the recommendation of

the best machine learning algorithm for energy demand forecasting.

In this section, an analysis of simulation results was conducted to determine the
best machine learning algorithm for energy demand forecasting. Previous literature has
provided little information on identifying the best algorithm empirically. The study
evaluated a wide range of machine learning algorithms and found that Bagged Trees, Fine
Trees, and Medium Trees are the top three ranked algorithms for energy demand
forecasting using the SEIL dataset. This finding adds to the knowledge of the SEIL
project by recommending the best machine learning algorithm for energy demand
forecasting. Additionally, a new and customized algorithm is suggested for further
improvements in efficiency and efficacy. The study suggests that the customized Medium
Trees algorithm is recommended for efficiency, while the customized Bagged Trees
method is recommended for higher-order efficacy. These conclusions are based solely on
empirical data and graphical facts in the study. The study shows that the performance of
a load management system depends on its efficiency and effectiveness, and selecting the
optimum trade-off between the two is crucial. Machine learning algorithms are reported
to be the best candidates for load management and demand forecasting but selecting the
relevant algorithm(s) for a specific application is essential for higher performance. This
study contributes to extending the research on the SEIL dataset by proposing the best
candidate machine learning algorithm for more performance, supported by the empirical
performance parameters of machine learning algorithms. For simulation and testing
MATLAB software used, all figures and tables produced by MATLAB software.
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4.2 Best candidate of machine algorithm for energy demand prediction

In this section, a thorough empirical evaluation was conducted to identify the best
machine learning algorithm for energy demand prediction using the SEIL dataset. The
visual inferences of Table 4.1 are presented in Figures 4.1 - 4.8 for easy reference (with
the actual table in Appendix A). The predictive vs. actual and residual graphs for each
algorithm are illustrated in Figures 4.7 - 4.17. This study evaluated 24 machine learning
prediction algorithms based on benchmark performance parameters. The predicted vs.
actual graph shows the true response on the x-axis and the predicted response on the y-
axis. The black line represents the approximate linearity of the curves, while the blue dots
depict the actual observations. The variation between the predicted and actual values
indicates the algorithm's prediction performance, with larger variation corresponding to
poorer performance. Table 4.2 shows the degree and measure of variation for each
algorithm, which is a function of RMSE, R-Squared, MSE, and MAE for both training
and testing events that having less per centage of error then previous work done by RoSe
et al. (2023). Efficiency is also established based on prediction speed and computation
time. Higher error measure values correspond to poorer algorithm performance. Figures
4.17 and 4.19 also include the residual error for training and testing of the top three
performing algorithms, with the predicted response on the x-axis and the residual error

on the y-axis.

The efficacy of the candidate algorithm is indicated by the proximity of residual
error to the predicted observation, which is also supported by the empirical and absolute
values in Table 3. The top three performing machine learning algorithms for energy
demand prediction at a university campus based on SEIL datasets were selected, and a
detailed investigation of their performance parameters was conducted. Graphical
illustrations and empirical findings have revealed that Bagged Trees (1), Fine Trees (2),
and Medium Trees (3) are the top three performing algorithms in terms of efficacy.
However, a reverse ranking was observed in terms of efficiency, which can also be
inferred from Table 4.1. The performance measures, such as RMSE, R-Squared, MSE,
and MAE, indicate the algorithm's efficacy, while prediction speed and training time
reflect its efficiency. and MAE, indicate the algorithm's efficacy, while prediction speed

and training time reflect its efficiency.
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Table 4.1 Training and testing table

Training Testing
Prediction
Algorithm R- speed Training R-

Name RMSE Squared MSE MAE (obs/sec) time RMSE Squared MSE MAE
Fine Tree 2.11E+06 1 4.44E+12  1.40E+06 3000000  24.148  2.38E+06 1 5.64E+12 1.41E+06
Linear 1.35E+08 054  1.83E+16  8.42E+07 790000  22.065  1.36E+08 0.53 1.84E+16  8.45E+07
gf;:f“ons 1.22E+08 0.62  1.48E+16  8.02E+07 110000 65.108  1.23E+08 0.62 1.50E+16  8.05E+07
Robust Linear 1.64E+08 032  2.68E+16  5.25E+07 790000 19.44 1.65E+08 0.31 271E+16  5.30E+07
Stepwise Linear  1.18E+08 0.65  139E+16  7.63E+07 600000 24417  1.18E+08 0.64 1.40E+16  7.66E+07
Fine Tree 2.11E+06 1 4.44E+12  1.40E+06 3300000  8.3244  2.38E+06 1 5.64E+12 1.41E+06
Medium Tree 2.81E+06 1 787E+12  1.42E+06 3700000  8.0721  3.20E+06 1 1.02E+13 1.43E+06
Coarse Tree 4.26E+06 1 1.81E+13  1.49E+06 4000000  7.5477  4.63E+06 1 2.15E+13 1.50E+06
Linear SVM 8.67E+08  18.13  7.52E+17  6.69E+08 1400000  8892.6  8.68E+08  18.13  7.54E+17  6.69E+08
Quadratic SVM  3.46E+08 2.05  120E+17  2.98E+08 240000 18985  3.45E+08 2.02 1.19E+17  2.98E+08
Cubic SVM 6.38E+08 935  4.07E+17 5.50E+08 260000 57617 6.37E+08 9.31 4.06E+17  5.50E+08
g$§AGau551an 1.04E+08 072 1.08E+16 - 8.83E+07 270000 10099  1.04E+08 0.72 1.08E+16  8.85E+07
Medium

; 2.10E+08 0.13  443E+16  1.80E+08 1200000 17835  2.11E+08 0.13 4.44E+16  1.80E+08
Gaussian SVM
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Table 4.1 Continued

Training Testing
. Prediction
gigl?ll:thm R- speed Training R-
RMSE Squared MSE MAE (obs/sec) time RMSE Squared MSE MAE

Boosted Trees 2.33E+07 099  542E+14  1.66E+07 180000 62.082  2.31E+07 0.99 534E+14  1.66E+07
Bagged Trees 1.58E+06 1 2.48E+12  1.06E+06 120000 119.87  1.78E+06 1 3.17E+12  1.09E+06
Squared
Exponential 7.68E+07 085  5.89E+15  4.62E+07 200 9102.8  7.66E+07 0.85 587E+15  4.62E+07
GPR
Matern 5/2 GPR  6.40E+07 09  4.10E+15  3.87E+07 110 15589  6.40E+07 0.9 4.10E+15  3.88E+07
g’;‘l’{’nemlal 6.86E+07 088  4.70E+15  3.73E+07 130 14212 6.87E+07 0.88 4772E+15  3.73E+407
Rational

: 7.30E+07 086  533E+15  4.11E+07 110 15637 7.28E+07 0.87 520E+15  4.11E+07
Quadratic GPR
EgixgkNeural 3.18E+07 0.97  ~ '1.OIE+15  ~1.04E+07 1000000~ 254.45 © 13.12E+07 0.98 9.76E+14  1.03E+07
%;&‘;imural 2.54FE+07 098  646E+14  1.46E+07 1100000  396.17  2.51E+07 0.98 6.32E+14  1.46E+07
Wide Neural
Network 1.81E+07 099  327E+14  1.14E+07 630000 12388  1.79E+07 0.99 3.19E+14  1.14E+07
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Table 4.1 Continued

Training Testing
. Prediction
gi‘glﬁzlthm R- speed Training R-
RMSE Squared MSE MAE (obs/sec) time RMSE Squared MSE MAE

Bilayered

3.77E+08 2.62 1.42E+17 3.21E+08 1000000 35.635 3.77E+08 2.6 1.42E+17 3.20E+08
Neural Network
Trilayered 3.77E+08  2.62  1.42E+17  3.21E+08 870000  48.817  3.77E+08 2.6 1428417 O-20EF08
Neural Network
Coarse Gaussian 17508 019 469E+16  1.82E408 1300000 18127  2.17E+08 02  471E+16  1.82E+08

SVM
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Table 4.2 Training and testing of the different algorithms with the result (B)

Algorithm RMSE R-Squared MSE MAE
Linear 1.36 x 10798 0.53 1.84 x 1071¢ 8.45x 10"
Interactions Linear 1.23 x 1078 0.62 1.50 x 10%'® 8.05x 10™7
Robust Linear 1.65 x 1078 0.31 2.71 x 10%1° 5.30x 10™7
Stepwise Linear 1.18 x 107% 0.64 1.40 x 10716 7.66 x 10°7
Fine Trees 2.38x 107 1 5.64 x 10*12 1.41 x 1070
Medium Trees 3.20 x 1006 1 1.02x 10*13 1.43 x 10%0°
Coarse Tree 4.63 x 107 1 2.15x 1013 1.50 x 1070
Linear SVM 8.68 x 1078 -18.13 7.54 x 1017 6.69 x 10708
Quadratic SVM 3.45x 10708 -2.02 1.19 x 10%"7 2.98 x 108
Cubic SVM 6.37 x 10*%8 —-9.31 4.06 x 10*"7 5.50 x 1098
Fine Gaussian SVM  1.04 x 1078 0.72 1.08 x 10%16 8.85x 10"
Medluglv(ﬁ“man 2.11x 1078 —0.13 4.44 x 1016 1.80 x 10708
Coarse Gaussian 108 +16 +08

SVM 2.17x 10 0.2 471x10 1.82x 10
Boosted Trees 2.31x 1077 0.99 5.34x 10" 1.66 x 10*77
Bagged Trees 1.78 x 1070 1 3.17 x 10+12 1.09 x 109
Sq“ared(fgﬁonen“al 7.66 x 1077 0.85 5.87x 10715 4.62 x 10%7
Matern 5/2 GPR 6.40 x 1077 0.9 4.10x 10™13 3.88x 1077
Exponential GPR 6.87 x 107" 0.88 4.72x10%" 3.73x 10"
Ra“"n%g‘{adra“c 7.28 x 1077 0.87 529x 101 4.11 x 10%7
Narlg‘éxvljfﬁral 3.12 x 1077 0.98 9.76 x 1071 1.03 x 1077
Mei}g?v‘viiural 251 x 107 0.98 6.32 x 10714 1.46 x 1077
Wg;ggf;al 1.79 x 107 0.99 3.19 x 10°14 1.14 x 107
B"laggffoieural 3.77 x 10 26 1.42 x 1077 3.20 x 107
Tri-layered Neural = 5 7 ) s 2.6 1.42 x 1077 3.20 x 1079

Network
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In the context of energy consumption prediction, certain algorithms, notably Fine
Trees and Bagged Trees, have demonstrated outstanding performance with low RMSE
and high R-Squared, indicating their proficiency in making accurate predictions.
Conversely, algorithms like Linear SVM and Tri-layered Neural Network exhibited
relatively higher RMSE and negative R-Squared, suggesting that they may not be the

optimal choices for this particular task.

An appropriate algorithm plays a pivotal role in achieving precise and efficient
results in energy consumption prediction. By analyzing the provided performance
metrics, further examination and comparison can be undertaken to identify the most
suitable algorithm tailored to meet the specific requirements and objectives of the energy

management project, Here's a summary of the performance metrics for the algorithms:
Linear:
RMSE: 1.36 x 10°
R-Squared: 0.53
MSE: 1.84 x 10'°
MAE: 8.45 x 10’
Interactions Linear:
RMSE: 1.23 x 1*
R-Squared: 0.62
MSE: 1.50 x 10'°
MAE: 8.05 x 10’
Robust Linear:
RMSE: 1.65 x 10°
R-Squared: 0.31

MSE: 2.71 x 10'°
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MAE: 5.30 x 107
Stepwise Linear:

RMSE: 1.18 x 10

R-Squared: 0.64

MSE: 1.40 x 10'¢

MAE: 7.66 x 107
Fine Trees:

RMSE: 2.38 x 10°

R-Squared: 1

MSE: 5.64 x 10"

MAE: 1.41 x 10°

Figure 4.1 shows bar graph based on the RMSE values of different algorithms for

predicting energy consumption, the algorithm with the lowest RMSE value is "Bagged

Trees" for the testing phase:
Bagged Trees:

Testing RMSE: 1.78E+06 (1.78 million)

This indicates that the Bagged Trees algorithm is the best performer among the
evaluated models for energy consumption prediction. It has the lowest RMSE on the
testing dataset, suggesting that it provides the most accurate predictions when dealing

with unseen data (RoSe et al. 2023).

Comparatively, other algorithms may have higher RMSE values on the testing
dataset, which means they are less accurate in their predictions compared to Bagged

Trees.

92



It's important to note that while Bagged Trees performs the best based on the
provided RMSE values, other factors such as model complexity, computational
efficiency, and interpretability should also be considered when selecting the most suitable

algorithm for practical applications.

Based on the RMSE values, Bagged Trees is the best-performing algorithm for
energy consumption prediction among the evaluated models. However, further analysis
and considerations are necessary to make a well-informed decision for its deployment in

real-world energy management projects.

R-squared is a statistical metric that measures how well a regression model fits
the data. It indicates the proportion of variance in the dependent variable it explained by
a bar graph in Figure 4.2 (energy consumption in this case) that is explained by the
independent variables (features) used in the model. R-squared ranges from 0 to 1, where
0 means the model explains none of the variance, and 1 means it explains all the

variances.

Higher R-squared values indicate that the model's predictions align closely with

the actual values, suggesting a better fit to the data.
Let's compare and analyse the R-squared values for different algorithms:
Bagged Trees:
Training R?: 1 (100%)
Testing R%: 1 (100%)

Bagged Trees have the highest R-squared values for both the training and testing
phases, indicating that the model explains all the variance in energy consumption in both
datasets. This suggests that Bagged Trees provide an excellent fit to the data and

accurately predict energy consumption.
Fine Trees:
Training R?: 1 (100%)
Testing R%: (99%)
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Fine Trees also have a perfect R-squared value for the training phase, indicating

an excellent fit to the training data.
Linear:
Training R?: 0.54 (54%)
Testing R%: 0.53 (53%)

Linear model's R-squared values are relatively lower compared to Bagged Trees,
indicating that the model explains only around 54% of the variance in the training data
and 53% in the testing data. This suggests that the linear model might not be capturing

all the underlying patterns in the data as effectively as Bagged Trees.
Interactions Linear:

Training R?: 0.62 (62%)

Testing R%: 0.62 (62%)

Interactions Linear shows slightly higher R-squared values than the Linear model,
but still lower than Bagged Trees. It explains around 62% of the variance in both the

training and testing datasets.

Robust Linear:
Training R?: 0.32 (32%)
Testing R%: 0.31 (31%)

Robust Linear has lower R-squared values compared to the previous models,
indicating that it explains only about 32% of the variance in the training data and 31% in
the testing data. This suggests that the model might not be capturing the underlying

patterns in the data well.
Coarse Tree:
Training R?: 1 (100%)

Testing R*: 1 (100%)
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Coarse Tree has perfect R-squared values for both the training and testing phases,

suggesting an excellent fit to the data and accurate predictions.

From the provided R-squared values, Bagged Trees and Coarse Tree models stand
out with perfect R-squared values for both training and testing, indicating accurate and
robust predictions. Linear models, on the other hand, have lower R-squared values,

indicating less effective performance in explaining the variance in the data.

Bagged Trees and Coarse Tree models demonstrate superior performance in
explaining the variance in energy consumption and providing accurate predictions. These
models could be considered the best performers among the evaluated algorithms for

energy consumption prediction (Reddy et al. 2023).

Figure 4.3 explained MSE relation with the help of bar graph, Bagged Trees and
Fine Trees appear to be the best-performing algorithms based on the MSE values, as they
demonstrate lower prediction errors compared to the other models. These findings have
implications for the selection of suitable algorithms for energy consumption prediction
in real-world applications. Further analysis will be conducted to explore the strengths and
weaknesses of these algorithms and consider additional factors like computational
efficiency and interpretability to make an informed decision for practical energy

management projects.

Figure 4.4 From the MAE values, Bagged Trees and Fine Trees have relatively
low training and testing MAE, indicating better performance in predicting energy
consumption with smaller errors compared to other algorithms. Linear and Interactions
Linear models show higher training and testing MAE, suggesting they may not be as
effective in capturing the underlying patterns in the data. Linear SVM, on the other hand,
exhibits extremely high MAE values, indicating significant discrepancies between

predicted and actual energy consumption.

Bagged Trees and Fine Trees appear to be the best-performing algorithms based
on the MAE values, as they demonstrate lower prediction errors compared to the other
models. These findings are essential in the selection of suitable algorithms for energy

consumption prediction in real-world applications.
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From the training prediction speed values Figure 4.5 and 4.6. Fine Trees have the
highest speed, being able to process 3 million observations per second. Coarse Tree also
demonstrates high training prediction speed, processing 4 million observations per
second. On the other hand, Linear SVM has a relatively slower training prediction speed,

processing 1.4 million observations per second.

Fine Trees and Coarse Tree models stand out with higher training prediction
speeds, indicating faster processing capabilities compared to other algorithms. All value

calculated based on table 4.1 and result calculated based on table 4.2.

4.2.1 Predicted vs Actual results

In the described graph Figure 4.7 and Figure 4.8, a model that is performing well
have most of its data points following a clear linear trend along the perfect fit line.
Approximately 90% of the data points will fall within a narrow band around the perfect

fit line, indicating that the predictions are very close to the actual values.

On the other hand, around 10% of the data points might deviate from the perfect
fit line, going slightly above or below it. These deviations represent the model's prediction

errors, which are inevitable in any real-world predictive modelling task.

Most data points are scattered around the perfect fit line, and only a small
percentage deviate slightly, it suggests that the model is making accurate predictions and
capturing the underlying patterns in the data effectively. This is a desirable outcome as it

indicates a strong and reliable predictive model.

Figures 4.9 and 4.10 explain relation between predicted and residuals of training
and testing most of the data points cluster around the y-axis (Residual = 0), indicating
that the model's predictions are accurate, and the errors are centred around zero. This
implies that the model is capturing the underlying patterns in the data and making reliable
predictions for the training dataset and this result is supported by Akhtar, Sujod, and Rizvi
(2022).

Around 10% of the data points deviate slightly from the y-axis, either going
above or below. These deviations represent the model's prediction errors, which expected

in any real-world predictive modelling task. A well-performing model have a small
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percentage of deviations, and these errors are typically random and not indicative of any

systematic bias.

A Residual Training graph with most data points close to the y-axis (Residual =
0) and around 10% of the data points slightly deviating above and below indicates a well-
fitted regression model. It suggests that the model is accurately predicting the target
variable for the training dataset, with minimal systematic bias and consistent error
distribution. However, it's important to note that while most of the data points should be
close to the y-axis, there may still be some variability in the distribution of the Residuals.
This is normal and can be influenced by factors such as the complexity of the data or the
nature of the problem being modelled. If the general trend shows most Residuals near the
y-axis and approximately 10% deviating above and below, it is an encouraging sign of a

reliable regression model.
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Figure 4.7 Fine Trees Prediction vs. Actual training

In Figure 4.7 the performance of the machine learning model is visually evaluated
based on its ability to predict target values against observed values. Starting with Figure
4.7, a model demonstrating strong performance exhibits most of its data points adhering

closely to a linear trend along the ideal fit line. Around 90% of the data points are
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expected to fall within a narrow band around this perfect fit line, indicating consistent
and accurate predictions. However, it's important to note that approximately 10% of the
data points might deviate slightly from the ideal fit line, representing prediction errors

inherent in real-world scenarios.
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Figure 4.8 Fine Trees Prediction vs. Actual testing

Moving to Figure 4.8, the distribution of data points around the perfect fit line
further illustrates the model's ability to capture underlying patterns effectively. Despite
the presence of some deviations, the bulk of the data points remain closely aligned with
the ideal fit line, emphasizing the model's overall accuracy and reliability. Figures 4.7
and 4.8 collectively demonstrate the proficiency of the model in making accurate
predictions and capturing underlying data patterns. These observations highlight the
development of a robust and dependable predictive model, essential for successful
applications in various domains. The alignment of most data points along clear linear
trends, coupled with the tight clustering around the ideal fit line, signifies the model's
precision and consistency. While minor deviations exist, they do not detract from the
model's overall efficacy, highlighting its robustness and reliability in real-world
predictive modelling scenarios.
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Figure 4.9 Fine Trees Residual training.

In Figure 4.9, we are presented with a visualization of the residuals generated by
a tree-based machine learning model during the training phase. Residuals represent the
differences between the observed target values and the predicted values generated by the
model. These residuals provide valuable insights into the performance and behaviour of
the model during training. In this visualization, the residuals are plotted against the
predicted values generated by the model. Each data point on the graph represents an
individual data instance from the training dataset. The position of a data point relative to
the x-axis (predicted values) indicates whether the model under- or over-predicted the
target variable for that instance. Observing the distribution of data points in Figure 4.9,
note that there is a clear pattern emerging. Specifically, observe that there are five data
points located above the x-axis (positive residuals) and six data points located below the
x-axis (negative residuals). When data points lie above the x-axis, it indicates that the
model has under-predicted the target variable for those instances. Conversely, when data
points lie below the x-axis, it signifies that the model has over-predicted the target
variable. The presence of more data points with negative residuals compared to those
with positive residuals suggests that, on average, the model tends to overestimate the
target variable during the training phase. This could be attributed to various factors such

as model complexity, bias-variance trade-off, or the inherent nature of the dataset.
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Additionally, the pattern observed in the distribution of residuals can provide valuable
insights into potential areas for model improvement. For instance, if there are consistent
patterns or trends in the residuals, it may indicate areas where the model is systematically
underperforming and where adjustments or refinements could be made to enhance its
predictive accuracy. Figure 4.9 provides a visual representation of the residuals generated
by a tree-based machine learning model during the training phase. The distribution of
residuals allows us to assess the model's performance and identify areas for potential

improvement, thereby informing the iterative process of model development and

refinement.
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Figure 4.10  Fine Trees Residual testing.

In Figure 4.10, we continue our examination of the residuals generated by the
tree-based machine learning model, transitioning from the testing phase to a subsequent
analysis. Building upon the insights gained from Figure 4.9, this visualization offers a
deeper understanding of the model's performance and behaviour across different phases
of evaluation. Like the preceding figure, Figure 4.10 plots the residuals against the
predicted values, with each data point representing an individual instance from the testing
dataset. This approach allows for a direct comparison of the model's predictions with the
actual observed values, facilitating a comprehensive assessment of its accuracy and

generalization ability. Upon close inspection of the graph, we observe that the distribution
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of residuals exhibits distinct characteristics compared to both the training and testing
phases depicted in Figures 4.9 and 4.10. Specifically, there are noticeable differences in
the number and distribution of data points on either side of the x-axis (predicted values).
In this visualization, we observe four data points located above the x-axis (positive
residuals) and six data points situated below the x-axis (negative residuals). This
distribution mirrors the pattern observed in the testing phase, indicating a consistent trend

in the model's performance across multiple evaluation stages.

4.2.1.1 Medium Trees Prediction vs. Actual training

The "Predicted vs. Actual" graph for the Medium Trees model in the training
dataset represents a visual comparison between the predicted values and the actual
(observed) values of the target variable in Figures 4.11 to 4.14 (e.g., energy
consumption). In this graph, each data point represents an individual instance or

observation in the training dataset.

The graph is described as "going most online" when the majority of the data points
cluster around a straight line with a slope of 1, which is the "perfect fit" line. The perfect
fit line represents a scenario where the model's predictions exactly match the actual
values. When most data points follow this line, it indicates that the Medium Trees model

is making accurate predictions for the training dataset.

The graph is described as "14% going above and below perfect condition" when
around 10% of the data points deviate slightly from the perfect fit line, going either above
or below it. These deviations represent the model's prediction errors, which are normal in

any real-world predictive modelling task.

For the Medium Trees model in the training dataset: Most Data Points on Line:
The majority of the data points cluster around the perfect fit line, indicating that the
Medium Trees model's predictions align closely with the actual values. This suggests that

the model is performing well and capturing the underlying patterns in the training dataset.

Approximately 14% Deviating Above and Below: Around 10% of the data
points deviate slightly from the perfect fit line, indicating some prediction errors. These

deviations are expected and are typical in real-world modelling scenarios.
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The "Predicted vs. Actual" graph for the Medium Trees model in the training
dataset shows that most data points align closely with the perfect fit line, while around
14% deviate slightly from it. This indicates that the Medium Trees model is providing
accurate predictions for the training dataset, with only a small proportion of prediction
errors. Such performance is a positive sign, demonstrating the model's effectiveness in

predicting energy consumption in the training data.
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Figure 4.11 Medium Trees Prediction vs. Actual training
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Figure 4.12  Medium Trees Prediction vs. Actual testing
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Figure 4.13  Medium Trees Residual training.
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Figure 4.14  Medium Trees Residual testing
4.2.1.2 Bagged Trees Prediction vs. Actual training

The "Predicted vs. Actual" graph from Figures 4.15 to 4.19 for the Bagged Trees
model in the training dataset represents a visual comparison between the predicted values
and the actual (observed) values of the target variable (e.g., energy consumption). Each
data point on the graph represents an individual instance or observation in the training

dataset.

In this graph, the phrase "going most on line" indicates that the majority of the
data points closely align with a straight line, typically with a slope of 1. This line
represents the "perfect fit" line, where the model's predictions exactly match the actual
values. When most data points follow this line, it indicates that the Bagged Trees model
is making accurate predictions for the training dataset, the phrase "5% going above and
below perfect condition" implies that approximately 5% of the data points deviate slightly

from the perfect fit line, going either above or below it.

For the Bagged Trees model in the training dataset: Most Data Points on Line:
The majority of the data points cluster around the perfect fit line, indicating that the

Bagged Trees model's predictions closely match the actual values in the training dataset.
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This suggests that the model is performing well and capturing the underlying patterns in

the data.

Approximately 5% Deviating Above and Below: Around 5% of the data points
deviate slightly from the perfect fit line, indicating some prediction errors. While the
model is making mostly accurate predictions, these deviations represent instances where
the model's predictions differ from the actual values. This is normal and expected in real-

world scenarios.

The "Predicted vs. Actual" graph for the Bagged Trees model in the training
dataset shows that most data points align closely with the perfect fit line, while around
5% deviate slightly from it. This indicates that the Bagged Trees model is providing

accurate predictions for the training dataset, with only a small percentage of prediction

e1TorSs.
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Figure 4.15 Bagged Trees Prediction vs. Actual training

Figure 4.15: The "Predicted vs. Actual" graph for the Bagged Trees model in the

training dataset illustrates the model's performance by comparing predicted values with
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actual observed values. The majority of data points align closely with the perfect fit line,
indicating accurate predictions. Approximately 5% of data points deviate slightly from

this line, suggesting minor prediction errors.
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Figure 4.16  Bagged Trees Prediction vs. Actual testing

Similar to Figure 4.15, Figure 4.16 depicts the performance of the Bagged Trees
model on the training dataset. Most data points align with the perfect fit line, indicating
accurate predictions. However, a small percentage of data points deviate from this line,

reflecting prediction errors.
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Figure 4.17  Bagged Trees Residual training

In Figure 4.17, the "Predicted vs. Actual" graph continues to demonstrate the
Bagged Trees model's performance on the training dataset. The majority of data points
cluster around the perfect fit line, signifying accurate predictions. A minor proportion of

data points deviate from this line, indicating prediction errors.
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Figure 4.18  Bagged Trees Residual testing
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Figure 4.18 provides further insight into the Bagged Trees model's performance
on the training dataset. Most data points closely align with the perfect fit line, suggesting
accurate predictions. However, a small subset of data points exhibits deviations from this

line, reflecting prediction errors.
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Figure 4.19 Bagged Trees Residual prediction.

Figure 4.19 showcases the Bagged Trees model's performance on the training
dataset. The majority of data points adhere closely to the perfect fit line, indicating
accurate predictions. A small fraction of data points deviates from this line, highlighting
prediction errors. The "Predicted vs. Actual" graphs for the Bagged Trees model across
Figures 4.15 to 4.19 consistently demonstrate the model's ability to make accurate
predictions on the training dataset. Most data points align closely with the perfect fit line,
indicating strong performance. However, a small percentage of data points deviate from
this line, reflecting minor prediction errors. Overall, these findings suggest that the
Bagged Trees model performs well in predicting target variables in the training dataset,

with only minimal discrepancies between predicted and actual values.
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4.2.2 Research objectives Vs. Research deliverables.

The Table 4.3 shown a comparative evaluation of Machine learning for energy
predications for efficacy ranking and efficiency ranking, that allows to optimization of

different algorithm.
Explanation of Higher RMSE Value in the Table 4.1 and 4.2:

The value of Root Mean Square Error (RMSE) can indeed be in millions
depending on the scale of the data being analyzed. RMSE is a measure of the differences
between predicted and observed values in a dataset, and its unit is the same as the unit of
the observed values. Therefore, if the observed values are in millions, the RMSE can also

be in millions.

For instance, in large-scale financial models or economic forecasts where the
values are often in millions or billions, the RMSE can naturally reach millions. This is
because RMSE is calculated as the square root of the average of the squared differences
between predicted and observed values. If these differences are large, the RMSE will also

be large.

In practical applications such as predicting the gross calorific value of coal or the
higher heating value of biomass, the RMSE values are typically smaller, reflecting the
precision of the models used in these contexts. However, in scenarios involving large
datasets with high-value observations, such as urban geospatial information acquisition
or large-scale economic predictions, RMSE values can indeed be in the millions. Thus,

the magnitude of RMSE is directly tied to the scale of the data it measures.
R-Squared (R? or the coefficient of determination) be Greater than 1:

In standard linear regression, R* values are typically expected to range between 0
and 1. The value of R? in my results is more than 1 in five Algorithms (Linear SVM,
Quadratic SVM, Cubic SVM, Bilayered Neural Network, Trilayered Neural Network). It
1s possible due to the outfit in modelling, under certain circumstances, particularly when
using a regression model without an intercept, the R’ value can exceed Here's

explanation:

The coefficient of determination, denoted as R, is a statistical measure that
indicates the proportion of the variance in the dependent variable that is predictable from

the independent variable(s). It is a key metric in regression analysis, providing insight
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into the goodness of fit of a model. Typically, R?> values range from 0 to 1, where 0
indicates that the model explains none of the variability of the response data around its
mean, and 1 indicates that the model explains all the variability of the response data

around its mean.

The question of whether R? can be greater than 1, particularly in the context of
overfitting, is intriguing. Overfitting occurs when a model is too complex, capturing the
noise in the dataset rather than the underlying pattern. This can lead to a model that
performs well on training data but poorly on unseen data. However, the conventional
understanding of R? does not accommodate values greater than 1, as these would imply
that the model explains more variability than is present in the data, which is not logically

consistent with the definition of R>.

In the realm of Bayesian regression models, an alternative definition of R* has
been proposed due to the issue that the usual definition (variance of the predicted values
divided by the variance of the data) can result in the numerator being larger than the
denominator. This situation can arise in Bayesian fits, suggesting a conceptual space
where R? might exceed 1, but this is more a reflection of the need for alternative
definitions in specific contexts rather than an indication that R? values greater than 1 are

meaningful within conventional interpretations.

Moreover, the presence of a negative R? in some models, such as those involving random
forests, indicates potential overfitting. This suggests that while R* can indeed fall outside
its typical range of 0 to 1, particularly in complex models or those with poor predictive
power, the interpretation of such cases requires careful consideration of the model and
the context. Negative R* values, rather than values greater than 1, are typically associated
with models that do not perform well. While R? is fundamentally bounded between 0
and 1 within the traditional framework of regression analysis, discussions around its value
exceeding 1, particularly in the context of Bayesian models, highlight the complexities
of model evaluation and the need for context-specific interpretations. The concept of R?
exceeding 1 does not align with its conventional interpretation and instead points to the
necessity of adapting our understanding and metrics to suit different modelling

approaches and statistical paradigms.
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Table 4.3 Performance evaluation of machine learning algorithm for energy prediction on SEIL dataset
Training Testing
Prediction
speed Training
RMSE  R-Squared MSE MAE (obs/sec) time RMSE R-Squared MSE MAE
Fine Tree  2.11E+06 1 4.44E+12  1.40E+06 3000000 24.148  2.38E+06 1 5.64E+12  1.41E+06
Linear 1.35E+08 0.54 1.83E+16 8.42E+07 790000 22.065  1.36E+08 0.53 1.84E+16 8.45E+07
Intgf}‘;g;’ns 1.22E+08 0.62 1.48E+16 8.02E+07 110000 65.108  1.23E+08 0.62 1.50E+16  8.05E+07
Robust Linear  1.64E+08 0.32 2.68E+16 5.25E+07 790000 19.44 1.65E+08 0.31 2.71E+16  5.30E+07
Stepwise
. 1.18E+08 0.65 1.39E+16  7.63E+07 600000 24417  1.18E+08 0.64 1.40E+16  7.66E+07
Fine Tree  2.11E+06 1 4.44E+12  1.40E+06 3300000 8.3244  2.38E+06 1 5.64E+12 1.41E+06
Medium Tree  2.81E+06 1 7.87E+12  1.42E+06 3700000 8.0721  3.20E+06 1 1.02E+13  1.43E+06
Coarse Tree  4.26E+06 1 1.81E+13  1.49E+06 4000000 75477  4.63E+06 1 2.15E+13  1.50E+06
Linear SVM  8.67E+08 18.13 7.52E+17  6.69E+08 1400000 8892.6  8.68E+08 18.13 7.54E+17  6.69E+08
Q“Sa\(};‘j[tlc 3.46E+08 2.05 1.20E+17  2.98E+08 240000 18985  3.45E+08 2.02 1.19E+17  2.98E+08
Cubic SVM  6.38E+08 9.35 4,07E+17  ~5.50E+08 ~ 260000 5761.7 = 6.37E+08 9.31 4.06E+17 5.50E+08
FmeSGVaf/ISS‘a“ 1.04E+08 0.72 1.08E+16  8.83E+07 270000 10099  1.04E+08 0.72 1.08E+16  8.85E+07
Medium
. 2.10E+08 0.13 4.43E+16 1.80E+08 1200000 17835  2.11E+08 0.13 4.44E+16  1.80E+08
Gaussian SVM
Coarse 2.17E+08 0.19 4.69E+16 1.82E+08 1300000 18127  2.17E+08 0.2 471E+16  1.82E+08
Gaussian SVM
Boosted Trees  2.33E+07 0.99 5.42E+14 1.66E+07 180000 62.082  2.31E+07 0.99 534E+14 1.66E+07
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Table 4.3 Continued

Training Testing
Prediction
speed Training
RMSE R-Squared MSE MAE (obs/sec) time RMSE R-Squared MSE MAE

Bagged Trees  1.58E+06 1 2.48E+12 1.06E+06 120000 119.87 1.78E+06 1 3.17E+12 1.09E+06
Squared

Exponential 7.68E+07 0.85 5.89E+15 4.62E+07 200 9102.8 7.66E+07 0.85 5.87E+15 4.62E+07

GPR

Magfi;S/z 6.40E+07 0.9 4.10E+15 3.87E+07 110 15589 6.40E+07 0.9 4.10E+15 3.88E+07

Engf,gmal 6.86E+07 0.88 470E+15 3.73E+07 130 14212 6.87E+07 0.88 4.72E+15  3.73E+07
Rational

Quadratic 7.30E+07 0.86 5.33E+15 4.11E+07 110 15637 7.28E+07 0.87 5.29E+15 4.11E+07

GPR

Narlfl‘;?wljfﬁ“al 3.18E+07 0.97 1.OIE+15 1.04E+07 1000000  254.45  3.12E+07 0.98 9.76E+14  1.03E+07
Medium

Neural 2.54E+07 0.98 6.46E+14 1.46E+07 1100000 396.17 2.51E+07 0.98 6.32E+14  1.46E+07
Network

Wide Neural

Network 1.81E+07 0.99 327E+14 1.14E+07 630000 1238.8 1.79E+07 0.99 3.19E+14 1.14E+07
Bilayered

Neural 3.77E+08 2.62 1.42E+17 3.21E+08 1000000 35.635 3.77E+08 2.6 1.42E+17 3.20E+08
Network
Trilayered

Neural 3.77E+08 2.62 1.42E+17 3.21E+08 870000 48.817 3.77E+08 2.6 1.42E+17 3.20E+08

Network
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Table 4.4 Table Efficacy vs Efficiency ranking.

Algorithm Efficacy Ranking Efficiency Ranking
Bagged Trees Ist 3rd
Fine Trees 2nd 2nd
Medium Trees 3rd Ist

Table 4.4 presents an interesting finding that Bagged Trees is the most effective
algorithm for predicting electrical energy demand on university campuses using the SEIL
dataset. But Medium Trees is the most efficient algorithm for this task, and Fine Trees
balance efficacy and efficiency. Bagged Trees outperforms Fine Trees by 75%, 56%, and
76% in terms of RMSE, MSE, and MAE for both training and testing, respectively.
Similarly, compared to Medium Trees, Bagged Trees shows a 56%, 32%, and 75%
improvement in RMSE, MSE, and MAE for both training and testing, respectively. These
metrics represent the percentage of improvement in efficacy between the algorithms. In
terms of efficiency, Medium Trees is 32 times more efficient in prediction speed and 14.8
times more efficient in training time than Bagged Trees. Medium Trees is 1.3 times more
efficient in prediction speed and three times more efficient in training time than Fine

Trees. These comparative metrics are illustrated in Figure 4.20.

O

Ranking

35

No of Sample

—@— Fine Trees —&— Medium Trees

—8— Actal —@—Bagged Trees

Figure 420  Comparative graph of Fine Trees, Medium Trees, Bagged tress and
actual.
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CHAPTER 5

CONCLUSION

5.1 Introduction

The study, conducted in 2018-2023, aimed to implement various machine
learning algorithms for efficient electrical energy load management in a building.
Performance evaluation focused on both efficacy and efficiency to identify the optimal
algorithm for energy load prediction and management. Results from the study indicate
that the Bagged Trees algorithm excelled in efficacy, ranking first in performance
evaluation with remarkable accuracy in predicting energy consumption. For efficiency,
the Medium Trees algorithm proved to be the most optimized and resource-efficient,
securing the top rank. Additionally, the Fine Trees algorithm demonstrated strong
performance, ranking second in both efficacy and efficiency, offering a balanced trade-

off between accuracy and computational resources.

This study comprehensively analysed and compared machine learning
algorithms for electrical energy load management, providing valuable insights for
practical implementation in real-world energy management systems. Furthermore, the
proposed approach was validated on another dataset, reinforcing algorithm credibility.
This work lays the foundation for developing an optimized variant of the best-performing
algorithm, with potential implications for enhancing energy efficiency in educational

institutions and contributing to energy conservation and environmental preservation.

Looking ahead, future research endeavors should focus on expanding datasets to
include more renewable sources and diverse building types globally. Additionally,
implementing various machine learning algorithms, including regression, decision trees,
and neural networks, could significantly impact energy management in academic
buildings, leading to financial savings, increased energy efficiency, and a reduction in
carbon footprint. Moreover, there is a need to explore more advanced assessment

measures and incorporate new data sources, such as weather patterns and occupancy
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levels, to enhance energy demand projections and optimize energy distribution and

allocation decisions.

5.2 Future Recommendation

Implementing various machine learning algorithms could alter how electrical
energy is managed in academic buildings. Regression, decision trees, and neural
networks, among other cutting-edge methodologies, can accurately estimate energy
demand and to help with energy allocation and distribution decisions. This might lead to
significant financial savings, increased energy efficiency, and a decrease in the
university's carbon footprint. Additionally, machine learning algorithms are simple to
modify and update, allowing for long-term progress in energy management. The use of
machine learning algorithms for electrical energy load management in university

buildings is a critical step towards a future with more sustainable and effective energy.

To reach its full potential, there is still significant work to be done. Possible

directions for future research include:

Predictions of energy consumption can be made more accurately, but there is still
potential for improvement with the present machine learning algorithms. More
investigation into the creation of complex algorithms, like deep learning, may result in

estimates of energy demand that are even more accurate.

Including new data sources: More data sources can be included in the algorithms
so that energy distribution and allocation decisions can be made with even greater
knowledge. To improve energy demand projections, for instance, information on weather

patterns, occupancy levels, and building usage patterns could be employed.

The next stage is to allocate and distribute energy in the most effective and
efficient manner feasible after energy demand projections have been made. The
development of algorithms that may optimise energy distribution and allocation based on
a variety of parameters, such as cost, energy efficiency, and environmental impact, may

be the main goal of future research in this field.

Creation of more advanced assessment measures: While existing measurements,

like accuracy and precision, are an excellent place to start when assessing the
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performance of ML algorithms, more advanced metrics are required that can take a wider

range of considerations, like computing time and scalability.

A lot of effort needs to be done to compare algorithms' performances across many
domains, although ML algorithms have been used to solve a variety of issues. For
instance, an algorithm that performs well in one domain may not perform as well in

another domain with distinct characteristics.

Deep learning is advancing: This fast-developing area has demonstrated
considerable promise in a variety of applications, including image identification and
natural language processing. Deep learning algorithms will need to be evaluated in terms
of efficiency and efficacy and compared to other kinds of machine learning algorithms

as they continue to develop.

The best candidate machine learning algorithm should be tuned to improve its
effectiveness and efficiency across a variety of applications. Performing the algorithm
can be improved and made even more efficient by utilising cutting-edge methods like
hyper-parameter tweaking, ensembling, and model selection. This can therefore result in
enhanced scalability, faster computing, and better accuracy. Additionally, one of the main
forces behind innovation and development in the field is the capacity to develop
optimised variants of machine learning (ML) algorithms. This capability enables
researchers and practitioners to continuously enhance already-existing solutions and take

on new, more challenging problems.
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APPENDIX A: TRAINING AND TESTING TABLE

Link for data: https://drive.google.com/drive/folders/1ih4zktiHzAc80QkHFOHRVc2KMYhdyhOc

Training Testing
RMSE R- MSE MAE Prediction Training RMSE R-Squared MSE MAE
Squared speed time
(obs/sec)

Fine Tree 2.11E+06 1 444E+12  1.40E+06 3000000 24.148 2.38E+06 1 564E+12  1.41E+06
Lincar 1.35E+08 0.54 1.83E+16  8.42E+07 790000 22.065 1.36E+08 0.53 1.84E+16  8.45E+07
Interactions Linear  1.22E+08 0.62 1.48E+16  8.02E+07 110000 65.108 1.23E+08 0.62 1.50E+16  8.05E+07
Robust Linear 1.64E+08 0.32 2.68E+16  5.25E+07 790000 19.44 1.65E+08 031 271E+16  5.30E+07
Stepwise Linear __ 1.18E+08 0.65 139E+16  7.63E+07 600000 24417 1.18E+08 0.64 1.40E+16  7.66E+07
Fine Tree 2.11E+06 1 444E+12  1.40E+06 3300000 8.3244 2.38E+06 1 564E+12  1.41E+06
Medium Tree 2.81E+06 1 787E+12  1.42E+06 3700000 8.0721 3.20E+06 1 1.02E+13  1.43E+06
Coarse Tree 4.26E+06 1 1.81E+13  1.49E+06 4000000 75477 4.63E+06 1 2.15B+13  1.50E+06
Linear SVM 8.67E+08 1813 7.52E+17 _ 6.69E+08 1400000 8892.6 8.68E-+08 18.13 754E+17  6.69E+08
Quadratic SVM __ 3.46E+08 2.05 1.20E+17  2.98E+08 240000 18985 3.45E+08 2.02 1.19E+17  2.98E+08
Cubic SVM 6.38E+08 935 407E+17  5.50E+08 260000 5761.7 6.37E+08 931 4.06E+17  5.50E+08
Fmesc\if‘;;“a“ 1.04E+08 0.72 1LOSE+16" ~8.83B+07 270000 10099 1.04E+08 0.72 1.08E+16  8.85E+07
Medl“‘snvij‘“s‘an 2.10E+08 0.13 4.43E+16 1.80E-+08 1200000 17835 2.11E+08 0.13 4.44E+16  1.80E+08
Coarsg\%[““lan 217108 019  4.69E+16  1.82E+08 1300000 18127 2.17B+08 0.2 471B+16  1.82E+08
Boosted Trees 2.33E+07 0.99 542E+14  1.66E+07 180000 62.082 231E+07 0.99 534E+14  1.66E+07
Bagged Trees 1.58E+06 1 248E+12  1.06E+06 120000 119.87 1.78E+06 1 317E+12  1.09E+06
Squared 7.68E+407  0.85  5.89E+15  4.62E+07 200 91028  7.66E+07 0.85 S87E+15  4.62E+07

Exponential GPR
Matern 5/2 GPR _ 6.40E+07 0.9 4.10E+15  3.87E+07 110 15589 6.40E+07 0.9 4.10E+15  3.88E+07
Exponential GPR ___ 6.86E+07 0.88 470E+15  3.73E+07 130 14212 6.87E+07 0.88 472E+15  3.73E+07
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Rational Quadratic

GPR 7.30E+07 0.86  5.33E+15  4.11E+07 110 15637  7.28E+07 0.87 529E+15  4.11E+07
Nar;]‘;‘t’ivljflfral 3.18E+07 0.97 1.01E+15  1.04E+07 1000000 25445  3.12E+07 0.98 9.76E+14  1.03E+07
Me‘fj‘;ﬁjﬂi‘f{ml 2.54E+07 0.98 6.A6E+14  1.46E+07 1100000 396.17  2.51E+07 0.98 6.32E+14  1.46E+07

Wli\‘lieivlj:rulfal 181E+07 099  327E+14  1.14E+07 630000 12388 1.79E+07 0.99 3.19E+14  1.14E+07
Bﬂaﬁgfvgoljlfuml 3.77E+08 2.62 1.42E+17  3.21E+08 1000000 35635  3.77E+08 2.6 1.42E+17  3.20E+08
Trﬂagl‘:;foieural 3.77E+08 2.62 1.42E+17  3.21E+08 870000 48.817  3.77E+08 2.6 1.42E+17  3.20E+08
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APPENDIX B

% Data Cleansing and pre-processing

cle

clear all;

close all;

% Load CSV

[FileName,FilePath]=uigetfile('C:\Dr Sajjad Research\Energy Prediction\Dr Shamim\SEIL
Dataset', 'Select Data CSV File');

ExPath = [FilePath FileName];

raw_data=readtable(ExPath);

% Setps of Data Pre-processing

% 1. clean missing data and replace with estimated values

[cleanedData,missingIndices] = fillmissing(raw_ data,'linear’);

num2str(nnz(missingIndices));

% 2. Clean Outliears

cleanedData = filloutliers(cleanedData,'linear");

% 3. Smoothen the data

cleanedData = smoothdata(cleanedData,'movmean','SmoothingFactor',0.25);

cleanedData=table2array(cleanedData);

% divide data in training and testing
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idx=randperm(length(cleanedData));

1dx=1dx";

training_offset = round(length(idx)*0.7);

Training=cleanedData(idx(1:training_offset),:);

Testing= cleanedData(idx(training_offset+1:length(idx)),:);

save ('Training.mat',' Training');

save ('Testing.mat',"Testing");

% Testing Code

cle

clear all;

close all;

% Load CSV

[FileName,FilePath]=uigetfile('C:\', 'Select the Trained Model File');

ExPath = [FilePath FileName];

load(ExPath);

[FileNamel,FilePath1]=uigetfile('C:\', 'Select Testing Data' );

ExPathl = [FilePath1 FileNamel];

load(ExPath1);
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yfit = Linear Regression.predictFcn(Testing(:,1:26)) ;

[x y]=find(abs(Testing(:, 28)-yfit(:))<30000);

Test _accuracy=length(x)/length(Testing)*100

row=idx(1:50);

figure

plot(yfit(row),'r");

hold on

plot(Testing(idx(1:50),28),'d");

legend('Predicted Value','Actual Value');
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