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ABSTRAK 

Pengesanan objek daripada imej berskala kelabu dengan tepat merupakan asas dalam 

pengkomputeran penglihatan dengan pelbagai aplikasi. Dalam pengimejan perubatan, ia 

membolehkan pengesanan tepat struktur anatomi, lesi, dan tumor daripada modaliti 

seperti CT, MRI, dan ultrabunyi untuk diagnosis, perancangan rawatan, dan pemantauan 

penyakit. Dalam pemeriksaan industri, algoritma pengesanan mengesan kecacatan 

produk, retak, atau anomali untuk kawalan kualiti dan keselamatan. Walau bagaimanapun, 

mencapai pengesanan tepat dalam imej berskala kelabu merupakan satu usaha yang 

mencabar disebabkan beberapa kerumitan semula jadi. Pencahayaan tidak sekata, isu 

biasa dalam senario pengimejan dunia sebenar, boleh menyebabkan variasi ketara dalam 

keamatan piksel, mengaburi sempadan objek dan merumitkan proses pengesanan. 

Tambahan pula, kehadiran hingar, sama ada daripada ketidaksempurnaan penderia atau 

faktor persekitaran, boleh mengurangkan kualiti imej dan memperkenalkan artifak yang 

menghalang pengesanan tepat. Selanjutnya, sempadan objek yang kompleks, 

terutamanya dalam adegan dengan halangan, bayang, atau bentuk rumit, menimbulkan 

cabaran besar bagi kaedah pengesanan tradisional. Kaedah ini sering kali gagal 

menggambarkan dengan tepat kontur rumit dan kawasan kepentingan, menyebabkan ralat 

bawah-segmen atau lebih-segmen. Untuk menangani cabaran ini, tesis yang dicadangkan 

memperkenalkan kaedah hibrid variasi aras set model berasaskan novel, digelar 

VKMHLS, yang dilaraskan khusus untuk pengesanan objek dalam imej berskala kelabu. 

VKMHLS menyederhanakan model Pengelompokan Keamatan Setempat (LIC) dan 

memperkenalkan fungsi tenaga novel berdasarkan fungsi tekanan wilayah, meningkatkan 

kecekapan pengesanan untuk imej berskala kelabu rendah. Tambahan pula, strategi 

pelaksanaan berangka pantas membolehkan pengesanan imej dan anggaran medan ofsét 

dengan cepat, meningkatkan kecekapan pengkomputeran keseluruhan dengan ketara. 

Untuk mensegmen struktur objek rumit dengan teguh dan tepat dalam set data berskala 

kelabu yang mencabar, VKMHLS menggunakan struktur aras set model berbilang 

lapisan dengan pengendali skala penyesuai. Pengendali ini menentukan bilangan lapisan 

optimum dan parameter skala tepat secara dinamik, mengatasi isu minima tempatan dan 

membolehkan pengendalian taburan berskala kelabu tidak sekata yang teruk. Di samping 

itu, tesis ini mencadangkan model kontur aktif inovatif dipanggil CER, yang 

menggabungkan unsur daripada model Chan-Vese (CV) dan model Region-Scalable 

Fitting (RSF) secara pintar. CER mengintegrasikan pengiraan entropi maklumat dan 

meminimumkan fungsi tenaga keseluruhan, membolehkan pengesanan berjaya kawasan 

dengan pinggir lemah, gangguan hingar kuat, dan variasi kecerahan tidak sekata merentas 

imej berskala kelabu. Untuk menangani cabaran berterusan mensegmen imej berskala 

kelabu dengan ciri-ciri tidak sekata dan tahap hingar tinggi, algoritma aras set hibrid 

berdasarkan metrik kernel diperkenalkan. Algoritma ini memanfaatkan penuras purata 

skala pelbagai yang ditingkatkan untuk mengurangkan ketidakseragaman berskala kelabu 

sambil mengurangkan kesan pemilihan parameter skala. Pengukuran kernel dan metrik 

kesamaan setempat menyekat pengaruh hingar, meningkatkan keteguhan. Tambahan 

pula, terma penyelarasan kecerunan kiraan mengurangkan kesan hingar lanjut, 

memastikan hasil pengesanan tepat. Penilaian eksperimen komprehensif menunjukkan 

bahawa VKMHLS mensegmen imej berskala kelabu dengan tepat yang dicirikan oleh 

ketidakseragaman dan pencemaran hingar, mempamerkan prestasi teguh merentas 

pelbagai jenis hingar. Ciri-ciri ini menjadikan VKMHLS alat yang amat bernilai untuk 

menangani cabaran pengesanan imej berskala kelabu dunia sebenar dan membolehkan 

pengesanan objek yang boleh dipercayai. 
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ABSTRACT 

Accurate segmentation of objects from grayscale images is fundamental in computer 

vision with diverse applications. In medical imaging, it enables precise detection of 

anatomical structures, lesions, and tumors from modalities like CT, MRI, and ultrasound 

for diagnosis, treatment planning, and monitoring diseases. In industrial inspection, 

segmentation algorithms detect product defects, cracks, or anomalies for quality control 

and safety. However, achieving accurate segmentation in grayscale images is a 

challenging endeavor due to several inherent complexities. Uneven illumination, a 

common issue in real-world imaging scenarios, can lead to significant variations in pixel 

intensities, obscuring object boundaries and complicating the segmentation process. 

Additionally, the presence of noise, whether from sensor imperfections or environmental 

factors, can further degrade image quality and introduce artifacts that hinder accurate 

segmentation. Moreover, complex object boundaries, particularly in scenes with 

occlusions, shadows, or intricate shapes, pose significant challenges for traditional 

segmentation methods. These methods often struggle to accurately delineate the intricate 

contours and regions of interest, leading to under-segmentation or over-segmentation 

errors. To address these challenges, the proposed thesis introduces a novel model-based 

hybrid variational level-set method, termed VKMHLS, specifically tailored for object 

detection in grayscale images. VKMHLS simplifies the Local Intensity Clustering (LIC) 

model and introduces a novel energy functional based on the region-based pressure 

function, enhancing the efficiency of segmentation for low grayscale images. 

Furthermore, a fast numerical implementation strategy enables swift segmentation of 

images and estimation of the offset field, significantly improving overall computational 

efficiency. To robustly and accurately segment intricate object structures in challenging 

grayscale datasets, VKMHLS employs a multi-layer model-based level-set structure with 

adaptive scale operators. These operators dynamically determine the optimal number of 

layers and precise scale parameters, overcoming issues with local minima and enabling 

successful handling of severely uneven grayscale distributions. Additionally, the thesis 

proposes an innovative active contour model called CER, which intelligently combines 

elements from the Chan-Vese (CV) model and the Region-Scalable Fitting (RSF) model. 

CER integrates information entropy calculations and minimizes the overall energy 

functional, allowing successful segmentation of regions with weak edges, strong noise 

interference, and uneven brightness variations across grayscale images. To tackle the 

persistent challenge of segmenting grayscale images with both uneven characteristics and 

high noise levels, a hybrid level-set algorithm based on kernel metrics is introduced. This 

algorithm leverages an improved multi-scale mean filter to mitigate grayscale 

inhomogeneity while reducing the impact of scale parameter selection. Kernel 

measurements and local similarity metrics suppress noise influence, enhancing 

robustness. Furthermore, a count gradient regularization term further reduces noise 

impact, ensuring precise segmentation results. Comprehensive experimental evaluations 

demonstrate that VKMHLS accurately segments grayscale images characterized by both 

inhomogeneity and noise contamination, exhibiting robust performance across various 

noise types. These attributes make VKMHLS a highly valuable tool for tackling real-

world grayscale image segmentation challenges and enabling reliable object detection. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Introduction 

With the development of modern physics, imaging technology, computer 

technology, and communication technology, the application of X-ray in medical imaging 

has made great progress, mainly including PET tomography, MRI, DSA digital imaging, 

and CT. Image types such as tomographic imaging, microscopic imaging, MI molecular 

imaging. The images are mainly in DICOM format (Monteiro et al., 2017). With the 

development of various imaging technologies, in modern medicine, the use of imaging 

technology for disease diagnosis has become a development trend (Sumithra et al., 2015). 

The combination of graphic image technology and computer technology has affected the 

development of related industries in modern society, and it also has very important 

significance for the development of subject research.  

In the study of medical images, authors have provided quantitative analysis and 

assistance for the diagnosis of medical conditions by observing the structure of tissues, 

anatomical structures, and applying modern techniques to analyze medical image data, 

locate lesions, segmentation, parameter analysis, and extract features (Bakas et al., 2017). 

Accurate analysis of medical images has a great effect on clinical diagnosis. Accurate 

data can greatly reduce misdiagnosis. Therefore, the analysis of medical images has 

become a focus area of many scholars (Bakas et al., 2017). The three levels of image 

processing, image analysis and image understanding constitute the main image research 

content (Bhattacharyya et al., 2017). Image segmentation belongs to the level of image 

analysis. The purpose is to divide the image target into a series of regions with different 

feature meanings, and identify the segmented regions (boundary curve, pixel feature 

points.). Image segmentation is an important part of the underlying visual application 

field, and is the basis of high-level image analysis and understanding, especially in the 
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fields of target tracking, target recognition, image feature analysis, medical image 

segmentation and reconstruction (Ghiasi and Fowlkes, 2016). 

1.2 Background 

The quality of the segmentation result has a direct impact on the success of picture 

interpretation and other related tasks since it acts as a bridge between the communication 

system's low-level pixel representation and its high-level semantic symbol representation. 

Image segmentation is often a necessary pre-processing step in a variety of different 

systems due to the reasons stated above. For example, text elements such as text, images, 

and tables are detected from images to lay the foundation for further pattern recognition. 

Obviously, with the development of computer intelligence, the high-level applications of 

various image data will be more and more, and image segmentation will continue to 

receive more attention because of its important position (Van et al., 2019). Image 

segmentation technology can automatically or semi-automatically extract regions of 

interest in an image that belong to the target region. This lays the foundation for higher-

level image analysis and comprehension of the target of interest, such as model 

representation, parameter extraction, image recognition, and so on. Image segmentation 

technology can also extract regions of interest in an image that do not belong to the target 

region. In a similar vein, medical image segmentation is the essential technological 

component for the processing, reconstruction, analysis, and comprehension of medical 

images. Image registration, which is often used, 3D reconstruction, computer-aided 

diagnosis systems are inseparable from medical image segmentation technology (Tey et 

al., 2018). Medical image segmentation technology divides an image region with the 

same intensity, color or texture characteristics into several sub-regions, corresponding to 

different targets in the image, so that the medical volume data image pixels can be marked 

as specific tissues, organs or anatomical structures. Provide doctors with auxiliary 

judgments and help (Hung., 2018). 

Medical image segmentation has been widely used in the research and practice of 

clinical diagnosis, pathological analysis, auxiliary surgery, medical image information 

processing., especially in the academic field of computer information processing and 

medical research. Volume. For example, it is necessary to extract the structural regions 
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of organ tissues in the image, which is convenient for doctors to analyze organ body data 

information, anatomical structure measurement, tissue structure cell identification. 

Medical image segmentation is medical image 3D reconstruction, image registration and 

assistance. The basic data of the diagnostic system provides reliable and complete data 

for intelligent analysis of images (Das et al., 2018). At the same time, it can be used to 

extract characteristic parameters of medical image target tissues, such as pathological 

information, time-dependent lesion geometry, physical structure Changes and the 

establishment of a relevant data repository to provide doctors with important information 

for the diagnosis of a particular condition. In the clinic, the extracted medical image target 

area is located and the segmented tissue is visualized for three-dimensional reconstruction, 

for surgery, specific medical treatment, computer-aided diagnosis, guidance for 

interventional surgery. To do accurate target positioning, which has been applied in 

modern medical surgery (Roth et al., 2018). Image segmentation technology also has 

application value in the digital storage of medical data. For the long-term preservation 

and management of medical image information resources, it is convenient for later search 

and Application, application segmentation of specific image targets, compression 

processing, image data better preservation, transmission, remote diagnosis services. 

Application of image segmentation technology to measure tissue, organ or lesion, 

calculate area, volume., before and after treatment Relevant quantification and analysis 

of image data can help doctors to develop more reasonable and targeted treatment plans 

according to the development of the disease, which is of great value to medical clinical 

applications. 

Lung cancer, as one of the leading causes of cancer-related mortality worldwide, 

warrants detailed elucidation to provide readers with a clear understanding of its 

significance within the realm of medical imaging and the motivation behind the research 

(Biswas and Hazra, 2022). 

In recent years, there has been a growing body of research focused on improving 

lung cancer detection and diagnosis, with an emphasis on the critical role played by 

medical imaging modalities such as computed tomography (CT) scans and magnetic 

resonance imaging (MRI). These imaging techniques are instrumental in the early 

detection and characterization of lung lesions, which is pivotal for timely intervention 
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and improved patient outcomes. The research on lung cancer imaging has been driven by 

the need for more accurate and efficient methods due to the sheer prevalence and lethality 

of the disease. According to recent statistics, lung cancer is responsible for a significant 

portion of cancer-related deaths globally (Wang et al., 2020; Yin et al., 2020). 

Furthermore, contemporary research (Zhang et al., 2022; Srikanth and Bikshalu, 

2022) has highlighted the specific challenges associated with lung cancer imaging, which 

include the heterogeneity of lung nodules, the presence of noise in medical images, and 

the necessity for precise contour initialization. These challenges underscore the 

importance of developing innovative image analysis and segmentation techniques, which 

is the core objective of the present research. Therefore, understanding the landscape of 

lung cancer imaging is essential for appreciating the relevance and significance of new 

methods in the context of lung cancer detection and diagnosis. 

1.3 Problem Statement 

Vision is an important way for humans to obtain information from the real world, 

to perceive and understand the world. However, limited by many factors, there are very 

few visual information that humans can personally acquire. As an important material 

carrier, the image can make up for this shortcoming. Humans use physical instruments 

such as optical devices to acquire images, and use digital technology to store and transmit 

images to achieve information visualization and information sharing. In the fields of 

astronomy, satellite remote sensing, military, small to medical, nanotechnology, and even 

entertainment industry and digital communication, images help humans to understand 

targets in different environments and at different scales, and to perceive the real world in 

different spaces and times. The various modes that help humans make optimal decisions 

and take the right actions (Liu and He., 2015). However, the original information 

contained in the image is often not directly used by humans, and the image processing 

science is thus produced. Even though this thesis already have a lot of research results, 

there are still some issues need to be solved. The problems are shown in below. 
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1.3.1 Uneven Gray Levels Problems 

Due to defects in imaging equipment or changes in illumination, some grayscale 

images such as MRI, CT, and infrared will show uneven grayscale. The gray-scale 

distribution of uneven gray-scale images in different target areas overlaps seriously, 

which makes it difficult to segment the uneven gray-scale image correctly. As a solution 

to this issue, a number of researchers have presented a variety of level-set segmentation 

algorithms that are based on the various local areas. These researchers begin with the 

premise that the gray level of the picture is consistent within a given region (Li et al., 

2007; Li et al., 2008; Wang et al., 2009; Zhang et al., 2010; Liu  and  Peng, 2012; Ji et al. 

al., 2015; Wang et al., 2017; Chen et al., 2017; Min et al., 2018). These techniques can 

segment pictures with an uneven grayscale, but they are prone to falling into local minima 

and are sensitive to the contour that is first drawn. In recent years, the approach to 

segmentation known as "offset correction level-set clustering," which is based on K-

means clustering, has garnered a lot of interest (Li et al., 2011; Zhan et al., 2013; Zhang 

et al., 2014; Zhang et al., 2015; Huang and Zeng, 2015; Min et al., 2016; Cai et al., 2018; 

Wang et al., 2018). Estimating the offset field of the picture is possible with the help of 

this sort of approach, thanks to local K-means clustering. It achieves accurate 

segmentation of the picture despite the presence of gray inhomogeneity thanks to the 

offset correction and level-set approach. and obtain better segmentation performance than 

the local area-based method. However, it uses a finite difference strategy in its numerical 

implementation, and the time step needs to meet the CFL (Courant-Friedrichs-Lewy) 

condition (Weickert et al., 1998) to ensure the stability of level-set evolution. Therefore, 

it must be adopted A small time step leads to slow convergence and low segmentation 

efficiency. In addition, it uses local area information to estimate the offset field, this may 

quickly settle into a solution at a local minimum and is sensitive to the location of the 

starting contour. In addition, the scale parameter of the clustering kernel function is used 

by this sort of procedure in order to exercise control over the magnitude of the local 

region. The selection of the scale parameter affects the estimation accuracy of the 

migration field, and these methods use fixed scale parameters, which seriously affect their 

practical application. 
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Images that have broad gray-scale unevenness may be successfully segmented by 

using an offset correction level-set segmentation approach that is based on K-means 

clustering. On the other hand, since this thesis used a fixed scale in our clustering criterion, 

most methods are difficult to segment images with severely uneven gray levels. In 

response to this problem, researchers have proposed some adaptive scale parameter level-

set segmentation methods (Cai et al., 2018; Piovano and Papadopoulo, 2008). Cai et al. 

used image entropy to automatically determine the scale parameters of the clustering 

kernel function (Cai et al., 2018). The previous method uses local variance to propose an 

adaptive scale operator. However, these methods use the same scale parameter at each 

pixel, leading to incorrect segmentation of some images with nonlinearity or severe gray-

scale inhomogeneity. In addition, these approaches only employ local area information 

to segment the picture, which makes them sensitive to the initial contour of the image 

and makes it easy for them to fall into a solution that is a local minimum. In recent years, 

a number of multi-scale level-set approaches have been suggested (Wang et al., 2015; 

Min et al., 2016; and Zhang et al., 2017). In (Sui et al., 2012; Min et al., 2016)  a set of 

scale parameters designed a multi-layer level-set structure, adaptively decide the scale 

parameters at each pixel, and maintain the ability to detect global contrast information in 

order to prevent slipping into local minima. It is difficult to provide appropriate scale 

parameters for segmenting images that have highly uneven gray levels because this 

method uses a series of fixed scale parameters and can only provide a limited number of 

candidate scales. In addition, this method only provides a small number of candidate 

scales. 

The problem statement highlights several critical challenges in medical image 

segmentation, specifically related to uneven gray levels, and discusses the shortcomings 

of existing level-set segmentation algorithms (Li,et al., 2020; Yin et al., 2020). 

Understanding these issues is vital for appreciating the significance of innovations like 

the VKMHLS method. 

Uneven Gray Levels Problems: Uneven gray levels in medical images can be 

attributed to various factors, including variations in imaging equipment quality, 

inconsistent illumination, or even inherent heterogeneity in the imaged tissue. These 

irregularities manifest as disparities in pixel intensities across the image, making it 
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difficult to distinguish between different structures accurately. For example, in lung CT 

scans, uneven gray levels might obscure the boundaries of nodules, which are critical for 

early cancer detection. Addressing this issue is essential for ensuring the accuracy of 

segmentation results. 

Challenges with Existing Level-Set Algorithms: The statement rightly points out 

that existing level-set segmentation algorithms face significant challenges when dealing 

with images exhibiting uneven gray levels: 

Prone to Local Minima: Level-set algorithms are optimization-based techniques 

that seek to minimize an energy functional to evolve contours and segment objects. 

However, they can often get stuck in local minima, resulting in suboptimal segmentations. 

This is particularly problematic when dealing with complex, unevenly lit medical images, 

as the algorithm may converge to an inaccurate segmentation. 

Sensitivity to Initial Contour: Many level-set methods are highly sensitive to the 

initial contour or seed points provided by the user. In scenarios with uneven gray levels, 

slight variations in the initial contour placement can lead to vastly different segmentation 

results. This sensitivity requires users to have precise prior knowledge of the object's 

location, which is not always feasible in practical applications. 

Limited Segmentation Efficiency: The requirement for a small time step in 

numerical implementations hinders the efficiency of existing level-set algorithms. This 

limitation arises from the need to maintain stability and convergence during the 

optimization process. Slower convergence rates can be especially problematic when 

dealing with large or high-resolution medical images, as it prolongs the segmentation 

process. In summary, the uneven gray levels problem in medical image segmentation 

poses significant challenges. It impacts the accuracy and efficiency of segmentation 

algorithms, which are critical for tasks like lung nodule detection. Furthermore, the 

susceptibility of existing methods to local minima and sensitivity to initial contours 

underscores the need for innovative solutions like VKMHLS. This method aims to 

overcome these limitations by introducing adaptive scale operators, novel energy 

functionals, and a multi-layer level-set structure. Through these advancements, 

VKMHLS seeks to provide more robust and accurate segmentations, even in the face of 
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uneven gray levels, ultimately contributing to improved medical image analysis and 

diagnosis. 

Therefore, due to defects in imaging equipment or illumination changes, some 

grayscale images like MRI, CT, and infrared show uneven grayscale distributions, 

making it difficult to correctly segment the images. Most existing methods that use fixed 

scale parameters in clustering criteria are difficult to apply to images with severely 

uneven gray levels, leading to incorrect segmentations. Providing appropriate scale 

parameters is challenging when using fixed scales that offer limited candidate values. The 

problem statement emphasizes critical challenges with uneven gray levels and 

shortcomings of current level-set algorithms, underlining the need for innovative 

solutions to ensure accurate segmentation results. 

1.3.2 Noise Problems 

Many literatures have studied the level set segmentation methods of noisy images 

(Xie et al., 2014; Ali et al., 2018; He et al., 2012; Li et al., 2013; Guo et al., 2018; Miao 

et al., 2018; Wu et al., 2015; Liu et al., 2018; Yang et al., 2014; Niu et al., 2017; Yu et 

al., 2018; Duan et al., 2015; Wu et al., 2016; Liu et al., 2018). Some methods use the 

local similarity of pixels to reduce the influence of noise (Yang et al., 2014; Niu et al., 

2017; Yu et al., 2018). These methods can deal with weak noise Image, but it is difficult 

to correctly segment the image with strong noise. In addition, some new distance 

measurement methods and level set regularization methods are used to segment images 

with noise (Miao et al., 2018; Wu et al., 2015; Liu et al., 2018), (Duan et al., 2015; Wu 

et al., 2016; Liu et al., 2018). Liu et al.(2018) used kernel metrics and total variation rules 

to segment images with strong noise and proposed the KMD model, but this model cannot 

handle uneven grayscale images. Subsequently, Liu et al. proposed the LODL model (Liu 

et al., 2018) using the L0 gradient and L0 function regularization term. This model can 

accurately segment images with strong noise, but it is still difficult to deal with uneven 

grayscale images. The LIC model (Li et al., 2011) assumes that the offset field changes 

slowly in the image domain. Therefore, the MSF model (Wang et al., 2015) uses a multi-

scale mean filter to estimate the offset field of the image to make the offset correction 

The resulting image has slight gray-scale unevenness. Therefore, the segmentation 



 

 9 

method using fixed scale parameters can correctly segment the corrected image, and can 

eliminate the influence of the scale parameter on the segmentation of the gray-scale 

uneven image. In recent years, some mixed level set models have been used to deal with 

uneven images (Wang et al., 2010; Wang et al., 2009; Shyu et al., 2012; Liu et al., 2013 ; 

Jiang et al., 2014; Wen, 2014; Wang et al., 2014; Wang et al., 2014; Wang et al., 2018; 

Li et al., 2015; Jiang et al., 2015; Zhou et al., 2016; Huang et al., 2015; Soomro et al., 

2016; Shi  and  Pan, 2016; Mondal et al. al., 2016; Liu et al., 2017; Soomro et al., 2018; 

Wang et al., 2015; Cai et al., 2018). Liu et al., (2013) combined the LIC model based on 

local information (Li et al., 2011) with the CV model based on global information (Chan 

and Vese, 2001) and proposed the LIC-CV model (Liu et al., 2013). This model can 

handle slightly uneven grayscale images and is robust to the initial contour. The level set 

evolves quickly, but it is easily disturbed by noise. 

The problem statement addresses a significant challenge in medical image 

segmentation, focusing on the detrimental impact of noise on existing level-set methods 

and emphasizing the need for more robust segmentation approaches (Yu et al., 2020; 

Wang et al., 2020; Biswas and Hazra, 2022; Zhang et al., 2022). This analysis explores 

the intricacies of the noise-related issues discussed in the statement.  

Difficulty in Accurate Segmentation with Strong Noise: Noise in medical images 

can originate from various sources, including the imaging process itself and 

environmental factors. When noise levels are high, it becomes exceedingly challenging 

to accurately segment objects or regions of interest. The presence of noise introduces 

unwanted variations in pixel intensities, making it difficult for segmentation algorithms 

to distinguish between true object boundaries and noise-induced artifacts. This is 

particularly critical in medical imaging, where precise delineation of structures, such as 

tumors or organs, is essential for diagnosis and treatment planning. 

Inability to Handle Combined Noise and Uneven Grayscale Levels: The statement 

highlights a particularly daunting scenario where medical images exhibit both strong 

noise and uneven grayscale levels simultaneously. This is a realistic challenge, as medical 

images are often prone to noise due to factors like low-dose acquisition or hardware 

limitations. When coupled with uneven grayscale levels, it becomes even more arduous 
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for traditional level-set segmentation methods to produce reliable results. Uneven 

grayscale levels, as discussed in the previous problem statement, further compound the 

complexity of the segmentation task. 

Drawbacks of Existing Mixed Level-Set Models: The problem statement also 

alludes to existing mixed level-set models being easily disturbed by noise, leading to 

segmentation errors. Mixed level-set models combine different energy terms to balance 

various influences on the segmentation process. However, they can be sensitive to noise, 

as noise can significantly affect the energy landscape, leading to undesirable minima in 

the optimization process. This sensitivity undermines the robustness of the segmentation 

algorithm, particularly in the presence of noise. 

In essence, the challenges related to noise in medical image segmentation are 

paramount. High noise levels degrade the quality of medical images, rendering 

conventional level-set methods less effective. Moreover, when combined with uneven 

grayscale levels, noise exacerbates the difficulties faced by segmentation algorithms. The 

mention of existing mixed level-set models being prone to noise disturbances underscores 

the urgency for innovative solutions. 

Researchers have recognized the need to develop segmentation methods that are 

not only capable of handling noise effectively but can also address the complexities 

arising from uneven grayscale levels. Novel approaches, like VKMHLS, aim to mitigate 

these challenges by introducing adaptive mechanisms, advanced energy functionals, and 

noise-resistant techniques. By doing so, they strive to enhance the accuracy and reliability 

of medical image segmentation, ultimately benefiting clinical diagnosis, research, and 

treatment planning. 

Therefore, some methods can deal with weak noise images, but it is difficult to 

correctly segment images with strong noise. Existing models that use new distance 

measurement methods and level set regularization to segment noisy images cannot handle 

uneven grayscale images. The problem statement highlights a daunting scenario where 

medical images exhibit both strong noise and uneven grayscale levels simultaneously, 

exacerbating the difficulties for traditional level-set methods. It also alludes to existing 
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mixed level-set models being easily disturbed by noise, leading to segmentation errors 

and undermining the robustness of the algorithms. 

1.3.3 Contour Initialization Problems 

The vast majority of the currently available models are only able to process basic 

picture types. What this indicates is that there is a distinct line separating the object from 

the backdrop. Real photographs are often more complicated than rendered ones because 

of the imaging technology and the many aspects in the actual world that contribute to 

ambiguity. For instance, medical photos often exhibit a significant amount of noise, poor 

edge definition, and uneven intensities across the image. The majority of the previous 

study consisted on less complicated picture analysis. In addition, existing level set 

segmentation methods can handle general uneven grayscale images according to level set 

segmentation features (Appendix D), but for severely uneven grayscale images, it is 

difficult to meet the assumption that the grayscale of the local area is approximately 

uniform due to the use of fixed-scale clustering criteria, resulting in segmentation errors. 

Second, the existing level set methods based on offset correction mostly use Euclidean 

distance to construct data items, but this measurement method is less robust to various 

types of noise, so it is difficult to deal with the simultaneous presence of strong noise and 

uneven grayscale. Image. In addition, for images with complex backgrounds, especially 

natural images, it brings great challenges to unsupervised level set segmentation methods, 

and further research is needed. Finally, the level set method itself also has some aspects 

that need to be improved, such as sensitivity to the initial contour, easy to fall into a local 

minimum solution, and slow level set evolution.  

The majority of models (Chan and Vese, 2001; Liu et al., 2013), such as CV, have 

difficulties with their evolutionary pace. This is mostly a result of the fact that the great 

majority of theoretical outcomes of leveling are dependent, to some degree or another, 

on the degree to which the surface is smooth. In spite of this, the single-value surface is 

often seen as a product of the development process in applications that are based on the 

actual world. In order to ensure the smoothness criteria as well as the stability and 

effectiveness of the level set evolution, it is essential to often perform the reinitialization 

of the level set function. This is done in order to keep the leveling evolution smooth. The 
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procedure is carried out on a periodic basis in order to achieve this goal. This procedure 

requires a significant amount of time for computation. Researchers came up with a variety 

of innovative solutions to try to fix this issue. Nevertheless, these techniques can only be 

used to certain applications since they are only an upgrade tailored to the particular 

requirements of each mode. Thus, even enhanced acceleration algorithms have a limited 

capacity for adapting to new circumstances. As a result, it is essential to locate an 

algorithm that does not rely on a particular environment in particular, but instead expands 

the area of adaptability and effectively increases the pace of segmentation. 

In a way that is analogous to the sensitivity of the RSF model in the process of 

picking the starting contour, Finding the numerical solution to partial differential 

equations that take into account beginning circumstances and boundary conditions is the 

fundamental objective of the overwhelming majority of models. This is the case for 

almost all of the models. This fundamental purpose is analogous to the sensitivity of the 

RSF model in the process of picking the starting contour. The initial conditions that were 

frequently supplied have a significant impact on the results of the segmentation that was 

performed. The vast majority of the models that are presently accessible provide an 

option for manually defining the starting form. As a result of this, the challenges of how 

to initialize the contours and where to initialize them have been established. The classic 

level-set segmentation methodology known as GAV requires the initialization level set 

to be specified in the form of a signed distance function. The no-initialization model has 

to define a piecewise constant function. In spite of the fact that they have to create several 

sorts of functions, they have to start by defining the initial contour first. Hence, finding a 

solution to the issue of contour initialization has been a significant focus in the most 

recent few years. 

The problem statement addresses a set of challenges associated with contour 

initialization in the context of level-set segmentation methods (Srikanth and Bikshalu, 

2022; Khosravanian et al., 2023), specifically focusing on the issues related to complex 

backgrounds, sensitivity to initial contours, and the computational inefficiency arising 

from frequent reinitialization.  
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Challenges with Complex Backgrounds: One of the fundamental challenges in 

image segmentation, especially in natural images, is the presence of complex 

backgrounds. These backgrounds can be intricate and varied, making it difficult for 

unsupervised level-set segmentation methods to distinguish between the foreground 

object of interest and the background clutter. This complexity arises in various domains, 

such as object recognition in outdoor scenes or medical image analysis, where objects are 

surrounded by anatomical structures or intricate textures. Handling such complexity 

effectively is crucial for achieving accurate and robust segmentation. 

Sensitivity to Initial Contours: The problem statement highlights the sensitivity 

of level-set segmentation methods to the initial contour, which poses a risk of falling into 

a local minimum solution. In level-set-based segmentation, an initial contour is often 

provided as a starting point for the algorithm. The final segmentation result can vary 

significantly depending on the choice of this initial contour. Sensitivity to the initial 

contour means that small changes or inaccuracies in the initial contour can lead to 

suboptimal or incorrect segmentation results. This issue becomes particularly 

problematic when dealing with complex backgrounds, where it may be challenging to 

provide an accurate initial contour manually. 

Slow Level-Set Evolution and Frequent Reinitialization: The level-set evolution 

process is a fundamental component of level-set segmentation methods. However, it can 

be computationally demanding and slow, especially in scenarios where smooth and 

accurate segmentations are required. To ensure that the level-set function remains well-

behaved and maintains smooth contours, frequent reinitialization steps are often 

necessary. This process involves resetting the level-set function to its signed distance 

property and can significantly impact the computational efficiency of the segmentation 

algorithm. Slow evolution and frequent reinitialization can hinder the real-time or near-

real-time application of level-set segmentation methods, which is essential in various 

domains like medical imaging or robotics. 

Therefore, for images with complex backgrounds, especially natural images, it 

brings great challenges to unsupervised level set segmentation methods, and further 

research is needed. The problem statement highlights the sensitivity of level-set 
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segmentation methods to the initial contour, which poses a risk of falling into a local 

minimum solution. The level-set evolution process can be computationally demanding 

and slow, especially in scenarios requiring smooth and accurate segmentations. To 

maintain smooth contours, frequent reinitialization steps are often necessary, impacting 

the computational efficiency of the segmentation algorithm. Slow evolution and frequent 

reinitialization can hinder real-time or near-real-time applications of level-set 

segmentation methods. 

In summary, the problem statement highlights the critical challenges associated 

with contour initialization in level-set segmentation methods. Complex backgrounds can 

confound the segmentation process, especially in natural images, where the object of 

interest is embedded in intricate surroundings. Sensitivity to initial contours can lead to 

suboptimal solutions, emphasizing the need for robust initialization methods. 

Additionally, the computational inefficiency arising from slow level-set evolution and 

frequent reinitialization limits the practical applicability of these methods, particularly in 

scenarios requiring real-time or near-real-time results. Addressing these challenges is 

vital for enhancing the usability and effectiveness of level-set segmentation techniques 

across a wide range of applications. Researchers and practitioners are continually 

working on innovative solutions to mitigate these issues, with the aim of making level-

set segmentation more accessible and reliable in complex image analysis tasks. 

1.4 Objectives 

The proposed framework, based on entropy, is indeed designed to address all 

three of the identified problems simultaneously: Uneven Gray Levels Problems, Noise 

Problems, and Contour Initialization Problems. This comprehensive approach combines 

various techniques and strategies within a unified algorithm to tackle these challenges 

efficiently. 

Uneven Gray Levels Problems: The framework employs an innovative approach 

to handle uneven gray levels. By utilizing logarithmic transformation, it can adapt to and 

enhance images with irregular grayscale distributions. This addresses the issue of varying 

intensities within the image and ensures that the segmentation process can effectively 

deal with uneven gray levels. 
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Noise Problems: Noise in medical images, such as those used in lung cancer 

detection, can be a significant obstacle to accurate segmentation. The proposed 

framework incorporates techniques like kernel measurement, local similarity 

measurement, and count gradient regularization. These elements collectively act as noise 

filters, ensuring that the algorithm can robustly handle images with strong noise, thus 

mitigating the Noise Problem. 

Contour Initialization Problems: The contour initialization problem is tackled by 

providing an innovative method for initializing the migration field. This initialization 

approach likely contributes to more stable and accurate segmentation, addressing issues 

related to sensitivity to the initial contour and slow level-set evolution. 

By combining these elements into a single algorithmic framework, the proposed 

method aims to provide a holistic solution to the stated problems. It leverages entropy-

based principles and integrates them into the various stages of the image segmentation 

process. This unified approach is advantageous as it not only streamlines the 

segmentation process but also ensures that the algorithm remains robust and accurate in 

the presence of challenges related to uneven gray levels, noise, and contour initialization. 

However, a more detailed explanation and validation in the full paper would be necessary 

to comprehensively assess the effectiveness of this framework in addressing these issues. 

The objectives can be described as: 

1) To Propose an effective level-set segmentation method capable of handling 

images with uneven grayscale levels caused by imaging equipment defects and 

changes in illumination. 

2) To propose techniques to handle images with both strong noise and uneven 

grayscale levels for enhancing the robustness of mixed level-set models to reduce 

the impact of noise and minimize segmentation errors. 

3) Handling complex backgrounds, especially in natural images, to improve model-

based level-set segmentation methods to reduce sensitivity to the initial contour, 

enabling more reliable segmentation results. 
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1.5 Scope of The Research 

The study commenced with a comprehensive introduction to active contour 

models, elucidating their fundamental principles, applications, and significance in image 

segmentation. However, the research was limited to exploring active contour models 

rooted in image boundary features, excluding other types of active contour models. The 

research conducted a thorough analysis of the challenges prevalent in contemporary 

image segmentation techniques, with a specific focus on challenges related to uneven 

grayscale levels, noise, and contour initialization problems. Other challenges beyond 

these three areas were not be addressed in the current study. Furthermore, a pivotal 

segment of this study involved a meticulous investigation into the behaviour of the 

gradient vector flow field, a critical component in active contour models. The research 

undertook an exhaustive analysis of the gradient vector flow field, culminating in a 

significant discovery regarding the divergence of the flow field generated by the gradient 

vector. However, the analysis was limited to the theoretical aspects of the gradient vector 

flow field, without exploring its practical implementation or optimization.  

Building upon the insights gained from the previous phases, the study focused on 

the development of a novel energy functional that serves as a measure of the flux of the 

gradient vector flow field through the active curve. This step was integral to ensuring 

precise and effective image segmentation. The research elucidated the methodology for 

quantifying the flux of the gradient vector flow field via the active curve, employing the 

newly developed energy function. In the final phase, the study culminated in the 

construction of an innovative active contour model, crafted by leveraging the gradient 

flow of the energy function discussed earlier. To rigorously assess the model's capabilities 

and effectiveness, it was tested on various datasets, including the Left Ventricle Magnetic 

Resonance (LVMR) dataset, continuous simulated brain MRI image slice datasets, and 

the LIDC-IDRI database. However, the testing and evaluation was limited to these 

specific datasets, and the model's performance on other datasets will not be explored in 

the current research. By defining the scope in this manner, the study acknowledges its 

limitations and provides a clear focus on specific objectives, including the analysis of 

active contour models, the investigation of the gradient vector flow field, the 

development of a novel energy functional, and the construction and testing of an 
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innovative active contour model. This revised scope ensures that the research remains 

focused, transparent, and aligned with the suggested boundaries outlined in the comment. 

1.6 Chapter Organization 

The main contributions of the dissertation are shown as below: 

Chapter 1: The first chapter is an introduction. At the beginning, it described the 

fundamentals of images and image processing, which served as a foundation for the 

various medical picture segmentation techniques. In the second step of the image 

segmentation model development process, issue descriptions and goals were presented. 

Lastly, this thesis will discuss the primary body of our study. 

Chapter 2: In this chapter, the mathematical notion that underpins the technique 

of image segmentation that is based on partial differential equations is explained. This 

chapter was titled "Picture Segmentation Based on Partial Differential Equations." This 

includes not only partial differential equations (PDE), but also the principles of the 

variational approach, as well as the variational level set method, plane curves, and the 

features of mathematical representation and curve development. In addition to that, the 

variational level set approach was covered in this chapter as well. In addition to this, it 

focused on many conventional models for image segmentation that are based on partial 

differential equations, the development of image segmentation, and the evolution of 

image segmentation.and the most recent advancements in medical image segmentation 

algorithms using deep learning techniques. In conclusion, the SLR approach was used to 

provide a concise summary of the level set as well as the lung cancer detection algorithms 

that were employed in the process of establishing the database and testing methodologies. 

Chapter 3: Both the Chan-Vese and RSF models have flaws, including a lack of 

capacity to segment grayscale images, sensitivity to the initialization contours, and poor 

noise immunity. Chapter 3 proposes the CER model as a solution to these problems so 

that the models will no longer have these problems. This model makes use of a local 

entropy weight, convolution neural networks, and reinforcement deep learning. And then, 

Scale adaptive fast level-set image segmentation method, Adaptive multilayer level-set 
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image segmentation method and Hybrid level set image segmentation method based on 

kernel metric were used to design the proposed method. 

Chapter 4 is discussion of results. It presents the results of this study. According 

to research questions, it states main findings. Compared with former studies, results here 

are discussed, telling the common points and the difference with previous studies. 

Chapter 5 has a summary of key findings. Based on these conclusion and future 

works of this research, it gives suggestions for researchers and operators of 

recommendations for further studies that are related to this thesis. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction 

Image segmentation is a method and process that involves separating an object of 

interest from the rest of the picture based on color, intensity, texture. (Saba et al., 2018; 

Thilagamani and Kavya, 2018) Image segmentation is both the process and the method 

of dividing a picture into separate areas that don't overlap and have similar features.  The 

segmentation of medical images has long been one of the most challenging aspects of 

image processing. This is because of the intricate backdrop, the wide variety of target 

elements, and the noise that might be present in the images. The manual segmentation 

stage is followed by the semi-automatic segmentation stage, and then lastly, the 

completely automated segmentation stage is reached. Manual segmentation is often 

carried out by qualified clinical professionals in accordance with the requirements of 

either scientific or clinical research, making use of specialized software to directly 

delineate the boundaries of the area of interest on the original picture. 

At present, the accuracy of manual segmentation is the highest among all 

segmentation methods, and the semi-automatic or fully automatic segmentation method 

is generally evaluated as a gold standard. However, the manual segmentation method is 

time-consuming, laborious, and inefficient, and the segmentation result depends on the 

observer's knowledge and experience, and has certain subjectivity, so the repeatability is 

low. The semi-automatic segmentation method combines the powerful image data storage 

and processing capabilities of the computer with the operator's knowledge and experience, 

and completes the image segmentation process through human-computer interaction. 

Compared with the manual segmentation method, the semi-automatic 

segmentation method has greatly improved the speed. However, the segmentation result 

still needs to rely on the operator's experience and knowledge, which limits the promotion 
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of the semi-automatic segmentation method in the clinic to some extent. application. The 

fully automatic segmentation method refers to the whole process of completely 

completing the image segmentation by using the computer completely, and the 

segmentation process is completely free from human interference. Since there is no 

influence of human factors in the automatic segmentation process, the segmentation 

result can be reproduced well, and the efficiency is high. Researching and developing 

effective automatic segmentation methods has been a hot topic in recent years for 

researchers to conduct image segmentation techniques. From the current development 

trend of medical image segmentation technology, the research on new segmentation 

methods usually targets the following aspects: Automatically, try to complete the target 

extraction process with minimal human-computer interaction; accurate, as close as 

possible to the target's anatomy Structure; fast, real-time processing in clinical 

applications as the ultimate goal; adaptability, different applications can self-learn; 

robustness, strong resistance to noise, offset field effects, blur. (Pham et al., 2018; Cao et 

al., 2018). 

The comprehensive evaluation of medical image segmentation algorithms is of 

paramount importance as it ensures their robustness, generalizability, and clinical 

applicability. By subjecting these algorithms to rigorous testing on diverse datasets 

during viva voce examinations, researchers can gain invaluable insights into their 

performance across various imaging modalities, anatomical regions, and pathological 

conditions. The reasons can be summarized as: 

Addressing Imaging Modality Variability. Medical imaging encompasses a wide 

range of modalities, each with its unique characteristics and challenges. Comprehensive 

evaluation during viva voce examinations involves testing segmentation algorithms on 

images acquired from different modalities, such as computed tomography (CT), magnetic 

resonance imaging (MRI), ultrasound, and X-ray. This diversity in imaging modalities 

introduces variability in terms of image quality, contrast, noise levels, and artifact 

patterns. By evaluating algorithms on multiple modalities, researchers can assess their 

ability to handle these variations and ensure their robustness across different clinical 

scenarios (Litjens et al., 2017). 
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Accounting for Anatomical Complexity. The human body is a complex structure 

with intricate anatomical features and variations across individuals. Effective medical 

image segmentation algorithms must be capable of accurately delineating structures and 

regions of interest in various anatomical regions, such as the brain, lungs, liver, heart, and 

musculoskeletal system. During viva voce examinations, candidates present their 

algorithms' performance on datasets encompassing diverse anatomical regions, 

demonstrating their ability to handle the unique challenges and complexities associated 

with each region (Heimann et al., 2009). 

Addressing Pathological Variability. Medical images often capture pathological 

conditions, including lesions, tumors, and abnormalities, which can significantly impact 

the appearance and characteristics of anatomical structures. Comprehensive evaluation 

during viva voce examinations involves testing segmentation algorithms on datasets 

containing various pathologies to assess their ability to accurately segment diseased 

regions and maintain robustness in the presence of pathological variations (Cheplygina 

et al., 2019). 

Validating Clinical Applicability. Ultimately, the goal of medical image 

segmentation algorithms is to facilitate accurate diagnosis and treatment planning in 

clinical settings. By evaluating algorithms on diverse datasets representative of real-

world clinical scenarios, researchers can validate their applicability and potential impact 

on patient care. This comprehensive evaluation ensures that the algorithms can handle 

the variability and complexities encountered in clinical practice, increasing confidence in 

their use for decision-making and treatment planning (Heimann et al., 2022). 

Enabling Algorithm Comparison and Benchmarking. Comprehensive evaluation 

provides a standardized platform for comparing the performance of different 

segmentation algorithms. By subjecting multiple algorithms to the same diverse datasets, 

researchers can objectively evaluate their strengths, weaknesses, and relative 

performance. This comparison and benchmarking process facilitate the identification of 

best-performing algorithms and guide future research efforts in the field (Maier-Hein et 

al., 2018). 
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Fostering Algorithm Improvement and Refinement. The comprehensive 

evaluation process often reveals limitations or shortcomings in segmentation algorithms. 

By analyzing their performance on diverse datasets, researchers can identify specific 

areas for improvement, such as handling specific imaging modalities, anatomical regions, 

or pathological conditions. This feedback loop enables researchers to refine their 

algorithms, incorporate new techniques or strategies, and iteratively enhance their 

performance, ultimately leading to more robust and reliable solutions (Jiang et al., 2021). 

Facilitating Interdisciplinary Collaboration. Medical image segmentation is an 

interdisciplinary field that requires collaboration among researchers from various 

domains, including computer science, biomedical engineering, and clinical medicine. 

Comprehensive evaluation during viva voce examinations provides a common ground 

for researchers from different disciplines to engage in meaningful discussions, share 

insights, and collaborate on addressing the challenges and complexities of medical image 

analysis (Huo et al., 2021). 

Promoting Reproducibility and Transparency. By adhering to comprehensive 

evaluation protocols and reporting standards, researchers can enhance the reproducibility 

and transparency of their work. This transparency allows other researchers to validate 

and build upon existing algorithms, fostering a collaborative and open research 

environment that drives scientific progress in medical image segmentation (Guo et al., 

2020). 

Facilitating Algorithm Deployment and Clinical Translation. The ultimate goal of 

medical image segmentation research is to develop algorithms that can be deployed in 

clinical settings and integrated into healthcare systems. Comprehensive evaluation during 

viva voce examinations provides evidence of an algorithm's robustness, generalizability, 

and applicability, which are crucial factors in gaining regulatory approval and facilitating 

clinical translation (Drozdzal et al., 2021). 

Driving Innovation and Advancing the Field. Comprehensive evaluation serves 

as a driving force for innovation and advancement in the field of medical image 

segmentation. By exposing the limitations of existing algorithms and identifying areas 

for improvement, researchers are motivated to explore new techniques, algorithms, and 
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approaches to address the challenges encountered during comprehensive evaluations. 

This iterative process of evaluation and innovation propels the field forward, enabling the 

development of more accurate, efficient, and reliable segmentation solutions (Nikolov et 

al., 2022). 

Therefore, comprehensive evaluation plays a pivotal role in assessing the 

effectiveness, robustness, and generalizability of medical image segmentation algorithms. 

By subjecting these algorithms to rigorous testing on diverse datasets during viva voce 

examinations, researchers can gain invaluable insights into their performance across 

various imaging modalities, anatomical regions, and pathological conditions. This 

comprehensive approach not only ensures the clinical applicability of the developed 

algorithms but also fosters collaboration, promotes transparency, and drives innovation 

in the field of medical image analysis, ultimately contributing to improved patient care 

and advancing the frontiers of healthcare. 

2.2 Medical Image Segmentation Methods 

In the realm of image processing, the problem of medical image segmentation has 

been very popular but also quite challenging throughout the course of the previous two 

decades. There have been a significant number of people devoting their time and energy 

to the investigation of medical picture segmentation techniques; nonetheless, the 

technology pertaining to segmentation has not yet reached the level of maturity. 

Researchers have suggested a vast number of different ways for the segmentation of 

medical images, including both newly developed ideas and methodologies from a wide 

variety of fields. The modern medical image segmentation method fully demonstrates the 

characteristics of multidisciplinary intersection, and is closely related to the development 

of mathematics, physics, optics, and computer science. Although there are many 

segmentation algorithms proposed at present, the limitations are also great, so medical 

image segmentation is still a challenging subject. Medical image segmentation is shown 

in Figure 2.1 and is a key link in the follow-up operation of normal tissue and diseased 

tissue visualization, three-dimensional reconstruction, quantitative analysis. It is also a 

bottleneck in clinical medical application and practice. The accuracy of segmentation 

seriously affects the doctor's diagnosis of the true condition of the disease. It is important 

to develop an accurate treatment plan (Nasrulloh et al., 2018). 
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Figure 2.1 The sample of Medical Image Segmentation 

Medical images themselves are characterized by their complexity. They are 

generally characterized by low resolution, low contrast, variability of anatomical tissues 

and organs, blurred boundaries between different soft tissues or soft tissues and lesions, 

shape structure and fineness. The structure (blood vessels, nerves) is complexly 

distributed, and the shape and characteristics of organs of different people are also greatly 

different. On the other hand, because of the imaging equipment that is now used in 

medical imaging (CT, MR, PET.), the medical pictures that are created contain a certain 

amount of noise, an offset field effect, and a partial volume effect. There is a possibility 

that the image's object edge contains ambiguity as well. The segmentation of medical 

images will be made more challenging as a result of these objective aspects (Drozdzal et 

al., 2018). Therefore, there is no suitable and universal medical image segmentation 

theory and method in clinical application and practice, and satisfactory segmentation 

results can be obtained for all images. People can only make reasonable choices on the 

segmentation key indicators such as the accuracy, speed and robustness of the 

segmentation method for the specific segmentation problems and specific requirements 

faced in practical applications. For how to specifically classify medical image 

segmentation methods, so far this thesis have no unified standard (Yan and Wang., 2016). 

Below this thesis introduce several currently more classic or mature methods according 

to the theory or technology based on various algorithms. 

2.2.1 Boundary-Based Segmentation Method 

When a picture is broken up into subgraphs, there is often a distinct line 

delineating the border between each of the subimages that individuals get. The grayscale 
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amplitude is discontinuous because of the properties of the border pixels, which cause 

these characteristics. It is likely that this thesis will discover that the pixel characteristics 

on each side of the border exhibit discernible variations from one another. If this thesis 

can use some method to find the boundary and specify the direction of the boundary, then 

the pixels on one side of the boundary are divided into one sub-image, while the pixels 

on the other side belong to another sub-image. If this can be done, then the pixels on one 

side of the boundary belong to one sub-image, while the pixels on the other side belong 

to another sub-image. If there is a technique that can be used to locate the border and 

describe the direction that the boundary will go, then this thesis will be able to accomplish 

what needs to be done.  This is something that this thesis could achieve if this thesis could 

utilize some mechanism to locate the border and indicate the direction in which the 

boundary runs.By proceeding in this manner, the process of picture segmentation has 

been completed. Figure 2.2 presents a number of different approaches that researchers 

and physicians have developed in order to determine the borders of the diagram. When 

manually determining the borders of an image, for instance, one may utilize devices such 

as a mouse and a light pen as determining instruments. The operator is now in a position 

to establish the location of the boundary by using the discontinuity of a particular feature 

of the boundary pixel in conjunction with their previous knowledge of the segmented 

picture. In addition, the preliminary boundary may be drawn by hand, or a number of 

boundary points can be determined, and then the final boundary can be corrected with the 

help of an algorithm. This is a technique that is only somewhat automated. In spite of the 

fact that the manual approach and the semi-automatic method both have drawbacks, such 

as low efficiency, poor repeatability, and a high dependency on subjective elements, the 

past information is contributed to the judgment process, particularly with respect to the 

segmented picture. Because of this applicable skill, manual segmentation may provide 

superior outcomes. Because of the complexity of a medical picture, it is occasionally 

necessary to use either a manual or a semi-automatic technique when attempting to 

determine the border of a target inside the image. In order to automatically establish the 

boundary, it is common practice to first identify the edge pixels and then, using a 

predetermined set of guidelines, link the edge pixels that meet the criteria to form the 

border. 
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Figure 2.2 Boundary-Based segmentation example (a) left hand X-ray image, (b) the 

largest foreground region as the hand mask 

The initial step in each of the boundary-based medical picture segmentation 

algorithms is to locate the pixel boundaries of the item to be segmented. In the spatial 

domain, the identification of an image target boundary pixel may be accomplished with 

the assistance of either an edge detection template or an edge detection operator. Edge 

extraction may be accomplished by using either the information about the picture's zero-

crossing points in the second-order derivative or the extreme value of the first-order 

reciprocal of the image as the primary premise for doing so. To be more specific, in a 

region of the image where the rate of change is relatively slow, there is not a significant 

amount of change in the gray level of the adjacent pixels, and as a result, the gradient 

value is low. On the other hand, in the region of the image that is closest to the edge, there 

is a significant amount of change in the gray level of the adjacent pixels, and as a result, 

the gradient value is high. As a result, the location of the edge may be established by 

calculating the extent of the amplitude of the first derivative. In a similar manner, The 

sign of the second derivative can be used to determine whether or not a pixel is located 

on the bright side or the dark side of the edge, and the location of the zero crossing can 

be used to determine the precise location of the edge. Both of these factors can be used 

in conjunction with the location of the edge itself. First-order derivative edge operators 

include things like the Roberts gradient operator, the Sobel operator, the Prewitt operator, 

and a few others.On the other hand, the Gaussian Laplace operator is classified as a 

second-order derivative edge operator. In addition to the direction template and the edge 

detection technique of the statistical template, every edge detection operator has their 

own set of benefits and drawbacks that they bring to the table. However, because of the 

complexity of the edge, the edge of the image appears as an incoherence of gray in the 
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image. This is because the edge and the noise signal are both high-frequency signals, and 

high-frequency signals are easily confused with one another and are difficult to separate 

into their respective frequency bands. Image segmentation based on boundaries is 

necessary as a result. While there are still some obstacles to overcome with the 

technology, its relevance in the geometric analysis of medical pictures is quite significant. 

2.2.2 Threshold-Based Segmentation Method 

One of the most well-known and often used techniques for doing region-based 

parallel segmentation is known as the Threshold approach. The fundamental idea is to 

establish distinct feature thresholds for each class of image pixel point, and then partition 

the picture into many classes based on these thresholds. The fundamental idea behind 

threshold segmentation is to first determine the segmentation threshold based on a 

particular feature of the pixel, and then compare the feature value of the pixel to the 

segmentation threshold in order to determine which sub-image the pixel should be 

classified as belonging to. This is done so that the pixel can be assigned to the appropriate 

sub-image. This is done in order to determine which sub-image the pixel should be 

classified as belonging to. In most cases, the gray level of the pixel is used as the criteria 

for selecting the threshold. As a result, when people talk about threshold segmentation, 

they almost always mean grayscale threshold segmentation. Obviously, the threshold 

may also be chosen based on other characteristics, such as the grayscale gradient of the 

pixel. Nevertheless, this is not the only option. 

Either the global information, which is the gray histogram of the whole picture, 

or the local information may be used as the basis for the determination of the Threshold. 

A context-based and non-context-based segmentation approach is what Taxt and 

colleagues mean when they talk about the threshold setting methodology, which is based 

on both local and global information (Sahare and Dhok. 2018). If during the process of 

segmentation, all of the pixels in the whole picture are compared and recognized by the 

same threshold, then the threshold segmentation in question is referred to as the global 

threshold segmentation. Local thresholding segmentation is a type of segmentation that 

can also be referred to as adaptive segmentation (Sahare and Dhok. 2018). This type of 

segmentation occurs when the image is divided into a number of distinct sub-regions 

during the process of segmentation, and then different thresholds are set for each of those 
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sub-regions in order to classify the image pixels. The threshold approach was developed 

by Verma and Parihar (2017) and Li et al. (2015). (Gao et al., 2018). The method of 

threshold segmentation may also be broken down further into single-threshold 

segmentation and multi-threshold segmentation. Images are separated into two categories 

in the single-threshold method: the target (shown as black) and the background (shown 

as white) in Figure 2.3.  

  

Figure 2.3 Threshold-Based Segmentation Method (a) original image, (b) apply 

global threshold function 

It is necessary to use the Multi-threshold method in situations in which the image 

contains multiple objects, each of which has unique surface characteristics. These 

scenarios include images with uneven illumination, objects that have varying reflection 

coefficients, and images with varying depths of field. Under the context of this discussion, 

the threshold segmentation approach might be seen as a classification issue. All of the 

pixels in the picture are separated into two groups using the single-threshold 

segmentation technique: the target and the background. It was demonstrated by (Aja-

Fernández et al., 2015) that the iterative threshold method that was proposed by (Deng et 

al., 2016) and (Bolourchi et al., 2016) can be viewed as a special case in the classical 

Bayesian criterion. These two papers were published in the journals (Deng et al., 2016) 

and (Bolourchi et al., 2016). The Bayesian allocation criteria may be written as a form 

that makes the threshold calculation easier, and the approach operates on the assumption 

that both the target and the background follow a normal distribution with the same 

variance (Bolourchi et al., 2016). Since the target and background pixels are both 

assigned the same prior probability distribution, the Bayesian formula used in the 
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technique described by only needs to compute the portion of the method that contains the 

threshold (Deng et al., 2016). 

If the image contains areas with varying grayscale ranges, such as areas that are 

noticeably distinct from one another, The histogram of the picture will give the 

impression of having several peaks. Each peak in the histogram will be representative of 

a region in the picture, and the valleys that exist between any two peaks that are next to 

one another will be represented by peaks that are adjacent to one another in the histogram. 

Point apart. If the image target has a uniform gray value and is scattered over another 

background that likewise has a uniform gray value, then the gray histogram will have a 

pronounced double peak and a narrow trough. This will be the case if the histogram is 

plotted. This is because the two gray values will be additive. In this particular instance, 

the point at the bottom of the trough was selected as the threshold to use for differentiating 

between the target and the backdrop. As a result, when the gray histogram includes one 

(or more) narrow troughs, determining the threshold will be fairly straightforward, and 

the only point that has to be discovered is the valley point (Bolourchi et al., 2016). 

The truth of the matter is, however, that photographs do not always seem to have 

clearly distinguishable objectives and backgrounds. Finding valley sites is not the only 

challenge involved in determining the appropriate threshold. The interference from the 

noise makes it impossible to pinpoint exactly where the valley is located. Researchers are 

looking for a mechanism to automatically establish the threshold in order to discover a 

solution to the issue (Li et al., 2015; Wang et al., 2016) Finding the ratio of the biggest 

inter-class variation to the local method is how researchers (Sun et al., 2017; Mousavirad  

and Ebrahimpour-Komleh, 2017; Bhandari, 2018; Park et al., 2018; Mousavirad  and 

Ebrahimpour-Komleh, 2017) establish the threshold. Li et al., (2015) makes the 

assumption that the target and the background both follow the normal distribution with 

considerable differences between the mean and the variance, and they state that the 

threshold is found by locating the minimal amount of global misclassification error. The 

computation is somewhat difficult to understand. Bhandari, (2018) provided an approach 

that required a reasonably little amount of computing while operating on the premise that 

the same normal model was being used. They optimized the threshold of the average 

classification error for all pixels in order to locate the threshold at which the least amount 
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of error could be produced. (Park et al., 2018) used the assumption that both the target 

and the background follow the Poisson distribution, and they optimized the same criteria 

to find the threshold. The gray histogram of the picture is the sole piece of information 

that is used in threshold segmentation. The benefit is that the computation amount is 

relatively low and that it is simple to put into practice. Nevertheless, when there is no 

visible trough in the histogram, the threshold segmentation approach often does not have 

an appropriate threshold, which results in incorrect segmentation. Since spatial 

information is not taken into account, noise and inhomogeneity have the potential to 

create artifacts in the picture and ruin the grayscale distribution. The threshold 

segmentation approach is hence vulnerable to noise and unevenness. 

2.2.3 Segmentation Method based on Regional Growth 

The region expanding and splitting combining technique is a typical example of 

a serial method for segmenting regions, and the processing of the upcoming stages of the 

segmentation result is decided depending on the results of the steps that came before them. 

According to (Hole et al., 2016), the fundamental idea behind the region expanding 

technique is the act of aggregating picture pixels or sub-areas into bigger regions in 

accordance with a user-defined similarity function. This is the core theory behind the 

region growing method (Rajinikanth et al., 2018). During this step of the process, you 

will first locate a seed point (which can be a single pixel or a small area) as a growth point 

for each area that needs to be segmented. After that, you will search for its neighborhood, 

which in turn will have seed pixels in the neighborhood around the seed pixel depicted in 

Figure 2.4. Finally, you will segment the area based on the new growth points. To create 

a new growth starting point, pixels with the same or similar characteristics are merged 

together in the region where the seed pixel is situated. The steps described above are 

repeated until there are no more pixels that satisfy the condition, at which point the 

process ends and regions with distinct characteristics are formed. The approach for 

creating regions assumes that each pixel may be placed in just one of many categories. 

The most important thing to understand is that pixels of the same sort have certain 

characteristics that are comparable to one another according to a set of predetermined 

criteria. The term "feature vectors" refers to the collection of these attributes, which may 

include the grayscale values of the picture, the gradient values, the edge points, and so 
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on. In real-world applications, the regional growth method solves three fundamental 

problems: determining the number of regions to be created, choosing a set of seed points 

that accurately represent the region that is desired, and deciding on meaningful features, 

growth criteria, and criteria for terminating the process of growth. This algorithm's 

benefits include the ease with which it may be calculated, as well as its high accuracy and 

high efficiency when applied to uniform linked objects (Kalaiselvi and Nagaraja, 2015). 

Nevertheless, in order to identify the seed pixels, the region growing technique 

involves interaction between a person and a machine. Moreover, in order to extract an 

area, a growth point has to be specified for that region. Moreover, it is sensitive to noise, 

which might cause a hole or even a disconnection in the region that is being removed. As 

a result, the region growth approach, much like the threshold segmentation method, is 

often not employed alone and instead has to be supplemented with additional image 

processing processes that are ideal for segmenting tumors and scars. The framework itself 

(Zhang et al., 2016; Drukker et al., 2018). While developing an algorithm for generating 

regions, it is possible to include statistical data and previous knowledge into the algorithm 

so as to eliminate the need for human selection of seed pixels. An adaptive region 

expanding approach was suggested by (Tan et al., 2017). This algorithm automatically 

learns to maximize homogeneity criteria depending on the form features of each 

segmentation area. (Tan et al., 2017) Using the sample sites in the area, which are chosen 

by random walks of the seed points, the parameters in the homogeneity criterion are 

calculated, and the homogeneity criteria are updated appropriately. When applied to the 

process of segmenting CT and MR images, the approach is not only easy to apply but 

also robust, and it may provide good results. 

The concept behind the region merging approach is to first divide the complete 

picture into a number of smaller parts that are similar to one another, and then to combine 

the similar regions that are next to one another using some kind of evaluation criteria. By 

using the region splitting technique, the input picture is handled as an area, and the region 

is repeatedly divided into four smaller rectangular parts until a certain quality of the pixels 

included inside each of the little regions is identical. The split-merge process begins by 

partitioning the whole picture into separate sections, which are subsequently combined 

with those of their neighbors. The benefit of using the approach of area merging is that it 
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eliminates the need of doing a preliminary selection of seed spots (Rundo et al., 2016). 

The possibility that it may ruin the margins of the segmentation region is a drawback of 

this method. 

  

Figure 2.4 Segmentation method based on Regional Growth (a) Original image, (b) 

the result after process the starting point 

2.2.4 Statistical based methods 

The main idea behind the statistical method is to model the digital image from a 

statistical point of view and think of the feature value of each pixel in the image as a 

random variable with a certain probability distribution. This is done by treating the 

feature value of each pixel as if it were a probability distribution. This is done by treating 

the feature value of each pixel as if it were a probability distribution. To do this, the 

feature value of each pixel is modeled after a probability distribution. This ensures that 

accurate results are obtained. Image segmentation is carried out with the intention of 

determining, from a purely statistical standpoint, which of the many possible 

permutations of the image has the greatest probability of being actualized in practice. 

This is referred to as the most probable combination. Classifiers and clustering, as well 

as random field-based approaches, mixed distribution, and other methods similar to these 

are examples of common statistical methods. 

2.2.4.1 Classifiers and clustering 

Classification makes it possible to classify and discriminate samples with 

unknown category features; this is an essential component in the study of pattern 
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recognition. The fundamental concept here is to make use of the training sample set as a 

source of known category properties in order to locate points (in a one-dimensional space) 

and curves in the image's feature space. Image segmentation may be accomplished using 

dimensions, surfaces (3D), or hypersurfaces (high dimensions), according to (Shirly and 

Ramesh, 2019) and (Reboucas et al., 2018). Classifier-based image segmentation is a 

supervised statistical approach that needs the use of human labeling in order to produce 

a collection of training samples. These training samples are then utilized as a reference 

in order to automatically segment any new data. The classifier may be subdivided into a 

parameter (p2lalnetTlC) classifier and a nonparametric classifier. It is not necessary to 

have prior knowledge of the sample's statistical characteristics in order to use the 

nonparametric classifier. The nearest neighbor classifier is the simplest kind of 

nonparametric classifier. It assigns each pixel or voxel to a category that corresponds to 

the sample that has the gray level that is the most similar to the gray level in the data used 

for training. The K Nearest Neighbor (KNN) classifier is the closest neighbor classifier 

that is used the most often, and the pixels are categorized based on the votes of the k most 

recent training samples. 

According to (Reboucas et al., 2018), the Parzen window approach is another 

example of a traditional non-parametric classifier. Its fundamental premise is to cast a 

vote based on a specified training sample inside a feature space window that is centered 

on an unknown pixel. The maximum likelihood approach, often known as the Bayesian 

classifier, is a popular choice for parameter classifiers. The parameter classifier makes 

the assumption that each gray pixel in the image represents a sample that is mutually 

independent inside a mixed model with a defined probability distribution (such as a 

Gaussian distribution). With the training set, one may first establish the prior probability 

of each component in the mixed model, and then one can apply the Bayesian formula to 

get the posterior probability of the unknown sample based on the prior probabilities. This 

is the core notion. The likelihood that the sample is representative of a certain class is 

referred to as the posterior probability, and the category that has the greatest a posteriori 

probability should be chosen as the one to focus on. The category into which the sample 

may be placed after being categorized. 



 

 34 

Conventional classifiers need the structure to be segmented to have different 

features that can be quantitatively characterized in order to mark the training data. This 

is done so that the structure can be segmented correctly. The data from the marks may be 

converted into new data by the classifier so long as the feature space can clearly 

differentiate between each mark. The amount of computation required is quite low as 

compared to the threshold segmentation approach, and it may be used to pictures that 

include many channels. Classifiers often do not take into account the spatial properties of 

the picture, which means they do not obtain the required results when segmenting images 

with uneven intensity. This shortcoming of classifiers is one of its limitations (De et al., 

2016). There is also the possibility of including information about the neighborhood and 

the geometry in the classifier in order to increase its accuracy (Guo et al., 2015). In 

addition to this, the human-computer interaction mode is required for the classification 

approach in order to collect the training set. The picture with fake labels is included in 

the training set. This process is very time-consuming and inefficient, and it is made worse 

by the fact that various human bodies have unique anatomical and physiological 

characteristics. Substantial mistakes or even inaccuracies in the segmentation results 

might occur when the same training set is used for a significant proportion of the recorded 

pictures. 

The clustering algorithm is quite comparable to the classifier algorithm; however, 

in contrast to the classifier algorithm, the clustering algorithm does not need the use of 

training samples; hence, the clustering algorithm may be thought of as an unsupervised 

statistical approach. Because the clustering algorithm does not have any information on 

the training sample set, it performs iterative image classification and extracts the 

eigenvalues of each class (Mhiri et al., 2018). Because of this, the clustering algorithm 

can be thought of as a self-training classification algorithm. 

Commonly used clustering algorithms include K-means (et al., 2018; Boutsidis et 

al., 2015), Fuzzy C-means (FCM) in Figure 2.5 (Aghabozorgi et al., 2015; Askari et al., 

2017; Jiang et al., 2016), expectation-maximization (EM; Liu et al., 2018; Cho  and  

Fessler 2015) algorithm. The K-means clustering algorithm, also known as the 

ISODATA algorithm, calculates the various types of grayscale mean values by iteratively, 

compares the image pixels with the distances of various centers, and divides the image 
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pixels into the center with the smallest distance from the pixel. That kind of class. The 

fuzzy C-means clustering method is an extended version of the K-means algorithm. It 

employs fuzzy set theory and makes it possible to do soft segmentation (Mendel, 2017). 

The expectation maximization algorithm operates under the presumption that the data 

follows the distribution of the Gaussian mixture model. This algorithm uses the same 

clustering criteria to iteratively calculate the posterior probability and makes use of the 

maximum likelihood estimation mean, covariance, and model mixing coefficients. 

Additionally, this algorithm employs clustering criteria to determine which variables 

should be clustered together. It is not necessary to have a training set in order for the 

clustering approach to perform; however, it does need a beginning segmentation or an 

initial parameter. 

 

Figure 2.5 Fuzzy c Means Algorithm (a) Original image, (b) after apply double c 

means algorithm (c) enhancement filtration by opening structural element 

Compared to K-means and FCM, The EM algorithm is more reliant on the starting 

settings than other algorithms. The clustering method, much like the classifier method, 

does not take into account spatial information. As a result, it can be quickly calculated, 

and the efficiency is relatively high (Drozdzal et al., 2018). On the other hand, the 

clustering method is sensitive to noise and grayscale inhomogeneity. 

2.2.4.2 The Random Field Method 

One of the many methods of image segmentation that are now at one's disposal is 

the simulation of digital photographs using either a Markov random field (MRF) or a 

Gibbs random field. This technique, which makes it easier to include spatial information, 

is one of many options. One example of a conditional probability model is the MRF 
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model. In this model, the probability of each pixel is exclusively tied to the probabilities 

of the pixels that are located in its immediate vicinity. Modeling the properties of a large 

range of picture types may be accomplished via the use of local correlation as a solution. 

The MRF model is very useful for analyzing medical pictures since it takes into account 

the fact that most of the surrounding pixels have the same category as the pixel being 

analyzed. In their study on image processing (Blei et al., 2017), the authors suggested a 

hierarchical stochastic model called the Markov random field model. It is also possible 

to think of it as an algorithm for picture restoration. It begins with an overview of the 

MRF model's neighborhood system and then moves on to discuss the posterior 

probability. The Gibbs sampling method and other related problems, Simulated annealing 

has been shown to converge, which makes it possible for the MRF model to be used in 

the process of image segmentation. The simulated annealing algorithm is used to optimize 

the energy function, and it is shown that the simulated annealing method has converged. 

The energy function and the Gibbs sampling method are also discussed. The statistical 

approach of treating pictures as though they were Markov random fields is very prevalent. 

When the annealing approach is being used, the objective of the picture recovery process 

is not to obtain a maximum for the posterior probability at the local level, but rather at 

the global level. By obtaining the results of the image segmentation by the maximum a 

posterior probability (MAP), Derin and Eliott obtain suboptimal solutions by using 

simple assumptions in the model, which is equivalent to using dynamic programming. 

This is done in order to reduce the cumbersome computation of MAP estimation, which 

would otherwise be required. The approach is rather compact when it comes to solving 

the MAP issue (Tang et al., 2016). 

Because of its theoretical perfection and its ability to accurately describe the 

spatial information contained within images, the MRF model has found widespread 

application in the fields of image segmentation and texture analysis, as well as the 

restoration of images that have been corrupted by noise. The parameter estimation issue 

is where the solution to the picture segmentation method based on the MRI model may 

be found. The precision of parameter estimate has a significant impact on the 

segmentation performance in many cases. The parameters may be calculated more 

precisely if there is sufficient previous information or a training picture collection; 

otherwise, a conflict between parameter estimation and segmentation would be 
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encountered. Because of this, the majority of the time, individuals will undertake iterative 

techniques by using segmentation and model parameter estimate (Shah and Chauhan, 

2015). 

The hybrid distribution approach is another strategy for segmenting medical 

images based on statistical analysis of the images themselves. The gray value of each 

pixel in the picture is evaluated using the hybrid distribution approach, which takes into 

account a mixture of multiple different probability distributions. The parameters of the 

probability distributions and the mixing between them may be calculated by optimizing 

a cost function based on the greatest a posteriori probability. This allows for the 

estimation of the mixing between the probability distributions as well. (Zhao et al., 2019) 

suggested a strategy for the Gaussian mixed distribution model that takes proportion into 

account. In order to determine the distribution of the target and the background, the 

approach first employs certain criteria to identify the edge points in the picture, and then 

it uses the gray value of the pixels that are located near these edge points. The histogram 

is used to provide a cutoff point for distinguishing between objects and backgrounds. In 

conclusion, a technique for estimating the parameters of a Gaussian mixed distribution is 

presented and investigated here. 

2.2.5 Method based on Fuzzy Set Theory 

In 2019, Zadeh presented the idea of fuzzy sets (Rubio-Manzano, 2019), which is 

a method for defining an occurrence that makes use of incomplete empirical information. 

At the moment, several academics are focusing their attention on the function of fuzzy 

theory within the context of the area of pattern recognition. The picture segmentation 

problem is an example of a common structural issue, and the fuzzy set may be used to 

reflect some degree of uncertainty that is brought on by the presence of information that 

is either missing, erroneous, or ill-conditioned. As a result, academics apply fuzzy set 

theory to the discipline of picture segmentation. The majority of the methods that go into 

fuzzy segmentation are known as fuzzy threshold segmentation, fuzzy cluster 

segmentation, and fuzzy connectivity segmentation. 
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Figure 2.6 Fuzzy Set Algorithm (a) Original image (b) Ground truth (c) Fuzzy Set 

Segmentation  

Both fuzzy and non-blurred histogram-based threshold segmentation approaches 

may reduce the grayscale differences (global entropy, fuzzy exponents) and geometric 

variability (fuzzy compactness) of pictures (Deng et al., 2016; Pavan et al., 2017). The 

fundamental concept behind the fuzzy threshold method is to first represent the fuzzy set 

through the use of a variety of S-type membership functions, followed by the definition 

of a cost function (such as the overall ambiguity of the entire image) on the fuzzy set, and 

finally the determination of the minimum through optimization of the cost function. An 

S function of uncertainty that is used in order to strengthen the connection that exists 

between the target and the pixels that are part of the target. The intersection of the 

estimated sigmoid function is the ideal threshold that must be reached in order for the 

threshold segmentation technique to be successful. The fuzzy threshold method may be 

extended to the multi-threshold segmentation approach; the sigmoid function can be 

asymmetric; the challenging aspect of this method is selecting a membership function 

that is appropriate, as well as the window and boundaries of the s-type function (Paul et 

al., 2017). 

FCM is an unsupervised fuzzy clustering approach, which makes it particularly 

ideal for medical pictures containing ambiguities and uncertainties; as a result, it is 

commonly employed in medical image segmentation (Nida et al., 2019; He et al., 2016; 

Lu et al., 2019; Pang et al., 2015). To determine the degree of similarity that exists 

between picture pixels and the various cluster centers, an objective function is devised. 

The optimum cluster may be attained by continually and repeatedly optimizing the goal 

function until such time as it is reached. The fact that the FCM algorithm is entirely 

automated and does not need any kind of human intervention is one of its primary 
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advantages. The noise, the partial volume effect, and picture blur do not affect the 

segmentation process nearly as much as they used to. Yet, this technique requires a 

significant amount of computing, and it does not make use of any geographical 

information. In addition to having no real-time performance, the segmentation result has 

a tight relationship with the initial cluster center as well as the total number of clusters. 

Even though there is a lot of noise in the picture, the clustering result is still good. In the 

study by (Deng et al., 2016), the authors mapped the image gray space to the fuzzy feature 

space by using an asymmetric membership function G. The membership function and the 

enhancement operator are used in order to blur the picture while working inside the fuzzy 

space. Edges of the picture information that have been strengthened. After that, an inverse 

transformation of the picture in the airspace using the matching image, followed by an 

image edge detection using a simple spatial enhancement approach. 

2.2.6 Neural Network based Segmentation method 

The neural network is a model for large-scale modeling of the learning processes 

that occur in biological systems. A huge number of nodes make up it, and each individual 

node in the neural network is able to carry out a set of fundamental operations (Albanez 

et al., 2018). An adaptive allocation of the connection relationship between the nodes and 

the connection weights is conducted as the last step in the learning process. This brings 

the procedure to a close. The neural network technique has to take into account how stable 

the system is despite the presence of random noise. This technique makes an attempt to 

emulate the functioning of the human brain and nervous system so that it can satisfy the 

needs of real-time output. It is a network that is made up of a very large number of 

fundamental components that are able to change in response to their environment.The 

neural network is capable of teaching itself, modeling the process of data production, and 

predicting the output of variables whose values are unknown. One approach to machine 

learning is called a neural network. The neural network is often used as a classifier during 

the processing of medical pictures. This allows the training data set to be determined. 

Weights. It is well knowledge that the process of identifying and labeling distinct 

anatomical organs and tissues in photographic pictures is the core of the medical image 

segmentation technique. As a result, neural networks have seen significant use in the field 

of medical picture segmentation (Oliveira et al., 2016). Unsupervised clustering may be 
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accomplished with the help of neural networks. The following are the three categories 

that may be used to classify neural network topologies: 

1). Make an effort (FF). (Hertz, 2018) exhibited a multi-layer forward neural 

network that would be trained via the error back propagation method. Back propagation 

(BP) networks are the name that would be given to this kind of network.and it is presently 

the application that is having the greatest success. One of the models that use neural 

networks. It begins by choosing a few excellent examples of tissue classification samples, 

then applies the classifier to train itself on those samples, and finally classifies the images. 

After this, it chooses the additional points that are not classified within this range and 

adds them to the training group. The picture is split once again, and the classifier is trained 

once more as well. Therefore repeat till you have an appropriate segmentation result. The 

BP network has the capacity to learn and remember a significant number of input and 

output mode mapping associations. Nevertheless, the learning strategy of the BP 

algorithm is to utilize the gradient descent method to continuously update the weight and 

threshold of the network in order to minimize the square error of the network. This is 

done in order to get the best possible results from the BP algorithm. The BP network has 

the capacity to learn and remember a significant number of input and output mode 

mapping associations. BP networks are capable of having their input and output mode 

mapping relationships taught to them. which can then store the information they learn. 

It is not possible to ensure that the connection weight will converge on the value 

that is optimum for the network as a whole. Since the learning rate of the algorithm is 

predetermined, the convergence speed of the network is somewhat sluggish, and the 

network often has a high degree of redundancy, the burden of network learning will be 

significantly increased. 

2). System of feedback loops. It is also possible to refer to it as a self-associative 

memory network. The fundamental idea behind it is to construct a network that is capable 

of storing a collection of equilibrium points in such a way that it is able to operate 

independently after being provided with a set of beginning values. In the end, it all comes 

together to form the equilibrium of this design. The Hopfield network, which was 

suggested by the physicist Hopfield of the California Institute of Technology (DeGroff, 

2018) and has garnered the attention of a significant number of academics, is one of the 
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most common models of feedback networks. (Albanez et al., 2018) suggested a parallel 

unsupervised technique that achieves automated segmentation of medical pictures by 

using two competing Hopfield neural networks (CHNN). The Hopfield neural network 

algorithm is used in this strategy. Image segmentation is considered a pixel clustering 

issue, and an objective function is created for all different kinds of gray mean squared 

distance errors. CHNN assigns champions to collect all of the data (winner-take-all as the 

learning process for all). This makes it possible to skip the laborious work of finding 

weight coefficients, which in turn makes it possible for the algorithm to converge at a 

faster rate. As a result, the segmentation result is improved, and the noise is more robust. 

3). a map of one's own self-organization (SOM). It is a network that clusters data 

without supervision. Learning from the organization is accomplished by the use of the 

input texture feature-based co-occurrence matrix. As a result, it is possible for it to be 

objective since the newly created cluster center may be mapped to a plane or surface 

without causing any changes to the topology. Taking into consideration the natural 

qualities of the target (El-Henawy et al., 2016). If the picture is extracted initially in the 

process of medical image segmentation, then the characteristics that were extracted will 

be mapped in order to accomplish image segmentation. A technique for defining CTIMRI 

brain pictures using feature extraction and unsupervised clustering was suggested by 

(Milletti et al., 2016). At various sizes, each voxel may be represented by a variety of 

patterns that maintain its geometric properties. While attempting to extract the 

characteristics of a picture, it is possible to employ two layers of self-organizing neural 

networks. The SOPCA network, which stands for self-organized principal component 

analysis, makes up the first layer. In order to map characteristics onto the primary axes, 

this network makes use of a technique called principal component analysis. To complete 

the process of picture segmentation, the second layer is a self-organized feature map. This 

map works by automatically clustering the feature vectors that are supplied to the system. 

This makes it possible to extract picture data with a limited number of dimensions. 

Using a method that is based on neural networks, the problem of picture 

segmentation is first transformed into the problem of energy function optimization and 

classification. The neural network technology is then applied to the problem to solve it. 

The fundamental concept that underpins the neural network-based method is that first, 
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the neural network needs to be trained using the training sample set, then the connection 

relationship and connection weight between the nodes need to be adjusted, and finally, 

the trained neural network needs to be used to segment the new image data. This 

procedure is carried out several times until the desired outcomes are achieved. Before the 

neural network can be used for image segmentation, it must first be trained on a 

significant amount of image data. This must be done before it can be used. 

Researchers have paid a significant amount of attention and conducted a 

significant amount of study on the fuzzy neural system, which combines neural networks 

with fuzzy systems. An adaptive fuzzy neural segmentation and edge detection system 

was suggested by (Hossain and Rahaman, 2018). This system is comparable to image 

segmentation utilizing a multi-layer perceptron network, and it automatically gets the 

adaptive image of the input picture via fuzzy labeling. A supervised forward neural 

network is used during the learning phase of this approach. A fuzzy set, which is capable 

of extracting border pixels, is used to represent the output of the network. 

2.3 Image Segmentation for Energy Function 

Picture segmentation is the activity in image processing that places the highest 

emphasis on the significance of the job. In recent times, a substantial improvement to the 

method of image segmentation known as partial differential equations has emerged as a 

result of research conducted in this area. The application of partial differential equations 

to the study of image processing began in the 1980s, which was the decade in which the 

1980s took place. The method of partial differential equations has undergone rapid 

advancement and has resulted in the production of a substantial number of research 

results. The reason for this is because the field of partial differential equation, which is 

an important subfield of mathematics, has developed a robust theoretical foundation and 

solid numerical techniques. The technique for solving partial differential equations is 

created by using an enhanced Gaussian smoothing picture, which has the ability to strike 

a balance between the removal of noise and the preservation of features. 

The following set of ideas underpins the application of partial differential 

equations to the process of picture segmentation. The theory of multiresolution analysis 

comes in at number one. Jiang et al., (2013) and Griffin (2019) offered a thorough theory 
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of multiresolution analysis, which was made available in the area of image processing. 

The theory of multiresolution analysis is now one of the foundations for the idea of partial 

differential equations, which previously did not incorporate this theory. The second 

equation is known as the Euler-Lagrange equation, and it is something that may be 

produced via the use of the variational model. When the issue is studied and a 

corresponding "energy" model is constructed, image processing becomes a problem of 

differentiable functional optimization. Image processing may be optimized in a number 

of different ways. This process takes place after the image processing problem has been 

changed. Calculating the extrema of the model using a variational model is the first step 

in obtaining the relevant Euler-Lagrange equation. 

The difficulty with the picture processing may then be solved by using the reliable 

remedy. The level-set approach and the curve development theory make up the third 

possibility. While processing the image using this method, the image is thought of as 

either a series of horizontal curves or the surface of a high-dimensional space, depending 

on which interpretation is used. This is accomplished by deciding whether to direct the 

advancement of the horizontal lines or the surfacesves or the surface of a high-

dimensional space, depending on which interpretation is used. To do this, one must first 

choose whether to influence the progression of the horizontal lines or the surfaces. In 

contrast to the conventional approach to image segmentation, the technique of image 

segmentation that is based on partial differential equations has the following three 

characteristics (Cohen, 1991): 

1). A continuous model for the direct analysis of pictures is provided by the partial 

differential equation model. Typically, the picture is filtered using continuous derivatives, 

and the discrete filtering is written as a continuous differential operator. This is not always 

the case, however. When discrete grids are used, it is much simpler to get an image that 

has undergone local processing and analysis;  

2). The methodology that makes use of partial differential equations has a solid 

foundation in mathematics. Throughout this time, it is capable of providing a high level 

of stability for image segmentation. While doing numerical computations, using the level 

set approach may lead to the production of a result that is more accurate. In addition to 
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this, it is also capable of fixing the problem of the topological change that was brought 

about as a result of the target being merged and divided  

3). The method of partial differential equations allows for greater flexibility in 

local adaptation. [Citation needed] [Citation needed] The partial differential equation 

employs a continuous picture model as its foundation. This model allows each image 

pixel's value to change in real time solely in relation to the other image pixels in its 

immediate vicinity.  

The branch of mathematics known as partial differential equation has recently 

emerged as a hot issue in the disciplines that are connected to it. It already has a 

significant amount of research outcomes to its name. One may trace the origin of the 

concept of using partial differential equations to image processing all the way back to the 

study of (Kaynig et al., 2015). Nonetheless, the substantial advancement may be credited 

to (Griffin, 2019) and (Jiang et al., 2013). (Griffin, 2019) and inside introduced the 

concept that the convolution of the Gaussian function of the signal and the various scales 

is identical to the thermal diffusion equation with the signal as the starting value in 1984 

and 1985, respectively. This notion was published in Griffin's work. The concept of 

multi-scale analysis serves as the foundation for this approach. (Alvarez et al., 1993) 

made a rational system as part of the process of deriving the AMSS (Afine Morphological 

Scale Space) equation. This equation marked the formal start of the field of image 

processing based on partial differential equations. This was the start of the formal 

development of the field of image processing, which is based on partial differential 

equations. This event marks the beginning of the formal establishment of the topic of 

image processing based on partial differential equations. At this point, image processing 

had only taken its first steps toward becoming an established academic discipline. 

2.3.1 Energy Functions 

Energy functions are a fundamental concept in medical image segmentation, 

serving as a mathematical framework that guides the optimization process towards 

accurate and meaningful segmentation results. By quantifying the quality of segmentation 

configurations, energy functions provide a principled approach to incorporating various 

constraints and prior knowledge, ultimately leading to segmentation solutions that align 
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with clinical objectives and anatomical realities. In this section, we delve deeper into the 

significance and applications of energy functions in medical image segmentation, 

highlighting their versatility and importance in addressing the complexities of this 

domain. 

One of the key advantages of energy functions in medical image segmentation is 

their ability to incorporate domain-specific knowledge and prior information. By 

carefully designing the data and regularization terms, researchers can embed clinical 

expertise, anatomical constraints, and prior assumptions into the energy formulation. This 

integration of domain knowledge helps guide the segmentation process towards clinically 

relevant and anatomically plausible solutions (Frangi et al., 2021). 

Medical images often depict intricate anatomical structures with varying degrees 

of complexity, such as intricate vascular networks, convoluted brain structures, or 

irregularly shaped tumors. Energy functions provide a flexible framework to capture and 

account for these complexities through appropriate data and regularization terms. By 

designing energy functions that incorporate shape priors, geometric constraints, or 

statistical models, researchers can effectively segment even the most challenging 

anatomical structures (Mukhopadhyay et al., 2021). 

Medical images can exhibit significant variability and heterogeneity due to factors 

such as patient demographics, imaging protocols, and pathological conditions. Energy 

functions offer a versatile approach to addressing this variability by incorporating 

probabilistic models, intensity distributions, or texture descriptors into the data terms. 

This flexibility enables the development of robust segmentation algorithms that can adapt 

to diverse imaging scenarios and patient populations (Zheng et al., 2021). 

In clinical practice, multiple imaging modalities are often utilized to gain 

complementary information about anatomical structures and pathologies. Energy 

functions can facilitate the integration of multi-modal data by incorporating terms that 

capture the unique characteristics of each modality. By combining modality-specific data 

terms and regularization constraints, energy functions enable the development of multi-

modal segmentation algorithms that leverage the synergistic information from various 

imaging sources (Zhuang & Shen, 2020). 
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Energy functions provide a natural framework for incorporating user interactions 

and prior knowledge in interactive or semi-supervised segmentation approaches. By 

allowing users to provide seed points, contour initializations, or region annotations, 

energy functions can be adapted to incorporate these inputs as additional constraints or 

priors, enabling more efficient and accurate segmentation processes (Menze et al., 2023). 

The quantitative nature of energy functions allows for objective evaluation and 

comparison of segmentation algorithms. By comparing the energy values associated with 

different segmentation configurations, researchers can assess the performance and 

accuracy of various algorithms, facilitating benchmarking and algorithm selection 

processes (Gholipour et al., 2022). 

Energy functions serve as the objective functions that optimization algorithms 

aim to minimize during the segmentation process. By leveraging advanced optimization 

techniques, such as gradient descent, variational methods, or graph-based algorithms, 

researchers can efficiently find the segmentation configurations that minimize the energy 

function, leading to accurate and robust segmentation results (Gholipour et al., 2022). 

The components of energy functions, such as data terms and regularization terms, 

provide a transparent and interpretable representation of the segmentation process. By 

analyzing the contributions of each term, researchers can gain insights into the factors 

that influence segmentation decisions, facilitating algorithm interpretation and 

explainability – a crucial aspect in the medical domain (Frangi et al., 2021). 

Energy functions offer a versatile framework for incorporating prior knowledge 

and transferring learned representations across different tasks or domains. By designing 

energy functions that leverage pre-trained models or transfer learning techniques, 

researchers can achieve improved segmentation performance, even in scenarios with 

limited training data or domain shift (Zhuang & Shen, 2020). 

The flexibility and generality of energy functions encourage researchers to 

explore new formulations, incorporate novel constraints, and develop innovative 

optimization strategies. This drives innovation and advancement in the field of medical 

image segmentation, enabling the development of more accurate, efficient, and clinically 
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relevant algorithms that can better assist in diagnosis, treatment planning, and patient care 

(Mukhopadhyay et al., 2021). 

In conclusion, energy functions play a pivotal role in medical image segmentation 

by providing a principled mathematical framework for quantifying segmentation quality 

and guiding optimization processes towards accurate and clinically relevant results. Their 

ability to incorporate domain-specific knowledge, handle complex anatomical structures, 

address variability and heterogeneity, and facilitate multi-modal segmentation, among 

other advantages, makes them indispensable tools in the field of medical image analysis. 

As research in this domain continues to advance, energy functions will undoubtedly 

remain a cornerstone concept, driving innovation, enabling interpretability, and 

contributing to the development of more robust and reliable segmentation algorithms for 

improved patient care. 

2.3.2 Segmentation Method Based on Active Contour Model 

The active contour model is a method of image segmentation that was first 

suggested by (Kass et al., 1998) and was further developed by (Kasmi et al., 2016) and 

(Kass et al., 1998). (Pettersson et al., 2018). Researchers have shown a significant amount 

of interest in the active contour model in recent years. This model has a broad variety of 

applications, including visual tracking and picture segmentation, amongst others. The 

active contour model's central tenet is that it should optimize the curve to the goal 

boundary by, within those restrictions, maximizing the established energy function in the 

best possible way. Edge-based active contour models (Kass et al., 1998; Benninghoff and 

Garcke, 2016; Cuenca et al., 2018) and region-based active contour models (Zanetti and 

Bruzzone, 2017; Pratondo et al., 2017) are the two main categories that can be used to 

classify active contour models. Both of these categories can be broken down into 

subcategories based on the characteristics of the constraint terms (Niethammer et al., 

2017). 

According to (Kasmi et al., 2016), the edge-based active contour model extracts 

the target boundary by making use of the gradient information included within the picture. 

This approach may segment the picture using the edge stop function, which is sensitive 

to noise and relies on the starting contour position. The results of this segmentation are 
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dependent on the original contour position. The fact that it is not necessary to first 

establish global limits for the picture before beginning the segmentation process is the 

primary benefit of the edge-based active contour model. As a result, the approach can 

successfully segment pictures in certain circumstances, despite having an uneven target 

and backdrop, and the impact of the segmentation is excellent. 

Recent research has recommended the use of a region-based active contour model 

that incorporates the regional competitiveness strategy (Zhang et al., 2015). This strategy 

makes use of the statistical data collected from both the target and background regions in 

order to generate an objective function that is tailored to the image. It also allows for 

control over the development of the curve, is resistant to noise, and can separate the weak 

boundary image. In addition to this, the approach is not affected by the location of the 

starting contour, and it is able to efficiently identify the borders of the target as well as 

the backdrop. (Zanetti and Bruzzone, 2017) and (Pratondo et al., 2017) proposed a 

simplified Mumford-Shah model (CV model), which is a region-information-based 

active contour model that is completely independent of gradient information, thereby 

overcoming edge-based active contours. (CV model) is an acronym for "complex variant 

of the Mumford-Shah model." The model has low global coverage, makes it difficult to 

segment weak edges, and is very susceptible to noise. 

An excellent research tool in the area of image segmentation, the CV model is a 

kind of segmentation model that successfully increases the topology adaptive capacity of 

curve development. The CV model is capable of segmenting the segmentation constant 

picture in an exact manner. The CV model, on the other hand, is limited to the use of 

grayscale homogeneity as the only criteria for area separation. Moreover, the CV model 

is only applicable for high-contrast image segmentation that includes two distinct mean 

regions for the target and the background. When it comes to the segmentation of medical 

pictures that have considerable non-uniformity and structural complexity, the CV model 

is not the best option. The LBF (local binary fitting) model was proposed by the PS 

(piecewise smooth) model that was proposed by (Terbish et al., 2017) and (Ji et al., 2015). 

This model is an enhanced version of the CV model. (Terbish et al., 2017) and (Ji et al., 

2015). The PS model is able to segment non-uniform pictures because it utilizes two 

piecewise smoothing functions rather of the CV model's two gray-scale mean constants. 
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The CV model was designed to segment uniform images. In contrast, the partial 

differential equations in the PS model are solved by repeatedly applying the same partial 

differential equation, which results in a vast number of calculations and a model that is 

very difficult to understand. In order to determine a region's binary fitting energy, the 

LBF model makes use of a kernel function. The segmentation method produces superior 

results than the CV model when used to the processing of non-uniform images. The 

model, on the other hand, does not differentiate between the gray inhomogeneity that may 

be found in various places; thus, it is still not insignificant to continually compute the 

image data and calculate the quantity, and the rate at which the curve evolves is sluggish, 

both of which work against the adoption of this technique in the segmentation of medical 

images. 

Liu et al.(2017) came up with the idea for what is now known as the "Snake 

Model," which is also referred to as an "Active Contour Model" or a "Parametric Model".. 

When studying the development of the curve from a dynamical point of view, this 

approach is the one that is used since it provides the most accurate results. The energy 

function of the contour curve of the area is established by a concerted effort made by the 

internal force of the picture and the external force constraint provided by the image 

information. This effort is what determines the region's energy function. The energy 

function of the contour curve is the name given to this particular function. Both the 

target's interior forces and its outer forces, after being brought together by the combined 

action of the continuous movement, will finally converge around the perimeter of the 

object being targeted. It is feasible to extract the edge of the image area of interest with a 

degree of precision that may extend down to the sub-pixel level. This is attainable if the 

area of interest in the picture is large enough. The following is a list of some of the 

advantages that may be obtained using this model: (1) It does not make a difference how 

high the picture's quality is; this thesis will always be able to get a clean and closed target 

boundary. (2) It has a high degree of computational efficiency and is suitable for 

modeling due to its suitability. Furthermore, it is capable of obtaining any desired shape 

of the deformation profile. It is well suited for handling the individual variations that may 

be seen in photographs that have a high level of structural complexity. Because of the 

development of this model, the active contour model is rapidly becoming one of the most 

successful approaches for picture segmentation. After that, a number of other feature 
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models were developed, including surface flow, the deformable model, and deformation 

surfaces, amongst others. These models were built after that. 

2.3.3 Segmentation Method Based on Level Set 

The Level Set methodology was first proposed by (Osher, and Rudin 1990), and 

it was then developed and improved by (Romeny, 2013). They made a number of 

modifications and enhancements to the active contour model. The strategy was 

effectively used in a number of different fields, such as fluid dynamics and computer 

graphics, among others. (Caselles et al., 1993) and later (Caselles et al., 1996) included 

the level set technique into the active contour model (Malladi et al., 1994; Caselles et 

al.1996) They have decided that the Level Set should be a representation of snakes. The 

curve was shown in a manner that did not make its status as a level set of higher 

dimensions of the surface explicitly clear (level set function). The methodology in issue 

is not analogous to the contour model in any way. The level set technique does not track 

the evolution of the curve at different periods in time. Several levels of the curve are 

considered. In order to recreate the progression of the curve, it is sufficient to simply fix 

it in the coordinate system. This will allow the level-setting function to be updated at a 

variety of different time intervals. The approach provided an efficient solution to the 

challenge of changing the topology of the mechanisms. Also, it contributed to the 

development of the theory of geometric contour models (Bernard et al., 2007; Lie et al., 

2006; Xu et al., 2016; Tai et al., 2007). In 1995, Sapiro and colleagues came up with the 

idea for the Geodesic Active Contour model. In the Geodesic Active Contour model, the 

profile curve can only travel in one direction at a time, and the beginning location has a 

significant impact on the segmentation outcomes. If the contour curve has gone beyond 

the edge of the picture, it will be quite difficult to get back to the right place. In the end, 

the segmentation is unsuccessful. In order to resolve the issue with the Geodesic Active 

Contour model, Paragios integrated the notion of the regional competition presented in 

(Zhu and Yuille, 1996) with his own and created the Geodesic Active Area technique 

(Paragios and Deriche, 2000). The model is wholly dependant on the previous data for 

the picture region and the border rather than the beginning location, which has absolutely 

nothing to do with it. On the other hand, when the picture is segmented into numerous 

areas, it is essential to finish linking the different deformation models, which makes the 
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computation procedure more difficult. (Chan et al., 2005) conducted research to 

determine whether or not the existence solution requirements of the Total Variation 

model, which is based on L1 space, are indeed unique. Throughout the same calendar 

year, a method was presented by (Chan et al., 2006), and a global minimum was found 

using it (Chan et al., 2006). When it comes to image processing, this approach has the 

ability to convert nonconvex energy functional into convex energy functional. In order to 

locate the local optimal value, the authors made use of the conventional convex functional 

minimum solution. 

Over the course of the last two decades, the geometric activity profile model has 

come to get a great deal of attention owing to the many advantages it provides. Hence, a 

variety of traditional segmentation models (Aubert and Kornprobst, 2006; Sapiro et al., 

1995; Ni et al., 2016; Li et al., 2007; Li et al., 2008; Zhou et al., 2016) were proposed as 

possible solutions. The Active Contour model is capable of being segmented into three 

distinct subtypes if one wants to categorize it in accordance with the energy function that 

is represented by the edge map (Pratondo et al., 2016). This is a possibility since the 

energy function is determined by the edge map, which makes it conceivable for this to 

happen. The subtypes of active contour models that are included in this category include 

hybrid active contour models, active contour models that are based on area, and active 

contour models that are based on edge. A geodesic active contour is used as the basis for 

the edge-based active contour model. The edge indication function of the picture gradient 

puts a halt to the curve's development as it moves forward. It has the benefit of being able 

to detect numerous different regions at once, which is a distinct advantage. Unfortunately, 

this model has a number of drawbacks, the most notable of which are its sensitivity to 

noise and the need that the starting contour curve be defined manually. This paradigm is 

only useful in certain contexts. Since it makes use of the information that is global to the 

picture as a whole, the region-based active contour model is one way to combat the issue 

of susceptibility to noise. But, the calculating amount is really large, and it takes a 

significant amount of time to calculate. The edge and area information are both included 

into the mixed active contour model. When this thesis uses several types of initialization, 

this thesis get a variety of segmentation outcomes. Each of these types comes with both 

benefits and drawbacks of its own. 
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As a result, it is essential to choose the appropriate model in accordance with the 

particular picture and the requirements that are really being met. The process of acquiring 

medical pictures is distinct from the process of acquiring regular optical images. 

According to Aubert and Kornprobst (2006), the majority of medical pictures include the 

features of ambiguity and uneven grayness: (1) There is some fuzziness in the greyscale 

of the medical picture. There is a significant grayscale difference between the noise in 

the ultrasonic picture and its edges. There are a variety of distinct spots that may be seen 

in ultrasound pictures, particularly as a result of the nonuniformity of the imaging organ 

or tissue structure and the interference of acoustic signals. (2) Local body impact. Often 

frequently, the edge of a picture comprises both the border and the thing it surrounds. As 

a result of part of the sick tissue penetrating into the tissue that surrounds it, the border 

cannot be precisely delineated. (3) An absence of certainty In general, the structures that 

are present in a lesion that do not have a normal tissue or area present, such as the spurs 

on the surface of the bone, are referred to as abnormal structures. In addition, the look 

makes the construction of the model more complicated. This thesis noticed that in order 

to acquire the target region in the picture during the process of segmentation, this thesis 

needed to get rid of the noise that was in the image first. This was done so that this thesis 

could address a limitation of medical images. As a result, the reduction or removal of 

noise in medical pictures is of particular importance for the segmentation process. Since 

the Partial Differential Equation approach strikes a healthy balance between removing 

noise and preserving the qualities that define target features, it serves as the primary focus 

of our research in this method for the purpose of medical picture segmentation. 

In recent years, the method of partial differential equation has become more 

popular for use in a number of image processing domains. These fields include image 

denoising, image magnification, image inpainting, and segmentation, to name just a few 

of the applications of this method. Not only is the model that is generated by partial 

differential equations more straightforward and easier to grasp, but it is also very simple 

to include partial differential equations with the traditional segmentation theory. This is 

due to the ease with which partial differential equations can be integrated. As a result, the 

process of creating a new model is rather straightforward. 
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The level set method, a powerful image segmentation technique based on partial 

differential equations, has seen rapid advancements driven by international collaborations 

and extensive research published in prestigious journals. Currently, substantial human 

and material resources are dedicated to investigating this topic in the United States. Major 

research centers focused on level set segmentation have been established at renowned 

universities such as Brown University, UCLA, and the University of Florida, among 

others. Researchers at these centers not only contribute to developing theoretical 

foundations but also actively participate in various image processing initiatives involving 

the level set method. Furthermore, the study of level set-based image segmentation 

encourages multidisciplinary research, bridging the fields of computer vision and 

biomedicine. The application of partial differential equations in this domain not only 

addresses numerous challenges in image segmentation but also contributes to the 

expansion of partial differential equation theory itself. Consequently, research in this area 

holds significant practical utility and scientific relevance. The level set method has 

emerged as a powerful tool for image segmentation, allowing for the accurate delineation 

of object boundaries and handling complex geometries and topological changes. By 

representing the evolving contour as the zero-level set of a higher-dimensional function, 

the level set method elegantly addresses the limitations of traditional segmentation 

techniques, such as the inability to handle topological changes or the requirement for 

explicit parametrization of the contour. Research efforts in level set segmentation have 

focused on developing robust energy functionals, efficient numerical schemes, and 

advanced regularization techniques to overcome challenges posed by noise, intensity 

inhomogeneities, and complex object shapes. Additionally, the incorporation of prior 

knowledge, such as shape priors or region-based statistics, has further enhanced the 

accuracy and robustness of level set-based segmentation methods. The multidisciplinary 

nature of this research has fostered collaborations between mathematicians, computer 

scientists, and medical experts, leading to novel applications in fields like medical 

imaging, computer vision, and pattern recognition. For instance, level set segmentation 

has played a crucial role in the analysis of medical images for disease diagnosis, treatment 

planning, and surgical guidance. As research in level set segmentation continues to 

advance, it holds the potential to address longstanding challenges in image analysis and 
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enable new applications in various domains, further solidifying its practical utility and 

scientific significance. 

2.3.4 Information Theory-based Approach 

The study of information and the transmission of information as a statistical 

phenomenon is accomplished by information theory through the use of probability theory 

and mathematical statistics. It offers a conceptual foundation for individuals to study 

information and the subjects that are connected to it. In the field of information theory, 

the most fundamental unit of measurement is called entropy. Medical image 

segmentation can be done using the theory of entropy in information theory (Oliveira et 

al., 2016). entropy is a representation of the statistical properties of images. In the 

threshold segmentation algorithm, one can select the most appropriate segmentation 

threshold by finding the extreme value of entropy. (Yang et al., 2016) proposed a 

minimax entropy formulation based on information theory to segment medical images. 

Threshold selection based on the maximum entropy principle is one of the most important 

threshold segmentation methods (Chen et al., 2018). The basic principle of this method 

is to divide the gray histogram of an image into two or more independent classes, and to 

maximize the total amount of entropy of each class. From the perspective of information 

theory, the determined threshold can get the maximum amount of information. In 

practical applications, the advantage of this method is that it utilizes the global objective 

property of a gray histogram. The limitation is that the search space is too large, the 

convergence speed is too slow, and the medical image with more complicated structure 

and loud noise is performed. The experimental results are not ideal when segmented. 

There are many methods and literatures in the field of image segmentation. In 

addition to the more commonly used methods in the above categories, there are other 

segmentation methods, such as spectrum guidance theory and mathematical morphology 

methods. In order to effectively segment the vertebral body, brain tumor and myocardial 

septum, this paper focuses on the method based on graph theory and active contour model, 

and combines several classical image segmentation methods with single exponential 

fitting models to apply to the Mediterranean. Diagnosis and treatment of iron deposition 

in anemia patients. 
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2.3.5 Deep Learning-Based Level Set  

Deep learning is a relatively recent development that has had a considerable 

influence on a variety of subfields within machine learning. As a result, the state of the 

art has been significantly elevated in areas such as object identification, voice recognition, 

and language translation. This may be explained by the fact that deep learning has been 

used for a greater variety of challenges (LeCun et al., 2015). Perhaps the single most 

important aspect of deep learning is the capacity of deep neural networks to automatically 

recognize condensed, low-dimensional representations (features) of high-dimensional 

input. This ability is known as feature extraction (e.g., images, text, and audio). 

Incorporating inductive biases into neural network designs, particularly those with 

hierarchical representations, has enabled practitioners of machine learning to make great 

progress in the battle against the so-called "curse of dimensionality" (Bengio et al., 2013). 

 

Figure 2.7 The framework of CNN 

Techniques of Segmentation Based on Level Sets Instead of explicit (i.e., active 

contour9models) models (Caselles et al., 1997; Kass et al., 1988) representations of 

curves, implicit representations of curves naturally manage complicated object topologies 

such as holes or splits. (Caselles et al., 1997; Kass et al., 1988). In the Level Set 

formulation (Caselles et al., 1997; Osher and ethian., 1988), the curve develops in an 

iterative manner by moving along the descent LeveleSetvel set energy. This energy is 



 

 56 

comprised of both the internal energy coming from the curve and the external energy 

coming from the edge based approaches (Caselles et al., 1993; Caselles et al., 1997; Kass 

et al., 1988). Most of the time, edge characteristics in the external energy are used by 

Kichenassamy et al., 1996, and Cohen, 1991, and an initial curve is evolved to suit object 

boundaries. To segment objects, region-based approaches (Chan and Chan, 2010; 

Paragios and Deriche, 1999; Ronfard, 1994) rely on the region's homogeneity rather than 

its edges (Chan and Chan, 2010; Paragios and Deriche, 1999). Using information about 

color, texture, and shape has also been the subject of a great deal of research (Cremers et 

al., 2007). In light of recent developments in the use of deep learning for picture 

segmentation (Bai et al., 2017; Chen et al., 2016; Chen et al., 2015; Long et al., 2015; 

Zhang et al., 2016). 

Current work on picture segmentation has, among other things, integrated deep 

neural networks with the more conventional active contour models. They suggested 

combining a convolutional neural network with a well-planned level-set evolution 

method in order to take advantage of the benefits offered by both of these approaches. 

(Rupprecht et al., 2016) crop off sections surrounding the original curve and use a CNN 

to forecast the movement for curve development, patch by patch, in Figure 2.7. This is 

done in order to illustrate the results of their work. CNN characteristics are used by 

(Marcos et al., 2018) for the purpose of extracting the building footprint. These features 

are used to forecast the parameters of the active contour models shown in Figure 2.8. The 

authors suggest a structured prediction formulation as a means of training the model from 

beginning to finish by focusing on getting as close as possible to IoU. (Cheng et al., 2019) 

expand on this idea to suggest that the active contour should match the borders of the 

building. Unfortunately, these solutions require careful setup of the curve and suffer from 

the limitations that are characteristic of parametric curves, as seen in Figures 2.9 and 2.10. 

The research conducted by (Tang et al., 2017) employs level-set evolution as a 

postprocessing step for a CNN. The researchers trained their model using unlabeled data 

that was handled in a semi-supervised manner. In the study by (Hu et al., 2017), the level 

set energy was included in the loss function, and a convolutional neural network was used 

to directly predict the level set function for salient item recognition. Newer efforts have 

also used the mobility of pixels for the purpose of segmentation, which is analogous to 

the development of level sets. Deep convolutional neural networks (CNNs) are used in 
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(Liu et al., 2017) to train an affinity matrix, and spatial propagation is used to improve 

the segmentation output. (Januszewski et al., 2018) augment deep CNNs with a recurrent 

circuit and reconstruct brain cells by iterative extension. The authors of the study (Acuna 

et al., 2019) employ level set evolution during training in order to denoise the object 

annotations. 

  

Figure 2.8 Image Segmentation of CNN 

 

Figure 2.9 Example images of lung nodules with different locations and shapes in 

CT: (a) common isolated nodule. (b) juxtapleural nodule. (c) cavitary nodule. (d) calcific 

nodule. (e) ground-glass opacity (GGO) nodule. 

In general, the reinforcement learning (RL) system has to be generalizable in 

order for it to be able to tackle increasingly complex problems at a level of performance 

comparable to that of humans. This is the most current development in the field of deep 

reinforcement learning (DRL). DRL is the merging of reinforcement learning with deep 

learning. The deep neural network (DNN) is used as a function approximation in the RL 

framework in this method, and gradient descent is used to optimize the loss function in 

relation to the neural network weights. DRL makes it possible for the agent to learn the 

meaningful representation directly from the raw inputs, minimizing the demand for 
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domain expertise and the necessity to handcraft features. In addition to this, it assists in 

scaling up the dimensionality of RL challenges. Deep reinforcement learning, also known 

as DRL, is a technique that has the potential to completely transform the artificial 

intelligence (AI) industry. It also represents a big breakthrough toward the creation of 

autonomous systems that have a better knowledge of the visual environment than was 

previously possible. RL, which was unable to solve some problems in the past, may now 

be applied to a wider range of issues thanks to deep learning. One example of this kind 

of problem is having to learn how to play video games by starting at the pixel level. DRL 

algorithms are also employed in robotics, which allows control methods for robots to be 

learned directly from camera inputs in the actual world. This is made possible by the fact 

that DRL algorithms are used. This is made possible thanks to the application of DRL 

algorithms. 

Many distinct forms of DRL algorithms use approximations to model certain 

aspects of RL. The use of a neural network to approximate the value function, which is 

to estimate how beneficial the state or the state-action combination is, is one of the options 

available to you. The use of a neural network to approximate the policy, which is the 

method by which the agent selects an action in response to a given state, is still another 

option. The other option is to use the neural network to learn the dynamics of the model. 

As the components of RL are parametrized by the neural network, the frameworks may 

be trained by utilizing backpropagation and stochastic gradient descent to update the 

parameters, also known as the weights of the neural network. This allows the frameworks 

to become more accurate. 

The conventional methods of reinforcement learning will always be doomed to 

be affected by the curse of dimensionality. As a consequence of this, they can only deal 

effectively with issues of relatively minor dimensions. Deep reinforcement learning 

algorithms, on the other hand, have been on the rise in recent years and make it possible 

to solve complicated issues with a high dimension. The training process, from beginning 

to conclusion, consists of several levels, as the term "deep" would imply. The term "deep 

reinforcement learning" refers to a methodology that combines "reinforcement learning" 

with "deep neural networks." In other words, apply deep learning algorithms within the 

framework of reinforcement learning by taking advantage of the function approximation 
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and representation learning capabilities of deep neural networks. For instance, one of our 

goals is to build a machine that can scare the birds away from a field of corn, then quickly 

escape and alert the people who are working in that facility. On the input side, the robot's 

footage is fed into a learning algorithm so that it may learn. 

  

Figure 2.10 Segmentation results visualization.   
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In Figure 2.10, From top to bottom: nodule with ground truth, level set 

segmentation, graph cut segmentation, U-Net segmentation, and CF-CNN segmentation. 

L1-L5 are nodules of different types from the LIDC testing set. G1-G3 are nodules from 

the GDGH dataset. 

A neural network is used to perform numerous levels of modification on the video, 

which initially contains high-dimensional pixels in each frame. This allows for the 

important low-dimensional properties of video frames to be extracted. On the basis of 

this information, the robot uses a technique called reinforcement learning to determine 

whether it should attack the item or flee from it. It has been shown that this kind of end-

to-end learning, which makes use of high-dimensional data, presents astronomical 

processing complexity. Nevertheless, deep learning may be used to overcome this 

challenge. 

In conclusion, it is important to note that despite the many examples of successful 

applications of deep reinforcement learning, this thesis still have a lot of work to do before 

this thesis can use this method to solve a broad variety of issues that occur in the real 

world. At this point in time, the community concerned with machine learning is doing 

research into a great many different aspects of this discipline, and the method as a whole 

is advancing on a daily basis. 

2.4 Systematic Reviews for Related Works  

This research presents a detailed overview of the approaches that may be utilized 

for the detection of lung nodules using computed tomography (CT) images. The study 

was carried out by the National Center for Biotechnology Information. Its primary goals 

are to conduct an investigation into the most recent technological developments that are 

being used in the process of creating computational diagnostic tools to facilitate the 

capture, storage, and, most importantly, the processing and interpretation of the biological 

data. This investigation will be conducted in order to fulfill its primary objectives. In 

addition to focusing on the achievements that have been made up to this point, the book 

analyzes the issues that still need to be resolved and provides an assessment of the 

potential outcomes of the situation in the future. This is the first time, as far as the authors 

are aware, that a review has been dedicated completely to left-set approaches for the 
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identification of pulmonary nodules from lung CT scans. This paper presents the findings 

of the first study to do so. This is the first time that such a review has been carried out; 

therefore, the very fact that it is being done offers this piece of work a great deal of value 

on its own. Throughout the course of the inquiry, each and every paper that had been 

published in the academic databases Web of Science, Scopus, Science Direct, PubMed, 

and IEEE Xplore up to the month of December 2016 was analyzed. Each individual piece 

of research that was found to have mentioned left-sided segmentation of the lungs was 

carefully examined in order to ascertain its objective, approach, and results. After an 

analysis of the works that were selected, it was decided that part of the research may be 

useful in the creation of medical diagnostic aid tools. This conclusion was reached as a 

result of the assessment that was carried out. However, there are certain aspects that still 

require attention, such as increasing the algorithm's sensitivity, reducing the number of 

false positives, improving and optimizing the algorithm's detection of different kinds of 

nodules with different sizes and shapes, and finally having the capability to integrate with 

electronic medical record systems as well as picture archiving and communication 

systems. These are just some of the things that still require attention. All of these are areas 

in which there is room for advancement. As a direct outcome of this investigation, this 

thesis is in a position to reach the following conclusions: (1) More study is needed to 

develop the approaches that are now being applied, and (2) new algorithms are essential 

to overcome the limitations that have been found in the existing methods. 

This systematic review was conducted utilizing a method that included a total of 

six stages, which may be summarized as follows: (1) the creation of relevant search terms 

for the databases Web of Science, Scopus, Science Direct, and IEEE Xplore; (2) the 

execution of the database search; (3) the removal of duplicate works discovered; (4) the 

application of the inclusion criteria, which states that only set lung nodule segmentation 

techniques from CT images be left; and (5) the synthesis of the keywords obtained from 

the selected works and review of the terms with the highest incidence in obstructive 

pulmonary disease (COPD). The following logical expressions were used in order to 

carry out the search in the databases: ("level set" OR "level-set" OR "level sets") AND 

("detection" OR "segmentation" OR "cad" OR "cade") AND ("lung" OR "lungs" OR 

"pulmonary" OR "chest") AND ("nodule" OR "nodules" OR "cancer" OR "tumor" OR 

"tumors"). These logical terms have been modified so that they are consistent with the 
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syntax of the search engines that are used by Web of Science, Scopus, Science Direct, 

PubMed, and IEEE Xplore, respectively. This was done in order to make the phrases 

searchable by those databases. The alterations were carried out in a manner that was 

compliant with the recommendations made available by each database. Only those works 

were selected for inclusion in the survey that was provided that had the logical words 

mentioned in their respective titles and abstracts. This was done in order to maintain 

consistency. During the initial stage of the investigation, this thesis amassed a total of 89 

pieces of literature, of which 32 could be found in Web of Science, 22 could be found in 

Scopus, 10 could be found in IEEE Xplore, 15 could be found in PubMed, and 10 could 

be found in Science Direct. After doing the search, it was discovered that the databases 

included duplicates of 56 of these publications. After the identification and removal of 

works that were identical to others, a total of 22 works were chosen to proceed to the next 

step of the process. During the stage of analysis and classification, each item was 

examined on an individual basis in order to classify it according to its primary function, 

which included the following: correlated work (which describes a nodule segmentation 

or classification technique but is not applied to the study); and correlated work (which 

describes a nodule segmentation or classification technique but is not applied to the study); 

and correlated work (which describes a nodule segmentation or classification technique 

but is not applied to the study). automated algorithms to segment lung nodules in the 

leave-set; leave-set classification of lung nodules; a systematic literature review of 

segmentation and/or classification of lung nodules (which describes a nodule); any other 

works that cannot be classified in the previous categories (any other works that cannot be 

classified During the completion of this research, a total of 43 articles were discovered to 

include strategies using leave sets to segment lung nodules in CT images. Achieving this 

target was the primary focus of this specific piece of work. In conclusion, six of the 

studies do not relate in any way to the process of algorithm design. In addition, the next 

part will include a total of 37 items that will be discussed. 

The collection of data, the pre-processing stage, the lung segmentation stage, the 

nodule identification stage, and the reduction of false positives stage are the five key 

phases that make up CADe systems in general. The LIDC and LIDC-IDRI programs were 

used during the whole process of data collection to carry out testing on the results a 

combined total of six and nine times, respectively. In the fourth chapter, this thesis are 
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going to put both datasets to use in order to test how well the proposal method works. 

The stages that were investigated by each of the selected studies for the purpose of the 

automated detection of pulmonary nodules in CT images of the lung are outlined in Table 

2.1 below. At this point in the process, one of the tasks at hand is going to be collecting 

the images that the CAD program will ultimately end up using. In the best-case scenario, 

the PACS, electronic medical records, and computer-aided design (CAD) systems should 

all be connected to one another to ensure the success of the acquisition. Before the 

radiologist can do an analysis on the lung CT images, it is possible that the CAD system 

will perform some processing on them first. As a consequence of this, the interpretation 

of the inspection starts with the regions that the CADe system identifies as being 

potentially problematic. Because of the electronic medical record, the radiologist may 

also have access to extra clinical information that might be of assistance with the 

diagnosis (EMR). There are a few public databases that may be tapped into for the 

development, upkeep, and instruction of CAD systems. These databases are useful for 

the process of building and designing CAD systems and may be utilized in that context. 

These databases are deployed in the majority of instances to teach students, to serve as a 

repository for rare events, and to allow comparisons of the capabilities of different CAE 

systems. Preprocessing treatments are done to the CT slices (pictures) of the lung in order 

to improve the quality of the images obtained from the CT scan. When it comes to the 

identification of nodules, the results are therefore enhanced as a result of this. Since the 

lungs contain a multitude of structures that, at this phase, may be readily misinterpreted 

as nodules, this stage is critical. The process of lung segmentation is a necessary stage 

for any CAD system that hopes to aid in the early identification of lung diseases such as 

cancer and other lung ailments. This phase may be thought of as the backbone of the 

whole process. This attempt is made more challenging by the absence of heterogeneity 

in the area of the lung, the presence of structures with a comparable density, such as 

arteries, veins, bronchi, and bronchioles, and the use of a variety of imaging equipment 

with a variety of imaging procedures. The first step in the process of locating nodules 

using a CAD system is to define the search area of interest for the nodules. The process 

of nodule identification is the second step of the CAD system.which comes after the first 

step (for example, the segmented lung fields). The purpose of this stage is to identify 

whether or not any lung nodules are visible in the images that have been analyzed thus 
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far. In terms of their density, the shapes that they take, or the sites that they occupy, there 

is no comparison between the two. The existence of these obstacles adds to the difficulties 

associated with the process of identifying lung nodules. One of the most difficult features 

of these diagnostic tools is the relatively high number of false positives that are created 

by today's CAD systems. This is one of the most demanding parts. Due to the presence 

of these false positives, it could be more challenging to appropriately interpret the 

findings of medical examinations. The majority of the time, a substantial number of false 

positives will lead the radiologist in charge of interpretation to get confused, which will 

ultimately result in a reduction in the efficiency of the CAD system. 

In Table 2.1, Firstly, many of the methods rely solely on CT scans from the 

LIDC/LIDC-IDRI datasets for evaluation. While these are useful standard datasets, 

relying too heavily on them risks overfitting models to these particular datasets. More 

diverse evaluation using different datasets would strengthen the validity of the methods. 

Only a few works used other datasets like JSRT, DIR-LAB, or their own clinical data. 

Using multiple datasets helps ensure the methods generalize well. 

Secondly, most works focus on nodules larger than 3mm. Detecting smaller 

nodules is also critical for early diagnosis but is more challenging due to lower resolution 

and increased noise. Only Chung et al. and Song et al. evaluated on nodules smaller than 

3mm. More research is still needed into precise segmentation of sub-3mm nodules. 

Thirdly, several works did not provide key performance metrics like sensitivity, 

false positive rate, or computational time. These metrics are important for evaluating and 

comparing methods. Works that omit them make it difficult to critically judge the 

approach. 

Fourthly, many methods are only evaluated qualitatively through visual 

inspection. Quantitative evaluation using metrics like sensitivity, accuracy and dice 

coefficient is needed to objectively compare techniques. Qualitative evaluation alone 

risks bias and makes fair comparison impossible. 

Fifthly, most works focus on common solid nodules. Segmenting other types like 

juxtapleural, juxtavascular or ground glass opacity nodules is equally important but less 
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investigated. Only a few works by Wang et al., Roy et al., Shakir et al. and Kim et al. 

evaluated on these non-solid nodule types. More research should target precise 

segmentation of diverse nodule types. 

Sixthly, many works do not discuss the clinical significance and potential real-

world impact of their methods. Translating these techniques into clinical practice is the 

ultimate goal, yet few works provide clinical evidence like observer studies with 

radiologists or integration with hospital PACS systems. More evaluation in a clinical 

setting would strengthen the methods' potential for real-world lung cancer diagnosis. 

Seventhly, several deep learning approaches have emerged recently but are still a 

minority compared to traditional methods. Deep learning has huge potential to leverage 

large datasets and extract semantic features automatically. But most works still use 

handcrafted features. More exploration of deep learning and neural networks for this 

application is warranted. 

Finally, few works have investigated combining multiple methods to utilize 

complementary strengths. Hybrid approaches that integrate deep learning with traditional 

methods like level sets may outperform either alone. This is still an underexplored area 

with much promise. 

Table 2.1 Processing stages included in each of the selected works 

Authors 
Database 

Acquisition 

Pre-

processi

ng 

Lung 

Segmentati

on 

Nodule 

detecti

on 

FP 

reducti

on 

(Wang, S., et 

al., 2017) 
LIDC-IDRI NI YES YES YES 

(Roy, R., et 

al.,2019) 
LIDC-IDRI YES YES YES NI 

(Li, Y., et 

al.,2018) 
LIDC-IDRI YES YES NI NI 

(Farhangi, M. 

M., et al.,2017) 
LIDC-IDRI YES YES YES NI 
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Authors 
Database 

Acquisition 

Pre-

processi

ng 

Lung 

Segmentati

on 

Nodule 

detecti

on 

FP 

reducti

on 

(Song, J., et 

al.,2016) 
LIDC-IDRI YES YES YES YES 

(Saien, S., et 

al.,2018) 

LIDC/LIDC

-IDRI
YES YES YES YES 

(Abbas, Q. 

2017) 

LIDC/LIDC

-IDRI
YES YES YES NI 

(Nithila, E. E., 

et al.,2019) 

LIDC-IDRI/ 

SPIE-

AAPM 

YES YES YES NI 

(Zhang, W., et 

al.,2017) 

LIDC-IDRI/ 

our own 

data sets 

NI YES NI NI 

(Manickavasag

am, R., et 

al.,2019) 

LIDC NI YES YES NI 

(Chunran, Y., et 

al.,2018) 
LIDC NI YES YES NI 

(Vishraj, R., et 

al.,2018) 
LIDC NI YES YES YES 

(Huidrom, R., 

et al.,2018) 

LIDC and 

RIMS 
YES YES YES NI 

(Chung, H., et 

al.,2018) 

LIDC and 

WKUH 
NI YES YES YES 

(Shakir, H., et 

al.,2018) 

TCIA/CUM

C/ 

RIDER/FD

A/ 

LIDC in SU 

YES YES YES NI 

Table 2.1 Continued
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Authors 
Database 

Acquisition 

Pre-

processi

ng 

Lung 

Segmentati

on 

Nodule 

detecti

on 

FP 

reducti

on 

(Sargent, D., et 

al.,2017) 

FDA lung 

phantom 

dataset/SPI

E 2016 

YES YES YES NI 

(Liang, R., et 

al.,2017) 
DIR-LAB YES YES NI NI 

(Swierczynski, 

P., et al.,2018) 
DIR-LAB YES YES NI NI 

(Rebouças 

Filho, P. P., et 

al.,2019) 

Lung CT 

images  and 

Brain CT 

images 

YES YES NI NI 

(Priyadharshini, 

F. A., et

al.,2018) 

Lung CT 

images  and  

Brain CT 

images 

YES NI NI NI 

(Siriapisith, T., 

et al.,2019) 
3D CT YES NI NI NI 

(Astaraki, M., 

et al.,2018) 

1340 CT 

slices of 

eight  OARs 

(organs-at-

risk) 

YES YES YES NI 

(Rebouças 

Filho, P. P., et 

al.,2017) 

Database 

built from 

COPD, 

cystic 

fibrosis and 

NI YES YES NI 

Table 2.1 Continued
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Authors 
Database 

Acquisition 

Pre-

processi

ng 

Lung 

Segmentati

on 

Nodule 

detecti

on 

FP 

reducti

on 

healthy 

patients. 

(Hooda, R., et 

al.,2019) 

Publicly 

available 

JSRT 

NI YES YES NI 

(Gong, J., et 

al.,2018) 

LUNA16  

and  

ANODE09 

YES YES YES YES 

(Samaghcheh, 

Z. N., et

al.,2018) 

CRPF from 

VIA/I-

ELCAP 

YES YES YES NI 

(Veduruparthi, 

B. K., et

al.,2018) 

CBCT YES YES NI NI 

(Hao, R., et 

al.,2018) 

PET-CT 

from a 

hospital in 

Shanxi, 

China 

YES YES YES 
YES 

(Zhu, H., et 

al.,2017) 

Shanghai 

Chest 

Hospital CT 

images 

YES YES YES NI 

(Suárez-Mejías, 

C., et al.,2017) 

Randomly 

of 26 cases 
YES NI YES NI 

(Kim, Y. J., et 

al.,2016) 

Four data 

sets 
YES YES YES NI 

Table 2.1 Continued



 69 

Authors 
Database 

Acquisition 

Pre-

processi

ng 

Lung 

Segmentati

on 

Nodule 

detecti

on 

FP 

reducti

on 

(Zhuang, M., et 

al.,2016) 

Clinical 

datasets 
NI YES YES NI 

(Kronman, A., 

et al.,2016) 

28 CT scans 

of two 

common 

YES YES YES NI 

(Soliman, A., et 

al.,2016) 

25 patients 

at EE-BH 
NI YES YES NI 

(Saravanan, S., 

et al.,2017) 
YES YES YES NI 

(Pak, C.-H., et 

al.,2017) 
NI YES YES NI 

(Manoj Kumar, 

P., et al.,2016) 
NI YES YES NI 

In Table 2.2, the computational methods that have been used to carry out the 

automated identification of pulmonary nodules in lung CT scan pictures are mentioned. 

This detection process has been carried out successfully. According to the reviewed 

papers, 8 papers are related to the Active Contour Method. 3 papers are related to Chan 

Vese (CV) model. As an accuracy segmented model, only two papers are mentioned to 

deep learning. Therefore, the proposed deep learning and level set algorithm is valuable 

to investigate. 

Table 2.2 Computational techniques that have been used to carry out the automatic 

detection of pulmonary nodules in lung CT scan images 

Authors Computational technique(s) 

(Manickavasagam, R., et 

al.,2019) 
Active Contour Model 

(Nithila, E. E., et 

al.,2019) 
Active Contour Model 

Table 2.1 Continued
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Authors Computational technique(s) 

(Zhang, W., et al.,2017) Active Contour Model 

(Zhuang, M., et al.,2016) Active Contour Model 

(Hao, R., et al.,2018) LBF Active Contour Model 

(Saravanan, S., et 

al.,2017) 
DRLSE and Active contour 

(Rebouças Filho, P. P., et 

al.,2019) 
(OPS)-adaptive and active contour 

(Rebouças Filho, P. P., et 

al.,2017) 

3D Adaptive Crisp Active Contour Method (3D 

ACACM) 

(Farhangi, M. M., et 

al.,2017) 
3-D Active Contour Model

(Pak, C.-H., et al.,2017) 
Chan-Vese model (CV model) and improved mean 

square error model (ME model) 

(Swierczynski, P., et 

al.,2018) 
Chan-Vese model 

(Chung, H., et al.,2018) Chan-Vese model 

(Astaraki, M., et al.,2018) level-set 

(Shakir, H., et al.,2018) level-set 

(Saien, S., et al.,2018) level-set 

(Samaghcheh, Z. N., et 

al.,2018) 
level-set 

(Priyadharshini, F. A., et 

al.,2018) 

Bat Algorithm (BA) and the Kapur’s function level-

set (DRLS) 

(Li, Y., et al.,2018) level-set 

(Veduruparthi, B. K., et 

al.,2018) 

gradient-based level-set (GB) and Local Rank 

Transform (LRT) 

(Vishraj, R., et al.,2018) Region-based level-set Method (rblsm) 

(Liang, R., et al.,2017) level-set 

Table 2.2 Continued
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Authors Computational technique(s) 

(Zhu, H., et al.,2017) 
Based on the super-pixels and the level-set 

segmentation methods 

(Chunran, Y., et al.,2018) 
Fully convolutional network (FCN), the level set 

method 

(Wang, S. et al., 2017) Multi-view convolutional neural networks 

(Siriapisith, T., et 

al.,2019) 

Iteratively alternating between two different 

segmentation techniques 

(Manoj Kumar, P., et 

al.,2016) 

Mostly watershed rule and multi-atlas segmentation 

method 

(Gong, J., et al.,2018) 
3D tensor filtering algorithm and local image feature 

analysis 

(Sargent, D., et al.,2017) 3D extension of the 2D edge linking method 

(Huidrom, R., et al.,2018) Fully automated lung segmentation method 

(Hooda, R., et al.,2019) Shallow learning-based method 

(Suárez-Mejías, C., et 

al.,2017) 
continuous convex relaxation methodology 

(Kim, Y. J., et al.,2016) Five types of semi-automatic segmentation methods 

(Abbas, Q. 2017) New segmentation algorithm (propseg) 

(Kronman, A., et 

al.,2016) 
New geometry-based algorithm 

(Soliman, A., et al.,2016) New nonrigid registration methodology 

(Song, J., et al.,2016) 
Toboggan based growing automatic segmentation 

approach (TBGA) 

The computational classifiers that have been used in the false positive reduction 

step are indicated in Table 2.3. Most of models are classified by the traditional algorithms. 

Only two papers are related to deep learning classifiers for the segmentation application. 

The following characteristics were included in order to make comparisons across 

the publications that were found during this review: sensitivity, false-positive rate (FP), 

Table 2.2 Continued
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number of nodules used in the validation, size of the nodules, reaction time, and kinds of 

nodules. These characteristics may be found in the vast majority of the articles that were 

chosen. Table 2.4 provides a brief summary of the comparison. 

For the segmentation techniques in Table 2.2, many rely solely on standard 

datasets like LIDC/LIDC-IDRI for evaluation. While useful benchmarks, over-

dependence on these datasets risks overfitting and reduced generalizability. Testing on 

more diverse data from multiple sources would strengthen validity. Most works also 

focused on nodules >3mm. Detecting smaller nodules is critical but more challenging due 

to lower resolution and higher noise. Only Chung et al. and Song et al. evaluated on sub-

3mm nodules. More research is still needed for precise segmentation of small nodules. 

Table 2.3 Computational classifiers that have been used for the false positive 

reduction task 

Authors Computational classifier 

(Wang, S. et al., 2017) 
Fully connected layer convolutional neural 

networks 

(Saien, S., et al.,2018) 
Hybrid undersampling/boosting algorithm 

Called rusboost 

(Gong, J., et al.,2018) 

CFS (Correlation Feature Selection) subset 

evaluator attribute selection method/Random 

forest classifier 

(Chung, H., et al.,2018) Bayesian approach 

(Vishraj, R., et al.,2018) Intuitionistic Fuzzy domain 

(Hao, R., et al.,2018) Information entropy and joint vector 

(Song, J., et al.,2016) Three-step framework 

Several works omit key metrics like sensitivity, false positives, and runtime. 

Without these metrics, it is difficult to critically evaluate and compare methods. 

Qualitative visual evaluation alone risks bias and lacks objectivity. Quantitative metrics 

using sensitivity, accuracy, dice coefficient. are essential for proper assessment. 
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The majority focus on common solid nodules. Segmenting other types like 

juxtapleural, juxtavascular or ground glass opacity nodules is equally important yet 

under-explored. Only Wang et al., Roy et al., Shakir et al. and Kim et al. evaluated such 

non-solid nodules. More work should target segmenting diverse, challenging nodule 

types. 

Most works lack discussion of clinical relevance and real-world impact. 

Translating techniques into clinical practice is the ultimate goal, yet few works provide 

clinical validation like radiologist studies or integration with hospital PACS. More 

clinical evaluation would strengthen real-world utility. 

Deep learning approaches are still a minority, with most using handcrafted 

features. Deep learning shows immense potential from large datasets and automated 

feature extraction. But this remains underexplored for this application. 

Few works investigate combining methods to utilize complementary strengths. 

Hybrid approaches integrating deep learning and traditional techniques may outperform 

either alone. This fusion is still an open research area. 

For the classifiers in Table 2.3, a key limitation is the reliance on conventional 

machine learning algorithms. Only Wang et al. and Saien et al. leverage deep learning 

for false positive reduction. Classical algorithms lack the representation learning 

capabilities of deep neural networks. Deep learning-based classifiers may offer improved 

generalization and performance, but remain under-studied. 

Many traditional classifiers are also susceptible to overfitting on small, 

homogeneous datasets. Robustness to diverse samples is critical for real-world 

deployment. Deep learning can better capture feature representations to improve out-of-

sample generalization, if sufficient training data is available. 

Classical methods like Bayesian, fuzzy logic and random forests have limited 

capacity to model complex feature interactions. Deep neural networks can implicitly 

model intricate relationships through hierarchical feature extraction. This can better 

separate complex true and false positives. 



74 

Table 2.4 Level set techniques for automatic detection of pulmonary nodules from lung CT images 

Method 
Sensitivity 

(%) 
FP/exam 

No of 

nodules 
Size 

Response 

time 
Nodule types 

No.of 

images 

(Wang, S. Et al., 

2017) 
83.72(20.71) 77.58(15.83) 893 NI NI 

Juxta-pleural, 

cavitary/nonsolid 
NI 

(Manickavasagam, 

R., et al.,2019) 
92.17% NI NI NI NI NI 200 

(Siriapisith, T., et 

al.,2019) 
NI NI NI NI NI NI 

Abdominal 

Aortic 

Aneurysms 

(20 cases) 

(Swierczynski, P., 

et al.,2018) 
NI NI NI NI NI NI 

10 pairs of 

4D CT 

lung scans 

(Rebouças Filho, 

P. P., et al.,2019)
NI NI NI NI NI lung and brain 

36(Normal, 

Fibrosis 
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Method 
Sensitivity 

(%) 
FP/exam 

No of 

nodules 
Size 

Response 

time 
Nodule types 

No.of 

images 

and 

COPD) 

(Roy, R., et 

al.,2019) 

The reduced 

error rate  of 

isolated 

(8.33%) and 

pleural 

adhesion 

(11.76%) 

NI 

38 solid 

25/juxta 

pleural 

CT image of 

the thorax 

with size 512 

*512

CNN (982 s) 

over 220 

images 

DRL SE(418 

s), WL 

SE(532 s), 

(Roy, R., et 

al.,2019) 

(456s) 

Solid nodules and 

juxta-pleural 

nodules 

NI 

（Hooda, R., et 

al.,2019） 
NI NI 

154 lung 

nodules 

4096 

samples 

128 *128 

Pixel size as 

0.175 mm 

40.63s NI NI 

Table 2.4 Continued
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Method 
Sensitivity 

(%) 
FP/exam 

No of 

nodules 
Size 

Response 

time 
Nodule types 

No.of 

images 

(Nithila, E. E., et 

al.,2019) 
NI NI NI 

Thickness of 

slice varies 

from 1.25 to 

2.5 mm range 

with thepixel 

size from 

0.48 mm to 

0.72 mm 

Computation 

time of only 

17 s 

edge based and 

region based 
NI 

(Shakir, H., et 

al.,2018) 
NI NI 72 Any sizes NI 

Well-

circumscribed 

nodules, juxta-

vascular nodules, 

and juxta-pleural 

nodules 

NI 

Table 2.4 Continued
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Method 
Sensitivity 

(%) 
FP/exam 

No of 

nodules 
Size 

Response 

time 
Nodule types 

No.of 

images 

(Saien, S., et 

al.,2018) 
92.22 2.4 per scan 92 

3mm or 

larger 

It has shorter 

computational 

time 

compared to 

other methods 

All type NI 

(Gong, J., et 

al.,2018) 
84.62 2.8 per scan 39 [3mm,30mm] NI 

Ball-like or dot-

like structure 
NI 

(Samaghcheh, Z. 

N., et al.,2018) 
NI NI 39 NI NI NI NI 

(Chunran, Y., et 

al.,2018) 

Accuracy of 

100% and the 

dice overlap 

index of 

segmentation 

of 0.9 

NI 
1010 CT 

scans 
[3mm,30mm] NI All types 2000 

Table 2.4 Continued
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Method 
Sensitivity 

(%) 
FP/exam 

No of 

nodules 
Size 

Response 

time 
Nodule types 

No.of 

images 

(Huidrom, R., et 

al.,2018) 

0.99759 

0.99204 
NI 

20 CT 

scans 
NI NI 

Juxta-pleural 

nodules 
NI 

(Priyadharshini, F. 

A., et al.,2018) 
NI NI NI 

Size 630 * 

630 pixels 
NI Brain and lung NI 

(Li, Y., et 

al.,2018) 
NI NI 175 Over3mm NI 

Juxta-pleural (JP) 

and pleural-tail 

(PT) nodules 

NI 

(Chung, H., et 

al.,2018) 
0.9785 NI 

314/16873; 

125/1766 

Smaller than 

3mm 
NI 

Juxta-pleural 

nodule 
NI 

(Vishraj, R., et 

al.,2018) 
NI NI NI Ni NI 

Juxta-pleural 

nodules 
NI 

(Hao, R., et 

al.,2018) 

92.35% 

average dice 

similarity 

coefficient 

NI 400 

2.19mm 

Hausdorff 

distance 

Less time 
Juxta-vascular 

pulmonary nodules 
NI 

Table 2.4 Continued
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Method 
Sensitivity 

(%) 
FP/exam 

No of 

nodules 
Size 

Response 

time 
Nodule types 

No.of 

images 

(Zhang, W., et 

al.,2017) 
NI NI 76 NI NI 

Left and right 

lungs, juxta-

pleural nodules 

60+60 

(Farhangi, M. M., 

et al.,2017) NI NI 542 

Greater than 

or equal to 3 

mm 

NI All types NI 

(Abbas, Q. 2017) NI NI NI 
(512 * 512) 

pixels 
NI 

Right or left lungs, 

lung nodules, 

human airwaysand 

pulmonary trees 

220 

(Liang, R., et 

al.,2017) 
NI NI NI NI 

67% of the 

time that LBF 

and DRLSE 

did 

NI NI 

Table 2.4 Continued
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Method 
Sensitivity 

(%) 
FP/exam 

No of 

nodules 
Size 

Response 

time 
Nodule types 

No.of 

images 

(Zhu, H., et 

al.,2017) 
NI NI 104 groups [3mm,50mm] NI 

Some are 

independent, and 

some are close to 

the lung wall or 

other biological 

tissue 

NI 

(Sargent, D., et 

al.,2017) 
NI NI 80 [8mm,10mm] NI 

Spherical, 

elliptical, 

speculated, and 

lobulated 

NI 

(Suárez-Mejías, 

C., et al.,2017) 
90 % NI NI 

512 * 512 

pixels 

92.5 % lower 

than the time 

taken 

Retroperitoneal 

tumors 

26 CT 

image 

volumes 

(Kim, Y. J., et 

al.,2016) 

Approximately 

80%–90% 
Tens 40 

512 * 512 

with 12 b/p 

Effective in 

terms of time 

Persistent Ground 

Glass Nodules 
NI 

Table 2.4 Continued
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Method 
Sensitivity 

(%) 
FP/exam 

No of 

nodules 
Size 

Response 

time 
Nodule types 

No.of 

images 

(Zhuang, M., et 

al.,2016) 
NI NI 20+16 NI NI Various lesion NI 

(Kronman, A., et 

al.,2016) 
NI NI 

28 CT 

scans 
NI 

35.7 s (std = 

2.7) and 41.1 

s (std = 10.7) 

Abdominal Aortic 

Aneurysms (AAA) 

and lung tumors 

NI 

(Soliman, A., et 

al.,2016) 
NI NI 25 patients NI NI NI NI 

(Song, J., et 

al.,2016) 
96.35% 

73 false 

positives 

850 

lesions+121 

lesions 

[3mm,30mm] 

(average 9.80 

mm) 

Under 8s 

Solid nodules, 

ground-glass 

opacities and 

cavities; Juxta-

pleural and 

juxtavascular 

lesions  

NI 

Table 2.4 Continued
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Most works evaluate classifiers in isolation, rather than end-to-end with the full 

segmentation pipeline. But classifier performance is highly dependent on the upstream 

steps. Joint end-to-end evaluation is needed for a true gauge of real-world viability. 

Runtime is also rarely reported, but efficiency is important for real-time clinical 

use. Deep networks can leverage parallel GPU processing for fast inference unlike 

classical serial algorithms. But deep learning's superiority is not guaranteed and needs 

investigation. 

In summary, while existing works have advanced lung nodule segmentation, 

several limitations around evaluation, metrics, nodule types, clinical relevance, deep 

learning fusion, generalization, feature modeling and efficiency warrant further 

investigation. But the field is advancing rapidly, with these gaps presenting exciting 

opportunities for future work. More diversity, combinatory techniques, clinical studies, 

neural networks and rigorous benchmarking will further enhance lung segmentation and 

its clinical impact. Critical analysis steers progress by identifying current weaknesses and 

motivating innovative solutions for real-world lung cancer care. 

Accurate lung nodule segmentation from CT scans is an active area of research. 

U-Net (Ronneberger et al., 2015) is one of the most popular CNN architectures for 

biomedical segmentation. Huang et al. (2021) utilized a 3D U-Net model for lung nodule 

delineation, achieving 82.3% dice similarity. However, vanilla U-Net struggles with 

small nodules due to limited receptive field. Multi-scale approaches like nnU-Net 

(Isensee et al., 2021) integrate multiple U-Nets to capture both local and larger context. 

Chen et al. (2021) employed a nnU-Net pipeline for lung nodule segmentation, improving 

sensitivity to 82.4% for small nodules (<10mm). 

Attention mechanisms are also promising to focus on salient nodule features. 

Wang et al. (2022) proposed a dual attention-guided U-Net for lung nodule delineation, 

outperforming U-Net and Attention U-Net. Dice scores reached 83.5% overall. Self-

supervised methods like Contrastive Learning (CL) also boost performance by pre-

training on unlabeled data before fine-tuning. Guo et al. (2022) applied CL to a U-Net-

like model, achieving 85.2% dice on the LIDC dataset. Another trend is incorporation of 

shape/boundary priors into networks. Ravishankar et al. (2021) imposed shape 
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constraints within a convolutional LSTM model, improving contour regularization and 

dice score to 84.7%. Zhu et al. (2020) embedded a shape-aware loss function into a 

cascaded segmentation network, enhancing boundary adherence and reaching 81.6% dice 

accuracy.  Weakly supervised methods using only bounding boxes or scribbles can reduce 

annotation burden. Zhou et al. (2021) trained a CNN weakly on just bounding boxes, 

achieving comparable accuracy to fully supervised models. Hu et al. (2022) introduced 

scribble annotations to progressively train a segmentation network, reaching 83.2% dice 

performance. Such methods show promise for reducing manual labeling effort. Efficient 

model design is also crucial for real-time inference. Liao et al. (2021) developed a 

compact segmentation network with just 1.8M parameters, delivering 79.2% dice while 

running over 80 FPS. Li et al. (2020) exploited model distillation techniques like 

knowledge transfer to compress U-Net by 4x with only a 1.2% drop in dice. These works 

demonstrate the potential for practical deployable segmentation. Segmentation 

consistency across datasets is another challenge. Standard datasets like LIDC have 

inherent biases that cause overfitting. Multi-dataset training can improve generalization, 

as explored by Gerard et al. (2020) using the LIDC, LUNA16 and NLST datasets. They 

achieved consistent dice scores around 83% across datasets using a 3D DualNet 

architecture. In summary, major advances in lung nodule segmentation leverage CNNs, 

attention mechanisms, shape/boundary constraints, weakly supervised learning, model 

compression and multi-dataset training. But several challenges remain around accuracy, 

efficiency, annotation burden and generalization. Continued research and benchmarking 

on diverse real-world data will further progress segmentation for clinical benefit. 

2.5 The analysis of the Three Problems 

The ability to perceive and understand the world around us is a fundamental 

aspect of human existence. Vision plays a crucial role in this process, allowing us to 

gather and interpret visual information from our surroundings. However, as the passage 

rightly points out, our individual capacity to acquire visual information is inherently 

limited by various factors (Liu and He, 2015). This limitation is where images emerge as 

invaluable tools, serving as material carriers that bridge the gap between the real world 

and our comprehension of it. 
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Images have become indispensable in numerous fields, ranging from astronomy 

and satellite remote sensing to medical imaging, nanotechnology, and even entertainment 

and digital communication (Liu and He, 2015). They enable us to perceive and 

understand targets in diverse environments and at different scales, transcending the 

boundaries of space and time. By capturing and preserving visual information, images 

facilitate information visualization and sharing, empowering humans to make informed 

decisions and take appropriate actions. 

The passage emphasizes the importance of physical instruments, such as optical 

devices, in the acquisition of images (Liu and He, 2015). These instruments leverage 

advancements in technology to capture visual data that would otherwise be inaccessible 

to the naked eye. For instance, telescopes in astronomy allow us to observe celestial 

bodies and phenomena that are millions of light-years away, while microscopes in 

nanotechnology reveal the intricate details of structures at the nanoscale. 

Moreover, the advent of digital technology has revolutionized the way we store, 

transmit, and process images (Liu and He, 2015). Digital imaging techniques have 

enabled the efficient storage and dissemination of visual information, facilitating 

collaboration and knowledge-sharing across diverse domains. From satellite imagery 

used for environmental monitoring and urban planning to medical imaging techniques 

like X-rays, CT scans, and MRI, digital images have become indispensable tools for 

understanding and decision-making. 

However, as the passage aptly notes, the original information contained within an 

image is often not directly usable by humans (Liu and He, 2015). This limitation has 

given rise to the field of image processing, which aims to enhance, analyze, and extract 

meaningful information from digital images. Image processing techniques play a crucial 

role in various applications, such as medical diagnosis, object recognition, remote sensing, 

and scientific visualization. Despite the significant progress made in image processing 

research, the passage acknowledges that there are still unresolved issues that need to be 

addressed (Liu and He, 2015). These challenges may arise from factors such as noise, 

uneven illumination, complex backgrounds, or limitations in existing algorithms and 

methodologies. Overcoming these obstacles is essential for improving the accuracy, 
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robustness, and efficiency of image processing techniques, ultimately enhancing our 

ability to extract valuable insights from visual data. 

One of the key challenges mentioned in the passage is the problem of uneven gray 

levels, which can significantly impact the accuracy of image segmentation algorithms 

(Liu and He, 2015). Uneven illumination or variations in imaging equipment can lead to 

non-uniform grayscale distributions within an image, making it difficult to distinguish 

between different structures or regions of interest. Addressing this issue requires the 

development of advanced segmentation algorithms that can effectively handle uneven 

grayscale levels, potentially through adaptive techniques or novel energy formulations. 

Another challenge highlighted is the presence of noise in images (Liu and He, 2015). 

Noise can originate from various sources, such as sensor imperfections, environmental 

conditions, or the imaging process itself. Noise can obscure important details, introduce 

artifacts, and degrade the overall quality of the image, negatively impacting subsequent 

processing and analysis tasks. Developing robust noise-reduction techniques and noise-

resilient image processing algorithms is crucial for obtaining reliable and accurate results. 

Furthermore, the passage mentions the challenges posed by complex backgrounds, 

particularly in natural images or medical imaging scenarios (Liu and He, 2015). Complex 

backgrounds can make it difficult for segmentation algorithms to distinguish between the 

foreground object of interest and the background clutter. This challenge requires the 

development of advanced feature representations, machine learning techniques, or multi-

scale approaches to effectively handle the complexity and variability present in real-

world images. 

In addition to these specific challenges, the passage also alludes to the need for 

improved computational efficiency and robustness in image processing algorithms (Liu 

and He, 2015). As imaging technologies continue to advance and the demand for real-

time or near-real-time processing increases, it becomes crucial to develop algorithms that 

can efficiently handle large volumes of data while maintaining accuracy and reliability. 

By addressing these challenges, researchers and practitioners in the field of image 

processing can unlock the full potential of visual information, enabling more accurate 

and reliable analysis across a wide range of domains. Innovative solutions in image 

processing can have far-reaching implications, from enhancing medical diagnostics and 
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treatment planning to enabling advanced object recognition in autonomous systems or 

improving our understanding of the natural world through remote sensing and scientific 

imaging. 

In conclusion, the part highlights the vital role of images in bridging the gap 

between the real world and human perception, while also acknowledging the necessity of 

image processing techniques to extract meaningful information from visual data (Liu and 

He, 2015). Despite the significant progress made in this field, there remain unresolved 

issues that require further research and innovation. By addressing these challenges, 

researchers and practitioners can unlock the full potential of visual information, enabling 

more informed decision-making and advancing our understanding of the world around 

us. 

2.5.1 The analysis of Uneven Gray Levels Problems 

Deep Medical image segmentation plays a crucial role in various clinical 

applications, such as disease diagnosis, treatment planning, and surgical guidance. 

However, achieving accurate segmentation is a challenging task, particularly when 

dealing with images exhibiting uneven gray levels. This issue arises due to defects in 

imaging equipment, inconsistent illumination, or inherent tissue heterogeneity (Li et al., 

2020; Yin et al., 2020). The presence of uneven gray levels can obscure vital structures 

and hinder the correct delineation of regions of interest, leading to potential misdiagnosis 

or suboptimal treatment strategies. 

This part highlights the shortcomings of existing level-set segmentation 

algorithms in handling images with uneven gray levels. These algorithms often suffer 

from limitations such as getting trapped in local minima, sensitivity to initial contour 

placement, and limited segmentation efficiency (Li et al., 2020; Yin et al., 2020). To 

address these challenges, researchers have proposed various approaches, each with its 

own strengths and weaknesses. 

This section aims to provide an in-depth analysis of the Uneven Gray Levels 

Problems section, exploring the underlying causes, existing solutions, and their 

limitations. Furthermore, it will highlight the significance of innovations like the 
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VKMHLS method in overcoming these challenges and improving medical image 

segmentation accuracy. 

1) Causes of Uneven Gray Levels in Medical Images 

Uneven gray levels in medical images can arise from various sources, including 

defects in imaging equipment and variations in illumination conditions. Imaging 

modalities such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), 

and infrared imaging are particularly susceptible to this issue (Li et al., 2020; Yin et al., 

2020). 

Defects in imaging equipment can contribute to uneven gray levels due to factors 

such as sensor imperfections, non-uniform sensitivity, or improper calibration. For 

instance, in MRI, variations in the magnetic field strength or radio frequency coil 

sensitivity can lead to intensity inhomogeneities across the image (Belaroussi et al., 2006; 

Vovk et al., 2007). 

Changes in illumination conditions can also result in uneven gray levels, 

particularly in optical imaging modalities like endoscopy or microscopy. Variations in 

lighting angles, intensity, or shadows can create intensity gradients and contrast 

differences within the image (Zhang et al., 2014; Wang et al., 2017). 

Additionally, the inherent heterogeneity of biological tissues can contribute to 

uneven gray levels. Different tissue types, such as muscle, fat, or bone, exhibit varying 

degrees of signal attenuation and absorption, leading to intensity variations within the 

imaged region (Chen et al., 2017; Min et al., 2018). 

2) Challenges with Existing Level-Set Segmentation Algorithms for Uneven 

Gray Levels 

Existing level-set segmentation algorithms face significant challenges when 

confronted with images exhibiting uneven gray levels. The document highlights three 

main limitations: 

Prone to Local Minima. In (Li et al., 2020; Yin et al., 2020), level-set algorithms 

are optimization-based techniques that seek to minimize an energy functional by evolving 
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contours to segment objects. However, in the presence of uneven gray levels, the energy 

landscape can become complex, with multiple local minima. This can lead to the 

algorithm converging to suboptimal solutions, resulting in inaccurate segmentations. 

Sensitivity to Initial Contour. In (Li et al., 2020; Yin et al., 2020), many level-set 

methods require the user to provide an initial contour or seed points as a starting point for 

the segmentation process. In scenarios with uneven gray levels, slight variations in the 

initial contour placement can lead to vastly different segmentation results. This sensitivity 

demands precise prior knowledge of the object's location, which may not be feasible in 

practical applications. 

Limited Segmentation Efficiency. In (Li et al., 2020; Yin et al., 2020), numerical 

implementations of level-set algorithms often require small time steps to ensure stability 

and convergence during the optimization process. This constraint leads to slow 

convergence rates, hindering the overall segmentation efficiency. As medical images 

continue to increase in size and resolution, this limitation becomes more pronounced, 

prolonging the segmentation process. 

3) Existing Solutions and Their Limitations for Uneven Gray Levels 

Researchers have proposed various approaches to address the challenges posed 

by uneven gray levels in medical image segmentation. These solutions can be broadly 

categorized into local area-based methods, offset correction level-set clustering methods, 

and adaptive scale parameter level-set methods. 

Local Area-Based Methods. These methods are based on the assumption that the 

gray level within a given region remains consistent (Li et al., 2007; Li et al., 2008; Wang 

et al., 2009; Zhang et al., 2010; Liu and Peng, 2012; Ji et al., 2015; Wang et al., 2017; 

Chen et al., 2017; Min et al., 2018). While these techniques can segment images with 

uneven gray levels, they are prone to falling into local minima and are sensitive to the 

initial contour placement (Li et al., 2020; Yin et al., 2020). 

Offset Correction Level-Set Clustering Methods. These methods, based on K-

means clustering, have gained significant attention in recent years (Li et al., 2011; Zhan 

et al., 2013; Zhang et al., 2014; Zhang et al., 2015; Huang and Zeng, 2015; Min et al., 
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2016; Cai et al., 2018; Wang et al., 2018). By estimating the offset field of the image 

through local K-means clustering, these approaches can achieve accurate segmentation 

despite gray inhomogeneity. However, they suffer from several limitations, including the 

use of finite difference strategies that require small time steps for stability, local minima 

trapping, sensitivity to the initial contour, and the use of fixed scale parameters (Li et al., 

2020; Yin et al., 2020). 

Adaptive Scale Parameter Level-Set Methods. To address the limitations of fixed 

scale parameters, researchers have proposed adaptive scale parameter level-set 

segmentation methods (Cai et al., 2018; Piovano and Papadopoulo, 2008). These 

approaches employ techniques such as image entropy or local variance to automatically 

determine the scale parameters of the clustering kernel function (Cai et al., 2018). While 

these methods represent an improvement, they still face challenges, such as using the 

same scale parameter at each pixel, leading to incorrect segmentations for images with 

severe gray-scale inhomogeneity or nonlinearity. Additionally, they solely rely on local 

area information, making them susceptible to local minima trapping and initial contour 

sensitivity (Li et al., 2020; Yin et al., 2020). 

Multi-Scale Level-Set Approaches. In recent years, multi-scale level-set 

approaches have been proposed (Wang et al., 2015; Min et al., 2016; Zhang et al., 2017). 

These methods design multi-layer level-set structures with a set of scale parameters, 

adaptively deciding the scale parameters at each pixel and maintaining the ability to 

detect global contrast information to prevent local minima trapping (Sui et al., 2012; Min 

et al., 2016). However, these approaches face limitations in providing appropriate scale 

parameters for segmenting images with highly uneven gray levels, as they use a series of 

fixed scale parameters and can only offer a limited number of candidate scales (Li et al., 

2020; Yin et al., 2020). 

While these existing solutions have made significant contributions, they still face 

challenges in accurately segmenting medical images with severe uneven gray levels, 

demonstrating the need for more robust and adaptive approaches. 

4) Significance of the VKMHLS Method for Uneven Gray Levels Issues 
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The part highlights the importance of the VKMHLS (Variational K-means and 

Multi-layer Hybrid Level-Set) method as a novel approach designed to address the 

complexities of lung nodule segmentation and overcome the limitations of existing 

algorithms (Li et al., 2020; Yin et al., 2020). 

5) The VKMHLS method introduces several key innovations: 

Simplification of the Local Intensity Clustering (LIC) model. By simplifying the 

LIC model and introducing a novel energy functional based on the region-based pressure 

function, VKMHLS enhances segmentation efficiency for low gray-scale images (Li et 

al., 2020; Yin et al., 2020). 

Fast Numerical Implementation Strategy. VKMHLS employs a fast numerical 

implementation strategy that swiftly segments images and estimates the offset field, 

significantly improving overall segmentation efficiency (Li et al., 2020; Yin et al., 2020). 

Adaptive Multi-layer Level-Set Structure. To address the complexities of lung 

nodule segmentation and achieve robust and accurate results in challenging medical 

image datasets, VKMHLS extends its capabilities through a multi-layer model-based 

level-set structure (Li et al., 2020; Yin et al., 2020). This structure employs two specially 

designed scale operators that adaptively determine the optimal number of layers and the 

precise scale parameters for each layer. This adaptive multi-layer approach overcomes 

local minima challenges during segmentation, enabling VKMHLS to handle images with 

severely uneven gray level distributions successfully. 

Integration of the CER Active Contour Model. VKMHLS introduces an 

innovative active contour model, CER, which intelligently combines elements from the 

well-established Chan-Vese (CV) model and the Region-Scalable Fitting (RSF) model 

(Li et al., 2020; Yin et al., 2020). CER integrates information entropy calculations and 

minimizes the overall energy functional, allowing it to successfully segment regions with 

weak edges, strong noise interference, and uneven brightness variations across the 

medical image. This robust approach enhances the accuracy of delineating target 

boundaries, proving particularly valuable for segmenting structures in magnetic 

resonance and ultrasonic imaging modalities. 



 

 91 

Hybrid Level-Set Algorithm Based on Kernel Metrics. To tackle the persistent 

challenge of segmenting images with both uneven gray-scale characteristics and high 

levels of noise contamination, VKMHLS incorporates a hybrid level-set image 

segmentation algorithm based on kernel metrics (Li et al., 2020; Yin et al., 2020). This 

algorithm leverages an improved multi-scale mean filter to effectively mitigate gray-scale 

inhomogeneity across the image while reducing the impact of scale parameter selection 

on the final segmentation accuracy. Kernel measurement techniques and calculations of 

local similarity metrics are employed to suppress the influence of noise, enhancing the 

robustness of the method. Additionally, a count gradient regularization term is 

incorporated to further reduce noise impact, ensuring more precise segmentation results. 

Through these innovations, VKMHLS aims to provide more robust and accurate 

segmentations, even in the face of uneven gray levels and noise contamination, ultimately 

contributing to improved medical image analysis and diagnosis. 

6) Experimental Validation and Significance 

The document highlights that comprehensive experimental evaluations 

demonstrate VKMHLS's ability to accurately segment images characterized by both 

gray-scale inhomogeneity and noise contamination, exhibiting robust performance across 

various types of noise distributions (Li et al., 2020; Yin et al., 2020). These attributes 

make VKMHLS a highly valuable tool for tackling real-world image segmentation 

challenges and enabling reliable nodule detection in lung cancer applications. The 

significance of VKMHLS lies in its potential to address the longstanding challenges 

associated with uneven gray levels and noise in medical image segmentation. By 

providing a robust and accurate segmentation solution, VKMHLS can facilitate earlier 

and more precise diagnosis of lung cancer, as well as improve treatment planning and 

patient outcomes. Furthermore, the innovative techniques introduced in VKMHLS, such 

as the adaptive multi-layer level-set structure and the integration of kernel metrics, may 

inspire further research and development in the field of medical image analysis. These 

advancements can potentially be applied to other imaging modalities and clinical 

applications, extending the impact of VKMHLS beyond lung cancer detection. 
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Therefore, the Uneven Gray Levels Problems section of the document highlights 

a critical challenge in medical image segmentation, specifically related to the presence of 

uneven gray levels in imaging modalities like MRI, CT, and infrared. Existing level-set 

segmentation algorithms face significant limitations in handling these irregularities, 

including susceptibility to local minima trapping, sensitivity to initial contour placement, 

and limited segmentation efficiency. While researchers have proposed various solutions, 

such as local area-based methods, offset correction level-set clustering methods, adaptive 

scale parameter level-set methods, and multi-scale level-set approaches, these techniques 

still face challenges in accurately segmenting medical images with severe uneven gray 

levels. The VKMHLS method, introduced in this research, represents a novel and 

innovative approach designed to address the complexities of lung nodule segmentation. 

Through its simplification of the LIC model, introduction of a novel energy functional, 

adaptive multi-layer level-set structure, integration of the CER active contour model, and 

hybrid level-set algorithm based on kernel metrics, VKMHLS aims to enhance 

segmentation accuracy and stability, even in the presence of uneven gray levels and noise 

contamination. 

Experimental results demonstrate VKMHLS's robustness and improved accuracy 

over existing benchmarks, validating its effectiveness as a powerful tool for lung cancer 

detection in challenging medical imaging scenarios. The significance of VKMHLS lies 

not only in its potential to improve lung cancer diagnosis and treatment but also in its 

ability to inspire further research and development in the field of medical image analysis. 

As medical imaging technology continues to advance and the demand for accurate and 

reliable segmentation techniques grows, approaches like VKMHLS will play a crucial 

role in revolutionizing clinical practices and enhancing patient care. 

2.5.2 The analysis of Noise Problems 

Noise is a ubiquitous challenge in medical image segmentation, arising from 

various sources such as the imaging process itself, environmental factors, and hardware 

limitations (Yu et al., 2020; Wang et al., 2020). The presence of noise can significantly 

degrade the quality of medical images, making it difficult for segmentation algorithms to 

accurately delineate structures of interest, such as tumors or organs. This issue is 

particularly critical in applications like cancer diagnosis and treatment planning, where 
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precise segmentation is essential for optimal patient outcomes (Biswas and Hazra, 2022; 

Zhang et al., 2022). 

The document highlights the detrimental impact of noise on existing level-set 

segmentation methods and emphasizes the need for more robust approaches to address 

this challenge. It discusses the difficulties in accurate segmentation with strong noise, the 

inability to handle combined noise and uneven grayscale levels, and the drawbacks of 

existing mixed level-set models in the presence of noise disturbances. 

This section aims to provide an in-depth analysis of the "Noise Problems" section, 

exploring the underlying causes and consequences of noise in medical image 

segmentation, evaluating the strengths and limitations of existing methods, and 

highlighting the potential of novel approaches like VKMHLS to mitigate these challenges. 

1) Sources and Types of Noise in Medical Imaging 

Noise in medical images can originate from various sources, each contributing to 

different types of noise patterns and intensities. Understanding these sources is crucial 

for developing effective noise-resistant segmentation techniques. 

Imaging Process Noise. The imaging process itself can introduce noise due to 

factors such as quantum fluctuations in photon detection (e.g., in X-ray or PET imaging), 

thermal noise in electronic components, or imperfections in the analog-to-digital 

conversion process (Aja-Fernández et al., 2015; Motwani et al., 2020). These sources can 

result in additive white Gaussian noise or speckle noise in the acquired images. 

Environmental Noise. External factors like electromagnetic interference, 

vibrations, or ambient light can contribute to noise in medical images (Weiskopf et al., 

2014; Kozubski and Kozinski, 2019). These sources can lead to structured noise patterns 

that may be difficult to model and remove. 

Low-Dose Acquisition. In modalities like CT or PET, reducing the radiation dose 

to minimize patient exposure can result in increased noise levels in the acquired images 

(Nasirudin et al., 2017; Ghafarian et al., 2021). This trade-off between image quality and 
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patient safety necessitates robust segmentation techniques that can handle noisy low-dose 

images accurately. 

Hardware Limitations. Imperfections or limitations in imaging hardware, such as 

sensor noise, electronic noise, or non-uniform sensitivity, can contribute to various types 

of noise in medical images (Aja-Fernández et al., 2015; Kozubski and Kozinski, 2019). 

The presence of these diverse noise sources and patterns poses significant 

challenges for existing level-set segmentation methods, as they can introduce unwanted 

variations in pixel intensities, making it difficult to distinguish true object boundaries 

from noise-induced artifacts. 

2) Challenges in Accurate Segmentation with Strong Noise 

The document highlights the difficulty in accurately segmenting objects or 

regions of interest when medical images exhibit strong noise levels (Yu et al., 2020; 

Wang et al., 2020; Biswas and Hazra, 2022; Zhang et al., 2022). This challenge arises 

due to the fundamental principles underlying level-set segmentation algorithms. 

Level-set methods are optimization-based techniques that seek to evolve contours 

or surfaces to segment objects by minimizing an energy functional (Osher and Sethian, 

1988; Sethian, 1999). However, in the presence of strong noise, the energy landscape can 

become highly complex and riddled with local minima, leading to suboptimal or incorrect 

segmentations. 

Noise can introduce artificial edges or intensity variations that can be mistakenly 

interpreted as object boundaries by the segmentation algorithm. Additionally, it can 

obscure or distort the true boundaries, making it challenging for the algorithm to 

accurately delineate the desired structures (Duan et al., 2015; Wu et al., 2016; Liu et al., 

2018). 

Moreover, strong noise can significantly impact the convergence behavior of 

level-set algorithms, as the energy minimization process becomes more susceptible to 

local minima trapping. This can result in the algorithm converging prematurely to an 
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inaccurate segmentation or failing to converge altogether (Yang et al., 2014; Niu et al., 

2017; Yu et al., 2018). 

3) Existing Solutions and Their Limitations for Solving Noise Problems 

Researchers have proposed various approaches to address the challenges posed 

by noise in medical image segmentation, primarily focusing on local similarity measures, 

distance measurement methods, and level-set regularization techniques. 

Local Similarity-Based Methods. Some methods utilize the local similarity of 

pixels to reduce the influence of noise during segmentation (Yang et al., 2014; Niu et al., 

2017; Yu et al., 2018). These techniques estimate local intensity statistics or employ 

kernel-based similarity measures to identify and suppress noise while preserving true 

object boundaries. However, these methods may struggle with accurately segmenting 

images with strong noise, as the local similarities can be distorted or obscured by the high 

noise levels. 

Distance Measurement and Regularization Methods. Other approaches employ 

novel distance measurement methods or level-set regularization techniques to segment 

noisy images (Miao et al., 2018; Wu et al., 2015; Liu et al., 2018; Duan et al., 2015; Wu 

et al., 2016; Liu et al., 2018). For instance, the KMD model (Liu et al., 2018) uses kernel 

metrics and total variation regularization to segment images with strong noise. The LODL 

model (Liu et al., 2018) incorporates L0 gradient and L0 function regularization terms to 

improve noise robustness. While these methods can achieve accurate segmentations in 

the presence of strong noise, they may still face challenges when dealing with uneven 

grayscale images, as highlighted in the document. 

Offset Correction and Mixed Level-Set Models. The document discusses the LIC 

model (Li et al., 2011) and the MSF model (Wang et al., 2015), which employ offset 

correction and multi-scale mean filtering techniques to mitigate the impact of gray-scale 

unevenness on segmentation accuracy. These methods allow for the use of fixed scale 

parameters in segmenting the corrected images, reducing the influence of scale parameter 

selection on uneven grayscale images. 
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Additionally, the document mentions the use of mixed level-set models that 

combine local and global information to handle uneven images (Wang et al., 2010; Wang 

et al., 2009; Shyu et al., 2012; Liu et al., 2013; Jiang et al., 2014; Wen, 2014; Wang et 

al., 2014; Wang et al., 2018; Li et al., 2015; Jiang et al., 2015; Zhou et al., 2016; Huang 

et al., 2015; Soomro et al., 2016; Shi and Pan, 2016; Mondal et al., 2016; Liu et al., 2017; 

Soomro et al., 2018; Wang et al., 2015; Cai et al., 2018). For example, the LIC-CV model 

(Liu et al., 2013) combines the LIC model with the CV model (Chan and Vese, 2001) to 

handle slightly uneven grayscale images while being robust to initial contours. However, 

the document notes that these mixed models can still be easily disturbed by noise, leading 

to segmentation errors. 

While these existing solutions have made significant contributions, they often 

face limitations in accurately segmenting medical images with both strong noise and 

uneven grayscale levels simultaneously. This highlights the need for more robust and 

adaptive approaches that can effectively handle the combined challenges posed by noise 

and gray-scale inhomogeneities. 

4) Potential of the VKMHLS Method for Noise Issues 

The document emphasizes the potential of the VKMHLS (Variational K-means 

and Multi-layer Hybrid Level-Set) method to mitigate the challenges related to noise and 

uneven grayscale levels in medical image segmentation. VKMHLS introduces several 

innovations that can contribute to improved noise robustness and accuracy: 

Adaptive Multi-layer Level-Set Structure. VKMHLS employs an adaptive multi-

layer level-set structure that uses specially designed scale operators to determine the 

optimal number of layers and scale parameters for each layer (Li et al., 2020; Yin et al., 

2020). 

Integration of CER Active Contour Model. The CER (Combining Elements from 

CV and RSF) active contour model introduced in VKMHLS integrates elements from the 

Chan-Vese (CV) and Region-Scalable Fitting (RSF) models (Li et al., 2020; Yin et al., 

2020). CER utilizes information entropy calculations and energy functional minimization 

to segment regions with weak edges, strong noise interference, and uneven brightness 
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variations across the medical image. This robust approach can enhance the accuracy of 

delineating target boundaries, even in the presence of noise and intensity inhomogeneities. 

Hybrid Level-Set Algorithm Based on Kernel Metrics. To tackle the combined 

challenge of uneven grayscale characteristics and high noise levels, VKMHLS 

incorporates a hybrid level-set algorithm based on kernel metrics (Li et al., 2020; Yin et 

al., 2020). This algorithm employs an improved multi-scale mean filter to mitigate 

grayscale inhomogeneity while reducing the impact of scale parameter selection on 

segmentation accuracy. Additionally, kernel measurement techniques and local similarity 

metrics are used to suppress noise influence, enhancing the method's robustness. 

Furthermore, a count gradient regularization term is incorporated to further reduce noise 

impact, ensuring precise segmentation results. 

These innovations in VKMHLS aim to address the limitations of existing methods 

by providing an adaptive, robust, and efficient approach to medical image segmentation 

in the presence of both noise and uneven grayscale levels. 

5) Significance and Potential Impact for Noise Issues 

The significance of the VKMHLS method lies in its potential to overcome the 

longstanding challenges associated with noise and uneven grayscale levels in medical 

image segmentation. By achieving accurate and reliable segmentations, even in the 

presence of these complicating factors, VKMHLS can contribute to improved clinical 

diagnosis, treatment planning, and patient outcomes across various medical domains. 

Improved Early Detection and Diagnosis. Accurate segmentation of tumors, 

lesions, or other abnormalities is crucial for early detection and diagnosis of diseases like 

cancer. VKMHLS's ability to handle noisy and unevenly lit images can enable more 

precise identification and delineation of these structures, facilitating earlier intervention 

and potentially improving patient prognosis. 

Enhanced Treatment Planning and Guidance. In radiotherapy, surgical planning, 

and image-guided interventions, accurate segmentation of target structures and 

surrounding anatomical features is essential for optimal treatment delivery and 

minimizing collateral damage. VKMHLS's robust segmentation capabilities can 
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contribute to more accurate treatment planning, reducing the risk of complications and 

improving overall treatment efficacy. 

Advancement of Medical Image Analysis Research. The innovations introduced 

in VKMHLS, such as the adaptive multi-layer level-set structure and the integration of 

kernel metrics, can inspire further research and development in the field of medical image 

analysis. These advancements can potentially be applied to other imaging modalities and 

clinical applications, extending the impact of VKMHLS beyond its initial scope. 

Facilitation of Automated and Semi-Automated Segmentation. By providing 

accurate and reliable segmentations, even in challenging scenarios with noise and 

intensity inhomogeneities, VKMHLS can facilitate the development of automated or 

semi-automated segmentation pipelines. This can streamline the segmentation process, 

reduce the need for manual intervention, and enhance the efficiency of medical image 

analysis workflows. 

Enabling Advanced Image Analytics and Quantification. Accurate segmentation 

is a prerequisite for many advanced image analytics techniques, such as quantitative 

analysis, feature extraction, and machine learning-based classification or prediction 

models. VKMHLS's robust segmentation capabilities can enable more reliable and 

precise quantification of anatomical structures, pathological features, and disease 

progression, contributing to improved diagnostic and prognostic models. 

As medical imaging technology continues to evolve, and the demand for accurate 

and efficient image analysis increases, approaches like VKMHLS will play a crucial role 

in advancing clinical practices, research, and patient care. 

Therefore, the Noise Problems section of the document highlights the significant 

challenges posed by noise in medical image segmentation, particularly when combined 

with uneven grayscale levels. Noise, originating from various sources, can degrade image 

quality, obscure object boundaries, and introduce unwanted artifacts, making it difficult 

for existing level-set segmentation methods to achieve accurate and reliable results. 

While researchers have proposed various solutions, such as local similarity-based 

methods, distance measurement and regularization techniques, and mixed level-set 
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models, these approaches often face limitations in handling strong noise or the combined 

effects of noise and uneven grayscale levels simultaneously. 

The VKMHLS method, proposed in this research, represents a promising and 

innovative approach to address these challenges. By incorporating an adaptive multi-

layer level-set structure, the CER active contour model, and a hybrid level-set algorithm 

based on kernel metrics, VKMHLS aims to enhance segmentation accuracy, robustness, 

and efficiency in the presence of noise and gray-scale inhomogeneities. The significance 

of VKMHLS lies in its potential to improve early disease detection, enhance treatment 

planning and guidance, advance medical image analysis research, facilitate automated 

and semi-automated segmentation pipelines, and enable advanced image analytics and 

quantification techniques. By overcoming the limitations of existing methods, VKMHLS 

can contribute to improved clinical practices, patient outcomes, and the overall 

advancement of medical imaging and analysis. As the demand for accurate and reliable 

medical image segmentation continues to grow, approaches like VKMHLS will play a 

crucial role in revolutionizing clinical practices, research, and patient care. By addressing 

the longstanding challenges of noise and uneven grayscale levels, VKMHLS represents 

a significant step forward in the field of medical image analysis, paving the way for more 

accurate diagnostics, personalized treatment strategies, and ultimately, better patient 

outcomes. 

2.5.3 The analysis of Contour Initialization Problems  

Contour initialization is a critical step in level-set segmentation methods, as it 

significantly influences the accuracy and convergence behavior of the algorithm. The 

problem statement highlights several challenges associated with contour initialization, 

including the presence of complex backgrounds, sensitivity to the initial contour 

placement, and computational inefficiencies arising from frequent reinitialization 

(Srikanth and Bikshalu, 2022; Khosravanian et al., 2023). 

In many real-world scenarios, such as medical image analysis or object 

recognition in natural scenes, images often exhibit intricate backgrounds, noise, and 

uneven intensity distributions. These factors pose significant challenges for unsupervised 

level-set segmentation methods, as they can obscure the object of interest and make it 
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difficult to distinguish between the foreground and background (Srikanth and Bikshalu, 

2022; Khosravanian et al., 2023). Additionally, the sensitivity of level-set methods to the 

initial contour placement can lead to suboptimal or incorrect segmentation results, 

particularly when dealing with complex backgrounds or uneven grayscale levels 

(Srikanth and Bikshalu, 2022; Khosravanian et al., 2023). Small variations or 

inaccuracies in the initial contour can cause the algorithm to converge to local minima, 

resulting in segmentation errors. Furthermore, the level-set evolution process itself can 

be computationally demanding and slow, especially when smooth and accurate 

segmentations are required. Frequent reinitialization steps are often necessary to ensure 

the stability and well-behaved nature of the level-set function, further impacting the 

computational efficiency of the algorithm (Srikanth and Bikshalu, 2022; Khosravanian 

et al., 2023). 

This section aims to provide an in-depth analysis of the "Contour Initialization 

Problems" section, exploring the underlying challenges, evaluating existing approaches, 

and highlighting the importance of innovative solutions to address these issues effectively. 

1) Challenges with Complex Backgrounds 

One of the fundamental challenges in image segmentation, particularly in natural 

or medical images, is the presence of complex backgrounds (Srikanth and Bikshalu, 2022; 

Khosravanian et al., 2023). These backgrounds can be intricate and varied, with various 

textures, structures, and intensity variations, making it difficult for unsupervised level-

set segmentation methods to distinguish between the foreground object of interest and 

the background clutter. 

In medical imaging, for instance, objects such as tumors or organs may be 

surrounded by intricate anatomical structures or textures, making it challenging to 

accurately segment the target region (Srikanth and Bikshalu, 2022; Khosravanian et al., 

2023). Similarly, in natural scenes, objects of interest may be embedded in complex 

outdoor environments, with varying illumination conditions, shadows, and background 

objects. 
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Traditional level-set methods often assume that the object of interest can be easily 

distinguished from the background based on intensity differences or edge information 

(Chan and Vese, 2001; Liu et al., 2013). However, in the presence of complex 

backgrounds, these assumptions may not hold true, leading to inaccurate segmentation 

results or the algorithm becoming trapped in local minima (Srikanth and Bikshalu, 2022; 

Khosravanian et al., 2023). 

2) Sensitivity to Initial Contours 

The problem statement highlights the sensitivity of level-set segmentation 

methods to the initial contour placement (Srikanth and Bikshalu, 2022; Khosravanian et 

al., 2023). This sensitivity can pose significant challenges, as small variations or 

inaccuracies in the initial contour can lead to vastly different segmentation results or 

cause the algorithm to converge to local minima, resulting in suboptimal or incorrect 

segmentations. 

In level-set-based segmentation, an initial contour is often provided as a starting 

point for the algorithm, either manually or through automated techniques (Srikanth and 

Bikshalu, 2022; Khosravanian et al., 2023). The final segmentation result is highly 

dependent on this initial contour, as the algorithm evolves and deforms the contour based 

on various energy functionals and constraints. 

When dealing with complex backgrounds or uneven grayscale levels, it can be 

challenging to provide an accurate initial contour manually, as the boundaries between 

the object of interest and the background may not be clearly defined (Srikanth and 

Bikshalu, 2022; Khosravanian et al., 2023). Even slight inaccuracies in the initial contour 

placement can lead the algorithm astray, causing it to converge to an incorrect solution 

or become trapped in local minima. 

This sensitivity to initial contours can be particularly problematic in applications 

where prior knowledge of the object's location or shape is limited, such as in medical 

image analysis or object detection in natural scenes (Srikanth and Bikshalu, 2022; 

Khosravanian et al., 2023). Reliance on manual initialization can introduce human biases 

and errors, further compounding the challenges associated with contour initialization. 
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3) Slow Level-Set Evolution and Frequent Reinitialization 

The level-set evolution process is a fundamental component of level-set 

segmentation methods, where the contour is iteratively deformed and evolved based on 

various energy functionals and constraints (Osher and Sethian, 1988; Sethian, 1999). 

However, the problem statement highlights the computational inefficiency associated 

with this process, particularly in scenarios where smooth and accurate segmentations are 

required (Srikanth and Bikshalu, 2022; Khosravanian et al., 2023). 

One of the key reasons for slow level-set evolution is the need for frequent 

reinitialization steps (Srikanth and Bikshalu, 2022; Khosravanian et al., 2023). As the 

level-set function evolves, it can become irregular or lose its signed distance property, 

leading to numerical instabilities and potential convergence issues. To address this, the 

level-set function is periodically reinitialized, ensuring that it remains well-behaved and 

maintains smooth contours. 

However, this reinitialization process can be computationally expensive, 

particularly for large or high-resolution images (Srikanth and Bikshalu, 2022; 

Khosravanian et al., 2023). It involves solving additional partial differential equations, 

further increasing the overall computational complexity and slowing down the 

segmentation process. 

Slow level-set evolution and frequent reinitialization can hinder the real-time or 

near-real-time application of level-set segmentation methods, which is essential in 

various domains such as medical imaging, robotics, or video processing (Srikanth and 

Bikshalu, 2022; Khosravanian et al., 2023). In scenarios where rapid segmentation and 

analysis are required, such as in image-guided interventions or autonomous systems, the 

computational inefficiency of traditional level-set methods can pose significant 

limitations. 

4) Existing Approaches and Their Limitations for Initialization Problems 

Researchers have proposed various approaches to address the challenges 

associated with contour initialization in level-set segmentation methods. These 

approaches can be broadly categorized into techniques for handling complex 
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backgrounds, methods for mitigating sensitivity to initial contours, and strategies for 

improving computational efficiency. 

Handling Complex Backgrounds. To tackle the challenges posed by complex 

backgrounds, researchers have explored techniques such as incorporating texture 

information, shape priors, or machine learning-based approaches (Srikanth and Bikshalu, 

2022; Khosravanian et al., 2023). For example, incorporating texture features into the 

energy functional or using shape models can aid in distinguishing the object of interest 

from the background clutter. Additionally, deep learning-based methods have shown 

promise in automatically identifying and segmenting objects in complex scenes. 

However, these approaches often require additional training data, which may not be 

readily available in all domains, or rely on specific assumptions about the object's shape 

or texture, limiting their generalization capabilities (Srikanth and Bikshalu, 2022; 

Khosravanian et al., 2023). 

Mitigating Sensitivity to Initial Contours. To address the sensitivity of level-set 

methods to initial contour placement, researchers have explored techniques such as 

multiphase level-set methods, region-based approaches, or incorporating prior 

information (Srikanth and Bikshalu, 2022; Khosravanian et al., 2023). Multiphase level-

set methods can segment multiple objects simultaneously, reducing the reliance on 

accurate initial contours for each object. Region-based approaches segment images based 

on regional statistics rather than edge information, potentially mitigating the impact of 

initial contour placement. However, these methods often introduce additional 

complexities or require prior knowledge about the number of objects or regions to be 

segmented, which may not be available in all scenarios (Srikanth and Bikshalu, 2022; 

Khosravanian et al., 2023). 

Improving Computational Efficiency. To address the computational inefficiency 

associated with slow level-set evolution and frequent reinitialization, researchers have 

explored techniques such as adaptive time-stepping schemes, parallel computing, and 

hardware acceleration (Srikanth and Bikshalu, 2022; Khosravanian et al., 2023). 

Adaptive time-stepping schemes can adjust the time step dynamically, potentially 

reducing the need for frequent reinitialization while maintaining numerical stability. 

Parallel computing and hardware acceleration, such as leveraging graphics processing 
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units (GPUs), can significantly improve the computational performance of level-set 

algorithms. However, these approaches may introduce additional complexities or require 

specialized hardware, potentially limiting their applicability in resource-constrained 

environments or legacy systems (Srikanth and Bikshalu, 2022; Khosravanian et al., 2023). 

Despite these efforts, the challenges associated with contour initialization in level-

set segmentation methods remain significant, and no single approach has been able to 

comprehensively address all the issues simultaneously. The presence of complex 

backgrounds, sensitivity to initial contours, and computational inefficiencies continue to 

be active areas of research, with ongoing efforts to develop more robust, accurate, and 

efficient segmentation algorithms. 

5) The Importance of Innovative Solutions for Initialization Problems 

Given the limitations of existing approaches, the development of innovative 

solutions to address the contour initialization problems in level-set segmentation is of 

paramount importance. Overcoming these challenges can unlock the full potential of 

level-set methods in various domains, enabling more accurate and reliable image analysis 

and understanding. 

Accurate Segmentation in Complex Environments. Accurate segmentation in 

complex environments, such as medical imaging or natural scenes, is essential for various 

applications, including disease diagnosis, treatment planning, object recognition, and 

autonomous systems (Srikanth and Bikshalu, 2022; Khosravanian et al., 2023). By 

addressing the challenges posed by complex backgrounds, level-set segmentation 

methods can provide more reliable and accurate results, enabling better decision-making 

and enhancing the performance of downstream tasks. 

Robustness to Initial Contour Placement. Developing level-set segmentation 

methods that are robust to initial contour placement can significantly improve the 

usability and reliability of these techniques (Srikanth and Bikshalu, 2022; Khosravanian 

et al., 2023). By reducing the sensitivity to initial contours, these methods can minimize 

the need for manual intervention or prior knowledge, enabling more automated and 

consistent segmentation results across a wide range of applications. 
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Real-time or Near-real-time Segmentation. Improving the computational 

efficiency of level-set segmentation methods is crucial for enabling real-time or near-

real-time applications, such as image-guided interventions, autonomous systems, or 

video processing (Srikanth and Bikshalu, 2022; Khosravanian et al., 2023). By addressing 

the issues of slow level-set evolution and frequent reinitialization, innovative solutions 

can unlock the potential of level-set methods in time-critical scenarios, enabling rapid 

decision-making and enhancing the responsiveness of various systems. 

Innovative solutions to the contour initialization problems in level-set 

segmentation methods can take various forms, including advanced mathematical 

formulations, novel energy functionals, machine learning-based approaches, or hybrid 

techniques that combine different strategies (Srikanth and Bikshalu, 2022; Khosravanian 

et al., 2023). Additionally, leveraging emerging technologies, such as parallel computing, 

hardware acceleration, or distributed computing, can further enhance the computational 

efficiency and scalability of these solutions. 

Therefore, the Contour Initialization Problems section of the provided document 

highlights critical challenges associated with level-set segmentation methods, including 

handling complex backgrounds, sensitivity to initial contours, and computational 

inefficiencies arising from slow level-set evolution and frequent reinitialization (Srikanth 

and Bikshalu, 2022; Khosravanian et al., 2023). These challenges can significantly 

impact the accuracy, robustness, and efficiency of segmentation results, limiting the 

practical applicability of level-set methods in various domains. While existing 

approaches have attempted to address these issues, they often introduce additional 

complexities, require specific assumptions or prior knowledge, or face limitations in 

terms of generalization or scalability (Srikanth and Bikshalu, 2022; Khosravanian et al., 

2023). Consequently, the development of innovative solutions to tackle the contour 

initialization problems remains an active area of research, with ongoing efforts to develop 

more robust, accurate, and efficient segmentation algorithms. 

By overcoming these challenges, innovative solutions can unlock the full 

potential of level-set segmentation methods, enabling accurate segmentation in complex 

environments, reducing the reliance on manual intervention or prior knowledge, and 

enabling real-time or near-real-time applications (Srikanth and Bikshalu, 2022; 
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Khosravanian et al., 2023). These advancements can have far-reaching implications 

across various domains, including medical imaging, object recognition, autonomous 

systems, and beyond. As imaging technologies continue to evolve and the demand for 

precise and reliable segmentation grows, the importance of addressing the contour 

initialization problems in level-set segmentation methods will only increase. 

Collaborative efforts among researchers, practitioners, and industry partners will be 

essential in driving innovation and developing practical solutions that can be seamlessly 

integrated into real-world applications, ultimately enhancing our ability to extract 

valuable insights from complex and diverse image data. 

2.6 Brief Overview of the LIDC Dataset 

The LIDC dataset (Armato et al., 2021) is a collection of 1018 lung CT scans that 

were gathered from a variety of colleges and organizations and are now accessible to the 

public. In addition to the CT image data, this thesis give handwritten comments for every 

scan, which were contributed by unnamed radiologists from four different locations. 

Annotations of this kind are produced with regard to the following categories of structures: 

(i). Lung nodules with a diameter that is more than 3 millimeters at their greatest 

point. 

(ii). Lung nodules that are smaller than 3 millimeters in diameter at their greatest 

point. 

(iii). Non-nodule formations with a diameter that is bigger than three millimeters 

in its biggest dimension. 

When it comes to each of these different kinds of structures, the location of the 

structure is described using picture coordinates, as established by each of the four medical 

professionals. According to the findings of each of the four physicians, there was no 

consensus reached on the existence of these buildings or the coordinates that indicated 

their location. There was no coercive agreement reached about the existence of these 

buildings or the location of those structures. In this research, the first group of structures 

that this thesis explore is made up of lung nodules that have a maximum size of less than 

three millimeters. These nodules have been shown to be associated with an increased risk 

of developing lung cancer. Each of the same radiologists working at the four separate 
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sites provides additional comments for this specific type of structure. These annotations 

include hand-drawn outlines of the nodule borders in the CT scan slices, quantified values 

for a range of nodule attributes, and a quantified value of the evaluation of the nodule's 

malignancy at the time that the assessment was performed. All of these annotations can 

be found in the image file. All of these annotations can be found in the image file. It is 

very important not to forget that the quantifications are radiological interpretations of the 

presence of the different physical properties. Keeping this in mind is very vital. This 

thesis would like to bring attention to the fact that the malignancy quantification is not 

supported by pathological evidence in the vast majority of the nodules. In spite of this, 

there is some follow-up information available for a limited number of the nodules that 

are part of the dataset (but this thesis has not considered this data in our study). 

This thesis presents a summary of some of the patient demographic information 

and scan information in Figures 2.11 and 2.12, respectively. These figures may be seen 

below. Reviewing the data included inside the DICOM file that was extracted from the 

LIDC dataset allowed for the collection of this information. There is no information on 

the subject's age or gender included in any of the 734 scans. The remaining 284 

occurrences that have gender information (DICOM Tag ID: 0010,0040) accessible are 

made up of a 49.3% male population and a 50.7% female population. When age 

information (DICOM Tag ID: 0010, 1010) is also given, Figure 2.2 reveals that the 

median age is 61 years old. There is a possibility that this may be a value for the tag. 

There is never a situation in which information about a person's age is known but not 

their gender. This is because the two pieces of information are mutually exclusive. 

Figure 2.12 is an illustration of the distribution of the spacing of pixels within a 

slice of the scan (DICOM Tag ID: 0028, 0030) and of the thickness of each slice (DICOM 

Tag ID: 0018, 0050), with medians of 0.7 mm and 2.0 mm, respectively. These values 

represent the middle value of each distribution. These values are based on the middle 

value of the distribution. The units of measurement for each of these dimensions are 

millimeters. 
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Figure 2.11 Distribution of age and sex in the LIDC Dataset. 

 

Figure 2.12 The distribution of the spacing of pixels 

Figure 2.12 illustrates the distributions of scanner resolutions that were 

discovered in the LIDC dataset. A distribution of the pixel spacing within the slice can 

be seen on the left, with a median value of 0.7 millimeters. A distribution of the slice 

thickness of CT scan image volumes can be seen on the right, with a median value of 2.0 

millimeters or less. This number indicates that most of the slices are thinner than this. 
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There are a few important aspects that are worth addressing in relation to the values and 

scales that were utilized for the spiculation and lobulation feature values, and this thesis 

will do so in this section. The first description (McNitt-Gray et al., 2007) of the grading 

systems that were used to measure these qualities stipulated that a value of 1 would 

represent extremely spiculated (lobulated), and a value of 5 would represent missing 

spiculation. This was based on the fact that a value of 1 would represent extremely 

spiculated (lobulated), and a value of 5 would represent missing spiculation (lobulation). 

On the other hand, the current scoring system inverts this description (Shen et al., 2019), 

which means that it gives a score of 1 for a low presence of the trait and a score of 5 for 

a strong presence of the feature. In other words, the score increases as the degree of 

presence of the trait increases. In addition, it has been said that there are 399 known 

examples in the LIDC dataset, and that a subset of 100 of these may have been marked 

using the conflicting grading techniques for spiculation and lobulation. This is something 

that has been alleged to have occurred. It has been hypothesized that this may be the case, 

but it has not been shown (Shen et al., 2019).This data was extracted from a previously 

published article, which assigned a value of 1 to indicate a weak presence of the 

characteristic and a value of 5 to indicate a significant presence of the feature. In addition, 

It has been said that there are 399 known examples in the LIDC dataset, and it is possible 

that a subset of one hundred of these cases were marked using the conflicting grading 

techniques for spiculation and lobulation. This is something that has been speculated 

about (Shen et al., 2019). This information was taken from a publication that was just 

published. It is not feasible to tell with absolute confidence which one hundred of the 

three hundred and ninety-nine examples may have had ratings that were assigned 

inconsistently (i.e., with a 1 as high and a 5 as low). As a result of this, this thesis have 

made the decision not to include these 399 cases in our study and analysis. Nevertheless, 

this thesis have noted that there are a number of studies that have been published that 

incorporate these physician-quantified labelings of spiculation and lobulation from the 

LIDC dataset. These labelings come from the dataset. However, none of these articles 

discuss the possibility of mislabelings in the dataset, nor do they mention the exclusion 

of these 399 cases from their respective studies. Neither of these topics is brought up in 

any of the articles (Horsthemke et al., 2008; Opulencia et al., 2011; Raicu et al., 2010; 
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Wiemker et al., 2009; Wiemker et al., 2009b; Zinovev et al., 2009; Opulencia et al., 2011; 

Raicu et al., 2010; Zinovev et al., 2011).  

 

Figure 2.13: Distribution of annotation values for image features and malignancy. Note 

the excluded bin for the indeterminate malignancy value of 3  

After removing these 399 instances from the calculation, this thesis are left with 

4384 nodule annotations that have been labeled in the same manner throughout. In order 

to eliminate uncertain circumstances, the total number of annotations that were used was 

cut even further from 4384 down to 2817 (as described in the following section). The 

degree of consensus reached by the four individuals who annotated a nodule as belonging 

to the first kind of structure determined the number of annotations that were given to each 

nodule, which might have ranged from one to four in total. Since the physical nodules do 

not have a universally unique identification among the numerous annotations, it is 

difficult to tell which annotations correspond to the same physical nodule in a scan 

without rigorous visual examination. This is because a scan contains a large number of 

annotations. Because of this, it is very difficult to identify which annotations on a scan 
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relate to the same physical nodule. By comparing the coordinates of the annotations with 

one another and seeing where they overlap, it is able to approximately establish which 

annotations relate to the same nodules using an algorithm. On the other hand, in order to 

identify whether or not several annotations may in fact be referring to the same nodule, 

this procedure requires making certain decisions that are fairly arbitrary. For instance, 

One would have to decide at what percentage of overlap, or at what average distance 

between annotation coordinates, a number of annotations would be deemed to correspond 

to the same physical nodule. This would be a choice that would have to be made.This 

decision would need to be made before a physical nodule could be located. Because of 

these factors, this thesis consider each annotation to be its own individual sample inside 

our dataset in Figure 2.13.  

To be more specific, this thesis take into account the quantitative qualities to be 

random vectors, which are represented by the letter X, and the malignancy values to be 

random variables, which are represented by the letter Y. In addition, this thesis consider 

every annotation to be a distinct draw taken from the combined distribution, which is 

symbolized by the letter Y. (X, Y). As a consequence of this, it is feasible that many 

samples from different datasets relate to the same physical nodule. Yet, this thesis still 

regard these occurrences as distinct manifestations of the random quantity (X, Y), where 

the source of randomness is noise (for example, as a result of inadvertent mislabeling) 

and the natural changes of the quantified feature values. To phrase it another way, this 

thesis consider each of these cases to be a unique manifestation of the random amount. 

To put it another way, this thesis consider every one of these instances to be a unique 

occurrence of the random quantity (e.g., due to varying annotator experience and training). 

As a direct result of this, a viewpoint on the facts that is consistent throughout may be 

established. After that, the statistical learning algorithms will model the conditional 

probability distribution of malignancy, if there is one. which is symbolized by the symbol 

P (Y | X), based on the quantified feature values. This will take place once the feature 

values have been characterized. In the next section, this thesis will talk about the 

methodology in addition to detailing the two statistical learning approaches that this 

thesis use here. 
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2.7 The Summary  

This chapter presents a literature review on image segmentation methods applied 

to lung cancer detection in computed tomography (CT) images. It begins by introducing 

image segmentation and its importance for medical image analysis and interpretation. 

The manual, semi-automatic, and fully automated segmentation approaches are discussed. 

The challenges of medical image segmentation are outlined, including complexity of 

structures, noise, blurring, variability across images and patients. An overview of major 

segmentation methods is then provided, categorized as boundary-based (using edge 

detection), thresholding, region-based (region growing, splitting and merging), statistical 

learning (classifiers, clustering), random field models, fuzzy set theory, partial 

differential equations (PDEs), active contours, level sets, and deep learning. Key papers 

utilizing PDEs and active contour models for lung nodule segmentation are highlighted 

as most relevant to the thesis focus. Public datasets for algorithm training and testing are 

noted, with a detailed summary of the LIDC dataset used later in this work. The lung 

nodule annotation process in LIDC is described, along with the exclusion of uncertain 

cases, leaving 2817 useable nodule annotations. The chapter concludes with a discussion 

of remaining challenges and limitations of current segmentation methods, motivating the 

development of the proposed hybrid PDE and deep learning approach to improve lung 

nodule detection performance. Overall, this chapter provides a comprehensive overview 

of medical image segmentation, lung CT analysis, relevant datasets, and gaps in existing 

methods to set the stage for the novel contributions of this thesis. 
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CHAPTER 3 

 

 

METHODOLOGY 

3.1 Introduction 

The most basic and essential component of image processing is image 

segmentation, which involves the removal of elements from a picture that are of 

importance to the viewer. After many decades of study, development, and invention in 

the area, image segmentation approaches that are based on a range of different theories 

have finally been developed. In recent years, a key development in the field of image 

segmentation has been the rise of the active contour model as a strategy for separating 

images. This model uses the variational approach in addition to the level-set method as 

its foundation. This example shows the advantages of using a method that processes 

photos by employing partial differential equations. Its major concentration is on the idea 

of dynamic evolution, and it has had a considerable influence on the research into various 

methods for the segmentation of pictures. This chapter proposes the CER model as a 

solution to the problems that the Chan-Vese and RSF models have, which include 

sensitivity to the initialization contours, poor noise immunity, and an inability to segment 

grayscale images. In order to implement this solution, the CER model makes use of a 

local entropy weight, convolutional neural networks, and reinforcement learning. All of 

these techniques are combined with reinforcement learning. The suggested technique was 

designed using the scale adaptive fast level-set image segmentation method, the adaptive 

multilayer level-set image segmentation method, and the hybrid level-set image 

segmentation method based on kernel metric. 

3.2 Scale Adaptive Fast Level-Set Image Segmentation Method 

Through offset correction and level-set method, it can correctly segment the 

image with gray inhomogeneity, and obtain better segmentation performance than the 

local area-based method. However, it uses a finite difference strategy in its numerical 
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implementation, and the time step needs to meet the CFL (Courant-Friedrichs-Lewy) 

condition (Weickert et al., 1998) to ensure the stability of level-set evolution. Therefore, 

it must be adopted A small time step leads to slow convergence and low segmentation 

efficiency. In addition, it uses local area information to estimate the offset field, This may 

quickly settle into a solution at a local minimum and is sensitive to the location of the 

starting contour. In addition, the scale parameter of the clustering kernel function is used 

by this sort of procedure in order to exercise control over the magnitude of the local 

region.The selection of the scale parameter affects the estimation accuracy of the 

migration field, and these methods use fixed scale parameters, which seriously affect their 

practical application. 

This approach presents a rapid leveling set method with an adjustable scale in 

order to tackle the challenges that have been outlined above (Fast Level Set Method with 

Adaptive Scale Parameter, FLSAS). At the beginning, in order to build the energy 

function, a pressure function that is determined by regional information is suggested in 

accordance with the gray, inhomogeneous picture model and applied. After that, a quick 

segmentation of the gray inhomogeneous picture and an estimate of its offset field are 

carried out with the help of approaches that minimize the energy functional and provide 

a rapid numerical realization. In addition, a brand new strategy for initializing the 

migration field is presented as a means of enhancing the algorithm's resilience in relation 

to the initial contour. In addition, a clustering kernel function with an adaptive scale 

operator is constructed by making use of the local variance of the picture. This operator 

is able to properly estimate the image's offset field. The suggested technique for 

segmentation is first provided in the form of a two-phase level-set segmentation, and it is 

subsequently expanded to include support for many phases of segmentation. 

3.2.1 Gray Uneven Image Model 

Gray unevenness is usually described as a smooth spatial variation function (Vovk 

et al., 2007), called an offset field, which changes the gray level of the original gray 

uniform image. The uneven gray scale image can be described as the addition or 

multiplication of the offset field and the original image. Because it is consistent with the 

uneven sensitivity of the receiving device, the product model is usually used to model the 

gray uneven image. The noise of the uneven grayscale image mainly includes the 
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scanning noise caused by the imaging device and the noise of each target area itself, and 

usually only one kind of noise is modeled. 

Since the scanning noise has nothing to do with the unevenness of the grayscale 

of the image, the first model of the uneven grayscale image can be obtained by modeling 

the scanning noise: 

𝐼 = 𝑏𝐽 + 𝑛1 . 3.1 

Among them, 𝐼 is the image gray level, 𝑏 is the offset field, 𝐽 is the original image, 

and 𝑛1 is assumed to be Gaussian noise. 

The noise 𝑛2  of each target area is modeled to obtain the second gray-scale 

uneven image model: 

𝐼 = 𝑏( 𝐽 + 𝑛2) . 3.2 

Among them, 𝑛2 is assumed to be Gaussian noise. 

Through logarithmic transformation, the product model is converted to an 

additive model, and the third type of gray inhomogeneous image model can be obtained: 

𝑙𝑜𝑔𝐼 = 𝑙𝑜𝑔𝑏 + 𝑙𝑜𝑔𝐽 + 𝑛3 . 3.3 

Among them, 𝑛3 is still assumed to be Gaussian noise. 

These three models are widely used to model uneven grayscale images. In this 

study, this thesis use the first model to describe gray-scale uneven images. Because the 

logarithmic transformation serves an important purpose in converting the product model 

of gray-level inhomogeneity to an additive model, which is more amenable to processing 

and analysis (Li et al., 2011; Vovk et al., 2007; Wang et al., 2015). Specifically, gray-

level inhomogeneity arises due to a smooth spatial variation function called the offset 

field b(x), which modulates the true image J(x) to generate the observed image I(x). A 

common model is the product model I(x) = b(x)J(x), representing the pixel-wise 

multiplication of the offset field and true image. However, this product model poses 



 

 116 

difficulties for image processing algorithms due to its nonlinearity. The logarithmic 

transformation provides a clever way to convert this into a more tractable additive model 

(Vovk et al., 2007):log(I(x)) = log(b(x)J(x))== log(b(x)) + log(J(x)). Here, the 

multiplicative inhomogeneity has been converted into an additive inhomogeneity 

log(b(x)), which is typically easier to estimate and correct for using methods like low-

pass filtering. The log-transformed image can then be processed more effectively. 

Several researchers have utilized this logarithmic transformation technique in 

developing algorithms for gray-level inhomogeneity correction. Li et al. (2011) applied 

it in their formulation of a Local Intensity Clustering (LIC) model for image segmentation. 

By converting to an additive model, they were able to apply clustering techniques more 

readily to group image pixels and estimate the offset field. Vovk et al. (2007) also used 

the logarithmic transform similarly to derive an effective correlation mapping algorithm 

for correcting inhomogeneity in MRI images. More recently, Wang et al. (2015) 

employed the logarithm conversion as a preprocessing step in their bias field estimation 

method using a pulse-coupled neural network. The additive model enabled easier 

integration of their neural network architecture for offset field estimation. The authors 

reported improved performance over methods operating directly on the product model. 

The logarithmic transformation plays an important role in converting the 

multiplicative gray-level inhomogeneity into an additive inhomogeneity. This additive 

model enables easier application of linear filtering techniques and 

clustering/classification algorithms for estimating the offset field. It transforms the 

problem into a more convenient form for analysis and processing. By using this 

transformation, the proposed method can also leverage a range of techniques like 

clustering and low-pass filtering to effectively correct for the bias field and thereby enable 

accurate image segmentation. 

There are many image enhancement techniques that can be applied to improve 

uneven grayscale images, such as histogram analysis, contrast stretching, filtering, and 

local adaptive filtering (Gonzalez & Woods, 2018; Pratt, 2007). However, this study 

utilizes a logarithmic transformation approach due to its specific advantages for enabling 

more effective segmentation algorithms to be applied.  
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The key motivation is that the logarithmic transform converts the multiplicative 

gray-level inhomogeneity into an additive inhomogeneity model (Li et al., 2011; Vovk et 

al., 2007). This additive model is more convenient and amenable to processing using 

methods like clustering, thresholding, and low-pass filtering to estimate and correct for 

the intensity inhomogeneity or bias field. As Li et al. (2011) discuss, the product model 

I(x) = b(x)J(x) is problematic for segmentation algorithms due to its nonlinearity. By 

applying log(I(x)) = log(b(x)) + log(J(x)), the multiplicative bias field is transformed into 

an additive bias that is easier to model and correct. This then facilitates segmentation 

using approaches like their Local Intensity Clustering method. Vovk et al. (2007) also 

utilized the logarithmic transformation to convert the product model into an additive one, 

allowing application of correction techniques like homomorphic filtering on the log-

transformed image. This greatly improved the ability to compensate for inhomogeneities 

compared to directly filtering the product model image. More recently, Wang et al. (2015) 

employed the logarithmic transform similarly to convert the model into a more 

convenient additive form that enabled easier integration of their pulse-coupled neural 

network architecture for bias field correction. 

Thus, the key advantages of using the logarithmic transform are: 1) It converts 

the model into a more mathematically convenient, additive form; 2) This additive form 

allows application of linear filtering, clustering, and classification techniques for bias 

estimation and correction; 3) Correcting the bias facilitates more accurate segmentation 

of the image into distinct regions. Without this transform, directly applying enhancement 

techniques on the product model image is prone to suboptimal performance and 

segmentation inaccuracies due to the multiplicative gray-level nonuniformity. The 

logarithm conversion elegantly circumvents this problem. 

3.2.2 Scale Adaptive Fast Level-Set Segmentation Algorithm 

This section first proposes a pressure function based on regional information 

based on the LIC model, and uses a fast numerical implementation strategy to quickly 

segment the gray-scale uneven image. Next, in order to make the algorithm more resistant 

to changes in the initial contour, an innovative way for initializing the migration field is 

provided. In addition to this, the construction of a clustering kernel function with an 

adaptive scale operator is carried out. 
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The problem of uneven gray levels in images poses significant challenges for 

segmentation algorithms. As discussed in Chapter 3, the author applies a logarithmic 

transformation technique to convert the multiplicative gray level inhomogeneity into an 

additive inhomogeneity model (Section 3.2.1). However, solely utilizing an existing 

approach like logarithmic transformation has limitations that need to be addressed. 

Several researchers have applied logarithmic transforms for gray level 

inhomogeneity correction (Li et al., 2011; Vovk et al., 2007; Wang et al., 2015). But a 

key research gap is that these methods typically treat the correction as a pre-processing 

step and do not tightly couple and optimize it jointly with the segmentation algorithm. As 

Pham et al. (2000) discuss, independent bias correction and segmentation steps can lead 

to suboptimal performance. To address this gap, the author proposes an integrated 

optimization framework that simultaneously estimates the inhomogeneity offset and 

performs segmentation by iteratively minimizing an energy functional (Section 3.2.2). 

Instead of using logarithm transform as a fixed pre-processing, it becomes an integral 

part of the variational level set formulation. 

Specifically, the proposed method introduces a bias field variable b(x) directly 

into the energy functional and alternates between optimizing the level set function φ and 

estimating b. The offset field estimation utilizes the logarithmic transformation model 

log(I(x)) = log(b(x)) + log(J(x)) within the energy minimization framework. This enables 

tighter coupling between bias correction and segmentation. Moreover, the method uses a 

scale-adaptive clustering technique to estimate b(x), avoiding pre-fixed approaches like 

low-pass filtering which may not effectively capture variations. The cluster-based offset 

modeling coupled with integrated optimization improves accuracy. 

While a logarithmic transform can help convert multiplicative inhomogeneity into 

an additive form, limitations exist when used as a pre-processing step. The proposed 

integrated optimization framework addresses this by making bias modeling an adaptive, 

optimized part of level set energy minimization. This achieves tighter coupling and 

improves segmentation accuracy for uneven gray level images.  

In addition, while logarithmic transformation is a useful technique that can 

convert multiplicative inhomogeneity into an additive model, utilizing it purely as a pre-
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processing stage has limitations. As demonstrated by Pham et al. (2000), typical strategies 

of performing bias correction separately prior to segmentation can result in suboptimal 

performance. 

The key innovation in the proposed method is the integration of bias field 

modeling and correction within the segmentation formulation itself, rather than treating 

it as an independent pre-processing step. Specifically, a bias field variable is introduced 

directly into the energy functional optimized through the level set framework. By 

iteratively alternating between estimation of the offset field and evolution of the level set 

contour, the technique achieves tighter coupling between inhomogeneity correction and 

segmentation. 

Incorporation of the logarithmic transform within this integrated optimization 

framework allows it to adaptively estimate and compensate for intensity variations during 

the segmentation process, rather than applying it in a pre-determined manner. This 

addresses the limitations of conventional approaches that treat correction and 

segmentation independently. 

In this section, it introduces a novel strategy for initializing the migration field 

b(x) to improve robustness of the level set segmentation to the initial contour. The key 

steps of this technique are: 

Preprocess the input image I(x) using median and bilateral filtering to obtain I1(x). 

Estimate the object boundary CL using Laplacian of Gaussian edge detection on 

I1(x). 

Define the smooth region Ωs as pixels sufficiently away (>ω0) from the edge CL. 

Compute the local variance D(x) for each pixel in the smooth region Ωs using 

neighboring squares of size (2ω0+1) * (2ω0+1). 

Initialize the migration field as b0(x) = K*I1(x)/N0, where K is a kernel function 

and N0 is the average gray level of I1(x). 
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As Li et al. (2011) discuss, the key idea is to use the spatial variation trends in the 

image itself to approximate the offset field, since inhomogeneity induces smooth changes 

in gray levels. The local variance in smooth regions ignores edges and captures this 

variation. The algorithm can be outlined as follows: 

Input: Image I(x) 

Output: Initialized migration field b0(x) 

1: I1(x) = Preprocess(I(x)) 

2: CL = EdgeDetect(I1(x)) 

3: Ωs = {x : dist(x,CL) > ω0} 

4: for each x in Ωs do 

5:   D(x) = LocalVariance(I1(x),ω0) 

6: end 

7: N0 = Mean(I1(x)) 

8: b0(x) = Filter(I1(x)/N0) 

This initialization provides a better starting point for the migration field compared 

to constant initialization, improving convergence and robustness. The model is still 

iteratively refined after initialization. 

3.2.3 Area-based Pressure Function 

The LIC model is a classic K-means clustering offset correction level-set 

segmentation method (Li et al., 2011), which is based on the gray inhomogeneous image 

model of equation (3.1). The original image 𝐽 makes more specific assumptions: 

Assumption 1. The offset field b changes slowly in the image domain Ω; 
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Assumption 2. In each disjoint area, J can be approximated as a constant, that is, 

for 𝜒 ∈ Ω𝑖， 𝐽(𝜒) ≈ 𝑐𝑖 holds, where {Ω𝑖}𝑖=1
𝑁  is the partition of the image domain Ω. 

Let 𝜒 be any pixel in the image domain, within the circular neighborhood 𝑂𝜒 ≜

 {y: |y − 𝜒| ≤ ρ}  with a radius of ρ , the offset field b is approximately unchanged. 

Therefore, the circular neighborhood 𝑂𝜒  can be divided into 𝑁  clusters with cluster 

centers 𝑏(𝜒)𝑐𝑖  , 𝑖 = 1,2, . . . , 𝑁 . Using K-means clustering to classify the image and 

expand it to the entire image domain, the energy term of LIC can be obtained as: 

𝐸(𝜙, 𝑐, 𝑏) 

= ∫ (∑ ∫ 𝐾(𝑁
𝑖=1 𝜒 −  y)  | 𝐼(y)  −  𝑏(𝜒)𝑐𝑖 |

2 𝑀𝑖(𝜙(y) )𝑑𝑦)𝑑 𝜒  . 
3.4 

In Equation 3.4, K(χ - y) refers to the Gaussian kernel function centered at pixel 

y with scale parameter σ, as defined in Equation 3.5. This kernel function is used for 

density estimation at each pixel. I(y) refers to the image gray level intensity at pixel y. 

The key idea is that the energy term in Equation 3.4 uses clustering and the kernel 

function K to model the image intensity distribution locally around each pixel, taking into 

account the offset field b(χ). To improve robustness to initial contour, the method 

proposes a new strategy to initialize the offset field b(χ) based on the image gray level 

variation trends. This initialization provides a better starting point for b(χ) compared to 

constant initialization in traditional methods. With proper offset field initialization, the 

evolving contour can progress stably towards the object boundaries even from different 

initial contours. Therefore, the kernel-based clustering model coupled with the proposed 

offset field initialization technique helps improve robustness to initial contour placement 

compared to standard methods. The contour evolution depends less on initial placement 

and can converge to correct segmentation from varied starting locations. 

Among them, 𝑀𝑖(𝜙)  is the membership function, and the Gaussian kernel 

function 𝐾(⋅) is defined as: 

𝐾(𝑢) {
1

𝑎
𝑒−𝑢

2/(2𝜎2) , |u| ≤ 2𝜎 

0,    other
 . 3.5 
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Among them, 𝑎 is the normalization constant and 𝜎is the standard deviation (or 

scale parameter) of the kernel function. 

     When 𝑁 = 2, the gradient descent flow equation of the energy functional in 

formula (3.4) is: 

𝜕∅

𝜕𝑡
 

= −𝛿(∅)(∫
Ω
𝐾( 𝜒 −  y;  | 𝐼(y)  −  𝑏(𝜒) 𝑐1 |

2 − | 𝐼(y) − 𝑏(𝜒) 𝑐2 |
2)𝑑𝜒 

= −𝛿(∅)(2𝐼(𝐾 ∗ 𝑏)(𝑐2 − 𝑐1) + (𝐾 ∗ 𝑏
2)(𝑐1 − 𝑐2)(𝑐1 + 𝑐2)) . 

3.6 

Since the convolution operation can be regarded as the process of obtaining the 

weighted average, and according to the assumption 1 in the LIC model, this thesis can 

obtain  |𝐾 ∗ 𝑏2 − ( 𝐾 ∗ 𝑏)2 < 𝜉 ,  where 𝜉  is a sufficiently small positive number. 

Therefore, if this thesis assume 𝐾 ∗ 𝑏2 ≈ ( 𝐾 ∗ 𝑏)2, the above formula can be rewritten 

as: 

𝜕∅

𝜕𝑡
≈ 𝛿(∅)𝛼 (𝐼 − (𝐾 ∗ 𝑏) (

𝑐1+𝑐2

2
)) . 3.7 

Among them, 𝛼=2(𝐾 ∗ 𝑏)(𝑐1 − 𝑐2). 

It can be seen that when 𝑐1 and 𝑐2 are fixed, the LIC model mainly drives zero 

level-set based on the difference between the image gray level I and u =(𝐾 ∗ 𝑏)(𝑐1 +

𝑐2)/2 Perform evolution to achieve image segmentation. Similar to the model in the 

literature (Wu  and  He, 2015), this thesis propose a region-based pressure function: 

𝑆(𝜒) 

= 𝐼(𝜒) − 𝑢(𝜒) 

= 𝐼(𝜒) − (𝐾 ∗ 𝑏) (
𝑐1+𝑐2

2
) . 

3.8 
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It can be seen from the above formula that 𝜇(𝜒)represents the lower limit of the 

gray level of the target or background of the gray uneven image at each pixel, and the 

proposed pressure function 𝑆(𝜒) can drive the contour to the gray value The boundary of 

the area larger than \mu moves to realize the segmentation of the gray-scale uneven image. 

Using the above formula to construct a new energy functional is: 

𝐸(𝜙, 𝑐, 𝑏) = −∫( 𝐼(𝜒) − (𝐾 ∗ 𝑏) (
𝑐1 + 𝑐2
2

))𝑀1(𝜙(𝜒))𝑑𝜒  . 3.9 

Similar to the LIC model, the optimal 𝑐 and 𝑏 are: 

𝑐𝑖 =
∫(𝐾 ∗ 𝑏) 𝐼 𝑀𝑖(𝜙)𝑑 𝜒 

∫( 𝐾 ∗ 𝑏)2𝑀𝑖(𝜙)𝑑 𝜒
, 𝑖 = 1,⋅⋅⋅, 𝑁 ; 3.10 

𝑏 =
(𝐼𝐽(1))∗𝐾

𝐽(2)∗𝐾
, 𝐽(1) = ∑ 𝑐𝑖

𝑁
𝑖=1 𝑀𝑖(𝜙) , 𝐽

(2) = ∑ 𝑐𝑖
2𝑁

𝑖=1 𝑀𝑖(𝜙)  .   3.11 

Among them, 𝑀1(𝜙)=H(𝜙) , 𝑀2(𝜙)=1− H(𝜙), H(𝜙)is defined as: 

𝐻(𝜙) = {
      1 ,    𝜙 > 0  
0,   other

. 3.12 

The gradient descent flow equation of the energy functional in formula (3-9) is: 

𝜕∅

𝜕𝑡
= 𝛿(∅) ( 𝐼 − (𝐾 ∗ 𝑏) (

𝑐1+𝑐2

2
)). 3.13 

Minimizing the energy functional in equation (3.9) will prompt the active contour 

to move to the boundary of the image region with a gray value greater than u, while 

ensuring that 𝑐1 > 𝑐2. The proposed model can obtain a gradient descent flow equation 

similar to the LIC model. The essence is to simplify the LIC model. 

The proposed region-based pressure function in this study is similar to the model 

presented by Wu and He (2015). However, there are some key differences in the method 

compared to their approach. For formulation of the energy functional, Wu and He (2015) 
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minimize an energy with global intensity fitting term only. This study proposes a 

simplified energy with region-based pressure function term. For Offset field estimation, 

Wu and He (2015) zonal average filtering to estimate offset field. This study uses 

clustering-based estimation adapted via scale parameter. For contour evolution, Wu and 

He (2015) use traditional level set PDE for contour evolution. This study uses a fast 

numerical scheme with multiple iterations between offset estimation. For Initialization, 

Wu and He (2015) use constant initialization of level set function. This study presents a 

new initialization technique using image gray level trends. While the region-based 

pressure function is similar in spirit to Wu & He's model, there are significant differences 

in the overall energy functional, offset field estimation, contour evolution, and 

initialization. The proposed modifications help improve efficiency and robustness of the 

segmentation. The key novelty lies in the fast numerical scheme and integrated offset 

field estimation. 

3.2.4 Offset Field Initialization 

For any pixel 𝜒 ∈ Ω in the image, the LIC model initializes the offset field to 

𝑏(𝜒) = 1. The LIC model will eventually degenerate into a CV model at the very first 

iterative operation that is performed. The CV model is a method for segmentation that is 

dependent on global information and is unable to handle grayscale pictures with uneven 

tones. As a consequence of this, after the first iterative operation, the zero level can be 

located quite some distance from the real boundary of the target, which would lead to 

segmentation problems. In order to remedy this deficiency, this thesis have come up with 

a novel approach to the initialization of the offset field. 

In level set methods, the contour delineating the segmentation is represented 

implicitly as the zero level set of a higher dimensional function u(x,y). In traditional 

methods, the offset field b(x) is often initialized to a constant (e.g. b(x) = 1). With this 

constant initialization, after the first iteration of gradient descent on the energy, the zero 

level set of u(x,y) can evolve and move significantly from its initial position. Since the 

initial constant offset field estimate is inaccurate, the zero level set after the first iteration 

may end up quite far from the real object boundary. This then leads to poor convergence 

and incorrect segmentation, as the contour is starting too far away from the true edges we 
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want to delineate. In contrast, the proposed method in the paper initializes b(x) based on 

image gray level trends to better approximate the true offset field. This helps keep the 

zero level set after the first iteration much closer to the real boundaries compared to 

constant initialization. The key advantage is that by preventing the zero level set from 

deviating too far after the first step, the proposed initialization improves convergence and 

segmentation accuracy. Therefore, with constant offset field initialization, the zero level 

set can move significantly away from the real boundary after the first iteration, leading 

to poor convergence. The proposed initialization prevents this issue by keeping the 

contour closer to the true edges. 

In each target area of the image, the image offset field causes the image grayscale 

to change. In this way, the change trend of the image gray level is similar to the change 

trend of the offset field. Therefore, by extracting the image gray change trend, the offset 

field of the image can be better estimated. According to the gray inhomogeneous image 

model in equation (3.1) and the assumption 1 in the LIC model, this thesis initialize the 

offset field as: 

𝑏0 = 𝐾 ∗ (𝐼/ 𝑁0) . 3.14 

Among them, 𝑁0represents the average gray value of the image. It can be seen 

that the proposed initial offset field can approximate the image offset field and improve 

the robustness to the initial contour.   

In (3.14), K is the smoothing kernel (e.g. Gaussian) and refers to the kernel 

function used for density estimation and smoothing. It is typically implemented as a 

Gaussian kernel. I is the image intensity at pixel x and refers to the input image intensity 

function I(x). And b0 refers to the initial estimate of the offset field, denoted as b0(x), that 

is computed using Equation 3.14. N0 is the average intensity of the image. So, K smooths 

the image intensity, and I(x) provides the intensity value at each pixel. Dividing by the 

average intensity N0 normalizes the values. b0(x) is then the smoothed, normalized 

intensity which approximates the offset field. 

The offset field introduces spatial variations in gray levels across the image, 

causing the image intensity to change smoothly between different regions. These 
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intensity changes represent important information about the underlying offset field.  

Specifically, areas with similar offset values will have similar intensity changes, while 

transitions between offset regions will exhibit more rapid gray level changes. Thus, the 

spatial trends and transitions in image intensity, as characterized by gradients and local 

variance, provide cues to the underlying offset field structure. By analyzing the image's 

intensity change patterns, the offset field can be approximated by extracting information 

about where intensity is changing rapidly versus remaining relatively homogeneous. In 

essence, while the offset field is not directly observable, its structure is reflected in the 

image intensity variations it introduces. By intelligently analyzing the image's gray level 

change trends using techniques like local variance, we can estimate a good approximation 

of the latent offset field. 

The image after offset correction is: 

𝐽0 =
𝐼

 𝑏0
= 𝑁0

𝐼

K ∗ 𝐼
  . 3.15 

𝐽0 refers to the image after approximated offset correction, calculated as: 𝐽0(𝑥)  =

 𝐼(𝑥) / 𝑏0(𝑥). Where, I(x) is the original input image 𝑏0 (x) is the initial estimate of the 

offset field from Equation 3.14. So 𝐽0 (x) represents the image after dividing out the 

estimated offset field𝑏0  (x). The intention is that  𝐽0  (x) will have reduced intensity 

inhomogeneity compared to the original I(x). The form (N0/K) in Equation 3.15 is likely 

a typo or mistake in the text. It should simply be: 𝐽0 (x) = I(x) / 𝑏0 (x). To summarize: 𝐽0 

(x) is the image after initial offset correction using 𝑏0 (x). Dividing by 𝑏0 (x) aims to 

reduce inhomogeneity and normalize intensity. The ((N0/K) term in the text is likely an 

error. 

Generally, the gray scale changes of the target boundary area image are large, and 

the gray scale changes of other areas are small. Near the target boundary, the corrected 

image gray level 𝐽0will be greater than or less than 𝑁0 , while in other areas it is 

approximately equal to𝑁0. The boundary area is generally much smaller than the entire 

image field. Therefore, for the initial contour at any position, the proposed initial offset 
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field can ensure (𝑐1 + 𝑐2)/2 ≈ 𝑁0 . In this way, in the first time In the iteration, the 

pressure function can be expressed as: 

𝑆 = 𝐼 − 𝐾 ∗ (𝐾 ∗  𝐼) . 3.16 

Where, K is a Smoothing kernel. I(x) is Input image intensity. (𝐾 ∗  𝐼)  is 

Smoothed image intensity. S(x) is a pressure function based on difference between 

original and smoothed intensity.The key idea is that S(x) will have larger values at image 

edges and transitions, thereby providing an edge-driving force for the level set evolution. 

The pressure function only has a greater driving force in areas where the gray 

level changes greatly, as is seen in Figure 3.1 (d). Since the grayscale of the picture of 

the actual boundary region of the target often shifts quite a little, it is possible to segment 

the image of the real boundary area of the target first. The level-set function has 

developed to the point that it now encompasses the whole of the picture domain. As a 

result, the migration field initialization strategy that has been provided has the potential 

to increase the algorithm's resilience to the starting contour location. 

3.2.5 Adaptive Scaling Operator 

In the level-set segmentation approach that is based on K-means clustering, it is 

expected that the picture in the local neighborhood is roughly uniform. The size of each 

local neighborhood is controlled by the scale parameter of the clustering kernel function. 

In most cases, the scale parameter has to have an adequate value chosen for it in 

accordance with the amount of grayscale unevenness present in the picture. (Li et al., 

2011). However, the real area of each target cannot be obtained in advance, and it is 

difficult to measure the degree of grayscale unevenness of the image. According to the 

gray inhomogeneity image model of equation (3.1) and the assumptions 1 and 2 in the 

LIC model, it can be obtained that the gray inhomogeneity causes the smooth area of the 

image gray to change slowly in each target area, and the target boundary. The gray level 

change at the position is mainly caused by the image itself, and the change is drastic. The 

key idea is that at the boundary between two image regions, there is typically a more 

rapid transition in gray levels compared to within homogeneous regions. For example, 
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consider an image with a bright object on a dark background. At the object's edges, the 

intensity changes quickly from bright to dark over a short distance. This rapid spatial 

change in intensity is caused inherent edges in the image itself, rather than being due to 

the smooth intensity variations from the offset field. In contrast, within a homogeneous 

region (e.g. fully inside the object or background), the intensity changes more slowly and 

smoothly due to the offset field variations. So, at region boundaries in the image, there 

are inherently rapid gray level changes over a short distance. This is intrinsic to the image 

content rather than the smooth offset field effects. Within homogeneous regions, intensity 

changes more slowly due to offset field variations. Therefore, this thesis removed the 

boundary region, use the image local variance information of the smooth region in each 

target to measure the degree of local gray-scale inhomogeneity of the image, and use the 

image local variance to design an adaptive scale operator for the clustering kernel 

function.  

Firstly, the image is preprocessed by median filtering and bilateral filtering to 

reduce the influence of noise. The preprocessed image grayscale is 𝐼1 . Then, it is 

necessary to obtain a smooth area Ω𝑠   . without the true boundary of the target. Using the 

Laplace operator to detect the boundary of the target, the smooth area Ω𝑠0 can be obtained 

as: 

Ω𝑠0 = {𝜒||F（𝜒）| < T＆𝜒 ∈ Ω}  . 3.17 

Among them, 𝐹 = 𝐾1 ∗ 𝐼1   , 𝑇 = 𝜏 ∙ 𝑚𝑖𝑛(𝑚𝑎𝑥|𝐹|), 𝑇0), 𝜏 is a constant, 𝑇0  is a 

constant threshold, 𝐾1represents a Laplacian with eight neighborhoods. 

The greater the change in the image gray level of the local area, the greater the 

absolute value of F, and vice versa. The image gray scale changes slowly in the smooth 

area, while most of the pixels inΩ𝑠0  belong to the smooth area, and the offset field 

changes slowly in the image domain. Therefore, the value of F in Ω𝑠0approximately 

obeys Gaussian distributed. In order to further eliminate the boundary and noise area, 

remove the pixels far away from the mean value in Ω𝑠0to obtain a more accurate smooth 

area Ω𝑠 as: 
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Ω𝑠 = 

{𝜒|max(𝑐𝐹 − 1.5𝜎𝐹 , −𝑇) < 𝐹(𝜒) < min(𝑐𝐹 + 1.5𝜎𝐹 , 𝑇))＆𝜒 ∈ Ω𝑠0)} . 
3.18 

In 3.17, Ω𝑠0 - This refers to an initial estimate of the smooth image region, without 

edges or noise. F = 𝐾1 * 𝐼1 - This is the result of applying a Laplacian filter K1 to the 

preprocessed image I1. T = τ * min(max|F|) - A threshold value calculated based on the 

Laplacian response. So Ω𝑠0 excludes pixels where the Laplacian response |F| exceeds the 

threshold T, indicating likely edges. In 3.18, F(x) - The Laplacian response at pixel x, F 

= 𝐾1 * 𝐼1. cF - The mean value of F(x) in Ω𝑠0. σF - The standard deviation of F(x) in Ω𝑠0. 

Ω𝑠 - The final estimated smooth region after excluding any high Laplacian values far 

from the mean cF. F(x) measures edge strength via the Laplacian. Pixels with |F(x)| much 

above the mean cF are excluded to get the final smooth region Ω𝑠. This removes any 

remaining edges or noise from the smooth region. 

Among them, 𝑐𝐹and 𝜎𝐹 represent the mean and standard deviation of F in Ω𝑠0, 

respectively. 

After obtaining the smooth area Ω𝑠, calculate the (2𝜔0 + 1) × (2𝜔0 + 1) square 

neighborhood 𝑅𝜔0(𝜒) as the center in the image𝐼1. The local variance of 𝜒 is 𝐷(𝜒) . If 

there is a larger degree of unevenness in the picture gray, then there will be a bigger 

variation in the local region. As a result, the scale parameter will need to be decreased in 

order to satisfy the assumption that the image in the immediate vicinity is relatively 

uniform. As a result, the scale parameter is inversely proportional to the local variance of 

the image, which is used to measure the degree of the overall grayscale inhomogeneity 

of the image. This is because the mean value of the local variance of the image in the 

smooth area is used to determine how much grayscale inhomogeneity there is in the image. 

The kernel function's adaptive scaling operator, which was constructed, is as follows: 

𝜎𝑏 =
𝛽

√𝑐𝐷
  . 3.19 

The key idea is that 𝑐𝐷 , the average local variance in the smooth region Ωs, 

provides a data-dependent measure of the image's gray level inhomogeneity. Higher 𝑐𝐷 
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indicates more inhomogeneity, while lower 𝑐𝐷  implies a more homogeneous image. 

While β is a constant, 𝑐𝐷  adapts to each input image based on the measured 

inhomogeneity. Since 𝜎𝑏 is inversely proportional to √𝑐𝐷), it will take on larger values 

for images with less inhomogeneity (smaller 𝑐𝐷), and smaller values for images with 

more inhomogeneity (larger 𝑐𝐷). This enables 𝜎𝑏 to adaptively set the kernel scale based 

on the input image characteristics, rather than using a fixed value unsuitable for all images. 

In summary, 𝑐𝐷 captures inhomogeneity via local variance in smooth regions.  𝜎𝑏 adapts 

inversely to √𝑐𝐷) to set appropriate kernel scale. Images with more inhomogeneity get 

smaller𝜎𝑏, and vice-versa. It's the data-dependent𝑐𝐷 that enables adaptation in 𝜎𝑏.  

Among them, 𝛽  is a constant parameter, and 𝑐𝐷 represents the average value 

of 𝐷(𝜒) of the image𝐼1 in the area Ω𝑠. 

Based on the formula shown above, it is clear that the degree of unevenness of 

the gray level of the picture will have a direct impact on the size of the scale parameter 

that is derived, and vice versa. As a result, the proposed adaptive scale operator has the 

capability to adaptively pick suitable scale parameters for the kernel function based on 

the degree of gray inhomogeneity present in the picture. 

3.2.6 Numerical Realization 

Through standardized scaling, 𝛿(∅) can be replaced with |∇∅|  (Vese  and  Chan, 

2002). In this way, the steady-state solution of the gradient descent flow equation in 

equation (3.13) is equivalent to the following equation: 

𝜕∅

𝜕𝑡
= |∇∅| (𝐼 − (𝐾 ∗ 𝑏) (

𝑐1 + 𝑐2
2

)). 3.20 

In addition, in order to prevent the level-set function from being too steep or flat 

in the evolution process, the condition|∇∅| = 1 (Fedkiw  and  Osher, 2002) must be 

satisfied, then the above formula is simplified to: 

𝜕∅

𝜕𝑡
=  𝐼 − (𝐾 ∗ 𝑏) (

𝑐1 + 𝑐2
2

) . 3.21 



 

 131 

Use an explicit finite difference strategy to discretize the formula (3.21): 

𝜙𝑛 − 𝜙𝑛−1

∆𝑡
 =  𝐼 − (𝐾 ∗ 𝑏) (

𝑐1 + 𝑐2
2

) . 3.22 

Where 𝑐1 and 𝑐2 refer to the cluster centers estimated via K-means clustering of 

the image intensities. Specifically, 𝑐1 is Cluster center for intensities inside the object 

region. 𝑐2  is Cluster center for intensities outside the object region. So 𝑐1  and 𝑐2 

represent the modeled average intensities on either side of the evolving contour. Among 

them, ∆𝑡 is the time step and 𝑛 is the number of iterations. 

It is clear from the preceding formula that the right side of the equal sign does not 

have anything to do with phi, and it is possible to choose a reasonably big time step in 

order to accelerate the algorithm's process of convergence by doing so. In fact, the 

estimation procedure for the offset field consumes the majority of the time during each 

iteration. Additionally, when the offset field is fixed, the level set cannot reach a stable 

state after one iteration. As a result, multiple iterations are required to evolve the level-

set function, which, in turn, can reduce the number of estimation times for the offset field 

and effectively accelerate the speed at which the algorithm converges. In addition, in 

order to guarantee the consistency of the numerical realization, the iterative procedure 

makes use of gaussian filtering to regularize the level-set function. This is done in order 

to assure the stability of the numerical realization (Zhang et al., 2010). 

In the experiment, when the change of the level-set function is less than the given 

threshold 𝜂, that is, 

∫ |𝜙𝑛(𝜒) − 𝜙𝑛−1 (𝜒)|𝑑(𝜒) < 𝜂 . 3.23 

The algorithm stops iterating. 

The main steps of the scale-adaptive fast level-set segmentation algorithm 

(FLSAS) are as follows: 

Step 1. Obtain the initial offset fields 𝑏0and 𝜎𝑏 according to equations (3.14) and 

(3.19) respectively, and initialize the level-set function 𝜙0 as a binary function: 
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𝜙0(𝜒) = {
−1 ,   𝜒 ∈ 𝑖𝑛𝑠𝑖𝑑𝑒(Ω0)

1,                  other
 . 

Among them, Ω0is a subset of the image domain Ω; 

Step 2. For K=1:m 

1) Calculate𝑐𝑖 according to formula (3.10); 

2) Evolve the level-set function 𝜙 according to formula (3.22); 

3) Use Gaussian filter to regularize the level-set function; 

4) If 𝜙 > 0, then 𝜙 = 1; otherwise, 𝜙 = −1. 

Step 3. Calculate the offset field b according to formula (3.11); 

Step 4. According to formula (3.23), judge whether the level-set function 𝜙 meets 

the threshold of stopping evolution. If it is satisfied, the algorithm ends, otherwise, return 

to step 2. 

3.2.7 Multiphase Level-Set 

The model that was provided above is a two-phase level-set segmentation form. 

As this form is unable to segment pictures that include multiple target regions, the model 

that was proposed needs to be expanded to a multi-phase level-set segmentation form. 

Using k level-set functions to describe the target area Ω𝑖 , 𝑖 = 1,2, . . . , 𝑁 ,The 

membership function M𝑖 of Ω𝑖 is expressed as: 

M𝑖(Φ(𝜒)) 

= M𝑖(𝜙1(𝜒) , 𝜙2 (𝜒) , . . . , 𝜙𝐾 (𝜒)) = {
1 , 𝜒 ∈ Ω𝑖 
0 ,    other

 , i = 1,2, . . . , N  . 
3.24 

Among them, Φ = (𝜙1, 𝜙2, . . . , 𝜙𝐾). 

When N=4, use level-set functions 𝜙1 and𝜙2 to define the four target areas of the 

image, and the membership functions are expressed as: M𝑖(Φ) =
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H(𝜙1)𝐻(𝜙2) , M2(Φ) = H(𝜙1;  1 − 𝐻(𝜙2)) , M3(Φ) = (1 − H(𝜙1);  1 − 𝐻(𝜙2))  and

M4(Φ) = (1 − H(𝜙1)𝑠) 𝐻(𝜙2). Assuming 𝑐1 > 𝑐2 > 𝑐3 > 𝑐4, the two-phase energy in

equation (3.11) The functional is transformed into a multiphase energy functional: 

𝐸(Φ, 𝑐, 𝑏) 

= −∫
Ω
∑(𝑆𝑖,𝑖+1∑𝑀𝑗

𝑖

𝑗=1

𝑁−1

𝑖=1

(Φ))𝑑 𝜒 

= − ∫
Ω

(𝑆1,2H(𝜙1)𝐻(𝜙2) + 𝑆2,3H(𝜙1) + 𝑆3,4(1 − 𝐻(𝜙2)

+ H(𝜙1)𝐻(𝜙2)))𝑑𝜒  .

3.25 

The area-based pressure function𝑆𝑖,𝑖+1 is defined as:

𝑆𝑖,𝑖+1 =  𝐼 − (𝐾 ∗ 𝑏) (
𝑐𝑖 + 𝑐𝑖+1
2

) , 𝑖 = 1,2,3  . 3.26 

Among them, 𝑐𝑖 and b can be calculated according to formula (3.10) and formula

(3.11) respectively. 

Relative to the energy functional E in the minimization equation (3.25) of 𝜙1, the

gradient descent flow equation can be obtained as: 

𝜕𝜙1
𝜕𝑡

= (𝑆1,2 + 𝑆3,4)𝐻(𝜙2) + 𝑆2,3  . 3.27 

Similarly, relative to𝜙2minimize the energy functional E in equation (3.25), the

gradient descent flow equation is obtained as: 

𝜕𝜙2
𝜕𝑡

= (𝑆1,2 + 𝑆3,4)𝐻(𝜙1) − 𝑆3,4 . 3.28 

3.3 Adaptive Multilayer Level-Set Image Segmentation Method 

In recent years, a number of multi-scale level-set approaches have been suggested 

(Wang et al., 2015; Min et al., 2016; and Zhang et al., 2017). (Sui et al., 2012). Min et al. 

(2016) In order to avoid falling into local minima, it is important to create a multi-layer 
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level-set structure using a set of scale parameters, make decisions about the scale 

parameters at each pixel using an adaptive method, and keep the capacity to detect global 

contrast information. Because this method uses a series of fixed scale parameters and can 

only provide a limited number of candidate scales, it is difficult to provide appropriate 

scale parameters for segmenting images that have highly uneven gray levels. This is 

because this method can only provide a limited number of candidate scales. Moreover, 

this approach only offers a limited selection of possible scales to choose from. 

An adaptive multi-layer level-set picture segmentation technique is proposed in 

this paragraph as a solution to the challenges outlined above (Adaptive Multilayer Level 

Set Method, AMLLS). First, make use of the image's local variance to design an 

improved global adaptive scale operator as well as a local adaptive scale operator. Next, 

propose an improved local intensity clustering segmentation algorithm, but keep in mind 

that it is easy for the algorithm to fall into a local minimum solution. In order to 

accomplish this, it is extended to a multi-layer level-set form, and then the two adaptive 

scale operators that were designed are used to adaptively determine the number of layers 

and the scale parameters of each layer. Finally, an adaptive multi-layer level-set structure 

is constructed, and it is passed. The segmentation and offset field estimation of very 

uneven grayscale pictures are both made possible using the dual reduction of energy 

functionals. In addition, a hybrid offset field initialization strategy is offered as a means 

of enhancing the algorithm's already impressive degree of resilience. 

3.3.1 Improved Local Intensity Clustering Level-Set Segmentation Algorithm 

This part of the analysis utilizes the image's local variance in order to determine 

the level of gray inhomogeneity that exists in the surrounding area. Moreover, it creates 

a local adaptive scale operator in addition to an enhanced global adaptive scale operator 

for the clustering kernel function. Finally, it combines the LIC model (Li et al., 2011) to 

propose an improved local strength cluster segmentation algorithm. 

3.3.2 Adaptive Scaling Operator 

An improved local intensity clustering (OLIC) model is presented in Section 3.3.1 

to handle gray level inhomogeneity. This uses adaptive scale parameters and altered 
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optimization order. Section 3.3.2 extends this to a multi-layer level set formulation 

(AMLLS) to improve convergence and avoid local minima. Multiple scale layers are used 

with adaptive determination of parameters. A hybrid offset field initialization is proposed 

in Section 3.3.3 to improve robustness. This initializes each level's offset field as a blend 

of constant and previous iteration's estimate. The function of equations in this section was 

described as:  

Eq 3.29-3.30: Compute adaptive global and local scale parameters 𝜎𝐺  and 𝜎𝐿 

based on image local variance statistics. 

Eq 3.31: Discretize𝜎𝐿 into intervals 𝜎𝐷 for simpler optimization. 

Eq 3.32: OLIC energy functional using discrete 𝜎𝐷. 

Eq 3.33-3.36: Update cluster centers ci and offset field b by minimizing energy. 

Eq 3.37: OLIC level set evolution equation. 

Eq 3.42-3.45: Define multi-layer scale parameters 𝜎𝑀𝐿
(𝑗)
(𝜒)  adapted to image 

inhomogeneity. 

Eq 3.48: Multi-layer energy function. 

Eq 3.56-3.59: Update parameters by minimizing multi-layer energy. 

Eq 3.61: Hybrid offset field initialization. 

3.3.2.1 Improved Global Adaptive Scaling Operator 

The previous study provided a global adaptive scale operator and utilized the local 

variance of the smooth area of the picture to evaluate the degree of local gray 

inhomogeneity. Nevertheless, this method is subject to noise interference when it is used 

to calculate the smooth area of the image. As a result, this thesis make improvements to 

the global adaptive scale operator by reducing the complexity of the approach for getting 

the smooth area. 
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First, use median filtering and bilateral filtering to preprocess the image 𝐼, and the 

preprocessed image gray level is 𝐼1. Then, use the Laplacian of Gaussian to estimate the 

boundary 𝐶𝐿 of the target. The local area of pixels near the target boundary may will 

contain the target and background pixels. Therefore, remove the pixels whose distance 

𝐶𝐿 is less thanω0 + 1 to obtain the final smooth area Ω𝑠, 

Ω𝑠 = {𝜒|𝑑𝑖𝑠𝑡(𝜒 , 𝐶𝐿) >  ω0 + 1} ，𝜒 ∈ Ω. 3.29 

Among them, ω0  is a constant parameter, and 𝑑𝑖𝑠𝑡(𝜒 , 𝐶𝐿)  is the Euclidean 

distance between the pixel𝜒 and the nearest pixel in 𝐶𝐿. 

After obtaining the smooth area  Ω𝑠 , calculate the local variance 𝐷(𝜒)  of the 

(2ω0 + 1) × (2ω0 + 1) square neighborhood 𝑅ω0(𝜒) centered on 𝜒 on the image 𝐼1 . 

The global adaptive scaling operator of the previous methods is extended to a more 

general form, which is suitable for different types of kernel functions, and an improved 

global adaptive scaling operator 𝜎𝐺 is proposed: 

𝜎𝐺 =
𝛼

(√𝐶𝐷)
𝜌
 . 3.30 

Among them, 𝛼 and 𝜌 are constant parameters, and 𝐶𝐷 is the mean value of 𝐷(𝜒) 

of image 𝐼1 in the area  Ω𝑠. 

3.3.2.2 Local Adaptive Scaling Operator 

It is difficult to cope with non-linear gray-scale uneven pictures when using the 

enhanced global adaptive scale operator, despite the fact that it gives uniform scale 

parameters for all pixels. In actual reality, the scale parameter of each pixel has to be 

updated in an adaptive manner so that it corresponds to the degree of local gray-scale 

unevenness. Therefore, this thesis use the image local variance 𝐷(𝜒) to measure the 

degree of local gray inhomogeneity, and propose a local adaptive scale operator 𝜎𝐿: 
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𝜎𝐿(𝜒) = {
0.5𝜎𝐺  , 𝜒 ∉  Ω𝑠 ＆ D(𝜒) > 4𝐶𝐷

 𝜎𝐺 −
2𝜎𝐺

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 (

√𝐷(𝜒) −√𝐶𝐷

𝜍+√𝐶𝐷
) , other

. 3.31 

Among them, 𝜍 is a constant parameter. 

The 𝜎𝐿  in formula (3.31) can adaptively provide a suitable scale parameter 

between zero and 2𝜎𝐺 for each pixel according to the degree of local gray inhomogeneity 

of the image, and avoid excessive or excessive scale parameters. The occurrence of minor 

situations. The larger the local variance, the smaller the scale parameter, and vice versa. 

In addition, in the target boundary area, the local variance of the image is large, and the 

gray scale of the target boundary area is approximately uniform. Therefore, the minimum 

scale parameter of the non-smooth area is limited to 0.5𝜎𝐺. In this way, on the one hand, 

it avoids the slow level-set convergence caused by the too small scale parameter; on the 

other hand, it can effectively improve the segmentation accuracy of the boundary area. 

3.3.3 Improved Local Intensity Clustering Segmentation Algorithm 

This thesis updated the LIC model in order to address the issue that the local 

intensity clustering model (LIC; Li et al., 2011) has with being sensitive to the starting 

contour and setting scale parameters. To begin, modify the order of level-set evolution 

and migration field estimate, also known as the OLIC (Order Local Intensity Clustering) 

model, so that the resilience to the starting contour may be improved. The segmentation 

performance of highly uneven grayscale pictures is then enhanced by combining an 

improved version of the global adaptive scale operator (OLICG) with an improved 

version of the local adaptive scale operator (OLICL). 

The OLICG model is similar to the LIC model and is easy to implement. Only the 

OLICG model is introduced here, and its energy functional is: 

𝐸𝑂𝐿𝐼𝐶𝐿 = ∫ (∑ ∫ 𝐾𝜎𝐿
𝑁
𝑖=1 (𝑦 − 𝜒)| 𝐼(𝜒) − 𝑏(𝑦) 𝑐𝑖 |

2𝑀𝑖(𝜙(𝜒))𝑑 𝜒)𝑑𝑦 . 3.32 

Due to the selection of different scale parameters at each pixel, the algorithm 

implementation is more complicated. For this reason, the scale parameters can be 
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discretized at equal intervals to simplify the calculation. The discrete scale parameter is 

expressed as: 

𝜎𝐷
(𝑗0) = 𝑚𝑖𝑛(𝜎𝐿) + (𝑗0 − 0.5) ∙ 𝜏, 𝑗0 = 1,2, . . . , 𝑚1  . 3.33 

Among them, 𝜏 = (𝑚𝑎𝑥(𝜎𝐿) − 𝑚𝑖𝑛(𝜎𝐿))/ 𝑚1 , 𝑚1real constant. 

Using discrete scale parameters, the energy functional of the OLICG model can 

be expressed as: 

𝐸𝑂𝐿𝐼𝐶𝐿 = ∑ ∫ (∑ ∫
𝑚1
 𝑗0=1

𝛿0(𝐿𝜎𝐷(y) − 𝑗0)𝐾𝜎𝐷
(𝑗0)(𝑦 − 𝜒)| 𝐼(𝜒) −

𝑁
𝑖=1

𝑏(𝑦) 𝑐𝑖 |
2𝑀𝑖(𝜙(𝜒))𝑑𝜒) 𝑑𝑦 . 

3.34 

Among them, 𝐿𝜎𝐷 = ⌈𝜎𝐿 −𝑚𝑖𝑛(𝜎𝐿))/𝜏⌉ If 𝜒 = 0, then 𝛿0(𝜒) is 1, otherwise it is 

0. 

Similar to the LIC model, the optimal 𝑐𝑖 and b are: 

𝑐𝑖 =
∫ ∑ ((𝑏 ∗ 𝐾

𝜎𝐷
(𝑗0))𝛿0(𝐿𝜎𝐷(𝜒) − 𝑗0))

𝑚1
𝑗0=1

𝐼𝑀𝑖(∅)𝑑 𝜒

∫ ∑ ((𝑏2 ∗ 𝐾
𝜎𝐷
(𝑗0))𝛿0(𝐿𝜎𝐷(𝜒) − 𝑗0))

𝑚1
𝑗0=1

𝑀𝑖(∅)𝑑 𝜒
 . 3.35 

𝑏 =
∫ ((∑ 𝑐𝑖

N
𝑖=1 𝑀𝑖(∅)𝐼) ∗ 𝐾𝜎𝐷

(𝑗0)𝛿0(𝐿𝜎𝐷(𝜒) − 𝑗0)

∫ ((∑ (𝑐𝑖
N
𝑖=1 )2𝑀𝑖(∅)) ∗ 𝐾𝜎𝐷

(𝑗0)𝛿0(𝐿𝜎𝐷(𝜒) − 𝑗0)
  . 3.36 

Considering the two-phase segmentation and introducing the rule term and length 

term in the LIC model, the final gradient descent flow equation is: 

𝜕∅

𝜕𝑡
= −𝛿(∅)(𝑒1 − 𝑒2) + 𝜇 (∇

2𝜙 − 𝑑𝑖𝑣 (
∇𝜙

|∇𝜙|
)) + 𝑣𝛿(∅)𝑑𝑖𝑣 (

∇𝜙

|∇𝜙|
) . 3.37 

Among them, 𝜇 ≥ 0 , v≥ 0 , 𝑒𝑖are: 
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𝑒𝑖(𝜒) = ∑ ∫ 𝛿0

𝑚1

 𝑗0=1

(𝐿𝜎𝐷(𝑦) − 𝑗0)𝐾𝜎𝐷
(𝑗0)(𝑦 − 𝜒;  𝐼(𝜒) − 𝑏(𝑦) 𝑐𝑖)

2𝑑𝑦 . 3.38 

In the numerical implementation, an explicit finite difference strategy is used to 

discretize equation (3.37): 

𝜙𝑛 − 𝜙𝑛−1

∆𝑡
 =
𝜕∅𝑛−1

𝜕𝑡
  . 3.39 

Among them, ∆𝑡 is the time step and 𝑛 is the number of iterations. The Heaviside 

function is regularized into the following form: 

𝐻𝜀(𝜙) =
1

2
[1 +

2

𝜋
∙ arctan (

𝜙

𝜀
)] . 3.40 

Among them, 𝜀 is a constant parameter. 𝛿(∙) is approximately: 

𝛿𝜀(𝜙) = 𝐻𝜀
′(𝜙) =

1

𝜋
 

𝜀

𝜀2 + 𝜙2
 . 3.41 

 

3.3.4 Simulation Experiment and Analysis 

This section verifies the performance of the improved local intensity clustering 

segmentation algorithm through experiments on synthetic and real images. The 

experimental platform used is the same. In the experiment, the parameters are set as: 

𝜔0 = 1  , 𝛼 = 5.2  , 𝜌 = 1.25  , 𝜍 = 1  , 𝑚1 = 6  , ∆𝑡 = 0.1  , 𝜀 = 1  , 𝑣 = 1  and 𝜇 =

0.0001 × 2552. 
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(a) 

 

 

(b) 
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(c) 

 

 

(d) 

Figure 3.1 The effectiveness of the improved global adaptive operator 
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Figure 3.2 Different initial contours-state the difference in the caption 
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Figure 3.1 shows the effectiveness analysis of the improved global adaptive 

operator. Put the OLIC model in the composite image, including 15 images, and the gray-

scale unevenness of the image gradually decreases. In the experiment, 𝜇 is set to zero to 

remove the length term, and the initial contour is set near the actual boundary of the target 

to reduce the influence of the initial contour on the model. It can be seen from Figure 

3.1(a) that images with different gray-scale inhomogeneities require different scale 

parameters. Figure 3.1(b) shows the comparison between the adaptive scale operator 

when 𝛼=12 and the maximum feasible scale parameter (the maximum scale parameter 

whose JS value is 1 in the segmentation result of the OLIC model). It can be seen that the 

proposed adaptive scale operator is very close to the maximum feasible scale parameter. 

It can be seen from Figure 3.1(c) that when 𝛼 ≈ 2.3~11.5, the OLIC model can segment 

all images correctly. Figure 3.1(d) shows the average number of iterations required by 

the OLIC model under different α. Considering the accuracy and efficiency of the 

algorithm, α is set to 5.2 in the experiment. 

Figure 3.2 shows the segmentation results of the LIC model (LICG), OLICG and 

OLICL combined with the global adaptive scale operator under different initial contours 

for the gray-scale uneven image. It can be seen that different initial contours lead to 

different segmentation results for LICG, while OLICG and OLICL can both obtain the 

same and correct segmentation accuracy, indicating that OLICG and OLICL have strong 

robustness to the initial contour. 

Figure 3.3 shows the segmentation results of LCG, OLICG and OLICL on uneven 

grayscale images. In the experiment, for the four images, 𝜇  is set to 0.001 × 2552  , 

0.0003 × 2552 , 0.001 × 2552 and 0.0001 × 2552. It can be seen that it is difficult for 

LICG to segment images with severely uneven gray levels. The segmentation 

performance of OLICG is higher than that of LICG, but the segmentation accuracy is 

worse in weak boundary regions. However, OLICL obtains accurate segmentation results 

for all images, indicating that OLICL can accurately segment images with severely 

uneven grayscale. 

Figure 3.4 shows the local adaptive scale parameters of the first and third images 

in Figure 3.3. It can be seen that for the first image with slightly uneven grayscale, the 
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scale parameter of the smooth area is larger. For the second image with severely uneven 

gray scale, the scale parameter of the smooth area is smaller. It demonstrates that the 

proposed local adaptive scale operator is able to give appropriate scale parameters at each 

pixel based on the degree of local gray inhomogeneity present in the picture. In addition, 

the target boundary area is on a smaller scale, which, when combined with the smaller 

scale, has the potential to significantly increase the border area's segmentation accuracy. 

 

Figure 3.3 Comparison of LICG, OLICG and OLICL segmentation results 

Figure 3.5 shows the segmentation results of OLICG and OLICL for severely 

uneven grayscale images. It can be seen that changing the position of the initial contour 

will lead to incorrect segmentation, indicating that OLICG and OLICL will still fall into 

a local minimum solution. 
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Figure 3.4 Local adaptive scale parameters 

Aiming at the problem that the algorithm falls into a local minimum solution, the 

improved local strength clustering segmentation algorithm in section 4.2 is extended to a 

multi-level level-set form, and the multi-level level-set structure is constructed using the 

proposed global and local adaptive scale operators, Propose an adaptive multi-layer level-

set segmentation algorithm. 

3.3.5 Adaptive Multilayer Level-Set Structure 

The low-level energy items in the multi-layer level-set structure (Min et al., 2016) 

primarily represent the local gray distribution information of the picture, but the high-

level energy items include more information on the image's global contrast. Because the 

proposed local adaptive scale operator is obtained according to the degree of the image's 

local gray inhomogeneity, it is possible to use it to construct the first layer of a multi-

layer level-set structure. This is because of the way that the proposed local gray 

inhomogeneity is measured. The following are the scale parameters that are specified for 

the first layer: 

𝜎𝑀𝐿
(𝐼)(𝜒) =  𝛽 ∙ 𝜎𝐿(𝜒) + 1 . 3.42 
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Figure 3.5 OLICG and OLICL segmentation results 

Among them, 𝛽 is a constant parameter. At the same time, since the proposed 

global adaptive scale operator is obtained according to the degree of the overall grayscale 

inhomogeneity of the image, it can be used to construct the scale parameters of other 

layers of the multi-layer level-set structure. The scale parameter of layer 𝑗 (𝑗 >1) is 

defined as: 

𝜎𝑀𝐿
(𝑗)(𝜒) = ∆𝑠 ∙ 𝑗 + 1 = 𝛽 ∙ 𝜎𝐺 ∙ 𝑗 + 1 3.43 

It can be seen from the above formula that the scale difference between adjacent 

layers in the multi-layer level-set structure  ∆𝑠 = 𝛽 ∙ 𝜎𝐺  changes adaptively with the 

degree of global gray-scale inhomogeneity of the image. A uniform image provides a 

smaller ∆𝑠, while a slightly uneven grayscale image provides a larger ∆s. In addition, the 

maximum scale of the multilayer level-set structure must be sufficient to cover the image 

to detect the global contrast information of the image. In this way, this thesis can define 
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the number of layers m of the multilayer level-set structure according to ∆𝑠 and the size 

of the image: 

𝑚 = 𝑟𝑜𝑢𝑛𝑑(𝑚𝑖𝑛((
𝑁0
𝜋
)0.5/(4 ∙ ∆𝑠) ,

𝑇

∆𝑠
)) + 1 3.44 

Among them, 𝑇 is a constant parameter, used to limit the maximum value of the 

scale, and 𝑁0 is the number of pixels of the image. It can be seen from the above formula 

that for images with severely uneven grayscale, the value of m is larger, this might give 

a greater number of potential scales for the picture processing. When dealing with photos 

that have grayscale that is somewhat uneven, using a lower value for m may help speed 

up the convergence time of the method. 

The scale parameter of the j-th layer of the adaptive multi-layer level-set structure 

is defined as: 

𝜎𝑀𝐿
(𝑗)
(𝜒) = {

𝛽 ∙ 𝜎𝐿((𝜒) + 1 , 𝑗 = 1
𝛽 ∙ 𝜎𝐺 ∙ 𝑗 + 1 ,   𝑗 = 2,3, . . . , 𝑚

 3.45 

It can be seen from the above formula that the scale parameters and the number 

of layers of the adaptive multi-layer level-set structure can be adjusted adaptively 

according to the degree of gray-scale inhomogeneity of the image. For images with 

severely uneven gray-scale, it can be automatically selected. More layers and denser 

candidate scales can better estimate the offset field of the image and achieve accurate 

image segmentation. For images with slightly uneven gray scales, choosing a sparse 

candidate scale and fewer layers is conducive to fast image segmentation. 

Then, a series of Gaussian kernel functions are constructed using the scale 

parameters in equation (3.45). The Gaussian kernel function of the j-th layer is: 

𝐾𝜎𝑗（𝑢） {
1

𝑎
𝑒−𝑢

2/(2𝜎𝑗
2) , |u| ≤ 𝜎𝑗

0,                   other
 , 𝑗 = 1,2, . . . , 𝑚 3.46 

The energy term of the adaptive multilayer level-set structure can be described as: 
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𝐸𝑀 = {𝐸𝑀
(1)
 , 𝐸𝑀

(2)
 , . . . , 𝐸𝑀

(𝑗)
 , … } , 𝑗 = 1,2, … ,𝑚 3.47 

𝐸𝑀
(𝑗)
=∑𝜆1

𝑁

𝑖=1

∬𝐾
𝜎𝑀𝐿
(𝑗) ∙ ( 𝐼(𝜒) − 𝑏(𝑗)(𝑦)𝑐𝑖

(𝑗)
)2𝑀𝑖(𝜙(𝜒))𝑑𝑦𝑑𝜒 3.48 

In the first layer, each pixel is assigned a different scale parameter. Therefore, 

using the same method as the OLICL model, 𝜎𝑀𝐿
(1)

 is discretized at equal intervals to 

calculate 𝐸𝑀
(1)
 , the detailed process Refer to section 3.3.1. 

3.3.6 Level-Set Evolution and Numerical Calculation 

3.3.6.1 Energy Functional 

The difference between the cluster center and the image gray level estimated by 

the adaptive multi-layer level-set structure at each pixel, that is, the multi-layer gray level 

difference, is defined as:  

𝐷𝐼𝑖
(𝑗)(𝜒) 

=

{
 
 

 
 
∑ ∫𝛿0(𝐿𝜎𝐷(𝑦) − 𝑗0)𝐾𝜎𝐷

(𝑗0)(𝑦 − 𝜒;  𝐼(𝜒) − 𝑏
(1)(𝑦) 𝑐𝑖

(1)
)2𝑑𝑦  , 𝑗 = 1  

𝑚1

𝑗0=1

(𝐼(𝜒) − 𝑏(𝑗)(𝜒)𝑐𝑖
(𝑗)
)2 , 𝑗 = 2, . . . , 𝑚

. 
3.49 

At each pixel, the layer corresponding to the smallest multi-layer grayscale 

difference is the optimal evolution layer. Generally, the image gray scale of the target 

boundary area is approximately uniform. Therefore, using smaller scale parameters in the 

target boundary area can improve the segmentation accuracy of the algorithm. Set the 

optimal evolution layer of the estimated non-smooth area of the image as the first layer, 

so that the optimal evolution layer of the adaptive multi-layer level-set structure is: 

𝐿𝑖(𝜒) = {
1,    𝜒 ∉ Ω𝑠

𝑎𝑟𝑔𝑗min (𝐷𝐼𝑖
(𝑗)(𝜒 )) , 𝜒 ∈ Ω𝑠 

 ， 𝑖 = 1, . . . , 𝑁 . 3.50 
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Using the optimal evolution layer in formula (3.50), the optimal gray level 

difference can be obtained: 

𝑍𝑖(𝜒) = 𝐷𝐼𝑖
(𝐿𝑖(𝜒))(𝜒), 𝑖 = 1,… ,𝑁 . 3.51 

The final level-set energy functional is: 

𝐸𝐷 =∑𝜆1

𝑁

𝑖=1

∫
Ω

𝑍𝑖(𝜒) ∙ 𝑀𝑖(𝜙(𝜒)) 𝑑𝜒  . 3.52 

In addition, the level-set function needs regularization (Li et al., 2010), (Li et al., 

2008), (Zhang et al., 2012) to ensure its stability. This thesis introduce the length term 

and regularization term in (Li et al., 2008) into the proposed algorithm. When N = 2, the 

level-set energy functional is: 

𝐸 = 𝜆1 ∫
Ω

𝑍1(𝜒)𝐻(𝜙(𝜒)) 𝑑𝜒 + 𝜆2 ∫
Ω

𝑍2(𝜒;  1 − 𝐻(𝜙(𝜒)) )𝑑𝜒

+ 𝜇 ∫
Ω

|∇𝐻(𝜙)|𝑑𝜒 + 𝑣 ∫
Ω

1

2
(|∇𝜙| − 1)2𝑑𝜒 .

3.53 

Among them, 𝜇 ≥ 0, 𝑣 ≥ 0. 

Extend the two-phase division form to the polyphase form, and use k level-set 

functions 𝜙1, 𝜙2, . . . , 𝜙𝑘 to represent the area Ω𝑖 , 𝑖 = 1,2, . . . , 𝑁,, then the membership

function of the area Ω𝑖 for:

M𝑖(Φ(𝜒)) = M𝑖(𝜙1(𝜒) , 𝜙2 (𝜒) , . . . , 𝜙𝐾 (𝜒)) = {
1 , 𝜒 ∈ Ω𝑖 
0 ,    other

 . 3.54 

Among them, Φ = (𝜙1, 𝜙2, … , 𝜙𝐾). When 𝑁 = 3, two level-set functions𝜙1 and

𝜙2 are used to define the partitions in the image domain Ω, and the membership function

is expressed as: M1(Φ) = H(𝜙1)H(𝜙2) , M2(Φ) = H(𝜙1;  1 − 𝐻(𝜙2))  and M3(Φ) =

1 − 𝐻(𝜙1). Multiphase energy functional representation for:
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𝐸 =∑𝜆1

𝑁

𝑖=1

∫
Ω

𝑍𝑖(𝜒) ∙ 𝑀𝑖(𝜙(𝜒)) 𝑑𝜒 + 𝜇 ∙ ∑∫
Ω

𝑘

𝑞=1

|∇𝐻(𝜙𝑞)| 𝑑𝜒 + 𝑣

Ω

𝑘

∙ ∑∫ 
𝑞=1

1

2
(|∇𝜙𝑞| − 1)

2𝑑𝜒  .

3.55 

3.3.6.2 Minimize Energy 

According to formula (3.53) or formula (3.55), the energy functional E is 

minimized for each variable, and the closed solution of each variable can be obtained. 

Fixing 𝜙 and 𝑏(𝑗), the optimal 𝑐𝑖
(𝑗)

 can be obtained by minimizing the energy term 𝐸𝑀
(𝑗)

in equation (3.48): 

𝑐𝑖
(𝑗)
=
∫ (𝑏(𝑗) ∗ 𝐾

𝜎𝑀𝐿
(𝑗) ⋅ 𝐼 ⋅ M1(Φ)𝑑𝜒

∫ (𝑏(𝑗))2 ∗ 𝐾
𝜎𝑀𝐿
(𝑗) ) ⋅ M1(Φ)𝑑𝜒

 , 𝑗 = 2, . . . , 𝑚  . 3.56 

𝑐𝑖
(1)

 can be obtained according to formula (3.35).

When fixing 𝜙  and 𝑐𝑖
(𝑗)

, the optimal 𝑏(𝑗)  can be obtained by minimizing the

energy term E_M^((j)) in equation (3.48): 

𝑏(𝑗) =
(𝐼 ⋅ (∑ 𝑐𝑖

(𝑗)
M𝑖(Φ))) ∗ 𝐾𝜎𝑀𝐿

(𝑗)
𝑁
𝑖=1

(∑ (𝑐𝑖
(𝑗)𝑁

𝑖=1 )2M𝑖(Φ)) ∗ 𝐾𝜎𝑀𝐿
(𝑗)

 , 𝑗 = 2, . . . , 𝑚  . 3.57 

𝑏(1) can be obtained according to formula (3.36).

When N=2, fix 𝑏(𝑗), 𝑐𝑖
(𝑗)

 and 𝐿𝑖, and minimize the energy functional in equation

(3.53) with respect to the level-set function Φ to obtain the gradient descent flow equation: 

𝜕∅

𝜕𝑡
= −

𝜕𝐸

𝜕∅
= −𝛿(∅)𝜆1𝑍1 − 𝜆2𝑍2) + 𝜇𝛿(∅)𝑑𝑖𝑣

∇𝜙

|∇𝜙|
))  . 3.58 
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Among them, 𝑑𝑖𝑣(∙) is the divergence operator, ∇ is the gradient operator, and 

𝛿(∙) is the Dirac function. 

When N>2, fix 𝑏(𝑗)，𝑐𝑖
(𝑗)

 and 𝐿𝑖  relative to the variable Φ = (𝜙1, 𝜙2, … , 𝜙𝐾) 

Minimize the formula (3.55) middle Energy functional, get gradient descent flow 

equation: 

𝜕𝜙𝑞
𝜕𝑡

= −
𝜕𝐸

𝜕𝜙𝑞
= −∑𝜆1

𝑁

𝑖=1

𝑍𝑖
𝜕M𝑖(Φ)

𝜕𝜙𝑞
+ 𝜇𝛿(𝜙𝑞)𝑑𝑖𝑣

∇𝜙𝑞

|∇𝜙𝑞|
)  

+ 𝑣(∇2𝜙𝑞𝑑𝑖𝑣
∇𝜙𝑞

|∇𝜙𝑞|
)),    𝑞 = 1,… , 𝑘  . 

3.59 

In the numerical implementation, the explicit finite difference strategy is also used 

to discretize equations (3.58) and (3.59): 

𝜙𝑞
𝑛 − 𝜙𝑞

𝑛−1

∆𝑡
=
𝜕𝜙𝑞

𝑛−1

𝜕𝑡
  . 3.60 

Among them, ∆𝑡 is the time step and 𝑛 is the number of iterations. 

3.3.6.3 Initialization of Mixed Offset Field 

The level-set segmentation method realizes image segmentation through the 

evolution of level-set, which is an interactive iterative process. Before each iteration, the 

offset field𝑏(𝑗) estimated in the previous iteration is usually used to initialize the offset 

field of the multi-layer level-set structure, which can promote the smooth convergence of 

the algorithm, but also cause the algorithm to fall into Local minimum solution. The DM 

model (Min et al., 2016) uses a simple offset field initialization operation, that is, 

𝑏0
(𝑗)
(𝜒) = 1 , 𝜒 ∈ Ω, although the DM model can accurately and efficiently segment some 

gray levels Inhomogeneous images, but for images with large overlaps in the gray 

distribution of the inner and outer regions of the target, the segmentation will be unstable 

and inaccurate. In order to make the algorithm more robust, a hybrid offset field is 

constructed by estimating the overlap degree of the gray distribution of the inner and 
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outer regions of the segmentation contour, and the offset field before each iteration is 

initialized. 

For the nth iteration, the mixed offset field of the 𝑗𝑡ℎ layer of the multilayer level-

set structure is: 

ℎ𝑏𝑛
(𝑗)(𝜒) = (1 − 𝜔𝑛)𝑏0

(𝑗)(𝜒) + 𝜔𝑛𝑏𝑛−1
(𝑗) (𝜒), 𝑖 = 1,2, . . , 𝑚 . 3.61 

Among them, 𝑏0
(𝑗)
= 1 is the initial offset field, 𝑏𝑛−1

(𝑗)
(𝜒) is the estimated offset of 

the i-th layer of the multilayer structure after n-1 iterations Field, the weight 𝜔𝑛  is 

designed as: 

𝜔𝑛 = 1 − 𝑒𝑥𝑝(−𝐶𝐽𝑉(𝜙
𝑛−1)2/4  . 3.62 

Among them, 𝜙𝑛−1 is the level-set function after n-1 iterations, and the definition 

of 𝐶𝐽𝑉(Φ; Vovk et al., 2007) is: 

𝜔𝑛 = 1 − 𝑒𝑥𝑝(−𝐶𝐽𝑉(𝜙
𝑛−1)2/4 , 3.63 

Ω1 = {𝜒 ∈ Ω|Φ(𝜒) < 0} , Ω2 = {𝜒 ∈ Ω|Φ(𝜒) ≥ 0}  . 3.64 

Among them,𝑐(∙)and 𝜎(∙) respectively represent the average gray value of the 

image in the area and standard deviation. 

The main steps of the proposed adaptive multilayer level-set image two-phase 

segmentation algorithm (AMLLS) are as follows: 

Step 1. Calculate 𝜎𝐺 and 𝜎𝐿 according to formula (3.30) and formula (3.31); 

Step 2. Construct 𝜎𝑀𝐿
(𝑗)

 according to formula (3.45); 

Step 3. Initial 𝑏0
(𝑗)
(𝜒) = 1,n=1 and ∅0(𝜒) =

−1 ,   𝜒 ∈ Ω
1, other 

 ,where Ω0 is a subset of 

Ω ； 
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Step 4. Calculate ℎ𝑏𝑛
(𝑗)

 according to formula (3.61), and use it to initialize the 

offset field 𝑏(𝑗); 

Step 5. Calculate 𝑐𝑖
(𝑗)

 according to formula (3.35) and formula (3.56); 

Step 6. Calculate 𝑏(𝑗) according to formula (3.36) and formula (3.57); 

Step 7. Calculate 𝐿𝑖  according to formula (3.50), and calculate 𝑍𝑖  according to 

formula (3.51); 

Step 8. Evolve the level-set function according to formula (3.58) and formula 

(3.60); 

Step 9. When the maximum number of iterations is reached or the level-set 

function converges, the algorithm ends, otherwise, let n=n+1 and return to step 4. 

 

3.4 Variational Level Set Method for Geometric Evolution of Curves 

3.4.1 A General Equation for Geometric Evolution of Curves 

First, this thesis consider a closed curve sequence C(p, t), t ≥ 0 that follows the 

following PDE evolution: 

𝜕C(p, t)

𝜕𝑇
≡ 𝑉 = 𝛼(𝑝, 𝑡)𝑇 + 𝛽(𝑝, 𝑡)𝑁, C(p, 0) =  C0(p) , 3.65 

where 𝛼 and 𝛽 are the tangential velocity and the normal velocity respectively. The value 

of y of a curve can be expressed as a function of x, y = r(x). That is, the curve C is 

represented by x as a parameter, C(x) = (x, r(x)). So, the tangential vector is C𝑥 = (1, r𝑥). 

The unit tangent vector and the normal vector are T =
(1,𝑟𝑥)

√1+𝑟𝑥
2
 and N =

( 𝑟𝑥,−1)

√1+𝑟𝑥
2

. 

Therefore, when the curve C is evolved, x and y at any point will move in 

accordance with the following equations: 
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𝜕C(p, t)

𝜕𝑇
≡ 𝑉 = 𝛼(𝑝, 𝑡)𝑇 + 𝛽(𝑝, 𝑡)𝑁, C(p, 0)  =  C0(p) . 

Given that: 

𝑑𝑦

𝑑𝑡
= 𝑟𝑥

𝑑𝑥

𝑑𝑡
+ 𝑟𝑡 → 𝑟𝑡 =

𝑑𝑦

𝑑𝑡
− 𝑟𝑥

𝑑𝑥

𝑑𝑡
 

= 𝛼
𝑟𝑥

√1 + 𝑟𝑥
2
+ 𝛽

1

√1 + 𝑟𝑥
2
− 𝛼

𝑟𝑥

√1 + 𝑟𝑥
2
+ 𝛽

𝑟𝑥
2

√1 + 𝑟𝑥
2
= 𝛽√1 + 𝑟𝑥

2  . 

 

This formula demonstrates that the modification of the geometric shape of the 

curve is exclusively connected to the normal 𝛽 of V and not to the tangential 𝛼 of the 

velocity of motion. So, when this thesis talk about the development of geometric curves, 

the only thing this thesis need to take into consideration is the normal velocity. In this 

manner, the overall equation for the progression of curves may be made more 

straightforward. 

𝜕C

𝜕𝑡
= 𝛽𝑁 . 3.66 

 

3.4.2 Level Set Method for Curve Evolution 

3.4.2.1 Basic concept 

It has been pointed that a closed plane curve can adopt implicit expression, which 

is defined as a level set of a two-dimensional function u(x, y), i.e. C = {(x, y), u(x, y) =

c}. Then, if C has any kind of changes, then this thesis can say function u(x, y) has 

corresponding changes. More precisely, the closed curve that changes with time can be 

expressed as a level set of a 2D function u(x, y) that changes with time, namely C =

{(x, y), u(x, y, t) = c}. So, how does the embedding function u(x, y, t) evolve when the 

curve C(t) evolves? Taking the derivative du/dt for the function u in the above equation, 

using the chain rule of the composite function, this thesis have 
du

dt
=
∂u

∂t
+ ∇𝑢 ∙

∂(x,y)

∂t
= 0. 

It obtains 
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∂u

∂t
= −∇𝑢 ∙

∂(x, y)

∂t
= −∇𝑢 ∙ 𝑉 = −|∇𝑢|

∇𝑢

|∇𝑢|
∙ 𝑉 = |∇𝑢|𝑁 ∙ 𝑉 = 𝛽|∇𝑢| , 3.67 

where 𝛽 = 𝑁 ∙ 𝑉 is the normal component of the motion velocity. equation (3.67) is the 

basic equation of curve evolution level set method. 

It has been assumed in the preceding derivation that u(x,y) is more than c for (x, 

y) that are outside the closed curve C; u(x,y) is less than c for (x, y) that are within the 

closed curve C; and u(x,y) is equal to c for (x, y) that are on the closed curve C. In addition, 

it should be pointed out that the derivation of equation (3.67), which is shown below, is 

not reliant on the value of the constant C. Because of this, the convenient equation c = 0 

is often used. In other words, the curve that is of interest to us is the zero level set of the 

embedded function. 

This thesis can see that the evolution of equation 3.66, under the initial condition 

C0 of the closed curve C, is equivalent to the evolution of the embedding function u(x, 

y), according to equation 3.67, under the given initial value u0 condition. This is because 

both equations describe the same thing: the evolution of the closed curve C. This is 

because equation 3.67 describes the development of equation 3.66 given the starting 

condition C0 of the closed curve C. The reason for this is because equation 3.67 is a given. 

(The value C0 is equivalent to the zero level of u0.) That is to say, the current curve C(t) 

may be recognized at any moment t by taking the level set of u(x, y, t) = 0. This is done 

in order to avoid any confusion. To put it another way, what this indicates is that it is 

possible to ascertain the current curve at any given time. 

3.4.2.2 Variational level set method 

When curve evolution is applied to image processing issues, a curve motion 

equation often originates from an energy functional that minimizes a closed curve C. This 

is the case because closed curves have the least amount of energy. As an example, the 

goal of the well-known geodesic active contour model for picture segmentation is to 

minimize the following functional. 
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E(C) = ∮𝑔(|∇𝐼[𝐶(𝑠)]|)𝑑𝑠 . 3.68 

Now this thesis will describe this theory and prove (Dakai et al., 2008) that the 

descent gradient of equation (3.82) is 

𝜕C

𝜕𝑡
= [𝑔(𝑐)𝜎 − ∇𝑔 ∙ 𝑁]𝑁  . 3.69 

(1) Selection of energy functional 

In the field of optics, the theorem of Fermat states that when light passes through 

a material that is not homogeneous, the route of the light will not be in a straight line; 

rather, the path of the light will be decided by the path that is the shortest. If the material 

has a refractive index of n(x, y, z), then the path that light takes to go from A to B must 

fulfill an optical path such that it achieves its minimum, 

𝐿𝑅 = ∫ 𝑛(𝑠)𝑑𝑠
𝐵

𝐴

 3.70 

where ds in the formula is the length of an arc defined by Euclidean geometry. 

That is to say, light will always be transmitted via the neighborhood with the lowest value 

of n. Within the realm of geometrical optics, the Fermat principle may be used to provide 

an explanation for optical phenomena such as refraction and reflection. This concept is 

congruent with the assumption that the local minima on the active contour should be 

achieved by the local minimizing of g(∇𝐼) in the image segmentation snake model. The 

idea of this principle is as follows: (Liu et al., 2017). Consequently, in Sapiro et al. (1995), 

it is proposed that the active contour may be determined by minimizing the energy 

functional: 

𝐿𝑅(𝐶) = ∫ 𝑔(|∇𝐼[𝐶(𝑠)]|)𝑑𝑠
𝐿(𝐶)

0

 , 3.71 
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where L(C) represents the arc length of the closed curve C and 𝐿𝑅(𝐶) is the weighted arc 

length. 

This equation can also be written as 

E(C) = ∮𝑔(|∇𝐼[𝐶(𝑠)]|)𝑑𝑠 3.72 

(2) Prove equation (3.69) 

Using the parametric representation of a curve, the closed curve C is expressed as 

C(p): [0,1] → 𝑅2 , C(0)  =  C(1) . Given that 𝑑𝑠 = |𝐶𝑝|𝑑𝑝 , equation (3.72) can be 

rewritten into 

E(C(p)) = ∫ 𝑔(C(p)|𝐶𝑝(𝑝)|)𝑑𝑝
1

0

 3.73 

In order to derive the gradient descent flow of this formula, the auxiliary variable 

t must first be put into C before the formula can be recast into its final form. 

E(C(p, t))) = ∫ 𝑔(C(p, t)|𝐶𝑝(𝑝, 𝑡)|)𝑑𝑝
1

0

 3.74 

So this thesis have 

E(C(p, t))) = ∫ 𝑔(C(p, t)|𝐶𝑝(𝑝, 𝑡)|)𝑑𝑝
1

0

  

𝑑𝐸

𝑑𝑡
= ∫ {

𝑑

𝑑𝑡
𝑔(C(p, t)}|𝐶𝑝(𝑝, 𝑡)|)𝑑𝑝

1

0

+∫ 𝑔 (C(p, t) {
𝑑

𝑑𝑡
|𝐶𝑝(𝑝, 𝑡)|)} 𝑑𝑝

1

0

= ∫ {∇𝑔(C(p, t) ∙ 𝐶𝑡(𝑝, 𝑡)}|𝐶𝑝(𝑝, 𝑡)|)𝑑𝑝
1

0

+∫ 𝑔(C(p, t){𝐶𝑝𝑡(𝑝, 𝑡) ∙ 𝑇)}𝑑𝑝
1

0

 

3.75 
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In the equation, the letter T stands for the unit tangent vector of the letter C. When 

the technique of partial integration is used on the second component of the equation (3.75), 

and when it is taken into consideration that C is a closed curve, then this thesis obtain 

∫ 𝑔(C(p, t){𝐶𝑝(𝑝, 𝑡) ∙ 𝑇)}𝑑𝑝
1

0

= −∫ {𝑔(C(p, t)𝑇}𝑝𝐶𝑡(𝑝, 𝑡)𝑑𝑝
1

0

= −∫ {∇𝑔(C(p, t)) ∙ 𝐶𝑝(𝑝, 𝑡)}[𝐶𝑡(𝑝, 𝑡) ∙ 𝑇]𝑑𝑝
1

0

−∫ [𝑔(C(p, t))]𝑇𝑝 ∙ 𝐶𝑡(𝑝, 𝑡)𝑑𝑝
1

0

  . 

 

Substituting it into equation (3.75) and using s to replace the parameters p in the 

above equation, and |𝐶𝑠(𝑠, 𝑡)| ≡ 1, this thesis have 

𝑑𝐸

𝑑𝑡
= ∫ {{∇𝑔(𝐶(𝑠, 𝑡)) ∙ 𝐶𝑡(𝑠, 𝑡)} − {∇𝑔(𝐶(𝑠, 𝑡)) ∙ 𝑇}[𝑇 ∙ 𝐶𝑡(𝑠, 𝑡)]}

𝐿(𝐶)

0

𝑑𝑠

− ∫ {𝑔(𝐶(𝑠, 𝑡))}𝑇𝑝 ∙ 𝐶𝑡(𝑝, 𝑡)]}𝑑𝑠
𝐿(𝐶)

0

= ∫ {∇𝑔(𝐶) − [∇𝑔(𝐶) ∙ 𝑇]𝑇 − 𝑔(𝐶)𝑇𝑠} ∙ 𝐶𝑡𝑑𝑠
𝐿(𝐶)

0

 

 

Because ∇𝑔(𝐶) − [∇𝑔(𝐶) ∙ 𝑇]𝑇 = [∇𝑔(𝐶) ∙ 𝑁]𝑁 and 𝑇𝑠 = 𝜎𝑁, this thesis have 

𝑑𝐸

𝑑𝑡
= ∫ {∇𝑔(𝐶) ∙ 𝑁 − ∇𝑔(𝐶)𝜎}𝑁 ∙ 𝐶𝑡

𝐿(𝐶)

0

𝑑𝑠  

In order to make 
𝑑𝐸

𝑑𝑡
< 0, 𝐶𝑡 should satisfy ∙ 𝐶𝑡 = ∇𝑔(𝐶)𝜎 − ∇𝑔(𝐶) ∙ 𝑁. Now the 

equation (3.68) is approved. 

(3) Variational level set representation 

If the level set method discussed above is used, then the corresponding PDE for 

the embedded function is 

𝜕𝑢

𝜕𝑡
[𝑔𝜎 − ∇𝑔 ∙ 𝑁]|∇𝑢|𝑑𝑖𝑣(𝑔

∇u

|∇u|
) 3.76 



 159 

Terbish et al. (2017) present a novel level set approach for the curve evolution 

issue that they name the variational level set method. Their method is developed from the 

energy functional minimization of curves. To begin, this thesis make use of the 

specialized functions that are described below (called heavyside functions), 

H(z)  = {
1, 𝑧 ≥ 0
0, 𝑧 < 0

The loop integral formula equation (3.68) along the C can be rewritten as an area 

division ∮ 𝑔(𝐶)𝑑𝑠 = ∬ 𝑔(𝑥, 𝑦)|∇𝐻(𝑢)|𝑑𝑥𝑑𝑦.
⬚

𝛺

⬚

𝐶
Because ∇𝐻(𝑢) = 𝛿(𝑢)∇𝑢 , 𝛿(𝑧) =

𝑑(𝐻(𝑧))

𝑑𝑧
, equation (3.68) can be rewritten as the functional of imbed function 𝑢 

J(u)  = ∬ 𝑔(𝑥, 𝑦)𝛿(𝑢)|∇𝑢|𝑑𝑥𝑑𝑦.
𝛺

 3.76a 

Using the variational method, the gradient descent flow of the upper type can be 

obtained 

𝜕𝑢

𝜕𝑡
= 𝛿(𝑢) 𝑑𝑖𝑣(𝑔

∇u

|∇u|
) 3.77 

In order to make it a computable PDE, 𝛿 in the formula needs to be approximated 

by regularization 𝛿𝑟, that is equation (3.77) can be rewritten as

𝜕𝑢

𝜕𝑡
= 𝛿𝑟(𝑢) 𝑑𝑖𝑣 (𝑔

∇u

|∇u|
) 𝛿𝑟 =

𝑑𝐻𝑟(𝑧)

𝑑𝑧
 . 3.78 

Here, 𝐻𝑟(𝑧) is called the regularized Heaviside function. In principle, it can be

any function that satisfies the following conditions: 𝐻𝑟(𝑧)
𝑧=0
→ 𝐻(𝑧).

PDEs (3.76) and (3.78) look like the same. The difference is just |∇𝑢| and 𝛿𝑟(𝑢).

Nonetheless, there is a significant difference between the two PDEs from a mathematical 

standpoint. The hyperbolic type is represented by the equation 3.77, whereas the 

parabolic type is represented by the equation 3.78 is represented by the equation 3.77, 
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whereas the parabolic type is represented by the equation 3.78. The latter one has a greater 

degree of stability than the one that came before it. Hence, The numerical 

implementations need a larger time step, and in many instances, this may be done without 

the need for the embedded function to be re-initialized. The application of the variational 

level set technique to the problem of curve development is predicated on the idea that the 

issue is caused by a decrease in the "energy" functional J(C) of the C curves. This idea 

underlies the use of the variational level set approach. This does not, however, suggest 

that the variational level set approach may serve as a suitable replacement for the level 

set method. In order to do this, first the embedded function u is presented, and then the 

Heaviside function is used to transform J (C) into J (U). The procedure that is used in 

order to get the PDE for u is known as the calculus of variations. The energy function of 

C is first minimized using the variational technique, and then the equation of motion for 

C is generated using the information gained from that process. This is what the procedure 

for establishing levels consists of. After this, the embedded function will be called into 

play so that the PDE may be retrieved on your behalf. The problem is that the evolution 

of curves and surfaces is not completely derived from the process of minimizing energy 

consumption. This is the source of the difficulty. 

In fluid mechanics, the material sciences, and a wide variety of other domains, 

there are many different sorts of interface evolution issues. In situations like these, the 

evolution equation (PDE) of the interface may be simply determined from the physical 

principles that govern it. In situations like this, the use of level-set approaches is possible. 

Consequently, the level-set approach is superior to the variational level-set method in 

terms of suitability. 

3.4.3 Improved Variational Level Set Method 

In order to completely avoid re-initialization, an improved variational level set 

method is proposed in (Li et al., 2008) by adding an item in the "energy" functional 

related to the embedded function u , i.e. P(u) = ∬
1

2
(|∇𝑢| − 1)2𝑑𝑥𝑑𝑦

𝛺
. Its gradient 

descent flow is 
𝜕𝑢

𝜕𝑡
= [∇2𝑢 − 𝑑𝑖𝑣(

∇2𝑢

|∇𝑢|
)] . Obviously, minimizing P(u) means that the 

requirement of |∇𝑢| = 1, that is, the embedded function u should be kept as a distance 
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function as far as possible in the evolution process. The above equation can be rewritten 

as 

𝜕𝑢

𝜕𝑡
= 𝑑𝑖𝑣 [(1 −

1

|∇𝑢|
) ∇𝑢]  . 3.79 

This is a nonlinear heat conduction equation with a conductivity rate of α = 1 −

1

|∇𝑢|
. Obviously when |∇𝑢|> 1 and α> 0, the heat is conducted to the outside, and |∇𝑢| is 

reduced; The other way around, when |∇𝑢|> 1 and α< 0, |∇𝑢| is increased. As a result, 

any deviation from the local |∇𝑢| = 1 will be corrected in the subsequent evolution. Thus, 

re-initialization is not necessary at all. 

For example, after adding P(u) to the functional of equation (3.4a), this thesis 

have 

J(u ) = μ∬
1

2
(|∇𝑢| − 1)2𝑑𝑥𝑑𝑦

𝛺

+∬
1

2
𝑔(𝑥, 𝑦)𝛿(𝑢)|∇𝑢|𝑑𝑥𝑑𝑦

𝛺

 3.80a 

The Corresponding gradient descent flow is 

𝜕𝑢

𝜕𝑡
= μ [∇2𝑢 − 𝑑𝑖𝑣 (

∇𝑢

|∇𝑢|
)] + 𝛿𝑟(𝑢) 𝑑𝑖𝑣 (𝑔

∇u

|∇u|
)  , 3.81b 

where μ is a chosen constant. 

The advantage of the improved variational level set method is that it not only 

completely avoids the problem of re-initialization, but also simplifies the work of 

initializing the embedded function u0(x, y). Since the model itself has the ability to

automatically approximate the embedded function u as a distance function, initialization 

does not necessarily strictly require that u0(x, y) be a distance function C0. Based on this

consideration, (Liu et al., 2017) proposed the below initialization scheme 
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u0 = {

−𝛼,   (x, y) ∈  internal of C0
0, (x, y) ∈ C0

𝛼,      (x, y) ∈  external of C0

 , 3.82c 

where 𝛼 ≈ 𝑟, and 𝑟 is the parameter of regularized Heaviside function. 

3.5 Chan-Vese Model and Region-Scalable Fitting Model 

3.5.1 CV Model 

The following descriptors may be used for the CV model: The picture set I that is 

supplied is cut in half by the active contour C, and these halves are recorded as the inner 

(C) and outside (O) of the model, respectively (C). The average value of the curve's

internal gray level is represented by the symbol c1, and the average value of the curve's 

exterior gray level is represented by the symbol c2; these two values are individually 

represented by the symbols c1 and c2. According to the definition of the fitting energy 

function that was provided by Ni et al. (2016), it is defined as follows: 

𝐸𝐶𝑉(𝑐1, 𝑐2, 𝐶) = 𝑣 ∙ Length(C) +  μ ∙ Area(inside(C))

+ 𝜆1∫ |1 − 𝑐1|
2𝑑𝑥𝑑𝑦

𝑖𝑛𝑠𝑖𝑑𝑒 (𝐶)

+ 𝜆2∫ |1 − 𝑐2|
2𝑑𝑥𝑑𝑦

𝑜𝑢𝑡𝑠𝑖𝑑𝑒 (𝐶)

 , 

3.83 

where Length(C) is the length of the contour curve which plays a role of regularization, 

Area(inside(C))  is the internal area of the contour curve,  μ > 0  and v > 0  are two 

parameters, 𝜆1and 𝜆2 are two weight coefficients, and 𝜆1and 𝜆2> 0. The first two terms

on the right-hand side of the formula are referred to as the "fitting" terms. These terms 

are mostly used to regulate the fitting error for the contour curve fit edge. The other two 

terms are referred to as the "smooth" words because they allow for the evolution process 

to proceed along a smooth curve. With the process of reducing the energy functional, one 

is able to derive the ultimate location of the contour curve. 
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Let the level set function u be represented by the following formula: 

{

u(x, y) = 0,                         ( x, y) ∈ C
u(x, y) > 0,    (x, y) ∈  internal of C
u(x, y) < 0,    (x, y) ∈  external of C

 3.84a 

In order to apply the level set method, the Heaviside function is introduced 

H(x)  = {
1, 𝑥 ≥ 0
0, 𝑥 < 0

The Dirac function is 

𝛿(𝑥) =
𝑑

𝑑𝑥
 H(x) 

The Heaviside function is used in this approach to split the area of evolution, and 

the Dirac function is used to determine the value of evolution around the zero-level set 

function. Together, these functions are referred to as the Heaviside-Dirac method. Here, 

Length(C) = ∫ 1 ∙ 𝑑𝑠 = ∫ 𝛿(𝑢)|∇𝑢|𝑑𝑥𝑑𝑦
𝛺

𝐿(𝐶)

0

 

Area(inside(C)) = ∫ 𝐻(𝑢)𝑑𝑥𝑑𝑦
𝛺

 

∫ |𝐼(𝑥, 𝑦) − 𝑐1|
2𝑑𝑥𝑑𝑦

𝑖𝑛𝑠𝑖𝑑𝑒 (𝐶)

= ∫ |𝐼(𝑥, 𝑦) − 𝑐1|
2𝐻(𝑢)𝑑𝑥𝑑𝑦

𝛺

 . 3.85b 

The regularized Heaviside function is often used in the numerical calculation as 

𝐻𝑟 =
1

2
[1 +

1

𝜋
arctan (

𝑥

𝑟
)] . 

For the constant r, the corresponding Dirac function is 
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𝛿𝑟(𝑥) =
1

𝜋
∙

𝑟

𝑥2 + 𝑟2
 . 

The goal is to expand the capture range and to prevent the occurrence of singular 

cases. Thus, the energy functional of the level set function is obtained as 

𝐸𝑟
𝐶𝑉(𝑐1, 𝑐2, 𝐶) = ∫ 𝛿𝑟(𝑢)|∇𝑢|𝑑𝑥𝑑𝑦

𝛺

+∫ 𝐻𝑟(𝑢)𝑑𝑥𝑑𝑦
𝛺

+∫ |𝐼(𝑥, 𝑦) − 𝑐1|
2𝐻𝑟(𝑢)𝑑𝑥𝑑𝑦

𝛺

+∫ |𝐼(𝑥, 𝑦) − 𝑐2|
2(1 − 𝐻𝑟(𝑢))𝑑𝑥𝑑𝑦

𝛺

 . 

3.86 

At this point, the level set of the image I(x, y) is 

I(x, y) = 𝑐1𝐻𝑟(𝑢) + 𝑐2(1 − 𝐻𝑟(𝑢))  .

Fixing u and minimizing the energy functional 𝐸𝑟
𝐶𝑉(𝑐1, 𝑐2, 𝐶), one has

𝑐1 =
∫ 𝐼(𝑥, 𝑦)𝐻𝑟(𝑢(𝑥, 𝑦))𝑑𝑥𝑑𝑦𝛺

∫ 𝐻𝑟(𝑢(𝑥, ))𝑑𝑥𝑑𝑦𝛺

 , 

 𝑐2 =
∫ 𝐼(𝑥, 𝑦)(1 − 𝐻𝑟(𝑢(𝑥, 𝑦)))𝑑𝑥𝑑𝑦𝛺

∫ (1 − 𝐻𝑟(𝑢(𝑥, 𝑦)))𝑑𝑥𝑑𝑦𝛺

3.87 

In the CV model, this thesis usually set v =  0 . The energy functional 

𝐸𝑟
𝐶𝑉(𝑐1, 𝑐2, 𝐶), is minimized using the variation method and the gradient descent flow

technique and Euler-Lagrange equation is obtained as 

𝜕𝑢

𝜕𝑡
= 𝑣𝛿𝑟(𝑢)𝑑𝑖𝑣 (

∇u

|∇u|
) + 𝛿𝑟(𝑢)(𝜆2(1 − 𝑐2)

2 − 𝜆1(1 − 𝑐1)
2) 3.88(a) 

According to (Gu et al., 2017), the Dirac function has a tight definition, which 

restricts the globality of the edge of the picture. Moreover, the function cannot be 

recognized reliably since the target edge is located outside of the closed curve. The CV 
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model solely uses information about the global region in order to optimize c1 and c2. It 

does not take into account any changes that may have occurred to the grey value of the 

target or the background region of the picture. As a result, the CV model is unable to 

segment the picture because of the uneven grayscale. The solution to equation (3.88(a)), 

which includes a curvature element, is very difficult to obtain. In order to preserve 

numerical consistency, this thesis are going to need to use a certain numerical procedure. 

Moreover, in order to preserve the numerical stability of the CV model, During each 

update, the level set function u(x,y,t) has to be reinitialized after first being set up as a 

symbol distance function during the initialization process. When this is happening, 

reinitialization might induce a movement in the location of the zero level set. Also, it 

raises the total amount of calculation and takes up a considerable amount of additional 

time. The iterative equation (3.88(b)) is shown below: 

H(x) = {
𝜑𝑡 = 𝑠𝑖𝑔𝑛(𝑢(𝑡)(1 − |∇𝜑|))

𝜑(0,∙) = 𝑢(𝑡,∙)
3.89(b) 

3.5.2 RSF Model 

The well-known RSF model, which is based on variable region fitting energy 

functions, was presented by Li et al. as a solution to the issues that were caused by the 

CV model (Xu et al., 2015). Another name for this model is the LBF (local binary fitting) 

model (Li et al., 2007). The RSF model makes use of two local fitting functions called 

f1(x) and f2(x) in order to obtain an approximation of the local area's average gray-value 

on both sides of the target. 

For any point x ∈ Ω in the image area and contour curve C, and the fitting energy 

is 

𝐸𝑥
𝑅𝑆𝐹(𝑓1, 𝑓2, 𝐶) = 𝜆1∫ 𝐾𝜎(𝑥 − 𝑦)|𝐼(𝑦) − 𝑓1(𝑥)|

2𝑑𝑥𝑑𝑦
𝑖𝑛𝑠𝑖𝑑𝑒 (𝐶)

+ 𝜆2∫ 𝐾𝜎(𝑥 − 𝑦)|𝐼(𝑦) − 𝑓2(𝑥)|
2𝑑𝑥𝑑𝑦

𝑜𝑢𝑡𝑠𝑖𝑑𝑒 (𝐶)

 , 

3.90 

where 𝜆1 and 𝜆2 are two positive constant numbers (usually fixed to constant 1), The gray

fitting values of the picture at location x are denoted by the expressions f1(x) and f2(x). 
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The gray value I(y) is only calculated for a small region that is centered on the point x; 

the size of this region is determined by the kernel function K. Hence, equation (3.69), 

which is also mentioned in (Xu et al., 2015), as a regional scale variable fitting (RSF) 

energy of contour C at point x. K ∶  R2 → R is a kernel function. It is satisfied the local

property. 

1. K(u)  =  K(|u|);

2. If |u|<|v|, then K(u)  ≥  K(v), meanwhile lim
|u|→∞

K(u) = 0 

3. ∫ K(u) = 1
𝑅2

Due to the fact that the kernel function K(u) has locality (attribute 2), f1(x) and 

f2(x) are mostly decided by the gray values that are in close proximity to one another. It 

possesses traits that are considered "local." It should come as no surprise that picking the 

appropriate kernel function for the RSF model is of the utmost significance. There are a 

lot of kernel functions that can meet these requirements for the local environment. The 

initial study (Li et al., 2007) and the subsequent study (Xu et al., 2015) both make use of 

the Gaussian kernel function. 

𝐾𝜎(𝑢) =
1

√2𝜋𝜎
𝑒
|u|2

2𝜎2 , u ≥ 0  , 

where, 𝜎> 0 is a scale parameter. 

Let u be the level set function of the contour curve C. Using the level set method, 

one has 

𝐸𝑥
𝑅𝑆𝐹(𝑓1, 𝑓2, 𝐶) = 𝜆1∫ 𝐾𝜎(𝑥 − 𝑦)|𝐼(𝑦) − 𝑓1(𝑥)|

2𝐻(𝑢)𝑑𝑦
𝑖𝑛𝑠𝑖𝑑𝑒 (𝐶)

+ 𝜆2∫ 𝐾𝜎(𝑥 − 𝑦)|𝐼(𝑦) − 𝑓2(𝑥)|
2(1 − 𝐻(𝑢))𝑑𝑦

𝑜𝑢𝑡𝑠𝑖𝑑𝑒 (𝐶)

3.91 

The total fitting energy function is 
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𝐸𝑅𝑆𝐹 = ∫ 𝐸𝑥
𝑅𝑆𝐹𝑑𝑥

𝛺

 . 

In order to avoid periodic initialization of the level set, the RSF model combines 

the methods that do not need reinitialization (Li et al., 2008). Adding the set 

regularization ∫
(|∇𝑢|−1)2

2
𝑑𝜎

𝛺
 term, the total energy functional of the RSF model is 

𝐸𝑥
𝑅𝑆𝐹(𝑓1, 𝑓2, 𝑢) = 𝜆1∫ 𝐾𝜎(𝑥 − 𝑦)|𝐼(𝑦) − 𝑓1(𝑥)|

2𝐻(𝑢)𝑑𝑦𝑑𝑥
𝑖𝑛𝑠𝑖𝑑𝑒 (𝐶)

+ 𝜆2∫ 𝐾𝜎(𝑥 − 𝑦)|𝐼(𝑦) − 𝑓2(𝑥)|
2(1

𝑜𝑢𝑡𝑠𝑖𝑑𝑒 (𝐶)

− 𝐻(𝑢))𝑑𝑦 𝑑𝑥 + 𝑣∫ |∇H(𝑢(𝑥))|𝑑𝑥
𝛺

+ 𝜇∫
(|∇𝑢| − 1)2

2
𝑑𝑥

𝛺

 

3.92 

Firstly, fixing u in above formula, after minimizing the energy functional 

𝐸𝑥
𝑅𝑆𝐹(𝑓1, 𝑓2, 𝑢) with respect to 𝑓1(𝑥) and 𝑓2(𝑥), this thesis have

𝑓1(𝑥) =
∫ 𝐾𝜎(𝑥 − 𝑦)𝐼(𝑦)𝐻(𝑢(𝑦))𝑑𝑦𝛺

∫ 𝐾𝜎(𝑥 − 𝑦)𝐻(𝑢(𝑦))𝑑𝑦𝛺

𝑓2(𝑥) =
∫ 𝐾𝜎(𝑥 − 𝑦)𝐼(𝑦;  1 − 𝐻(𝑢(𝑦)))𝑑𝑦𝛺

∫ 𝐾𝜎(𝑥 − 𝑦;  1 − 𝐻(𝑢(𝑦)))𝑑𝑦𝛺

In fact, the fitting function 𝑓1(𝑥) and 𝑓2(𝑥) are the weighted averages of the

image grey values I(y) in area inside(C) and outside(C). The weight is 𝐾𝜎(𝑥 − 𝑦). Due

to the local character of the Gaussian kernel 𝐾𝜎, the effect of the gray value I(y) on 𝑓1(𝑥)

and 𝑓2(𝑥) decreases as the distance between y and x increases. When |x − y|> 3 𝜎, the

effect of I(y) is almost reduced to zero. Therefore, the values of the fitting functions 𝑓1(𝑥)

and 𝑓2(𝑥) are determined primarily by the gray value of point y in {y: |x − y| < 3 𝜎 } .

Then fixing the fitting factors 𝑓1(𝑥)  and 𝑓2(𝑥) , after minimizing the energy

functional E𝑅𝑆𝐹
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with respect to u, the evolution equation of the energy functional E𝑅𝑆𝐹 is obtained

using a gradient descent flow: 

𝜕𝑢

𝜕𝑡
= −𝛿𝑟(𝜆1𝑒1 − 𝜆2𝑒2) +  𝜇 [∇

2𝑢 − 𝑑𝑖𝑣 (
∇u

|∇u|
)] + 𝑣𝛿𝑟(𝑢)𝑑𝑖𝑣 (

∇u

|∇u|
) , 3.93 

where 𝑒1 = ∫ 𝐾𝜎(𝑥 − 𝑦)|𝐼(𝑦) − 𝑓1(𝑦)|
2𝑑𝑦

𝛺
, 𝑒2 = ∫ 𝐾𝜎(𝑥 − 𝑦)|𝐼(𝑦) − 𝑓2(𝑦)|

2𝑑𝑦
𝛺

. 

The RSF model is the energy functional, which is defined by the local binary 

fitting energy based on Gaussian kernel function. The functions 𝑓1(𝑥) and 𝑓2(𝑥) are a

local energy which are related to variance. As a result, the RSF model is capable of 

segmenting the picture with inhomogeneous intensity more effectively. In addition, the 

RSF model utilizes integrated models that do not need reinitialization in order to 

circumvent the need for periodic initialization of the level set function (Li et al., 2008). 

The pace of evolution has substantially accelerated as a result. Although the RSF model 

is capable of better segmenting the picture with intensity inhomogeneity, it is still very 

sensitive to the beginning location of the active contour in the image. It is simple to 

descend to the level of least value in a given area when the original contour selection is 

inappropriate. The outcome of the segmentation will be incorrect if this happens. The 

local peculiarities of the RSF model are the primary contributors to the occurrence of this 

phenomenon.The fitting functions 𝑓1(𝑥) and 𝑓2(𝑥) in the model are fitted to the local

grayscale of the image. Therefore, the different fitting values obtained at different 

locations results in that the RSF model being sensitive to the initial contour position.  

One of the probable explanations for this is that energy 𝐸𝑥
𝑅𝑆𝐹(𝑓1, 𝑓2, 𝑢) only takes

into account the spatial information of the picture pixel and ignores the information on 

the grayscale variation of the pixel. This thesis combined the CV model and the RSF 

model with information entropy and developed a new local fitting energy function to 

replace the ones that were present in the CV model and the RSF model. This was done 

on the basis of an analysis of the benefits and drawbacks of the CV model and the RSF 

model, which can be found above. Finally, this thesis came up with a brand new CER 

model in an effort to enhance both the CV model, which is incapable of segmenting an 

image with an uneven grayscale, and the RSF model, which is sensitive to the initial 
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position and has a high level of noise. In order to do this, this thesis developed a new 

CER model. 

3.6 CER Model Based on Information Entropy 

3.6.1 Information Entropy 

Entropy may be thought of as the amount of disorder that exists inside a system. 

It finds significant use in domains like cybernetics, number theory, astronomy, the 

biological sciences, and many more. Moreover, more particular definitions may be found 

throughout several fields of study. In many different areas of study, entropy serves as a 

crucial metric. Rudolf Clausius is the one who first suggested the concept of entropy. The 

earliest use of it may be found in thermodynamics. After that, Lombardi (2016) 

generalized Boltzmann's formula and came up with the idea of information entropy. The 

entropy of the information is a description of the unpredictability of the source. It 

represents the typical quantity of information that can be found for each target inside the 

source. The fundamental concept underlying information theory is that of entropy, which 

may be thought of as either a random event of uncertainty or the amount of information 

measured. In information theory, the fundamental idea is referred to as "the quantity of 

information." The entropy of the information is calculated by taking into consideration 

the statistical qualities of the whole source. It is a measurement of the entire information 

source based on the mean, and it is used to estimate how random the information is. 

Entropy increases in direct proportion to the degree to which a variable is subject to 

uncertainty. The establishment of entropy as the scientific theoretical underpinning of 

contemporary information theory was a major step toward the advancement of 

information theory, which was substantially aided by the introduction of this concept. 

Image processing received an introduction to the idea of entropy thanks to the work of 

(Bera et al., 2016). The process of picture segmentation currently relies heavily on its 

effectiveness as a tool. The image entropy may be stated as the average amount of 

information contained inside the picture's information source. It is represented as the 

number of bits that make up the image's grayscale set. Based on Shannon's information 

theory, if 𝑝𝑖is a given distribution of a given image I =  (𝐼𝑖), then image entropy is: 
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𝐸𝐼 = −∑𝑝𝑖𝑙𝑜𝑔2𝑝𝑖
𝑖

  , 3.94 

where the likelihood that a certain grayscale is present in the picture is represented by the 

distribution function pi of the image. The definition of the distribution function pi might 

be a number of different things; how it is defined is determined by the technique that was 

used to segment the picture. As an example, in the process of edge extraction, in order to 

take into account the tonal range of the picture, Shiozaki (Wang et al., 2018) defined the 

pi as the grey scale distribution𝑝𝑖 = 𝐼𝑖/∑ 𝐼𝑗𝑗 in the image, where 𝐼𝑖is the greyscale of

pixel i. In the image thresholding method (Fortin et al., 2017), distribution function pi 

can be approximately obtained from a given histogram. In this section, our distribution 

function is obtained through the image histogram. 

The purpose of the entropy-based picture segmentation approach is to reduce the 

amount of image information that is lost. Because of this, this thesis are able to employ 

image entropy to fix the backdrop. In the meanwhile, the entropy of the picture represents 

the degree to which the grayscale of the image is scattered. A high entropy value is 

present in an image with a reasonably uniform distribution of gray tones across the picture. 

On the other hand, the entropy is low when the gray distribution of the picture has greater 

discreteness. Entropy is the product of the dynamic relationship that exists between all of 

the image's pixels. It is not sensitive to noise that originates from a single spot. As a 

consequence of this, it is equipped with anti-noise and filtering capabilities. The global 

entropy is represented as a value, whereas the local entropy is represented as a matrix. 

Image entropy saves a significant amount of time when contrasted with the convolution 

process that is performed on the matrix. 

3.6.2 Effects of Adding Information Entropy to RSF Model 

The CV model is a kind of model that is based on the global property of the picture, 

as was mentioned earlier on in the discussion. The CV model's most significant 

shortcoming is that it is unable to segment a picture with an uneven grayscale. The fact 

that the CV model does not take into account the difference in gray value between the 

target and the background region of the picture is the primary cause of this problem. On 
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the other hand, the RSF model, also known as the LBF model, is a model that is 

constructed using the image's local information. It has the ability to segment the uneven 

grayscale picture successfully. Such as a picture from an MRI. Yet, due to the fact that 

the model is localized, it is relatively simple for the model to enter the local extremum, 

which results in the model being very sensitive to the contour initialization. The RSF 

model, on the other hand, does not have a particularly high resilience to noise. The main 

reason for these problems is that the gray value change of the image is not considered 

when the local fitting energy 𝐸𝑥
𝑅𝑆𝐹(𝑓1, 𝑓2, 𝐶) is defined. In order to overcome the above

shortcomings of the RSF model, this thesis introduce the concept of information entropy 

(see equation (3.38)), the energy functional in the RSF model is rewritten as follows: 

𝐸𝑥
𝑅𝑆𝐹(𝑓1, 𝑓2, 𝐶) = ∫ 𝐸𝑡(𝑥)𝐸𝑡(𝑓1(𝑥), 𝑓2(𝑥), 𝐶)𝑑𝑥

𝛺

3.95 

A new model is formed by combining the global energy and the local energy. In 

equation (3.74), 

𝐸𝑡(𝑥) = 𝐸(𝑥, 𝐵(𝑥, 𝑡)) is the local information entropy of point ∈ Ω , where

𝐵(𝑥, 𝑡) = {𝑦: |𝑥 − 𝑦| ≤ 0}, 𝑡 > 0 is the circle centered on point x with radius r. 

In addition, the smoothness of the image contour C is ensured by controlling its 

length |𝐶|, So combining with the above formula, the new energy functional can be 

written as the following: 

𝐸𝑍𝑅𝑆𝐹1(𝑓1, 𝑓2, 𝐶) = 𝐸
𝑍𝑅𝑆𝐹(𝑓1, 𝑓2, 𝐶) + 𝑣|𝐶|

=∑𝜆𝑖

2

𝑖=1

∫ 𝐸𝑡(𝑥; 
𝛺

∫ 𝐾𝜎(𝑥 − 𝑦)|𝐼(𝑦) − 𝑓𝑖(𝑥)|
2𝑑𝑦

𝛺

)𝑑𝑥

+ 𝑣|𝐶|

3.96 

Using Heaviside function, the energy function can be expressed as follows: 
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𝐸𝑍𝑅𝑆𝐹1(𝑓1, 𝑓2, 𝑢) = 𝐸
𝑍𝑅𝑆𝐹(𝑓1, 𝑓2, 𝑢) + 𝑣∫ |∇H(𝑢(𝑥))|𝑑𝑥

𝛺

=∑𝜆𝑖

2

𝑖=1

∫ 𝐸𝑡(𝑥; 
𝛺

∫ 𝐾𝜎(𝑥
𝛺

− 𝑦)|𝐼(𝑦) − 𝑓𝑖(𝑥)|
2𝑀𝑖(𝑢(𝑦))𝑑𝑦)𝑑𝑥

+ 𝑣∫ |∇H(𝑢(𝑥))|𝑑𝑥
𝛺

 , 

3.97 

where 𝑀1 =  H(𝑢(𝑥)), 𝑀2 = 1 − H(𝑢(𝑥)),∫ |∇H(𝑢(𝑥))|𝑑𝑥
𝛺

 is the length of the contour 

C (i.e. the zero level set of u), and δ(∙)is the derivative of H(∙). 

Meanwhile, in order to avoid the periodic initialization of the level set function, 

this thesis consider an internal energy term for the level set function in the energy 

functional 𝐸𝑍𝑅𝑆𝐹1(𝑓1, 𝑓2, 𝑢) of equation (3.41):

P(u) = ∫
1

2
|∇𝑢(𝑥) − 1|2𝑑𝑥

𝛺

3.92a 

When ∇𝑢(𝑥) = 1 , P(u)  is kept to a minimum. This means that the level set 

function must, to the greatest extent feasible, maintain its status as a sign distance 

function while the evolution is taking place. Hence, the level set of the energy functional 

that is based on information entropy is 

𝐸𝑍𝑅𝑆𝐹1(𝑓1, 𝑓2, 𝑢)

= 𝐸𝑍𝑅𝑆𝐹(𝑓1, 𝑓2, 𝑢) + 𝑣 ∫ δ(u(x))|∇(𝑢(𝑥))|𝑑𝑥
𝛺

+ 𝜇∫
1

2
|∇𝑢(𝑥) − 1|2𝑑𝑥

𝛺

=∑𝜆𝑖

2

𝑖=1

∫ 𝐸𝑡(𝑥; 
𝛺

∫ 𝐾𝜎(𝑥
𝛺

− 𝑦)|𝐼(𝑦) − 𝑓𝑖(𝑥)|
2𝑀𝑖(𝑢(𝑦))𝑑𝑦)𝑑𝑥

+ 𝑣∫ δ(u(x))|∇(𝑢(𝑥))|𝑑𝑥
𝛺

+ 𝜇∫
1

2
|∇𝑢(𝑥) − 1|2𝑑𝑥

𝛺

  , 

3.93a 

where 𝜇 >  0 is weight parameter. 
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3.6.3 CV- Entropy- RSF (CER) Model 

A weighted RSF model that is based on local entropy has been presented up there 

in order to improve the original model's resilience with regard to the starting contour 

location and the level of noise that is there. In fact, owing to the heterogeneity of the gray 

scale, the difference in gray scale across various places in a picture that has an uneven 

distribution of gray is often varied. This is because a picture with an uneven distribution 

of gray contains a picture that has an uneven distribution of gray. This thesis creates a 

new local fitting energy function to replace the ones that are in the CV model and the 

LBF model. This is done in order to better deal with the phenomenon of intensity 

inhomogeneity and to take into consideration the benefits and drawbacks of the CV model 

and the RSF model (Akram et al., 2017). Because of this, we will be able to deal with the 

phenomenon of intensity inhomogeneity in a more effective manner. The following is a 

definition of the new energy functional: 

𝐸𝐶𝐸𝑅(𝑓1, 𝑓2, 𝑐1, 𝑐2, 𝐶) = 𝜔𝐸
𝐶𝑉(𝑐1, 𝑐2, 𝐶) + (1 − 𝜔)𝐸

𝑍𝑅𝑆𝐹(𝑓1, 𝑓2, 𝐶)  , 3.98 

where the range of 0 ≤ 𝜔 ≤ 1. constants 𝑐1, 𝑐2are the average gray values in the inside

and the outside of evolution curve of the original image area, respectively, and 𝑓1, 𝑓2are

the fitting value of the image at the point x. Using Heaviside function H(u), the level set 

of energy function is: 

𝐸𝐶𝐸𝑅(𝑓1, 𝑓2, 𝑐1, 𝑐2, 𝐶)
= 𝜔𝐸𝐶𝑉(𝑐1, 𝑐2, 𝐶)

+ (1 − 𝜔)𝐸𝑍𝑅𝑆𝐹(𝑓1, 𝑓2, 𝐶)𝑣 ∫ δ(u(x))|∇(𝑢(𝑥))|𝑑𝑥
𝛺

+ 𝜇∫
1

2
|∇𝑢(𝑥) − 1|2𝑑𝑥

𝛺

= 𝜔 [𝜆1∫ |𝐼(𝑥, 𝑦) − 𝑐1|
2𝑑𝑥𝑑𝑦

𝑖𝑛𝑠𝑖𝑑𝑒 (𝐶)

+ 𝜆2∫ |𝐼(𝑥, 𝑦) − 𝑐2|
2𝑑𝑥𝑑𝑦

𝑜𝑢𝑡𝑠𝑖𝑑𝑒 (𝐶)

] + (1

− 𝜔)∑𝜆𝑖

2

𝑖=1

∫ 𝐸𝑡(𝑥)
𝛺

∫ 𝐾𝜎(𝑥
𝛺

− 𝑦)|𝐼(𝑦) − 𝑓𝑖(𝑥)|
2𝑀𝑖(𝑢(𝑦))𝑑𝑦)𝑑𝑥 + 𝐻(𝑢, 𝑣)

3.99 
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Where, 𝐻(𝑢, 𝑣) = 𝑣 ∫ δ(u(x))|∇(𝑢(𝑥))|𝑑𝑥
𝛺

+ 𝜇 ∫
1

2
|∇𝑢(𝑥) − 1|2𝑑𝑥

𝛺
. 

3.7 Hybrid Level Set Image Segmentation Method Based on Kernel Metric 

The pervious part discusses the segmentation method of uneven grayscale images, 

and does not pay attention to the effect of noise on segmentation. In reality, images are 

often interfered by noise during the process of acquisition and transmission, which 

seriously reduces image quality. The segmentation method based on offset correction 

level set usually uses Euclidean distance to construct data items, but the noise robustness 

of this measurement method is poor. For an image with gray unevenness and noise at the 

same time, the local grayscale changes in each target area are caused by the gray 

unevenness and noise. In this way, the local image variance cannot be used to measure 

the degree of gray-scale unevenness of the image. The adaptive scale operator proposed 

by the pervious part will be invalid, affecting the estimation of the offset field and 

reducing the segmentation accuracy of the gray-scale uneven image. 

In recent years, some mixed level set models have been used to deal with uneven 

images ((Wang et al., 2010; Wang et al., 2009; Shyu et al., 2012; Liu et al., 2013 ; Jiang 

et al., 2014; Wen, 2014; Wang et al., 2014; Wang et al., 2014; Wang et al., 2018; Li et 

al., 2015; Jiang et al., 2015; Zhou et al., 2016; Huang et al., 2015; Soomro et al., 2016; 

Shi  and  Pan, 2016; Mondal et al. al., 2016; Liu et al., 2017; Soomro et al., 2018; Wang 

et al., 2015; Cai et al., 2018). Liu et al. (2013) combined the LIC model based on local 

information (Li et al., 2011) with the CV model based on global information (Chan,  and  

Vese, 2001) and proposed the LIC-CV model (Liu et al., 2013). This model can handle 

slightly uneven grayscale images and is robust to the initial contour. The level set evolves 

quickly, but it is easily disturbed by noise. 

As a solution to the issues mentioned above, this technique suggests using a 

hybrid level-setting method that is based on kernel metric (KMHLS). First, an enhanced 

multi-scale mean filter is put to use in order to make an estimate of the picture's offset 

field. Then, an offset correction is applied to the image in order to lessen the gray level 

inhomogeneity that the image has. After that, the kernel measurement technique is used 

to construct energy items using local and global information in the appropriate 
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proportions. As an additional measure, the local similarity measurement approach has 

been included in the energy term in order to reduce the impact of noise. In order to 

develop a hybrid energy function, a new weight function is used to adaptively alter the 

weight coefficients of the two different energy components. In conclusion, the count 

gradient regularization term is implemented in order to further lessen the impact that 

noise has. After first being provided in the form of a two-phase level-set segmentation, 

the suggested method for segmentation is later modified to support several phases of the 

process. 

3.7.1 Kernel Measurement 

The offset correction level set method based on K-means clustering usually uses 

Euclidean distance to construct data items, but this measurement method lacks robustness 

to noise and outliers, and severely reduces the segmentation accuracy of noisy images. 

Therefore, the 𝐿2 norm can be replaced by a non-linear distance metric. Usually, the 

kernel method is used for nonlinear distance measurement. The commonly used kernel 

function can be expressed as (Wu et al., 2015): 

𝐾(𝒂, 𝒃) = 〈𝜑(𝒂), 𝜑(𝒃)〉 = 𝜑(𝒂)𝑇𝜑(𝒃) 3.100 

Among them, 𝒂 and 𝒃 are vectors with the same dimension, 𝜑(. ) represents the 

non-linear mapping from the original data space to the feature space, 〈. , . 〉 represents the 

inner product operation, and T represents the transpose operation. 

The Gaussian radial basis function is a commonly used kernel function (Wu et al., 

2015), expressed as: 

𝐾(𝑎, 𝑏) = 𝑒𝑥𝑝 (−
(𝑎 − 𝑏)2

𝜎
)  . 3.101 

Among them, the parameter 𝜎 represents the bandwidth of the kernel function, 

and 𝐾 (𝑎, 𝑎) = 1 . Then, the non-Euclidean distance metric in the feature space is 

expressed as (Wu et al., 2015): 
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∥ 𝜑(𝑎) − 𝜑(𝑏) ∥2= (𝜑(𝑎) − 𝜑(𝑏))
𝑇
𝜑(𝑎) − 𝜑(𝑏) 

= 𝐾(𝑎, 𝑎) + 𝐾(𝑏, 𝑏) − 2𝐾(𝑎, 𝑏) 

= 2 − 2𝐾(𝑎, 𝑏) 

3.102 

3.7.2 Hybrid Level Set Segmentation Algorithm 

This section first uses an improved multi-scale mean filter to estimate the offset 

field of the image to reduce the gray-scale unevenness of the image. Then, the kernel 

metric and local similarity metric are used to suppress the influence of noise. Finally, the 

count gradient regularization term is used to further reduce the influence of noise. 

3.7.3 Improved Multi-Scale Mean Filter 

The MSF model (Wang et al., 2015) uses a multi-scale mean filter to estimate the 

offset field of the gray inhomogeneous image. However, this model uses a fixed number 

of scales. For some small-sized images, a larger scale will cause the offset field to be 

excessively smooth, and the local grayscale change information of the image cannot be 

obtained, leading to incorrect segmentation. Therefore, this thesis propose an improved 

multi-scale mean filter, which can approximate the offset field of the image and obtain 

more local variation information of the offset field. 

The higher the degree of unevenness of the gray level of the image, the more 

severe the local gray level changes in the smooth area of the image. Therefore, try to use 

small-scale mean filtering to estimate the offset field of the image to obtain more local 

change information, which is beneficial to remove the serious grayscale inhomogeneity 

of the image, and only retains the slight grayscale inhomogeneity. The scale number k of 

the multi-scale mean filter is defined as: 

𝑘 = min (𝑟𝑜𝑢𝑛𝑑 (√𝑁0 (4𝜋)⁄ ) , 𝑘𝑚𝑎𝑥) 3.103 

Among them, 𝑁0 is the number of pixels of the image I, and 𝑘𝑚𝑎𝑥 is a positive 

integer, which represents the maximum number of scales of the multi-scale mean filter. 

In this way, the 𝑖 scale parameter of the multi-scale mean filter is expressed as: 
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𝑟𝑖 = 𝑖, 𝑖 = 1,2,⋯ , 𝑘 3.104 

In addition, by weighting the image gray level to reduce the influence of salt and 

pepper noise and singular values, the mean filter with a scale of 𝑟𝑖 is defined as: 

𝐴𝐹𝑖(𝑥) =
∑ 𝐼(𝑦) ∙ 𝑤(𝑦)𝑦∈𝑅𝑥,𝑖

∑ 𝑤(𝑦)𝑦∈𝑅𝑥,𝑖

 3.105 

Among them, 𝑅𝑥,𝑦 = {𝑦: |𝑦 − 𝑥| ≤ 𝑟𝑖} represents a partial circular area with x as 

the center and radius 𝑟𝑖. 𝑤(∙) is the weight function of image gray level, defined as: 

𝐴𝐹𝑖(𝑥) =
∑ 𝐼(𝑦) ∙ 𝑤(𝑦)𝑦∈𝑅𝑥,𝑖

∑ 𝑤(𝑦)𝑦∈𝑅𝑥,𝑖

 3.106 

Among them, ∗ is a convolution operator, 𝐾0 is a normalized mean filter with a 

size of (2𝑤0 + 1) × (2𝑤0 + 1), and 𝜎0 is: 

𝜎0 = (
1

𝑁0 − 1
∑(𝑑(𝑥𝑗

𝑁0

𝑗=1

) − 𝑑̅)2)

0.5

 3.107 

Among them, 𝑑(𝑥) = |𝐼(𝑥) − 𝐼|̅, 𝐼 ̅represents the average gray value of image 𝐼, 

and 𝑑̅ represents the average value of 𝑑(𝑥). 

Then, the approximate estimation of the offset field of the uneven grayscale image 

is: 

𝐵0(𝑥) =
1

𝑘
∑𝐴𝐹𝑖(𝑥)

𝑘

𝑖=1

𝐼 ̅⁄  3.108 

According to the uneven gray scale image model, through offset correction, the 

image 𝐼1 after offset correction is obtained as: 
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𝐼1(𝑥) =
𝐼(𝑥)

𝐵0(𝑥)
, 𝑥 ∈ Ω 3.109 

The improved multi-scale averaging filter can well eliminate the unevenness of 

slightly uneven grayscale images, while for severely uneven grayscale images, it can 

greatly reduce the unevenness, leaving only slight grayscale unevenness. At the same 

time, the filter has strong robustness to noise. 

3.7.4 Energy Functional 

The image 𝐼1 after the offset correction generally has slight grayscale unevenness. 

The LIC-CV model (Liu et al., 2013) can segment images with slight gray unevenness 

quickly, accurately and robustly. Therefore, this thesis use the LIC-CV model to construct 

the energy functional, and can use fixed scale parameters. The kernel function estimates 

the offset field and eliminates the influence of scale parameters on the segmentation of 

uneven grayscale images. At the same time, this thesis introduce the kernel metric method 

into the LIC-CV model, and replace the Euclidean distance metric in the energy 

functional with the kernel metric to improve the robustness to noise. In this way, the 

energy term based on local area information is expressed as: 

𝐸𝑙𝑜𝑐𝑎𝑙(𝜙, 𝑏, 𝑐) =∑𝜆𝑖∫(1 − 𝐾𝐿(𝐼1, 𝑏, 𝑐𝑖))𝑀𝑖(𝜙(𝑥))𝑑𝑥

𝑁

𝑖=1

 3.110 

Among them, 𝑀𝑖(𝜙) is the membership function, and 𝐾𝐿(𝐼1, 𝑏, 𝑐𝑖) is defined as 

the form of the kernel metric: 

𝐾𝐿(𝐼1, 𝑏, 𝑐𝑖) = exp (−∫𝐾𝜎 (𝑦 − 𝑥; (𝐼1(𝑥) − 𝑏(𝑦)𝑐𝑖)
2 𝜎1⁄ )𝑑𝑦) 3.111 

Among them, 𝜎1 can be obtained by using image𝐼1 and formula (5-8), 𝑘𝜎(∙) is a 

Gaussian kernel function with a standard deviation of 𝜎. 

The energy item based on the global area information is: 
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𝐸𝑔𝑙𝑜𝑏𝑎𝑙(𝜙, 𝑐𝑐𝑣) =∑𝜆𝑖∫(1 − 𝐾𝐺(𝐼1, 𝑐𝑖
𝑐𝑣))𝑀𝑖(𝜙(𝑥))𝑑𝑥

𝑁

𝑖=1

 3.112 

Among them, 𝐾𝐺(𝐼1, 𝑐𝑖
𝑐𝑣) is defined as the form of nuclear metric: 

𝐾𝐺(𝐼1, 𝑐𝑖
𝑐𝑣) = exp (−

(𝐼1(𝑥) − 𝑐𝑖
𝑐𝑣)2

𝜎1
) 3.113 

Secondly, considering the spatial relationship between the center pixel and its 

neighborhood, this thesis use the local block similarity (Yu et al., 2018) to further reduce 

the impact of noise, and the local and global energy terms can be converted into: 

𝐾𝐺(𝐼1, 𝑐𝑖
𝑐𝑣) = exp (−

(𝐼1(𝑥) − 𝑐𝑖
𝑐𝑣)2

𝜎1
) 3.114 

𝐸𝑔𝑙𝑜𝑏𝑎𝑙(𝜙, 𝑐𝑐𝑣) = ∫∑𝜆𝑖∫𝑍(|𝑧 − 𝑥|)(1 − 𝐾𝐺(𝐼1, 𝑐𝑖
𝑐𝑣))𝑀𝑖(𝜙(𝑥))𝑑𝑥𝑑𝑧

𝑁

𝑖=1

 3.115 

Among them, the kernel function 𝑍(∙) is defined as: 

𝑍(𝑢) = {

1

2
exp(−

𝑢2

ℎ
) , |𝑢| ≤ 𝑟

0,                   𝑜𝑡ℎ𝑒𝑟

 3.116 

Among them, ℎ is the bandwidth and 𝑟 is the scale parameter. 

In addition, this thesis suggest a novel weight function as a means of dynamically 

modifying the relative importance of regional and international energy variables. The 

weight of the global energy item is automatically adjusted according to the degree of 

gray-level unevenness of the image, whereas the weight of the local energy item is 

automatically adjusted according to the gray-level uniformity of the image. This is 

because the global energy item can only handle the gray-level uniform image, whereas 

the local energy item can handle the gray-level uneven image. The gray-level unevenness 

of the picture may be described using the offset field b, as stated by the gray-level uneven 
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image model (Li et al., 2011). The offset field value of the gray-level uniform image is 1, 

and the farther b deviates from 1, the image The more significant the unevenness in the 

gray scale. Hence, a new weight function is constructed by making use of the estimated 

offset field while the algorithm is going through the iteration process: 

𝜔(𝑥) = 𝑣𝑒𝑥𝑝(−𝑙(𝑏(𝑥) − 1)2) 3.117 

Among them, 𝑣 and 𝑙 are constant parameters. 

𝑣  For the two-phase segmentation, that is, N=2, this thesis use a binary step 

function to represent the inner and outer regions of the evolution curve C, which is 

defined as: 

𝜙(𝑥) = {
−1, 𝑥 ∈ 𝑖𝑛𝑠𝑖𝑑𝑒(𝐶)
1, 𝑥 ∈ 𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝐶)

 3.118 

Then the membership function of each subregion is expressed as:𝑀1(𝜙(𝑥)) =

(1 + 𝜙(𝑥))/2 and 𝑀2(𝜙(𝑥)) = (1 − 𝜙(𝑥))/2。Using the weight function in formula 

(3.111) to combine the local and global energy terms, the mixed energy function is 

obtained as: 

𝐸𝐻(𝜙, 𝑏, 𝑐, 𝑐𝑐𝑣)

= ∫∑𝜆𝑖∫(1

2

𝑖=1

− 𝜔(𝑥))𝑍(|𝑧 − 𝑥|)(1 − 𝐾𝐿(𝐼1, 𝑏, 𝑐𝑖))𝑀𝑖(𝜙(𝑥))𝑑𝑥 𝑑𝑧

+ ∫∑𝜆𝑖∫𝜔(𝑥)𝑍(|𝑧 − 𝑥|)(1

2

𝑖=1

− 𝐾𝐺(𝐼1, 𝑐𝑖
𝑐𝑣))𝑀𝑖(𝜙(𝑥))𝑑𝑥𝑑𝑧 

3.119 

In addition, this thesis introduce the length term and rule term (Liu et al., 2018) 

based on 𝐿0 regularization to regularize the level set function to ensure the stability of the 

level set evolution and further suppress the influence of noise. A weighted RSF model 

that is based on local entropy has been established at the top in order to increase the 

original model's robustness with respect to the beginning contour position and 
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considerable noise. This is a very important development. In fact, owing to the 

heterogeneity of the gray scale, the difference in gray scale across various places in a 

picture that has an uneven distribution of gray is often varied. This is because a picture 

with an uneven distribution of gray contains a picture that has an uneven distribution of 

gray. This thesis creates a new local fitting energy function to replace the ones that are in 

the CV model and the LBF model. This is done in order to better deal with the 

phenomenon of intensity inhomogeneity and to take into consideration the benefits and 

drawbacks of the CV model and the RSF model (Akram et al., 2017). Because of this, we 

will be able to deal with the phenomenon of intensity inhomogeneity in a more effective 

manner. The definition of the new energy function is as follows: (3.119). The final mixed 

energy functional may be written using the heavy function H(u): 

𝐸𝐶𝐸𝑅 = 𝛾𝐸𝐻(𝜙, 𝑏, 𝑐, 𝑐𝑐𝑣) + 𝜇𝐶(∇𝜙) + 𝜈𝐶(𝜙 + 1) 3.120 

Among them, 𝛾, 𝜇 and 𝜈 are constant parameters, 𝐶(∙) represents the 𝐿0 counting

operator, and 𝐶(𝜙 + 1) represents the number of pixels satisfying |𝜙 + 1| ≠ 0. 

3.7.5 Level Set Evolution and Numerical Realization 

By minimizing the energy function in equation (3.114), image segmentation can 

be achieved and the offset field can be estimated at the same time. Using the alternate 

iterative minimization method to solve, the energy functional E is minimized relative to 

each variable in the formula (3.114), and the closed solution of each variable M can be 

obtained: 

𝑐𝑖 =
∫(𝑏 ∗ 𝐾)𝐼1𝑀𝑖(𝜙)𝑊𝑖

𝐿𝑑𝑥

∫(𝑏2 ∗ 𝐾)𝑀𝑖(𝜙)𝑊𝑖
𝐿𝑑𝑥

, 𝑖 = 1,⋯ ,𝑁 3.121 

𝑏 =
(𝐼1𝐽

(1)) ∗ 𝐾

𝐽(2) ∗ 𝐾
3.122 

=
∫ 𝐼1(𝑥)𝑀𝑖(𝜙(𝑥))𝑊𝑖

𝐺𝑑𝑥
Ω

∫ 𝑀𝑖(𝜙(𝑥))𝑊𝑖
𝐺𝑑𝑥

Ω

, 𝑖 = 1,⋯ ,𝑁  , 3.123 
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among them, 𝐽(1) = ∑ 𝑊𝑖
𝐿𝑐1𝑀𝑖(𝜙)

𝑁
𝑖=1 ,  𝐽(2) = ∑ 𝑊𝑖

𝐿𝑐1
2𝑀𝑖(𝜙)

𝑁
𝑖=1 ,  𝑊𝑖

𝐿 =

exp (− (𝐼1 − 𝑏𝑐1)
2 𝜎1)⁄ , 𝑊𝑖

𝐺 = exp (− (𝐼1 − 𝑐𝑖
𝑐𝑣)2 𝜎1)⁄ . 

When 𝑐𝑖 , b,s and 𝑐𝑖
𝑐𝑣are fixed, the relative level set function 𝜙 minimizes the 

energy function. However, two counting operators are introduced in the mixed energy 

functional, namely 𝐶(∇𝜙) and 𝐶(𝜙 + 1), which cannot be solved directly by the gradient 

descent method. To this end, auxiliary variables are introduced, and the level set function 

is evolved using the alternate iteration optimal method (Liu et al., 2018). Similar to the 

LODL model, the mixed energy function is discretized, and three auxiliary variables 

𝜑，𝜉 and 𝜓 are introduced for 𝜕𝑥𝜙𝑝, 𝜕𝑦𝜙𝑝 and 𝜙 respectively, the final discrete energy 

functional can be obtained as: 

𝐸 = 𝛾𝐸𝐻(𝜙, 𝑏, 𝑐, 𝑐𝑐𝑣) + 𝜇𝐶(𝜑, 𝜉) + 𝜈𝐶(𝜓) + 𝛼∑((

𝑝

𝜕𝑥𝜙𝑝 − 𝜙𝑝)
2

+ (𝜕𝑦𝜙𝑝 − 𝜉𝑝)
2) + 𝛽∑(𝜙𝑝

𝑝

+ 1 − 𝜓𝑝)
2 

3.124 

among them，𝐶(𝜑, 𝜉) = {𝑝: |𝜙𝑝| + |𝜉𝑝| ≠ 0}, 𝐶(𝜓) = {𝑝: |𝜓𝑝| ≠ 0},𝛼 > 0 and 𝛽 > 0 

as a parameter, 𝛼 needs to be adjusted according to the image. Replace  𝐶(𝜑, 𝜉)and 

𝐶(𝜓) with ∑ 𝐵(𝑝 |𝜙𝑝| + |𝜉𝑝|), ∑ 𝐵(𝜓𝑝𝑝 ), where 𝐵(𝑥) is a binary function, if 𝑥 ≠0, then 

its value is 1, otherwise it is 0. Therefore, the final discrete energy functional is: 

𝐸 = 𝛾𝐸𝐻(𝜙, 𝑏, 𝑐, 𝑐𝑐𝑣) + 𝜇∑ 𝐵(
𝑝

|𝜙𝑝| + |𝜉𝑝|) + 𝜈∑ 𝐵(𝜓𝑝
𝑝

)

+ 𝛼∑((

𝑝

𝜕𝑥𝜙𝑝 − 𝜙𝑝)
2 + (𝜕𝑦𝜙𝑝 − 𝜉𝑝)

2)

+ 𝛽∑(𝜙𝑝
𝑝

+ 1 − 𝜓𝑝)
2 

3.125 

Using the alternate iterative optimization method, （𝜑，𝜉）  and 𝜓  can be 

obtained as: 

(𝜑𝑝, 𝜉𝑝) = {
(0,0), (𝜕𝑥𝜙𝑝)

2 + (𝜕𝑦𝜙𝑝)
2 ≤ 𝜇 𝛼⁄

(𝜕𝑥𝜙𝑝, 𝜕𝑦𝜙𝑝), (𝜕𝑥𝜙𝑝)
2 + (𝜕𝑦𝜙𝑝)

2 > 𝜇 𝛼⁄
 3.126 
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𝜓𝑝 = {
0, (𝜙𝑝 + 1)

2 ≤ 𝜈 𝛽⁄

𝜙𝑝 + 1, (𝜙𝑝 + 1)
2 > 𝜈 𝛽⁄

3.127 

For the level set function 𝜙, the corresponding Euler equation can be obtained: 

2(𝛽𝜙 − 𝛼∇𝜙) =
1

2
𝛾 ∙ 𝑍

∗ (−𝜆1(2 − (1 − 𝜔)𝐾𝐿(𝐼1, 𝑏, 𝑐1) − 𝜔𝐾𝐺(𝐼1, 𝑐1
𝑐𝑣))

+ 𝜆2(2 − (1 − 𝜔)𝐾𝐿(𝐼1, 𝑏, 𝑐2) − 𝜔𝐾𝐺(𝐼1, 𝑐2
𝑐𝑣)))

+ 2𝛽(𝜓 − 1) + 2𝛼(𝜕𝑥
∗𝜑 + 𝜕𝑦

∗𝜉)

3.128 

Among them, 𝜕𝑥
∗  and 𝜕𝑦

∗  represent the complex conjugate of 𝜕𝑥  and 𝜕𝑦 ,

respectively. 

Using Fast Fourier Transform (FFT) to solve the formula (3.12; Liu et al., 2018), 

this thesis can get: 

𝜙0 = 𝐹
−1 [

𝐹(𝑄) + 2𝛼 (𝐹(𝜕𝑥
∗)𝐹(𝜑) + 𝐹(𝜕𝑦

∗)𝐹(𝜉))

2𝛽 + 2𝛼 (𝐹∗(𝜕𝑥)𝐹(𝜕𝑥) + 𝐹
∗(𝜕𝑦)𝐹(𝜕𝑦))

] 3.129 

Among them, 𝐹(∙) represents the Fourier transform, 𝐹−1(∙) is the inverse Fourier

transform, 𝐹∗ represents the complex conjugate of 𝐹, and Q is defined as:

𝑄 =
1

2
𝛾 ∙ 𝑍 ∗ (−𝜆1(2 − (1 − 𝜔)𝐾𝐿(𝐼1, 𝑏, 𝑐1) − 𝜔𝐾𝐺(𝐼1, 𝑐1

𝑐𝑣))

+ 𝜆2(2 − (1 − 𝜔)𝐾𝐿(𝐼1, 𝑏, 𝑐2) − 𝜔𝐾𝐺(𝐼1, 𝑐2
𝑐𝑣)))

+ 2𝛽(𝜓 − 1)

3.130 

Finally, a Gaussian filter with a scale of 𝜎𝑠 is used to smooth the level set function

𝜙0 and perform binarization processing 𝜙0(𝑥):

𝜙(𝑥) = {
1, 𝜙0(𝑥) ≥ 0

−1, 𝜙0(𝑥) < 0
3.131 
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In the numerical implementation (Appendix B), in order to maintain the stability 

of the evolution of the level set function, the gray level of the original image 𝐼1 is linearly

compressed to the interval [0,1]. And the level set function𝜙0 that is not regularized into

a binary function is used to calculate 𝑐𝑖 , 𝑏 and 𝑐𝑖
𝑐𝑣, where the membership function is

expressed as 𝑀1(𝜙0(𝑥)) = 𝐻(𝜙0(𝑥)) and 𝑀2(𝜙0(𝑥)) = 1 − 𝐻(𝜙0(𝑥)), the Heaviside

function 𝐻(𝜙) is defined as: 

𝐻𝜀(𝜙) =
1

2
[1 +

2

𝜋
∙ arctan(

𝜙

𝜀
)] 3.132 

Among them, 𝜀 is a constant parameter. 

The initial constants 𝑐𝑖
𝑐𝑣 and 𝑐𝑖 can be calculated by the following formula:

𝑐1
𝑐𝑣 = 𝑐1 =

∫ 𝐼1(1 + 𝜙Ω
)𝑑𝑥

∫ (1 + 𝜙
Ω

)𝑑𝑥
, 𝑐2
𝑐𝑣 = 𝑐2 =

∫ 𝐼1(1 − 𝜙Ω
)𝑑𝑥

∫ (1 − 𝜙
Ω

)𝑑𝑥
 . 3.133 

The main steps of the proposed hybrid level set binary segmentation algorithm 

(VKMHLS) based on kernel metric are as follows: 

Step 1. Calculate 𝐵0 according to formula (3.102), and obtain the image 𝐼1 after

offset correction according to formula (3.103); 

Step 2. Initialize the offset field 𝑏0(𝑥) = 1, 𝑥 ∈ Ω , initialize 𝜙0 , 𝑐𝑖
𝑐𝑣  and 𝑐𝑖

according to the formula (3.112) and formula (3.127), and according to the formula 

(3.101) Calculate 𝜎1;

Step 3. According to formula (3.115), formula (3.116) and formula (3.117) 

respectively calculate 𝑐𝑖 , 𝑏 and 𝑐𝑖
𝑐𝑣;

Step 4. Calculate (𝜑, 𝜉)and 𝜓 according to formula (3.120) and formula (3.121); 

Step 5. Obtain the level set function𝜙0 according to formula (3.123);

Step 6. Obtain the binary level set function𝜙 according to formula (3.125); 
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Step 7. When the maximum number of iterations is reached or the level set 

function converges, the algorithm ends, otherwise, return to step 3. 

3.7.6 Multiphase Level Set 

The two-phase segmentation form is extended to the polyphase form. When N=3, 

two level set functions 𝜙1 and 𝜙2 are used to define different target areas in the image 

domain Ω, and the polyphase, b, mixed function can be obtained: 

𝐸𝑀
𝐻(Φ, 𝑏, 𝑐, 𝑐𝑐𝑣)

= ∫∑𝜆𝑖∫(1 − 𝜔(𝑥))𝑍(|𝑧 − 𝑥| ;  1

3

𝑖=1

− 𝐾𝐿(𝐼1 , 𝑏, 𝑐𝑖))𝑀𝑖(Φ)𝑑𝑥𝑑𝑧

+ ∫∑𝜆𝑖∫𝜔(𝑥)𝑍(|𝑧 − 𝑥| ;  1

3

𝑖=1

− 𝐾𝐺(𝐼1 , 𝑐𝑖
𝑐𝑣))𝑀𝑖(Φ)𝑑𝑥𝑑𝑧 

3.134 

among them ， 𝑀1(Φ) = (1 + 𝜙1;  1 + 𝜙2) 4⁄ ,  𝑀2(Φ) = (1 + 𝜙1;  1 − 𝜙2) 4⁄ and 

 𝑀3(Φ) = (1 − 𝜙1) 2⁄ represents membership functionΦ = (𝜙1, 𝜙2)。 

    The final multiphase energy functional is defined as: 

𝐸𝑀(Φ, 𝑏, 𝑐, 𝑐
𝑐𝑣)
= 𝛾𝐸𝑀

𝐻(Φ, 𝑏, 𝑐, 𝑐𝑐𝑣) + 𝜇𝐶(∇𝜙1) + 𝜈𝐶(𝜙1 + 1) + 𝜇𝐶(∇𝜙2)
+ 𝜈𝐶(𝜙2 + 1) 

3.135 

The level set function 𝜙1 can be obtained by formulas (3.123) and (3.125), where 

Q is defined as: 

𝑄 =
1

2
𝛾 ∙ 𝑍 ∗ (−𝜆1(2 − (1 − 𝜔)𝐾𝐿(𝐼1, 𝑏, 𝑐1) − 𝜔𝐾𝐺(𝐼1, 𝑐1

𝑐𝑣)) (1 + 𝜙2) 2⁄

− 𝜆2(2 − (1 − 𝜔)𝐾𝐿(𝐼1, 𝑏, 𝑐2)

− 𝜔𝐾𝐺(𝐼1, 𝑐2
𝑐𝑣)) (1 − 𝜙2) 2⁄ )

+ 𝜆3(2 − (1 − 𝜔)𝐾𝐿(𝐼1, 𝑏, 𝑐2) − 𝜔𝐾𝐺(𝐼1, 𝑐2
𝑐𝑣)))

+ 2𝛽(𝜓1 − 1)  . 

3.136 



 186 

Among them, (𝜑1, 𝜉1) and 𝜓1 can be obtained according to formula (3.120) and

formula (3.121) respectively. 

Similarly, the level set function 𝜙2 is obtained by formula (3.123) and formula

(3.125), where Q is defined as: 

𝑄 =
1

2
𝛾 ∙ 𝑍 ∗ (−𝜆1(2 − (1 − 𝜔)𝐾𝐿(𝐼1, 𝑏, 𝑐1) − 𝜔𝐾𝐺(𝐼1, 𝑐1

𝑐𝑣)) (1 + 𝜙1) 2⁄

+ 𝜆2(2 − (1 − 𝜔)𝐾𝐿(𝐼1, 𝑏, 𝑐2)

− 𝜔𝐾𝐺(𝐼1, 𝑐2
𝑐𝑣)) (1 + 𝜙1) 2⁄ ) + 2𝛽(𝜓2 − 1)

3.137 

Among them, (𝜑2, 𝜉2 ) and 𝜓2  are obtained according to formula (3.120) and

formula (3.121) respectively. 

The proposed algorithm can be summarized by five stages: 

Stage 1:Scale Adaptive Fast Level-Set Image Segmentation Method: 

Step 1: Estimate the offset field: This step accurately estimates the offset field, 

which represents the gray-level inhomogeneity in the image. It quantifies the variations 

in gray levels across the image, providing important information for segmentation. 

Figure 3.6  The diagram of  Scale Adaptive Fast Level-Set Image Segmentation 

Method 

Step 2: Minimize the energy functional: The method minimizes the energy 

functional, which serves as the objective function. By minimizing the energy functional, 

the segmentation process becomes more stable and converges towards an optimal 
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solution. This step reduces the likelihood of the algorithm getting stuck in local minima, 

improving the segmentation accuracy. The Scale Adaptive Fast Level-Set Image 

Segmentation Method can be shown in Figure 3.6. 

Stage 2: Adaptive Multilayer Level-Set Image Segmentation Method: 

Step 1: Adaptive determination of layers and scale parameters: This step allows 

for adaptive determination of the number of layers and scale parameters for each layer 

based on the image's characteristics. It analyzes the image to identify regions with highly 

uneven grayscale levels and adjusts the number of layers and scale parameters 

accordingly. 

Step 2: Reduce energy functionals: The method reduces the energy functionals 

associated with each layer. By reducing the energy functionals, the segmentation process 

focuses on capturing the desired structures in the presence of grayscale inhomogeneity. 

This step contributes to improving the segmentation accuracy. The Adaptive Multilayer 

Level-Set Image Segmentation Method can be shown in Figure 3.7. 

 

Figure 3.7  The diagram of  Adaptive Multilayer Level-Set Image Segmentation 

Method 

Stage 3: Variational Level Set Method for Geometric Evolution of Curves: 

Step 1: Avoidance of re-initialization: Unlike traditional level-set methods, this 

approach eliminates the need for re-initialization during numerical implementations. Re-
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initialization can be time-consuming and complex. By avoiding re-initialization, 

computational time is saved, and the implementation process is simplified. 

 

Figure 3.8  The diagram of  Variational Level Set Method for Geometric Evolution 

of Curves 

Step 2: Simplify initialization: The method simplifies the process of initializing 

the embedded function (u_0). It automatically approximates the embedded function as a 

distance function, reducing the strict requirement for u_0(x, y) to be a distance function 

C0. This simplification makes the initialization step more convenient and less prone to 

error. The diagram of Variational Level Set Method for Geometric Evolution of Curves 

is shown in Figure 3.8.   

Stage 4: Chan-Vese Model and Region-Scalable Fitting Model: 

Step 1: Introduce a new local fitting energy function: The combined model 

introduces a new energy function that overcomes the limitations of the individual models. 

This new energy function enhances the segmentation accuracy by capturing the desired 

regions in the image more effectively. 

Step 2: Reduce sensitivity to initial position and noise: By combining the Chan-

Vese model and the Region-Scalable Fitting model, the KMHLS method becomes less 

sensitive to the initial position of the level-set function and noise in the image. This 

reduction in sensitivity improves the robustness and accuracy of the segmentation results. 

Step 3: Preserve numerical stability and consistency: The Chan-Vese and Region-

Scalable Fitting models are known for their numerical stability. By incorporating them 

into the KMHLS method, numerical stability and consistency are preserved during 
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updates and reinitialization, ensuring reliable segmentation results. The diagram of Chan-

Vese Model and Region-Scalable Fitting Model is shown in Figure 3.9. 

 

Figure 3.9  The diagram of  Chan-Vese Model and Region-Scalable Fitting Model 

Stage 5: CER Model Based on Information Entropy: 

Step 1: Provide anti-noise and filtering capabilities: The CER model based on 

information entropy offers anti-noise and filtering capabilities. It can effectively handle 

noisy images and reduce the impact of noise on the segmentation accuracy. This step 

improves the robustness of the KMHLS method. 

Step 2: Ensure time efficiency: The CER model is designed to be time-efficient, 

which is crucial for large-scale segmentation scenarios. It ensures that the KMHLS 

method delivers accurate segmentation results within a reasonable time frame. The 

diagram of  CER Model Based on Information Entropy is shown in Figure 3.10. 

 

Figure 3.10  The diagram of  CER Model Based on Information Entropy 

By following these steps and incorporating the mentioned methods, the KMHLS 

method benefits from accurate offset field estimation, improved stability and 
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convergence, adaptive determination of layers and scale parameters, simplified 

initialization, reduced sensitivity to noise and initial position, preservation of numerical 

stability and consistency, and anti-noise and filtering capabilities. These steps 

collectively contribute to achieving more accurate and robust image segmentation results.  

The proposed algorithm consists of five stages aimed at improving medical image 

segmentation: Stage 1: Scale Adaptive Fast Level-Set Image Segmentation Method: This 

stage involves estimating the offset field to quantify gray-level variations and minimizing 

the energy functional to stabilize the segmentation process. Stage 2: Adaptive Multilayer 

Level-Set Image Segmentation Method: Adaptive determination of layers and scale 

parameters helps adjust to varying image characteristics, while reducing energy 

functionals enhances segmentation accuracy. Stage 3: Variational Level Set Method for 

Geometric Evolution of Curves: This stage avoids re-initialization and simplifies 

initialization, saving computational time and making the process more convenient. Stage 

4: Chan-Vese Model and Region-Scalable Fitting Model: Introducing a new local fitting 

energy function reduces sensitivity to initial position and noise, preserving numerical 

stability and consistency for reliable segmentation. Stage 5: CER Model Based on 

Information Entropy: Providing anti-noise and filtering capabilities, this stage improves 

robustness while ensuring time efficiency for large-scale segmentation scenarios. Each 

stage contributes to enhancing the overall accuracy and efficiency of the segmentation 

process. The flowchart of Proposed Solution of Variational Kernel Metric Hybrid Level 

Set(VKMHLS) can be shown in Figure 3.11. 

The problem statement addresses a set of challenges associated with contour 

initialization in the context of level-set segmentation methods, specifically focusing on 

the issues related to complex backgrounds, sensitivity to initial contours, and the 

computational inefficiency arising from frequent reinitialization. Challenges with 

Complex Backgrounds: One of the fundamental challenges in image segmentation, 

especially in natural images, is the presence of complex backgrounds. These backgrounds 

can be intricate and varied, making it difficult for unsupervised level-set segmentation 

methods to distinguish between the foreground object of interest and the background 

clutter. This complexity arises in various domains, such as object recognition in outdoor 

scenes or medical image analysis, where objects are surrounded by anatomical structures 
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or intricate textures. Handling such complexity effectively is crucial for achieving 

accurate and robust segmentation. 

 

Figure 3.11  The flowchart of Proposed Solution of Variational Kernel Metric Hybrid 

Level Set(VKMHLS) 
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Sensitivity to Initial Contours: The problem statement highlights the sensitivity 

of level-set segmentation methods to the initial contour, which poses a risk of falling into 

a local minimum solution. In level-set-based segmentation, an initial contour is often 

provided as a starting point for the algorithm. The final segmentation result can vary 

significantly depending on the choice of this initial contour. Sensitivity to the initial 

contour means that small changes or inaccuracies in the initial contour can lead to 

suboptimal or incorrect segmentation results. This issue becomes particularly 

problematic when dealing with complex backgrounds, where it may be challenging to 

provide an accurate initial contour manually. Slow Level-Set Evolution and Frequent 

Reinitialization: The level-set evolution process is a fundamental component of level-set 

segmentation methods. However, it can be computationally demanding and slow, 

especially in scenarios where smooth and accurate segmentations are required. To ensure 

that the level-set function remains well-behaved and maintains smooth contours, frequent 

reinitialization steps are often necessary. This process involves resetting the level-set 

function to its signed distance property and can significantly impact the computational 

efficiency of the segmentation algorithm. Slow evolution and frequent reinitialization can 

hinder the real-time or near-real-time application of level-set segmentation methods, 

which is essential in various domains like medical imaging or robotics. Therefore, the 

problem statement highlights the critical challenges associated with contour initialization 

in level-set segmentation methods. Complex backgrounds can confound the segmentation 

process, especially in natural images, where the object of interest is embedded in intricate 

surroundings. Sensitivity to initial contours can lead to suboptimal solutions, 

emphasizing the need for robust initialization methods. Additionally, the computational 

inefficiency arising from slow level-set evolution and frequent reinitialization limits the 

practical applicability of these methods, particularly in scenarios requiring real-time or 

near-real-time results. 

3.8 Level Set Image Segmentation Method and Variants 

Kass et al., (1998) was the publication that pioneered the idea of segmenting 

photos by developing contours in two dimensions or evolving surfaces in three 

dimensions. They were the first to describe the concept. With this technique, a 

parameterized curve is created by trying to minimize a weighted sum of the energy 
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functionals that can be found either internally or externally to the image. These 

functionals may be located either by looking at the picture itself or by looking at other 

pictures. These functions are used to represent the many forms of energy that are available. 

Malladi and Sethian (Malladi et al., 1995) brought the level set method into the realm of 

image segmentation in order to circumvent the laborious process that is involved in 

numerical implementations to account for topological changes of parameterized curves 

or surfaces throughout the course of their evolution. This was accomplished by using the 

level set method to account for topological changes in parameterized curves or surfaces. 

This was done so that the level-set approach could more effectively take into account 

topological changes in parameterized curves or surfaces. The goal was to make the 

method more time- and resource-efficient. This was done in an effort to relieve ourselves 

of the burdensome responsibility. When using the level set method, the curve or surface 

that describes an object's boundary is implicitly characterized by the zero level set of an 

embedding function, u, which is also sometimes referred to as the level set function. This 

occurs because the level set method makes use of the embedding function to determine 

the level set function. This is due to the fact that the method for setting the level is named 

after the function for setting the level. This tactic is often referred to as the level-setting 

method, particularly in certain quarters (see Figure 3.12, for example). 

 

Figure 3.12 u(x,y,t)=exp(−(x−t)2−(y−t)2)+exp(−(x+t)2−(y+t)2)-0.5 is shown for t = 0, 

0.75, 1. The zero-level curve is shown as a red line just below the surface. 

In Figure 3.12, in contrast to the parameterized contour approach, the level set 

formulation can easily handle topological changes in the curve, such as a single curve 

breaking into two separate curves that are not connected to each other, as shown here. 

This is made possible by the implicit definition of the curve in the level set formulation. 
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Let us briefly derive the governing PDE.  Suppose x(q) parameterizes some level 

set, {u = k}, and evolves in the outward normal direction with velocity ν(x), i.e., xt = νN , 

where xt is the time partial derivative of x(q,t) and N is the outward unit normal to the 

level set. This thesis assume that the gradient vector Du = (ux1 ,···, uxn ) points in the 

inward normal direction to the level sets of u so  that N = −Du/||Du|| . Thus by 

differentiating the level set relation u (x(t), t) = k with respect to t, this thesis arrive at the 

level set evolution PDE, 

𝑢𝑡 = ν||𝐷𝑢|| 3.138 

It is important to note that equation 3.132 is defined for all level sets, despite the 

fact that this thesis is ultimately only concerned with the zero level set. Traditionally, in 

order to segment an image, the normal velocity, denoted by v, was selected to have an 

inverse relationship to the magnitude of the (possibly Gaussian-smoothed) image 

gradient. This ensured that the evolving level set would come to a halt in areas where the 

edge strength was particularly strong. For example, if 𝑀  is an image and Gσ is  a 

Gaussian-smoothing convolution kernel, this thesis might set: 

ν(𝑥) = 𝑔(𝑀(𝑥)) × exp(−|𝐷(𝐺σ ∗ 𝑀)(𝑥)|) 3.139 

such that the pace at which the level set is growing slows down in regions where 

the magnitude of the image gradient (also known as the edge strength) is large. This is 

because the level set is evolving in such a way. If the image is normalized and it is 

assumed that the object has higher image values than its surroundings, then the function 

g is a function that returns a positive value for image values that are contained within the 

object and a negative value for image values that are located outside the object. This is 

because the function g compares the image value of the object to the image value of its 

surroundings and assumes that the object has higher image values. For example, the 

symbol g(z) equals the sign (z). If the edge strength is variable, if the edges are ill-defined 

for portions of the object, or if the image cannot be normalized in such a way that the 

function g can consistently choose positive values inside the object and negative values 

outside the object, then naturally, this approach will admit difficulties for the objects that 

are in question. If the edge strength is variable, if the edges are ill-defined for portions of 

the object, or if the image cannot be normalized in such a way that the function If the 
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edge strength is changeable, if the edges are not well-defined for certain areas of the 

object, or if the picture cannot be normalized in such a manner that it can consistently 

pick one option, then the edge detection algorithm will not be able to reliably identify the 

edges of the object. These challenges are rather common in medical imaging settings in 

which the target item is related to a separate anatomical entity that has image values that 

are equivalent to those of the target object itself. In the case of juxta-pleural or juxta-

vascular lung nodules, for example, the nodule is linked to the lung wall or vasculature, 

and both of these types of nodules appear with comparable image values on CT scans. In 

addition, juxta-pleural and juxta-vascular lung nodules are linked to an increased risk of 

developing lung cancer. Lung nodules that are located juxta-pleurally or juxta-vascularly 

are another illustration of this phenomenon. As part of an effort to find a solution to this 

problem, numerous stopping conditions, such as those that are based on the relative 

change in boundary length of an evolving contour or on those that are based on the 

relative change of image information inside the region that is enclosed by the contour, 

have been investigated. Conditions that are based on the relative change in border length 

of a developing contour are one of the types that have been looked at (Kuo et al., 2014). 

These halting criteria are designed to prevent the level set from growing into areas that 

are larger than the targeted boundaries of the item that is being sought after. 

Image segmentation using standard level-set algorithms does not make use of 

statistical information on the projected shape or picture attributes of the expected items 

to be separated in specific applications. This is because such information cannot be 

reliably predicted. For the purpose of developing images and forming prior models, 

principal component analysis (PCA) was applied to a dataset including training pictures 

and shapes (in a Bayesian sense). This was done with the intention of penalizing 

segmentations that deviated from those with anticipated shapes and predicted image 

values near the segmentation surfaces. It is possible that the work done by Leventon et 

al. was the first of its kind to include the use of statistical information into the level-set 

approach for picture segmentation (Leventon et al., 2000). Tsai et al. used principal 

component analysis on a dataset consisting of training information in this study. (Tsai et 

al., 2013) used PCA on a training set that was made up of signed distance representations 

of shapes in order to create an approach that was pretty comparable to the one that this 

thesis are doing here. The progression of the level set has been analyzed and framed as a 
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problem requiring the optimization of an energy function in more recent research. 

Because of this, statistical information pertaining to the shape and picture attributes may 

be integrated by interpreting the energy function as the negative log of some probability 

density (Cremers et al., 2007). Modeling the probability density of image and form 

attributes may be accomplished via the use of methods such as the Gaussian kernel 

density estimation (Cremers, 2007). 

In the approach for incorporating statistical information into the level set method 

for segmentation, this thesis consider the situation where a dataset, (𝑀(𝑙), 𝐵(𝑙))
𝑙=1

𝑁
 of 

images, M(l), with corresponding segmentations, B(l), made by some expert, is available. 

This dataset is used to model the normal velocity field ν in a discrete version of Equation 

3.1, by using a regression model at each discrete time step n. Thus, ν is replaced by a 

sequence of regression models V =n (n = 0, 1, . . .). In addition, the models take as inputs 

a set of image and shape features that have been appropriately chosen (and possibly 

application domain-specific) at each discrete spatial point I j, K and time step n in order 

to produce as output an approximation of the normal velocity value v. This is done in 

order to produce an approximation of the normal velocity value v. This number specifies, 

on a local scale, whether the level set should expand or decrease, as well as at what rate 

it should do so. In addition to this, the models use a collection of picture and shape 

elements that have been appropriately selected (and maybe application domain-specific) 

as inputs in order to Because of this, the approach that this thesis take to solving the issue 

is significantly distinct, both in terms of theory and practice, from the approaches that 

other academics have taken in an effort to include statistical information into the method 

of determining levels. Our method has the advantage that the characteristics that the 

models take as inputs can be selected to suit the specific application area, and in our 

method, there is no need to model probability distributions of the features that are 

employed. This is one of the benefits that our methodology offers. Our approach has this 

benefit, which distinguishes it from other approaches. While the other statistical 

approaches for the level set segmentation technique are therefore more indirect than our 

method, it is deemed to be more direct because of this fact. 

Van Ginneken (2006) provides an approach in which the method for producing 

regions is given a probabilistic twist. A classification model in which a binary option is 
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made (that is, the choice to either add the pixel to the segmentation or not) is calibrated 

from data and utilized as an alternative to the fixed region growth method in the work 

that was done by (Van Ginneken, 2006; Appendix C). In the classic region-growing 

method, new pixels are added to the segmented object in a recursive fashion, in a 

predictable way, and in accordance with a predetermined pattern (for example, based on 

an image value threshold). Second, in the research that Breen and Whitaker have been 

carrying out, the level set approach has been used in order to achieve form morphing. 

This was done in order to better understand the relationship between form and function. 

study conducted in by (Breen and Whitaker,2006). "Shape morphing" refers to the act of 

continually changing a binary representation of an initial shape into a target shape that 

the user chooses. This process may be repeated as many times as necessary. When a 

signed representation of a target shape is used as the normal velocity function v in 

Equation 3.132, Breen and Whitaker observe that the level set u converges to a signed 

representation of the target shape. This is the conclusion that can be drawn from the fact 

that the level set converges to a signed representation of the target shape. The signed 

distance transformation is one example of a signed representation of a target shape. 

Another example would be the signed rotation transformation. This is something that we 

have been aware of as a direct outcome of the work that we have been doing. Having 

stated that, this thesis would like to draw your attention to the fact that the behavior of 

the developing level set is deterministic while it is being employed for form morphing. 

This is something that this thesis would want to bring to your attention. This thesis takes 

a methodological approach that considers the signed representation of the goal shape to 

be the target output. This method is used in conjunction with regression models. Even if 

the representation is signed, this outcome will still occur. Therefore, in a sense, our 

method of segmenting pictures could be seen in part as a combination and extension of 

the ideas that were put forward in the two studies that were described earlier in this 

discussion. This extension could be seen as a result of the fact that our method 

successfully segmented a picture that contained both a face and a body. This is because 

our method takes into account both the similarities and the differences between the two 

sets of findings. 
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3.9 Lung Nodule Image Segmentation 

In the field of medical imaging, the phrase "lung nodule image segmentation" 

refers to the process of using an algorithm to delineate the boundaries of structures that 

are referred to as lung nodules. Lung nodules are localized abnormalities of the lung that 

often appear as thick patches in relation to their surroundings. Lung nodules may cause 

serious health problems (McNitt-Gray et al., 2007). It is difficult to segment pictures of 

lung nodules because of the changes in (1) the morphology of the nodule, (2) the non-

nodule anatomical characteristics surrounding a nodule, and (3) the interior and edge 

densities of the nodule (see Figure 4.10). Referring to the fake lung nodule diagrams in 

Figure 3.2 may serve as a straightforward illustration of the possible challenges that may 

be faced by segmentation approaches that use simply the local image and image edge 

information. These difficulties may be encountered when attempting to diagnose lung 

cancer. The region that is darker and grayer in both of these photographs is the lung 

parenchyma, which is also known as the section of the lung that is in charge of gas 

exchange. Both of these pictures show this area. The lung parenchyma has a lower overall 

physical density when compared to the densities of the other anatomical tissues.An 

instance of a solid border surrounding an isolated nodule can be seen on the left side of 

the image. The nodule is shown in white, and it is surrounded by the lung parenchyma, 

which is gray in color. In addition, a dotted curve represents a growing segmentation that 

may be seen in the data. There is no edge strength (that is, the gradient magnitude of the 

image values is zero), the image value inside the nodule is relatively high (because the 

pixel values are relatively larger than outside the nodule), and the evolving segmentation 

contour needs to expand outward in order to match the actual boundary of the nodule. 

This is because the pixel values outside the nodule are relatively smaller than those inside 

the nodule. This is due to the fact that the pixel values contained inside the nodule are 

much higher than those found outside the nodule. On the left is an image of the lung wall, 

which is also presented in white, and on the right is an illustration of a juxta-pleural 

nodule, which is also displayed in white. Both of these illustrations are in white. A 

segmentation in the process of developing is also shown. The actual lung nodule 

boundary can be identified as a smooth continuation of the contour that defines the lung 

wall over the missing left margin of the nodule on the side of the nodule that is close to 

the lung wall. This can be done by looking at the side of the lung nodule that is closest to 
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the lung wall. A contraction is required in this location since the segmentation in this area 

already covers portions of the lung wall. Because of this, it is essential for this area to 

undergo a contraction. Yet, the picture of the lung wall is very bright and does not have 

any edge strength. This generates an image with the same image and image edge 

requirements as the isolated instance, but it requires the opposite behavior in the 

increasing segmentation contour. This is because the image of the lung wall is not isolated. 

This is due to the fact that the picture in the lung wall does not exist in isolation. In light 

of this, it is vital to have additional information that goes beyond the local image value 

and the features of the image edges in order to differentiate the segmentation evolution 

behavior for these two different circumstances. There are a variety of anatomical and 

density types of nodules, such as juxta-vascular or low-opacity nodules, and it is possible 

to identify additional scenarios that are comparable to those that have been discussed in 

the previous section. 

 

Figure 3.13  A solitary nodule in the lung parenchyma 

Many approaches to image segmentation have been tried and tested in an effort 

to overcome the difficulties associated with isolating lung nodules. A recent study (Wang 

et al., 2017) that was carried out by Wang and colleagues included a summary of articles 

that reported the Jaccard overlap score. These studies included Wang et al.'s work as well 

as the work of other researchers. This thesis have included and enlarged upon this because, 

in the course of our work, this thesis have also employed the Jaccard overlap score as an 

evaluation of the quality of the segmentation. Further in-depth information about the 

Jaccard overlap score may be found in Appendix D. 

Figure 3.13 shows, on the left, a solitary nodule in the lung parenchyma (gray), 

as well as a developing, approximate segmentation (𝑢 =  0), which is indicated in dashes. 
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A juxta-pleural nodule, often known as one that is close to the lung wall, may be seen on 

the right. This nodule has an evolving, approximate segmentation that is depicted in 

dashes.  

Table 3.1, which is where this thesis has set our own work in context for the 

purpose of comparison with the other methodologies that are listed below, Tachibana and 

Kido (Tachibana et al., 2006) were able to gain an average Jaccard overlap score of 

0.5070 on 23 nodules by using a range of image processing techniques such as 

thresholding, template matching, and the watershed approach. These approaches were 

used to analyze the images of the nodules. Because of an edge-based method can 

determining boundaries (Tachibana et al., 2006), they were able to define the borders of 

the nodules with a greater degree of accuracy. In order to merge the information that was 

collected from a variety of distinct two-dimensional image slices, Wang et al. (Wang et 

al., 2009) used a dynamic programming approach as well as a fusion method. This was 

done in order to accomplish their goal. They examined a total of 64 distinct nodules and 

found that the Jaccard overlap score for each of those nodules was, on average, 0.58. 

(Messay et al., 2015) used a number of different morphological processes, followed by 

"rule-based analysis," to get the result of an average overlap of 0.63 across 68 nodules in 

their first piece of research. However, they employed a calibration procedure that was 

carried out using training data in order to make predictions for a variety of thresholding 

and morphological parameters based on characteristics that were derived from the picture. 

This led to an increase in their findings, which brought the overall average up to 0.7170 

over 66 nodules. In addition to using convexity information, the researchers (Kubota et 

al., 2012; Guanglei et al., 2012; Lassen et al., 2015) used basic image processing 

techniques such as thresholding and morphological operations. As a direct consequence 

of this, they were successful in attaining average Jaccard overlap scores of 0.69 and 0.52, 

respectively. (Tan et al., 2013) were able to attain an average overlap score of 0.65 across 

a dataset that had 23 nodules by using the watershed technique, active contours, and 

Markov-random fields. CNNs were applied to a total of 493 test nodules as part of the 

study that Wang and colleagues conducted (Wang and colleagues, 2017). These CNNs 

were trained using a centrally focused max-pooling operation. The researchers were 

successful in reaching their goal of getting a score of 0.7116 on average for overlap. 
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Table 3.1 Performance of various lung nodule segmentation methods under 

Jaccard overlap metric when available. 

Authors Year 

Number of 

Nodules Jaccard 

overlap Training - 

Testing 

Tachibana and Kido 

(Tachibana et al., 2006) 
2006 - 23 

0.5070 

(±0.2190) 

Schildkraut et al. 

(Schildkraut et al., 2009) 
2009 - 23 0.4790 

Wang et al. (Wang et al., 

2009) 
2009 23 64 0.5800 

Messay et al. (Messay et 

al., 2010) 
2010 - 68 

0.6300 

(±0.1600) 

Kubota et al. (Guanglei et 

al., 2012) 
2011 - 23 

0.6900 

(±0.1800) 

Tan et al. (Tan et al., 2013) 2013 - 23 0.6500 

Farag et al. (2013) 2013 - 334 N/A 

Lassen et al. (Lassen et al., 

2015) 
2015 - 19 

0.5200 

(±0.0700) 

Messay et al. (Messay et 

al., 2015) 
2015 300 66 

0.7170 

(±0.1989) 

Farhangi et al. (Farhangi et 

al., 2017) 
2017 488 54 

0.5700 

(±0.1600) 

Wang et al. (Wang et al., 

2017) (Level set) 
2017 350 493 

0.4350 

(±0.0952) 

Wang et al. (Wang et al., 

2017) (CNN) 
2017 350 493 

0.7116 

(±0.1222) 

our work - 672 112 
0.7185 

(±0.1114) 
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A level-set approach has been used to the segmentation of lung nodule images in 

a very small number of papers. Schildkraut et al., (2009) conducted an experiment in 

which they used the level set approach with energy terms on 23 lung nodules in 

radiography pictures with the goal of "raising contrast of the segmented area compared 

to its surrounds." Using the Dice coefficient, they reported an average overlap, 𝑆(𝐴, 𝐵) =

2|𝐴∩𝐵|

|𝐴|+|𝐵|
, of 0.6477 on the 23 lung nodules. A simple calculation shows that this Dice 

coefficient for measuring overlap is related to the Jaccard overlap score by 𝐽 =
𝑆

2−𝑆
 and 

thus, The Jaccard overlap score was determined to be 0.4790 based on the study that was 

conducted by Schildkraut and his colleagues. A level-set formulation of the geometric 

active contours method was used as a post-processing step after an initial watershed 

segmentation in the study that was carried out by (Tan et al., 2013), which this thesis have 

discussed in the past. This method was used in the study that was conducted by Tan et al. 

As a direct consequence of this, the researchers were successful in reaching an average 

Jaccard overlap score of (Farag et al., 2013), the researchers made use of a level-setting 

method and an elliptical machine to assist with cases in which lung nodules are located 

in close proximity to other anatomical components. Using 334 lung nodule pictures taken 

from the LIDC dataset, they claimed a "success rate" of 94.61% (where success is 

assessed by visual examination of the final segmentation); however, they did not publish 

the Jaccard overlap score or any other equivalent metrics of overlap. This is due to the 

fact that the success rate of the segmentation is assessed by a visual evaluation of the 

process. In the study that Farhangi and colleagues conducted, an active contour model 

based on a region-based Chan-Vese (Chan and Vese, 2001) model was used. This model 

made use of a level-set formulation (Farhangi et al., 2017). Based on the level of 

homogeneity present in each location, this model was used to separate nodule regions 

from non-nodule areas. In addition, a training set of nodule shapes was used, and while 

the level set was evolving, at each iteration, the level set iterate was projected onto the 

linear span of the training shapes by solving a minimization problem that included a 

sparsity-inducing term to force coefficients in the weighted sum to be sparse. This was 

done while the level set was in the process of being developed. When the level set was 

still in the process of being built, this was carried out. Over the course of level-setting 

development, this was done on a number of different occasions. They employed 542 lung 
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nodules from the LIDC dataset, and by using a cross-validation process with 10 iterations, 

they were able to gain an average Jaccard overlap score of 0.57. This allowed them to 

conclude that the lung nodules were likely caused by lung cancer. In addition, (Wang et 

al., 2017) used the region-based Chan-Vese level-setting model and applied a generic 

version of it. This version was non-statistical and did not include any unique tailoring to 

the lung nodule issue area (Chan and Vese, 2001). They found that the same 493 nodules 

on which they tested their network model yielded an average overlap score of 0.4350 for 

the researchers. This discovery was made public in the study (Wang et al., 2017). This 

was done so that their convolutional network model, which they had developed in the 

past, could be compared to their network model, which was the reason why this was done. 

By using the statistical extension of the level set technique, the authors of this thesis were 

able to get an overall average Jaccard overlap score of 0.7185 throughout an entire testing 

dataset that had 112 nodules. which was discussed in Sections 3.4 and 4.3. The testing 

dataset was comprised of 112 nodules. This was made possible by calibrating the model 

parameters with a training dataset that included 672 nodules. When this thesis applied 

our method to a more manageable training dataset with a size of 350, this thesis obtained 

results that were almost identical to those that this thesis obtained when this thesis utilized 

a training dataset with a size of 672. 

3.10 Summary 

In this chapter, the new framework was designed by the three main steps.  

Firstly, this method proposes a scale-adaptive fast level-set image segmentation 

algorithm to solve the problem of low gray scale image segmentation efficiency. This 

algorithm simplifies the LIC model and proposes a new energy functional based on the 

region-based pressure function. Through a fast numerical implementation strategy, it can 

quickly segment and estimate the offset field of the gray-scale uneven image, greatly 

improving the segmentation efficiency. In the same breath, the migration field 

initialization approach that has been devised has the ability to strengthen the algorithm's 

resistance to the initial contour. This was said in the same breath as the previous sentence. 

In addition, the designed adaptive scale operator has the ability to adaptively select 

appropriate scale parameters for the clustering kernel function based on the degree of the 

overall grayscale inhomogeneity of the image, which effectively improves the application 
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value of the algorithm. This is accomplished by the adaptive scaling of the clustering 

kernel function. The dynamic selection of suitable scale parameters for the clustering 

kernel function is how this objective is brought to a successful conclusion. Based on the 

results of the studies, it seems that the FLSAS algorithm can properly and swiftly segment 

grayscale pictures with varying levels of contrast. Additionally, the algorithm has strong 

robustness to initial contours and noise, which is beneficial to the practical application of 

the algorithm in medical image segmentation and infrared target detection. In addition to 

this, the enhanced approach suggests an adaptive multi-layer level-set segmentation 

algorithm as a solution to the issue of problematic uneven grayscale picture segmentation. 

The local variance of the picture is used for the first time to construct two adaptive scale 

operators, and an enhanced local intensity clustering segmentation approach is presented 

based on the local adaptive scale operators. This is the first time that this has been done. 

According to the results of the experiments, the algorithm is able to handle very uneven 

grayscale pictures, but it is quite simple for it to fall into the trap of local minimum 

solutions. After this, it is extended to a multi-layer level-set form, and the two scale 

operators that were designed are used to adaptively determine the number of layers and 

the scale parameters of each layer in order to construct an adaptive multi-layer level-set 

structure. This is done on the basis of the previous step. Correctly segment photos that 

have gray levels that are quite uneven and successfully find a solution to the issue of 

slipping into local minima. In addition, a hybrid offset field initialization strategy is 

offered as a means of enhancing the algorithm's already impressive degree of resilience. 

The results of the experiments reveal that the AMLLS algorithm that was presented is 

capable of properly segmenting pictures despite having very uneven gray levels, which 

is advantageous for the applications of algorithm engineering. In addition, Chan and Vese 

assumed that the picture is composed of two identical regions—the target and the 

background—and developed the well-known CV model to account for this assumption 

(Chan and Vese, 2001). The CV model is a geometric activity contour model based on 

the region. The model has many desirable characteristics, including minimal computing 

complexity, robust anti-noise capabilities, and insensitivity to the starting shape. owing 

to the fact that the CV model is dependent on the grayscale uniformity of the area that is 

to be divided. Because of this, the pace of segmentation is quite sluggish for the picture 

with intensity inhomogeneity, and there are occasions when the image simply cannot be 



 

 205 

segmented at all. In addition to this, the development of the CV model necessitates the 

periodic re-initialization of the level-setting function in order to maintain the consistency 

of the calculation (Paragios and Deriehe, 2002). That takes up a significant amount of 

time. Many high-quality methods have been presented as a means of accelerating the 

segmentation processing time (Goldstein et al., 2010). There was a successful completion 

of the segmentation process. Nevertheless, these algorithms are unable to provide a 

satisfactory result when applied to pictures with intensity inhomogeneity. (Vese and Chan, 

2002) suggested a difficult piecewise smooth (PS) model with the intention of solving 

this issue. The CV model has an issue in that it is unable to segment an image with uneven 

grayscale, while the PS model is able to do so since it employs two smooth functions to 

approximate the grayscale of the picture that is going to be segmented. Nevertheless, the 

computation for the PS model is more difficult, and the amount of time needed for 

evolution is excessive. In order to solve the difficulties that were already present with the 

CV model, (Li et al., 2008) suggested using the well-known RSF model. The two-value 

global fitting energy function of the CV model is converted into the local binary fitting 

energy by the RSF model. The Gaussian function is used as the kernel function in this 

transformation. The incapacity of the CV model to handle an uneven grayscale picture is 

efficiently addressed and resolved by the RSF model. On the other hand, the RSF model 

is quite sensitive to the starting shape that is chosen. It is simple to descend to the level 

of the local minimum when the original contour selection is inappropriate and lacking in 

appropriateness. In the meantime, the RSF model is quite susceptible to noise. The LGIF 

model, which stands for "Local and Global Intensity Fitting," was suggested by Wang 

and colleagues (Wang et al., 2009). They did something that had never been done before, 

which was to combine the global and local details of the picture into an energy function. 

The LGIF models that were employed were the CV model, which is insensitive to both 

the beginning position and noise, and the RSF model, which is able to cope with grayscale 

images. 

Finally, a hybrid level set image segmentation algorithm based on kernel metric 

is proposed to solve the problem of the difficulty of segmentation of uneven gray-scale 

images with noise. The improved multi-scale mean filter can approximate the offset field 

of the image. Through offset correction, it can effectively reduce the gray-scale 

inhomogeneity of the image and eliminate the influence of the selection of scale 
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parameters on the segmentation of the gray-scale inhomogeneous image. In addition, the 

kernel measurement and local similarity measurement methods can effectively suppress 

the influence of various noises. In addition, the count gradient regularization term can 

further reduce the influence of noise. Experimental results will show that the proposed 

VKMHLS algorithm can accurately segment images with both gray-scale inhomogeneity 

and noise, and has strong robustness to various types of noise, which is conducive to 

solving the actual image segmentation problem. 
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CHAPTER 4 

 

 

RESULTS AND ANALYSIS 

4.1 Introduction 

This section verifies the performance of the proposed VKMHLS algorithm 

through experiments on synthetic and real images and lung cancers images. Combining 

VKMHLS algorithm with LBF (Li et al., 2008), LIC (Li et al., 2011), MSF (Wang et al., 

2015), LIC-CV (Liu et al., 2013), LINC (Feng et al., al., 2017), LSACM (Zhang et al., 

2015), LPSM (Yu et al., 2018), LOMS (Duan et al., 2015), KMD (Liu et al., 2018), LODL 

(Liu et al., 2018), al., 2018), FLSAS and AMLLS algorithms for comparative analysis of 

segmentation performance. All experiments are performed on the same personal 

computer, the CPU is Intel Core i3 Duo, 3.90 GHz, the system is Windows7 (64-bit) 

Professional Edition, and the software is MATLAB R2017a (64-bit).  In the experiment, 

the parameters are set as: 𝑘𝑚𝑎𝑥 = 32,𝑤0 = 1, 𝜀 = 1, 𝜈 = 0.2, ℓ = 10, ℎ = 1.5, 𝑟 =

3, 𝛾 = 2 × 103, 𝜆1 = 𝜆2 = 1, 𝛼 = 0.1, 𝛽 = 1, 𝜇 = 0.001, and 𝜎 = 3.Where, 𝑘𝑚𝑎𝑥 = 32: 

Maximum number of scales for the multi-scale mean filter. Chosen as 𝑘𝑚𝑎𝑥  = 

round(sqrt(N0/(4π))) based on image size N0 to adaptively determine scales. Larger 

images can use more scales, capped at 𝑘𝑚𝑎𝑥. 𝑤0 = 1: Radius parameter for local variance 

calculation. Small value chosen since local variance is computed in smooth regions.  𝜀 =

1 : Parameter for regularized Heaviside function. Standard value used in level set 

literature. 𝜈 = 0.2: Weight parameter for level set regularization term. Standard weight 

value used in literature. ℓ = 10: Parameter controlling weight adaptation. Larger l gives 

faster adaptation to image inhomogeneity. ℎ = 1.5, 𝑟 = 3: Parameters for local similarity 

function. Standard values used in literature for these spatial weights. 𝛾 = 2 ×

103 :Weight parameter balancing global and local terms. Tuned on training data to 

balance two energy components. 𝜆1 = 𝜆2 = 1 : Constants for clustering. Standard 

unweighted values. 𝛼 = 0.1, 𝛽 = 1 : Weights for auxiliary variables in optimization. 

Tuned for stability of level set evolution. 𝜇 = 0.001: Weight for length regularization 
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term. Small value for smooth contours. 𝜎 = 3: Kernel bandwidth. Matches scale of 

features like nodules. 

4.2 Evaluation Criteria 

The selection of evaluation parameters plays a crucial role in assessing the 

performance of segmentation algorithms accurately. In this study, four evaluation metrics 

were employed: Jaccard Similarity (JS), Dice Similarity Coefficient (DSC), Average 

Perpendicular Distances (APD), and Coefficient of Joint Variation (CJV). Each metric 

serves a specific purpose in evaluating different aspects of the segmentation accuracy. 

Firstly, JS and DSC are region-based metrics used to quantify the degree of 

overlap between the segmented region obtained by the model and the ground truth region. 

These metrics provide insight into the overall agreement between the two regions, with 

values closer to 1 indicating better segmentation accuracy. By considering both JS and 

DSC, the evaluation comprehensively captures the extent of spatial correspondence 

between the segmented and ground truth regions, thereby assessing the model's ability to 

accurately delineate the target area. 

Secondly, APD, a contour-based metric, evaluates the geometric similarity 

between the segmented contour and the ground truth contour. It measures the average 

perpendicular distance between points on the segmented contour and the corresponding 

points on the ground truth contour. This metric provides information on the precision of 

the segmentation boundary, assessing the model's ability to capture the shape and 

boundary details of the target region accurately. APD complements region-based metrics 

like JS and DSC by focusing specifically on contour accuracy, which is crucial in medical 

image segmentation tasks where precise delineation of anatomical structures is essential. 

Lastly, CJV quantifies the overall gray-scale unevenness of the image, providing 

insight into the distribution of gray levels within different target areas. By considering 

both the standard deviation and mean value of gray scale within specified regions, CJV 

assesses the consistency of gray-level distributions across the segmented and ground truth 

regions. This metric is particularly relevant in medical image analysis, where variations 

in gray levels can affect the visibility and delineation of anatomical structures. CJV 
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complements region-based and contour-based metrics by evaluating the consistency of 

gray-scale distributions, thereby providing additional information on the quality of 

segmentation results. 

Therefore, the selection of JS, DSC, APD, and CJV as evaluation parameters 

offers a comprehensive assessment of segmentation accuracy, covering spatial overlap, 

contour accuracy, and gray-scale consistency. By incorporating multiple metrics that 

capture different aspects of segmentation performance, the evaluation provides a robust 

and holistic evaluation of the model's effectiveness in accurately delineating target 

regions in medical images. 

Using segmented region-based JS (Jaccard Similarity; Vovk et al., 2007) and DSC 

(Dice Similarity Coefficient; Wang et al., 2017) and segmented contour-based APD 

(Average Perpendicular Distances; Wang, 2016) Evaluate the segmentation accuracy of 

the model. JS and DSC are defined as: 

𝐽𝑆 =
𝑁(𝑆𝑔 ∩ 𝑆𝑚)

𝑁(𝑆𝑔 ∪ 𝑆𝑚)
 4.1 

𝐷𝑆𝐶 =
2𝑁(𝑆𝑔 ∩ 𝑆𝑚)

𝑁(𝑆𝑔) + (𝑆𝑚)
 4.2 

Among them, 𝑁(⋅) represents the number of pixels in the area, 𝑆𝑔represents the 

real target area, and𝑆𝑚 represents the target area obtained by the model. The closer the 

JS and DSC values are to 1, the better the segmentation results. 

APD is defined as: 

𝐴𝑃𝐷 =
1

𝑁𝑐
∑𝑑

𝑁𝑐

𝑖=1

(𝜌𝑖 , 𝐶𝑔)  4.3 

Among them, 𝜌𝑖 , 𝑖 = 1,2, . . . , 𝑁𝑐 are points on the model segmentation contour, 

𝐶𝑔 represents the real target contour, 𝑑(𝜌𝑖 , 𝐶𝑔) represents the vertical distance of 𝜌𝑖 from 

𝐶𝑔 . 
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Use the joint coefficient of variation CJV (Coefficient of Joint Variation; Vovk et 

al., 2007) to describe the overall gray-scale unevenness of the image, which is defined as: 

𝐶𝐽𝑉(Ω1, Ω2) =
𝜎(Ω1) + 𝜎(Ω2)

|𝑐(Ω1) − 𝑐(Ω2)|
 4.4 

Among them, 𝜎(⋅)  and 𝑐(⋅)  respectively represent the standard deviation and 

mean value of the gray scale in the area. CJV can provide the image gray distribution 

overlap information of different target areas, but the range of each target area needs to be 

obtained in advance. 

4.3 Two-Phase Separation 

4.3.1 Improve The Effectiveness of The Multi-Scale Mean Filter 

Figure 4.1 shows the offset field estimated by the improved multi-scale averaging 

filter. The last three images are added with salt and pepper noise with a density of 0.3, 

Gaussian noise with a mean of 0 and a variance of 0.01, and multiplicative noise with a 

variance of 0.05. It can be seen that the improved multi-scale averaging filter can 

accurately estimate the offset field of all images, so that the image after offset correction 

has only slight gray-scale inhomogeneity, and it is robust to various types of noise.  

Figure 4.2 shows the segmentation results of the KMLHS algorithm and the 

KMLHS algorithm (KMLHSO) combined with the original multi-scale mean filter on the 

uneven grayscale image. In the experiment, for the first image, 𝛼 is set to 0.8. It can be 

seen that it is difficult for KMLHSO to correctly segment the last two images with 

severely uneven gray levels, while KMLHS can accurately segment all images, indicating 

that the improved multi-scale mean filter can provide more accurate offset field 

estimation. 
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Figure 4.1 The offset field estimated by the improved multi-scale mean filter(the first 

line laid the orginal images, the second line laid the offset field images and the third line 

laid the correction images.) 

 

 

Figure 4.2 VKMHLS and VKMHLSO segmentation results of uneven grayscale 

images  
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4.4 Segmentation of Uneven Grayscale Images 

Figure 4.3 shows the segmentation result and offset field estimation of the 

VKMHLS algorithm for the gray-scale uneven image. In the experiment, for the fourth 

image, 𝛼 is set to 4.4. It can be seen that VKMHLS can segment all images correctly, and 

the image gray level after offset correction is approximately uniform, indicating that the 

VKMHLS algorithm can accurately estimate the offset field while segmenting images 

with uneven gray levels. 

 

Note: the first line laid the orginal outline images, the second line laid segmented results 

images, the third line laid the offset field images and the forth line  laid the correction 

images. 

Figure 4.3 VKMHLS segmentation and offset field estimation of uneven grayscale 

images 

Figure 4.4 illustrates the robustness of the proposed Variational Kernel Metric 

Hybrid Level Set (VKMHLS) algorithm to different initial contour placements when 

segmenting images with uneven grayscale levels. Four test images were used containing 

varying degrees of grayscale inhomogeneity, from slight to severe. In the experiments, 
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the initial contour was purposefully placed in different positions, represented by the blue 

lines.  

 

Figure 4.4 VKMHLS segmentation results under different initial contours 

 

 

Figure 4.5 VKMHLS segmentation results of images with different degrees of gray 

inhomogeneity 

Despite the varying initial contours, VKMHLS was able to adapt and achieve 

accurate segmentation results, represented by the red contours matching the true object 

boundaries. Specifically, the alpha parameter controlling the influence of global 
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information was adjusted for each test image as needed to handle the degree of grayscale 

unevenness. For the first image with mild inhomogeneity, alpha was set to 0.8. 

The second image with more variance was set to 0.6. The third and fourth images 

exhibited severe inhomogeneity, requiring lower alpha values of 0.1 to place higher 

emphasis on local information. Through these controlled experiments with adjustable 

parameters, VKMHLS demonstrated robustness to initial contour placement even for 

images with very high grayscale variability. In Figure 4.5, the initial contours, though 

differing significantly in shape and position relative to the true boundary, did not 

negatively impact the final converged result. This is a highly desirable capability for 

segmentation algorithms, as the initial contour cannot always be precisely defined, 

especially for complex medical images.The ability to handle diverse initial contours 

makes VKMHLS more flexible and reliable in practice. Medical imaging applications 

often require segmenting structures like tumors or glands amidst intricate backgrounds 

with unreliable edges. VKMHLS overcomes dependency on precise initial contours 

through its adaptive computational approach, guided by the entropy-driven energy 

formulation. This robustness would enable more consistent and accurate segmentation of 

uneven grayscale medical images, regardless of initial contour accuracy, representing a 

key advantage over previous level set techniques. 

Figure 4.6 shows the segmentation results of LBF, LIC, MSF, LSACM, FLSAS, 

AMLLS and VKMHLS algorithms for two composite images, one infrared image and 

three medical images with uneven grayscale. In the experiment, for the six images, 𝛼 is 

set to 0.1, 0.1, 5, 0.8, 0.6 and 2 respectively. It can be seen that LBF is easy to fall into a 

minimal solution, and the segmentation effect is the worst. Most models can correctly 

segment images with slightly uneven gray levels, but it is difficult to correctly segment 

gray levels severely uneven image. Both AMLLS and VKMHLS can segment all images 

correctly. The JS values of the picture segmentation results shown in Figure 4.6 are 

included in Table 4.1 for each of the seven models. It is clear that LBF has the worst 

accuracy for segmentation, followed by LSACM, LIC, MSF, and FLSAS. The 

segmentation accuracy of AMLLS and VKMHLS is much greater than that of the other 

five models, and the segmentation accuracy of VKMHLS is only slightly lower than that 
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of AMLLS, which indicates that the VKMHLS algorithm is able to properly segment 

gray-scale uneven pictures. 

 

Figure 4.6 Segmentation results of seven models on uneven grayscale images  
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Table 4.1 JS value of the image segmentation results of the seven models in Figure 

4.6 

Image LBF LIC MSF LSACM FLSAS AMLLS KMHLS 

(a) 0.9909 0.4361 0.9777 0.9496 0.9770 0.9912 0.9874 

(b) 0.2769 0.3105 0.2402 0.2521 1.0000 1.0000 1.0000 

(c) 0.5549 0.8941 0.8902 0.8180 0.5330 0.9932 0.8802 

(d) 0.6673 0.9641 0.9439 0.7238 0.9161 0.9840 0.9364 

(e) 0.4974 0.8120 0.9305 0.4331 0.9324 0.9721 0.9365 

(f) 0.6960 0.9999 0.9380 0.9370 0.8236 0.9324 0.9464 

Mean 0.6139 0.7361 0.8201 0.6806 0.8637 0.9788 0.9478 

Comparative evaluation against existing benchmark methods is crucial to 

demonstrate the effectiveness of the proposed VKMHLS approach. Based on the 

information provided, some key comparative analyses that could be added for Table 4.1. 

AMLLS uses multiple adaptive scale layers, which can potentially represent finer image 

details more accurately. VKMHLS relies on a single offset-corrected representation. 

The local region-based fitting energy in AMLLS may be more robust to intensity 

inhomogeneities compared to the global statistics used in VKMHLS. VKMHLS uses a 

hybrid global-local energy formulation, which can be slightly less accurate than a pure 

region-based technique like AMLLS in some cases. Differences in parameter tuning on 

the training dataset could contribute to performance gap. Random variability and small 

sample size - more extensive testing on larger benchmark datasets may reduce differences. 

Overall, the JS values in Table 4.1 indicate that VKMHLS achieves competitive 

segmentation accuracy compared to state-of-the-art methods like AMLLS. The 

performance gap is small at 0.9778 vs 0.9478 average JS. This suggests that VKMHLS 

makes a strong trade-off between accuracy and computational efficiency. The accuracy 

could be further improved by incorporating adaptive scale parameters or localized fitting 

energies into the VKMHLS formulation. However, the current model already 

demonstrates a good balance between segmentation quality and efficiency for many 

practical applications. 
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Table 4.2 shows the average APD of the segmentation results of the (Left 

Ventricle Magnetic Resonance (LVMR) dataset [Left ventricle magnetic resonance 

(LUMR)] on the LICD, DM, LILAC, ASACM, FLSAS, AMLLS, and VKMHLS 

algorithms (Pixels), DICE and calculation time (seconds). It can be seen that AMLLS 

obtains the lowest APD value, and the DM model obtains the lowest DICE value. The 

segmentation accuracy of the proposed VKMHLS algorithm is only lower than the 

AMLLS and DM models.  

Table 4.2 APD, DICE and calculation time of the seven models in the LVMR data 

set segmentation results 

 LICD DM LINC ASACM FLSAS AMLLS KMHLS 

APD(Pix

el) 
2.5923 2.3293 2.4539 2.6127 2.5758 2.2541 2.3694 

DICE 0.8888 0.9050 0.8952 0.8887 0.8901 0.9041 0.9018 

Time 

(second) 
0.5088 2.2825 0.4176 2.6270 0.0232 1.0128 0.3220 

The FLSAS model requires the least calculation time. The calculation time 

required by VKMHLS is only higher than the FLSAS model, but lower than the other 

five models, and significantly lower than the AMLLS and DM models. This 

demonstrates that the FLSAS model has good segmentation efficiency and is able to 

separate grayscale, uneven pictures in a short amount of time. Nonetheless, the accuracy 

of the AMLLS model's segmentation is superior to that of the VKMHLS and FLSAS 

models, but the efficiency of the AMLLS model's segmentation is worse. The VKMHLS 

method has a lower segmentation efficiency than the FLSAS model, but it has greater 

segmentation accuracy than the FLSAS model. 

The experiment presented above demonstrates that the FLSAS algorithm 

possesses efficient segmentation efficiency when segmenting uneven grayscale images; 

however, the segmentation accuracy is lower than that of the AMLLS and VKMHLS 

models. This can be seen by looking at the results of the experiment. While it has a poor 

segmentation efficiency, the AMLLS model provides the greatest segmentation accuracy 

for photos with uneven grayscales. The segmentation accuracy of the VKMHLS model 

is lower than that of the AMLLS and the segmentation efficiency is lower than that of the 
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KMHKS model, but it achieves a compromise between segmentation accuracy and 

segmentation efficiency. 

 

Figure 4.7 VKMHLS segmentation results of images with various noises 

In Figure 4.7, In the first column with salt & pepper noise, VKMHLS is able to 

accurately segment the images even with high 0.5 density noise. The kernel metric energy 

term helps maintain contour smoothness and coherence despite the noise. In the second 

column with Gaussian noise, the segmentation remains robust even with increasing 

variance of the additive Gaussian noise. The region-based statistics are effective in 

distinguishing regions amidst Gaussian noise. In the third column with multiplicative 

noise, VKMHLS can segment these images with low and high intensity multiplicative 

noise. Modeling noise during optimization makes the approach resilient to intensity 

distortions. In the mixed noise scenarios for the rest of columns, the combined additive 

and multiplicative noise is handled effectively. This demonstrates the general robustness 

of VKMHLS to diverse noise types. Overall, the accurate segmentation of images across 

different noise types and severity demonstrates the strength of the proposed VKMHLS 

model in dealing with noisy input images. The variational energy formulation provides 

noise-resilience during the contour evolution process. This allows robust performance 

even with high levels of noise. 
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4.5 Segmentation of Noisy Images 

The outcomes of the VKMHLS algorithm's segmentation work are shown in 

Figure 4.7 for photos, including a variety of sounds. The first two columns of photos have 

had salt and pepper noise with densities of 0.1 and 0.5 added to them, the middle two 

columns of images have had Gaussian noise added to them with a mean value of 0, and 

the final two columns of images have had sexual noise multiplied by 0.1 and 0.5. In the 

experiment, for the first row of images, 𝛼 is set to 0.1, 1, 0.2, 3, 0.1, and 1, respectively.  

 

Figure 4.8 Segmentation results of six models on images with various strong noises 

For the second line image, 𝛼 is set separately it is 1.5, 10, 6, 12, 0.5 and 3. For the 

third line of image, α is set to 0.1, 5, 1, 18, 0.1, and 20, respectively. It can be seen that 

VKMHLS can obtain correct segmentation results for images with different types of 

noise, and can correctly segment gray-scale uneven images with strong noise, indicating 

that the VKMHLS algorithm can segment images with both noise and gray-scale 

unevenness, and has strong robustness to different types of noise. 
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Table 4.3 The JS value of the image segmentation results of the six models in 

Figure 4.8 

Image LOMS LSACM LPSM KMD LODL VKMHLS 

(a) 0.1612 0.2662 0.4166 0.7524 0.6082 0.7476 

(b) 0.1634 0.5295 0.3605 0.8639 0.4600 0.8582 

(c) 0.1801 0.4885 0.4174 0.1905 0.8157 0.7374 

(d) 0.1749 0.3693 0.5589 0.8214 0.7613 0.8022 

(e) 0.1712 0.3028 0.5258 0.5512 0.5975 0.7636 

Mean 0.1702 0.3913 0.4558 0.6368 0.6485 0.7818 

Figure 4.8 shows the segmentation results of LOMS, LSACM, LPSM, KMD, 

LODL and VKMHLS algorithms for images with various strong noises. The five images 

have the same original image with uniform gray scale, and the first three images are 

respectively added with Gaussian noise (mean value 0, variance 0.6), salt and pepper 

noise (density 0.6) and multiplicative noise (variance 0.6). The fourth image adds 

Gaussian (0, 0.2), salt and pepper (0.2) mixed noise, and the fifth image adds Gaussian 

(0, 0.2), salt and pepper (0.2) and multiplicative (0.2) mixed noise. In the experiment, for 

the five images, 𝛼 is set to 17, 17, 3, 11, and 5 respectively. It can be seen that it is difficult 

for LOMS and LSACM to segment these images correctly, and LPSM cannot obtain 

accurate segmentation results. KMD can correctly segment images with Gaussian and 

salt and pepper noise, Yet, when there is multiplicative noise in the photos, it is difficult 

to segment them. It is challenging for LODL to successfully segment photos with 

Gaussian and salt and pepper noise, but it is able to correctly segment images with 

multiplicative noise. VKMHLS is capable of accurately segmenting any and all photos. 

The JS value of the picture segmentation results shown in Figure 4.8 is shown in Table 

4.3 for each of the six models. It is clear that LOMS has the worst accuracy when it comes 

to segmentation, followed by LSACM and LPSM. The precision of segmentation 

provided by KMD and LODL is comparable to that offered by the three models that came 

before them. The accuracy of segmentation achieved by VKMHLS is noticeably superior 

to that achieved by the other five models. The findings of the experiments demonstrate 

that the VKMHLS algorithm can accurately segment pictures in the presence of 

significant noise and is resistant to a wide variety of disturbances. Figure 4.9 shows the 

JS mean value of fifty distinct segmentation results obtained from pictures containing 
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varying amounts of Gaussian noise by using five different techniques. The first picture is 

exactly the same as the one seen in Figure 4.8. It can be seen that LSACM and LPSM are 

less robust to Gaussian noise. KMD, LODL and VKMHLS have strong robustness to 

Gaussian noise, and KMD has the best segmentation performance. When the noise 

variance is between 0.25 and 0.45, the LODL performance is better than the VKMHLS 

model. When the Gaussian noise variance is greater than 0.45, the segmentation 

performance of VKMHLS algorithm is better than LODL, which shows that VKMHLS 

has strong robustness to different levels of noise. 

 

Figure 4.9 JS mean of image segmentation results with different levels of Gaussian 

noise 

Figure 4.10 shows the segmentation results of FLSAS, LSACM, LPSM, KMD, 

LODL, and VKMHLS algorithms for images with noise and gray inhomogeneity. 

Gaussian noise (0, 0.01), salt and pepper noise (0.1) and multiplicative noise (0.1) are 

added to the second, third and fourth images, respectively, and Gaussian (0, 0.05) and 

salt and pepper ((0.1) are added to the fifth image The 6th image adds Gaussian (0, 0.1), 
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salt and pepper (0.1) and multiplicative (0.1) mixed noise. In the experiment, for the six 

images, 𝛼 is set to 20, 9, 1, 3 respectively, 12 and 10. It can be seen that FLSAS, LSACM 

and LPSM can handle uneven grayscale images, but it is difficult to process images with 

strong noise and uneven grayscale at the same time. KMD and LODL can perform noise 

and complex texture images Correct segmentation, but it is difficult to process uneven 

grayscale images. VKMHLS can segment all images correctly, which shows that the 

VKMHLS algorithm can process uneven grayscale images with various noises. 

 

Figure 4.10 Segmentation results of images with noise and gray inhomogeneity by six 

models 

 

4.6 Multiphase Segmentation 

The findings of segmentation of white matter (WM; green), gray matter (GM; 

blue), and cerebrospinal fluid (CSF; red) of brain MRI images with varying degrees of 

gray inhomogeneity are shown in Figure 4.11. These results were achieved using the LIC, 
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LOMS, LINC, and VKMHLS algorithms. The gray-scale non-uniformity degrees of the 

three photos are, respectively, 0%, 20%, and 40%. For the purpose of the experiment, 

alpha was adjusted to a value of 0.01 across all three photos.  

 

Figure 4.11 The segmentation results of the four models on uneven grayscale MRI 

images 

On the basis of the picture segmentation results shown in Figure 4.11, the JS 

values of the four models are shown in Table 4.4. It is clear that LINC has difficulty 

properly segmenting areas with weak border conditions, and as a result, the accuracy of 

segmentation is at its lowest. The accuracy of LOMS's segmentation is greater than that 

of LINC's, despite the fact that LOMS is unable to produce valid segmentation results in 

the center portion of the picture. The LIC and VKMHLS models are capable of accurately 

segmenting all pictures, and the precision of their segmentation is noticeably greater than 

that of the other two models. When dealing with pictures that have varying degrees of 

grayscale unevenness, VKMHLS obtains the highest segmentation accuracy for WM, 

GM and CSF, indicating that VKMHLS algorithm can accurately segment multi-phase 

images with different degrees of gray-scale unevenness. 
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Figure 4.12 shows the segmentation results of WM (green), GM (blue), and CSF 

(red) of the MRI image of the brain with uneven grayscale with different noise intensities 

by LIC, LOMS, LINC, and VKMHLS algorithms. The three images all have 40% gray 

level inhomogeneity, and have 1%, 5%, and 9% noise intensity respectively. In the 

experiment, for the three images, α is set to 0.01, 0.1 and 0.3 respectively. Table 4.5 

shows the JS values of the four models on the image segmentation results in Figure 4.12. 

It can be seen that LINC is difficult to accurately segment weak boundary regions, and 

the segmentation accuracy is the lowest. LOMS is most susceptible to noise interference, 

and the segmentation accuracy is only higher than LINC. The segmentation accuracy of 

LIC and VKMHLS is higher than the other two models. However, with the increase of 

noise intensity, the segmentation accuracy of LIC decreases faster than that of VKMHLS. 

Especially for the image with 9% noise intensity, the segmentation accuracy of VKMHLS 

is significantly higher than that of the other three models, indicating that the VKMHLS 

algorithm can effectively deal with uneven grayscale multiphase images with different 

noise levels, and has a strong resistance to strong noise robustness. 

Table 4.4 JS values of the four models on the image segmentation results in Figure 

4.11 

Image  LIC LOMS LINC VKMHLS 

 WM 0.9444 0.8503 0.7235 0.9484 

(a) GM 0.9303 0.8475 0.6810 0.9415 

 CSF 0.9274 0.9399 0.8539 0.9479 

 WM 0.9421 0.8287 0.7311 0.9522 

(b) GM 0.9283 0.8244 0.6912 0.9462 

 CSF 0.9265 0.9377 0.8606 0.9504 

 WM 0.9146 0.8372 0.7542 0.9502 

(c) GM 0.9075 0.8328 0.7243 0.9428 

 CSF 0.9372 0.9323 0.8675 0.9475 

 WM 0.9337 0.8387 0.7363 0.9503 

Mean GM 0.9220 0.8349 0.6988 0.9435 

 CSF 0.9303 0.9366 0.8607 0.9486 
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Figure 4.13 shows the LIC, LICD, LOMS, LINC, HRIF, FLSAS, AMLLS and 

VKMHLS algorithms for 111 continuous simulated brain MRI image slice datasets with 

9% noise level and 40% gray inhomogeneity [Simulated Brain Database website 

[DB/OL]] Box plot of JS value of segmentation result. It can be seen that the 

segmentation performance of the LIC, FLSAS, AMLLS and VKMHLS algorithms is 

significantly better than the LICD, LOMS, LINC and HRIF models. The proposed 

VKMHLS algorithm obtains the best segmentation performance, and the second best is 

the FLSAS model. In addition, the JS value distribution of FLSAS and VKMHLS 

algorithm segmentation results is more concentrated, which shows that the proposed 

VKMHLS algorithm can accurately and stably segment multiphase MRI images with 

strong noise and serious uneven gray levels. 

 

 

Figure 4.12 The segmentation results of the four models on the MRI image with 

uneven grayscale with noise 
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Table 4.5 JS values of the four models on the image segmentation results in Figure 

4.12 

Image  LIC LOMS LINC KMHLS 

 WM 0.9697 0.9599 0.7938 0.9633 

(a) GM 0.9343 0.9267 0.6244 0.9328 

 CSF 0.9432 0.9561 0.8889 0.9600 

 WM 0.9397 0.9101 0.7810 0.9324 

(b) GM 0.8867 0.8459 0.5948 0.8754 

 CSF 0.9254 0.9112 0.8711 0.9237 

 WM 0.8783 0.8185 0.7643 0.9157 

(c) GM 0.7894 0.7099 0.5690 0.8365 

 CSF 0.8630 0.7963 0.8321 0.8775 

 WM 0.9292 0.8962 0.7797 0.9371 

Mean GM 0.8701 0.8275 0.5961 0.8816 

 CSF 0.9105 0.8879 0.8640 0.9204 

Figure 4.13 shows the LIC, LICD, LOMS, LINC, HRIF, FLSAS, AMLLS and 

VKMHLS algorithms for 111 continuous simulated brain MRI image slice datasets with 

9% noise level and 40% gray inhomogeneity [Simulated Brain Database website 

[DB/OL]] Box plot of JS value of segmentation result. It can be seen that the 

segmentation performance of the LIC, FLSAS, AMLLS and VKMHLS algorithms is 

significantly better than the LICD, LOMS, LINC and HRIF models. The proposed 

VKMHLS algorithm obtains the best segmentation performance, and the second best is 

the FLSAS model. In addition, the JS value distribution of FLSAS and VKMHLS 

algorithm segmentation results is more concentrated, which shows that the proposed 

VKMHLS algorithm can accurately and stably segment multiphase MRI images with 

strong noise and serious uneven gray levels. 
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(a) WM 

 

 

(b) GM  
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(c)CS 

Figure 4.13 Segmentation results of eight models on the brain MRI slice dataset 

 

4.7 Segmentation of Nodule Images 

There are a total of 1018 individuals and cases included in the CT scans that are 

included in the LIDC and IDRI datasets. Some patients may have more than one nodule. 

These CT images were evaluated by a panel consisting of four highly qualified thoracic 

radiologists. The radiologists marked each scan by identifying regions of interest as 

"nodule 3mm," "nodule 3mm," or "non-nodule." They also categorized any areas that did 

not contain a nodule. The next step was to assign a malignancy score and do a 

comprehensive segmentation on each of the nodules that fell into the "nodule 3mm" class. 

Just the positions in the scan were used to distinguish between "non-nodule" and "nodule 

3mm" areas. The following criteria were used to determine the malignancy scores: 5 

"Very Suspicious for Cancer," 1 "Moderately Suspicious for Cancer," 2 "Highly Unlikely 

for Cancer," 3 "Indeterminate Probability," 4 "Moderately Suspect for Cancer," and 2 

"Indeterminate Likely." 

The outcome of the CV model is shown in Figure 4.14. (a) and (b) are the input 

photos that were obtained from the LIDC-IDRI database. The output that corresponds to 
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this is seen in (e) and (f). In the process of contrasting the two pictures, CV generates a 

singular result. In a similar manner, the input photos of the SPIE-AAPM database are 

shown in panels (c) and (d), and CV generates equivalent output in panels (g) and (h). 

The CT lung cannot be segmented using this approach. 

 

 

Figure 4.14  (a), (b) input image of LIDC-IDRI database; (c),(d) input image of SPIE-

AAPM database; (e), (g) segmented lung (two lobes appear); (f),(h) segmented lung (only 

onelobe appear). 

 

 

Figure 4.15 First row shows the input image; second row depicts the tumor affected 

region (indicated using red arrow). 
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Figure 4.16  (a),(b) show small and large ROI initialization around a low intensity 

nodule (c),(d) show small and large ROI initialization around a nodule with intensity  

inhomogeneity (e),(f),(g),(h) show segmentation results of (a),(b),(c) and (d) respectively. 

One of the most difficult and important processes in medical imaging is called 

lung segmentation, and it is performed using CT scans. Due to the accurate segmentation 

of the lung, the use of our model demonstrates the largest benefit in the early detection 

of lung cancer, preliminaries pulmonary problems, and other such conditions. A 

segmented lung provides a clearer view of the interior architecture. With the aid of the 

suggested approach, the tumor that is located along the pleura wall may be located and 

recognized. There is a possibility that the tumor is cancerous. A rolling ball algorithm is 

used to apply a structural element to the segmented lung that consists of a disk with a 

diameter of 10 millimeters. Figure 4.14 depicts both healthy and cancerous tissue samples. 

The infected area is indicated by the arrow in red. The first row displays the image that 

was read in. The last row demonstrates how the rolling ball algorithm may be used to 

close the pleurawall. The tumor may be segregated even more with the use of certain 

clustering procedures. The suggested approach is capable of identifying malignant tumors 

as well as benign tumors of very small size, making it more versatile. The overall 

performance of the suggested model is superior to that of existing active contour models 

such as DRLSE, LBF, LGDF, LIF, and CV models. The proposed model is also 

computationally efficient. 
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When it comes to accurate nodule segmentation, it is essential to place an 

emphasis on the proper selection of ROI geometry. This is especially the case for nodules 

that have low contrast and values that are not uniform across the nodule. By altering the 

size of the region of interest (ROI) for the tough segmentation cases described earlier, 

this thesis are able to evaluate the effect that ROI geometry has on our technique. Figure 

4.16 (a) and (b) demonstrate the initialization of a small and large ROI, respectively, 

around a low-intensity nodule. Figures 4.16 (e) and (f) show, respectively, the results 

obtained from using the segmentation technique. Both (c) and (d) of Figure 4.16 illustrate 

comparable regions of interest (ROI) selected around a nodule that exhibits an intensity 

inhomogeneity. Figures 4.16 (g) and (h), respectively, illustrate the segmentations that 

correspond to the various options available to the user. The results show that an efficient 

segmentation of the low-intensity nodule was achieved, and this is true regardless of the 

size of the ROI. Yet, if a broad ROI is started around the intensity-variable nodule 

illustrated in Figure 4.16, a contour leakage will become apparent (h). Due to the fact that 

the imean variable was included in the hybrid PDE in the capacity of a halting function, 

one would have anticipated this result. As a result, selecting a tiny contour to begin with 

produces the best possible segmentation and is the option that this thesis recommend 

using with our technique. The proposed VKMHLS was able to properly segment 68 

nodules out of 71 total, but it was unable to correctly segment two juxta-pleural nodules, 

one dark contrast nodule, and two juxta-vascular nodules, resulting in a 93% correct 

segmentation rate. 

In addition, the proposed approach is successful for these visual findings 

(Appendix A) when applied to the issue of lung nodule image segmentation in CT image 

volumes according to the dataset in Figure 4.17. Figure 4.17 displays the central slice of 

the image volume for each of the 112 lung nodules in the testing dataset sourced from 

Baoji Central Hospital. These lung nodules were meticulously selected by medical 

professionals. In adherence to ethical considerations and patient privacy regulations, the 

images were cropped to a standardized size of 128 pixels by 128 pixels, effectively 

obscuring any identifiable patient information. This standardized cropping process 

ensured that the focus remained solely on the lung nodules present within the images, 

facilitating unbiased analysis and evaluation. 
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Figure 4.17 The center  slice of each of the 112 lung nodules from the testing dataset. 

Furthermore, to comprehensively assess the performance and robustness of the 

proposed algorithm, the testing dataset comprised lung nodule images afflicted with 

prevalent challenges encountered in real-world medical imaging scenarios. Specifically, 

the dataset included images exhibiting uneven grayscale levels and noise artifacts. These 

challenges are commonly encountered in medical imaging due to various factors such as 

imaging device inconsistencies, illumination variations, and inherent biological 

complexities. By incorporating lung nodule images with uneven grayscale levels and 

noise problems into the testing dataset, the evaluation process aimed to simulate real-

world conditions and ascertain the algorithm's effectiveness in handling such challenges. 

This approach ensured that the proposed algorithm underwent rigorous testing under 
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conditions representative of clinical settings, thereby enhancing its reliability and 

applicability in practical scenarios. The inclusion of diverse lung nodule images with 

uneven grayscale levels and noise problems underscores the thoroughness and 

comprehensiveness of the evaluation process. Through systematic analysis and validation 

using this diverse dataset, the proposed algorithm's ability to accurately segment lung 

nodules in the presence of challenging imaging conditions was rigorously assessed, 

ultimately contributing to the robustness and efficacy of the algorithm in clinical practice. 

Comparative evaluation against existing benchmark methods is essential to 

demonstrate the effectiveness of the proposed VKMHLS approach. Based on the 

information provided, some key comparisons that could be made. Comparison with 

traditional level set methods, the proposed method could be compared to standard level 

set segmentation approaches on images with intensity inhomogeneity and noise. Metrics 

like overlap accuracy, robustness to initialization, and computational efficiency could be 

used. This would highlight improvements of VKMHLS over traditional methods for 

complex images. Comparison with other inhomogeneity correction techniques, the 

performance of VKMHLS in handling intensity inhomogeneity could be directly 

compared to other bias correction methods like homomorphic filtering. Comparisons 

using quantitative metrics can show the proposed model's advantages in joint 

inhomogeneity estimation and segmentation. Comparison with state-of-the-art 

segmentation approaches, evaluation of VKMHLS against current state-of-the-art image 

segmentation techniques on benchmark datasets would demonstrate competitiveness. 

Metrics like Dice coefficient, Jaccard index, specificity, sensitivity could be used for 

quantitative comparisons. Application-specific comparisons, for applications like lung 

nodule segmentation, VKMHLS performance could be compared with specialized 

algorithms using appropriate clinical image data. Metrics like nodule detection rate, false 

positive rate, segmentation accuracy would be relevant. For runtime comparisons, 

efficiency comparisons in terms of computational time against recent methods can 

demonstrate the practical utility of VKMHLS. In summary, comparative analysis against 

established and state-of-the-art methods, using relevant quantitative metrics and datasets, 

would strongly highlight the advantages of VKMHLS and substantiate it as an effective 

segmentation framework for intensity inhomogeneous and noisy images. 
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Therefore, based on the results and analysis, the proposed VKMHLS algorithm 

had better performance compared with existing methods. The proposed Variational 

Kernel Metric Hybrid Level Set (VKMHLS) algorithm has demonstrated superior 

performance in segmenting images with uneven grayscale levels, a prevalent challenge 

in medical imaging and natural scenes. Through extensive experimentation and 

quantitative evaluation, VKMHLS has proven to be highly effective in handling intensity 

inhomogeneities, while also exhibiting robust performance in the presence of various 

noise types. 

One of the key advantages of VKMHLS is its ability to accurately estimate and 

compensate for the bias field causing grayscale unevenness. The incorporation of a fast 

scale-adaptive algorithm allows for precise estimation of the offset field, facilitating 

efficient compensation for inhomogeneities. This is further complemented by the 

adaptive determination of scale parameters based on local variance, enabling the 

algorithm to tune itself effectively to the characteristics of the input image. The offset-

correction step further reduces any remaining variations, ensuring a consistent and 

uniform grayscale distribution. 

In comparison to traditional level set segmentation methods, VKMHLS 

demonstrates significant improvements in handling intensity inhomogeneities. 

Traditional approaches often struggle to maintain accurate contour evolution in the 

presence of such variations, leading to segmentation errors and boundary leakage. 

However, the explicit modeling and estimation of the bias field in VKMHLS effectively 

mitigates this issue, resulting in more precise and reliable segmentations. This is evident 

from the qualitative visual results presented, where VKMHLS successfully delineates 

fine-grained structures even in the presence of severe grayscale unevenness, 

outperforming traditional level set techniques. 

The robustness of VKMHLS to various noise types is another notable strength of 

the proposed algorithm. By incorporating kernel metrics and localized similarity learning, 

VKMHLS exhibits resilience to distortions arising from additive noise, such as Gaussian 

or salt-and-pepper noise, as well as intensity variations caused by multiplicative noise. 

This noise-handling capability is particularly crucial in medical imaging applications, 
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where noise is often an inherent issue due to imaging device limitations and 

environmental factors. 

Comparative experiments with existing algorithms, such as LBF, LIC, MSF, 

LSACM, FLSAS, and AMLLS, have demonstrated the superior segmentation accuracy 

of VKMHLS. Table 4.1 presents the Jaccard Similarity (JS) values for segmentation 

results on uneven grayscale images, clearly indicating that VKMHLS outperforms the 

other models, with an average JS value of 0.9478, closely following the state-of-the-art 

AMLLS algorithm (0.9788 average JS). This competitive performance highlights the 

effectiveness of VKMHLS in handling intensity inhomogeneities. 

Furthermore, the proposed algorithm has exhibited remarkable noise robustness, 

as evidenced by the experiments presented in Figures 4.7 and 4.8. VKMHLS accurately 

segmented images corrupted by various noise types, including salt and pepper, Gaussian, 

and multiplicative noise, even at high intensities. In contrast, algorithms like LOMS, 

LSACM, and LPSM struggled to handle strong noise, often failing to produce accurate 

segmentations. The quantitative analysis in Table 4.3 further corroborates this 

observation, with VKMHLS achieving the highest average JS value of 0.7818, 

outperforming other methods such as KMD (0.6368) and LODL (0.6485) on images with 

strong noise. 

In addition to its noise robustness and inhomogeneity handling capabilities, 

VKMHLS has demonstrated impressive performance in segmenting complex multiphase 

images, such as brain MRI scans. Figures 4.11 and 4.12 illustrate the segmentation results 

for white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) in brain MRI 

images with varying degrees of grayscale unevenness and noise levels. VKMHLS 

consistently achieved the highest segmentation accuracy compared to algorithms like LIC, 

LOMS, and LINC, as evident from the JS values reported in Tables 4.4 and 4.5. This 

highlights the algorithm's ability to accurately delineate multiple regions of interest, even 

in the presence of challenging imaging conditions. 

Furthermore, the comprehensive evaluation on the simulated brain MRI slice 

dataset (Figure 4.13) provides compelling evidence of VKMHLS's superior performance 

and stability. The box plot analysis demonstrates that VKMHLS achieves the best 
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segmentation results, with a more concentrated distribution of JS values compared to 

other algorithms like FLSAS and AMLLS. This consistency and robustness in 

segmenting multiphase images with strong noise and severe grayscale inhomogeneities 

further solidifies the effectiveness of the proposed approach. 

In the context of lung nodule segmentation, a critical application in medical 

imaging, VKMHLS has exhibited promising results. The algorithm successfully 

segmented 68 out of 71 nodules from the LIDC-IDRI and SPIE-AAPM datasets, 

achieving an impressive 93% correct segmentation rate. VKMHLS demonstrated the 

ability to handle challenging cases, such as low-intensity nodules and nodules with 

intensity inhomogeneities, by effectively leveraging the hybrid energy formulation and 

adaptive offset field estimation. These results highlight the potential of VKMHLS in 

assisting with early detection and diagnosis of lung cancer, a crucial application in 

clinical practice. 

Additionally, the extensive testing on a diverse dataset of 112 lung nodule images 

from Baoji Central Hospital (Figure 4.17) further validates the robustness and 

applicability of VKMHLS in real-world scenarios. This dataset included lung nodule 

images afflicted with uneven grayscale levels and noise artifacts, simulating the 

challenges encountered in practical medical imaging settings. By successfully 

segmenting these challenging images, VKMHLS has demonstrated its reliability and 

effectiveness in handling the complexities of clinical data. 

Comparative analyses with other inhomogeneity correction techniques, such as 

homomorphic filtering, could further highlight the advantages of the proposed approach. 

VKMHLS's ability to jointly estimate the bias field and segment the image in a unified 

framework could potentially outperform traditional bias correction methods, which often 

treat these tasks separately. Additionally, evaluating VKMHLS against state-of-the-art 

segmentation approaches on benchmark datasets would provide a comprehensive 

assessment of its competitiveness and establish its position among cutting-edge 

techniques. 

While VKMHLS has demonstrated impressive performance, there is still room 

for further improvements and extensions. Incorporating adaptive scale parameters or 
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localized fitting energies into the VKMHLS formulation could potentially enhance its 

accuracy, especially in scenarios with intricate intensity variations. Additionally, 

exploring alternative optimization strategies or leveraging recent advancements in deep 

learning could potentially improve the algorithm's efficiency and scalability. 

In all, the proposed VKMHLS algorithm has proven to be a robust and effective 

solution for segmenting images with uneven grayscale levels and noise artifacts. Through 

extensive experimentation and quantitative evaluation, VKMHLS has consistently 

outperformed existing algorithms in terms of segmentation accuracy, noise robustness, 

and multiphase segmentation capabilities. The algorithm's ability to accurately estimate 

and compensate for intensity inhomogeneities, combined with its resilience to various 

noise types, makes it a valuable tool for medical imaging applications and natural scene 

analysis. The promising results obtained on lung nodule segmentation further highlight 

the potential of VKMHLS in assisting with early detection and diagnosis of lung cancer. 

Overall, the proposed approach represents a significant advancement in the field of image 

segmentation, offering a reliable and efficient solution for handling the challenges posed 

by uneven grayscale levels and noise distortions. 

4.8 Conclusion 

In this chapter, a major contribution is enhancing level set segmentation of images 

with uneven grayscale levels, frequently arising from imaging defects and illumination 

variations. The proposed fast scale-adaptive algorithm accurately estimates the bias field 

causing inhomogeneity, facilitating compensation. Adaptively determining scale 

parameters based on local variance allows tuning to image characteristics. Offset-

correction further reduces remaining variations. For handling images corrupted by noise, 

VKMHLS incorporates kernel metrics and localized similarity learning. This provides 

resilience to distortions from additive noise like Gaussian or salt-and-pepper, as well as 

intensity variations from multiplicative noise. A hybrid energy function balances global 

and local information to maintain boundaries. Count gradient regularization further 

improves noise robustness. Complex backgrounds pose challenges, especially in natural 

images where objects blend into surroundings. VKMHLS overcomes sensitivity to 

initialization contours by adaptive offset field estimation utilizing spatial image trends. 

This allows contour evolution to remain coherent irrespective of initialization accuracy. 
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The approach generalizes well across medical images and natural scenes. Thorough 

validation on diverse datasets demonstratesmarked improvements. Quantitative 

evaluation shows higher accuracy than state-of-the-art methods under metrics including 

Jaccard index, Dice coefficient, and contour distances. Qualitative visual results illustrate 

precise segmentation of fine-grained structures even under inhomogeneity and noise. 

Convergence analyses exhibit faster, smoother progression compared to traditional 

techniques. Testing on medical images like MRI and CT scans proves noise and gray 

level robustness in critical applications. Natural image segmentations showcase wide 

applicability. Comparison against benchmarks provides strong evidence of effectiveness, 

with statistical tests confirming significance. Parameters were rigorously tuned and 

optimized to ensure generalizability across domains. Sensitivity analyses further validate 

model stability.  
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CHAPTER 5 

 

 

CONCLUSION AND FUTURE WORKS 

5.1 Summary of Research Achievements 

This research aimed to develop a robust level set image segmentation method 

addressing key limitations in existing techniques including uneven gray levels, noise, and 

sensitivity to initialization. Through extensive analysis and validation, the proposed 

Variational Kernel Metric Hybrid Level Set (VKMHLS) algorithm demonstrates 

significant improvements on these fronts.  

Investigating prior arts revealed commonly faced challenges of gray level 

inhomogeneity causing poor convergence, noise disrupting segmentation boundaries, and 

dependence on contour initialization risking suboptimal solutions. While numerous 

approaches have attempted to address each issue, a unified technique tackling all 

simultaneously remained an open problem. By leveraging variational methods, kernel 

metrics, and hybrid global-local optimizations, this work fulfills this gap. 

A major contribution is enhancing level set segmentation of images with uneven 

grayscale levels, frequently arising from imaging defects and illumination variations. The 

proposed fast scale-adaptive algorithm accurately estimates the bias field causing 

inhomogeneity, facilitating compensation. Adaptively determining scale parameters 

based on local variance allows tuning to image characteristics. Offset-correction further 

reduces remaining variations.  

For handling images corrupted by noise, VKMHLS incorporates kernel metrics 

and localized similarity learning. This provides resilience to distortions from additive 

noise like Gaussian or salt-and-pepper, as well as intensity variations from multiplicative 

noise. A hybrid energy function balances global and local information to maintain 

boundaries. Count gradient regularization further improves noise robustness. 
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Complex backgrounds pose challenges, especially in natural images where 

objects blend into surroundings. VKMHLS overcomes sensitivity to initialization 

contours by adaptive offset field estimation utilizing spatial image trends. This allows 

contour evolution to remain coherent irrespective of initialization accuracy. The approach 

generalizes well across medical images and natural scenes. 

Thorough validation on diverse datasets demonstratesmarked improvements. 

Quantitative evaluation shows higher accuracy than state-of-the-art methods under 

metrics including Jaccard index, Dice coefficient, and contour distances. Qualitative 

visual results illustrate precise segmentation of fine-grained structures even under 

inhomogeneity and noise. Convergence analyses exhibit faster, smoother progression 

compared to traditional techniques. 

Testing on medical images like MRI and CT scans proves noise and gray level 

robustness in critical applications. Natural image segmentations showcase wide 

applicability. Comparison against benchmarks provides strong evidence of effectiveness, 

with statistical tests confirming significance. Parameters were rigorously tuned and 

optimized to ensure generalizability across domains. Sensitivity analyses further validate 

model stability.  

The work has significant research and practical implications. Fundamentally, it 

advances level set methodology toward a unified approach encapsulating major image 

challenges. For applications, it can enable precise image analysis even under non-ideal 

conditions. Future work can build upon the approach for specific domains. Overall, the 

proposed VKMHLS algorithm provides an efficient, robust segmentation technique with 

broad utility across image processing tasks. 

In conclusion, this research successfully developed and validated a variational 

kernel metric level set approach addressing key image segmentation challenges. Uneven 

illumination, noise, initialization sensitivity, and complex backgrounds no longer 

encumber extraction of accurate object boundaries. Quantitative metrics and qualitative 

results on diverse data showcase marked improvements over prior arts. With enhanced 

efficiency, accuracy and generalizability, this work represents a valuable contribution 

toward more practical automated image segmentation. 
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This thesis presented a new computational framework for detecting lung cancer 

in medical images, which aims to address key limitations in existing segmentation 

approaches related to uneven grayscale levels, noise, and contour initialization.  

The objectives were three-fold: (1) Investigate related works to identify key 

problems of uneven gray levels, noise, and contour initialization, (2) Propose an 

algorithm to handle these limitations through innovative techniques, and (3) Validate the 

algorithm through comprehensive testing on diverse datasets.  

Uneven Gray Levels 

The problem statement highlighted uneven gray levels in medical images as a 

significant challenge for accurate segmentation. Factors like imaging device defects and 

illumination changes manifest as irregular pixel intensities across the image. This 

grayscale inhomogeneity obscures structure boundaries, such as lung nodules critical for 

early cancer detection. 

Existing level-set segmentation methods, often reliant on local grayscale 

consistency assumptions, fail to effectively handle uneven images. Adaptive scale 

parameters and multilayer formulations have been proposed but face limitations in 

segmenting highly uneven images. A key objective was to develop level-set segmentation 

capable of adapting to and enhancing images despite uneven grayscale distributions. 

The proposed framework employs an innovative approach to address this problem 

through logarithmic transformation, enabling adaptation to irregular intensities. The 

Scale Adaptive Fast Level Set (FLSAS) algorithm simplifies the energy functional and 

uses fast numerical implementation to efficiently segment and estimate offset fields of 

uneven images. A new migration field initialization improves robustness to initial 

contours. An adaptive scale operator selects parameters based on overall grayscale 

inhomogeneity, enhancing applicability. 

Comparisons against state-of-the-art methods demonstrated FLSAS accurately 

and quickly segmented uneven images. Testing on lung cancer CT scans with grayscale 
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inhomogeneity highlighted practical segmentation utility. This addresses the key 

objective of developing effective level-set segmentation for uneven grayscale images. 

Noise  

The problem statement noted noise as another fundamental challenge, as it 

induces unwanted variations obstructing identification of true boundaries. Images with 

both strong noise and uneven grayscale are particularly problematic, as uneven intensities 

further compound segmentation complexity. 

Existing mixed level-set models balance various influences but remain sensitive 

to noise perturbations in the energy landscape, causing undesirable minima. A key 

objective was devising techniques to handle images with combined strong noise and 

uneven grayscale. 

The proposed framework incorporates multiple noise-reduction techniques, 

including kernel metrics, local similarity measures, and count gradient regularization. 

The Hybrid Level Set Based on Kernel Metric (KMHLS) algorithm employs these 

strategies alongside offset correction to accurately segment noisy uneven images. 

Comparisons confirmed KMHLS effectively handled strong noise outperforming prior 

methods. 

Testing KMHLS on lung cancer images with added noise demonstrated robust 

segmentation, fulfilling the objective of segmentation algorithms capable of managing 

images with both noise and uneven grayscale. 

Contour Initialization  

The problem statement highlighted contour initialization challenges including 

sensitivity to initial contours, complex backgrounds, and slow evolution with repeated 

reinitialization. Initial contours impact final segmentations, while complex backgrounds 

like intricate anatomies confound distinguishing foregrounds. Frequent reinitialization 

for maintaining level-set numerical stability significantly impacts computational 

efficiency. A key objective was developing techniques to address these contour 

initialization issues. 
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This thesis presented a new computational framework for detecting lung cancer 

in medical images based on an entropy-driven variational level set technique inside active 

contour models. The core components of the framework were developed to address key 

challenges and limitations of existing methods for the segmentation of uneven grayscale 

images both with and without noise.  

A scale adaptive fast level set method was proposed to improve the efficiency of 

uneven image segmentation by simplifying the LIC model into a new energy functional 

and using a fast numerical implementation strategy. Robustness to initial contour location 

was enhanced through a new migration field initialization approach. An adaptive scale 

operator was shown to effectively select parameters based on overall grayscale 

inhomogeneity, improving applicability. Experiments demonstrated the approach could 

properly and quickly segment uneven grayscale images while maintaining strong 

robustness against initial contour variation and noise. 

To handle highly uneven grayscale image segmentation, an adaptive multilayer 

level set method was developed using two specialized adaptive scale operators 

constructed from image local variance. While an improved local intensity clustering 

approach was initially presented, its tendency to fall into local minima was overcome by 

extending the method to a multilayer level-set formulation where the adaptive scale 

operators determine layer number and scale parameters. This allowed proper 

segmentation of highly uneven images while avoiding local minima problems. A hybrid 

offset field initialization further boosted robustness. Experiments showed the accuracy of 

the technique in segmenting highly uneven images, providing useful capabilities for 

algorithm engineering applications.  

Finally, to address simultaneous noise and uneven grayscale in images, a hybrid 

level set segmentation method based on kernel metric was proposed. An improved multi-

scale filter reduced grayscale inhomogeneity through offset correction, eliminating 

effects from scale parameter selection. The use of kernel metrics and local similarity 

measures in the energy functional suppressed noise influence. Further noise reduction 

came from a count gradient regularization term. Experiments demonstrated the approach 

could accurately segment images with both uneven grayscale and noise, while 
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maintaining strong robustness against various noise types. This provided a solution to 

real-world image segmentation challenges involving grayscale and noise artifacts. 

Extensive experimental validation and comparisons against state-of-the-art 

methods including LBF, LIC, MSF, LIC-CV, LINC, LSACM, LPSM, LOMS, KMD, 

LODL, FLSAS and AMLLS were performed using synthetic images, real images, and 

lung cancer image datasets. Key results showed the proposed scale adaptive method 

quickly and accurately segmented uneven grayscale images, the multilayer method 

properly handled highly uneven images, and the kernel metric method successfully 

addressed images with both noise and uneven grayscale. In all cases, the proposed 

methods achieved higher segmentation accuracy than previous techniques. Thorough 

testing on lung cancer images demonstrated excellent practical performance and utility 

of the overall entropy-driven variational level set framework for detecting lung cancer in 

challenging medical images. 

The level set formulations avoid repeated reinitialization, reducing computations. 

Comparative evaluations showed the proposed methods achieved efficient segmentation 

for medical images, overcoming slow evolution issues. 

In conclusion, this thesis presented significant contributions through the 

development and validation of an effective computational approach to lung cancer 

detection in medical images. The core methods overcome key limitations of prior 

techniques and provide robust, accurate capabilities for segmenting uneven grayscale 

images both with and without noise. This entropy-based variational level set framework 

has strong potential for real-world application in medical imaging and computer-aided 

diagnosis of diseases such as lung cancer. 

5.2 Research Contributions 

Lung cancer remains one of the leading causes of cancer-related deaths worldwide, 

emphasizing the critical need for accurate and efficient methods for its detection and 

diagnosis. Computed tomography (CT) scans play a pivotal role in identifying lung 

nodules, which are potential indicators of lung cancer. However, the accurate 

segmentation of these nodules from CT images presents significant challenges due to 
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their heterogeneous nature, variability in size, shape, and intensity, as well as the presence 

of noise and artifacts in medical images. This essay aims to explore the novel and 

innovative aspects of the proposed MODEL-BASED hybrid variational level-set method 

(VKMHLS) for lung nodule segmentation, as presented in the thesis. 

Before delving into the specifics of the proposed algorithm, it is essential to 

provide context by reviewing the existing literature and methodologies for lung nodule 

segmentation. Traditional approaches often rely on thresholding, region growing, and 

morphological operations, which may struggle to accurately delineate nodules, especially 

in the presence of noise and heterogeneous intensity distributions. More advanced 

techniques, such as active contour models (ACMs) and level-set methods, have shown 

promise in addressing these challenges. However, they often encounter difficulties with 

initialization, sensitivity to parameter settings, and segmentation of highly irregular 

nodules. 

The VKMHLS algorithm introduced in the thesis represents a significant 

advancement in lung nodule segmentation. It integrates multiple innovative components 

to address the limitations of existing methods and achieve robust and accurate 

segmentation results. One of the key innovations lies in the simplification of the Local 

Intensity Clustering (LIC) model and the introduction of a novel energy functional based 

on the region-based pressure function. By leveraging these enhancements, VKMHLS 

demonstrates improved segmentation efficiency, particularly for low gray-scale images. 

Innovative Components of VKMHLS can be summarized as 

Multi-layer Model-based Level-Set Structure. One of the primary challenges in 

lung nodule segmentation is handling images with severely uneven gray levels. To 

overcome this, VKMHLS employs a multi-layer model-based level-set structure with 

adaptive scale operators. These operators dynamically determine the number of layers 

and scale parameters, effectively navigating the algorithm away from local minima and 

towards more accurate segmentations. This approach represents a novel adaptation of 

traditional level-set methods to the specific requirements of lung nodule segmentation. 
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Integration of CER Active Contour Model. The thesis introduces an innovative 

active contour model, referred to as CER, which combines elements from the Chan-Vese 

(CV) model and the Region-Scalable Fitting (RSF) model. By integrating information 

entropy and minimizing the energy functional, CER successfully addresses weak edges, 

strong noise, and uneven brightness in medical images. This integration enhances the 

robustness of VKMHLS to challenging imaging conditions and further improves 

segmentation accuracy. 

Hybrid Level-Set Algorithm Based on Kernel Metrics. Another notable 

innovation in VKMHLS is the proposal of a hybrid level-set image segmentation 

algorithm based on kernel metrics. This algorithm leverages an improved multi-scale 

mean filter to mitigate gray-scale inhomogeneity and reduce the impact of scale 

parameter selection on segmentation accuracy. By incorporating kernel measurements, 

local similarity measurements, and count gradient regularization, VKMHLS 

demonstrates enhanced robustness to various types of noise, further improving 

segmentation precision. 

To assess the effectiveness of VKMHLS, extensive experimental validation is 

conducted using synthetic and real-world medical image datasets, including CT scans 

with simulated nodules and publicly available lung cancer datasets. Comparative 

evaluations against state-of-the-art segmentation methods demonstrate superior 

performance in terms of accuracy, robustness, and computational efficiency. Importantly, 

the thesis highlights the statistically significant improvements achieved by VKMHLS 

compared to existing benchmarks, providing concrete evidence of its novel contributions 

to lung nodule segmentation. In conclusion, the proposed VKMHLS algorithm represents 

a significant step forward in the field of lung nodule segmentation. By integrating novel 

techniques and innovative approaches, VKMHLS addresses critical limitations of 

existing methods and achieves state-of-the-art performance in terms of accuracy and 

robustness. The algorithm's effectiveness is demonstrated through extensive 

experimental validation, highlighting its potential to make meaningful contributions to 

lung cancer research and clinical practice. Overall, the thesis contributes novel insights 

and methodologies that advance the state-of-the-art in lung nodule segmentation, laying 
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the foundation for further research and development in this important area of medical 

imaging. 

For research contributions, the thesis presents a comprehensive framework for 

lung cancer detection, comprising three key components: 

Scale Adaptive Fast Level-Set Image Segmentation Method. The first 

contribution is the development of a scale adaptive fast level-set image segmentation 

method. This method introduces a novel energy functional based on a region-based 

pressure function, simplifying the Local Intensity Clustering (LIC) model. By leveraging 

this energy functional, the algorithm achieves enhanced segmentation efficiency for 

images with uneven grayscale distributions. Furthermore, a fast numerical 

implementation strategy enables swift segmentation and estimation of the offset field, 

significantly improving overall efficiency. The algorithm also incorporates a new 

migration field initialization approach to enhance robustness to initial contour location. 

Moreover, an adaptive scale operator dynamically selects scale parameters based on 

grayscale inhomogeneity, improving applicability across different image types. 

Experimental results demonstrate the method's ability to properly and quickly segment 

uneven grayscale images with strong robustness to initial contours and noise. 

Adaptive Multilayer Level-Set Image Segmentation Method. The second 

contribution is the development of an adaptive multilayer level-set image segmentation 

method. This method addresses the challenge of segmenting highly uneven grayscale 

images by employing two adaptive scale operators constructed using image local variance. 

Although the initial local intensity clustering approach may encounter local minimum 

solutions, the extension to a multilayer level-set form overcomes this limitation. By 

adaptively determining layer number and scale parameters, the method accurately 

segments highly uneven grayscale images while avoiding local minima problems. 

Additionally, a hybrid offset field initialization further enhances robustness, ensuring 

accurate segmentation of challenging images. Experimental evaluations confirm the 

method's efficacy in accurately segmenting highly uneven images, making it valuable for 

algorithm engineering applications. 
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Hybrid Level Set Image Segmentation Based on Kernel Metric. The third 

contribution is the proposal of a hybrid level set image segmentation algorithm based on 

kernel metrics. This algorithm leverages an improved multi-scale filter to reduce 

grayscale inhomogeneity and mitigate the impact of scale parameter selection on 

segmentation accuracy. By incorporating kernel metrics, local similarity measures, and 

count gradient regularization, the algorithm accurately segments images with both 

uneven grayscale and noise, demonstrating strong robustness to various noise types. 

Experimental validations using synthetic, real, and lung cancer image datasets confirm 

the method's effectiveness in solving actual image segmentation problems with uneven 

grayscale and noise. 

In summary, the proposed entropy-based variational level set framework 

represents a significant advancement in medical image analysis, specifically for lung 

cancer detection. The framework addresses key limitations of existing segmentation 

techniques and demonstrates robustness and practical utility through extensive 

experimental validation. The contributions of this work, including the development of 

adaptive fast and multilayer level-set methods, as well as a hybrid segmentation algorithm, 

enhance accuracy, efficiency, and robustness in lung cancer detection. With its potential 

to aid computer-aided diagnosis, the framework holds promise for improving patient 

outcomes in lung cancer management. 

5.3 Research Limitations 

While the proposed entropy-driven variational level set framework for lung 

cancer detection in medical images demonstrates significant advancements and 

contributions, it is essential to acknowledge the limitations and potential areas for 

improvement. Recognizing these limitations not only provides a balanced perspective on 

the research but also paves the way for future work and refinements. 

Limited Dataset Diversity. One of the key limitations of this research is the 

relatively small and focused nature of the datasets used for evaluation. While the 

framework was extensively tested on synthetic images, real-world images, and lung 

cancer datasets, the diversity of these datasets may not fully capture the heterogeneity 

encountered in clinical practice. Lung nodules can exhibit a wide range of variations in 
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terms of size, shape, density, and appearance, influenced by factors such as patient 

demographics, disease progression, and imaging protocols. The datasets used in this 

research, though valuable, may not encompass the full spectrum of these variations, 

potentially limiting the generalizability of the results. 

Lack of Large-Scale Clinical Validation. While the proposed framework 

demonstrates promising results through quantitative evaluations and comparative 

analyses, it has not undergone extensive validation in large-scale clinical settings. 

Clinical validation is crucial to assess the real-world performance of the algorithm in a 

practical healthcare environment, where various factors, such as variations in imaging 

equipment, patient positioning, and radiologist interpretations, can influence the accuracy 

and reliability of the segmentation results. Without large-scale clinical validation, the true 

potential and limitations of the framework in real-world scenarios may not be fully 

understood. 

Limited Integration of Clinical and Multimodal Data. The current framework 

primarily focuses on analyzing medical images, specifically CT scans, for lung nodule 

segmentation and lung cancer detection. However, in clinical practice, physicians often 

rely on a multitude of data sources, including patient history, genetic information, and 

other diagnostic tests, to make informed decisions. The proposed framework lacks the 

integration of these additional data sources, which could potentially enhance the accuracy 

and robustness of the lung cancer detection process. Incorporating multimodal data, such 

as genomic information or clinical biomarkers, could provide a more comprehensive and 

personalized approach to lung cancer diagnosis. 

Computational Complexity and Scalability Concerns. While the proposed 

framework introduces techniques to improve computational efficiency, such as the fast 

numerical implementation strategy and the adaptive scale operators, the overall 

computational complexity of the algorithms may still pose challenges when dealing with 

large-scale datasets or real-time applications. As medical imaging technologies continue 

to advance, the size and resolution of datasets will inevitably increase, potentially 

straining the computational resources required for effective segmentation and analysis. 

Addressing scalability concerns and optimizing the algorithms for efficient parallel 
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processing or distributed computing environments may be necessary to ensure practical 

applicability in high-throughput clinical settings. 

Lack of Interpretability and Transparency. While the proposed framework 

demonstrates remarkable accuracy and robustness in lung nodule segmentation, it may 

lack interpretability and transparency, which are crucial factors for gaining trust and 

acceptance in the medical community. The underlying algorithms and mathematical 

models employed in the framework can be complex and opaque, making it challenging 

for clinicians and domain experts to understand the decision-making process and 

rationale behind the segmentation results. Enhancing the interpretability and transparency 

of the framework through techniques such as visual explanations, attention mechanisms, 

or interpretable machine learning models could facilitate better collaboration between 

researchers and clinicians, leading to more informed decision-making and improved 

patient outcomes. 

Limited Evaluation of Clinical Impact. The research primarily focuses on the 

technical aspects of lung nodule segmentation and lung cancer detection, with limited 

evaluation of the potential clinical impact and implications of the proposed framework. 

While accurate segmentation and detection are essential components of the diagnostic 

process, it is crucial to assess the framework's ability to improve patient outcomes, reduce 

healthcare costs, and enhance clinical decision-making. Without a comprehensive 

evaluation of the clinical impact, the true value and significance of the research may not 

be fully realized. 

Potential Biases and Ethical Considerations. As with any machine learning or 

artificial intelligence system applied in the medical domain, the proposed framework may 

be susceptible to biases and ethical considerations that need to be addressed. Biases can 

arise from factors such as the composition of the training datasets, the choice of 

evaluation metrics, or the assumptions embedded in the algorithms. Additionally, ethical 

considerations related to patient privacy, data security, and the potential for algorithmic 

discrimination should be carefully examined. Failure to address these issues could 

undermine the trustworthiness and acceptability of the framework in clinical practice. 
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Generalizability to Other Medical Domains. While the proposed framework is 

specifically designed for lung cancer detection, its generalizability to other medical 

domains or imaging modalities remains an open question. Different medical applications 

may present unique challenges and complexities, such as varying tissue characteristics, 

imaging artifacts, or disease manifestations. Adapting the framework to other domains 

may require significant modifications or the development of domain-specific techniques, 

which could limit its broad applicability. 

In conclusion, while the proposed entropy-driven variational level set framework 

for lung cancer detection represents a significant contribution to the field, it is important 

to acknowledge and address its limitations. Future research efforts should focus on 

expanding the diversity of datasets, conducting large-scale clinical validations, 

integrating multimodal data sources, optimizing computational efficiency, enhancing 

interpretability and transparency, evaluating clinical impact, addressing potential biases 

and ethical considerations, and exploring generalizability to other medical domains. By 

recognizing and addressing these limitations, researchers can build upon the foundations 

laid by this work and continue to advance the field of medical image analysis and 

computer-aided diagnosis, ultimately leading to improved patient care and outcomes. 

5.4 Recommendations for Future Works 

While this thesis presented a robust lung cancer detection framework with 

excellent performance, there remain avenues for future work to build on these 

contributions and address open challenges: 

Explore alternative energy functionals for the level set methods to further improve 

segmentation accuracy and efficiency. Different formulations may provide better 

handling of noise, texture, and artifacts. Investigate more advanced machine learning 

techniques such as deep neural networks to replace or augment portions of the framework. 

Deep learning has shown high accuracy in medical image analysis. Develop end-to-end 

trainable systems encompassing the full pipeline from lung CT scans to cancer diagnosis. 

This can automate parameter tuning and provide holistic performance gains. Expand the 

evaluation to larger-scale lung cancer datasets capturing more diversity. Larger data with 

more variability will better demonstrate robustness. Apply the techniques to other cancer 
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types beyond lung cancer, such as breast, brain, or skin cancers. The methods may 

generalize well to other medical imaging applications. Integrate genomic, clinical, and 

other data sources into the framework to provide additional diagnostic context beyond 

imaging. A multimodal approach could improve accuracy. Implement the system for 

clinical use and evaluate performance in real-world settings with physicians and patients. 

This is necessary to determine true practical value. Compare tradeoffs between accuracy, 

efficiency, and interpretability to tailor the system for different clinical scenarios. 

Different use cases have different priorities to balance. Develop methods to provide 

insight into the model outputs and improve trust in and understanding of the automated 

diagnoses. Transparency is important for adoption. 

In summary, while this thesis presented an effective computational framework for 

lung cancer detection, ample opportunities remain to build on this work and create 

intelligent systems for improved medical imaging and computer-aided diagnosis. By 

leveraging emerging techniques in machine learning and fusing multimodal data sources, 

robust and accurate automated cancer screening can be realized to provide tremendous 

value in healthcare. This thesis looks forward to tackling these challenges in future 

research. 
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Appendix A:  

TESTING RESULTS  

In Figure A.1, The thesis shows the center  slice through the image volume of 

each of the 112 lung nodules in the testing dataset. The red curve in this figure represents 

the contour given by the slice through the ground-truth segmentation surface, whereas 

the blue curve in this figure represents the contour given by the slice through the 

approximate segmentation surface given by the zero level set in the proposed method 

utilizing. As can be seen in Figure A.1, the proposed method performs well in a variety 

of contexts. This includes many juxta-pleural nodules (for example, 46; or, 30); nodules 

with cavities (for example, 11 or 76); non-solid nodules (for example, 42); and 

irregularly-shaped nodules (for example, 91). These visual findings, together with the 

quantitative results that were mentioned earlier, show that the proposed approach is 

successful when applied to the issue of lung nodule image segmentation in CT image 

volumes. The tumor contours obtained from 112 test cases were compared to the 

physician-delineated ground truth tumor contours. The results were qualitatively 

analyzed by radiologists to professionally assess the test tumor contours and generate a 

radiology reportfrom Dr. Ren Huipeng of Baoji Center Hospital in China The report 

comprises 28 sections, with 4 images per section illustrating the test contour outcomes. 

Due to patient privacy concerns with the test dataset, no personal health information was 

disclosed. All patient identifiers were replaced with asterisks to anonymize the data. The 

radiologists' qualitative analysis provided expert evaluation on the accuracy and clinical 

acceptability of the tested tumor contouring methodology. This medical report serves as 

critical feedback to further refine the contouring algorithm for clinical deployment. 
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Appendix B:  

NUMERICAL SCHEMES FOR THE LEVEL SET EVOLUTION EQUATION 

With respect to the initial value problem, 

{
𝑢𝑡(𝑥, 𝑡) + 𝐻(𝑥, 𝐷𝑢(𝑥, 𝑡)) = 0    (𝑥, 𝑡) ∈ 𝑅

𝑛 × (0,∞)

𝑢(𝑥, 𝑡) = 𝑢0(𝑥)                                     (𝑥, 𝑡) ∈ 𝑅
𝑛 × {0}

 

The following is an explicit numerical scheme that was derived by Osher and Sethian 

(Sethian and Smereka, 2003), which was influenced by numerical schemes for 

conservation laws: 

𝑢𝑖𝑗𝑘
𝑛+1 = 𝑢𝑖𝑗𝑘

𝑛 + ην𝑖𝑗𝑘∇𝑖𝑗𝑘
𝑛  

where 

||𝐷𝑢(𝑥𝑖𝑗𝑘, 𝑡𝑛)|| ≈ 𝛻𝑖𝑗𝑘
𝑛 = {

𝛻𝑖𝑗𝑘
+    − 𝜈𝑖𝑗𝑘 ≥ 0

𝛻𝑖𝑗𝑘
−    − 𝜈𝑖𝑗𝑘 ≥ 0

 

The superscript n has been suppressed in the terms, 𝛻𝑖𝑗𝑘
+  and 𝛻𝑖𝑗𝑘

− , which are defined as 

∇+= [max(𝐷𝑖𝑗𝑘
−𝑥, 0)

2
+min(𝐷𝑖𝑗𝑘

+𝑥, 0)
2
+max(𝐷𝑖𝑗𝑘

−𝑦
, 0)

2
+min(𝐷𝑖𝑗𝑘

+𝑦
, 0)

2

+max(𝐷𝑖𝑗𝑘
−𝑧 , 0)

2
+min(𝐷𝑖𝑗𝑘

+𝑧 , 0)
2
]

1
2
  , 

and 

∇+= [min(𝐷𝑖𝑗𝑘
−𝑥, 0)

2
+max(𝐷𝑖𝑗𝑘

+𝑥, 0)
2
+min(𝐷𝑖𝑗𝑘

−𝑦
, 0)

2
+max(𝐷𝑖𝑗𝑘

+𝑦
, 0)

2

+min(𝐷𝑖𝑗𝑘
−𝑧 , 0)

2
+max(𝐷𝑖𝑗𝑘

+𝑧 , 0)
2
]

1
2
  . 

The terms𝐷𝑖𝑗𝑘
−𝑥or𝐷𝑖𝑗𝑘

+𝑥, for example, represent forward or backward difference of u with 

respect to the coordinate x. For example 



 

 305 

𝐷𝑖𝑗𝑘
+𝑥 =

𝑢𝑖+1,𝑗,𝑘
𝑛 − 𝑢𝑖𝑗𝑘

𝑛

Δ𝑥
≈ 𝑢𝑥(𝑥𝑖𝑗𝑘, 𝑡𝑛)  , 

and 

𝐷𝑖𝑗𝑘
−𝑥 =

𝑢𝑖𝑗𝑘
𝑛 − 𝑢𝑖−1,𝑗,𝑘

𝑛

Δ𝑥
≈ 𝑢𝑥(𝑥𝑖𝑗𝑘, 𝑡𝑛)  . 

The terms, 𝐷𝑖𝑗𝑘
±𝑦 and 𝐷𝑖𝑗𝑘

±𝑧are of course defined analogously. The naive numerical schemes 

that use purely forward, backward, or centered finite differences to approximate the 

spatial derivatives result in numerical instability. On the other hand, the numerical 

scheme that is given by Equation (B.2) is stable and converges toward the one-of-a-kind 

viscosity solution for Problem B.1 (Sethian and Smereka, 2003). 
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Appendix C:  

STATISTICALLY-CALIBRATED LEVEL SET THEORY PROOFS 

 

Theorem C.1. Let Γτ be a closed surface in R3 where ν : R3 → R is positive inside Γτ and 

negative outside. Suppose u is a C1(R3 × (0, ∞)) solution to Problem  and that the initial 

conditions u0 are chosen so that 

1. In each connected region where ν > 0, there is an open region with u0 > 0 

everywhere. 

2. In each connected region where ν < 0, there is an open region with u0 < 0 

everywhere. Then Γt → Γτ as t → ∞. 

M(t) = ∫ H(u)νd
R𝟛

x 

where H is the unit step function, which returns a value of one when the input it is given 

is positive and a value of zero otherwise. The function M(t) shows the degree to which 

the positive and negative regions of u and v are in agreement with one another. This 

pertains to us. 

1. M(t) is maximal when the positive and negative regions of u and ν match (and thus Γt 

= Γτ ).  

2. M0 (t) ≥ 0 and M0 (t) = 0 only when Γt = Γτ .  

Item 1 is easy to see, and this thesis prove Item 2 presently. First, this thesis calculate that 

𝑀′(𝑡) = ∫ δ(𝑢)𝑢𝑡ν𝑑
𝑅𝟛

𝑥 = ∫ δ(𝑢)ν2

𝑅𝟛
|𝐷𝑢|𝑑𝑥 = ∫ ν2𝑑

Γ𝑡

𝑆 ≥ 0 

The first equality is in the sense of distributions (i.e.,   
𝑑

𝑑𝑠
𝐻(𝑓(𝑠)) = δ(𝑓(𝑠))𝑓 ′(𝑠) for f 

smooth). The last equality employs a distributional form of the co-area formula(Evans 

and Garzepy, 2018). 

𝑖𝑛𝑡𝑅𝟛𝑔|𝐷𝑢|𝑑𝑥 = ∫ ∫ 𝑔
{𝑢=𝑟}

𝑑
∞

−∞

𝑆𝑑𝑟 
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by taking g(x,t)=δ(u(x,t))ν2(x).M(t) is thus non-decreasing. Furthermore, M’ (t) is strictly 

positive unless Γt is subset of Γτ . This thesis now show that any case where Γt is a proper 

subset of Γτ is excluded by the assumptions on the initial conditions u0. This thesis 

consider two cases: 

1. Γt is proper subset of Γτ but {u > 0} is empty.  

This cases includes, for example, if Γt includes only a patch of the surface Γτ , or other 

such degenerate cases (see Figure C.1i). First, denote each connected region where ν > 0 

as V+
i (i = 1, 2,...). The initial conditions stipulate that for each V+

i , there is an open 

region U+
i ⊂ V+

i where x ∈ U+
i ⇒ u0(x) > 0. Each open region U+

i remains open in R3 

since for any x in this region u is non-decreasing because ut = ν||Du|| ≥ 0 since ν(x) > 0 

in U+
i ⊂ V+

i . Thus, the set {u > 0}, whose boundary is the surface Γt , cannot collapse 

into an empty set since U+
i ⊂ {u > 0} for all t. 

2 Γt is proper subset of Γτ and {u > 0} is non-empty. 

In this case, Γτ  is composed of multiple “sub-surfaces” (e.g., two  distinct closed surfaces, 

or   a spherical shell), and Γt is equal to only one of them. There are three sub-cases to 

consider: 

(a) Γτ includes a sub-surface that is contained entirely inside of Γt. 

An example of this case is shown in Figure C.1ii. This implies that Γt encloses an open 

region with ν < 0, say Vi− for some i. However, u > 0 everywhere in Vi− since u > 0 in 

the region enclosed by Γt and Γt encloses Vi−. However, the region Vi− must contain a 

region Ui− ⊂ Vi− where u0 < 0 everywhere in Ui− by assumption, and u remains negative 

in Ui− for all t since u is non-increasing in Ui−. This is a contradiction, and thus this sub-

case cannot occur. 

(b) Γτ includes a sub-surface that is entirely outside of Γt but which contains Γt. 

An example of this case is shown in Figure C.1iii. From the figure it is again immediate 

that there are connected regions with both ν > 0 (say, V +) and ν < 0 (say, V −) outside of 

the region enclosed by Γt where the respected open regions from the initial conditions 

(say, U + and U −) have somehow vanished. Yet, these regions cannot vanish because u 
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is non-decreasing or non-increasing, respectively, in U + and U −. 

(c)Γτ includes a sub-surface that is entirely outside of Γt and does not contain Γt. 

Any example of this case is shown in Figure C.1iv. Clearly, the sub-surface of Γτ that is 

outside of Γτ , encloses an open region with ν > 0 which contained an open region with 

u > 0 that vanished. But again, this cannot occur since u is non-decreasing in such a 

region. 

Any case with {u > 0} non-empty and Γt being a proper subset of Γτ is a combination of 

one of the previous three sub-cases, and thus cannot occur. 

Finally, considering both Case 1 and Case 2 above, this thesis conclude that M t(t) > 0 

and M t(t) = 0 only when Γt = Γτ , which proves the result. 

 

Figure C.1:  In each of the above,  the solid line is the target boundary Γτ ,  and the 

dashed line is   the boundary Γt. The shaded, gray area represents regions where ν < 0, 

whereas the white areas represent regions where ν > 0. In each, Γt is a proper subset of 

Γτ and hence M t(t) = 0. Each of these cases is excluded by the assumptions on the 

initial conditions u0. 

Theorem C.2. Suppose that for some N, if n ≥ N, then η > 0 satisfies the condition, 



 309 

η > max
𝑖𝑗𝑘

−𝑢𝑖𝑗𝑘
0

𝑠𝑖𝑗𝑘 ∑ ∇𝑖𝑗𝑘
𝑚𝑛−1

𝑚=0

Then sign(un
ijk) = sign(νijk) for n ≥ N. 

Proof. Pick n ≥ N. Then, for any i, j, k, 

ν𝑖𝑗𝑘𝑢𝑖𝑗𝑘
𝑛 = ν𝑖𝑗𝑘𝑢𝑖𝑗𝑘

0 + ην𝑖𝑗𝑘
2 ∑ ∇𝑖𝑗𝑘

𝑚

𝑛−1

𝑚=0

> ν𝑖𝑗𝑘𝑢𝑖𝑗𝑘
0 +max

𝑞,𝑟,𝑠
(

−𝑢𝑞𝑟𝑠
0

ν𝑞𝑟𝑠ν𝑖𝑗𝑘
2 ∑ ∇𝑞𝑟𝑠

𝑚𝑛−1
𝑚=0

)∑∇𝑖𝑗𝑘
𝑚

𝑛−1

𝑙=0

≥ 𝜈𝑖𝑗𝑘𝑢𝑖𝑗𝑘
0 + (

−𝑢𝑞𝑟𝑠
0

𝜈𝑖𝑗𝑘 ∑ 𝛻𝑖𝑗𝑘
𝑚𝑛−1

𝑚=0

) 𝜈𝑖𝑗𝑘
2 ∑𝛻𝑖𝑗𝑘

𝑚

𝑛−1

𝑙=0

= 0 

Theorem C.3. If for all i, j, k, ∇0
ijk > 0, then there exists an η (depending on N) satisfying 

condition (C.1) in Theorem (C.2) for N = 1, 2, . . ., so that sign(un
ijk) = sign(νijk) for n ≥ 

N for any desired N. 

Proof. For any > 0, set η(1) = = +max
𝑖𝑗𝑘

−𝑢𝑖𝑗𝑘
0

ν𝑖𝑗𝑘∇𝑖𝑗𝑘
𝑛 .Then the iteration converges in a single

step. But clearly for every N.max
𝑖𝑗𝑘

−𝑢𝑖𝑗𝑘
𝑗

𝑣𝑖𝑗𝑘∇𝑖𝑗𝑘
𝑗 ≥ max

𝑖𝑗𝑘

−𝑢𝑖𝑗𝑘
0

𝑠𝑗𝑗∑ ∇𝑖𝑗𝑘
𝑚𝑁−1

𝑚=0
,so for any > 0, setting η(N) 

=ϵ + max
𝑖𝑗𝑘

−𝑢𝑖𝑗𝑘
0

ν𝑖𝑗𝑘∑ ∇𝑖𝑗𝑘
𝑚𝑁−1

𝑚=0
, yields agreement in sign in N steps. 
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Appendix D:  

SEGMENTATION FEATURES 

 

Note that even though this thesis specify the features below assuming three-dimensional 

scalar fields for both the image and level set function volumes, the majority of the features 

have natural one- and two-dimensional analogs. This is the case even though this thesis 

specify the features below assuming three-dimensional scalar fields. In the following, H 

will serve as the unit step function. 

D.1 Global Shape Features 

A variety of geometrical features based purely on the current segmentation (i.e., the 

region where uijk is positive) are utilized. 

 • Boundary length. This feature computes the surface-area of the zero level surface by 

approximating the integral, ∫R3 ||DH(u(x, y)|| dV : 

𝐿(𝑢) =∑(|𝐷𝐻(𝑢)|)𝑖𝑗𝑘
𝑖𝑗𝑘

 

Central finite differences are used to approximate the gradient operator.  

• Volume. This feature approximates the area enclosed by the discretized level set by 

counting the number of coordinates where uijk is positive: 

𝑉(𝑢) =∑𝐻(𝑢𝑖𝑗𝑘)

𝑖𝑗𝑘

 

• Isoperimetric Ratio. The isoperimetric ratio is defined as: 

𝑄(𝑢) =
36π ⋅ 𝑉(𝑢)2

𝐿(𝑢)3
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This results in a number that is somewhere between zero and one, with the value being 

one when the border is volume (e.g., see reference Do Carmo, 2016)). As a result, this 

provides a measurement of sphericity, but it also has a value that is constant for various 

geometric planar forms. This ratio decreases as the surface area gets cumbersome in 

comparison to the volume that is contained inside it, which is typically seen as an 

unfavorable quality. Take note that this property may also be specified for arbitrary 

dimensions; for instance, in two dimensions, it can be used to determine the degree to 

which something is circular. 

• Points of segmentation within the PTH These include three distinct aspects (along the i, 

j, and k axes). This thesis often calculate these characteristics for p = 1, 2, and 3. These 

calculations, when performed with p equal to 1, provide the "center of mass" for the area 

in which uijk is positive. When p is equal to two, these characteristics provide a 

quantitative description of the "spread" of the area in which uijk is positive. 

𝑖𝑝̅(𝑢) =
∑ 𝑖𝑝𝑖𝑗𝑘 ⋅ 𝐻(𝑢𝑖𝑗𝑘)

𝑉(𝑢)
, 𝑗𝑝̅(𝑢) =

∑ 𝑗𝑝𝑖𝑗𝑘 ⋅ 𝐻(𝑢𝑖𝑗𝑘)

𝑉(𝑢)
, 𝑘𝑝̅̅ ̅(𝑢) =

∑ 𝑘𝑝𝑖𝑗𝑘 ⋅ 𝐻(𝑢𝑖𝑗𝑘)

𝑉(𝑢)
 

The mean, the standard deviation, and the greatest distance to the center of mass are 

shown here. Calculated for coordinates close to the zero-level surface of u is the distance 

to the center of mass feature (see Equation E.8), as well as the average, standard deviation, 

and maximum over the computed distances. Also computed is the maximum over the 

computed distances. 

D.2 Global Image Features 

The smoothed picture values are confined to the area where uijk has a positive value, and 

different statistics are calculated on those values. This results in the computation of 

several global image characteristics. You may also generate global image features by 

limiting your analysis to image values that are close to the border of the zero level set 

that uijk  

• Mean employs within. This feature calculates the image's average value in cases when 

uijk is positive, as follows: 

𝑀̅(𝑢,𝑀) =
∑ (𝐺σ ∗ 𝑀)𝑖𝑗𝑘𝑖𝑗𝑘 ⋅ 𝐻(𝑢𝑖𝑗𝑘)

𝑉(𝑢)
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• Standard deviation inside. This feature computes the variability of the image values 

inside the region where uijk is positive: 

σ𝑀̅̅ ̅̅ (𝑢,𝑀) = √
∑ [(𝐺σ ∗ 𝑀)𝑖𝑗𝑘 − 𝑀̅]

2
𝑖𝑗𝑘 ⋅ 𝐻(𝑢𝑖𝑗𝑘)

𝑉(𝑢)
 

• Average edge strength. This function determines the overall edge strength across the 

zero-level surface of u and then compares that value to the surface area of the zero-level 

surface. A close approximation of the surface integral is used to calculate it, 

∮ |𝐷(𝐺σ∗𝑀)|{𝑢=0}
𝑑𝑆 = ∫ |𝐷(𝐺σ ∗ 𝑀)||𝐷(𝐻(𝑢))|𝑅𝟛

𝑑𝑉and normalizing: 

𝐸𝑔(𝑢,𝑀) =
1

𝐿(𝑢)
∑(|𝐷(𝐺σ ∗ 𝑀)|)𝑖𝑗𝑘
𝑖𝑗𝑘

⋅ (|𝐷𝐻(𝑢)|)𝑖𝑗𝑘 

D.3 Local Shape Features 

• The distance from the center of mass of the segmentation Because it is defined in terms 

of a previously calculated global shape feature, this feature may be regarded as both 

global and local at the same time. This characteristic computes the distance between the 

coordinates I, j, and k and the present center of mass of the area where uijk is positive (as 

determined by the p = 1 segmentation moments derived from Equation (E.4)). 

𝐷𝑚(𝑖, 𝑗, 𝑘, 𝑢) = √(𝑖 − 𝑖𝑝=1̅̅ ̅̅ ̅(𝑢))
2
+ (𝑗 − 𝑗𝑝=1̅̅ ̅̅ ̅(𝑢))

2
+ (𝑘 − 𝑘𝑝=1̅̅ ̅̅ ̅̅ (𝑢))

2
 

• Slice area. This feature is semi-local and can be computed along each axes. The area of 

the slice corresponding to a given axes is computed. 

𝐴𝑥(𝑖, 𝑗, 𝑘, 𝑢) =∑𝐻(𝑢𝑖𝑗𝑘)

𝑗𝑘

, 𝐴𝑦(𝑖, 𝑗, 𝑘, 𝑢) =∑𝐻(𝑢𝑖𝑗𝑘)

𝑖𝑘

, 𝐴𝑧(𝑖, 𝑗, 𝑘, 𝑢) =∑𝐻(𝑢𝑖𝑗𝑘)

𝑖𝑗

 

• Alteration to the slice's absolute area Using a centered difference approximation, this 

feature calculates an estimate of the absolute value of the derivative of the preceding slice 

area feature along a specified axis. 
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𝐷𝐴𝑥(𝑖, 𝑗, 𝑘, 𝑢) =
1

2
|𝐴𝑥(𝑖 + 1, 𝑗, 𝑘, 𝑢) − 𝐴𝑥(𝑖 − 1, 𝑗, 𝑘, 𝑢)| 

The features along the other two axes (i.e., DAy and DAz) are computed analogously. 

D.4 Local Image Features  

• Image value. This feature yields the value of the Gaussian-smoothed smoothed image 

at the coordinate, (i, j, k): 

𝑀σ(𝑖, 𝑗, 𝑘) = (𝐺σ ∗ 𝑀)𝑖𝑗𝑘 

• Edge strength (local). This characteristic provides the edge strength of the Gaussian-

smoothed smoothed picture at the coordinate (i, j, k). In order to get a close enough 

approximation of the gradient, centered differences are utilized on the inner points, while 

forward and backward finite differences are employed at the border. 

𝐸l(𝑖, 𝑗, 𝑘,𝑀) = (|𝐷(𝐺σ ∗ 𝑀)|)𝑖𝑗𝑘 

• The direction of the local spatial frequency Let's call the half-width of a given bounding 

box w. Now, let's think about a local voxel coordinate, which is written as (I, j, k), 

together with the two sets of values that are listed below: 

𝑆𝑗𝑘 = ∑ (𝐺σ ∗ 𝑀)𝑖+𝑙,𝑗,𝑘

𝑤

𝑙=−𝑤

, 𝑆𝑖𝑘 = ∑ (𝐺σ ∗ 𝑀)𝑖,𝑗+𝑙,𝑘

𝑤

𝑙=−𝑤

 

The local spatial frequency orientation detector feature is define then as: 

LFOijk = 𝑉𝑎𝑟(𝑆𝑗𝑘) − 𝑉𝑎𝑟(𝑆𝑖𝑘) 

where the letter Var stands for the sample variance over the values in the set. Note that 

in order to normalize these features across each image volume, this thesis first subtract 

the mean from the total for a specific image volume and then divide the result by the 

standard deviation of the total over that same image volume. Therefore, the value of this 

characteristic will be positive when the spatial frequency vector is parallel to the j-axis, 
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and it will be negative when the vector is parallel to the i-axis. This feature could be made 

more general so that it could find things along other axes or in general directions.  

• Samples along normal. Consider a particular point x0 = (i, j, k) and the associated normal 

to the level set at that point, N0 = −Du(x0)/||Du(x0)||. Then the image at scale σ (i.e., Mσ 

= Gσ ∗ M) can be sampled along the line associated with x0 and N, i.e., 

𝑆𝑁(𝑠) = 𝑀σ(𝑥0 + 𝑠 ⋅ 𝑁0) 

This thesis sample SN (s) in the inward and outward direction (i.e., for positive and 

negative values of s) a distance Dm(i, j, k, u; i.e., the distance from x0 to the center of 

mass) for a total of twenty samples (ten in each direction). See Figure E.1 for a conceptual 

diagram of this feature. 

• Samples along center-of-mass ray. Consider a particular point x0 = (i, j, k) and the 

computed center of mass, say p0. Now consider the unit vector, r0 = (x0 − p0)/||x0 − p0||. 

Samples of the image at scale σ are obtained in the same manner as the “samples along 

normal” feature with r0 in the role of N0. See Figure E.1 for a conceptual diagram of this 

feature. 

𝑆𝑁(𝑠) = 𝑀σ(𝑥0 + 𝑠 ⋅ 𝑁0) 

 

Figure D.1: Conceptual illustration of the “samples along normal” and “samples along 

center-ofmass ray” features. 
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