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Abstract

Around 1.5 million new cases of Hepatitis C Virus (HCV) are diagnosed globally each
year (World Health Organization, 2023). Consequently, there is a pressing need for early
diagnostic methods for HCV. This study investigates the prognostic accuracy of several
ensemble machine learning (ML) models for diagnosing HCV infection. The study utilizes
a dataset comprising demographic information of 615 individuals suspected of having
HCV infection. Additionally, the research employs oversampling and undersampling tech-
nigues to address class imbalances in the dataset and conducts feature reduction using
the F-test in one-way analysis of variance. Ensemble ML methods, including Support
Vector Machine (SVM), k-Nearest Neighbors (k-NN), Logistic Regression (LR), Random
Forest (RF), Naive Bayes (NB), and Decision Tree (DT), are used to predict HCV infec-
tion. The performance of these ensemble methods is evaluated using metrics such as
accuracy, recall, precision, F1 score, G-mean, balanced accuracy, cross-validation (CV),
area under the curve (AUC), standard deviation, and error rate. Compared with previ-
ous studies, the Bagging k-NN model demonstrated superior performance under over-
sampling conditions, achieving 98.37% accuracy, 98.23% CV score, 97.67% precision,
97.93% recall, 98.18% selectivity, 97.79% F1 score, 98.06% balanced accuracy, 98.05%
G-mean, a 1.63% error rate, 0.98 AUC, and a standard deviation of 0.192. This study
highlights the potential of ensemble ML approaches in improving the diagnosis of
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HCV. The findings provide a foundation for developing accurate predictive methods for
HCV diagnosis.

1 Introduction

The HCV presents a challenge to global health. HCV functions as a pathogen, inducing hep-
atic inflammation that can result in various consequences, such as cirrhosis and hepatocel-
lular carcinoma [1]. The genetic diversity of HCV is remarkable with seven genotypes and
67 subtypes [2]. This diversity is reflected in its distribution across all global regions, includ-
ing North America, Europe, North Africa, Latin America, Southeast Asia, South Asia, Aus-
tralia, West Africa. Middle East, Central Africa, and South Africa. Chronic HCV infection
can be a lasting ordeal that gradually damages the liver over decades [3]. On the hand, acute
HCYV infections often go unnoticed due to their lack of symptoms. The scale of the threat
posed by HCV becomes apparent when considering the numbers associated with it. Every
year around 1.5 million people become affected by HCV according to the World Health Orga-
nization (WHO), it is believed that as 58 million individuals worldwide are currently dealing
with chronic HCV infection [3].

Unfortunately, the HCV situation does not show signs of significant improvement. An
estimation made in 2019 estimated that around 290,000 people died that year worldwide
due to HCV infection, with a rate of 3.9 deaths per 100,000 individuals in 2019 [2]. These
alarming death rates warns the world of the health consequences associated with HCV
infection, and its long-term implications such as hepatocellular carcinoma and cirrhosis.
Therefore, it is crucial to emphasize the need for strategies to diagnose early and treat HCV
infection. The primary way HCV spreads are through contact with blood or blood prod-
ucts [1]. This transmission can occur in situations like substandard healthcare practices
unsafe injections practices, unscreened blood transfusions or injection drug use. Addition-
ally, HCV has the potential to be transmitted vertically from a mother to her offspring dur-
ing the prenatal period or at the time of delivery, as well as through direct physical contact.
Since there is no vaccine for HCV yet [2], taking precautionary measures becomes even more
important. For instance, it is essential to provide care and screening for women while raising
awareness about HCV infection among healthcare workers and the general public. Promoting
sex practices along with ensuring a blood supply and safe injection practices are also crucial
steps to consider. Moreover, special attention should be given to prioritize patients who show
symptoms of HCV infection early on. In the context of diagnosing HCV infection, the pre-
dominant methodology is the identification of antibodies or the detection of viral RNA within
the bloodstream [2].

While antibody tests offer some insights into current infections, they have limitations in
differentiating between chronic infections or confirming viral clearance. RNA tests provide
information about active infections and viral load which can contribute to treatment strate-
gies and monitoring. Evaluating liver function and taking biopsies of the liver seems to be
in figure out how bad the damage is and decide what kind of medicine to use. The treatment
of this deadly virus infection has seen much positive growth in last few years with the intro-
duction of direct-acting antiviral (DAA) drugs that address individual phases in the progres-
sion of this virus [4]. Despite advancements in HCV treatment with acting antiviral (DAA)
drugs, limited access to diagnosis and treatment remains due to high costs, limited availability
and lack of supply [2]. Therefore, there is avid need for more effective, fast and cost-efficient
HCYV early diagnostic techniques. Given the challenges and limitations of the current diag-
nosis methods, there seems to be a strong emphasis on leveraging ML techniques such as
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supervised learning and data mining for classifying HCV patients. The potential of using data
science, specifically data mining and ML must be noted.

Data science now acts as a major contributor in healthcare, specifically in the development
of decision augmentation tools that use classification algorithms of ML for quick and sensi-
tive decision-making. Numerous researches have made tremendous use of these algorithms
for disease detection and early detection. ML tools such as k-NN, DT, SVM, RE NB, LR,
AdaBoost Classifier (ADA), and Extra Tree Classifier (ETC) have established themselves to
hold multifaceted applications in numerous grounds including disease detection. Data mining
is a procedure for excavating meaningful insight from extensive otherwise redundant datasets
and it is another such tool that can be successfully leveraged to surpass the limiting factors
in HCV diagnosis [5]. It can reveal risk factors [6] and biomarkers for HCV infection [7]
and even predict disease progression. These approaches and potentials of data mining hold
tremendous promise in the context of early detection of HCV or any other disease. Data min-
ing techniques can also work with both labeled [8] and unlabeled data [9]. So, data mining
techniques have been used to classify patients of many diseases into categories like “cured”,
“infected” or “healthy” [10-12]. To further enhance predictive accuracy and model robust-
ness, this study employs a bagging-based ensemble approach. Bagging (Bootstrap Aggre-
gating) is chosen due to its ability to reduce variance, mitigate overfitting, and improve gen-
eralization, particularly in medical datasets where data variability can impact classification
performance. By aggregating multiple base learners trained on different subsets of data, bag-
ging enhances stability and ensures that the predictive model does not overly rely on any sin-
gle weak classifier. These models leverage the diversity introduced by bagging to make more
reliable and sensitive predictions, thereby improving early diagnosis and personalized treat-
ment plans.The advanced methodologies of disease detection with data mining offer unprece-
dented advantages over contemporary techniques of HCV detection. They not only can pro-
vide insights that may have been overlooked by conventional methods but also produce more
understandable results and predictions that shed light on the underlying factors contributing
to HCV infection. Furthermore, these techniques enable personalized diagnosis and treat-
ment for HCV, leading to improved outcomes and enhanced quality of life. As a step forward
in that process, this paper puts forth an ensemble ML approach for the precise classification of
suspected HCV infections in patients. By combining the strengths of ML-based data mining
methodologies, particularly through the incorporation of bagging algorithms, demonstrates
that data mining techniques can revolutionize the early diagnosis and management of HCV.

Contributions of the study

The study presented in this paper is underlined by a series of novel contributions to the field,
which underscores not only the robust approach of this work towards handling and analyzing
data but also the methodological advancements that was implemented. The following are the
key novel contributions that this study made:

« To elevate the performance of ML models, this research work innovatively integrated boot-
strap aggregation (Bagging) with multiple ML models including k-NN, RE LR, DT, SVM,
NB, and more. This integration offered a significant enhancement in model reliability and
prediction power.

« This study differed from the traditional Synthetic Minority Over-sampling Technique
(SMOTE) that is used in dealing with class imbalance. Instead, the researchers here uti-
lized Under-sampling and Over-sampling techniques to create a balanced dataset, an

PLOS One | https://doi.org/10.1371/journal.pone.0326488 June 26, 2025 3/ 44



https://doi.org/10.1371/journal.pone.0326488

PLOS One

Comparative investigation of bagging enhanced machine learning for early detection of HCV infections

approach that has shown to be effective in preserving the natural distribution of the data
while addressing the class imbalance issue.

o TIn a departure from typical feature extraction techniques, this study employed the one-
way ANOVA F statistic test to conduct feature selection and feature reduction of the
dataset. This statistically robust method allowed for more precise and valid selection of
features, leading to improved model performance.

« The researchers undertook a rigorous comparison of the works of other researchers in the
same field. This not only helped to position this work within the existing research landscape
but also allowed the researchers to draw valuable insights from their findings to further
enrich their study.

« Significantly, the novel approaches of this study resulted in the highest known accuracy in
HCYV infection prediction compared to the outcomes achieved by other researchers in this
field (with Bagging k-NN at 98.37%). This breakthrough elevates the standards in this area
of research and sets a new benchmark for future work.

The structure of this paper is as follows: Sect 2 provides an overview of the existing litera-
ture, establishing the context for our study. Sect 3 outlines the comprehensive methodology
employed in our research. In Sect 4, we present our results and offer a thorough discussion
of our findings. Finally, Sect 5 concludes the paper, summarizing key points and discussing
implications for future research.

2 Related works

The healthcare industry has incorporated data science, particularly ML, into several applica-
tions. Decision support systems (DSS) in healthcare are created through the utilization of ML
classification algorithms. These algorithms are employed to facilitate and enhance the process
of decision making in the healthcare domain [13,37,38]. Research shows that classification
algorithms are frequently employed for disease diagnosis [10-12].

As high performing algorithms are being used for disease diagnosis, ML methods like
k-NN, DT, SVM, RE, NB, LR, AdaBoost, and Extra Trees (ET) have become essential tools
for analyzing complex health datasets. The k-NN technique stands out as one of the utilized
methods in ML. The DT finds application in areas like character recognition and medical
diagnosis. The SVM effectively separate datasets through nonlinear boundaries. The RF is
a ML algorithm that falls under the category of learning. It is commonly utilized to tackle
classification and regression problems. The NB also stands as a classification algorithm that
is widely used in fields, largely due to its simplicity and practicality. The LR method is also
utilized in both statistical analysis and ML applications. The ADA is a ML method that is
commonly employed for addressing classification tasks. Finally, the Extra Tree Classifier
(ETC) integrates predictions from Decision Trees (DTs) in order to create a batch ML algo-
rithm. Numerous research studies have explored the implementation of the aforementioned
ML algorithms in health data analysis. For instance, In their study, Chang et al. devised a
decision-making framework that employed decision trees (DTs) and genetic algorithms to
effectively classify and identify iris, liver illness, breast carcinoma, and contraceptive method
data, by considering different scenarios. In comparison with studies from earlier researchers
who used Neural Networks (NN) and SVM for the same purpose, Chang et al. demonstrated
that Case Based Fuzzy DTs (CBFDT) yielded superior results [14]. Seera et al. on the other
hand put forth a proposal for an intelligent system that comprised RF models, a Fuzzy Min
Max neural network, and a Classification and Regression Tree (CART). The researchers con-
ducted an investigation into the efficacy of the decision support tool in classifying medical
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data and discovered that it played a significant role in facilitating medical diagnosis [15].
Additionally, Nilashi et al. conducted a study aiming to predict diseases within breast can-

cer related datasets. They employed the fuzzy rule justification technique to accomplish this.
They also successfully developed predictive models by uncovering fuzzy rules and proved that
such ML models can indeed play a significant part in boosting accuracy of disease diagnosis
[16].

Early detection of HCV disease surely plays a role in maintaining health. Numerous studies
in the literature have estimated the prevalence of HCV disease and its associated conditions.
Gower et al. emphasized the importance of conducting further studies to accurately and more
effectively assess the burden of HCV disease [17]. On the other hand, Konerman et al. did a
comprehensive analysis of HCV disease with the aim of identifying patients who are at risk of
acquiring cirrhosis [18]. Additionally, the study conducted by Hashem et al. aimed to assess
the efficacy of ML techniques in predicting fibrosis. Specifically, the researchers explored
the integration of serum biomarkers and clinical data to construct classification models. The
accuracy ranged from 66.3% to 84.4% in predicting fibrosis among patients with HCV using
ML approaches. Therefore, it has been demonstrated that employing ML techniques may suc-
cessfully forecast the likelihood of liver fibrosis resulting from hepatitis C [19]. In another
study, Abd El-Salam et al. conducted research aiming to diagnose the disease through data
analysis and classification techniques using ML algorithms for early forecast of HCV infection
based on checking on cirrhotic patients [20]. The study incorporated a cohort of 4962 indi-
viduals diagnosed with hepatitis C, who were selected from fifteen medical facilities in Egypt
over a period spanning from 2006 to 2017. The findings of the study demonstrated a level of
accuracy up to 68.9%. Moreover, Nandipati et al. put forth a study using a dataset of patients
to identify which specific traits are important, in predicting HCV. Their findings showed that
the k-NN algorithm achieved the accuracy (51.06%) in the multi class category while the RF
algorithm achieved an accuracy of 54.56% in the binary class category [21].

Another important area of research is predicting patients’ response to HCV treatment
through data classification. Previous studies have utilized methods such as Associative Clas-
sification, ANN and DT to develop classification models for this purpose [22]. During the
research work by ElHefnawi, ANN and DT models demonstrated accuracies of 76% and 80%
respectively [23]. Moreover, the analysis conducted by Neukam et al. involved the exami-
nation of demographic factors. The data involved in this study was acquired from cohorts
of HIV/HCV coinfected people in Germany who were subject to prospective monitoring at
an infectious disease monitoring center. In the study population, the researchers used both
binary logistic univariate and stepwise multivariate logistic regression analyses to show that
the HCV viral genotype, rs12979860 genotype, and baseline HCV RNA load were all linked
to SVR (sustained virologic response). The participants were separated into two groups arbi-
trarily, with a ratio of 60/40 using software. This study involved 521 patients in total. It offered
a dependable pre-treatment tool that consists of three blood parameters. The purpose of the
work from Neukam et al. (2012) was to identify individuals who're likely to respond to Peg
IFN plus RBV treatment, among patients, with HIV/HCV coinfection [24]. As well as, Met-
wally and AbuSharekh (2018) conducted a study that presented a novel approach utilizing
artificial neural networks (ANN) for the purpose of diagnosing the hepatitis virus. Their work
described the various factors that have the potential to influence the physical performance
of patients. The examination of the gathered data unveiled that the artificial neural network
(ANN) model demonstrates a diagnostic accuracy rate of 93% for potential patients [25]. In
a recent study, Syafaah et al. put out an approach that employs ML classification techniques
for the purpose of detecting HCV sickness [26]. With NN algorithms, they were able to attain
a 95.12% accuracy rate with success. In addition, Ghazal et al. devised an intelligence system
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that utilizes ML algorithms to assist in the diagnosis of hepatitis C [27]. The system demon-
strated a high level of accuracy, obtaining an accuracy rate of 97.9% in the staging of HCV.
However, utilizing a biochemical test dataset and ML, Ferdib-Al-Islam and Akter classified
HCYV with an accuracy of 95% employing LR and SVM [28]. Butt et al. proposed a method
that uses ML to forecast the human Hepatitis C infection stage by utilizing an ANN algo-
rithm [29]. During evaluation, this diagnostic system achieved a precision rate of 94.44%.
Also, Akella and Akella utilized ML algorithms to estimate fibrosis prevalence in patients with
hepatitis C achieving an accuracy rate of 81%, in fibrosis estimation [30]. Moreover, the algo-
rithm developed by Barakat et al. employed ML to generate predictions regarding fibrosis in
pediatric patients diagnosed with hepatitis C [31]. The researchers utilized the RF algorithm
to perform data purification and estimate fibrosis levels subsequent to the completion of the
cleansing procedure. Bhingarkar also utilized ML techniques to predict HCV with a 94.3%
accuracy rate using the k-NN method [32]. A study from Safdari et al. (2022), in computa-
tional health science took an approach to diagnose HCV. They started by preprocessing the
data extracted features and finally implemented various ML techniques. Data preprocessing
played a role in cleaning and preparing the data for ML algorithms while feature extraction
helped simplify the complexity of the data by focusing on essential elements. Once their data
was well prepared, Safdari et al. (2022) employed ML techniques. They achieved an accu-
racy of 95.67% using both LR and k Nearest Neighbors (k-NN). NB yielded a success rate of
92.43% while SVM achieved 94.59%. The DT method scored an accuracy rate of 96.75%. The
RF algorithm outperformed them all with an accuracy of 97.29% [33].

3 Proposed methodology

This section illustrates the methodology used to evaluate method efficiency in this study. Fig 1
presents an illustration of the methodology utilized. The figure displays a flowchart outlin-
ing a method, for classifying HCV infections in patients using ensemble ML. The flowchart
illustrates the stages involved including data preprocessing, method training, prediction and
evaluation. At the outset, a dataset that contains information about patients with hepatitis

C is segmented into subsets with proportions of 80 percent and 20 percent, respectively, for
the purposes of training and testing. The training and testing subset undergoes techniques
such as feature engineering, handling missing values, undersampling, oversampling as well
as feature reduction to create a balanced dataset. This balanced dataset is then utilized for the
purpose of training six ML methods that utilize Bagging (bootstrap aggregation) with base
classifiers; SVM, RE LR, k-NN, NB and DT. Once trained, these methods are applied to the
testing subset to generate predicted values. These predicted values are then compared against
the values using method evaluation metrics, such as accuracy, cross validation (five-fold),
precision, recall, Selectivity, F1-score, balanced accuracy, g-mean, standard deviation and
error rate. By comparing these results thoroughly, it was determined which method performs
best for the classification task. Comparison with previous works in the same field was also
conducted.

As outlined in Algorithm 1, the first step in the process involves importing the dataset
from a CSV file named HCV-data.csv. This dataset contains relevant attributes for HCV clas-
sification. The data is loaded using Python’s pandas library to facilitate subsequent prepro-
cessing and analysis. The second step is to conduct an exploratory data analysis (EDA) to gain
insights into the dataset’s structure and distribution. This includes displaying the dataset’s
shape, size, and summary statistics, such as mean, median, and standard deviation of numer-
ical features. Additionally, the distribution of the target variable is examined to understand
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Algorithm 1. Performance comparison of bagging enhanced ML methods on HCV dataset.

1: Input: A data set of suspected HCV infections described by
m attributes and n instances

: Output: A figure and a bar chart comparing the performance

N

of various bagging enhanced ML methods based on various
metrics

Begin

1. Import Data Set

Load data from ”“HCV data.csv”

2. Dataset Understanding

Display the shape, size, and summary statistics of the data
Display the distribution of the target variable (HCV
Category)

0 3 o U b W

9: 3. Feature Engineering
10: for each feature in data do

11: if feature is categorical then

12: Convert feature into numerical values using one-hot
encoding

13: else

14: Normalize feature using min-max scaling

15: end if

16: end for
17: 4. Handling Missing Values
18: for each feature in data do

19: if feature has missing values then
20: Replace missing values with the mode of the feature
21: end if

22: end for

23: 5. Feature Selection and Reduction

24: Apply ANOVA F-statistic test to choose the attributes that
are most pertinent to the target variable

25: 6. Get Balanced Dataset

26: 1f data has class imbalance then

27: Use oversampling and undersampling to balance the data
set

28: end if

29: 7. Split Data Set

30: Split data into training data (80%) and testing_data (20%)
using stratified sampling

31: 8. Initialize Methods

32: methods = [Bagging SVM, Bagging RF, Bagging LR, Bagging
KNN, Bagging NB, Bagging DT]

33: 9. Train and Evaluate Methods

34: for each method in methods do

35: Fit method on training data
36: Predict target variable on testing data
37: Calculate and display the following metrics

38: end for
39: 10. Return HCV (Active or Inactive)
40: End
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Fig 1. Proposed methodology.
https://doi.org/10.1371/journal.pone.0326488.9001

the representation of each HCV category, which is essential for designing an effective classi-
fication approach. The third step is feature engineering, which involves transforming categor-
ical variables into numerical representations using one-hot encoding. This step is crucial for
enabling machine learning models to process categorical data effectively. Moreover, numerical
features are normalized using min-max scaling to ensure that all features contribute equally
to the model’s learning process, preventing any feature from dominating due to differences in
scale. The fourth step addresses missing values within the dataset. Missing values are imputed
using the mode of the respective feature, ensuring that missing data does not introduce bias
or cause errors during model training. This approach is suitable when missing values are rel-
atively few and not randomly distributed. The fifth step involves feature selection and dimen-
sionality reduction to enhance model efficiency and interpretability. The ANOVA F-statistic
test is applied to identify the most relevant features with a strong statistical relationship to the
target variable. Selecting only the most informative attributes helps improve model perfor-
mance by reducing noise and computational complexity. The sixth step ensures data balance
by checking for class imbalances among HCV categories. An imbalanced dataset can lead to
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biased models that favor majority classes while performing poorly on minority classes. If an
imbalance is detected, oversampling and undersampling techniques are employed. Oversam-
pling increases the instances of minority classes, while undersampling reduces instances of
majority classes, leading to a more balanced and fair representation of all categories.The sev-
enth step is to split the dataset into training and testing subsets using stratified sampling. A
stratified approach ensures that each subset maintains the same proportion of HCV categories
as in the original dataset, preventing bias in model training. An 80-20 split is chosen for train-
ing and testing, meaning that 80% of the data is allocated for model training, while 20% is
reserved for performance evaluation. This ratio is selected based on a trade-oft between model
generalization and training stability. A higher training proportion (e.g., 90-10) lead to overfit-
ting, where the model learns patterns specific to the training data but fails to generalize well
to unseen instances. Conversely, a lower training proportion (e.g., 70-30 or 60-40) reduces
the amount of data available for learning, potentially leading to underfitting and poor perfor-
mance. The 80-20 ratio strikes a balance, providing sufficient data for training while ensuring
a reliable evaluation set.The eighth step initializes machine learning models by implementing
a list of bagging-based ensemble methods. These include Bagging SVM, Bagging RF, Bagging
LR, Bagging k-NN, Bagging NB, and DT. Bagging is used to enhance model robustness by
training multiple weak learners on different bootstrap samples and aggregating their predic-
tions to reduce variance and improve accuracy. The ninth step involves training and evaluat-
ing each machine learning method. This is achieved by iterating through the initialized mod-
els and performing the following actions: fitting the model on the training data, predicting
target labels on the test data, and computing various performance metrics. The metrics used
for evaluation include accuracy, cross-validation score (CV), precision, recall, specificity, bal-
anced accuracy, geometric mean (G-mean), error rate, and F1-score. These metrics provide

a comprehensive assessment of each model’s effectiveness in handling the classification task.
The tenth and final step compares the results of different machine learning models. A com-
parative analysis is performed using a table and bar chart to visualize and compare the per-
formance of each model across multiple metrics. This allows for a clear and intuitive assess-
ment of which models perform best in terms of accuracy, robustness, and class balance. The
final table and bar chart serve as a reference for selecting the most suitable model for HCV
classification.

Implementations of the classifications methods

This subsection elaborates on the utilization of classification ML methods used in this

study. The ML methods used here are SVM, k-NN, LR, RE, NB, and DT which are formally
acknowledged as supervised ML methods. They were operationalized to categorize pre-
existing data in a medical dataset. The collected dataset was judiciously divided into a training
segment (comprising 80% of the total data) and a testing segment (accounting for the resid-
ual 20%). Following this partitioning, each classification model was subjected to a learning
process utilizing balanced training data. Upon the completion of the learning phase, the clas-
sifier proceeded to categorize patients, deriving this classification from the records contained
within the testing dataset. The previously described test data was then used to assess the clas-
sifiers” effectiveness. Using several measures, the performance quotient of every model was
calculated. Subsequently, leveraging Python version 3, the evolution of these models was facil-
itated by diverse classifiers. The specifics of these have been described in this study report

in the subsequent sections, in addition to this, an integral component of the study involved
the utilization of Bagging, a meta-algorithm, in combination with six distinctive algorithms.
These comprise the SVM, Gaussian NB, DT, RE, LR, and the k-NN algorithm. Each algorithm
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imparts a unique facet to the overall model, providing an exhaustive and meticulous approach
towards data classification.

Bagging (Bootstap Aggregation). Bagging, an abbreviation for Bootstrap Aggregating,
constitutes a potent technique, instrumental in enhancing the precision and reliability of a
predictive model, while retaining applicability to a broad spectrum of model types. Bagging
operates on the principle of generating multiple derived subsets from the principal dataset via
a method of random sampling with replacement. Each of these discrete subsets is employed
to educate an individual model, with the ultimate prediction being an aggregate of the predic-
tions rendered by every model. Bagging promotes model robustness by reducing the variance
and potential overfitting, thereby enhancing the overall performance of the composite model.

Let D be the original training set of size n, and let Q(X, Y| D) be a probability distribu-
tion that picks a training sample (x;, y;) from D uniformly at random. Then, sample m subsets
of data Dy, D, ..., D,, can be sampled from Q", where each subset has the same size # as the
original set and is sampled with replacement.

For each subset Dj, a model A; is trained on it using some base learning algorithm, such as
a decision tree (DT). The model k; can be a classifier or a regressor, depending on the task.

« The final prediction for a new input x is obtained by averaging the predictions of all the
models:

h(x):%ihj(x). (1)
j=1

« If the models are classifiers, majority voting can be used instead of averaging:
h(x) =mode(h;(x), ha(x), ..., B (x)). (2)

Though frequently utilized in the context of DTs, Bagging maintains its versatility and can
be extended to a myriad of model types. This includes, but is not limited to, logistic regres-
sion (LR), random forests (RF), and support vector machines (SVMs). Through the amalga-
mation of various model predictions, Bagging has the potential to curtail model variance and
augment its overall capacity for accurate generalization.

Bagging decision tree. In Bagging with DT, a random sampling with replacement tech-
nique is used to train several DTs on distinct portions of the training data. The final result is
generated by averaging the predictions of all the trees, each of which is trained on a distinct
subset of the data. This enhances the model’s accuracy and lessens overfitting.

Bagging with DT has been used in various applications such as credit scoring, breast can-
cer classification, network intrusion detection [39], and diabetes risk prediction. In these
applications, bagging with DT has been shown to improve the accuracy of the models and
reduce overfitting.

Explanation of each step in the Fig 2 flowchart:

1. Start: This is the starting point of the Bagging process.

2. Split the training data into N subsets using random sampling with replacement: In
this stage, random sampling with replacement is used to split the training data into N
subsets, or samples. Since it’s a replacement dataset, certain data points may be repeated
in each subset while others may be omitted. Each subset is formed by randomly choos-
ing data points from the original dataset. There is variability among the subsets thanks
to this random picking.
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Split the training data into N subsets using random sampling with replacement

Train a DT on each subset using the same learning algorithm
Make predictions for new data using each DT

Average the predictions of all DTs to get the final output

Fig 2. Flowchart of bagging DT.

https://doi.org/10.1371/journal.pone.0326488.9002

3. Train a Decision Tree (DT) on each subset using the same learning algorithm: For
each of the N subsets created in the previous step, a Decision Tree (DT) is trained using
the same learning algorithm. This means that each subset is used to train an individual
Decision Tree, but all Decision Trees are built using the same algorithm.

4. Make predictions for new data using each DT: Once the N Decision Trees have been
trained, they are used to make predictions for new or unseen data. Each Decision Tree
generates a unique prediction based on the input data provided.

5. Average the predictions of all DTs to get the final output: In this step, the final output
or prediction is produced by averaging or combining the predictions from each individ-
ual Decision Tree. This averaging reduces variance and improves the overall accuracy of
the prediction. For classification tasks, this could involve taking a majority vote, while
for regression tasks, it involves averaging the numerical predictions.

6. End: This is the end of the Bagging process.

Bagging support vector machine. Bagging with SVM is a widely used and effective tech-
nique to improve the accuracy and stability of SVM models, especially for high-variance and
complex problems such as classification or regression. It is an ensemble learning technique
that integrates the predictions of multiple SVM models trained on different subsets of the
same dataset using bootstrap sampling.

Explanation of each step in the Fig 3 flowchart:

1. Initialize Ensemble: Initialize an ensemble to store multiple Support Vector Machine
(SVM) models.

2. Fori=1to N (Number of SVMs): This loop runs N times, where N is the number of
SVM models to be trained.

3. Sample Dataset with Bootstrap Sampling: In each iteration, the training dataset is
sampled with replacement using bootstrap sampling. This creates a new subset of the
training data for training each SVM model.
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Initialize Ensemble

Fori=1 to N (Number of SVMs)

Sample Dataset with Bootstrap Sampling

Train an SVM on the Sampled Dataset

Store the SVM 1n the Ensemble

End of Loop

l

Make Predictions for New Data

Aggregate Predictions

|

End

Fig 3. Flowchart of bagging SVM.
hitps://doi.org/10.1371/journal.pone.0326488.9003
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. Train an SVM on the Sampled Dataset: Train an SVM model on the sampled dataset

from step 3. Each SVM is trained on a different subset of the data.

. Store the SVM in the Ensemble: Add the trained SVM model to the ensemble of mod-

els.

. End of Loop: Repeat steps 3—-5 until N SVM models have been trained.
. Make Predictions for New Data: Use the ensemble of SVM models to make predictions

for new or unseen data points.

. Aggregate Predictions: Aggregate the predictions made by each SVM model. Tech-

niques like voting (for classification tasks) and averaging (for regression tasks) can be
used to combine the predictions.

. End: End of the Bagging process with SVM.

Bagging random forest. The application of Bagging in the context of RE a celebrated
methodology that draws upon both Bagging and DTs. Under this scheme, the foundational
methods are DT, each trained on distinctive feature and instance subsets obtained via boot-
strap sampling. The integration of Bagging with RF constitutes a frequently used and effica-
cious approach for amplifying the precision and robustness of DT methods. This technique
is particularly valuable when addressing issues characterized by high variance and complex-
ity, such as classification or regression tasks. The standard procedure involves training DTs
on distinct subsets of features and instances, a process facilitated through bootstrap sam-
pling. The collective decision is then obtained either through majority voting or averaging the
predictions. This strategy is capable of tackling a wide range of problems, including but not
limited to, classification, regression, and clustering.

Explanation of each step in the Fig 4 flowchart:

10.

. Initialize Random Forest: Initialize a Random Forest ensemble to store multiple Deci-

sion Tree (DT) models.

. For i=1to N (Number of DTs): This loop runs N times, where N is the number of DT

models to be created.

. Sample Features with Bootstrap Sampling: In each iteration, sample a subset of fea-

tures from the dataset with replacement using bootstrap sampling. This ensures that
different features are used to train each DT model.

. Sample Instances with Bootstrap Sampling: In each iteration, also sample a subset of

instances (data points) from the dataset with replacement using bootstrap sampling.
This creates a unique training dataset for each DT.

. Train a DT on the Sampled Dataset: Train a DT model on the sampled dataset, which

consists of the selected features and instances.

. Store the DT in the Random Forest: Add the trained DT model to the Random Forest

ensemble.

. End of Loop: Repeat steps 3-6 until N DT models have been trained.
. Make Predictions for New Data: Use the Random Forest ensemble to make predictions

for new or unseen data points. Each DT in the ensemble will provide its own prediction.

. Aggregate Predictions: Aggregate the predictions made by each DT model. Methods

such as averaging (for regression tasks) or majority voting (for classification tasks) can
be used to combine the predictions.
End: End of the Bagging process with Random Forest.
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A\
Y

Initialize Random Forest
Fori=1 to N (Number of DTs)

Sample Features with Bootstrap Sampling

Sample Instances with Bootstrap Sampling

A\
Train a DT on the Sampled Dataset

Store the DT in the Random Forest

End of Loop
Make Predictions for New Data

Y

Aggregate Predictions

y

Fig 4. Flowchart of bagging RF.
https://doi.org/10.1371/journal.pone.0326488.g004

Bagging logistic regression. LR is a straightforward and speedy probabilistic classifier
that rests on the assumption of feature independence and their linear relation to the log-
odds of a binary outcome variable. The methodology of Bagging in LR involves training dis-
tinct LRs on varying instance subsets, a process facilitated through bootstrap sampling. The
collective decision is then determined through majority voting or the averaging of predictions.
Explanation of each step in the Fig 5 flowchart:

1. Initialize Logistic Regression: Initialize a Logistic Regression (LR) method.
2. Fori=1to N (Number of LRs): This loop runs N times, where N is the number of LR
models to be created.
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Initialize Logistic Regression

Fori=1to N (Number of LRs)

Sample Instances with Bootstrap Sampling

Train an LR on the Sampled Dataset

Store the LR in the Ensemble

End of Loop

Make Predictions for New Data

Aggregate Predictions

End

Fig 5. Flowchart of bagging LR.
hitps:/doi.org/10.1371/journal.pone.0326488.9005

3. Sample Instances with Bootstrap Sampling: In each iteration, sample a subset of
instances (data points) from the dataset with replacement using bootstrap sampling.
This creates a new dataset for training each LR model.

4. Train an LR on the Sampled Dataset: Train a Logistic Regression model on the sam-
pled dataset.
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5. Store the LR in the Ensemble: Add the trained LR model to the ensemble of Logistic
Regression methods.

6. End of Loop: Repeat steps 3-5 until N Logistic Regression models have been trained.

7. Make Predictions for New Data: Use the ensemble of LR models to make predictions
for new or unseen data points.

8. Aggregate Predictions: Aggregate the predictions made by each LR model. Techniques
such as averaging (for regression tasks) or majority voting (for classification tasks) can
be used to combine the predictions.

9. End: End of the Bagging process with Logistic Regression.

Bagging Gaussian Naive Bias. Gaussian NB is a classifier that is both straightforward
and swift in its operation. This probabilistic classifier operates under the assumption of fea-
ture independence, with each feature following a normal distribution when considered in
light of the class label. Employing Bagging with Gaussian NB is an uncomplicated process,
wherein each Gaussian NB method is trained on a unique subset of instances derived through
bootstrap sampling. The final predictions are then synthesized through majority voting or
averaging mechanisms.

Explanation of each step in the Fig 6 flowchart:

1. Initialize Gaussian NB Classifier: Initialize a Gaussian Naive Bayes (NB) classifier.

2. Fori=1to N (Number of NBs): This loop runs N times, where N is the number of
Gaussian NB classifiers to be created.

3. Sample Instances with Bootstrap Sampling: In each iteration, sample a subset of
instances (data points) from the dataset with replacement using bootstrap sampling.
This creates a unique dataset for training each Gaussian NB model.

4. Train a NB on the Sampled Dataset: Train a Gaussian NB model on the sampled
dataset from step 3.

5. Store the NB in the Ensemble: Add the trained Gaussian NB model to the ensemble of
classifiers.

6. End of Loop: Repeat steps 3-5 until N Gaussian NB classifiers have been trained.

7. Make Predictions for New Data: Use the ensemble of Gaussian NB models to make
predictions for new or unseen data points.

8. Aggregate Predictions: Aggregate the predictions made by each Gaussian NB model.
Techniques such as majority voting (for classification tasks) or averaging (for regression
tasks) can be used for this purpose.

9. End: End of the Bagging process with Gaussian NB classifiers.

Bagging k-nearest neighbors

The k-NN algorithm is an intuitively appealing non-parametric classifier. It works on a princi-
ple of proximity, associating a new instance with the class most frequent among its ’k’ nearest
neighbors in the feature space [43]. Enriching the k-NN approach with Bagging involves cre-
ating multiple k-NN methods, each trained on a distinct subset of instances procured through
bootstrap sampling. The collective predictions from these methods are consolidated through a
process of majority voting or averaging, leading to the final decision.
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Initialize Gaussian NB Classifier

Fori=1 to N (Number of NBs)

Sample Instances with Bootstrap Sampling

Train a NB on the Sampled Dataset

Store the NB in the Ensemble

End of Loop

Make Predictions for New Data

Aggregate Predictions

End

Fig 6. Flowchart of bagging NB.
hitps:/doi.org/10.1371/journal.pone.0326488.9006

Explanation of each step in the Fig 7 flowchart:

1. Initialize k-NN Classifier: Initialize a k-Nearest Neighbors (k-NN) classifier.
2. Fori=1to N (Number of k-NNs): This loop runs N times, where N is the number of
k-NN classifiers to be created.
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|

Initialize k-NN Classifier

Fori=1 to N (Number of k-NNSs)

Sample Instances with Bootstrap Sampling

Train a k-NN on the Sampled Dataset

Store the k-NN in the Ensemble

End of Loop

Make Predictions for New Data

Aggregate Predictions

End

Fig 7. Flowchart of bagging k-NN.
hitps:/doi.org/10.1371/journal.pone.0326488.9007

3. Sample Instances with Bootstrap Sampling: In each iteration, sample a subset of
instances (data points) from the dataset with replacement using bootstrap sampling.
This creates a new dataset for training each k-NN model.

4. Train a k-NN on the Sampled Dataset: Train a k-NN model on the sampled dataset
from step 3.
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5. Store the k-NN in the Ensemble: Add the trained k-NN model to the ensemble of
classifiers.

6. End of Loop: Repeat steps 3-5 until N k-NN classifiers have been trained.

7. Make Predictions for New Data: Use the ensemble of k-NN models to make predic-
tions for new or unseen data points.

8. Aggregate Predictions: Aggregate the predictions made by each k-NN model. Methods
such as averaging (for regression tasks) or majority voting (for classification tasks) can
be used to combine the predictions.

9. End: End of the Bagging process with k-NN classifiers.

Dataset description

The University of California, Irvine (UCI) ML Repository provided access to the HCV
dataset, which was utilized in this study [34]. The said dataset encapsulates both clinical labo-
ratory results and demographic details for a sample size of 615, inclusive of blood donors and
hepatitis C patients.

Each individual record within this dataset is characterized by 12 specified variables. These
variables pertain to a range of medical tests and demographic indicators. The medical tests
encompass the measurement of aspartate aminotransferase (AST), alanine aminotransferase
(ALT), albumin (ALB), bilirubin (BIL), cholesterol (CHOL), creatinine blood test (CREA),
choline esterase (CHE), y-glutamyl-transferase (GGT) , and total protein test (PROT). As
for demographic traits, the dataset also includes variables for age and sex. Blood donors, sus-
pected blood donors, people with HCV, fibrosis, and cirrhosis are the five possible diagnos-
tic outcomes included in the dataset’s final analysis and diagnosis. The spectrum of HCV
diagnoses among patients ranges from asymptomatic chronic HCV infection to end-stage
liver cirrhosis necessitating liver transplantation (LTx). Following the preprocessing phase,
the dataset comprised 615 instances. The details of the 12 variables are outlined in Table 1.
For every entry in the dataset, there were ten standard diagnostic test results for liver dis-
orders. The patients ranged in age from 19 to 77 years, with a mean age of 47.40 £ 10.05
years.

Table 1. Dataset variables described (in Raw Form).

Variables Interpretation Data class

1. Age The patients’ age in years Integer

2. Sex Gender distribution among patients Categorical

3. ALB Blood albumin content Real

4. ALP Alkaline phosphatase enzyme level in blood Real

5. ALT Alanine aminotransferase level indicating liver Real
damage

6. AST Aspartate aminotransferase level found in liver and ~ |Real
muscles

7.BIL Bilirubin level in the blood Real

8.CHE Serum cholinesterase level reflecting liver function Real

9. CHOL Cholesterol and triglycerides level in the blood Real

10. CREA Creatinine level measuring kidney function Real

11. GGT Gamma-glutamyl transferase level related to liver Real
disease

12. PROT Total protein level in the blood Real

https://doi.org/10.1371/journal.pone.0326488.t1001
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The classification outcome was the disease category. Patients with hepatitis (3.90%),
fibrosis (3.41%), and cirrhosis (3.41%) made up the majority of the study participants, fol-
lowed by those who donated blood (86.67%) and probable blood donors (1.14%). The goal
of the dataset was to distinguish between healthy people and hepatitis patients, hence the
outcome variable was categorized as a true/false value. This binary variable might either be
non-hepatitis (including blood donors and suspected blood donors) or hepatic (at three dif-
ferent stages) for maximum performance. After feature reduction, correlations were com-
puted between the outcome variable and all clinical factors in the development of supervised
learning algorithms. The correlation coefficient is a useful statistic for studying the association
between independent variables and the categories they describe.

Correlation of dataset variables. A heat map is a graphical representation of data where
the values of a matrix are encoded by colors. A heat map can reveal patterns or correlations in
the data by visualizing the relative differences between the values.

The heat map, displayed in Fig 8, displays the association between several variables in this
dataset. There was a 1:4 split between the training and testing portions of the dataset. The
dataset was unbalanced, as reflected from the arrangement of patients’ records. To address
this imbalance, a combination of Oversampling and Undersampling techniques was employed
instead of the widely used SMOTE algorithm. After the application of these techniques,
the newly processed data was ready for use. To prevent data leakage and reduce the risk of
method overfitting, these techniques were applied solely to the training set. Furthermore, to
enhance the method’s performance given the class imbalance, ensemble ML methods were
utilized, specifically bagging. This approach helps to improve the preciseness of ML algo-
rithms by reducing variance and helping to avoid overfitting.

In this case, Fig 8 shows the correlation matrix of the independent variables in the HCV
dataset. These variables include measures such as albumin (ALB), alkaline phosphatase (ALP),
alanine aminotransferase (ALT), aspartate aminotransferase (AST), cholinesterase (CHE),
creatinine (CREA), gamma-glutamyl transferase (GGT), and total protein (PROT). The cor-
relation coefficients range from -1 to 1, indicating the strength and direction of the linear
relationship between pairs of variables.

Analysis of Correlations:

1. Strongest Positive Correlation:

« ALB and PROT: The strongest positive correlation is between ALB (Albumin) and
PROT (Total Protein), with a correlation coefficient of 0.55. This suggests a moderate
to strong linear relationship where higher levels of albumin are associated with higher
total protein levels in the blood.

2. Strongest Negative Correlation:

o AST and CHE: The strongest negative correlation is between AST (Aspartate Amino-
transferase) and CHE (Cholinesterase), with a correlation coefficient of —0.21. This
implies that as the level of AST increases, the level of CHE tends to decrease, though
the relationship is relatively weak.

3. Other Notable Correlations:

o GGT and AST: GGT (Gamma-Glutamyl Transferase) and AST have a positive corre-
lation of 0.49, indicating a moderate positive relationship.

« ALB and CHE: ALB and CHE have a positive correlation of 0.38, suggesting that as
albumin levels increase, cholinesterase levels also tend to increase moderately.

o ALP and GGT: There is a moderate positive correlation of 0.42 between ALP (Alka-
line Phosphatase) and GGT, indicating that higher levels of ALP are associated with
higher levels of GGT.
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Fig 8. Correlation of dataset variables.

https://doi.org/10.1371/journal.pone.0326488.9008

4. Weak and Negligible Correlations:
« Many pairs show very weak correlations, close to zero, indicating little to no linear
relationship. For instance, the correlation between CREA and most other variables
(like ALT, AST, and GGT) is close to zero, with coefficients ranging from -0.012 to
0.15.

Feature engineering

In the process of refining the methodology, this study incorporated a feature selection and
reduction technique by utilizing one-way ANOVA-F statistic testing. This strategy of feature
reduction is an integral aspect of data preprocessing, which intends to determine a subset of
suitable features for subsequent application in the construction of methods. Feature reduc-
tion has multiple goals, including the simplification of methods, enhancement of data min-
ing performance, and the provision of clean and interpretable data. In the realm of big data
mining, the significance of feature selection is particularly emphasized due to the formidable
challenges and opportunities associated with high-dimensional and intricate data. Among
the various feature engineering techniques applicable for numerical input data and categori-
cal target variables, one-way ANOVA-F statistic has gained substantial prominence. ANOVA,
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or analysis of variance, is a statistical test that ascertains the differences in the means of dis-
tinct groups of a variable. The F-statistic gauges the ratio of between-group variance to the
within-group variance.

The F-statistic indicates a greater disparity between group means, signifying that the corre-
sponding feature has a stronger association with the target variable. The ANOVA F-statistic is
particularly effective in ranking features based on their significance, facilitating the selection
of the most relevant attributes for data analysis and classification.In this study, the ANOVA
F-test was applied to assess the statistical relevance of each feature concerning the identifi-
cation of HCV-infected patients. Features that exhibited minimal variation across different
HCV categories, and therefore had low F-statistics, were deemed irrelevant to the classifi-
cation task. As a result, attributes such as age, sex, bilirubin, and cholesterol were removed,
as their inclusion did not contribute meaningfully to distinguishing between HCV-infected
and non-infected individuals.The elimination of these attributes aligns with existing clinical
research. For instance, Fernandez Salazar et al. reported that hepatic steatosis, a liver condi-
tion frequently observed in chronic hepatitis C patients, does not correlate with age, sex, or
cholesterol levels [35].Additionally, there is no established clinical linking HCV infection to
demographic variables such as age, sex, or physiological markers like BMI, blood pressure,
bilirubin, and cholesterol. Given that these attributes have not been recognized as signifi-
cant diagnostic indicators of HCV infection in medical literature, their exclusion ensures that
the model focuses on features with stronger predictive power. Furthermore, in the current
dataset, the results of the ANOVA F-test reaffirmed this finding by demonstrating that age,
sex, bilirubin, and cholesterol had negligible impact on the classification of HCV infection.
Their low F-statistics suggested that these attributes did not provide discriminative informa-
tion, making their removal beneficial for improving model efficiency and reducing potential
noise in the data. Consequently, only the most clinically relevant and statistically significant
features were retained, ensuring that the predictive model is both data-driven and aligned
with established medical knowledge.

Dataset features’ significance based on P-values acquired from ANOVA-F test. The
Fig 9 illustrates the significance of various features based on their p-values, with a signif-
icance threshold set at 0.05. Features with p-values above this threshold are considered
not significant and are highlighted in red, indicating their removal from the dataset. These
removed features include Age (p-value: 0.486), Sex (p-value: 0.181), Bilirubin level (BIL)
(p-value: 0.059), and Cholesterol and triglycerides level (CHOL) (p-value: 0.364). On the
other hand, features with p-values below the threshold, deemed significant and shown in
green, are retained for further analysis. These retained features are Blood albumin content
(ALB)

(p-value: 0.000), Alkaline phosphatase enzyme level (ALP) (p-value: 0.043), Alanine amino-
transferase level (ALT) (p-value: 0.046), Aspartate aminotransferase level (AST) (p-value:
0.000), Serum cholinesterase level (CHE) (p-value: 0.000), Creatinine level (CREA) (p-value:
0.037), Gamma-glutamyl transferase level (GGT) (p-value: 0.000), and Total protein level
(PROT) (p-value: 0.013). The bar chart effectively differentiates between significant and
non-significant features, aiding in the selection of relevant variables for subsequent analysis.
However, the exclusion of demographic factors such as age and sex raises an important con-
sideration regarding potential biases within the dataset. While these attributes were found to
be statistically insignificant in distinguishing between HCV-infected and non-infected indi-
viduals, their lack of significance could stem from an imbalanced dataset, where the distribu-
tion of age and gender is not representative of a broader population.
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Fig 9. P- P-value for different features.
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Data refinement process

The data excavated from patient records frequently lack comprehensive clarity, necessitating
a thorough cleansing process as a critical precursor to ML method development. The pre-
processing of data consists of translating raw data into a coherent and interpretable format.
This ensures a uniform value range across the dataset and establishes comparability amongst
features. Therefore, the raw data underwent normalization, restructuring it into appropri-
ate forms amenable to disparate ML estimators. Initially, the ID column was expunged. Any
instances of missing values within the dataset were supplanted by the MODE value of each
corresponding variable. To address the issue of varying measuring units, the process of data
normalization was performed using the StandardScaler function. This function is designed to
scale variables to a unit variance.

In data mining and ML, class imbalance occurs when there is an unequal distribution of
data points between different classes. This inequity typically arises when one class contains a
disproportionately large number of instances compared to the other(s). The term “majority
class” is used to describe the more common category, whereas “minority class” describes the
rarer category. In the context of data refinement or preprocessing, class imbalance can pose
significant challenges. The goal of many ML algorithms is to achieve the highest possible level
of accuracy, which can result in a favoritism for the more common class. As a consequence
of this, the performance of these algorithms is frequently subpar when applied to the minor-
ity class. In the data mining field in research, class imbalance is addressed during the data
refinement process, which involves preprocessing the data to improve the quality and relia-
bility of the subsequent analysis. In the context of this study, an imbalance was present in the
dataset, indicating that a majority of records were aligned to a single category, as depicted in
Fig 10. Classification tasks with such skewed datasets typically exhibit a bias towards larger
categories.
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Fig 10. Distribution of HCV presence in dataset before data refinement (Oversampling and Undersampling).

https://doi.org/10.1371/journal.pone.0326488.g010

To counteract this, both oversampling and undersampling techniques were applied to the
HCV dataset, potentially enhancing the performance fluency of various classifiers ML algo-
rithms. In essence, oversampling helps to remedy the imbalance by increasing the represen-
tation of the underrepresented minority class, as illustrated in Fig 12. This is accomplished
by either producing artificial cases for the data or simply replicating existing examples. On
the contrary, undersampling reduces the samples from the majority class to achieve a bal-
ance between classes. As depicted in Fig 11, this procedure ensures that the smaller category
receives adequate representation during the classification process, while also preventing the
method from being overwhelmed by the larger category. By using both oversampling and
undersampling techniques, this study achieves a balanced dataset that yields more accurate
and unbiased results.

HCV Presence

Number of People
& & 3 3

g

HCV Present HCV Not Present
HCV Status

Fig 11. Distribution of HCV presence in dataset after undersampling.
https://doi.org/10.1371/journal.pone.0326488.9011
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Fig 12. Distribution of HCV presence in dataset after oversampling.

https://doi.org/10.1371/journal.pone.0326488.9012

Oversampling. Oversampling is a resampling technique that alters the distribution pat-
tern of a variable within the dataset by synthetically augmenting the total number of observa-
tions that possess a specific value or a range of values for that variable. Oversampling is fre-
quently employed to address imbalanced classification problems, where a particular class is
considerably underrepresented in the data compared to another class. As depicted in Fig 13,
the steps of oversampling are as follows:

1. Specify the variable and the value or the range of values that require oversampling. This
is typically the target variable and the minority class label.

2. Establish the preferred ratio or proportion of the oversampled value or range of values
to the other values. This can depend on factors such as equalizing the class distribution
or attaining a certain performance measure.

3. Randomly choose observations from the original dataset that have the oversampled
value or range of values, with or without replacement, and append them to the new
dataset until the preferred ratio or proportion is achieved.

4. Utilize the new dataset for training or testing the ML or data mining method.

Undersampling. Undersampling is a technique for balancing the class distribution of
a dataset by reducing the total number of examples in the majority class. It is often used for
imbalanced classification problems, where one class has significantly more examples than
another class. As depicted in Fig 14, the steps of undersampling are as follows:

1. Identify the target variable and the class labels. Usually, the target variable is a binary or
categorical variable, and the class labels are the possible values of the target variable.

2. Determine the desired ratio or proportion of the minority class compared to the major-
ity class. This can be based on criteria such as achieving a balanced or near-balanced
distribution, or optimizing a performance metric.

3. Randomly select a subset of examples from the majority class, with or without replace-
ment, and remove them from the dataset. The number of examples to remove depends
on the desired ratio or proportion.

4. Use the resulting dataset for training or testing an ML method.
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Use the New Dataset for ML/Data Mining

Fig 13. Flowchart of oversampling process.

https://doi.org/10.1371/journal.pone.0326488.9013

Identify Target Variable and Class Labels

Determine Desired Ratio or Proportion

Randomly Select Subset from Majority Class

Use Resulting Dataset for ML Model

End

Fig 14. Flowchart of undersampling process.

https://doi.org/10.1371/journal.pone.0326488.g014
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4 Results and discussions
Method evaluation

There were two main phases to the evaluation of the created methods: method fitting and
method performance computation. A confusion matrix that depicts the four possible
outcomes—true positive, true negative, false positive, and false negative—was used to evalu-
ate each method’s performance. In addition to the confusion metric, various metrics were cal-
culated to compare the performance of the developed classifiers. These metrics include accu-
racy, cross-validation (five-fold), precision, recall, selectivity, F-measure (F1 score), balanced
accuracy, G-mean, and error rate.

Accuracy is frequently believed to be the best statistic for evaluating ML techniques; how-
ever, it functions at its peak when the number of instances of each class is equal. In the case
of datasets that are not evenly distributed, additional metrics besides accuracy should be
utilized.

number of correct predictions

Accuracy = 16
HHEY = T otal number of predictions (16)
or, equivalently,
TP + TN
Accuracy = (17)
TP + TN + FP + FN

where TP is the number of true positives, TN is the number of true negatives, FP is the num-
ber of false positives, and FN is the number of false negatives.

G-mean, or geometric mean, is a metric that considers both sensitivity and specificity,
making it particularly useful for imbalanced datasets. The equation of G-mean for a set of n
numbers is:

G-mean = 8/x; X x5 X -+ X X, (18)
or, equivalently,
G-mean:(x1><x2><~--><xn)1/” (19)

where x1, x5, ..., X, are the numbers in the set.

Precision can be defined as the ratio of accurately detected positive occurrences (true
positives) to the total number of instances anticipated as positive. The equation of precision
is:

number of true positives

Precision = 20
number of positive predictions (20)
or, equivalently,
. TP
Precision = —— (21)
TP + FP

Recall, in the context of classification models, is defined as the ratio of correctly identified
positive instances to the overall number of positive occurrences in the dataset. The formula
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for recall is:

number of true positives

Recall = 22
eca number of actual positives (22)
or, equivalently,
TP
Recall= —— (23)
TP + FN

Fl1-score is a measure of a method’s accuracy that takes into account both precision and
recall. It is the harmonic mean of precision and recall. The formula for the F-measure is:

2 X Precision X Recall
F-measure = — (24)
Precision + Recall

or, equivalently,

2XTP
F-measure= —————— (25)
2X TP +FP+FN
Balanced accuracy, which is the average of sensitivity and specificity, is another metric
that is useful for imbalanced datasets as it gives equal weight to both classes. The formula
commonly used to calculate balanced accuracy is defined as the arithmetic mean of the true
positive ratio and the true negative ratio, divided by two.

Sensitivity + Specificity

Balanced Accuracy = 5 (26)
or, equivalently,
TPR + TNR
Balanced Accuracy = — (27)

where TPR is the true positive rate, and TNR is the true negative rate.

Error rate, the proportion of incorrect predictions, is a straightforward and intuitive met-
ric that can be used alongside other metrics to provide a comprehensive view of method
performance. The formula for error rate is:

number of incorrect predictions (28)

Error Rate =
total number of predictions

or, equivalently,
Error Rate = 1 - Accuracy (29)

Selectivity is the proportion of true negatives (correctly identified negative instances) over
the total number of instances predicted as negative. The formula for Selectivity is:

TN

o (30)
TN + FP

Selectivity =
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or, equivalently,

TN
Selectivity = - (31)
number of actual negatives

Cross-validation, particularly the five-fold cross-validation technique, is a resampling
methodology employed to assess ML systems using a limited dataset. The process encom-
passes a solitary parameter denoted as k, which pertains to the quantity of groups into which
a specific data sample is divided. In the context of five-fold cross-validation, the dataset is par-
titioned into five distinct groups. Then, the method is trained and tested five times, providing
a more robust estimate of method performance.

Lastly, Standard Deviation measures the amount of variation or dispersion in a set of val-
ues. In the context of machine learning, it can be used to evaluate the spread of prediction
errors (residuals). A lower standard deviation indicates that the predictions are closer to the
mean prediction, suggesting a more consistent model.

The standard deviation (o) is calculated using the following formula:

| X
o= N i:zl(xi -u)? (32)

where:

o N is the number of predictions.
o x; represents each individual prediction.
o u is the mean of the predictions.

Comparison of evaluation metrics for bagging ML methods

This section compares evaluation metrics for different bagging machine learning methods.
Different metrics, including accuracy, precision, recall, and F1-score, are used to provide a
comprehensive assessment of each model’s performance.

Evaluation metrics for bagging ML methods (For Oversampled Data). The Table 2
presents performance metrics for six different bagging models: kNN, LR, DT, NB, SVM, and
RF for oversampled data. The oversampled data table shows that Bagging-kNN has the high-
est accuracy at 98.37% and the lowest error rate at 1.63%, indicating its robustness. Bagging-
LR and Bagging-NB also perform well, with accuracies of 97.56% and 96.95%, respectively.
Bagging-DT has the lowest accuracy at 95.12%, despite a relatively high recall at 94.83%.
Bagging-SVM and Bagging-RF have similar accuracies around 95.9%, displaying moderate
strengths across metrics.

The top chart in Fig 15 shows the performance of six machine learning models across var-
ious metrics. The bottom chart in Fig 14 shows the standard deviation of the performance
metrics. Overall, k-NN outperformed other models with 98.37% accuracy and 0.192% stan-
dard deviation. Logistic Regression and Naive Bayes also performed well with accuracies of
97.56% and 96.95%, but with higher variabilities of 0.533% and 0.445%. Decision Tree, despite
achieving 95.12% accuracy, had the highest standard deviation at 0.755%, suggesting less reli-
ability. Random Forest and SVM provided a balance between performance and consistency,
with SVM at 95.93% accuracy and 0.441% standard deviation, and Random Forest at 95.93%
accuracy and 0.319% standard deviation.
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Fig 15. Comparison of evaluation metrics for bagging-ML methods (For Oversampled Data).

https://doi.org/10.1371/journal.pone.0326488.9015

PLOS One | https://doi.org/10.1371/journal.pone.0326488 June 26, 2025 31/ 44



https://doi.org/10.1371/journal.pone.0326488.g015
https://doi.org/10.1371/journal.pone.0326488

PLOS One Comparative investigation of bagging enhanced machine learning for early detection of HCV infections

Confusion Matrices for Different Methods (Oversampling)

Bagging-kNN Bagging-LR Bagging-DT

Positive Positive Positive

© © ©
3 3 =)
=1 =1 =1
19 O O
< < <
Negative Negative Negative
Posi‘tive Negative Posi'tive Negative Posftive Negative
Predicted Predicted Predicted
Bagging-NB Bagging-SVM Bagging-RF
Positive Positive Positive
© © ©
3 3 =)
k9] ks k9]
< < <
Negative Negative Negative
Positive Negative Positive Negative Positive Negative
Predicted Predicted Predicted

Fig 16. Confusion matrices for bagging ML methods (For Oversampled Dataset).
https://doi.org/10.1371/journal.pone.0326488.9016

The confusion matrixes in Fig 16 visualization display the performance of six different
bagging-enhanced machine learning models—Bagging-kNN, Bagging-LR, Bagging-DT,
Bagging-NB, Bagging-SVM, and Bagging-RF—on predicting potential hepatitis C virus
patients using an oversampled dataset. Bagging-kNN emerges as the most effective model
with the lowest number of misclassifications. Models like Bagging-DT, Bagging-SVM, and
Bagging-RF show potential but require further refinement to reduce false negatives.

As depicted in Fig 17, the ROC (Receiver Operating Characteristic) curves and AUC (Area
Under the Curve) values for different bagging machine learning models applied to an over-
sampled dataset demonstrate varying levels of performance. Bagging-kNN shows the high-
est effectiveness with an AUC of 0.98, indicating its superior ability to distinguish between
positive and negative classes, characterized by a sharp rise towards the top-left corner of the
ROC curve. Bagging-LR and Bagging-NB both exhibit strong performance with AUCs of
0.96, suggesting a good balance between sensitivity and specificity, though slightly less opti-
mal than Bagging-kNN. Bagging-DT, Bagging-SVM, and Bagging-RF each have AUCs of
0.95, indicating they are also effective but slightly less optimal compared to Bagging-kNN and
Bagging-LR. Overall, Bagging-kNN emerges as the most effective model, followed closely by
Bagging-LR and Bagging-NB.

Evaluation metrics for bagging ML methods (For Undersampled Data). The Table 3
presents performance metrics for six different bagging models: kNN, LR, DT, NB, SVM,
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Fig 17. AUC for bagging ML methods (For Oversampled Dataset).

https://doi.org/10.1371/journal.pone.0326488.g017

and RF for undersampled data. In the undersampled data table, Bagging-LR achieves the
highest accuracy at 97.56%, with strong recall at 96.64% and F1-score at 96.73%. Bagging-
kNN and Bagging-RF also perform well, with accuracies of 96.38% and 96.48%, respectively.
Bagging-DT has the lowest accuracy at 93.96%, with an error rate of 6.04%. Bagging-SVM
and Bagging-NB show accuracies of 95.48% and 94.58%, respectively, demonstrating moder-
ate performance.

The top chart in Fig 18 shows the performance of six machine learning models across var-
ious metrics. The bottom chart in Fig 18 shows the standard deviation of the performance
metrics. Overall, Logistic Regression outperformed other models with a 97.56% accuracy and
a standard deviation of 0.382%. Random Forest followed closely with a 96.48% accuracy but
had the highest variability with a standard deviation of 0.724%. kNN also performed well with
a96.38% accuracy and a standard deviation of 0.444%. SVM showed balanced performance
with a 95.48% accuracy and the lowest standard deviation at 0.265%. Naive Bayes and Deci-
sion Tree had lower accuracies at 94.58% and 93.96%, with standard deviations of 0.408%
and 0.315%, respectively. These results indicate that Logistic Regression and SVM are suit-
able choices for tasks involving undersampled datasets, with Logistic Regression excelling in
performance and SVM in consistency.

The confusion matrixes in Fig 19 visualization display the performance of six different
bagging-enhanced machine learning models—Bagging-kNN, Bagging-LR, Bagging-DT,
Bagging-NB, Bagging-SVM, and Bagging-RF—on predicting potential hepatitis C virus
patients using an under-sampled dataset. Bagging-LR stands out as the most accurate and reli-
able model for undersampled data, with the lowest number of misclassifications. Bagging-NB
and Bagging-DT show the highest need for improvement due to their high false positive and
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Fig 18. Comparison of evaluation metrics for bagging-ML methods (For Undersampled Data).
https://doi.org/10.1371/journal.pone.0326488.9018
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Fig 19. Confusion matrices for bagging ML methods (For Undersampled Dataset).
https://doi.org/10.1371/journal.pone.0326488.g019

negative rates. These models may not be suitable for immediate clinical application without
significant enhancement.

As visible in Fig 20, the ROC curves and AUC values for different bagging machine learn-
ing models applied to an undersampled dataset highlight the effectiveness of each model in
distinguishing between positive and negative classes. Bagging-LR demonstrates the high-
est performance with an AUC of 0.94, showing an excellent balance between sensitivity and
specificity. Bagging-kNN and Bagging-RF both perform strongly with AUCs of 0.92, indi-
cating high capabilities to differentiate between classes, characterized by steep rises towards
the top-left corner of their ROC curves. Bagging-NB and Bagging-SVM also show good per-
formance with AUCs of 0.89 and 0.90 respectively, suggesting they are effective but slightly
less optimal than Bagging-LR. Bagging-DT, with an AUC of 0.83, shows moderate perfor-
mance and is less effective compared to the other models. Overall, Bagging-LR is identified
as the most effective model for the undersampled dataset, followed closely by Bagging-kNN
and Bagging-RF, making all these models, except Bagging-DT, viable options for clinical
predictions with undersampled data.

Comparison of accuracy for bagging-ML methods in this study. The Fig 21 visually
differentiates between the two sampling techniques—oversampling is represented by non-
checkered bars while undersampling is depicted by checkered bars. This facilitates easy com-
parison between the methods’ performance under each method. The bars are arranged in
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Fig 20. AUC for bagging ML methods (For Undersampled Dataset).
https://doi.org/10.1371/journal.pone.0326488.9020

descending order of accuracy from left to right, allowing quick identification of the best and
worst performers. Overall, Bagging exhibits high accuracy across methods, with values rang-
ing from 93.96% to 98.37%. The top three most accurate methods under oversampling are
Bagging k-NN, Bagging LR, and Bagging RE. This highlights these methods benefit from
oversampling. The undersampling methods mostly show slightly lower accuracy than their
oversampled counterparts. The difference is most prominent in Bagging SVM, suggesting
undersampling may not be as effective for this method. Finally, Bagging k-NN (Oversam-
pling) achieves the highest accuracy while Bagging SVM (Undersampling) has the lowest
accuracy out of all the presented methods.

An ensemble method with Bagging was used for the methods (SVM, k-NN, LR, RE, NB,
and DT) to enhance their performance. This approach combines multiple methods to produce
a final predictive method that performs better than any individual method. Following the
enhancement of the methods (SVM, k-NN, LR, RE, NB, and DT), they were trained on the
previously assembled dataset. Then, predefined measures were used to judge how well these
newly created classification methods worked. The total number of data from the testing set
was used to figure out how well each method worked in the end. At first, a confusion measure
was made for each classifier. Subsequently, several metrics including accuracy, recall (sen-
sitivity), precision, F1 score, g-mean, balanced accuracy, error rate, standard deviation and
results from five-fold cross validation were calculated for each method based on the confusion
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Fig 21. Comparison of accuracy for bagging-ML methods used in this study.
https://doi.org/10.1371/journal.pone.0326488.9021

metric. The comparison of these method metrics is presented in. In the process of selecting
the best-performing method to propose for use, the focus was on the independent perfor-
mance of each individual method. Based on the assessment metrics and additional data, it can
be concluded that the Bagging k-NN classifier demonstrated superior performance compared
to other classifiers, as indicated by the confusion measure of the alternative approaches. The
RF classifier demonstrated a superior level of accuracy, reaching 98.37%, which surpassed the
performance of all other classifiers. In terms of g-mean, f1 score, balanced accuracy, precision,
recall, error rate, and results from five-fold cross validation, the k-NN method also demon-
strated superior performance among all the other algorithms when trained on oversampled
dataset, underscoring its effectiveness in classifying patients.

Discussion

As already mentioned in previous sections of this paper, the ability to classify patients” health
status swiftly and accurately is of utmost importance for healthcare providers. Therefore, in
this study, A diverse range of ML approaches were employed in order to categorize patients
who were suspected of being infected with the HCV. Additional advancements were made in
the refinement of methodologies for determining the stage of HCV infection by utilizing data
that has been subjected to training. The evaluation of the classifiers’ performance and accu-
racy was conducted. The success of this research work with high accuracy proves to justify the
rising popularity of ML classification methods among health specialists. Table 4 provides a
detailed view on the comparison of accuracies among existing works and that of this paper.
Six ML methods were employed in this endeavor, namely SVM, RE, LR, K Nearest Neigh- Q2
bor (k-NN), NB and DT. All these methods were enhanced by integrating them with bagging
(bootstrap aggregation), which improved their overall stability and accuracy. This novel and
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Table 4. Highest accuracy of ML methods compared to previous works.

References Predicted Models Methods Metric Results
[26] HCV Neural Network  |ML techniques accuracy 95.12%
[20] Cirrhosis Bayesian Nets ML techniques accuracy 68.9%
[21] HCV RF ML techniques, Data accuracy 54.56%
preprocessing, Feature
selection
[27] HCV SVM fine Gaussian |ML techniques accuracy 97.9%
28] HCV LR, SVM ML techniques accuracy 95%
[36] Cirrhosis, Fibrosis |RE, DT Data preprocessing, Feature |accuracy 96.32%, 98.11%
extraction, ML techniques
[33] HCV LR, NB, SVM, Data preprocessing, Feature |accuracy 95.67%, 92.43%,
k-NN, DT, RF extraction, ML techniques 94.59%, 94.57%,
96.75%, 97.29%
Our Study HCV Bagging k-NN Undersampling, Feature accuracy 96.38%
reduction, Ensemble ML
techniques
Bagging LR 97.56%
Bagging NB 94.58%
Bagging RF 96.48%
Bagging SVM 95.93%
Bagging DT 93.96%
Our Study HCV Bagging k-NN Oversampling, Feature accuracy 98.37%
reduction, Ensembling ML
techniques
Bagging LR 97.56%
Bagging NB 96.95%
Bagging RF 95.89%
Bagging SVM 95.93%
Bagging DT 95.12%

https://doi.org/10.1371/journal.pone.0326488.t004

original approach contributes to the improvement of healthcare diagnostics by allowing for
more precise classification of suspected HCV infections in patients. This study emphasized
the importance of data preprocessing to increase the accuracy and performance of the meth-
ods used. Missing data in the dataset were addressed by replacing them with the MODE val-
ues, which is a robust method that minimizes the impact of these missing values on the clas-
sification results. Feature reductions were done using one-way ANOVA-F statistic testing, and
redundant variables were discarded, thus optimizing the data for ML. To counter the issue of
class imbalance in the dataset Lichtinghagen et al., 2020), undersampling and oversampling
techniques were employed, thereby enhancing the performance of the classifiers. Further-
more, various method evaluation metrics such as accuracy, cross validation (five-fold), pre-
cision, recall, selectivity, f1-score, balanced accuracy, g-mean, standard deviation and error
rate were used to evaluate the performance of the employed ML methods. The preprocessing
techniques, coupled with robust method evaluation techniques set this study apart from other
research and substantiate the remarkable accuracy of this work’s classification methods. It is
noteworthy that the best performing method in this study was the Bagging k-NN method,
which achieved highest accuracy of 98.37%. This surpasses the accuracy level obtained in
previous research, signifying the effectiveness of this work’s approach.

In essence, this study makes several key contributions that advance the field of HCV infec-
tion prediction using ML techniques. First, this research pioneered an innovative approach to
handling missing values in the dataset. Rather than using typical imputation techniques like
mean or median substitution, this study substituted missing values with mode values. This
allowed for preserving the inherent reliability of the data. Second, addressing class imbalance
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was done using under-sampling and over-sampling methods rather than the commonly used
SMOTE technique. The former approaches maintained the natural data distribution while
balancing classes, proving more effective. The third contribution was the application of one-
way ANOVA F-statistic testing for feature reduction. This robust statistical method enabled
superior feature selection compared to typical feature extraction methods, improving method
performance. Fourth, this study uniquely integrated Bagging with multiple ML methods like
k-NN, RE LR, DT, SVM, and NB. Bagging ensemble enhanced method stability and predic-
tion capability significantly. Fifth, a comparative analysis of ML methods from earlier studies
was done in comparison with this study’s outcomes. Most significantly, the sixth contribution
achieved the highest known accuracy in HCV prediction 98.37% using Bagging k-NN. This
unprecedented accuracy establishes a new benchmark in this research field.Despite its contri-
butions, this study has several limitations that warrant further research. The dataset may not
be fully representative of diverse populations, requiring validation on broader demographics.
ANOVA F-test captures only linear relationships; advanced feature selection methods could
enhance interpretability. Addressing evolving class imbalances through dynamic resampling
or cost-sensitive learning is crucial. Exploring alternative ensemble techniques like Boosting
and Stacking may further improve performance.

5 Conclusion

Data science, with its multidisciplinary approach, plays a crucial role in enhancing medi-

cal decision-making, particularly in diagnosing and treating diseases like Hepatitis C Virus
(HCV), a global health concern. Early and accurate diagnosis of HCV is essential for effec-
tive treatment, and this study advances that goal by integrating data science methodologies
with visualization techniques to predict HCV more efficiently. Unlike traditional diagnostic
models, this approach goes beyond basic statistical learning by employing sophisticated classi-
fication and feature reduction techniques to improve predictive accuracy. A key innovation of
this study is the use of ensemble-based oversampling and undersampling techniques, instead
of the widely used SMOTE method, to address class imbalance. This method, combined with
Bagging-enhanced machine learning models—such as SVM, k-NN, LR, RE NB, and DT—
significantly improved classification performance. The Bagging k-NN method achieved an
accuracy of 98.37% under oversampling conditions, while Bagging LR reached 97.56% under
undersampling conditions, setting a new benchmark for HCV prediction. Furthermore, this
study identified significant feature correlations, enabling the development of an efficient deci-
sion support system for HCV diagnosis. To implement this model in real-world clinical set-
tings, several key resources and steps are required. First, integration with Electronic Health
Records (EHRs) is essential to enable real-time data analysis and automated HCV risk assess-
ment. This can be facilitated through APIs or cloud-based services that allow seamless data
transfer between clinical databases and the prediction model. Additionally, a hospital-grade
server or cloud computing infrastructure is necessary to run ML models efficiently, while
edge computing devices could support real-time inference in point-of-care settings. To make
the system accessible to healthcare professionals, a user-friendly graphical interface should be
developed, displaying risk predictions and patient classifications in an intuitive format. This
interface should include clear visualizations and explanations of model predictions to assist
clinical decision-making. Future research will focus on integrating deep learning architec-
tures to improve predictive accuracy and incorporating multi-modal data sources, such as
liver imaging and genetic markers, to enhance diagnostic precision. Additionally, real-time
patient monitoring and adaptive learning techniques could further optimize model perfor-
mance. By addressing these aspects, this study contributes to the development of a clinically
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viable, Al-powered decision support system, ultimately aiding early detection and personal-
ized treatment strategies for HCV patients.
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