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ABSTRACT Microsleeps are brief lapses in awareness that pose significant risks, particularly in activities
requiring continuous attention, such as driving. These episodes are common in sleep-deprived individuals
and can lead to catastrophic outcomes. Electroencephalography (EEG) is a promising technique for detecting
microsleeps due to its high temporal resolution, allowing real-time brain activity monitoring. The study aims
to develop a lightweight version of the model to reduce computational costs and provide faster detection,
enabling quicker intervention to prevent accidents in safety-critical environments. We propose a customized
deep learning model, Hyper-Opt-ANN, designed to detect microsleep episodes from EEG signals. The model
is evaluated across five time windows (1 second, 2 seconds, 3 seconds, 4 seconds, and 5 seconds), with
the 4 seconds window showing the best performance. The Hyper-Opt-ANN model achieved a significant
accuracy of 97.33%, demonstrating its efficacy and potential for accurate microsleep detection using EEG
signals. This method significantly outperforms traditional approaches and has potential applications in
safety-critical domains. This study demonstrates the feasibility of using EEG signals and advanced deep
learning models for detecting microsleep and enhancing safety in high-risk environments.

INDEX TERMS Microsleep detection, EEG signal, hyper-Opt-ANN, parameter optimization, time-window
selection.

I. INTRODUCTION than 400 injuries [4]. According to estimates from the NSC

Microsleeps are brief unconscious lapses in awareness
during which an individual momentarily falls asleep and
experiences a temporary pause in performance [1]. While
they are more common when a person is sleep-deprived,
also can occur when person experiences sleep deprivation
or engages in monotonous activity [2] and typically happen
without warning [3]. However, a recent accident due to fatal
microsleep has triggered cascading consequences, including
an incident that resulted in over 200 deaths and more
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(National Safety Council), drowsiness causes more than
1,00,000 road accidents worldwide each year, resulting in
over 800 deaths and 71,000 injuries [5].

The number of sleep-related traffic accidents can be
considerably decreased by creating reliable techniques for
assessing drivers’ sleep-related performance deficiencies.
A microsleep cycle is one important indicator of the start of
sleep. It may be identified by its irregular and varied theta-
wave pattern, which includes (a) a slowing of the frequency
spectrum and (b) eyelids closed for up to 80% of the time.
Whenever there are sudden changes from awake to sleep,
these problems are typically seen [6], [7]. More precisely,
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this is characterized by drooping eyes, head swaying, and
sluggish, sporadic eyelid closures and happens when there are
abrupt changes between waking and sleep.

In recent years, researchers have identified various meth-
ods to assess driving conditions in recent years. Among these,
commonly explored physiological signals include EEG [8],
electrooculography (EOG) [9], and electrocardiography
(ECG) [10]. These techniques enable proactive intervention
and early detection. The human brain’s functional layout has
been widely studied using functional magnetic resonance
imaging (fMRI), which has important therapeutic applica-
tions. However, fMRI could be too costly and impractical for
detecting driving fatigue in real-world driving scenarios [11].
Although functional near-infrared spectroscopy (fNIRS) is
used in confirmatory studies, it cannot capture signals from
certain brain regions and has a lower temporal resolution than
EEG or event-related potentials. Additionally, a relatively
recent categorization approach for fNIRS has been exten-
sively utilized to monitor the incidence of neuroplasticity
after neurorehabilitation and neurostimulation; it is inexpen-
sive, portable, and safe, and produces low noise compared
to fMRI [12], [13]. But the fNIRS is mostly confirmatory
research due to its low temporal resolution compared to EEG
or event-related potential and the inability to get signals from
the brain area. Since EEG directly detects brain activity with
a high temporal resolution, it is a popular and intriguing
modality because of its exceptional temporal resolution of
changes in brain activity. EEG has the finest temporal
resolution among all the methods used in brain research.
When full-head dense electrode arrays are used, it offers
high spatial resolution. Yet as spatial resolution increases,
expenses rise, and usability and convenience are dimin-
ished [14]. Compared to other methods like fNIRS, EEG
offers superior temporal resolution, making it more effective
in detecting rapid changes in brain activity associated with
microsleep.

Numerous studies have utilized machine learning (ML) to
detect the high temporal resolution in EEG data. The primary
goal of these studies was to assess various techniques for
feature extraction, selection, and reduction to develop models
for detecting microsleeps [15]. However, the challenge lies
in effectively preserving the complex relationships between
EEG signal characteristics and machine learning algorithms,
which are crucial for accurately detecting microsleeps.
Additionally, the invariance of selectivity makes it difficult
for machine learning models to capture the dynamics of
micro-voltages, as the features are manually selected by
algorithm or system designers. Feature selection plays a
crucial role in determining the performance of a model [16].
Feature allows models to extract relevant information
dynamically, leading to a more nuanced understanding of
data patterns. Additionally, deep learning (DL) algorithms
provide a comprehensive solution due to its ability to capture
more complex information by autonomously analyzing,
and capturing information. Greater focus could be placed
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on developing models using DL to enhance microsleep
detection performance [16], [17]. However, DL models often
suffer from high computational costs, extended detection
times, and increased model complexity, which can limit
their practical application in real-time microsleep detection
systems.

Therefore, the utilization of proposed Hyperparameter
optimized ANN (Hyper-Opt-ANN) model enhances model
performance by fine-tuning key parameters, thus reducing
computational complexity, while maintaining high accu-
racy and minimizing detection latency, which are critical
for real-time microsleep detection in EEG data analysis.
The Hyper-Opt-ANN model provides an optimal trade-off
between accuracy and computational efficiency, making it
more suitable for classifying low-dimensional EEG features
than CNNs and RNNs.

The following is a summary of the findings from the study
conducted in the investigation:

i We introduce an optimized architecture, Hyper-Opt-
ANN, that effectively identifies the microsleep states
utilizing EEG signals. In the proposed method, we mod-
ified several high-level parameters, reduced the number
of parameters, and simplified the architecture. These
changes improved the model performance on EEG
signals and shortened the computational duration of the
training process.

ii The experiment is conducted using Fast Fourier Trans-
form (FFT) features. Utilizing FFT features can reduce
computational complexity while preserving essential
frequency information. This approach enhances the
accuracy of the analysis by capturing key spectral
components without the need for extensive time-domain
processing.

iii The experiment has used five different time windows
(1s, 2s, 3s, 4s, and 5s), demonstrating the resilience and
practicality of the proposed approach, and determining
the best time window to identify microsleep utilizing the
proposed approach.

iv The performance of the proposed model is thoroughly
assessed quantitatively to provide a clear understand-
ing of its relevance and demonstrate that it per-
forms better than existing techniques for microsleep
detection.

The remainder of this paper is structured as follows.
Section II presents the relevant literature on earlier compa-
rable studies. Section III provides a full description of the
experimental data, including methodology, data collection,
and preparation. Section IV provides a detailed overview of
the study process, including characteristics, the suggested
model description, and model assessment metrics. Section V
presents the results, while Section VI provides a discussion,
including a comparison with related studies and also outlines
the limitation of this study. Finally, Section VII concludes the

paper.
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II. LITERATURE REVIEW

Multiple techniques are used in this field of study to
diagnose car drivers’ microsleep early. To detect multimodal
aspects, Du et al. [18] extracted facial emotions from the
driver’s pulse rate using a wrist monitor equipped with
an RGB camera. Li et al. [19] described a technique
that combined EEG and EOG measurements. Their sug-
gested solution reduces error rates to 5% while increas-
ing the accurate classification rate of fatigue levels to
80.6% for alert, sleepy, and severely drowsy circumstances.
Ramzan et al. [20] suggested an attribute fusion and transfer
learning strategy based on EEG and cervical EMG data to
identify driver weariness. Their investigation demonstrates
a greater rate of detection than the standard support vector
machine (SVM) model. In another study, manual identifica-
tion of microsleep episodes by tracking three video streams
of driving scenes and subjects’ eye movements was correlated
with electrocardiogram (ECG) data, revealing that heart rate
decreased and heart rate variability increased during these
episodes [21].

Wali et al. [22] presented a system for detection that
correlated alertness, fatigued, and occupied states using EEG
signal. This study presented and amplitude spectrum of
the three bands (theta, alpha, and beta) of the EEG signal
which has been proposed along with the hybrid scheme
based on DWT and FFT. Fusions of the above two methods
give more significant results on extraction of centroid
and PSD features under ANOVA analysis, and maximum
accuracy of 79.21% using sym8 and subtractive fuzzy
inference system for PSD feature with an average sensitivity
of 82.09% and of 70.36%. However, a multi-mode EEG
analysis-based automatic tiredness detection system was
introduced in [23]. This study utilized multiple features and
ANN classification model and achieved an accuracy of 83.6%
to detect drowsy conditions. Another study in [24] employed
optical stimulation and steady-state visual elicited possible
signals on drivers with different scan times. The Fourier
transform approach was applied to feature extraction. Three
discriminant analysis classifiers were then used to classify
the retrieved feature. The study in [25], utilized an LSTM
based hybrid model for EEG-based drowsiness detection
integrates tunable Q-factor wavelet transform (TQWT) and
deep learning-based features, achieving an average accuracy
of 94.31%. Jacobé De Naurois et al. [26] effectively utilized
ANN model for detecting and predicting driver drowsiness
by analyzing physiological, behavioral, and performance
indicators. However, Laurent et al. [27] underscore the critical
role of time-window duration in enhancing the speed and
accuracy of detecting fatigue studies.

Current methods that do not rely on EEG for monitoring
microsleep typically use facial recognition technologies.
These methods involve detecting key points on the face
and extracting various features from them to assess signs
of microsleep. The process analyzes subtle facial move-
ments or expressions indicative of the onset of microsleep,
providing an alternative approach to traditional EEG-based
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monitoring [28], [29]. Additionally, algorithms are employed
to track and monitor eye movements, helping to detect signs
of microsleep through subtle changes in eye behaviour [30],
[31]. Despite their potential, these approaches may lack
consistency, with their effectiveness being heavily influenced
by factors like dim lighting or foggy environments.

Based on the review of existing studies, it is evident that
various techniques and models have been employed to detect
microsleep using EEG, multimodal signals and other tech-
niques. Additionally, recognizing that no specific time win-
dow has been universally established for effective microsleep
detection, this study conducted a comprehensive investigation
to identify the optimal time window for analysis. This ensured
the most accurate and reliable detection results. Furthermore,
this study implemented the lightweight Hyper-Opt-ANN
model for faster and more effective microsleep detection,
ensuring real-time applicability by reducing computational
complexity while maintaining high accuracy.

Ill. EXPERIMENTAL DATA DESCRIPTION

A. PARTICIPANTS AND EXPERIMENTAL PROTOCOL
Fifteen participants were chosen to participate in the EEG
signal collection events, including professors, postgraduate
students, and undergraduate students. They ranged in age
from 21 to 58 years and had no prior medical history. All
participants were chosen solely from the Pekan Campus of
the Universiti Malaysia Pahang Al-Sultan Abdullah. Before
the trial began, they were told not to take any medication
or use any drugs, including alcohol or coffee. The subjects
had normal or correct eyesight and no medical history of
neurological, physical, or mental illness. All participants
provided informed consent before the commencement of the
experiment, allowing the use of their data for this study. The
ITUM Research Ethics Committee granted ethical permission
to conduct this study (IREC 2023-239). The research study
was conducted at the Faculty of Electrical and Electron-
ics Engineering Technology, Universiti Malaysia Pahang Al-
Sultan Abdullah, in the Signal Processing Laboratory and
Applied Electronics and Computer Engineering Laboratory.
For the participants in the trial, these laboratories offered a
distraction-free setting where they could focus throughout the
sessions. To ensure participants’ relaxation, the experimental
conditions were meticulously managed to preserve a calm
environment, free from any noise disruptions and a moderate
ambient temperature. To reduce the possibility of noise or
undesirable signals throughout the experiment, the subject
was told to assume a comfortable position and remain still,
neither moving nor blinking their eyes [32].

B. DATA ACQUISITION

Unicorn Hybrid Black, an eight-channel wearable EEG head-
set device, was used to collect the EEG data, as shown in
Fig. 1. Comprehensive details regarding the functionality
and specifications of this device are extensively discussed
in reference [27]. The apparatus was sampled at a rate
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FIGURE 1. Unicorn Hybrid Black headset device used to collect the EEG
data used in this study. (a) Eight-channels wearable EEG headset.

(b) Position of the eight electrodes Unicorn Hybrid Black (marked in
green) used in this study, based on the international 10-20 system.

(c) User interface of Unicorn Suite software while recording participants’
data.

of 250 Hz per channel, with a resolution of 24 bits. Version
1.18.0.2085 of the licensed UnicornSuite software was used
to evaluate and collect data. As shown in Fig. 1(a), an eight-
channel wearable EEG headset device, The Unicorn Hybrid
Black gadget, was connected to a PC via the built-in
Bluetooth connection. Eight EEG signals were captured from
specified electrode locations: Fz, C3, Cz, C4, Pz, PO7, Oz,
and POS8. Fig. 1(b) shows the positions of the channels,
while Fig. 1(c) depicts the user interface incorporated into
the Unicorn Suite program. Fig. 2 depicts the laboratory data-
collection setup, and Fig. 3 illustrates the occurrence of an
individual microsleep episode.

C. DATA PREPARATION
Many studies have utilized EEG bands associated with
microsleep; however, band-wise analysis may overlook
cross-frequency interactions. Therefore, the Karolinska
Sleepiness Scale (KSS) [33] was employed in this study
to provide a subjective measure, allowing for a more
comprehensive assessment of microsleep beyond EEG band-
wise analysis. Incorporating KSS enables the validation of
EEG-derived microsleep detection with self-reported awake
and slumber levels, enhancing the reliability of the findings.
All fifteen participants, each undergoing a session lasting
twenty to twenty-five minutes, were asked to fill out the KSS
to assess their level of slumber.

The numbers 0 (Wakefulness) and 1 (Microsleep) represent
the two classes that constitute the validation set. Accordingly,
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this study requires distinguishing them as either wakefulness
or microsleep. A value of less than seven is associated
with a KSS value of “‘0”, whereas a value greater than
or equal to seven is associated with a KSS value of ““1”.
At least one investigator closely monitored the participants
throughout the study to ensure data quality and reliability.
This monitoring process included verifying the participants’
physical and behavioural conditions and cross-checking them
against their self-reported KSS values. This diligent oversight
helped eliminate discrepancies and maintain consistency in
the classification of wakefulness and microsleep. Although
every participant was responsible for care- fully inputting
their KSS value, the investigators recognized that there may
be occasional discrepancies. Despite this, the investigators
implemented rigorous monitoring and cross-checking pro-
cedures to minimize errors and ensure the reliability of the
KSS data provided by the respondents. For a certain degree
of drowsiness, one participant may input a KSS number
greater than or equal to seven, whereas another participant
may provide a KSS value of less than six.

IV. METHODOLOGY

The objective of this research is to develop a high-
performance, intelligent, early stage microsleep detection
technique for drivers. A crucial element is the extraction
of characteristics from the EEG signals [34]. EEG signals
typically contain complex data; therefore, FFT is applied
in this investigation to extract frequency-domain features
while preserving essential information. However, Fig. 4
illustrates the general steps of the proposed microsleep
detection technique. A few phases comprise the suggested
framework: gathering data, preprocessing, feature extraction
and developing a new model with optimization parameters.
Finally, to further validate the robustness of the developed
model, a 5-fold cross validation is applied.

A. DATA PREPROCESSING
The data preprocessing procedure in this study comprises five
critical stages to ensure the integrity and reliability of EEG
signals for microsleep detection. The initial step involved
the Exclusion of Low-Focus Periods, where 15 seconds
were removed from both the beginning and end of each
segment. This exclusion aimed to mitigate potential signal
contamination caused by transitions in cognitive states and
external disturbances, ensuring the extraction of high-quality
data for analysis, this exclusion process is illustrated in Fig. 5.
Following this, Artifact Removal was performed using
Independent Component Analysis (ICA) to eliminate
unwanted signal components while preserving meaningful
brain activity. ICA decomposed the EEG signals into
independent components, each representing distinct neural
and non-neural sources. Spatial and temporal criteria were
applied to identify and discard artifactual components,
particularly those arising from muscle activity, ocular
movements, or environmental interferences. This step was
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Driving Simulator
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FIGURE 2. Laboratory data collection setup.

FIGURE 3. Example of microsleep occurrences captured during data recording on wheel.

EEG data Data
acquisition preprocessing

Feature
extraction

Model Results

evaluation of the
developed model

development for
classification

FIGURE 4. Overall design of the current study. The framework comprises five subsequent phases from acquisition of data to

final assessment of proposed modelling strategy.

essential in minimizing distortions and improving the
accuracy of downstream feature extraction.

The next stage focused on Noise Reduction, where a
bandpass filter (0.5-45 Hz) was applied to remove undesired
frequency components. This filtering process effectively
suppressed low-frequency drifts and high-frequency noise,
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retaining only the relevant EEG frequency bands associated
with microsleep detection. Improving the signal quality
enhanced the model’s robustness against noise-induced
inconsistencies.

However, Fig. 6 illustrates the EEG signal processing
pipeline, showcasing the effects of a bandpass filter and ICA
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15 sec

FIGURE 5. Mitigation of potential signal contamination caused by transitions in cognitive states and
external disturbances. The first and last 15 seconds EEG signal were excluded from the analysis to ensure

the extraction of high-quality data.

on eight EEG channels. The raw EEG signals are first filtered
using a Bandpass filter to remove unwanted frequency
components. Subsequently, ICA is applied to eliminate
artefacts. The processed signals demonstrate reduced noise
and enhanced signal quality, ensuring cleaner data for
subsequent analysis.

Z-score normalization was employed to standardize the
EEG data, addressing inter-subject variability and session-
induced fluctuations [35]. Given the inherent differences
in EEG amplitudes due to individual physiological factors,
electrode placement, and recording conditions, z-score nor-
malization ensured all features were centred around zero and
scaled to unit variance. This transformation enhanced the
comparability of EEG features across subjects and sessions,
stabilizing the model’s training process. As a result, the
model demonstrated improved generalization capabilities in
detecting microsleep states. The mathematical formulation of
z-score normalization is presented in Eq. (1):

r="F, (1)
o
where z is the transformed value after standardization, x is the
original value, u is the average value across all samples, and
o is the measure of dispersion, representing how much the
values deviate from the mean.

By implementing these steps, this study ensures a
high-quality EEG dataset, reducing noise and artifacts while
preserving essential neural information. These enhancements
play a crucial role in optimizing the performance of
classification models for accurate and reliable microsleep
detection.

Lastly, each of the brief time windows, 1s, 2s, 3s, 4s, and
5s, created from the complete dataset was considered as each
window as an observation. The simple rationale for choosing
brief choice windows is to speed up the system and reduce
the computing complexity, which will aid in identifying
early microsleep conditions and reducing the number of car
accidents caused by drivers. Fig. 7 shows the EEG data of
five different time windows of a single participant in the time
domain for both normal and microsleep conditions. As the
time window increased, the signal patterns became more
detailed for each sample, revealing additional fluctuations

VOLUME 13, 2025

and variations in amplitude over longer durations. This
progression allows for better visualization of the temporal
dynamics and differences between the two conditions.

B. FEATURE EXTRACTION

This study uses the Fast Fourier Transform (FFT) to extract
features from EEG signals by transforming them from the
time domain to the frequency domain. In 1965, J. Fourier
discovered the FFT, a Fourier transformation that is an
enhanced version of the Discrete Fourier Transform (DFT).
FFT enables rapid spectral decomposition of EEG signals,
facilitates feature extraction, and identifies neural oscillations
for EEG data analysis [36]. Fig. 8 presents the EEG signal
and its corresponding frequency spectrum obtained by FFT.
The FFT spectrum highlights the dominant frequency com-
ponents, facilitating the identification of relevant oscillations.
The mathematical formulation of the FFT is given by Eq. (2).

N-—1
—j2mkn
X =D xe N, )
n=0

where X represents the FFT components, N represents the
total number of EEG input samples, n denotes the total
quantity of points in FFT and k =0, 1,2,...,N — 1.

C. FUNDAMENTAL CONCEPTS OF ARTIFICIAL NEURAL
NETWORK (ANN)

In the 1980s, the neuroscience sector saw significant
improvements in the usage of artificial neural networks
(ANNS5), a physiologically based intelligence model, which
sparked a great deal of interest in comprehending the
significance of neural network models [37]. Massive sets
of algorithms that indicate artificial neural networks mimic
the functions of neurons in the brain. Upon completion of
learning and training, these networks can create relationships
between extremely unusual nonlinear variables and provide
complex, accurate, and reliable solutions to challenging
problems [38]. The Feed-Forward Neural Network (FFNN),
an array of connections of perceptron in which the output
layer is not connected to a loop for connections to feedback
or recurrent networks but rather in a forward unidirectional
flow, is the most basic and straightforward of the two types
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EEG signal after applying Bandpass Filter & ICA

50

§ | Original Ch 1
= 04 —— Filtered Ch 1
E 56 ---- ICA Cleaned Ch 1
0 1000 2000 3000 4000 5000
Time (samples)
% Original Ch 2
% 04 ; —— Filtered Ch 2
E ---- ICA Cleaned Ch 2
=504 T T — T T T
0 1000 2000 3000 4000 5000
Time (samples)
i 50
B Original Ch 3
% 04 —— Filtered Ch 3
§ ---- ICA Cleaned Ch 3
—~50 4 W
0 1000 2000 3000 4000 5000
Time (samples)
o 50 1 A
T Original Ch 4
% 0 i ¥ —— Filtered Ch 4
g 50 ---- ICA Cleaned Ch 4
0 1000 2000 3000 4000 5000
Time (samples)
g | Original Ch 5
T y I ' —— Filtered Ch 5
<E( ---- ICA Cleaned Ch 5
-50 - T T T T T T
0 1000 2000 3000 4000 5000
Time (samples)
o 50 e
T Original Ch 6
£ 9 —— Filtered Ch 6
o
<E( ---- ICA Cleaned Ch 6
-50 : . . . . ;
0 1000 2000 3000 4000 5000
Time (samples)
§ | Original Ch 7
£ 09 —— Filtered Ch 7
E ---- ICA Cleaned Ch 7
=50 - T T T T T T
0 1000 2000 3000 4000 5000
Time (samples)
§ Original Ch 8
= 01 —— Filtered Ch 8
£ ---- ICA Cleaned Ch 8
< 50+ . ; . . . ;
0 1000 2000 3000 4000 5000

Time (samples)

FIGURE 6. EEG signal after applying Bandpass Filter and ICA. The raw EEG signals are first filtered using a Bandpass filter to remove
unwanted frequency components and then Independent Component Analysis (ICA) is applied to eliminate artefacts. The processed
signals are less noisy, enhancing signal quality for subsequent analysis.

of neural networks [37]. Eq. (3) provides a mathematical
representation of a basic neural network model:

1

M= e

3

When the input is x, the parameter vectors are x and 6
and the output is sp(x). The standard FFNN design is shown
in Fig. 9(a). The feedback neural network, also known as
the backpropagation ANN (BPANN), is another type of
ANN frequently employed in supervised learning. Although
it allows for the establishment of a loop where incorrect
information is transmitted back for the repetitive alteration
of weight values until the error can no longer be improved
to obtain a more accurate output variable, this type of neural
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network shares an architectural structure with the FFNN.
A typical archetypal structure of BPNN is shown in Fig. 9(b).

An ANN functions in a manner that is similar to the many
interconnected neurones in the brain, wherein each node
(point) is connected to every other node in the form of a
route for cooperation. Each node in a neural structure may be
assigned a weight using an ANN with a single hidden layer.
The input data are sent to a neural network architecture as
vectors during the training phase. When utilizing a BPANN,
the output error is calculated and looped back into the
network so that the weights can be changed iteratively using
gradient descent to minimize the error based on expertise
until it cannot be further improved. Once a bias value that
yields an improved prediction is obtained, this procedure is
repeated. Eq. (4) is a mathematical model of the error function
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FIGURE 7. Example of five different time windows in the time domain for both normal and
microsleep conditions. The signal patterns became more detailed for each sample, revealing

additional fluctuations and variations in amplitude over longer durations, as the time window

increases.
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FIGURE 8. FFT Spectrum of EEG Signal after Bandpass Filtering and ICA. The FFT spectrum highlights the
dominant frequency components, facilitating the identification of relevant oscillations.

derivatives utilized to modify the weights using gradient
descent.

Aw(t) = nVE@) +aAw(i —1) @)

where E is the difference between the expected and actual
outputs, n is the learning parameter, « is the momentum
parameter (< 1), and Aw is the weight update. Based on the
complexity of the problem, we move into the deep learning
domain with each additional hidden layer [39].

Neural networks are frequently employed as successful
supervised machine learning methods for classification issues
in the context of reservoir characterization. This is mostly
due to a special capacity of neural network to imitate human
thought processes [40] to tackle classification difficulties
by developing intricate dynamic estimate functions that
outperform other methods. In theory, an ANN can learn the
form of any function required for classification if sufficient
processing power is provided.

The most frequent flaws in ANNSs are their high processing
power requirements, intricate construction, need for careful
fine-tuning, curse of dimensionality, and tendency to become
trapped at the local minima. The majority of these flaws were
alleviated by hybrid ANN models [38]. Global minima occur
when the weight of the loss function is the lowest at a point
within the entire domain of the loss function, whereas local
minima occur when the weight of the loss function is lowest
at a point within a specific local domain. Several approaches
have been proposed to overcome the weights that converge to
local minima. Training neural networks with variable weights
and growing iterations is one such method [41]. Another
strategy is to start with a higher step size and use various local
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optimization methods, such as hill climbing, metaheuristic
algorithms, and simulated annealing, to repeatedly reduce
the step size [42]. Finding the global optimal solution in an
ANN is a challenging task; however, new research indicates
that the stochastic gradient descent approach is sufficiently
effective [43].

D. HYPERPARAMETER TUNING

Hyperparameters are configurations of variables found out-
side a model that are established before the learning process
begins. These are used to influence how a model’s learning
process is structured or operated. The fundamental method
for enhancing the prediction accuracy of a model network
is via training algorithm hyperparameter tuning: learning
rate, epoch, iterations, mini-batch size, optimizer method,
momentum, or neural network hyperparameters: increasing
the number of hidden layers based on the output, dropout
optimization, type of activation function, number of training
epochs, and weight initialization. In machine learning or
deep learning processes, hyperparameters are mostly selected
by trial and error. Consequently, model performance is
often measured by learning with different hyperparameter
settings and testing against a validation dataset. The most
common hyperparameter tuning strategies used in reservoir
characterization are as follows.

o Heuristic-based: Typically based on trial and error.

o Random search: A simple yet efficient method for
hyperparameter optimization, enabling broad explo-
ration of parameter spaces to improve the model perfor-
mance. As stated by [38], this provides a superior and
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FIGURE 9. Neural Network architecture. (a) Typical Feed-Forward Neural Network.
(b) Back-propagation Neural Network architecture showing the error being looped back through the

network for weight tuning.

more successful approach for selecting hyperparameter
values than manual and grid search methods.

Grid search: This typically entails systematic retraining
of the model with various combinations of hyperparam-
eter values.

Bayesian optimization: This approach monitors the form
of functions produced via an iterative training procedure
with varying hyperparameter values. The functions
are then expanded and utilized to forecast the ideal
hyperparameter values, providing more accuracy than
random search [44].

E. PROPOSED HYPER-OPT-ANN MODEL

In this study, we introduce the Hyper-Opt-ANN model,
a painstakingly built deep learning model for improving
classification problems via rigorous hyperparameter opti-
mization. The main design of the Hyper-Opt-ANN starts with
an input layer, followed by densely connected layers, each
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optimized for performance through systematic adjustments to
its hyperparameters. Fig. 10 provides a visual representation
of the training process, detailing the steps involved to
find the best configuration after a thorough hyperparameter
optimization for microsleep detection.

The Hyper-Opt-ANN model is carefully designed to
enhance classification tasks through meticulous hyperpa-
rameter optimization. Before identifying the best-performing
model, the initial approach involved building the model using
“RandomSearch” of Keras Tuner. This process systemati-
cally explores different combinations of model parameters,
including the number of neurons in dense layers, dropout
rates, and learning rates, to identify an optimal configura-
tion for classification performance. The model architecture
consist of an input layer processing eight features, followed
by two dense layers with varying neuron counts (ranging
from 32 to 128) and ReLLU activation functions. Batch Nor-
malization is applied to stabilize training, and Dropout layers
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FIGURE 11. Proposed Hyper-Opt-ANN architecture. The proposed design enhances classification tasks

through meticulous hyperparameter optimization.

(0.1 to 0.5) re incorporated to mitigate overfitting. The output
layer employs a softmax activation for binary classification.
The tuning process evaluates 20 different configurations,
each repeated twice for reliability, and assesses performance
based on validation accuracy. The Adam optimizer is
used with a learning rate search space of 0.001, 0.0001,
0.00001, ensuring an adaptive and efficient weight update
mechanism. The model undergoes 200 epochs of training,
with early stopping monitoring validation accuracy to prevent
unnecessary training iterations.

This hyperparameter tuning phase is critical in selecting
an optimized model with the best-performing parameter set.
Following this, the best configuration is extracted and used
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to develop an independent fixed-parameter model for further
validation, ensuring that the optimization process yielded a
robust and generalizable classification model. Fig. 11 depicts
the architecture of the Hyper-opt-ANN model to detect
microsleep.

After conducting hyperparameter tuning using Keras
Tuner, the process identifies the best-performing configu-
ration based on validation. This optimized model includes
specific values for key hyperparameters, such as the number
of units in each dense layer, dropout rates, and the learning
rate. To further validate the model effectiveness, a separate
experiment implements the best parameter model inde-
pendently, without additional optimization. This approach
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ensures that the model performance is assessed solely based
on the previously determined optimal parameters, eliminating
any variability introduced by hyperparameter tuning.

V. RESULTS

To determine the ideal period for identifying microsleep
occurrences using the suggested Hyper-Opt-ANN model,
five distinct time frames were examined in this study. The
choice of several time frames made it possible to evaluate
which window size provided the greatest trade-off between
prompt detection and reducing delays or false positives,
which is an important factor for real-time applications such as
driving safety systems. The EEG data from the 15 participants
comprised the dataset, which was divided into training (80%)
and testing (20%) classes. This study sought to determine the
ideal window size for microsleep detection by evaluating the
performance across various windows, ensuring dependability
and usefulness in real-world situations.

A thorough evaluation of the proposed Hyper-Opt-
ANN model for microsleep detection from EEG data was
conducted over five different time windows. Accuracy,
specificity, Matthews Correlation Coefficient (MCC), preci-
sion, recall, Fl-score, and Cohen’s kappa were among the
important performance measures evaluated. The findings for
all time windows are summarized in Fig. 12, demonstrating
the resilience and flexibility of the model in differentiating
between microsleep and normal states throughout a range of
time periods.

The accuracy of the model for the Is time window was
90.87%. The MCC, which reflects the balance between true
and false predictions, was 81.93%, while specificity, which
measures the ability to accurately identify non-microsleep
conditions, was 94.52%. With a recall of 87.10% and
precision of 93.90%, the model effectively minimizes false
positives while successfully identifying actual microsleep
occurrences. The model’s reliability over brief time windows
was further validated by an F1-score of 91.29% and Cohen’s
kappa of 82.64%.

Results from the 3s time window were even more
remarkable. Specificity was 97.88%, with accuracy reaching
96.33%. The MCC increased to 92.59%, a critical mea-
sure of classification balance. The Fl-score was 97.02%,
with precision and recall values of 97.32% and 94.42%,
respectively. This window demonstrated a high degree of
agreement between predicted and actual classifications,
as evidenced by a Cohen’s kappa of 94.59%, indicating the
model’s effectiveness in distinguishing between microsleep
and normal states.

The best overall performance was achieved with the
4s time window. Specificity was 98.75%, and accuracy
reached 97.33%, demonstrating remarkable dependability
for detecting non-microsleep conditions. The MCC was the
highest across all time windows at 94.18%, indicating optimal
balance in handling both positive and negative categories.
The F1-score was exceptional at 97.85%, with a recall rate of
95.74% and precision of 98.54%. Cohen’s kappa of 94.65%
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further underscores the accuracy and reliability of this time
window, making it the most optimal for microsleep detection.

Although the 5s time window showed slightly lower
performance than the 4s time window, it continued to perform
well. Specificity was 99.45%, and accuracy was 96.94%. The
MCC remained high at 93.99%, though it was slightly below
the values for the 3s and 4s time windows. The recall was the
highest of all time frames at 94.35%, while precision stood
at 99.40%. This high recall rate demonstrates the model’s
strong capability in identifying microsleep occurrences. The
performance in this time frame was further validated by an
F1-score of 96.42% and Cohen’s kappa of 92.78%, indicating
continued effectiveness in classification..

However, Fig. 13 presents the overall accuracy and loss
curves of the proposed Hyper-Opt-ANN model for both
training and validation across various time windows. These
curves provide a detailed visualization of the performance of
the model over different durations, illustrating its ability to
effectively learn and generalize during both the training and
validation phases.

For the 1s time window, shown in Fig. 13(a) and Fig. 13(b),
the training accuracy ranged from 89% to 92%, with a
corresponding pattern observed in the validation accuracy.
The model achieved peak performance at epoch 193.
The consistent decline in training loss indicates efficient
learning with minimal signs of overfitting. However, slight
fluctuations in validation loss, ranging from 0.30 to 0.37,
suggest some variability in validation performance.

In the 2s time window, depicted in Fig. 13(c) and
Fig. 13(d), the model exhibited improved performance, with
training and validation accuracies reaching 94% to 95%.
The best performance was recorded at epoch 192. Although
the validation loss exhibited greater variability, implying
occasional fluctuations in validation performance, the steady
decrease in training loss (falling below 0.16) indicates stable
learning with no significant overfitting..

The 3s time window, presented in Fig. 13(e) and Fig. 13(f),
demonstrated strong generalization capabilities. Both train-
ing and validation accuracies were closely aligned, with
the loss curves converging at epoch 100. This convergence
suggests a balanced trade-off between accuracy and loss,
further affirming the robustness of the model. The training
and validation accuracies were aligned at 94% and 96.3%,
respectively, with the loss metrics stabilizing near 0.18 for
both. This balance indicates that the model generalizes
well without overfitting, making the 3s time window a
strong candidate for applications requiring a balance between
performance and computational efficiency.

The 4s time window, shown in Fig. 13(g) and Fig. 13(h),
yielded the most favorable results. Training accuracy
remained stable at 97%, while validation accuracy fluctuated
but ultimately stabilized at 97.33%. The narrow gap between
training and validation accuracy indicates exceptional gen-
eralization without overfitting. Both training and validation
losses exhibited a steady decline, stabilizing at approximately
0.15, respectively. This time window emerged as optimal for
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FIGURE 12. Comparison of performance evaluation metrics for the proposed model across different time windows. The achieved performance
demonstrates the resilience and flexibility of the model in differentiating between microsleep and normal states throughout a range of time periods. The
bar in purple shows the performance metrics after applying cross-validation. The results after applying 5-fold cross-validation are very similar to results

for 4s time window without cross-validation.

detecting microsleep states, with peak performance observed
at epoch 155.

Finally, Fig. 13(i) and Fig. 13(j) illustrate high performance
for the 5s time window, where validation accuracy reached
96.94% and training accuracy fluctuated around 96% to 97%.
The validation loss settled at 0.12, while the training loss
stabilized at approximately 0.15. The model achieved its
highest performance early in training at epoch 41, suggesting
rapid acquisition of key patterns. The small difference
between training and validation losses indicates sustained
learning with minimal risk of overfitting.

In summary, the Hyper-Opt-ANN model demonstrated
consistent and robust learning capabilities across all time win-
dows, with the 4s time window emerging as the most effective
for microsleep detection, achieving optimal performance.

Additionally, Fig. 14 illustrates the classification per-
formance for identifying microsleep episodes from EEG
signals across five time windows, using Receiver Operating
Characteristic (ROC) curves. By plotting the True Positive
Rate (TPR) against the False Positive Rate (FPR) for various
classification thresholds, each ROC curve demonstrates the
ability of the model to distinguish between microsleep and
non-microsleep states.

In Fig. 14(a), the ROC curve for the 1s time window
shows an Area Under the Curve (AUC) of 0.97, indicating
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strong discriminative power. The high AUC value suggests
that the model effectively differentiates between microsleep
and normal states, achieving accurate detection with minimal
false positives. For the 2s time window, depicted in Fig. 14(b),
the ROC curve achieves an AUC of 0.99, reflecting near-
perfect discrimination. This performance highlights an opti-
mal balance between specificity and sensitivity, minimizing
false alarms while accurately classifying microsleep events.
Similarly, in Fig. 14(c), the ROC curve for the 3s time
window also demonstrates an AUC of 0.99, offering excellent
classification performance. The steep rise of the curve toward
the top-left corner further supports the strong sensitivity
and low false-positive rate of the model, underscoring the
durability of the model in detecting microsleep. The 4s time
window, shown in Fig. 14(d), yields the highest performance,
with a perfect AUC of 1.00, indicating flawless classifi-
cation. The proximity of the ROC curve to the upper-left
corner emphasizes the ideal balance between sensitivity and
specificity, making the 4s time window highly effective for
microsleep detection. Lastly, in Fig. 14(e), the ROC curve for
the 5s time window maintains an AUC of 1.00, demonstrating
flawless performance in distinguishing between microsleep
and normal states. This result demonstrates that maintaining
high classification accuracy across various time windows is
achievable without compromising performance.
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FIGURE 13. Overall accuracy and loss curves of 200 epochs for both training and validation of the
proposed model: (a) 1s accuracy, (b) 1s loss; (c) 2s accuracy, (d) 2s loss; (a) 2s accuracy, (f) 3s loss;

(g) 4s accuracy, (h) 4s loss; (i) 5s accuracy, (j) 5s loss.

The findings of this study indicate that the 4s time
window is the best option for identifying microsleep, because
it provides the optimum trade-off between generalization
performance. This window is perfect for real-world appli-
cations such as driving safety systems because it enhances
dependability while decreasing false positives. Because it
showed the best general efficiency and dependability, the
remaining performance of this investigation was concentrated
on a 4s time window. Table 1 provides comprehensive details
on the parameter optimization of the proposed Hyper-Opt-
ANN model, identifying the optimal configuration for the
best 4s time window.

The architectural choices of the Hyper-Opt-ANN model
significantly affected its performance by balancing com-
plexity and efficiency. The input layer processes 8-channel
EEG signals, allowing the model to learn from multivariate
data effectively. The first dense layer, with 96 neurones,
captured complex patterns in the data, while batch normal-
ization stabilized training and dropout prevented overfitting.
The second dense layer, reduced to 32 neurones, focuses
on dimensionality reduction while retaining the essential
features. The output layer, with two neurones, handles
the binary classification task, ensuring well-calibrated pre-
dictions. The total number of parameters of the model
(13,128) and trainable parameters (4,290) reflect an efficient
design that achieves a high testing accuracy (97.33%).
These configurations enable robust feature learning, effective
generalization, and computational efficiency, making the
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TABLE 1. Parameter specifications of proposed Hyper-Opt-ANN model
for the best 4s time window.

Layer (type) Output shape | Parameter
InputLayer (None, 8) 0
dense (Dense) (None, 96) 864
batch_normalization  (BatchNor- | (None, 96) 384
malization)

dropout (Dropout) (None, 96) 0
dense_1 (Dense) (None, 32) 3104
batch_normalization_1 (BatchNor- | (None, 32) 128
malization)

dropout_1 (Dropout) (None, 32) 0
dense_2 (Dense) (None, 2) 66
Total parameters: 13,128

Trainable parameters: 4,290

Non-trainable parameters: 256

Optimizer parameters: 8,582

model suitable for real-time applications in microsleep
detection.

Fig. 15 presents the confusion matrix, illustrating the
performance of the proposed model within an optimal time
window of 4s. The model was effective for classifying
202 microsleep occurrences (true positives) and 236 normal
cases (true negatives). Only 9 cases of microsleep episodes
were overlooked (false negatives), and only 3 cases of
normal states were mistakenly identified as microsleep (false
positives). This demonstrates a high degree of memory and
precision, confirming the efficacy of the 4s time window in
accuratley identifying microsleep occurrences.
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FIGURE 14. ROC curves of the proposed Hyper-Opt-ANN model across time windows
(a) 1s, (b) 2s, (c) 3s, (d) 4s, and (e) 5s. The achieved performance demonstrates the
ability of the model to distinguish between microsleep and non-microsleep states

throughout a range of time periods.

TABLE 2. Individual performance of proposed model for the best 4s time
window. The overall findings across accuracy, specificity, MCC, precision,
recall, F1-score, and Cohen’s Kappa were remarkable, with the exeption
of Participants P-3 and P-6, which may be attributed to potential noise or
outliers in their respective datasets.

Participants| Accuracy | Specificity| MCC | Precision |Recall |[F1- | Cohen’s
score | Kappa

P-1 0.98 0.98 0.97 10.99 0.99 [0.99 |0.97
P-2 0.97 1 094 (1 0.95 [0.97 |0.95
P-3 0.94 0.99 0.88 [0.98 0.90 |0.94 |0.88
P-4 0.97 0.98 0.94 0.98 0.96 |0.97 |0.95
P-5 0.96 0.97 0.87 |0.97 0.90 |0.93 |0.87
P-6 0.93 0.97 0.87 |0.97 0.90 |0.93 |0.87
P-7 1 1 1 1 1 1 1

P-8 1 1 1 1 1 1 1

P-9 1 1 1 1 1 1 1
P-10 1 1 1 1 1 1 1
P-11 0.99 0.98 0.98 [0.98 1 0.99 [0.99
P-12 0.98 0.98 0.96 [0.98 0.97 10.98 |0.96
P-13 1 1 1 1 1 1 1
P-14 0.98 1 097 |1 0.97 (0.98 |0.97
P-15 0.99 0.98 0.98 10.98 1 0.99 10.99

The individual performance of the proposed Hyper-Opt-
ANN model for the ideal 4s time window is shown in Table 2.
With Participants P-7, P-8, P-9, and P-10 attaining perfect
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scores (100%) across all criteria, the results demonstrated
excellent performance, and underscored the dependability
of the method in these situations. The accuracy was
consistently high for most people. Remarkably, 11 out of the
15 individuals achieved an accuracy of at least 98%. Even
though their performance was still within acceptable bounds,
Participant P-3 (94%) and Participant P-6 (93%), on the other
hand, showed somewhat lower accuracy.

The results were almost immaculate in terms of speci-
ficity, which measures the capacity to accurately detect
negative instances; Participants P-3 (0.99) and P-6 (0.97)
displayed little variation. Among the participants, MCC,
which considers both accurate and inaccurate predictions
across classes, was also high. Participant P-6 had the lowest
MCC score (0.87). Likewise, the majority of the individuals’
accuracy levels were at or close to 1, suggesting very
precise positive predictions. Participants P-6 (0.90) and P-3
(0.95) showed slight declines in recall performance, which
measures the capacity to identify true positive cases, but
the overall performance remained strong. Fl-score, which
showed somewhat lower values for P-3 (0.94) and P-6
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FIGURE 15. Confusion matrix of the proposed Hyper-Opt-ANN model for
the best 4s time window. The model was effective for classifying

202 microsleep occurrences (true positives), 236 normal cases (true
negatives), 9 false negatives, and only 3 false positives cases, confirming
the efficacy of the 4s time window in accurately identifying microsleep.

(0.93), likewise showed this minor reduction. Cohen’s Kappa,
a measure of the degree of agreement between forecasts and
actual results, differed among participants. Participants P-7
through P-10 obtained complete agreement (with values of 1);
however, Participants P-3 (0.85) and P-6 (0.87) had relatively
lower kappa levels.

Hence, the suggested technique exhibits exceptional per-
formance, with little variation across all individuals. The
overall findings across accuracy, specificity, MCC, preci-
sion, recall, Fl-score, and Cohen’s Kappa were still quite
impressive, even though Participants P-3 and P-6 showed
comparatively lower metrics. However, the observed low
performance of participants P-3 and P-6 may be attributed to
potential noise or outliers in their respective datasets. After
excluding these two participants, the overall performance of
the model showed a noticeable improvement, suggesting the
robustness and accuracy of the model. This enhancement
further underscores the significance of the model and its
potential applicability in real-time scenarios, where precision
and efficiency are paramount. This ensures constant and
dependable performance within the 4s time window.

To further validate the proposed model, 5-fold cross-
validation was applied to the optimal configuration for
the 4s time window, ensuring a more comprehensive and
reliable evaluation. This technique partitioned the dataset
into K equally sized subsets (K = 5), with each subset
serving as the test set while the remaining data was used
for training. The results after applying 5-fold cross-validation
are very similar to the previous results for 4s time window
without cross-validation, with only slight differences. The
performace metrics for the proposed model after applying
cross-validation are illustrated in Fig. 12. The model still
demonstrated strong performance, maintaining high values
in key metrics such as accuracy 96.35% and specificity
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98.17%. While there was a small decrease in precision
98.01% and recall 94.43%, the Fl-score 96.19% and
Cohen’s Kappa 92.69% model after applying cross-validation
showed minimal reduction. These results highlight the overall
consistency and strong performance of the proposed model,
confirming its reliability even after applying cross-validation.

V1. DISCUSSION

This research proposes a Hyper-Opt-ANN model based on
microsleep detection, which achieves much better perfor-
mance with a 4s time window than previous state-of-the-art
studies. The average accuracy, specificity, MCC, precision,
recall, Fl-score, and Cohen’s kappa of the proposed Hyper-
Opt-ANN architecture were 98.00%, 98.33%, 95.99%,
98.10%, 97.63%, 98.87%, and 94.65%, respectively.

The findings of this study underscore the exceptional
performance of the Hyper-Opt-ANN model in detecting
microsleep episodes from EEG signals, particularly within
the optimal 4-second time window. The model demonstrates
a comprehensive and outstanding performance in accuracy,
precision, recall, and F1-score metrics. These metrics are
indispensable for assessing the robustness and applicability of
the model. Precision reflects the model’s ability to minimize
false positives, recall indicates its sensitivity to actual
microsleep states, and the Fl-score captures the harmonic
mean of these measures, providing a balanced performance
assessment.

Moreover, the inherent ‘‘black-box’’ nature of deep learn-
ing models presents challenges to interpretability, which is
critical for deployment in safety-critical systems. Future work
should focus on integrating interpretable model techniques,
such as saliency maps, layer-wise relevance propagation,
or shapley value explanations, to elucidate the decision-
making process. Interpretable insights into the activation
of neural units or the relevance of features in detecting
microsleep events could improve the reliability of the
model and facilitate its integration into real-time decision
support systems. This approach would not only improve
transparency, but also ensure system accountability in high-
stakes applications, such as driver alertness monitoring.

We also discovered that the duration of the time frame
had a significant impact on the overall performance in this
experiment. In contrast to the 1s, 2s, 3s, and 5s time windows,
the study showed improvement in the 4s time window.
To make an accurate choice and increase the efficacy in real-
world applications, this study attempts to develop an effective
network that can identify microsleep situations within an
accurate time window. Table 3 shows a comparison between
the suggested model and the existing research on microsleep-
related studies.

The experimental results demonstrated that the proposed
framework outperformed other relevant studies published in
the literature. Previous studies have utilized a variety of
EEG headsets with differing numbers of electrodes (ranging
from 1 to 256) to detect microsleep states. To optimize
the performance of the proposed model, it is important to
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TABLE 3. Performance comparison of existing microsleep-related
studies. The results demonstrate that the proposed framework
outperform other relevant studies (using headsets with number of
electrodes raging from 1 to 256) published in the literature.

Reference |Feature Class |Algorithm [Accuracy
[45] Raw EEG signal 2 CNN 94.00%
[46] Empirical mode decomposition 2 KNN 88.74%
of multi-scale entropy
[47] Principal component analysis 2 SVM 86.00%
[26] Tunable Q-factor wavelet transform|2 LSTM  [94.31%
48] Fast Fourier transform 2 CNN 90.14%
[49] Sequential forward floating 2 RF 93.50%
of feature selection
[50] CWT 2 |ONN  [88.85%
[51] Short-time Welch transform 2 CNN 95.00%
[52] Raw signal 2 CNN 78.35%
Our FFT 2 Hyper- 97.33%
proposed Opt-ANN
model

determine the appropriate quantity and type of electrodes
required. Future research should address these limitations by
exploring the impact of different EEG headset configurations.
This will help to validate the performance of the model and
ensure its applicability to a broader range.

Even though the proposed method performs better than the
most advanced microsleep detection techniques, particular
challenges emerged during the experimental investigation.
One key limitation is the small dataset used in this study,
consisting of only 15 participants from a single institution.
This limited sample size raises concerns about the generaliz-
ability of the findings. A more diverse and extensive dataset is
essential to verify the viability of the proposed network across
different populations and settings.

This proposed framework was also designed to min-
imize computational complexity while maintaining high
accuracy, ensuring feasibility for real-time applications. The
lightweight architecture enables rapid microsleep detection,
reducing latency and allowing timely intervention to prevent
accidents. Future work will focus on hardware optimization
and integration with in-vehicle safety systems, such as
Advanced Driver Assistance Systems (ADAS), to enhance
real-time monitoring and intervention capabilities.

VII. CONCLUSION

This work presents an unique model, Hyper-Opt-ANN,
designed for the accurate detection of microsleep from
EEG signals. The proposed approach demonstrated out-
standing performance, achieving 97.33% accuracy, 98.75%
specificity, 94.18% MCC, 98.54% precision, 95.74% recall,
97.12% F1-score, and 94.63% Cohen’s kappa within the
optimal 4s time window. The key highlights of this study are
as follows:

« Comprehensive evaluation of the model across different
time windows (1s, 2s, 3s, 4s, 5s) to identify the optimal
trade-off between prompt detection and high accuracy,
which is crucial for real-world applications such as
driver alertness monitoring.

e A detailed analysis of individual participant perfor-
mance showed the consistency and robustness of the
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proposed approach, with most participants achieving
near-perfect scores across various evaluation metrics.

Despite these promising results, this study has certain lim-
itations. The dataset was relatively small and homogenous,
which limited its generalizability. Future research should
validate the model on larger, more diverse datasets and
explore the impact of different EEG electrode configurations
to balance the hardware complexity and accuracy. In addition,
the computational demands of the Hyper-Opt-ANN model
require further optimization for seamless real-time deploy-
ment in embedded systems. Improving model interpretability
by using techniques such as saliency maps can enhance trust
and usability in safety-critical applications. Addressing these
limitations will pave the way for more robust, efficient, and
practical microsleep detection solutions.
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