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ABSTRAK

Motor menyumbang kepada 40% daripada penggunaan elektrik global dan 13% daripada
pelepasan karbon, serta sering mengalami kerosakan haba yang tidak dapat dipulihkan.
Untuk mengelakkan sisa buangan elektrik yang berlebihan dan meningkatkan jangka
hayat, adalah penting untuk memantau suhu motor dengan tepat dan menghentikan
operasi pada tahap selamat. Kajian ini bertujuan untuk membangunkan model masa-
sebenar untuk memantau suhu dalam motor arus terus MY 1016, menggunakan transfer
function. Antara objektif kajian ini adalah mengenal pasti transfer function yang paling
tepat, membangunkan, dan mengesahkan model transfer function dengan pole
dipuratakan dan pole boleh ubah, dan menilai keupayaan model ini untuk mengesan
kerosakan. Data eksperimen telah direkodkan pada beberapa komponen seperti berus
karbon, galas bebola, magnet, dan bingkai. Motor tersebut telah dioperasi pada kelajuan
dari 20% ke 100% halaju nominalnya tanpa beban, sehingga mencapai kestabilan
pemindahan haba. Toolbox identifikasi sistem oleh MATLAB telah digunakan untuk
mengenal pasti transfer function dengan bilangan pole dari 1 hingga 4 dan tanpa zeroes.
Kajian ini mendapati bahawa tindak balas suhu terhadap operasi motor telah
menghasilkan suhu tertiggi sewaktu halajunya pada 60% daripada halaju nominal. Berus
karbon dapat dimodel dengan baik oleh transfer function tahapan ketiga, manakala
transfer function tahapan pertama sudah memadai untuk komponen-komponen lain.
Pemerhatian kepada pole transfer function tindak balas suhu motor mendapati bahawa
sistem ini bukan sebuah sistem LTI. Oleh itu, sebuah model menyeluruh menggunakan
transfer function dengan pole boleh ubah untuk penggunaan pemantaun masa sebenar
dibangunkan dan dinilai. la mampu menjangka suhu motor pada keadaan kelajuan
berubah dan tetap, dengan ralat maksimum setinggi 10 °C. Kesimpulannya, transfer
function dengan pole boleh ubah sesuai digunakan untuk pemantauan keadaan motor
dengan menggunakan beberapa scenario pemeriksaan dan boleh diapplikasi pada motor-
motor yang lain pada masa akan datang.



ABSTRACT

Motors account for 40% of global electricity consumption and 13% of carbon emissions
and often suffer irreversible thermal damage. To prevent excessive electrical waste and
improve reliability, it’s crucial to monitor motor temperature accurately and halt
operation at safe levels. This study aims to develop a real-time model for monitoring
motor temperature in MY1016 direct current machines, using a transfer function. The
objectives include identifying the most precise transfer function to model the temperature
response of each component at different speed, developing, and validating a generalized
model using averaged-pole and variable-pole transfer function models, and finally
evaluating their feasibility for fault detection. Experimental data was recorded for
different motor components including the brush, bearing, permanent magnet and casing.
The motor was operated at speeds from 20% to 100% of nominal speed with no load,
until thermal equilibrium was reached. The MATLAB system identification toolbox was
used to identify the transfer function, with a number of poles varying from 1 to 4 and
with no zeros. The study found that the temperature response of the MY1016 motor at
60% of the nominal speed produces the highest temperature. The brush was best
represented by a 3rd order transfer function, while a 1st order transfer function is
sufficient to represent other components. The non-LTI characteristic of the temperature
response observed from the pole analysis led to a choice of modeling using variable-pole
transfer function to create the baseline temperature model. It can estimate temperature
response during both steady and transient speed states, with a maximum temperature
difference of 10 °C. The study concludes that the variable-pole transfer function can be
used to monitor electric motors' condition using several testing scenarios. The same
method can be suggested to be applied on other types of motors.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Motors consume approximately 40% of the world’s electricity and contribute to
around 13% of global carbon emissions(Ferreira & de Almeida, 2008). The electric
machines market is expected to grow to USD 169 billion by 2026, at an annual growth
rate of 6.9% from an estimated USD 113 billion in 2020(New Market Reports, 2020).
The increase in market size for electric machines presents challenges for end-of-life
management of electric machines and a requirement for appropriate strategies for high-
value materials. A report by the European Commission published in 2020(Critical Raw
Materials Resilience: Charting a Path towards Greater Security and Sustainability, 2020)
predicted that by the end of 2050, the European Union would require 15 times more cobalt

and 10 times more rare earth materials as compared to current consumption.

To avoid the catastrophe of having too much electrical waste, the utilization of
these motors needs to be optimized. Avoiding premature damage and prolonging the life
cycle of the motors is essential. This can be done by having a full understanding of the
root cause of the irreversible damage that brought the motor to the landfill. The leading
cause of motor failure is overloading. As shown in Figure 1, overloading counts for 30%

of motor failure (Gonzalez-Cordoba et al., 2017).
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Figure 1.1 Motor failure.
Source: Electric Motor Failure Causes (2017)

Mechanical overload generated by high torque values (X. Liang et al., 2020) is an
undesirable and typical operating condition in industrial processes. This condition causes
negative consequences such as premature aging of motor bearings, locked rotor, poor
lubrication, and windings overheating (Sheikh et al., 2022). Mechanical overload
generates an excessive temperature on induction motors since a proportional increment
in the demand of the stator current is also generated(X. Liang et al., 2020), which
accelerates the degradation of motor components including the stator/rotor conductors,
core, insulation, permanent magnet, and bearings (Tallam et al., 2007; P. Zhang et al.,
2011). Continuous elevated temperature induces demagnetization of permanent magnet
and melting of the insulation which creates winding short circuits. Monitoring the
temperature inside the motor and setting a maximum operating temperature are therefore

essentials in making sure that the motor is always in a good condition.



1.2 Problem Statement

Due to low cost and ease of production of DC machines (C. Liu, 2018),
manufacturer and user tend to not optimize the design of the motor specifically for an
application. They regularly discard and change the motor once they are damaged. The
most common irreversible damage that can be done to a motor is thermal damage: melting
or burning the winding insulation. This leads to short-circuit and demagnetization of
permanent magnet (Hattori et al., 2023). The lifespan of a DC machine is known to be
ranging from 30,000 to 40,000 hours (Rusu-Zagar et al., 2013). Despite its low cost,
increasing its lifespan would mean budget and cost saving in an economy of scale. It is
not just for the benefit of the industries for their cost reduction, but also for the reduction
of electric machines waste in the landfill. For a large fleet of applications and a larger
motor, potential reliability improvement can be obtained by properly monitoring the
temperature and stop the operation of the motor at a proper temperature level as a
preventive measure to avoid damage. In general, the monitoring system need to be
precise, consume little computing power, can be implemented in real time, and if possible
short development time to allow it to be replicated onto a fleet of different motor

offerings.

To build a proper temperature monitoring system for the components of the
motor, the classic solution is to equip the motor with temperature measurement
instrumentation. However, this leads to additional costs and cable management issues. It
could be too much for a system equipped with many motors (Wu & Dobson, 2012). The
less instrumented option is to have a real-time model that estimates the temperature of
the components inside the motor using a single input like speed or current of the motor
(Sundararajan et al., 2022). There is also another possibility of using a neural network
predictive modeling that can warn against potential damage. However, like any other Al
approach, a large amount of training and test data is necessary to create the model, which
means instrumenting the motors with temperature measurement equipment and running
plenty of tests beforehand. All these three methods have their merits of advantages as
well as inconveniences that will be discussed in the literature review. In this study, the

real-time model is going to be adopted.



To develop the real-time model, there are many options for temperature response
modeling. The usual options include the LPTN model (Pescetto et al., 2020) and full
analytical model (Pawlus et al., 2017). However, developing and validating them takes a
certain development time. In the case where the direct relation between the physical
parameters (dimensions and material) of the motor and the temperature is not essential to
be known, a transfer function can be used to describe the temperature response. Transfer
functions are light to be implemented in real-time and can be quickly developed through
transfer function identification using several experimental data only. However, the Linear
Time-Invariant (LTI) condition of a transfer function needs to be analyzed so that the

model developed is valid for all speeds and load points.

This study will explore the best form of transfer function (order) to describe the
temperature response of components in a DC machine, develop a generalized model that
is speed-dependent, and evaluate the model precision. Obtaining a high-precision transfer
function model of the temperature response will allow a low-cost and efficient

temperature monitoring of DC machines in application.
1.3 Objectives

The objectives of this project are as follows:

1. To model the most precise transfer function of temperature response in the
MY1016 DC machines at different speeds.
2. To validate an averaged-pole transfer function model and a variable-pole transfer

function model.
3. To evaluate the feasibility of real-time fault anomaly detection using the transfer

function model.



1.4

Scope

The scope of this study are as follows:

The motor used to obtain the temperature response data is a 250W brushed DC
machine, MY1016.

The temperature responses were obtained from a step speed input at different
speeds, up to the steady state temperature. The experiment is conducted with no
load. The definition of steady state temperature being no temperature variation
observed after 10 minutes.

The ambient temperature during the data acquisition is controlled at a room
temperature of 30 °C.

The transfer function describing the temperature response were obtained using
the system identification toolbox in MATLAB.

The measure of the precision of the system identification was done using the
indicator of Fit to estimation data (in %), FPE (final prediction error), and MSE

(mean-square error).



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The literature review chapter is divided into three subsections. The first
subsection discusses generalities on DC machines, including their utilization and
operating principles. It also covers common losses that occur in DC machines. The
second subsection focuses on temperature rises in electrical motors, explaining the causes
of degradation and irreversible damage that can occur in electrical machines due to
temperature, also heat transfer in electrical machines. Additionally, it covers the
monitoring and modeling of temperature response, as well as diagnostic methods
commonly used in electrical machines. The final subsection discusses transfer functions
as a model in modeling the temperature response of DC machines, including generalities
of transfer functions, the system identification MATLAB toolbox, and the evaluation of
model precision for transfer functions. Finally, following the literature reviews, the
research gap where a baseline temperature model of a motor using transfer function for

condition monitoring will be highlighted.
2.2 Generalities on DC Machines

Nearly every mechanical movement is driven by an electric machine. These
machines primarily serve as energy converters, transforming electrical energy into
mechanical energy, with heat being a by-product of this process. Motors come in diverse
sizes; large motors capable of managing thousands of horsepower are extensively used
in industries for applications such as elevators, electric trains, hoists, and metal rolling
mills. Conversely, small motors are utilized in automobiles, robots, handheld power tools,

and household appliances.



Electric machines can be broadly classified into two categories: AC and DC
machines. Each category encompasses machines with distinct characteristics and
capabilities, making them suitable for specific applications. An electric machine consists
of a stator the stationary part and a rotor the rotating part. The interaction between the
stator and the rotor’s magnetic fields generates rotational speed and torque. DC machines

are particularly noted for their operation on direct current.

The force within an electric machine is generated by the interaction between
winding currents and the machine’s magnetic field. Both AC and DC sources can power
these machines. The output power of an electric machine can vary from a few watts to

several hundred kilowatts. Figure 2.1 depicts an electric machine categorization.

Rotary electric
motor

AC DC
Three phase Single phase Brush Brushless
I [
I | | | Shunt Synchronous
wound stepped
Synchronous Asynchronous
[ Separatel
L { Reluct Switched ] | \SOundy
eluctance . Induction
. Series
Variable -
— Hysteresis Wound wound
reluctance wilor
Synchronous || Compound
| StePPCd reluctance Squirrel wound
cage
| PM Surface | DirAect
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Figure 2.1 Classification of electric machines.
Source: Mechanical Design of Electric Motors (2014)



2.2.1 Utilization and Operating Principle

This subsection discusses the importance of DC machines through the many
applications that it fulfils. Additionally, it explains the basic operating principle of DC
machines, detailing how the electrical input is being converted into mechanical output.
The losses generated from operating these machines that produce the heat will also be
explained. This is important to understand the origin of the heat that wanted to monitor
through the study in this thesis.

2.2.1.1  Utilization of DC Machines

Brushed DC machines are commonly used in low-voltage applications ranging
from 12 to 24 volts, offering cost-effective solutions for auxiliary motors in the
automotive industry. These motors are so prevalent that today’s premium automobiles
may contain up to 80 individual motors as shown in Figure 2.2. DC machines provide
significant advantages in systems such as steering, braking, fuel injection,
starter/generator, active suspension, and cruise control. Since 1999, DC machines have
been utilized in electric power steering systems (J. Li, 2020).
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Figure 2.2 BLDC motor installed in a car.
Source: Automotive Brushless DC (BLDC) Motor Application — Diodes Inc (2019)



While most automobiles currently use rotary valve hydraulic power steering
systems, a growing number are transitioning to electric power steering systems, which
have a noticeable impact on energy conservation. It offers numerous benefits, including
energy savings, environmental protection, and enhanced assist features (Cioboata et al.,
2020). Next generation steering systems such as steer by wire, necessitate motors that are
fault tolerant, have a high-power density, and are more controllable. The controllability
of the motor is crucial in such active steering systems, where the vehicle can override

driver inputs to ensure safe operation.

Table 2.1 lists a partial summary of current electric machine applications in
automotive. It includes starter motor (Midya et al., 2023), alternator (El-Hasan, 2018),
air conditioning compressor drive (Patel & Patel, 2019), engine throttle control (Acho et
al., 2020), transmission shifter, engine coolant pump motor (Kiesenhofer, 2021), EGR
actuator(Gutfrind et al., 2015), windshield wipers (Sharveswaran & Nirmal, 2020),
window lifts(ldalgo et al., 2019), seat adjuster, sunroof actuators(Ai et al., 2018), sliding
door closers (J. Yu et al., 2019) and steering column adjuster (Cioboata et al., 2020).

Table 2.1 Summary of current electric machines applications.
Author Title Type of motor Applications
Kiesenhofer Assessment of an Electrical Coolant ) Engine coolant pump
. ) Dc machines
2021 Pump on Heavy-Duty Diesel Engine motor

Energy Consumption Comparison

between Two Optimized Limited

Gutfrind et al. ) ) Brushed DC

Motion Actuator Topologies for an ) EGR actuator
2015 ) ) machines

EGR System used in Automotive

Applications
Sharveswaran Research Development on Wiper
and Nirmal Mechanism in Automotive PMDC machines ~ Windshield wipers
2020 Application: A Critical Review
Idalgo et al. Dc Motor Model for Windows Pinch ~ Brushed DC . .

. o ) Window lifts

2019 Protection Applications machines

Smart Pinch Detection for Car's
) Electric Sunroof Based on Estimation .
Aietal. 2018 ] Dc machines Sunroof actuators
and Compensation of System

Disturbance




Table 2.1 Continued.
Author Title Type of motor Applications

Development of a hardware-in-the-
loop simulation system for power seat ) o
J. Yuetal. 2019 ) Dc machines Sliding door closers
and power trunk electronic control
unit validation

Experimental Investigation and

Patel and Patel . . Air conditioning
Performance Analysis of an BLDC machines
2019 L . system
Automobile Air Conditioning System
Vossos et al. Dc Appliances and DC Power ] Refrigerator, ceiling
S Dc machines ] .
2017 Distribution fan, air conditioner

2.2.1.2  Operating Principles of DC machines

Brushed DC machines typically consist of four key components: the armature
winding, commutator, brushes, and a permanent magnet, as illustrated in Figure 2.3. As
the motor rotates, carbon brushes slide over the commutator, contacting its different
segments. These segments are connected to the armature windings, creating a distributed

magnetic field inside the rotor when voltage is applied across the brushes.

‘ permanent magnet ‘ ‘ armature ‘ ‘ commutator ’

=~ end cover

‘ winding ‘ ‘ carbon brushes l

Figure 2.3 Structure and components of brushed DC machines.
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The brushes and commutator play crucial roles in ensuring the continuous rotation
of DC machines. Figure 2.4 depicts a one-turn coil in a rotor winding. When this coil is
connected to a DC power supply, current flows through it. Initially, the flux distribution
and the current flowing in the coil resemble. Under these conditions, the force exerted on
the conductors on both sides causes the coil to rotate clockwise, as dictated by the Lorentz
Force law in Equation 2.1. With F, the force density, B the flux density, and J the current
density.

F,=]xB 2.1

Commutator

DC power source

Figure 2.4 Force on a one-turn coil.
Source: Electric Motor Control (2017)

As the coil rotates due to the Lorentz force to the position shown in the figure on
the right, the force produced on the conductors on both sides would naturally return the
coil to its initial position, as depicted on the left side of Figure 2.4. Since the force on the
coil is not continuously produced in one direction, the coil cannot rotate in the same
direction indefinitely. However, if the current’s direction is reversed when the coil
reaches the position shown on the right thanks to the commutator sections and brush, the
force on the conductors on both sides will also reverse, maintaining the clockwise force

on the coil. Consequently, the coil will continue to rotate in the clockwise direction.
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2.2.2 Losses in Electrical Machine

The losses in DC machines manifest as heat, which consequently increases the
machine’s temperature. These losses also diminish the electric machine’s efficiency
(Pecinka et al., 2017). The types of losses in electrical machines include copper losses,

magnetic losses, and mechanical losses, as depicted in Figure 2.5.
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Figure 2.5 Losses in DC machines.
Copper Losses

Copper loss in a motor refers to the energy loss that occurs due to the resistance
of the copper windings in the stator and rotor of the motor. This loss is caused by the flow
of electrical current through the copper windings, which generates heat and reduces the
overall efficiency of the motor (Q. Zhang et al., 2019). In brushed DC machines, it can
be quantified by experimentally measuring the current going through the armature
winding and calculate using Equation 2.2. Where P,,,,qture 1S the armature copper loss,

1, is the armature current (A), R, the armature resistance (Q).

Purmature = Iczl- R, 2.2

Therefore, this loss of energy is converted into heat, which can lead to thermal
stress and damage to the motor winding insulation if not effectively managed. (Q. Zhang
et al., 2019) study on variation of load and speed cause excess copper loss also reduce

performance of electrical machines. The reason is, with the load increasing the EMF in
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the stator winding is decreasing due to the rising voltage, consumed by the winding
resistance and leakage reactance. Other factor of copper losses was affected by winding
wire diameter. The smaller the wire diameter, the more copper losses will be generated
(W. Yu et al.,, 2022). In summary, copper losses in a motor is reduces the overall

efficiency and increase in heat generated and need to be evacuated (Y. Liang et al., 2021).
Magnetic Losses

Magnetic losses constitute the second category of losses that lead to excessive
temperatures in electric machines (Maet al., 2022). The term ‘magnetic losses’ in a motor
refers to the loss of magnetic energy due to eddy currents generated within the motor’s
iron core. The iron loss separation theory suggests that core losses, caused by any
magnetic flux density waveform in each stator core unit, consist of hysteresis loss, eddy
current loss (C. W. Kim et al., 2017) and excess loss (Cuiping et al., 2014). In brushed
DC machines, P, hysteresis loss and P, eddy current loss can be calculated using
Equation 2.3 and Equation 2.4 respectively. Where k,;, hysteresis coefficient, f frequency

of magnetization, B,, maximum flux density and v volume of magnetic material.

Ph=kh.f.Bml1.6.v 2.3

P, =k, f2.B%.t%v 2.4

Where k, eddy current coefficient, f frequency of magnetization, B,, maximum
flux density, t thickness of each lamination and v volume of magnetic material. Despite
the continuous current supply, the rotation of the armature core inside the constant stator

field produces small amount of harmonic of induced emf and generate iron losses in it.

Magnetic loss in a DC motor significantly affects the motor’s performance and
efficiency (Ma et al., 2022). Consequently, researchers like (P. Kumar et al., 2022) have
investigated how the performance of DC motor is affected when the model incorporates
the impact of iron loss. In the case of brushless DC permanent magnet motors, (X. Wang
et al., 2019) have employed soft magnetic composite stators to reduce iron loss and

temperature, offering an advantage over traditional laminated materials.
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Mechanical Losses

Mechanical losses contribute to the degradation of motor performance and
efficiency (Gao et al., 2023), while simultaneously causing excessive temperature
increases. Mechanical losses are defined as the energy produced by the motor that is not
converted into mechanical work. The primary sources of mechanical losses include
friction, windage, and bearing losses, which also significantly contribute to the rise in
motor temperature. As the motor’s required torque and speed increase, the supplied
current rises accordingly, leading to greater mechanical losses and, as a result, higher
temperatures. In Figure 2.6, mechanical losses affected electric machines where
increasing loss caused decreased speed, as confirmed by (Gao et al., 2023). The relation
between the speed and losses is non-linear and complex. Furthermore, studies by (Wrobel
et al., 2015) have examined the components of mechanical loss in conjunction with rotor
heat transfer effects. Additionally, research by(S. H. Park et al., 2021) has focused on
predicting mechanical losses by considering the eddy current losses of permanent

magnets and conductors under no-load conditions.

- - ‘Total loss during natural deceleration P
—— Mechanical friction loss

0 10 20 30 40 50 55
Speed (r/min) x10°

Figure 2.6 Graph losses vs speed.
Source: Gao et al. (2023)
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The prediction of the mechanical losses is more complex with the involvement of
windage losses. Windage losses are caused by the mutual friction between the rotor and
the surrounding air. Air friction loss is related to the rotor surface structure, surface
roughness, motor speed, air density, air velocity, air radial pressure, and other factors(Ji
et al., 2021). Many researchers, including (Abdelli et al., 2020; Gao et al., 2023)
developed experiments, models, and simulations to diagnose and analyse the
characteristic of mechanical losses in electric machines. The rise of mechanical loss

depending on the variation of speed electrical machines (Y. He et al., 2021).

Table 2.2 provides a summary of research papers focusing on the losses in
electrical machines. The studies reveal that as losses increase, the efficiency and
performance of these machines decrease, and not necessarily linearly and predictably.
These losses also cause a rise in the machine’s operating temperature, as not all electrical
energy is successfully converted into mechanical energy. Excessive temperatures can
lead to considerable damage to the electrical motors. Therefore, it is crucial to model the

temperature response for effective condition monitoring of these machines.

Table 2.2 Summary of losses.
Author Title Type of Losses Summary

Comparative Analysis of AC
Copper Loss with Round Copper AC copper losses in FSPM are

W. Yu etal. ) ) Copper ) o
Wire and Flat Copper Wire of influenced by wire diameter, phase

2022 ] Losses L
High-Speed Stator-PM Flux- current variation, and motor speed

Switching Machine

Minimum Copper Loss Direct ) ] ]
Copper losses in electric machines
Q. Zhang et  Torque Control of Brushless DC Copper o ]
o ) . reduce motor efficiency and lifespan
al. 2019 Motor Drive in Electric and Hybrid  Losses . )
) ) due to coil temperature rise.
Electric Vehicles

Studies on Loss of a Motor Stator

Iron Core with High Silicon _ Temperature and stress significantly
Ma et al. ) o Magnetic )

Electrical Steel Considering impact the iron loss and performance
2022 ] Losses

Temperature and Compressive of a PMSM.

Stress Factors
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Table 2.2 Continued.
Author Title Type of Losses Summary

Disturbance Observer Based ) ]
o _ Saturation and peak flux density
P. Kumar et  Sensorless Predictive Control for Magnetic
al. 2022 High Performance PMBLDCM Losses

Drive Considering Iron Loss

variations in the flux path are

influenced by temperature changes.

Loss Calculation, Analysis, and Mechanical friction in the rotor
Gao et al. Separation Method of 550 000 Friction  causes significant loss, reducing
2023 r/min Ultrahigh-Speed Permanent Losses motor efficiency and increasing rotor
Magnet Motor temperature.
Prediction of Mechanical Loss for Windage loss, caused by friction
Park et al. High-Power-Density PMSM Windage between air gap fluids and the rotor,
2021 Considering Eddy Current Loss of ~ Losses makes mechanical loss dependent on
PMs and Conductors rotor speed.

2.3  Temperature Rises in Electrical Machine

Following the operating principle and the origin of losses, this subsection will
deal with the consequent of it and the potential way to closely monitor it. It is divided
into two parts: the first addresses the causes of degradation and heat transfer in electric
machines. It discusses the impact of excessive temperature on electric machines and the
mechanisms of heat flow within them. The second part focuses on monitoring, modelling
temperature responses, and diagnostics from a thermal perspective. It explains the tools
used to monitor the condition of electrical machines, the methods employed for design,
detection, and analysis, and the techniques used to detect and diagnose faults in electrical

machines.
2.3.1 Cause of Degradation and Heat Transfer

This subsection details the degradation causes in electrical machines from
excessive temperatures, leading to partial discharge, inter-turn short circuit,
demagnetization of permanent magnets, and mechanical faults. It also examines heat
transfer within electrical machines, focusing on heat flow through conduction,

convection, and radiation.

16



2.3.1.1 Cause of Degradation

Elevated temperatures can damage electric machines, critically affecting and

damaging the winding insulation and the permanent magnets.
Partial Discharge

In electric machines, winding insulation is susceptible to thermal damage,
primarily in the form of partial discharge. This phenomenon is a complex interplay of
electrical, thermal, and physical forces acting simultaneously within flawed insulation,
as detailed by (Q. Khan et al., 2020). The IEC 60270:2000 standard characterizes partial
discharges as localized, low-magnitude electrical discharges that occur within insulation
gaps caused by uneven electrical stress and charge distribution, potentially away from

conductors.

Elevated winding temperatures, contingent upon the insulation’s thermal
classification, trigger chemical reactions mastly oxidationthat progressively deteriorate
the epoxy bonding material’s electrical and mechanical integrity. As temperatures rise,
the epoxy may vaporize, weakening its bond with the mica paper tape layers (or other
winding insulation paper), leading to increased vibration of copper strands and turns
under 120 Hz magnetic forces (Stone et al., 2007). This vibration causes abrasion of the

insulation and, as (Stone et al., 2007) observed, eventually results in electrical shorts.

Recognizing the harmful impact of partial discharge, (Abadie et al., 2019) have
developed a system to identify its presence within winding insulation. Complementing
this (Q. Khan et al., 2020) utilized finite element modelling to investigate the behaviours
within the insulation. Various techniques, such as CNN model (Akram et al., 2023) to
monitor the health of electric motor insulation and Paschen’s law by (Mathurin et al.,

2020) have been employed to predict partial discharge at the design phase.

Additionally, thermal stress in electrical machines arises during prolonged
operation under overload conditions, necessitating high currents to match speed with load
demands. According to (Bonnett & Soukup, 1992) insulation life expectancy halves with

every 10°C increase in temperature. Figure 2.7 show of four classes of insulation are A,
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B, F and H. Class F is the most widely used, with each class’s specifications determined
by testing procedures on rotating machines, following standards from IEEE 275 and
AIEE 510. Operating a motor beyond the designated temperature for its class

significantly shortens its lifespan, contrary to its expected operational capacity.

LIFE EXPECTANCY (HOURS)

Figure 2.7 Temperature vs. life curves for insulation systems for different class of
machines of the same type.

Source: Vaseghi et al. (2011)
Inter-turn Short Circuit

Additionally, thermal effects can induce a variety of faults in electrical machines,
including short-circuit faults, which account for 21% of all faults (X. Liang, 2019). It is
reported that most short-circuit faults originate as interturn faults, which are caused by
the elevated level of circulating current heating the insulation of the coil adjacent to the
shorted turns. This heating increases the severity of the fault (VVaseghi et al., 2011). and
leads to an asymmetry in the stator winding temperature distribution due to localized
heating in the faulty coil (P. S. Kumar et al., 2021). Furthermore, the short-circuit loop
current opposes the normal stator current, resulting in a reduction in the magneto-motive
force of the faulty coil. This, in turn, leads to an asymmetry in the air-gap magnetic field
distribution along the stator periphery. Although there is no experimental data indicating
the time delay between inter-turn and ground wall insulation failure, it is likely that the

transition between these two states is not instantaneous (Lee et al., 2005).
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Faults in the winding are considered a critical type of fault in motors. Initially,
they may not show any external signs of warning. However, over time, they can become
the root cause of excessive heat, imbalanced line currents, reduction in torque, unusual
vibration, and overheating (Cao et al., 2023). In some cases, a minor insulation break in
the winding can lead to a complete breakdown of the motor’s operation. In industrial
applications, this can result in catastrophic damage to property and pose serious risks to
human safety (Shifat & Hur, 2020).

An inter-turn short circuit fault, as shown in Figure 2.8, signifies insulation failure

between two coils in the same phase, creating extremely low resistance between turn R,
and increase the current ir drastically. The heat generated in the short circuit is

proportional to the square of the circulating current, which can cause insulation
breakdown in the adjacent coil (J. K. Park et al., 2015).

Figure 2.8 Interturn fault occurrence in a single phase.
Source: Park et al. (2015)

19



Demagnetization of Permanent Magnet

In addition to the damage that occurs in winding insulation, thermal effects can
also be detrimental to the second most critical component in electric machines, the
permanent magnet. This may happen due to excessive heat generated from copper losses,
interturn faults and mechanical faults. Each permanent magnet has a different Curie
temperature, as shown in Table 2.3. The Curie temperature is critical because it is the
point at which a permanent magnet can be irreversibly demagnetized. Below the Curie
temperature, the material has a high and constant permeability and remanent, an
associated magnetic field that is difficult to change. However, when the temperature
exceeds the Curie temperature, the material becomes a paramagnet, and its magnetic field

can easily change with variations in the surrounding magnetic field.

Table 2.3 Comparison of permanent magnet properties.
. . BHpax. Flux Density, Working Temp.  Curie Temp.
Magnet type [MGOe] G] °C] Te, [°C]
Ferrite 33 1000 250 460
Alnico 52 1300 550 860
SmCo 26 3500 300 750
NdFeB 38 4500 120 320

Source: Seol et al. (2017)

Demagnetization can be classified into two types: reversible and irreversible.
Reversible demagnetization is induced by field-weakening control, while irreversible
demagnetization results in permanently weakened magnets. A major cause of irreversible
demagnetization is an improper operating point of the rotating electrical machine, which
can occur due to the combined effect of temperature and a shift in the permeance curve
(M. S. Khan et al., 2018). Demagnetization reduces the torque of the electrical machine
because the electromagnetic torque is proportional to the cross-product of the current
vector and the permanent magnet flux linkage vector (Seol et al., 2017). As
demagnetization reduces the output torque of the machine, it severely worsens the
motor’s characteristics and efficiency (D. H. Kim et al., 2020).
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Mechanical Bearing Fault

In addition to faults caused by temperature, other faults generate heat in rotating
electrical machines. These faults fall into the category of mechanical faults, one of which
is the bearing fault. Furthermore, improper operation, such as misalignment or
overloading, can accelerate the degradation of the bearing (De Jesus Rangel-Magdaleno,
2021). Another study by (Brusamarello et al., 2023) demonstrated its importance by
developing a classification of bearing fault severity levels using a support vector machine
classifier. Using Dynamic Convolutional Neural Network, (Jung et al., 2023) has

demonstrated that bearing motor dataset may be useful for fault diagnosis.
Brush fault

Brush friction also contributes to heat generation when worn, as evidenced by
studies from (Huang et al., 2023) and (Rasid et al., 2022). Brushes in electrical machines
mostly experience two types of wear: mechanical wear caused by friction and electrical
wear due to current passing through the contact interface. The primary mechanism of
mechanical wear in carbon brushes involves the formation of micro-cracks, their growth
due to mechanical and thermal stresses, and the eventual detachment of wear particles as
the cracks expand and multiply. This has been long eluded from studies such as
(Braunovic et al., 2006) and (Hu et al., 2008). Ensuring low mechanical wear requires a
stable friction layer on the contact surface, which increases the contact area and reduces
friction, temperature, and arcing (Groth et al., 2001). This implies that a degrading brush
will increase the friction and temperature. Various recent methods have been employed
to model and monitor the brush wear. These include current signal analysis using
different techniques such as discrete wavelet transforms (Ray et al., 2020), empirical
modeling using regression approaches (Benedik et al., 2015), and exploiting neural
networks on exhaustive historical data (Silva et al., 2023). The three examples mentioned
were applied for brush and armature for train traction machines, vacuum cleaners, and
general-purpose universal motors respectively. The temperature generated from brush
degrading condition however have not been exploited for condition monitoring and

diagnostic.
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2.3.1.2 Heat Transfer in Electrical Motor

The three main mechanisms of heat transfer that can occur in a motor are
conduction, convection, and radiation. Figure 2.9 shows heat transfer direction that takes
place in an electric machine, where the heat flows to lower temperature points which is

the ambient air (Demetriades et al., 2010).
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Figure 2.9 Heat transfer flow diagram of PMSM.
Source: Demetriades et al. (2010)

Conduction

Conduction is the transfer of heat in a solid by means of molecular agitation
within a material without any motion of the material. In general, conduction can be

written in its integral form as in Equation 2.5 according to Fourier law.

. d — 2.5
Qvond = Qeona _ —,175 VT.dA
at g
Qcong 1S the quantity of heat (J) and Qong = aQ;—‘;”d is the rate of heat transfer (in

W), A the material's conductivity (W -m~t- °C~1), VT is the temperature gradient

(°C-m~1)and d4 is an oriented surface area infinitesimal (m?2).
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In one dimensional form (in X direction) where homogeneity and isotropy are
considered, the heat flow rate can be written as in Equation 2.6 and the conduction

thermal resistance R,, (W /m?. K) can be written as Equation 2.7

. dQ.ond dr 2.6
cond = C;zn = _AAE
Ax 2.7
Roona = 7

R onq Calculation is strongly dependent on the thermal conductivity of the
material. Most of motor construction material have a very well-known thermal
conductivity with minimal uncertainty which means a simple analytical calculation of

R onafor conduction is sufficient.
Convection

Convection is the heat transfer through fluids movements. The heat rate transfer

can be written using Newton's cooling law as in Equation 2.8.

. d 2.
Qcond = Q;Z"” = h.A.AT(t) 8

AT is the difference of temperature between the object's surface and the fluid and
h is the convection heat transfer coefficient (W /m?. K). h depends on various physical
properties of the fluid and the physical situation in which convection occurs such as the
temperature, the geometrical form, and external air flow influence. Different values were
proposed for different conditions (Staton & Cavagnino, 2006). They are nonetheless
empirical, thus may not completely suitable for a given system. It is therefore exceedingly

difficult to calculate and must be derived or found by experimental identification.

23



Radiation

Finally, radiation is the heat transfer process through electromagnetic waves from
a surface (Blundell S.; Blundell K., 2014). The Stefan-Boltzmann's correlation in
Equation 2.9 defines the rate of heat transferred by radiation Q4 (J), where is the Stefan-
Boltzmann constant (5.67 X 10~8 W /m?/°C*), A is the area emitting the radiation (m?)

and T the surface temperature (°C).

Qraq = 0. A.T* 2.9

Radiation is difficult to compute as there are not just radiation emitted from the
surface, but also radiation received by the surface from other exterior surface in its

surroundings. The net radiation heat loss rate can be computed using Equation 2.10.
Qrad =0.A.e.F_. (T = T3) 2.10

Where ¢ is the emissivity of the surface, a dimensionless quantity: 0 for absolute
reflector such as a mirror, and 1 for absolute absorber such as a black body. F; _, is the
view factor of surface 2 with respect to surface 1 which means the proportion of the
radiation which leaves surface 1 that strikes surface 2. In a setup where only two entities
considered (the machine and its surrounding as a set), the view factor equal to one as
result of energy conservation. T; is the temperature (°C) of the hot body and T, is the
cold surrounding temperature (°C). Like convections coefficient h, ¢ is also difficult to

be found and must be derived or found by experimental identification.

Conduction is the process of heat transfer that occurs across all solid parts of the
motor. On the other hand, convection and radiation are the processes that occur in the air
gap, the interior cavity, and on the exterior surface of the motor that is in contact with the
ambient air. In the context of a small air gap and cavity, the convection process can be
considered negligible compared to conduction. This is particularly true when the Nusselt
number, which represents the ratio of convective to conductive heat transfer across a

surface, is very small (Bouafia et al., 1998).
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Table 2.4 provides a summary of references that focus on the causes of
degradation and heat transfer. It is evident from numerous studies on partial discharge,
inter-turn short circuit, demagnetization of permanent magnets, bearing faults, and brush
friction that thermal monitoring condition is necessary to detect the occurrence of this

faults. It will play a significant role in preventing such faults from occurring or identifying

existing faults in rotating electrical machines.

Table 2.4 Summary causes of degradation and heat transfer.
Author Title Type of Fault Summary

Khan et Partial Discharge Modelling  Partial Partial discharge is a complex

al. 2020 of Internal Discharge in Discharge process where electrical, thermal,
Electrical Machine Stator and physical interactions occur in
Winding defective insulation.

Kumar et  Stator End-Winding Thermal Interturn Fault An inter-turn short circuit causes

al. 2021 and Magnetic Sensor Arrays high current and uneven heat in the
for Online Stator Inter-Turn stator winding due to a faulty coil.
Fault Detection

Park etal.  Early Detection Technique Interturn Fault Interturn faults occur when coil

2014 for Stator Winding Inter-turn insulation breaks down under
in BLDC Motor using thermal, electrical, and mechanical
Impedance stress, leading to continuous

degradation

Khan et Finite Element Modeling of Demagnetization =~ The magnet’s operating point on the

al. 2018 Demagnetization Fault in Permanent B-H curve drops due to
Permanent Magnet DC Magnet demagnetization, caused by the
machines stator’s magneto-motive force.

Wang et Stray Flux-Based Rotation Bearing Fault Repeated loads on motor bearings

al. 2021 Angle Measurement for cause stress, leading to initial issues
Bearing Fault Diagnosis in like cracks that can worsen into
Variable-Speed BLDC broken cages and worn raceways.
machines

K&K | Motor construction matfer?als have

Associates Thermal Network Modeling Conduction known thermal conductivity,

1999 Handbook allowing for simple calculations of

resistance conduction.
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Table 2.4 Continued.

Author Title Type of Fault Summary
Convection heat transfer and The convection heat transfer
Statonet  flow calculations suitable for . coefficient depends on the fluid’s
. . Convection ]
al. 2006 analytical modelling of properties, temperature, geometry,
electric machines and external airflow.

Calculating radiation is complex due

Blundell . . o to both emission from the surface
Concepts in Modern Physics  Radiation ] )
2014 and reception from surrounding
surfaces.

2.3.2 Monitoring, Modelling Temperature Response and Diagnostic

Following the review of potential causes of temperature rise, it is necessary to
monitor the machine temperature to not damage it. Consequently, this subsection
overviews different instrumentations used in monitoring the temperature of an electrical
machine, types of models used to predict temperature response in electrical machines,
and fault diagnostic methods. It highlights the advantages and inconveniences of each

solution, which later allow us to choose a suitable method in our research.
2.3.2.1  Monitoring Temperature Response

In the presence of potential excessive temperature, there is a need for
instrumentations for temperature monitoring on electric machines. Among the methods

used for this purpose are thermocouples, thermal imaging, and infrared thermometers.
Thermocouple Instrumentation

A thermocouple instrument measures temperature by utilizing the thermoelectric
effect. It consists of two dissimilar metal wires, joined at one end to form a junction.
Diverse types of thermocouples, such as the J or K type, use different mixtures of metals
in the cable. The millivolt value provided by the thermocouple at the cold junction
compensation end represents the difference in temperature of the sensing end compared
to the cold junction compensation end.
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Thermocouples are the most used temperature-measuring instruments in the
industry, enabling the measurement of a wide temperature range with a relative error of
1-2% (Fedosov, 2020). In the context of monitoring motor conditions, a thermocouple
can measure the temperature of motor components such as the winding, permanent
magnet, rotor (C. Liu et al., 2021), casing, and bearing. This data can provide insight into
the motor’s condition and performance issues such as overheating or mechanical faults.
It can be used to optimize the motor’s performance and ensure that it is operating within
its recommended temperature range. Thermocouples are valuable tools for monitoring
motor condition(Upadhyay et al., 2019), providing accurate and precise data for proactive
maintenance(N. Khan et al., 2019). They are widely used in harsh conditions due to their
low cost, robustness, and reliability(Seung et al., 2022).

However, thermocouples may deteriorate during operation (Dong et al.,
2020) and their error dramatically increases. In 90% of cases, deterioration is related to
chemical and metallurgical changes in the wires, progressing thermoelectric
inhomogeneity, and reduction of insulation material resistance (Rogel’berg, n.d.). This
deterioration is an irreversible but predictable process. Furthermore, its cost is very low
and can be easily replaceable with the condition that the components to be measured are

accessible.
Thermal Image Instrumentation

Another method used in monitoring motor conditions is thermal imaging. A
thermal image instrument, also known as a thermal camera or infrared camera, captures
and displays the infrared radiation emitted by objects, allowing the user to see heat
patterns. In the context of monitoring motor condition(Badoni & Jarial, 2021), a thermal
image instrument can be used to identify hot spots or areas of increased temperature on
the motor and its components (Khamisan et al., 2018). The instrument captures an image
of the motor and displays it in a color-coded format, where different temperatures are
represented by assorted colours. This allows for easy identification of areas of the motor
that are running at higher temperatures than normal. For example, an armature winding
that is running hot may be displayed as red or orange, while a cooler area of the motor

may be displayed as blue or green.
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The advantage of a thermal image instrument in monitoring motor conditions is
that it is a non-invasive (Z. Xu et al., 2022) and efficient way of assessing the temperature
variations on the motor's components (Badoni & Jarial, 2021) and its surrounding
environment (Khamisan et al., 2018). However, thermal imaging has some limitations in
monitoring conditions. According to a study (Chou & Yao, 2009) it is unable to detect
the inside temperature if the inspected object is separated by a non-transparent medium
for IRT radiation, such as glass or other covers. Like thermal imaging but measuring
localized points is an infrared thermometer. This tool uses infrared laser technology to
measure surface temperature but only at a single point (Zeng et al., 2014). It shares the
same inconvenience as the thermal image, where the imprecision temperature of the
thermal image only measures a single point and is non-exhaustive like a thermal image.

This method is not widely used, and if it is, it is typically only for preliminary results.
2.3.2.2  Modelling Temperature Response

Instead of monitoring the temperature response of electric machines using
instrumentation, modelling is another method that can be used to estimate the temperature
of an electrical machine. Several methods can be used for modelling temperature
response, such as Finite Element Modelling (FEM) and Lumped Parameter Thermal
Network (LPTN).

Finite Element Model

FEM can accurately simulate the temperature distribution within the motor and
predict the temperature rise during operation. It is a numerical method for solving a
differential or integral equation, used to solve several physical problems with the help of
governing differential equations (Anoop et al., 2020). FEM divides a large geometry into
small elements that can be solved in relation to each other. It is useful for problems where
analytical solutions cannot be obtained (Z. Liu et al., 2021) and is used in complicated
geometries, loadings, and material properties (Yang et al., 2019). This allows for a

detailed analysis of the temperature response of the motor.
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FEM has several advantages for simulating the temperature response of electric
machines. One advantage is its accuracy (Z. Liu et al., 2021). The method can provide
detailed information about the temperature distribution within the motor. Another
advantage is its flexibility. FEM can be used to simulate a wide range of scenarios,
including different operating conditions and analysis designs. However, it can be
computationally intensive, as solving the equations for many elements can require

significant computing power and time resources (Craiu et al., 2010).

Many researchers use finite element models to monitor and analyze temperature
rise in electric machines. For example, (Zhao et al., 2022) used a 3-D finite element model
to analyze temperature estimation for induction motors at stator winding and rotor under
different conditions, including under load and overload conditions. Meanwhile, (Shen et
al.,, 2021) combine the FEM and Fourier models to provide a balance between
computational efficiency and accuracy, especially useful for analyzing PMSMs with
different numbers of poles or slots and suitable for diverse types of machines. Figure 2.10
shows the temperature distribution in the stator of an induction motor which is obtained
from thermal analysis in ANSYS Mechanical platform done by (Anoop et al., 2020).
From this figure, it is concluded that the stator slot has the highest temperature as 143 °C

and end covers have the lowest temperature as 109 °C in stator geometry.

Temperature 3
Type: Temperature
Unit: *C

Time: 1

15-06-2020 16:32

I 132.6 Max
131.8

— 131

—{ 130.19

| 12939

I 12858

I 127.78

L 12698 ] L
L P 2
< \ -
12617 441’;;‘“
I zZ
125.37 Min

Figure 2.10  Temperature distribution in stator induction motor.
Source: Anoop et al. (2020)
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Lumped Parameter Thermal Network

Other than finite element modeling, researchers have also extensively utilized
another method known as the Lumped-Parameter Thermal Network (LPTN) model.
Among the researchers who used LPTN as a thermal model for their study, (D. Liang et
al., 2022; Phuc et al., 2021) conducted research on detecting temperature at the rotor and
stator windings in real-time using the LPTN model for permanent magnet synchronous
motor. Meanwhile, low-order LPTN, which offers more robustness and low
computational cost, was implemented by (Gedlu et al., 2021; E. Wang et al., 2022) for

estimation and analysis of temperature on synchronous motor.

The LPTN model is a mathematical representation of a physical system of the
machine. It consists of interconnected thermal resistances, capacitances, and heat sources
(Wockinger et al., 2023). This model posits that the system consists of discrete thermal
nodes, each with specific temperature and thermal capacity, connected via thermal
resistances representing heat transfer. The LPTN model abstracts the system's
temperature and heat flow distribution into these discrete nodes. For instance, Figure 2.11
shows the complete LPTN model of the synchronous reluctance motor (Azri et al., 2016),
with only copper losses shown. The model was reduced to one single pole radially and to

half of the axial dimension.

| “L- Ambient temperature
2

* Exterior surface resistance

Figure 2.11  Lumped Parameter model of the Syncrel motor.
Source: Azri et al. (2016)
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One of the primary advantages of the LPTN model is its simplicity. Its
mathematical representation is simple, and it requires minimal computational resources
(H. Xu et al., 2020), making it easy to implement in various applications(D. Liang et al.,
2022). The precision is high where the lumps are being discretized in high resolution,
where more temperature distribution information is needed. The model’s simplicity also
makes it easy to modify and adapt to different thermal systems and conditions.
Additionally, the model provides a good approximation of the temperature distribution

across the system and the response to various thermal inputs.

However, there are also some limitations to using LPTNs to model the
temperature response of electric machines. These models rely on several assumptions and
simplifications, which can limit their accuracy in certain situations (Phuc et al., 2021).
Additionally, LPTNs may not be able to capture all the complex heat transfer
processes(E. Wang et al., 2022) that occur within an electric machine due to the selective
and variable lumps resolution. Another disadvantage is that it requires expertise in both
LPTN and electric machine design(Gedlu et al., 2021). A deep understanding of both
fields is necessary to accurately simulate the temperature response of electric machines

using it.
2.3.2.3  Diagnostic Method

Temperature monitoring and modeling will be useful if its data is employed for
diagnostic purposes in identifying the machine potential fault. Various diagnostic
methods have been proposed for diverse types of motor faults, such as bearing faults,
stator winding faults, rotor faults, and air gap eccentricity. These methods include MCSA,

VASA, and TSA which vary in terms of their complexity of implementation.
Motor Current Signature Analysis (MCSA)

MCSA is a widely used technique that analyses motor current waveforms using
signal processing algorithms like FFT and wavelet. Different currents, such as sequence
components, stator currents, shaft currents, and radio frequency components of neutral
current, are used for MCSA(Niu et al., 2023). (Ray et al., 2021) and (Avina-Corral et al.,

2021) proposed feature extraction of stator current analysis for stator winding fault and
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bearing fault in induction motors. Meanwhile, (Shifat & Hur, 2020) proposed the FDD
method of brushless DC motor by feature extraction for failure classification from line
current. MCSA can be useful in industries where electric machines are used, enabling
non-intrusive online (even remote) analysis of motor supply current and identifying faults
while the motor is still operational and without disturbing its operation. However, the
MCSA approach is mathematically complex, expensive to realize, and requires a
significant amount of historical data (Niu et al., 2023).

Vibration Signature Analysis (VSA)

VSA has been practiced for the fault detection and diagnosis (FDD) of electric
machines for decades. Theoretically, all faults in electric machines generate vibrations
with distinctive characteristics. Therefore, sampled vibration signals can be applied to be
compared with reference patterns to perform FDD. In practice, vibration analysis has
been used for the detection of various mechanical faults, and some unbalanced electrical
faults(Bilgin et al., 2019). Study from (Langarica et al., 2020) and (Mitra & Koley, 2023),
focused and developing methods for fault detection of bearing in induction machine using
fusion vibration signal and CNN. However, vibration analysis with CNN has the
disadvantages of requiring a large amount of data and excessive sensors, being costly,
and susceptible to errors (X. Wang et al., 2020). This has affected recent research of FDD
using vibration, making it less popular.

Acoustic signature analysis is another technique used to monitor the condition of
electric machines. It measures noise signals which is the vibration propagated through air
near the motor’s surface. It may provide information about internal processes and the
motor’s current condition. When a motor is working well, its noise frequency spectrum
has unique base patterns. If faults develop, the frequency spectrum changes. Each part of
the frequency spectrum is associated with a specific source within the motor. This

technique can provide valuable information about the motor’s condition.
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(C. He et al., 2023) and (Shubita et al., 2023) proposed non-contact approach
using acoustic signal analysis to detect bearing fault with improved cyclostationary
analysis algorithm and fusion machine learning respectively. However, acoustic signal
analysis is not a popular method for recent researchers due to many errors and waste noise

because of the sensitivity of the microphone sensor(Glowacz et al., 2018).
Thermal Signature Analysis

Thermal signature analysis is a technique that has been frequently used as a
predictive tool for electrical installations maintenance since many of the failures or
installation defects lead to temperature increments in specific points or areas. However,
its application to fault detection in electric machines is far less usual but several methods
was developed to diagnose electric machines with thermal analysis (Glowacz & Glowacz,
2017). In this method, temperature profile data may provide extremely useful information
for the detection of some faults which are not easy to be detected with currents or
vibrations (Mohammed et al., 2019). In addition, this can be done in a non-invasive way,
I.e., without interfering with the machine's operation(Alfredo Osornio-Rios et al., 2019).
In thermal analysis, much research has been done with various techniques on diverse
types of faults including rotor broken bar, bearing fault and misalignment on the effect
of the induction motor parts presented by (Jeffali et al., 2019). (P. S. Kumar et al.,
2021) proposed FDD of induction motor through online detection using sensor arrays in
sensing schemes for detecting stator inter-turn faults. Combined with machine learning
method, the few-shot lightweight SqueezeNet architecture using thermal image is
designed for real-time fault detection on lightweight devices was proposed by (Siraj et
al., 2024).
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Table 2.5 shows a summary of methods for monitoring and modelling
temperature response and diagnostic. Based on the literature review on monitoring
temperature response, it can be concluded that the right tool can provide precise
measurement data depending on the field of study conducted. However, there are
limitations when using LPTN and FEM for more complex electric machine designs, as
they require high computational usage and expertise in heat transfer and electric machine
design. In the diagnostic section, common methods for detecting faults in electrical

machines are discussed, but there are limitations to these methods.

Table 2.5 Summary of monitoring and modelling temperature response and
diagnostic.
Author Title Method Summary

Cold Junction Compensation
Technique of Thermocouple Thermocouples are widely used in

Seung et  Thermometer Using Radiation- Monitoring the harsh conditions due to their

al. 2022  Hardened-by-Design Voltage (Thermocouple) low cost, robustness, and
Reference for Harsh Radiation reliability.

Environment

The system provides non-contact,
An Infrared Thermal Image Few-

. Monitoring non-destructive inspection,
Xuetal.  Shot Learning Method Based on . ]
o (Thermal offering fast and reliable
2022 CAPNet and Its Application to o ] ]
Image) monitoring of induction motors

Induction Motor Fault Diagnosis ) ,
without interference.

Key factors on the accuracy of ) Infrared thermometer’s accuracy is
Zeng et Monitoring (IR )

measurement temperature by affected by factors like surface
al. 2014 L Thermometer) oo .

using infrared thermometer emissivity, reflectivity.

FEM is useful for problems
Anoop et Thermal analysis of squirrel cage  Modelling lacking analytical solutions,
al 2020 Induction Motor (FEM) especially in complex geometries,
loadings, and materials.
Tracking of Winding and Magnet

. Hotspots in SPMSMs Based on ] LPTN's offer a simplified approach
Liang et . Modelling ]
Synergized Lumped-Parameter to model the thermal behaviour of
al. 2022 ] (LPTN)
and Sub-Domain Thermal complex system.
Models
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Table 2.5 Continued.

Author Title Method Summary
] An Effective Stator Fault MCSA carries significant
::(ijaHtur Diagnosis Framework of BLDC  Diagnostic information about the precision of
2020 Motor Based on Vibration and (MCSA) stator winding operation, allowing
Current Signals for early detection of faults.
Rotating angle estimation for VASA allows for condition
Wang et  hybrid stepper motors with Diagnostic monitoring by non-invasive
al.,, 2020  application to bearing fault (VASA) diagnosis, early fault detection and
diagnosis speed variation adaptability.
Shubita Fault Detection in Rotating The method allows for real-time
etal. Machinery Based on Sound Diagnostic fault detection and classification in
2023 Signal Using Edge Machine (ASA) rotating machines by utilizing
Learning machine learning techniques.
Few-Shot Lightweight Thermal analysis allows for the
o SqueezeNet Architecture for ) ) detection of subtle temperature
Siraj et ] ) ) Diagnostic S
al., 2024 Ind.uctlo-n Motor Fault Diagnosis (TSA) varlatnlons |nd|(fat|ve. (?f faTuIts,
Using Limited Thermal Image enabling early identification of
Dataset issues.

2.4 Transfer Function as Model

This subsection explains the use of transfer functions as a modelling approach in
recent research papers. Following subsection covers the generalities of frequency domain
models, the system identification MATLAB toolbox, and the evaluation of model

precision used in choosing transfer functions as a model.

Several studies have used transfer functions as thermal models for electric
machines for high accuracy, low calculation computational resource (Guo & Cai, 2023)
and easy implementation(Miloudi et al., 2017). (Straka et al., 2021) have established
thermal error compensation using transfer function to model the relationship between
heat sources and the resulting thermal errors in machine tools, which can affect
machining accuracy. Additionally, (H. Zhang, 2015) present online thermal monitoring
of induction machine using transfer function, focusing on accurately calculating both

average and hotspot temperature.
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While (P. Zhang et al., 2010) simplified first-order transfer function to model the
stator winding temperature using only three parameters as Equation 2.11. The parameters
considered were T, temperature rise, k; and k, are Loss; and Loss, which were
considered constant and independent of any load change after certain amount of operating

time, 7, is time constant and I2 is the current drawn by motor.

t

_t 2.11
Ts(t) = kllsz <1 —e Tl) + kz

The stator temperature estimation results, together with the measured average
stator temperature, under the 100% load conditions are shown in Figure 2.12,
respectively. The proposed thermal model is more accurate than the first-order thermal
model in estimating temperature. The maximum error using the proposed model is within

3°C, while the first-order model can have errors as large as 25°C.

stator winding temperature prediction under 100% load

60
G 50F i
.
©
0
o 40 =
= o
g_ .f"/,“
£ 30f T |
2 48
o Vol
k= o
2120 7 J
: ¥
5 ~
© F - -
= 10F ' =+=-=:= predicted Ts rise by the proposed thermal model| |
’r’ measured Ts rise
,.;'_z’ predicted Tsrise by 1st order thermal model
U Ll 1 1 L 1 L 1 1
0 5 10 15 20 25 30 35 40 45

time (min)
Figure 2.12  Temperature estimation under 100% load condition.

Source: Zhang et al. (2010)
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2.4.1 Generalities of Frequency Domain Model

This subsection is divided into two topics: the generalities of the frequency
domain model and the step response of the first-order system. A frequency-domain
transfer function (Ellis, 2012) is limited to describing elements that are linear and time-
invariant (LTI). However, these are severe restrictions, and no real-world system fully
meets them. The criteria for linearity and time invariance are defined by the three

following attributes.

Homogeneity: Assume that an input to a system r(t) generates an output c(t).
For an element to be homogeneous, an input k x r(t) would have to generate an output
k x c(t), for any value of k. An example of nonhomogeneous behavior is saturation,

where twice as much input delivers less than twice as much output.

Superposition: Assume that an element subjected to an input r; (¢t) will generates
the output ¢, (t). Further, assume that the same element subjected to input r,(t) will
generate an output c, (t). Superposition requires that if the element is subjected to the

input r, (t) + 7,(t), it will produce the output ¢, (t) + ¢, (t).

Time invariance: Assume that an element has an input r(t) that generates an

output c(t). Time invariance requires that r(t — 7) will generate c(t — 7) forall T > 0.

Transfer functions, which form the foundation of classical control theory,
necessitate the use of LTI systems (Ellis, 2012). However, no real-world system is LTI.
As an immediate solution, most control systems are designed with components that are
close enough to being LTI, such that any non-LTI behaviour can be ignored or avoided.
In practice, control systems are designed to minimize non-LTI behaviour, which is why
components used in control systems are often more expensive than their non-control

counterparts.
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2.4.1.1 Nonlinear Time Invariant

Nonlinear control theory (Nise, 2014) encompasses a broader range of systems
that do not adhere to the superposition principle. It is more applicable to real-world
systems since all real control systems are nonlinear. These systems are frequently
governed by nonlinear differential equations. The mathematical methods developed to
handle them are more rigorous but less general, often only applying to specific types of
systems. These methods include limit cycle theory(Garcia-Saldafa et al., 2020), Poincaré
maps (Goodman & Colombo, 2020), Lyapunov stability theory (Nguyen, 2018), and

describing functions.

Figure 2.13 illustrates several examples of physical nonlinearities. Figure 2.13 (a)
an electronic amplifier, for instance, is linear within a specific range but exhibits a
nonlinearity known as saturation at high input voltages. A motor that does not respond to
incredibly low input voltages due to frictional forces exhibits a nonlinearity known as a
dead zone in Figure 2.13 (b). Gears that do not fit tightly exhibit a nonlinearity known as
a backlash, where the input moves over a small range without the output responding as
in Figure 2.13(c). It should be noted that the curves depicted in Figure 2.14 do not
conform to the definitions of linearity over their entire range. A phase detector, used in a
phase-locked loop in an FM radio receiver, is another example of a nonlinear subsystem,
with an output response that is the sine of the input.

fix)

Output

Input

(a)

Figure 2.13  (a) Amplifier saturation. (b) Motor dead zone. (c) Backlash in gears.
Source: Control Systems Engineering (2014)
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Figure 2.13  Continued.
2.4.1.2  Step Response of First Order System

Consider the first-order system shown in Figure 2.14(a). Physically, this system
may represent an RC circuit, thermal system, or the like. A simplified block diagram is

shown in Figure 2.14(b). The input-output relationship is given by Equation 2.12.

C(s) 1 2.12
R(s) Ts+1

Ris) E(s) I As)
% _T:- -p-

(a)

R(s) | ((s)
—_— = —_—r
Is+1
(b)

Figure 2.14  (a) Block diagram of a first-order system. (b) Simplified block diagram.
Source: Modern Control Engineering (2010)
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In the forthcoming analysis, system responses to unit-step, unit-ramp, and unit-
impulse inputs are examined, assuming zero initial conditions. ldentical transfer
functions yield identical outputs for identical inputs. The mathematical response can be

physically interpreted for any given system.
2.4.1.3  Unit-Step Response of First-Order Systems

Since the Laplace transform of the unit-step function is 1/s, substituting R(s) =

1/s into Equation 2.13, obtain.

1 1 2.13

Cls) = Ts+1s

Expanding C(s) into partial fractions gives Equation 2.14:

1 1 1 1 .
(o) =1 _1 2.14

Ts +1 SS_I_(%)

Taking the inverse Laplace transform of Equation 2.15, obtain.

t
C(s)=1—e'T, fort =0 2.15
Equation 2.16 states that initially the output c(t) is zero and finally it becomes
unity. One important characteristic of such an exponential response curve c(t) is that at
t = T the value of c(t) is 0.632, or the response c(t) has reached 63.2% of its total
change. This may be easily seen by substituting t = T in c(t). That is,

c(T) =1—e1 =0.632 2.16

Note that the smaller the time constant T, the faster the system response as shown
in Figure 2.15. Another important characteristic of the exponential response curve is that

the slope of the tangent lineatt = 0is 1/T, since
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dc
dt

1 _t

=—e T
t=0 T

2.17

1
t=0 T

The output would reach the final value at t = T if it maintained its initial speed
of response. From Equation 2.17, the slope of the response curve c(t) decreases

monotonically from 1/T att = 0 to zero at t = oo.
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Figure 2.15  Exponential response curve.
Source: Modern Control Engineering (2010)

The exponential response curve c(t) given by Equation 2.16 is shown in Figure
2.15. In one time constant, the exponential response curve has gone from 0 to 63.2% of
the final value. In two-time constants, the response reaches 86.5% of the final value. At
t = 3T,4T, and 5T, t = 4T, the response remains within 2% of the final value. As seen
from Equation 2.17, the steady state is reached mathematically only after an infinite time.
In practice, however, a reasonable estimate of the response time is the time the response
curve needs to reach and stay within the 2% line of the final value, or four-time constants.

Many physical system responses can be approximate to this first order or higher
order response. This time response is best represented by a transfer function which is
easier to solve than its differential equation equivalent. Table 2.6 shows a list of
references explaining system responses modelled using the transfer function and its utility
in more depth. Generalities of the frequency domain model(Ellis, 2012) , nonlinear time-
invariant (Nise, 2014), step response first order and the unit-step response of first-order
system(Ogata, 2010). To develop a transfer function, the experimental response needs to

be identified first which will be explained in the next subsections.
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Table 2.6 Summary of generalities of the frequency domain model.

Author Title Summary

Ellis 2012 The Frequency Domain Discussing enhancing control systems using
frequency domain analysis, illustrated by
Bode plots and transfer functions.

Nise 2014 Nonlinearities Nonlinear control theory is useful for real
systems due to their inherent nonlinearity
and specific equation requirements.

Ogata 2010 First Order System The system's equation outlines the input-
output relation, studying responses to inputs

like unit-step, ramp, and impulse.

Kaloust et al. Robust control design for nonlinear ~ The paper suggests a robust control method
1997 uncertain systems with an unknown  for first-order nonlinear systems with
time-varying control direction uncertain dynamics and varying control
direction.

2.4.2 System ldentification

This subsection provides a detailed explanation of system identification
(Balakrishnan, 2002) using MATLAB's toolbox. The discussion is divided into two parts:
the first part focuses on the identification of the transfer function model, while the second
part provides an overview of the system identification toolbox in MATLAB. System
Identification toolbox enables the estimation of mathematical models for linear and
nonlinear time-invariant systems without requiring physical insights into the system. By
producing equations that describe the temperature response, it allows for predicting the
system'’s behavior in relation to new inputs. However, if the nature of the system changes,

the mathematical model may no longer be valid.

For LTI model, several types of models can be estimated using the toolbox such
as the transfer function model (Donjaroennon et al., 2021) which represent the
relationship between the inputs and the outputs of a system using a ratio polynomial. The
state space model (S. Li et al., 2022) which represent a system by a set of input, output
and state variables related by first-order differential equations is also another possible
model. Finally, the polynomial model (Colombo et al., 2019) which used polynomial to

represent the dynamics of the system is another model option.
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Meanwhile, for non LTI model, several types of models can be estimated such as
the nonlinear ARX model (Bermudez et al., 2021) which represent nonlinearities in
systems using dynamic nonlinear mapping objects such as wavelet networks, tree-
partitioning, and sigmoid networks. Another one is the Hammerstein-Weiner model
(Kwad et al., 2020) which represents an estimated static nonlinearity in an otherwise
linear system. The nonlinear grey box model (Zanelli et al., 2022) which represent
nonlinear system using ordinary differential or difference equations (ODEs) with
unknown parameters is also an option. Lastly, the neural state space model (Kirchgéssner
etal., 2023) which use neural network to represent the functions that define the nonlinear

state space realization of the system can also be opted.

Regarding to the listed estimation model above, and summarized in Table 2.7,
the transfer function is seen as the most suitable for implementation in this study due to
the relationship between input and output of speed and temperature response. Transfer
functions are light to be implemented in real-time and can be quickly developed through
system identification using several experimental data only. The best form of transfer
function can be searched using the Identification toolbox Using system identification
giving deep knowledge in explore the best form of transfer function (order) to describe
the temperature response of component in a DC machine and evaluates the model

precision.

Table 2.7 Summary of the model type using system identification.

Author Title Method Summary
Mathematical model
] construction of DC Motor by Transfer function used to design
Donjaroennon Transfer
closed-loop system ) PID controller for DC motor at
etal., 2021 o ) ] Function
Identification technique Using several speed response.
Matlab/Simulink
An Online VSI Error State space model utilized for
Parameter ldentification online compensation method of

Lietal., 2022 Method for Multiphase IM State Space VSI nonlinearity in multiphase
With Non-Sinusoidal Power IM with non-sinusoidal power

Supply supply.
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Table 2.7 Continued.
Author Title Method Summary
An Embedded Strategy for Polynomial models are integral to
Colombo etal., Online Identification of ) sensorless control for PMSM by
Polynomial ] . )
2019 PMSM Parameters and uses electrical signals to estimate
Sensorless Control the rotor position.
o An autoregressive with
Model Predictive Control of ]
. o ] exogenous variable (ARX) model
Bermudez et Six-Phase Electric Drives Nonlinear o )
] . . is introduced to estimate
al., 2021 including ARX Disturbance ARX . .
. disturbances and improve the
Estimator o
predictive control’s accuracy
A Real-Time Nonlinear Real-time method for modelling a
Hammerstein Model for . DC motor using the Hammerstein
Kwad et al., o Hammerstein- )
Bidirectional DC Motor ) model and neural networks. This
2020 . Weiner . )
Based on Multi-Layer Neural approach is designed for systems
Networks with one input and one output.
Continuous Control Set . o
. . . . Nonlinear model predictive
Zanelli et al., Nonlinear Model Predictive Nonlinear .
control approach for controlling
2022 Control of Reluctance Grey Box

Kirchgéssner et

Synchronous Machines
Thermal neural networks:

Lumped-parameter thermal

Neural State

reluctance synchronous machine.

Thermal neural networks for

LPTM in electric power systems,

al., 2023 modeling with state-space Space combining heat transfer based
machine learning LPTN and machine learning.
2.4.2.1 Ildentification of Transfer Function

Transfer function models describe the relationship between the inputs and outputs

of a system using a ratio of polynomials. The model order is equal to the order of the

polynomial’s denominator. The roots of the denominator are referred to as the model

poles, while the roots of the numerator are referred to as the model’s zero. The parameters

of a transfer function model are its pole, zero, and transport delays.

For a continuous response, a transfer function model can be described as Equation

2.18. Where, Y (s), U(s) and E(s) represent the Laplace transforms of the output, input,

and noise, respectively. num(s) and den(s) represent the numerator and denominator of

the polynomial that define the relationship between the input and the output.
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num(s) 2.18
den(s) U(s) + E(s)

Y(s) =

In continuous-time, input and transport delays are presented with an exponent

term as in Equation 2.19, where t represents the delay.

_ num(s) e-5STU(s) + E(s) 2.19

A single-input single-output (SISO) continuous transfer function has the form

G(s) :1;1::((3' The corresponding transfer function model can be represented as

Equation 2.20.

Y(s) =G(s)U(s) + E(s) 2.20

A multi-input multi-output transfer function contains a single-input single-output
transfer function corresponding to each input-output pair in the system. For example, a
continuous-transfer function model with two inputs and two output has the form as
Equation 2.21 and Equation 2.22. Where, G;;(s) is the single-input single-output transfer
function between the i*" output and the j™ input. E;( and E, are the Laplace

transforms of the noise corresponding to the two outputs.

Yiee) = Gr1(s)Uss) + Gras)Uzs) + Evs) 221

Yois) = Gaas)Us(s) + G22(s)Uz(s) + Ez(s) 2.22
2422 MATLAB ldentification Tools

System identification(Balakrishnan, 2002) is a methodology for building
mathematical models of dynamic systems using measurements of the input and output
signals of the system. The process of system identification requires to measure the input
and output signals from the system in time or frequency domain. The selection of model
structure applies an estimation method to estimate values for adjustable parameters in the

candidate model structure. The model structures available are presented earlier in Table
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2.7. Lastly, the toolbox evaluates the estimated model by comparing the model results
with the experimental data input and provides errors of the estimated model. The

subsections that follow are the steps.
Measured Data as Input in System Identification

By measuring the input and output signals from a system, system identification
can estimate the values of the movable parameters in each model structure using these
measured data. Time-domain input-output signals, frequency response information, time-
series signals, and time-series spectra can all be used to develop the models. It is
necessary to have measured data that accurately captures the dynamic behaviors of the
system to create an adequate model of it. The quality of the measurement data, which in
turn depends on the design of the experiment, affects how accurate the model is.

Time-domain data consists of the input and output variables of the system that are
recorded at a uniform sampling interval over a period. To build a continuous time model,
one need to know the intrasample behaviour of the input signals during the experiment.
The input can be piecewise constant or piecewise linear between samples. Frequency-
domain (Pintelon & Schoukens, 2012) data represents measurements of the system input
and output variables that are recorded in the frequency domain. The frequency-domain
signals are Fourier transforms of the corresponding time-domain signals. Frequency-
domain data can also represent the frequency response of the system, represented by the
set of complex response values over a given frequency range. The frequency response
describes the outputs to sinusoidal inputs. If the input is a sine wave with frequency w,
then the output will also have the same frequency, whose amplitude is A(w) times the
input signal amplitude and a phase shift of @ (w) with respect to the input signal. The

frequencies response can be written as A(w)e (®@)-

In term of data quality requirements, data must accurately reflect the crucial
system dynamics to identify the system. A good experimental plan makes sure that the
correct variables are measured accurately and for long enough to capture the dynamics
that are being modelled. In general, inputs for experiments need to sufficiently excite the
system dynamics. One step, for instance, rarely provides sufficient excitement. Set up a

data acquisition system with a good signal-to-noise ratio, measure data at the proper
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sampling intervals or frequency resolution, and measure data for a long enough period to

capture the significant temporal constants.
Build Models from Data

A model structure is a mathematical relationship between input and output
variables that contains unknown parameters. Examples of model structures are transfer
functions with adjustable pole and zero, state-space equations with unknown system
matrices, and nonlinear parameterized functions. The following difference Equation 2.23

represents a simple model structure. Where a and b are adjustable parameters.

y(k) + ay(k — 1) = bu(k) 2.23

The system identification process requires choosing a model structure and
applying the estimation methods to determine the numerical values of the model
parameters. The following approaches can be used to choose the model structure. For a
model that can reproduce measured data and is as simple as possible, various
mathematical structures available in the toolbox. This modelling approach is
called black-box modelling. While, for a model with specific structure, which might have
derived from first principles, but do not know numerical values of its parameters. The
model structure can represent as a set of equations or as a state-space system in
MATLAB and estimate the values of its parameters from data. This approach is known

as grey-box modelling.

Ymodel(t) = Gu(t) 2.24

The system identification toolbox software estimates model parameters by
minimizing the error between the model output and the measured response. The
output y,,,4e: Of the linear model as Equation 2.24. Where G is the transfer function. To
determine G, the toolbox minimizes the difference between the model output y,,,04e1(t)
and the measured output y,,,..s(t). The minimization criterion is a weighted norm of the

error, v(t), as Equation 2.25
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v(t) = Ymeas(t) - Ymodel(t) 2.25

Ymoder (t) 1S 0one of the simulated response (Gu(t) of the model for a given
input u(t) and predicted response of the model for a given input u(t) and past
measurements of the output (Vieas(t — 1), Vimeas(t — 2),...). Accordingly, the
error v(t) is called the simulation error or prediction error. The estimation algorithms
adjust parameters in the model structure G such that the norm of this error is as small as

possible.

The configuration of the estimation algorithm configures the minimization
criterion to focus the estimation on a desired frequency range, for example, to put more
emphasis at lower frequencies and deemphasize higher frequency noise contributions.
Also, can configure the criterion to target the intended application needs for the model,
such as simulation or prediction. Specifying optimization options for iterative estimation
algorithms. Most estimation algorithms in this toolbox are iterative. Configure can be an
iterative estimation algorithm by specifying options, such as the optimization method and

the maximum number of iterations.
Black-box Modelling

Regardless of the mathematical complexity of the model, black-box modeling
(Juditsky et al., 1995) is effective for fitting the data. The toolbox offers several black-
box model structures, both linear and nonlinear, that have historically helped describe
dynamic systems. Depending on the flexibility, requirement to consider the dynamics,
and noise in the system, these model structures range in complexity. One of these
structures can be chosen, and its parameters can be computed to fit the measured response

data.

Black box modeling often involves predicting the parameters of different
architectures and comparing the outcomes. Start with a simple linear model structure and
work your way up to more sophisticated ones. The simplest input-output polynomial
model is the linear ARX model, and the state-space model can be estimated by providing

the number of model states. The simplest linear black-box structures require the fewest
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options to set the transfer function with a given number of poles and zero. Noniterative
estimate algorithms are also used in the estimation of certain of these structures, further
reducing complexity. The model order can be used to configure the model structure.
Depending on the type of model chosen, different definitions of model order exist. For
instance, if a transfer function representation is used, the number of poles and zero affects
the model order. The model order for state-space representation matches the number of
states. It may be possible to infer the model order from the data in some circumstances,

such as for linear ARX and state-space model architectures.
Grey-box Modelling

In the grey box(Q. Zhang, 1997) approach, the data is used to estimate the values
of the unknown parameters of the model structure. The model structure is specified by a
set of differential or difference equations in MATLAB and provides some initial guess
for the unknown parameters specified. In general, building grey-box models need to be
creating a template model structure, configuring the model parameters with initial values
and constraints (if any), and applying an estimation method to the model structure and

computing the model parameter values.
Evaluation of Model Quality

After estimating a model (Dennis & Schnabel, 1996), its quality can be evaluated
by comparing the model response to the measured response, analyzing residuals, and
analyzing the model uncertainty. The quality of a model is determined by how well it
satisfies the needs of the application. Comparing the model response to the measured
response involves evaluating the quality of a model by comparing its response to the
measured output for the same input signal. Residual analysis is performed using system
identification toolbox software to assess model quality. Residuals represent the portion
of the output data not explained by the estimated model, and a good model has residuals
uncorrelated with past inputs. Analyzing model uncertainty involves estimating the
accuracy of nominal values within a confidence region, determined by the values of
parameter uncertainties computed during estimation. The magnitude of these
uncertainties provides a measure of the reliability of the model. Large uncertainties in

parameters can result from unnecessarily high model orders, inadequate excitation levels
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in input data, and poor signal-to-noise ratios in measured data. Which can compute and
visualize the effect of parameter uncertainties on the model response in the time and
frequency domains using pole-zero maps, Bode response plots, and step response plots.

Table 2.8 shows a summary of the system identification, with Lennart Ljung’s
book (Ljung, 1999) providing a deep theoretical and practical understanding using
MATLAB. (Q. Zhang, 1997) proposed a wavelet network algorithm for nonparametric
regression. The model’s quality is assessed by comparing its response to actual data,
examining residuals, and evaluating uncertainty, as explained by (Dennis & Schnabel,
1996). Meanwhile, (Pintelon & Schoukens, 2012) and (Juditsky et al., 1995) discussed
modeling in system identification using frequency domain techniques and the
mathematical foundation of nonlinear black-box models respectively.

Table 2.8 Summary of system identification.
Author Title Method Summary
Lennart ] o Building mathematical models of
) System identification: theory for ~ System ) )
Ljung. . . dynamic systems by observing
the user (second edition) Identification
1999 input/output data.
) Numerical Methods for Optimization and nonlinear equation
Dennis et . o Model ] ] ]
Unconstrained Optimization and ) solving techniques to improve model
al. 1996 . ] Quality
Nonlinear Equations accuracy and performance.
Discuss system identification,
) System Identification: A dynamic model creation from data,
Pintelon et | Frequency / ]
Frequency Domain Approach, i focusing on frequency domain
al. 2012 . Domain ) ) )
Second Edition techniques versus time domain
methods.
Examines the math of non-
] Nonlinear black-box models in parametric methods for identifying
Juditsky et S Black-box . )
system identification: nonlinear systems, focusing on the
al. 1995 ) . Model .
Mathematical foundations trade-off between model adaptability

and estimation error.
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2.4.3 Evaluation of Model Precision

The transfer function obtained by estimating data using the MATLAB system
identification toolbox can later be evaluated using the fit to estimation data, MSE, and

FPE, all of which are explained in detail in this subsection.
2.4.3.1 Fit to Estimation Data

Fit to estimation data refers to how well a model fits the data used to estimate it.
In MATLAB?’s system identification toolbox, when a model is estimated, it is done so to
minimize the 1-step ahead prediction error. The fit value between the 1-step ahead
predicted response of this model to measured data is then calculated. The Model Output
plot shows by default the fit between the simulated response of the model and the
measured data. NRMSE measure of how well the response of the model fits the
estimation data and expressed as the percentage, defined as Equation 2.26. Where
Ymeasurea 1S the measured output data, V,,zasureq 1S the channel-wise mean, y,,o4e1 1S
simulated or predicted response of the model, governed by the focus and |I. || indicates

the 2-norm of a vector.

| Yimeasurea — Ymoder |l ) 2.26

” Ymeasured — Ymeasured "

FitPercent = 100 (1 —

The fit percent varies between ~inf (bad fit) to 100 (perfect fit). If the value is
equal to zero, then the model is no better at fitting the measured data than a straight line
equal to the mean of the data. Some researchers used fit estimation data for model
validation such as (Anshory et al., 2020) and (Majdoubi et al., 2021) where they compare
the accuracy of model with the actual data in identification parameter system of a BLDC
motor. (Donjaroennon et al., 2021) on the other hand, analyze the accuracy of input-

output signal and derive a mathematical equation for DC motor in a closed loop system.
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2.4.3.2 Mean Square Error

The MSE tells how close a regression line is to a set of points. It does this by
taking the distances from the points to the regression line and squaring them. The
squaring is necessary to remove any negative signs. It also gives more weight to larger
differences. It is called the MSE for finding the average of a set of errors. The lower the
MSE, the better the forecast. MSE measure defined as Equation 2.27, where e(t) was the
signal, whose norm is minimized for estimation, N is the number of data samples in the

estimation dataset.

L& 227
MSE = NZ el (t) e(t)
t=1

MSE in regression analysis is used to assess the quality of a predictor or an
estimator and serves as a criterion for selecting the best possible model or estimator
considering the trade-off between bias and variance. Study by (Kirchgassner et al., 2021)
and (Dawood et al., 2024) use MSE as a metric for evaluating the performance of the
neural network models developed for temperature prediction. While (Jing et al., 2023)
validation performance of Gradient Boosting Tree model for motor rotor temperature
using MSE.

2.4.3.3 Final Prediction Error

Akaike's Final Prediction Error (Akaike, 1971) criterion provides a measure of
model quality by simulating the situation where the model is tested on a different dataset.
According to Akaike's theory (Akaike, 1974), the most accurate model has the smallest
FPE. The fit always gets better when the model order and, consequently, the adaptability
of the model structure, are increased when the same dataset is utilized for both model

estimation and validation.
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FPE is defined by the following Equation 2.28. Where N is the number of values

in the estimation dataset, e(t) is a n-by-1 vector of prediction errors, 8, represents the

estimated parameters and d is the number of estimated parameters.

N

FPE = det (%Z e(t, Oy) (e(t, éN)>T>

1

d 2.28
1+
a
N

There are several studies in electric motors that employed FPE in evaluation of

model for their study, such as (Mokhlis et al., 2019) and (Naung et al., 2018) who assess

the quality of the identified model, ensuring it accurately represents the DC machine’s

dynamics.

Table 2.9 shows a summary of the evaluation of model precision. Various study

used MSE and FPE to evaluate model of their research. This shows these error estimation

methods were valid and reasonable to use to evaluate model precision for transfer

function model.

Table 2.9 Summary of evaluation of maodel precision.
Author Title Method Summary
Parameters estimation of L i )
. Validation using relative error
. . BLDC motor based on Fit to . .
Majdoubi et ) YS| calculation between physical approach
physical approach and Estimation .
al., 2021 i . values and estimated values for
weighted recursive least Data o
) estimation of parameter for BLDC.
square algorithm
Mathematical model )
) ) Assess the best fit value for closed-
] construction of DC Motor by  Fitto ) )
Donjaroennon o loop transfer function of mathematical
closed-loop system Estimation s
etal. 2021 o ] model of DC motor that indicates
Identification technique Data .
] o closely matches the experimental data.
Using Matlab/Simulink
Gradient Boosting Decision o
) Assess the prediction performance and
Jing et al., Tree for Rotor Temperature o
o MSE optimize key hyperparameters of the
2023 Estimation in Permanent

Magnet Synchronous Motors

GBDT model using MSE.
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Table 2.9 Continued.
Author Title Method Summary
An Efficient Protection
) ] The MSE gauges ANN performance. It
Dawood etal.  Scheme Against Single-
) MSE measures how well the model's
2024 Phasing Fault for Three- o
) predictions match the real values.
Phase Induction Motor
] System Identification of a FPE is used to assess the quality of the
Mokhlis et . . -
L 2019 DC Servo Motor Using ARX  FPE estimated models, specifically the
al.,
and ARMAX Models ARX and ARMAX models.
Implementation of data FPE is a measure of how well the
Naung etal.,,  driven control system of DC FpE model predicts new data that was not
2018 motor by using system used during the model estimation

identification process

process.

2.5 Highlights on the Research Gap

As a summary to the literature review chapter, this paragraph emphasizes the
research gaps in real-time temperature response modeling of electrical machines. As
shown in Table 2.5 and discussed in the subsection monitoring, modeling temperature
response and diagnostics, numerous well-known methods are commonly employed in the
electrical machines field, an observation on the latest trend can be made. Recent
researchers use machine learning with a fusion of other analysis methods. These methods
have their benefits and drawbacks, especially in terms of existing historical data

availability. Their development and validation require a certain amount of time.

In situations where it’s not crucial to know the direct relationship between the
motor’s physical parameters (such as dimensions and materials) and the temperature, a
transfer function can be utilized to depict the temperature response. Transfer functions
are easy to implement in real-time and can be swiftly developed through the identification

of transfer functions using only a few experimental data points.
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Table 2.10 shows a summary of researchers who used these methods in real-time
fault detection of electrical machines. Most of the study discuss about the fault detection
of inter-turn fault and bearing fault. The MCSA method was utilized by (Ray et al., 2021)
and (Avina-Corral et al., 2021), while the VSA method employed by (Langarica et al.,
2020) and (Mitra & Koley, 2023). The ASA method used by (Shubita et al., 2023) and
(C. Heetal., 2023), whereas TSA method applied by (P. S. Kumar et al., 2021) and (Siraj
etal., 2024). Lastly, machine learning method adopted by (Shih et al., 2022) and (Yatsugi
etal., 2023).

Table 2.10  Summary of research gaps of real time fault detection.

Author Title Method Summary
Skewness Scanning for Mot Use the skewness scanning algorithm
otor
Diagnosis of a Small Inter-Turn to detect the number of shorted turns
Ray et al. ] Current . .
Fault in Quadcopter's Motor . in the motor by analysing the
2021 Signature o
Based on Motor Current ) skewness of wavelet coefficients at
] ] Analysis . .
Signature Analysis different decomposition levels.

Bearing Fault Detection in ] ]
The Kuiper test using MCSA

] Adjustable Speed Drive- Motor ]
Avina- . ) demonstrated the potential for real-
Powered Induction Machine by — Current ] . ]
Corral et ) ) _ time operation due to their low
Using Motor Current Signature  Signature ] ) .
al. 2021 computational complexity and quick

Analysis and Goodness-of-Fit Analysis o
execution time.

Tests
Employing RBC for identifyin
] An Industrial Internet Vibration pioY g ] ying
Langarica Al i . faulty variables and using CNN for
Application for Real-Time Fault  Signature ) o
et al. 2020 detailed vibration-related fault

Diagnosis in Industrial Motors Analysis o
identification.

The method uses ASLT for high

W Early and Intelligent Bearing Vibration time-frequency resolution of
2023 Fault Detection Using Adaptive  Signature vibration signals and inputs the data
Superlets Analysis into a 2-D-CNN to classify bearing
faults.
Fault Detection in Rotating Acoustic The trained model is deployed on an
Shubitaet  Machinery Based on Sound Signature edge device for local processing and
al. 2023 Signal Using Edge Machine Analysis real-time fault detection, eliminating
Learning the need for cloud connectivity.
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Table 2.10  Continued.
Author Title Method Summary
Real-Time Fault Diagnosis of By analyzing sound signal's spectral
. Motor Bearing via Improved Acoustic correlation density and using an
2023 Cyclostationary Analysis Signature improved cyclostationary feature
Implemented onto Edge Analysis extraction algorithm, the system can
Computing System diagnose faults in real-time.
Stator End-Winding Thermal The online condition monitoring
Kumar et and Magnetic Sensor Arrays for :ger:;:j:e system based on HESA, which
al. 2021 Online Stator Inter-Turn Fault . allows for real-time fault detection
Detection Analysis and localization.
Few-Shot Lightweight The SqueezeNet architecture is
Siraj et al. SqueezeNet Architecture for Thermal designed to be ultra-lightweight,
Induction Motor Fault Signature making it suitable for real-time fault
2024 Diagnosis Using Limited Analysis diagnosis applications on lightweight
Thermal Image Dataset devices.
Common Diagnosis Approach
Yatsugi et to Three—?lass Induction Motor Y The ?VM algorithm was used to
ol 2023 Faults Using Stator Current Learning classify motor faults based on the
Feature and Support Vector load current spectra and motor speed.
Machine
Machine Learning for Inter- The CNN learned to diagnose faults
Shihetal.  Turn Short-Circuit Fault Machine directly from 2-D images of data,
2022 Diagnosis in Permanent Magnet - Learning eliminating the need for initial

Synchronous Motors

feature extraction.

There is a gap for a new method that uses a transfer function as a baseline

temperature model in real-time fault detection of electrical machines. This method is cost-

effective, accurate, and doesn’t necessitate a motor thermal specialist to develop. The

new method, which uses the transfer function to model the temperature response of

electrical machines, can be developed and studied. The baseline temperature model by

transfer function will represent several critical components of electrical machines,

including the brush, bearing, permanent magnet, and casing. To be developed, the input

data of speed step, and the output data of temperature responses of the components will

be required, which will be measured through experimental works. Further evaluation and

validation of this method will be discussed in the results and discussion chapter.
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CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter explains the processes for achieving the objectives outlined in the

Introduction. It covers motor details, instrumentation, test setup, method development,

transfer function modeling, and model validation. The entire process is summarized in

Figure 3.1.

Experimental data
generation
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Figure 3.1 Research flow chart.
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There are three (3) main stages in this research. To develop a generalized speed-
dependent temperature response model, will be using the transfer function. Therefore, the
research starts with temperature response data collection that will serve as input to
develop our model. The temperature data at selected components were collected while
the motor was running at several sample speeds. The next step is the transfer function
model generation for each component at different speeds. Here the experimental data
previously collected were used along with the System Identification toolbox to generate
transfer functions that model the temperature response of the motor components. These
speed-dependent transfer functions will be then analysed to develop a generalized transfer
function model that can model the components’ temperature response at any speed.
Finally, the generalized model will be validated and tested for robustness by evaluating
its temperature estimation errors in comparison to experimental data. The validated
model will be used to demonstrate its ability to identify anomalies in faulty DC motors
at the end of the study. Each step mentioned here will be detailed in the following sections
of the methodology.

3.2  Objective 1 Part (A) : Experimental Setup

The temperature response of MY1016 DC machines was collected with the motor
operated using a programmed block diagram in Simulink for speed control and data
acquisition. The DC motor was-run:in a continuous cycle at noload until they reached
temperature equilibrium, as specified in the IEC-60034 standard for motor testing. This
process was repeated at different motor speeds, starting at 20% and increasing in
increments of 20% up to 100%. These speeds were calculated relative to the rated speed
of the MY'1016, which is 2650 rpm. The experimental data generation was conducted as

shown in Figure 3.2.
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Figure 3.2 Flow chart of the experimental data generation.

Thermocouples were used to measure the temperature response at various parts
of the DC machines, including the brush, bearing, permanent magnet, and casing as
shown in Figure 3.3. This data was then used to identify the transfer function of the

temperature response.

,,,,,,, zy E: Permanent
L Magnet

////
v

= Thermocouple

USB Thermocouple Data Logger

Brush

Figure 3.3 Instrumentation of DC machines.

The outputs from the thermocouples are monitored and converted to their
corresponding temperatures using a Type-K thermocouple unit with an error of +/- 1.1
°C. The thermocouple measurements are taken automatically every 0.25 seconds and the

data is transmitted to a host PC for storage. The current is monitored using the TP-CC80
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current clamp, which allows the oscilloscope to measure electrical currents up to 80A
ac/dc, with a frequency response up to 20kHz. The speed is measured using a rotary
encoder with 500 pulses per revolution, which is programmed to be monitored along with
the temperature. Once the DC motor is completely instrumented the motor is mounted on
the top of the test bench. The temperature response is collected while the motor running
in continuous running duty, following the standard duty from IEC-60034 see Appendix
A.

For data acquisition in DC machine components, the readings of temperature rise,
and speed constant are recorded simultaneously using the thermocouple DAQ and
encoder. These values can also be monitored at the PC host. The temperature of the motor
must achieve a steady state before ending the duty cycle. If the temperature continues to
rise and changes, the process of data acquisition is continued until it reaches a steady
state. Once all the data has been collected, it is plotted and analysed. The complete
experiment setup can be seen in Figure 3.4 below. The following subsections will give
more details on each component of the test setup (motor specification and characteristics,
speed controller and temperature measurement program, and the faulty motor

experiment)

MY1016
Thermocouple Motor Controller :J PC Host
DAQ & Driver Encoder

Power

Supply | =
S w = ——

Current T = (I

Probe ' N " i, ; ' p—

Oscilloscope

Figure 3.4 The complete experimental setup.
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3.2.1 MY1016 DC Motors Specifications

The object or system in which the temperature response is going to be observed
and modeled in this study is a DC motor. A small, brushed DC motor, commonly named
MY1016 was chosen as a sample motor. This choice was made due to the ease of
disassembly and installing the machine, as well as the accessibility to implement
thermocouples on components such as the brush, bearing, permanent magnet, and casing.
In addition, the structure of the machine is quite complex with irregular surface and cavity
in the airgap, leading to unpredictable temperature behaviour which is interesting to
observe. This complexity arises from the intricate components, the closed and rough
surface on the inside, and the turbulent effect of air circulation. The specifications of the
DC motor can be found in Table 3.1 below.

Table 3.1 Specification of small brushed DC machines.

Parameters Values
Model MY1016
Operating Voltage 24VvDC

Rated Current 13.5A
Rated Speed 2650 Rpm

Operating Power/Output 250 W
Rated Torque 100 N-cm

No Load Current <22A
Shaft Diameter 12.2 mm

Cable length 25cm

Weight 2.0 Kg

Dimension (20*15*10) cm

This motor can be commonly found in small actuator application for light
mobility such as electric bicycle and scooter. Small scale semi-industrial applications
such as conveyors, extruders, fan and ventilators for food processing, and agro-industrial

machinery are also frequent users of this inexpensive motor.
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3.2.2 Motor No-Load Current

As previously explored in the literature review, the temperature response may
come from different sources of losses and these losses can be load-dependent or speed-
dependent. This study concentrates only on the second part which is the temperature that
is due to speed-dependant causes. Therefore, the experimental temperature response data
that is going to be collected needs to be independent of any losses due to current increases
caused by a load. The experiments are then going to be at different speeds with no load.
To ensure the no-load condition, the no-load current of the motor when it is running at
different speed need to be characterized and verified to be at a negligible level at all

speeds.

The no-load current verification is also important to ensure that the losses due to
friction are minimal and negligible for the model construction. This is to demonstrate that
the speed variation across the voltage range does not generate significant losses that
would need to be considered. It is important to note that the model was building will serve
as a baseline model, which is supposed to show the estimated temperature of a new and
healthy machine without any fault or wear and tear. To verify the no-load current and
losses, an experiment was conducted at different speeds by manipulating the armature
voltage at various levels (which is an image of the speed of the motor). The results are
plotted as shown in Figure 3.5. At the maximum voltage range, the current variation is
negligible because the no-load current is less than 0.7 amp, as indicated by the orange
line on the right vertical axis. This is minimal in comparison to the nominal current of

13.7 amps, as specified by the motor specification previously.

Current (A)

SIS I S R R T TP - T~

Figure 3.5 Rated current at no load speed.
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When compared to the 250W nominal power, the losses at maximum speed
account for only 0.1% of the nominal power of the motor. Therefore, it would not
generate a significant temperature difference. Since the torque T can be computed from
the equation T = k; X I, it can be concluded that the no-load torque of the DC motor
can be considered constant across the speed range up to maximum voltage. In summary,
the relationship between losses and current is proportional, and the losses of the DC
machines are less than 1% of the nominal power at no-load condition. The motor is
therefore without fault and suitable to be used for temperature response data generation

for the development of the baseline transfer function model.
3.2.3 Speed Controller

According to the motor specifications, the MY1016 brushed DC motor is
designed to be used with a power supply of 24V supply voltage and capable of delivering
20A of current. The speed of the motor is regulated using a motor driver MDD10, which
is stacked on the Arduino Mega 2560 microcontroller. The switched mode power supply
allows for lower losses driver while capable of delivering the criteria outlined in Table
3.1. In the meantime, a bellow coupling is used to connect a rotary encoder with 500
pulses per revolution, to the motor’s shaft giving the speed feedback to the
microcontroller. This setup enables the real speed of the motor to be measured and
recorded. The encoder is calibrated using the motor’s rated speed, which corresponds to

a value of 255 pwm, allowing a reading of a maximum speed of 2650 rpm.

The microcontroller is connected in real time to MATLAB-Simulink where the
speed control block diagram is implemented and monitored on a host PC. The block
diagrams in Figure 3.6 shows the PWM speed control setup in Simulink. The PWM value
corresponding to the supply voltage value is the input the user gives to the system.
Operating in 8 bits, the maximum value of 256 would correspond to the maximum voltage
supply, which corresponds also to the maximum rated speed of the motor. Any value
between 0 and 256 corresponds therefore to a percentage of the nominal rated speed of
the motor. The positive and negative PWM values define the rotation of the motor,
clockwise and anticlockwise respectively. This process is carried out by PWM output,

and pin 4 and pin 5 on the Arduino board is used for each rotation clockwise and
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counterclockwise. The s-function block, Speed Acquisition is used to create the data
acquisition program of the motor’s actual speed for speed monitoring. The code for the
microcontroller running in real-time with Simulink in detail can be referred to in
Appendix B. Simulink runs in MATLAB version R2022b, and additional support
packages, namely the Simulink support package for Arduino hardware and the MATLAB
support package for Arduino hardware are installed to run Arduino code from Simulink.

Motor Controller
Pin 5 at Arduino Mega 2560

ARDUINO e
e okl

|
|
! J_|_|_|_|_|_
I : = ]
Pin: 5

I - 4‘3
|
: ForwardMove J—El
1 Pin 4 at Arduino Mega 2560 %

ARDUINO
1 i
| | |_| |_
|
|
|

Monitor Speed

IS SR oy

Pin: 4 ==
Switching Contrel L ™| pb— "W 0 |\ | = = == == -
ReverseMove u r 1
L 1

_______________________ — — o —
Store Data

encoder RPM

encoder
. = = = = o

Speed Acquisition

Figure 3.6 Motor controller block diagram.
3.2.4 Temperature Measurement

The type K thermocouple is used, which is composed of Chromel and Alumel
conductors, and operates within a temperature range of -210 °C to 1200 °C. It features a
thermocouple wire with a diameter of 0.128 mm and exhibits superior oxidation
resistance compared to other types. The compact size of the thermocouple facilitates its
implementation on motor components such as the brush, bearing, permanent magnet, and
casing, as depicted in Figure 3.3. Despite the complex structure of the electrical machine,
the installation of the thermocouple does not interrupt its normal operation. Given that
the signal level of a type K thermocouple can range from 6.4 to 54.9 mV, it is essential
to collect and amplify the signals using an amplifier model MAX6675. To enable
detection by an Arduino Mega 2560 microcontroller, the extremely low voltage of the
reference junction is increased. These attributes make the thermocouple an ideal choice

for data acquisition of the temperature response of the MY 1016 brushed DC machines.
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To execute thermocouple data reading code within Simulink, it is necessary to
develop an s-function block diagram, called Temperature Acquisition (Figure 3.6) (see
Appendix B). This requirement arose from the discovery that the MAX6675 module
requires a calibration delay of 0.25s before to provide an accurate temperature reading of
the motor component. The thermocouple’s temperature data, which is transmitted to
Simulink every 0.25 seconds, is sufficiently frequent considering the inertia of
temperature response. The block diagram for the temperature data acquisition is

presented in Figure 3.7.

Temperature Acquisition Temperature Output
Pt ke G P e S | e e e e 1
: Brl%s L
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1 - 11 Monitor Temperature
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| 11 |
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1 Bod 1 ! temp grph :
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I g T —— I»  outtemp 1
L= =11 . I I
R L M|
Store Data

Figure 3.7 Temperature measurement block diagram.

The temperature responses were recorded until the DC machine reached a steady
state. This was done at speeds speed intervals of 20%, 40%, 60%, 80%, and 100% of
nominal speed. The variation in'speed was achieved by adjusting the input voltage. The
steady-state temperature was reached after 10,800 seconds for all components. The
temperature responses for each component will be comprehensively presented and

discussed in the results and discussion chapter 4.
3.2.5 Objective 3 : Fault Experiment

Once a generalized transfer function model is developed and validated, the
generalized transfer function model will be tested in real conditions to evaluate its
feasibility in detecting motor faults. To replicate this condition of fault, several fault
conditions will be created. The faults that were chosen to be replicated are the faults that
is the most frequently occurred based on our literature review previously presented in
subchapter 2.3.1.
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The faults replicated are degreased bearing and broken or used brush. Along with
these two faults, a healthy machine will be tested along with them for comparison. This
was done to validate the reliability of the equivalent model in real-world scenarios. The
experiment will be conducted at varying speeds, ranging from 10% to 100% of the
nominal speed, with an increment of 10% at each speed level. The temperature response
was recorded until the DC machines reached a state of thermal equilibrium, which
occurred approximately after 10800 seconds. The placement of the thermocouple was

consistent with the setup described in the experimental setup subsection.

Figure 3.8 illustrates a DC machine bearing that has been degreased to replicate
a mechanical fault due to bearing failure. The DC machines contain two bearings, located
at the front and back. The bearing at the back, near the brush placement, was completely
degreased. This bearing was soaked in salt water to induce corrosion due to rust and
degreasing. This simulation of a degreased bearing represents a scenario where the
bearing has not been adequately maintained. It is crucial to assess the extent of
temperature increase in the DC machines due to the excessive friction caused by the

degreased bearing.

Figure 3.8 MY 1016 DC machines with degrease bearing fault.
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On the other hand, Figure 3.9 illustrates the motor replicating the scenario where
one of the four brushes has experienced chipping in the middle surface. This simulation
IS representative of a situation where the armature experiences vibrations during rotation,
which subsequently impacts the brush. The chipping effect on the brush is indicative of
the potential damage that can occur due to these mechanical shocks. Furthermore, it is
important to evaluate the extent of temperature increase in the DC machines due to a
broken brush. A broken brush can create high resistance, impeding the flow of current
into the armature. This resistance can generate significant heat within the motor, leading

to an excessive rise in temperature.

vVEE A DA

Figure 3.9 MY1016 DC machines with broken brush fault.

The demonstration of the usage of the generalized transfer function will be done
by comparing the experimental temperature responses of the faulty machines replicated
above to the simulated baseline temperature response using the developed generalized
model. The difference between the simulated baseline temperature and the experimental
temperature and its trend will be highlighted in the results. This difference can be used as
an anomaly detection tool that may signify the occurrence of a fault and should trigger a

further detailed diagnostic process.
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3.3  Objective 1 Part (B) : Transfer Function Identification

Following data collection and generation from experimental setups explained in
the previous section, the next step is to use that temperature response data to identify the
transfer function that can model the thermal behavior of each component of the motor as
shown in Figure 3.10. Recall that the temperature responses to a speed step input were
collected at 5 different speeds, with each a ratio of the nominal speed (20% up to 100%).
The temperature was recorded up to steady state temperature, for all the following
components: brush, bearing, permanent magnet, and casing.

Generate transfer function model per component,

per speed:
System Identification toolbox

Store t t se dat.
ore emperaTu(r;,)rESpUme a1 } Set input: Temperature response data ‘
k

‘ Set number of zeros Z,, and poles g, }*—

Estimate the transfer function model
G n(5)

‘ Evaluate the estimation error &, (1) ‘

‘ Store transfer function model Gy 5 (s) |

<>

Yes

Stop system identification

Figure 3.10  Flow chart of the development of transfer function for temperature
response of the MY 1016 DC machine from the experimental data.

3.3.1 System Identification Toolbox

The system identification toolbox of MATLAB is here deployed. The temperature
response data was set as the output response while the pwm step speed input value was
set as input and imported to the system identification Import Data section as shown in
Figure 3.11. The toolbox enabled us to find the corresponding transfer function. By
selecting transfer function as the model of choice, two parameters need to be set which
the toolbox will try to find and fit to the experimental data. The parameters of transfer
function needed are the number of zeros and poles of the transfer function. Their chosen

values need to be set in the toolbox (see Appendix C for the detail).

68



Import Data — O X
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Workspace Variable Channel Names
Input PV Input Speed
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Data Information Physical Units of Variables
Data Name Brush Input
Start Time 0 Output

Sample time 025

Less Notes

Reset

Close Help v

Figure 3.11  Import data step input and temperature response.

The generic form of a transfer function, considering its poles, is shown in
Equation 3.1 with n the order of the system, a a real number, and the values of s solving

the polynomials in the denominator are the pole.

1 3.1

G(s) =
() apS™ + A-1)s™ D+ +ag

No zeros were chosen for the transfer function as a physical system can usually
be modelled with no zeroes. Only gain will take place on the numerator. For the poles,
different values were tested, ranging from a single pole to four poles, representing
systems of the first to fourth order. The reason of limiting the pole value up to 4 is that
choosing a high pole value can lead to an unstable system. The requirement that all poles
need to be in the left half of the complex plane as mentioned by (Choupanzadeh &
Zadehgol, 2020) and (Golnaraghi & Benjamin C.Kuo, 2017) (chapter basic control
system and effects adding poles and zeros to transfer functions) will become too
constraining. This can also be known as overfitting where prediction and estimation will

lead to higher error as the order increases.
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In theory, a temperature response resembles a first-order response. It could not be
physically considered a second-order system, as there is no possibility of temperature
oscillations like in mechanical or electrical systems. However, the purpose of considering
higher order (2-4) is to evaluate the possibility of having a higher precision model which
is purely a mathematical model that is not necessarily attached to a physical reality.
Physically, it could be considered as higher-order system with a high damping value (an
overdamped system). This is particularly useful for a model that is going to be used solely
to monitor the baseline temperature with high precision, without considering its potential

use in optimization model purposes.

Figure 3.12 illustrates the estimated transfer function result in system
identification for all components and choices of poles number. The estimation transfer
function was done without preprocessing and splitting experimental data. Some
researchers (Al Khafaji et al., 2019; Donjaroennon et al., 2021; Naung et al., 2018; Sadeq
& Wai, 2019) utilize this method in the estimation of transfer function using system

identification.
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Figure 3.12  Result estimation transfer function in system identification.
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The table on the right of Figure 3.12 shows the model estimation using the transfer
function that the toolbox found for different motor components. By row: brush, bearing,
permanent magnet, and casing, and by column:1% order, 2" order, 3" order, and 4™ order.
It also provides the equation of the transfer function in the form of polynomials as
presented in Equation 3.1. These outputs are generated for one of the speed points that
was tested. The identification process is repeated for all the speed points tested from 20%

to 100% of the nominal speed of the motor.

These model outputs will be later presented in the result chapter. To select the
best model between the order choices, the error of the model evaluated will be assessed,

which will be presented in the next section.
3.3.2 Error Evaluations

The transfer function estimated by the Identification Toolbox also accounts for
estimated model errors, including MSE, FPE, and the fit percentage of the estimation
data. MSE is commonly used in regression analysis and other predictive modelling
methods to evaluate a model’s performance. The FPE criterion, developed by Akaike,
measures the quality of the model by simulating the situation where the model is validated
using a new dataset. A fit percentage value greater than 90%, with the smallest MSE and
FPE values indicates a better model fit as it shows that the projected values are closer to

the experimental value.

Once the transfer function is identified, the MSE value for the model error is
calculated in comparison to the experimental data (see Appendix C for the details of the
error output). The transfer functions with the highest MSE are eliminated as it does not
accurately represent the temperature response of the components at various speeds under
no load conditions. The identified transfer function result will be shown in Table 4.2 in
the result and discussion chapter later for the brush component, while the other
component will be available in Appendix I. In total, for all four components tested at five
different speeds, four different orders of transfer function will be tested. The most precise
transfer function will later be selected to represent the component at the selected speed.
The precision is evaluated by the MSE error of the identified transfer function, with error

values the closest to zero.
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3.4  Objective 2 : Development of Generalized Transfer Function Model

This subsection is dedicated to the discussion of the generalized transfer function
as depicted in Figure 3.13. From previous section, the transfer functions of each
component were identified at different speed. To be useful in real-time (by providing the
information of the baseline temperature that the machine should be having at any
moment), a model needs to be valid at all operating speed (from 0 to 100 percent of the
nominal speed). It is therefore necessary to develop a generalized transfer function valid
for all speed points. To do so, the nature of the model as the speed increases need to be
first analyzed, then only a generalized model can be proposed. This would enable the
implementation of a single-node thermal model for each component, which is beneficial

for real-time baseline temperature monitoring.
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Figure 3.13  Flow chart of the developemnet of generalized transfer function model.
3.4.1 Analysis of System Linearity

At each different speeds (20%, 40%, 60%, 80%, and 100% of the nominal rated
speed), system identification produced different transfer functions. Knowing that the
thermal system in which the heat is generated and transferred producing temperature is
the same, which is the motor, it is understandable to assume that it should be not far from
linear or LTI. However, the results showing distinct different transfer functions seem to

suggest otherwise (refer to result Chapter 4.2).
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An analysis of system linearity by looking at the position of the poles the transfer
functions previously found was therefore done. The analysis consists of evaluating the
variance of the poles' positions to evaluate their distances, leading to a conclusion of how
far the system is from being able to be considered as LTI. If the system is indeed linear
with minor disturbances, the pole variance value should be small. In the opposite case, if
the system is non-LTI and other unidentified sources of influence change the
characteristics of the system as the speed changes, then the variance value should be large.

To do linearity analysis, the identified transfer function of components such as
the brush, bearing, permanent magnet, and casing for all speeds was plotted in a pole-
zero graph in the s-plane. This allows us to observe the pole magnitude location and
assess the variance between the poles. The pzplot function in MATLAB was used to plot
the poles in the s-plane graph, where Gy, y (s) is the transfer function for the temperature
response of component k at speed N as mentioned in Equation 3.2. Component k can be

either brush, bearing, permanent magnet and casing.

Graph = pzplot(Gy y(5)) 3.2

Figure 3.14 shows a pzplot example for the component brush, a component where
the error of model estimation done indicates that the 3" order is the best order to represent
its temperature response. All different colored points represent the transfer functions
found at different speeds. All the brush poles on the complex s-plane are in the left-half
plane, which means they are in the stable region. Also, a typical third-order transfer
function may have one real pole and a complex conjugate pole pair, which is the
necessary and sufficient condition to have real-valued coefficients in the differential
equation representing the system. Notice that the brush has three poles represented as “X”
for every nominal speed. The pole on the x-axis is a real pole while the y-axis represents
a complex conjugate pair of poles. The poles of the brush are color-coded to represent
their nominal speed. Red indicates 20%, blue indicates 40%, green indicates 60%, yellow
indicates 80%, and purple indicates 100% of the nominal speed. There are no zeros
represented as “O” in the s-plane graph because, as mentioned before, the identified
transfer function was chosen to have no zeros for all components including the brush,

bearing, permanent magnet, and casing.
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Figure 3.14

S-plane graph of pole brush.

For other components where a 1% order transfer function is sufficient, the pzmap

will only have therefore one pole represented as ‘X’ on the s-plane. Figure 3.15 shows an

example of a first-order pzmap plotted for the component bearing. Similarly, to the pzmap

of a 3" order system presented previously, all the bearing poles for the tested speeds on

the complex s-plane are in the left-half plane, which means they are in the stable region

and are real poles. The poles of the bearing are color-coded in the same way as well to

represent their nominal speed.
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Figure 3.15

S-plane graph of pole bearing.
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To perform the variance calculation of the poles values, the value of the poles
needs to be retrieved from the equation of transfer function (of type Equation 3.1) that
was obtained from system identification in Figure 3.12. Manually, these poles values can
be retrieved from the pzmap as presented in Figure 3.14 and Figure 3.15. A more efficient
and automated method was employed by extracting the pole values tf2zp function
(Equation 3.3). This function extracts from the transfer function in polynomial form its
values of gain, poles, and zeroes, as shown in Equation 3.4. Where Z,, 5 is zero of the
transfer function for the component k at speed N, oy, y is the pole of the transfer function
and K, y is the gain of the transfer function. On the other hand, Z, y(S) is the numerator
coefficients of the transfer function for the component k at speed N and gy, 5(s) is the
denominator coefficient of the transfer function. The component k can be either the

brush, bearing, permanent magnet, or casing, and speed N was 20% to 100% of nominal

speed.
[Zk o Ok s Kie n] = tf 220 (Zg n(5), 0k v (5)) 3.3
Zxn(s) (S =Z1en)(S = Zyp ) o (S — Z1e )
=17 34
Gen () = e ® N G006 — ) - G — Tarn)

This conversion step was performed for all components at all speeds using the
same method. The results from converting the transfer function to the zero-pole-gain form
for all components at all speeds will be shown in Table 4.4 in the result and discussion
chapter. The brush transfer function has three poles, with two of them forming a complex
conjugate pair of poles. For other components, the permanent magnet, bearing, and casing

have a single pole for every nominal speed.

Once the values of the poles are found the variance values are deduced. It is
calculated by finding the squared difference of each data point from the mean and then
dividing it by the number of data points. It is used to compare the spread or dispersion of
different data, in this case, the pole values. To calculate it, the mean value, oy is first
calculated by Equation 3.5, then the variance, S? using Equation 3.6. The coefficient of
deviation, CV which compares the standard deviation to the mean value of the pole are

also then calculated to assess how far are the spread from the mean value of the pole
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using Equation 3.7 Where gy,  is the transfer function of component k at speed N, N,,,;,,
to N4, are the minimum to the maximum speed at which the transfer functions were

identified, and n, the number of speeds tested.

Nmax
O'_k = —ZNmZIlVO-kN 35
o SN0k n — O%) 3.6
= -
cV = ‘/?/_ 3.7
Ok

In the result chapter later, it will be explained that the analysis of the variance led
to two suggestions for a generalized transfer function model: an averaged-pole model and
a variable-pole model. The condition and the development of both generalized models

will be explained in detail in the two following subsections.
3.4.2 Averaged-Pole Transfer Function

If the system linearity analysis revealed that the variance between the pole values
of the transfer function at different speeds is small, it may suggest that the system is
almost linear. The criteria for small variance is arbitrarily decided at a CV of less than
10% (CV% < 10%). In that case, it can be assumed that the temperature response across
the speed range can be represented by a single transfer function that averages all

previously found transfer functions.

The proposed averaged-pole transfer function method involves constructing a
new transfer function. The pole of this new function equals the average of all the poles
of the transfer functions at different speeds. The same process is applied to the gain value
of the transfer function. The averaging of the transfer function is done in pole-zero-gain

form.

76



Figure 3.16 illustrates the construction of the new averaged-pole transfer function
for the bearing component. The pole gy of every speed were all summed and divided to
the number of speed samples (in this case 5: 20%, 40%, 60%, 80%, and 100% of the
nominal speed). The same process is also applied to the gain K. The process is repeated

for all components of the motor.
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Figure 3.16  Construction of averaged-pole transfer function model.

The averaged-pole transfer function will have the form of Equation 3.8 for
components with first-order transfer function and Equation 3.9 for components with a

third-order transfer function:

G(s) = 3.8

s+ao

K
N [CE A CE) 39

YK

With K = =_* the averaged gain and & = Loy

Tthe averaged pole value. All the

details of calculation for all components can be referred in Appendix E. Their results will
be later presented in the chapter results and discussion in Table 4.5.
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After the pole and gain were averaged, the transfer function that were in the zero-
pole-gain form is converted back into polynomials form using zp2tf function in
MATLAB as shown in Equation 3.10. The new averaged-pole transfer function is now

in a polynomial form as shown in Equation 3.11.

[Z n(S), 0k n(S)] = zp2tf (Zk Ny Ok Ny Kie ) 3.10

(s = Zikn)( — Zap ) o (S — Z1k n) _ Zrn(s)
(s — ok N)(S — Ok n) . (S — O3k y) T n(S)

Grn(s) = Ky n

Once all the averaged-pole transfer functions for each component are obtained,
the temperature response of the generalized model for the whole motor can be simulated
and its response will be compared to the experimental temperature response. To do so,
the generalized transfer function is implemented in the Simulink control block as shown
in Figure 3.17. The four blocks of transfer functions represent the averaged-pole transfer
function of each component. They will be simulated with an input of step speed input
determined by the PWM value, which replicates the condition of a motor operating under

the continuous cycle S1 as explained in the experimental setup previously.
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Figure 3.17  Averaged-pole transfer function block diagram.
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The ‘br avtf’, ‘be avtf’, ‘p.m avtf’ and ‘cs avtf” denote the averaged-pole transfer
functions for brush, bearing, permanent magnet, and casing respectively. In the
temperature output section of Figure 3.17, the output temperature responses of the
transfer function are added to the ambient temperature of the experiment which is
controlled at 30 °C.

The validation will be done by comparing the experimental temperature response
to the simulated temperature response of the averaged-pole model at several speed points.
The comparison will be done at the five speed points at which the experiments were done.
Nevertheless, the model can be simulated at much higher speed resolution to have a more
continuous temperature variation observation. The model will be considered valid if the
maximum error between the experimental temperature and simulated temperature is less
than 10 °C. This margin is arbitrarily chosen as any temperature measurement in practical
application depends not only on the sensitivity and precision of the sensor element (such
as the thermocouple junctions, which is usually high) but also on the attachment of the
instrumentation to the component to be measured (direct surface contact, buried, thermal
paste or thermal tape such as Kapton tape). This reduces the precision of measurement
and increases the margin of error. Therefore, a maximum of 10 °C was chosen. The results
of this comparison can be found in the results and discussion chapter 4.5.1, in Figure 4.6
and Table 4.8.

3.4.3 Variable-Pole Transfer Function

In the case where the assumptions of the LTI model, where a generalized model
using an averaged-pole transfer function model in the previous section fails to predict the
baseline temperature within the required maximum error condition, a new generalized
model needs to be developed considering that the system is non-LTI. Therefore, the poles
of the systems for each component are not constant and change as the speed changes.
The variation of the pole values will be considered to construct this new generalized

transfer function, called the variable-pole transfer function.
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In the context of real-time implementation, the speed, which is inputted via PWM
voltage, will serve as the condition to alter, and adapt the value of the poles. However,
the poles inferred from the prior experimental temperature data are confined to five
discrete speeds. For a generalized transfer function to be valid and useful at any speed,
the values of the poles are needed for all continuous values of speed input. Thus, the
variation of the value of the pole regarding speed needs to be inferred by extrapolation.
The solution chosen is to find an equation or function that describes the variation of poles
vs speed using curve-fitting. For each component k, the pole equation will be able to
output a new value of pole a; as the PWM speed input changes, using the function g;, =
f(PWM) that it finds.

The curve-fitting toolbox from MATLAB is used to find these functions o}, =
f(PWM) . The curve-fitting toolbox constructs the mathematical functions by
constructing a curve that has the best fit to a series of data points. The data points of input
that are provided here are the pole values on the y-axis and PWM speed input on the x-
axis. These are the data resulting from our previous linearity analysis. The type of curve
that the toolbox can fit the data to includes polynomials and exponential equations among
others. The toolbox will display the fit curve visually on the data as shown in Figure 3.16.
The graphical fit result is used to examine the graph of the fits. Depending on the variation
tendency of the data, the chosen fit was either a polynomial curve fitter or an exponential
curve fitter. The best-fit result was chosen based on the fits having an SSE (Sum of
Squared Errors) which evaluates the discrepancy between the data points and a fitted
model. The value of SSE lower than 10> was chosen as criteria, as a value closer to zero

indicates a better fit, as mentioned in the literature review chapter.
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Specifically in Figure 3.18, it shows an example of a curve-fit done to the data of
pole values for the component bearing. The five pole values for the five different speeds
can be seen plotted in black dots. The blue curve is the curve that has been fitted to the
input data, where an exponential equation was chosen as the curve due to its lowest SSE
error (of 3.89 x 10~°) when compared to other types of curves. In addition, the curve
fitter toolbox also generates an equation, as shown in Figure 3.18 in the equation section.
This equation called the pole equation is used in a function block that adapts the value of
the pole of our transfer function based on input speed. The results for the pole equations

for all components can be referred to in Table 4.8 in the result and discussion chapter.

bearing p.magnet casing *  brush 1 brush 2 brush 3 bearing_k p.magnet_k « | casing_k * | brush_k * brush i Fit Options
Results Equation
x10* Fit Plot Fit name: bearing
T T T T T T T T T T T
. + bepvs be_sp eneral model Exp2

bearin f(x) = a"exp(b*x) + c"exp(d*x)
35 g g Foefﬂcuenls (with 95% confidence bounds
a= -0.0007722 (-0.04034, 0.0388)
| b= -0.001092 (-0.1487, 0.1465)
c= 0.0006995 (-0.03141, 0.03281)
d= -0.01156 (-0.7309, 0.7078)
Goodness of fit
SSE: 3.889-09
R-square: 0.8916
Adjusted R-square: 0.5663
RMSE: 6.237e-05

55k

1 i AN 1 | 1 y A\ 1 . 1 1
60 80 100 120 140 160 180 200 220 240 260
be_sp

Figure 3.18  Curve-fitting of the component bearing.
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Upon completion of the pole function generation, an s-block will be created in
Simulink where the pole function is integrated to take the speed input and return a new
pole value for each component. The implementation of this pole function is depicted in
Figure 3.19 (refer to Appendix G for the code in detail). Within the pole function block,
the values of the coefficients of the equations (a, b, ¢, and d for the exponential equation,
and p1, p2, and p3 for the polynomial equation), were inserted for each component based
on the results from the curve fitter. Consequently, this pole function will generate a new
pole, represented as the denominator, and gain, represented as the numerator, based on
the speed input. Take an example for the brush pole function, at the brush section of the
output of the pole function block (Figure 3.20), there are three output ports for the
denominator (annotated as br_den0 to ber_denl), with each port representing one pole
respectively. This is due to the selection of the third-order transfer function for the brush

component.

1 [l function [br_num,br_den, br_denl,br_den2,be_num,be_den,pm_num,pm_den,cs_num,cs_den] = speed(vals)

Pole Function

br_den0 |-

1@ br_dl = ©.60903;

11 br_d2 = 6.009904;

12 %poly 2

13 br_a3 = 1.289e-08;

14 br_b3 = -4.812e-06;

15 br_c3 = -0.0001109;

16 %% brush i complex number
17 % poly 2 LAR

br_dent |-

br_denz |-

= -1.969-@7;
19 br_a2i = 1.969e-07;
20 br_bli = 4.718e-05;
21 br_b2i = -4.718e-85;
22 br_cli = 0.0007725;

25 % polys2 LAR

26 br_pl = -2.586e-13;
27 br_p? = 6.931e-11;
28 br_p3 = -1.912e-18@;

|

|

|

|

|

4 |
speed be den - I
|

|

[

|

I

|

k = br_pl*vals*2 + br_p2*vals + br_p3; %gai

32 denl = br_al*exp(br_bl*vals)+br_c1*exp(br_d
den2 = br_a2*exp(br_b2*vals)+br_c2*exp(br_d.
den3 = br_a3*vals~2+br_b3*vals+br_c3;

denli = br_ali*vals~2+br_bli*vals+br_cli;%comp
den2i = br a2i*vals"2+br b2i*valssbr c2i:%comolex nu

Figure 3.19  Pole function implemented in Simulink.

The variable-pole transfer function that is valid for all speed N will have the form
of Equation 3.9 for components with first order transfer function and Equation 3.10 for

components with a third-order transfer function:

K (N)

_— 3.9
s+ O'k(N)

G (s) =
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Ky (N)

(s + 0, k(N))(s + 02k (N))(s + 03 (N)) 3.10

G (s) =

With K, (N) is the function of gain of component k in relation to speed N and

ok (N) is the pole function (refer to Appendix F for the calculation details).

Figure 3.20 presents a complete variable-pole transfer function block diagram
implemented in Simulink. The pole function from Figure 3.19 can be seen integrated on
the left side taking the speed input and calculating the corresponding pole values. The
speed part is a PWM input that can now be set to any value between the 8-bit ranges, not
limited to the five different speeds in earlier experiments. The varying transfer function
block (third block from the left of Figure 3.20) used in the transfer function of the
component section, implements a varying coefficient based on the pole function output.
b, is the transfer function numerator coefficient while a, is the transfer function
denominator coefficient. In this model, b,, represents the gain and zero coefficients while
a, represent the poles' coefficients. In the temperature output block (on the right of
Figure 3.20), the result from the transfer function is summed with an ambient temperature
of 30 °C. This is done to replicate the experimental condition of a controlled ambient

temperature at 30 °C.

Pole Function Pole Output _ Transfer Function of Component  Temperature Output
I br_num
I 2 B
I br_den0 h|)+b15'+bzS *has
I prcent a,tasta,sits’
I br_den2
Speed | Transfer Function of Brush
| ’ be_num
I vals 0 bo+ t}1 ]
speed be d
sz | -
I pm_num Transfer Function of Bearing
I pm_den b0+ b1 s
ao‘* §
I cs_num
Transfer Function of Permanent Magnet
I cs_den
L. b0+ b1 s
L Pole Function
—_———————— 8, *s

Transfer Function of Casing

Figure 3.20  Variable-pole transfer function block diagram.
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Like the averaged-pole transfer function model, the validation of this variable-
pole model will be done by comparing the experimental temperature response to the
simulated temperature response at several speed points. The comparison will be done at
the five speed points at which the experiments were done. Nevertheless, the model can
be simulated at a much higher speed resolution to have a more continuous temperature
variation observation. The model will be considered valid if the maximum error between
the experimental temperature and simulated temperature is less than 10 °C, considering
the same reasoning mentioned in the averaged-pole model section. The result and analysis
of the variable-pole transfer function model can be found in subsection 4.5.2 in the result

and discussion chapter.
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CHAPTER 4

RESULTS AND DISCUSSION

41 Introduction

This chapter presents all the results from the experiments and model simulation
and validation explained in the methodology chapter. It provides a comprehensive
discussion and explanation of the results from the general observation of the temperature
response of the DC machine, the transfer function identified using the Identification
toolbox, the system linearity analysis, and the evaluation of the averaged-pole transfer
function and variable-pole transfer function developed. Finally, to demonstrate the utility
of the developed transfer function model, a real-time implementation of the model to
identify faults in the motor will also be presented, highlighting the ability of the model to

detect anomalies in real-time.
4.2  General Observation of The Temperature Response

This section presents and discusses the temperature response data gathered from
speed step input of all components at different speeds ranging from 20%, 40%, 60%,
80%, and 100% of the nominal speed. Following the execution of continuous duty cycle
S1 by inputting a step speed on the MY1016 DC motor, the results of temperature rise
inside the motor are extracted. The temperature reaches the steady state at 10,800 seconds

for all components.
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Figure 4.1 below shows DC machines operating at 60% of the nominal speed of
2650rpm for a sample observation. The same trend can be observed at other speeds, which
can be referred to in Appendix H. The component that recorded the highest temperature
is the brush due to the copper losses generated from the current that it conducts to the
armature winding. Added to that, the friction of contact with the commutator also adds
to the generated heat. In decreasing order, the highest temperature is reached next in the
bearing, then the permanent magnet, and finally the casing.
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Figure 4.1 Temperature response data gathered at 60% of the nominal speed of
2650rpm.

The summary of the steady state temperature of each component at all the speed
ranges tested is shown in Table 4.1.

Table 4.1 The steady-state temperature °C of all components at different speeds.

Component Speed (% of nominal speed of 2650rpm)

20% 40% 60% 80% 100%
Brush 71.25°C 79°C 84.75°C 78.5°C 70°C
Bearing 53.5°C 65°C 71°C 67.25°C 62°C
Permanent Magnet 52.75°C 65.25°C 71.25°C 67°C 61.75°C
Casing 52°C 64.5°C 70.5°C 66.25°C 60.5°C
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Subsequently, the temperature variation as the speed increases can be seen in the
graph in Figure 4.2. Rotating at higher speeds generates higher temperatures across all
components up until 60% of the nominal speed. After that, a decreasing trend in the
temperature is observed. As explained in the experimental setup previously, the machine
was running with no load, and the current was verified to be negligible, at 0.7 A maximum
across the speed range. These differences in losses could not originate from the copper

losses due to load, where the currents were shown to be the same.
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Figure 4.2 Steady state temperature of the MY 1016 component at different speeds.

Therefore, the temperature rise variation can be uniquely attributed to speed-
related losses (mechanical friction, windage losses). This could be explained by losses by
frictions, especially mechanical due to bearing that increased with speed which is viscous
in nature and demonstrated to be non-negligible here. The temperature decrease at the
end may potentially be due to air circulation in the machine cavity and air gap that
increases the convection rate. These losses are demonstrated to be non-linear and difficult
to model across the speed range. This observation justifies the modelling of the
temperature response using a transfer function to capture both transient and steady state
characteristics of the complex speed-dependent temperature response. The developed
transfer function later will reflect the temperature variability due to this speed variability,
but not load or current. It is reminded here that the objective is to develop a model that
replicates the temperature response, without necessarily being able to physically explain

the phenomenon, which will be a subject for a future study.
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4.3  Objective 1 : Transfer Function of Each Component at Different Speed
Input

From the temperature response gathered data in the previous subsection, the
system identification toolbox deduces the transfer functions for each component and the
error of each model. It was used to find the best order of transfer function model to
represent the temperature response of every component at each speed. Table 4.2 shows
the resulting transfer function and the MSE error for the estimated model from the
Identification toolbox. The results shown are only for the component brush (refer to
Appendix | for the identified transfer function of other components). The best model is

chosen by selecting the model with the lowest MSE error across all speeds.

Interestingly, the 1-pole model and 3-pole model consistently have the lowest
MSE error for all speed ranges. To choose between these two pole numbers, an
observation at the speed of 60% shows that the 3-pole model has a lower maximum MSE
error than the 1-pole model, respectively at 0.41 and 0.65. This shows the pole 3-pole
model is a better order for the identified transfer function model, and thus is selected to
represent the temperature response of the component brush. The 2-pole and 4-pole model

are too far from being precise with a huge MSE error observed.

88



Table 4.2 Identified transfer function for brush.

No.
_ MSE
of Speed Transfer Function
error
Pole
20 _2557e-4 0.3202
s + 3.102e-4
40 _2avde-d 0.2475
s + 5.232e-4
1 60 _L78le-4 0.6504
s + 5.156e-4
80 _ 1:396e-4 0.3042
s + 6.072e-4
100 _ 8055 0.1794
s + 5.412e-4
20 ~6.06e-8 113.9
s2 4+ 1.757e-3s + 3.557e-14
40 4.607e-7 24.23
s2 + 1.908e-2s + 1.377e-10
2 60 g2ine- 7 30.16
s2+ 1.806e-2s + 7.993e-11
80 el 26.96
s2+ 2.883e-2s + 8.761e-8
100 -7 17.91
s?2 4 2.521e-2s + 2.512e-9
20 2.671e-9 0.2366
s34+ 4.09e-3s2+ 1.184e-5s + 3.223e-9
40 4,188 9 0.1458
s3 + 4.751e-3s2+ 1.919e-5s + 8.929¢e-9
7 463e-
3 60 R 0.4134
s3 + 8.589e-3s2+ 4.725e=5s + 2.154e-8
80 1.862e-9 0.2525
s3 + 8.062e-3s%2+ 1.86e-5s + 8.066e-9
100 6.679¢-10 0.1533
s34+ 6707e-3s%2+ 1.198e-5s + 4.473e-9
2 ~1.997e-13 50,62
s*+ 1.975e-35s3 + 7.221e-652 + 9.242¢-9s + 2.108e- 22
40 1.412e-12 404
s* 4+ 1.125e-2s3 + 3.639e-5s2 + 4.029e-8s + 2.204e-12
4 60 >.26e- 13 6.995
s* + 7.546e-3s3+ 1.794e-5s2+ 1.816e-8s + 1.169e-12
0 4.613e-13 67
s*+ 6.91e-3s3+ 1.931e-5s2 4+ 1.752e-8s + 1.778e-12
100 9125e-14 18.17

s*+ 3.578e-3s3 + 4.885e-6s2 + 1.353e-8s + 7.936e-21
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Table 4.3 The identified transfer function at each component and each speed.
Component Speed Transfer function MSE error
2.671e-9
20 ° 0.2366
Brush s3+ 4.09¢e-3s2+ 1.184e-5s + 3.223e-9
4.188¢-9
40 ¢ 0.1458
s3+ 4.751e-3 52+ 1.919e-5s + 8.929e-9
7.463e-9
60 ¢ 0.4134
s3 + 8.589¢-35s2+ 4.725e-5s + 2.154e-8
1.862¢-9
80 ¢ 0.2525
s3+ 8.062-35s%+ 1.86e-55 + 8.066e-9
6.679¢-10
100 ¢ 0.1533
s3+ 6.707-3s2+ 1.198e-55 + 4.473e-9
20 _ 14714 0.1186
Permanent s + 3.402¢e-4
1.695e- 4
magnet 40 _oovver® 0.1145
s + 5.08e-4
1.274e-4
60 _ arter® 0.2324
s + 4.937e-4
1.024e-4
80 L 0.1658
s + 5.818e-4
6.118¢-5
100 i ek 0.1214
S + 5218e-4
1.494¢- 4
20 _asliiini i 0.1271
Bearing s + 3315e-4
1.693e- 4
40 p1693e-4 0.1185
s + 5.086e-4
1.279e-4
60 s Sk 0.2252
S + 4.985e-4
1.028e-4
80 i 0.1599
s + 5.841e-4
100 _ 6227e-5 0.1198
S + 5.284e-4
2 1.437e-4 o126
Casing s + 34169—4 '
40 _L667e-4 0.1212
s +5.1e-4
60 _ 1256e-4 0.2455
s + 4.949¢-4
1.012e-4
80 _oem® 0.1644
s + 5.872e-4
5.921e-5
100 _2veemy 0.1395
S +5.269- 4
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Summarizing for all the components, Table 4.3 below shows the transfer
functions chosen for each component and the respective values of the MSE error at all
the five speeds points. These transfer functions are the best fit for the experimental
temperature response data that were provided. The brush is best represented by a third-
order transfer function while the first-order transfer function is the best for all the other
components. Despite being represented by an overdamped third-order transfer function,
it is important to note that physically, the brush temperature does not have any possibility
of having any oscillations or damped oscillations. The model is adopted mathematically
to obtain the highest precision without having any physical connotation, as largely agreed

for a surrogate model (mathematical representative model).

Despite the low MSE error values, to better visualize the fidelity of the transfer
function models to replicate the temperature response of the DC machine to a step input,
a plot of response of the model compared to the experimental response was done as
illustrated in Figure 4.3. The example plotted here is for the component brush for a speed
of 60% (The result for the component brush is chosen to be the sample for discussion due
to it being the point at which the maximum temperature was attained. Sampling the result
presentation using the brush at 60% will be recurring throughout this thesis). The transfer
function model (red line) follows the experimental temperature response (blue line) with

sufficient precision where only 2°C of steady-state error was observed.
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Figure 4.3 Temperature response of identified transfer function model for 60% of
nominal speed for the component brush.
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In transient response, a slight delay which is a characteristic of a system with an
order higher than 1 can be observed. Most importantly, the steady state temperature
estimated by the transfer function model is sufficiently precise. The same observation
was also observed for other components, suggesting that the chosen transfer functions in
Table 4.3 are valid. The graphs of the model-experiment comparisons for other

components at all speeds can be found in Appendix J.
4.4  Objective 2 Part (A) : Analysis of System Linearity

As mentioned in subsection 3.4.1 in the methodology chapter, the identified
transfer function was plotted in the s-plane graph to observe the poles' location in the s-
plane. The purpose is to evaluate their spread using the calculation of variance and
coefficients of variation CV so that an assumption on the LTI nature of the system can

be made.

Figures 4.4 and 4.5 illustrate the plot of the pole location on the s-plane for both
the brush (representing a 3rd-order model) and the bearing (representing a 1st-order
model) respectively. Notice that the brush (Figure 4.4) has three poles represented as “X”
for every nominal speed. The pole on the x-axis is a real pole while the y-axis represents
a complex conjugate pair of poles. The poles of the brush are color-coded to represent
their nominal speed. Red indicates 20%, blue indicates 40%, green indicates 60%, yellow
indicates 80%, and purple indicates 100% of the nominal speed.
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Figure 4.4 Pole-zero map plot for the brush transfer function.
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Figure 4.5, on the other hand, shows only one poles for the component bearing.
Similarly, to the brush, the poles of the bearing are color-coded in the same way as well

to represent their nominal speed. For other components, the pzmap plot can be found in

Appendix D.
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Figure 4.5 Pole-zero map plot for the bearing transfer function.

In both cases. The order of magnitude of the values of the poles are similar (in the
order of 1073 and 10~* for brush and bearing respectively). This may allow an
assumption that the poles are so close to each other that they are the same and the system
is LTI. To quantitatively evaluate the spread of the poles’ values, the values of the
variance and coefficients of variation CV for all components at all speeds are reported
in Table 4.4,
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Table 4.4 Pole position, average and variance of each component.
Component Speed Poles
OBrush1 OBrush 1 OBrush 1
20 -1.89¢-3 + 2.67e-3i -1.89e-3 — 2.67e-3i -3.0e-4
40 -2.11e-3 + 3.54e-3i -2.11e-3 —3.54e-3i -5.26e-4
60 -4.05e-3 + 5.18e- 3i -4.05e-3 —5.18e-3i -4.98e-4
Brush 80 -3.75e-3 + 5.73e-3i -3.75e-3 — 5.73e-3i -5.6e-4
100 -3.98e-3 -2.22e-3 -5.06e-4
Corush -3.2e-3 + 2.4e-3i -2.8e-3 — 2.4e-3i -4.78e-4
52 5.68e-6 5.57e-6 1.04e-8
cv 0.74 0.84 0.22
O Bearing
20 -331le-4
40 -5.09¢-4
60 -4.99¢-4
Bearing 80 -5.84e-4
100 -5.28e-4
OBearing -4.90e-4
52 8.97¢-9
cv 0.19
O perm. Magnet
20 —3.4e-4
40 —5.08e-4
Perm. 60 —4.94e-4
Magnet 80 ~5.82e-4
100 -5.22¢-4
Gperm. Magnet ~4.89¢—4
52 8.05e-9
cv 0.18
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Table 4.4 Continued.

Component Speed Poles
O casing
20 -3.42e-4
40 -5.10e-4
60 -4.95e-4
Casing 80 -5.87e-4
100 -5.27e-4
Ocasing -4.92e-4
52 8.31e-9
cv 0.19

From Table 4.4, the small values of variance should not be mistaken for a small
spread. The CV value for the brush component is especially high where the maximum
value of 0.84. In percentage, it is translated to 82% which means the standard deviation
is at 82% equal to the mean. This level of variability is significant because it means that
the data points are spread out over a wide range relative to the mean. Other CV for other
components were also recorded at close to 0.2 or close to 20% which signifies a relatively
high variability. From the pole variances observation for data from different speeds, it
can be assumed that the thermal system of the DC machine is not linear, thus non-LTI.

From this observation, can be decided that the best way to create a generalized
transfer function for the motor components that is valid for all speeds is to use a variable
pole method. As a result, the following sections will discuss the results of validation of
the generalized transfer function model, comparing the averaged-pole and the variable-

pole transfer function.
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45  Objective 2 Part (B) : Analysis of Generalized Transfer Function

A general transfer function is a transfer function for a component that should be
able to precisely model the temperature response across the speed range of the motor.
This would allow the implementation of a single-node thermal model, which is beneficial
for real-time baseline temperature monitoring. The transfer functions of each component
at different speeds were combined into a single generalized transfer function using the
two methods mentioned in the methodology chapter. In this subsection, an analysis and
validation of two generalized transfer function models are presented: the averaged-pole

transfer function and the variable-pole transfer function.

From the previous section 4.4, the linearity analysis of the system has shown that
the system could not be considered linear. However, the validation of the averaged-pole
transfer function will still be done and presented in the next subsection 4.5.1 to
demonstrate the consequence of assuming the system as linear. By doing so, the
incapability of the averaged-pole transfer function model in precisely estimating the
baseline temperature of the motor at different speeds will be analyzed and proven. In the
following subsection of 4.5.2, the validation of the variable-pole transfer function will be
presented. To complete the discussion, the variable-pole transfer function is also
simulated and confronted with an experimental temperature response at a much higher

speed input resolution to assess its precision across the motor speed range.

Considering the many components at which the temperature was measured and
modeled, the validation process presented in all the following subsections is done on the
component brush. This selection is due to the brush’s critical role in the operation of the
DC motors. The brush is primarily responsible for conducting current and creating
friction with the armature winding, which can lead to excessive temperature within the
DC machines. Therefore, its performance and behavior have a significant impact on the
overall efficiency and state of health of the motor. The validation data for other
components presented as a graph comparing the model output and experimental
temperature response can be found in their respective appendix that will be mentioned in

each subsection.
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4.5.1 Averaged-Pole Transfer Function

Table 4.5 shows each component's averaged-pole transfer function deduced from
the methodology employed in chapter 3.4.2. The brush is represented by a third order
transfer function while other components are represented by a first order transfer function
The values of the averaged-pole transfer function were implemented in the Simulink
block diagram to simulate the baseline temperature response of the electrical motor using

the averaged-pole transfer function model.

Table 4.5 Averaged-pole transfer function of each component.
Component Averaged-Pole Transfer Function
Brush 3.37e —9
s3 + 6.4e — 352 + 1.74e — 55 + 6.97¢ — 9

. 1.22e — 4
Bearing e
s+490e — 4

1.21e—4
Permanent Magnet _erem
s+ 4.8% —4

. 1.19e — 4
Casing _—
s+492e -4

The validation of the averaged-pole transfer function model will assess both the
steady state and the transient temperature response. Figure 4.4 shows the comparison at
steady-state temperature between the experimental data and the averaged-pole transfer
function model response for the brush (refer to Appendix K for other components). The
comparisons were done for the speed points recorded during experiments which are at
20%, 40%, 60%, 80%, and 100% of the nominal speed. The blue line represents the
experimental data while the black line represents the response of the averaged-pole
transfer function. Also plotted are the temperature differences between the experimental

data and the averaged-pole transfer function model in red.
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Figure 4.4 Comparison between averaged-pole transfer function vs. experimental
temperature response at steady state temperature (brush).

In a steady state, it is noticeable that the temperature difference initially starts
from a negative value. As the speed increases, the temperature difference also increases.
At 40% speed, the temperature difference in temperature estimation is zero, indicating
that the transfer function’s estimation is accurate at this speed. It’s because the averaged-
pole transfer function for the brush part as stated in Table 4.5 and the identified transfer
function for the brush at 40% as stated in Table 4.3 are almost the same. With a slight
difference of 0.8e-9 for the numerator and 1.6e-3s?% 0.1e-5s,1.9e-9 for the
denominators’ poles. However, as the speed increases beyond 40%, up to 100%, the
temperature difference shows an increasing trend, with the transfer function
overestimating the temperature by almost 20 °C. This is in line with the characteristic of
a transfer function which is LTI, thus an increasing input speed generates an increasing
estimated temperature output. Having the experimental data that decreases at the speed
beyond 60%, the averaged-transfer function estimation diverged away from the
experimental temperature. To sum up, when the speed is less than 40%, the averaged-
pole transfer function tends to underestimate the temperature. Conversely, when the

speed exceeds 40%, the averaged-pole transfer function overestimates the temperature.
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The reason this happen due to averaging different transfer function model into
single-node model led to loss of information. Whereas each individual speed-specific
model can capture specific dynamics at the specific operating speed. This confirms the

linearity analysis conclusion that was made in 4.4 previously.

For all the components, the difference of temperature between experimental data
and averaged-pole transfer function model at steady state at different speed are
summarized in Table 4.6 and plotted as a bar chart in Figure 4.5 for a visual comparison.
Among all components, the brush exhibits the most significant discrepancy, with a
temperature difference of approximately 84 °C between the averaged-pole transfer
function model and the experimental data. The temperature difference from the
equivalent model for the brush component increases as the speed increases, like an LTI

system is expected to behave.

Table 4.6 The temperature difference °C of averaged-pole transfer function at
steady state of all component at different speed.

Component Speed (% of nominal speed of 2650rpm)
20% 40% 60% 80% 100%
Brush -15°C 1°C 20°C 50°C 84°C
Bearing -9°C -8°C -1°C 14°C 33°C
Permanent Magnet -8°C -8°C -1°C 14°C 33°C
Casing -8°C -8°C -1°C 14°C 32°C
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Figure 4.5 Temperature difference between experimental and averaged-pole transfer
function model at steady state for all components.

In contrast, for the components such as the bearing, permanent magnet, and
casing, the averaged-pole transfer function model underestimates the temperature at a
lower difference of around 8 °C from 20% up to 40% of the nominal speed. At 60% of
the nominal speed, the averaged-pole transfer function model accurately estimates the
steady-state temperature with an error of only 1 °C for all components, unlike the brush
which is precise at 40%. In the same way as the brush for a speed beyond 60%, the

equivalent model overestimates the temperature as the speed increases.

The errors of temperature estimation in terms of percentage are also reported in
Table 4.7 below. With these errors in steady-state, this indicates that the averaged-pole
transfer function model which is LTI cannot replicate the thermal response of the motor

which the system is non-linear.

Table 4.7 Steady-state temperature estimation error from Figure 4.5 in percentage.
Component Speed (% of nominal speed of 2650rpm)
20% 40% 60% 80% 100%
Brush -22.7% 1.7% 25% 66.3% 124.7%
Bearing -18.5% -13.3% -1.6% 22.5% 55.7%
Permanent Magnet -17.3% -13.6% -2.1% 22.2% 55.6%
Casing -16.9% -13.6% -2.5% 21.7% 56.2%
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Moving on to the validation in the transient phase, Figure 4.6 shows the transient
state temperature comparison done at the time constant (z = 2160 seconds) for the
component brush (The comparison graph for other components can be found in Appendix
L). The blue line represents the experimental data while the black line represents the
response of the averaged-pole transfer function. Also plotted are the temperature

differences between the experimental data and the averaged-pole transfer function model

in red.
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Figure 4.6 Comparison between averaged-pole transfer function vs. experimental
temperature response at transient temperature (brush).

Upon closer inspection, the comparison conducted during the transient phase
reveals that the averaged-pole transfer function model underestimates the temperature at
the initial condition at approximately 3 °C lower until it reaches 40% of the nominal
speed. As the speed increases, the model overestimates the temperature, reaching a
discrepancy of nearly 20 °C when operating at 100% of the nominal speed. This
observation in transient state response is like what has been observed in the steady state
previously.
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The summary of the temperature difference between experimental data and
averaged-pole transfer function model simulation at the transient state of each component
at different speeds is shown in Table 4.8 and plotted as a bar chart in Figure 4.7 for a

visual comparison.

Table 4.8 The temperature difference °C of the averaged-pole transfer function at
the transient state of all components at different speeds.
Component Speed (% of nominal speed of 2650rpm)
20% 40% 60% 80% 100%
Brush -3°C -2°C 8°C 27°C 50°C
Bearing -3°C -6°C -1°C 7°C 21°C
Permanent Magnet -14°C -6°C -1°C 7°C 21°C
Casing -3°C -6°C -1°C 7°C 21°C
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Figure 4.7 Temperature difference between experimental data and averaged-pole
transfer function model at transient state for all components.

As depicted in Figure 4.7, the temperature difference between experimental data
and averaged-pole transfer function model at the transient phase for all components was
plotted. The averaged-pole transfer function model underestimates the temperature at the
lower speed until the system reaches 40% of the nominal speed. The maximum
temperature difference for all components occurs at 100% of the nominal speed, with the
brush component leading the others with a discrepancy of 30 °C. The temperature
difference at 60% of the speed is almost negligible for all components except for the
brush.
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The errors of transient-state temperature estimation in terms of percentage are
also reported in Table 4.9 below. With these errors, the averaged-pole transfer function
model which is LTI cannot replicate the thermal response of the motor in a transient state
like in a steady state.

Table 4.9 Percentage error between experimental data and averaged-pole transfer
function model at transient state for all components from Figure 4.7.
Component Speed (% of nominal speed of 2650rpm)
20% 40% 60% 80% 100%
Brush -8.2% -4.2% 13.7% 48.4% 102.3%
Bearing -8.2% -11.4% -1.7% 13.5% 41.8%
Permanent Magnet -27.4% -11.7% -2.1% 13.2% 42.1%
Casing -7.5% -11.6% -2.2% 12.8% 42.4%

In conclusion, the estimated baseline temperature of the motor components using
the averaged transfer function has too large errors and inconsistency in both steady state
and transient state temperature. The non-linear nature of the motor thermal system in
response to speed input cannot be approximated by averaging the poles of the transfer
functions of the components at different speeds.
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4.5.2 Variable-pole Transfer Function

Variable-pole transfer function is the method where a generalized transfer
function model with adaptive pole values that depend on the speed was constructed based
on the variable pole function generated from curve fitting. To recall the method,
subsection 3.4.3 can be referred to. Table 4.10 below presents the functions obtained by
curve fitting to describe the variation of the pole and gain values regarding speed for each
component. The symbol & and K signifies the pole function and the gain function
respectively. The term fit type’ indicates the type of function. Within the pole and gain
functions, the letters a, b, ¢, and d are used for the coefficients of the exponential function,

while p1, p2, and p3 are used for the coefficients of the polynomial function.

Table 410  Function for variable-pole position for each component.

k  Gy(s) oy ] Fit Type SSE Ky K Fit Type  SSE

ap a*exp(b=x) + crexp(d+x) @ Exponential2 & 7.41e-7

& a=exp(b=x) + crexp(d+x) @ Exponential2 & 6.63e-7

K .
Brush n op 03 pl*™M2+p2*x+p3 @3 Polynomial2 g 6.16e-9 Ky pl*x*2+p2*x+p3 Polynomial2 1.14e-17
S+ 0,
Gy PL*A2+p2*x+p3  Gy; Polynomial2 &y; 5.90e-6
gy pl*A2+p2*x+p3 Ty Polynomial2 Fp; 5.90e-6
K
Bearing " g a“exp(b®x) + c*exp(d*x) Exponential 2 3.89e9 K pl*x+p2 Polynomial 1 1.16e-9
ST 0
P. K
= #, # #, 1 | *, i -
magnet s+ oy g, a“exp(b®x) + c*exp(d*x) Exponential 2 4.40e-9 K pl*x+p2 Polynomial 1~ 1.29e-9
K
Casing n g, a“exp(b¥x) + c*exp(d*x) Exponential 2 4.76e-9  Ki pl¥x+p2 Polynomial 1~ 1.32e-9
ST 0

As observed in the table, the complex conjugate pole pair for the brush a,; and
a,; functions have the highest SSE of 5.90e-6. Conversely, the bearing pole function has
the lowest SSE, estimated at 3.89e-9. The brush gain function exhibits the lowest SSE at
1.14e-17, while the other components have higher SSE errors at a magnitude of order of
1e-9. The pole function is represented by mostly exponential functions except for the
third pole and the two complex poles of the brush which are represented by polynomial
functions. All the gain functions are exclusively represented by the polynomial function.
Overall, all the poles and gain are well-fitted with all the errors are extremely small (lower
than 1075).
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Moving on to the validation process of the variable-pole transfer function model,
the implementation of these variable-pole functions is validated in comparison to the
experimental data both at steady state and transient state. Figure 4.8 shows this
comparison between at steady state for the component brush. For other components, the
comparison can be found in Appendix M. The comparison is done at the five speed points
from 20% to 100% of the nominal speed. The blue line represents the experimental data,
while the black line represents the response of the variable-pole transfer function model.
Additionally, the absolute temperature difference between the experimental data and the

variable-pole transfer function model is also plotted in red.
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Figure 4.8 Comparison between variable-pole transfer function vs. experimental
temperature response at steady state temperature (brush).

It can be observed that the variable-pole transfer function model barely
underestimates the temperature response of the component brush at 20% and 40% of the
nominal speed with an estimation error of less than 2°C. The generalized model accurately
predicts the temperature response at 60% before largely overestimating the temperature
at 80% of the nominal speed with an observed error of 10 °C. 80% speed is the speed at
which the maximum estimation error is observed, after which the estimation becomes
precise again at 100% of the nominal speed with zero error observed. The variable-pole
transfer function model can be seen following the trend of increasing temperature as the
speed first increases, then decreasing temperature towards the end. The variation of the
pole, adapted to the speed input has managed to allow the temperature estimation to

follow the change in direction and be more precise.
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However, the turning point at which the temperature variation changes its slope
after 60% of the nominal speed is a complex behavior that cannot be captured even by
the adaptive pole. It may be suggested that if the sampling of temperature were done at
more speed points, the change of temperature slope may be better captured. The influence
of the sampling resolution for model construction is however out of our research scope
and will be done in a future study. Nevertheless, to properly test this variable-pole transfer
function model, it will also be confronted to a comparison with an experimental
temperature taken at different speeds, other than the original five speed points of 20%,
40%, 60%, 80%, and 100%. This will be presented later in subsection in 4.5.3.

The summary of the temperature difference between experimental data and the
variable-pole transfer function model at steady state for all the components of the motor
at different speeds is reported in Table 4.11 and plotted as a bar chart in Figure 4.9 for a

visual comparison. The individual comparison graph can be found in Appendix M.

Table 411  The temperature difference °C of the variable-pole transfer function at
steady state for all components at different speeds.

Component Speed (% of nominal speed of 2650rpm)
20% 40% 60% 80% 100%
Brush -2.3°C -1°C -0.4°C 10.5°C 0.3°C
Bearing 24°C -2.5°C -4.1°C 0.4°C 4.4°C
Permanent Magnet 2.3°C -2.6°C -4.2°C 0.4°C 4.6°C
Casing 2.3°C -2.5°C -4.3°C 0.2°C 4.8°C
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Figure 4.9 Temperature different between experimental and variable-pole transfer
function model for all components at steady state.

Figure 4.9 illustrates the temperature difference between the experimental data
and the variable-pole transfer function model for all components in a steady-state
scenario. It is observed that the variable-pole transfer function model overestimates the
temperature for the components bearing, permanent magnet, and casing at 20% and 100%
of the nominal speed, and it underestimates the temperature of the same components at
40% and 60% of the nominal speed. For these components, across the range of speed
variations, the temperature difference was less than 5 °C, and the model precisely

predicted the temperature at 80% of the nominal speed.

Exceptionally for the brush, its temperature response exhibits the maximum
temperature difference observed at 80% of speed with a temperature difference of 10 °C.
It is the less precise when other components exhibit the most precise estimation. This
shows that, unlike other components, the brush pole function may need to be improved
by reducing the curve-fitting SSE error. It is in accordance with the observation made
from Table 4.10 where the highest SSE errors were identified in brush pole functions. So,
despite the high SSE error condition of less than 107, the pole function of the brush
generated a temperature response that has a 10 °C of temperature difference in

comparison to the experimental data.
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The errors of steady-state temperature estimation in terms of percentage are also
reported in Table 4.12 below. With these errors, the variable-pole transfer function model
which is shown to be able to replicate the thermal response of the motor in a steady state.
The brush estimation difference at 80% of speed may seem high at 13.7%, but in absolute
temperature, it reflects only a difference of 10 °C. At a higher ambient temperature, the

percentage would have been much lower.

Table 4.12  Similarity percentage between experimental and variable-pole transfer
function model for all components at steady state.

Component Speed (% of nominal speed of 2650rpm)
20% 40% 60% 80% 100%
Brush -3.3% -1.4% -0.5% 13.7% 0.5%
Bearing 4.6% -4.1% -6% 0.6% 7.5%
Permanent Magnet 4.6% -4.2% -6.1% 0.7% 1.7%
Casing 4.6% -4% -6.3% 0.4% 8.2%
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Moving on to the validation in transient phase, Figure 4.10 provides a comparison
of transient temperatures at a time constant (z = 2160 seconds) for the component brush.
(Refer to Appendix N for other components). The experimental data temperature is
represented by the blue line, while the variable-pole transfer function model estimated
temperature is depicted by the black line. Additionally, the figure also includes a plot of
the temperature differences between the experimental data and the variable-pole transfer

function model, which is represented in red line.
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Figure 4.10 Comparison between variable-pole transfer function vs. experimental
temperature response at transient temperature (brush).

The variable-pole transfer function model demonstrates a commendable ability to
track the variation of the temperature response of the DC machines, even during the
transient state. This observation is particularly noteworthy, as the equivalent model
accurately predicts the temperature response at three distinct speeds: 20%, 60%, and

100% of the nominal speed with no errors observed.

However, it is important to note that the model does not perform uniformly across
all speeds. Similar to the steady state response, the model underestimates the temperature
at 40% of the nominal speed by approximately 3 °C and overestimates the temperature
by 8 °C at 80% of the nominal speed which is the highest estimation error observed.
Despite these discrepancies, the model’s temperature differences do not exceed the

maximum temperature differences at the steady state, which shows its overall reliability.
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The summary of the temperature difference between experimental data and the
variable-pole transfer function model at the transient state of all components at different
speeds is shown in Table 4.13 and plotted in a bar chart for visual comparison in Figure
4.11.

Table 4.13  The temperature difference °C of variable-pole transfer function at
transient state of all component at different speed.

Component Speed (% of nominal speed of 2650rpm)
20% 40% 60% 80% 100%
Brush -0.2°C -2.8°C 0.2°C 8°C 0.1°C
Bearing 1.5°C -2.4°C -1.8°C -0.4°C 3.5°C
Permanent Magnet -9.6°C -2.5°C -2°C -0.4°C 3.6°C
Casing 1.5°C -2.5°C -2°C -0.6°C 3.8°C
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Figure 4.11  Temperature difference between experimental data and variable-pole
transfer function model at transient state for all components.

In general, the brush’s variable pole transfer function performs better where
negligible temperature differences were noted with the exception at 80% of speed. Other
components’ models generate errors that are nonetheless acceptable of lower than 4 °C
except for the permanent magnet. At 20% of speed, the variable-pole transfer function of
the permanent magnet underestimates its temperature by 9 °C. It is however not disturbing
as it is still lower than a difference of 10 °C. Added to that, it is observed at the lowest

speed and in transient which is a lower temperature than at steady state and at other higher
speed.
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The errors of transient-state temperature estimation in terms of percentage are
also reported in Table 4.14 below. With these errors, the variable-pole transfer function
model is shown to be able to replicate the thermal response of the motor in the transient
state as well as seen for the steady state previously. The brush and permanent magnet
estimation difference of -18.4% and 14% may seem large, but in absolute temperature, it
reflects only a difference of respectively 9 °C and 8 °C. At a higher ambient temperature,
the percentage would have been much lower. It is worth noting that for temperature
estimation purposes, an overestimation is safer than an underestimation as confirmed that
the maximum degrading temperature is not yet attained. However, it prevents the system

from operating at its maximum allowable temperature.

Table 4.14  Similarity percentage between experimental data and variable-pole
transfer function model at transient state for all components.

Component Speed (% of nominal speed of 2650rpm)
20% 40% 60% 80% 100%
Brush -0.6% -4.8% 0.5% 14% 0.1%
Bearing 3.6% -4.7% -3.4% -0.8% 7%
Permanent Magnet -18.4% -4.9% -3.6% -0.8% 7.3%
Casing 3.8% -4.9% -3.7% -1.1% 7.7%

In conclusion, the variable-pole transfer function model has demonstrated its
ability to accurately model the temperature response of the DC machines in both steady
state and transient state scenarios with the acceptable temperature differences of less than
10 °C. Therefore, it can be confidently used as a reliable model for estimating electrical
machine baseline temperature across different speed ranges and can be implemented in

real-time applications.
4.5.3 Test Validation for Model Robustness at Different Speed Points

From the previous chapter, the variable-pole transfer function was validated. The
validation was done at 5 different speeds. To further check its robustness, the model is
confronted with a test at different speeds which were not used in the variable-pole
function development. Running the model in real-time and comparing it to the

temperature measured is here done for a speed increment of 10%.
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Figure 4.12 shows the comparison between the baseline temperature estimated
by the variable-pole transfer function model (in red line) and the temperature measured
on the machine (in black line) at steady state on the component brush. The increment of

10% of speed makes up to a total of 10 speeds at which the temperature can be compared.
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Figure 412  Comparison between equivalent model vs. experimental data at different
speed point (brush).

Noted that the estimated baseline temperature follows the general trend of the
measured temperature. With the variable pole function defined at an interval of 20%
speed, the estimated temperature exhibits an LTI characteristic in each 20% interval. For
example, from the speed of 60% to 80%, the increasing temperature trend sustains, failing
to capture the already changing trend (from a positive slope to a negative slope) in the
measured temperature. So, instead of having a maximum temperature at 60% of speed as
in the measured temperature, the model gives an estimation of a maximum temperature
achieved at 80% of speed. It is however noteworthy to remark that despite the difference
in speed at which the maximum temperature is achieved, the value of the maximum

temperature is the same at 87 °C.

The equivalent model accurately predicts the temperature response of the DC
machines at 30% and 70% of the nominal speed. This precision provides a significant
advantage when conducting condition monitoring of electrical machines at lower and

medium speeds. Underestimation occurs between 40% and 60% of speed, but the
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difference is smaller than 10 °C. It is important to observe that the maximum temperature
difference was recorded at 90% of the nominal speed, with a deviation of approximately
20 °C overestimation. The speed of 90% is a speed that was not sampled for the
construction of the variable pole function. It is therefore clear that to develop a model
that estimates the baseline temperature precisely across the speed, more sampling is
needed to develop the variable-pole transfer function. At 5 samples, the model is

unreliable with a 20 °C overestimation observed.

It can also be remarked that the difference between the model and the measured
temperature is slightly different from what has been presented during validation at
previously sampled speed (of 20% increments) in Figure 4.8. The experimental
temperature is different from the one presented in Figure 4.8 due to a potential variation
of thermocouple placements and attachment. To have a robust estimation, the positioning,
and the attachment of the thermocouple during data acquisition for model development
need to be consistent with the one that will be used during the monitoring application.
The variability of the differences (between measured and estimated temperature) due to
uncertainties of thermocouple positioning and attachment will be another subject for a

future study.
46  Objective 3 : Usage of Generalized Transfer Function in Fault Detection

Having validated the model in previous sections (except at 90% of speed due to
the robustness of the model at higher speed resolution), an implementation case is going
to be demonstrated in this last section. The objective is to demonstrate the usability of the
baseline temperature estimation model (variable-pole transfer function model) in
detecting anomalies in faulty DC machines. The faults in detail were explained in the
methodology chapter (3.2.5). The idea is that anomalies can be detected if the measured
temperature differs from the estimated baseline temperature. To do so, experimental
temperature data of healthy machine, and machine with faulty bearings and faulty brushes

were taken at different speeds.
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Figure 4.13 shows the steady-state temperature response of the DC machine at
three different states of health, monitored on the brush. The magenta line represents the
DC machine with degreased bearing, the blue line represents the machine with broken

brush and lastly the black line represents the healthy motor.
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Figure 4.13  Comparison between healthy and faulty DC machines (brush).

It can be observed that the DC machines with degreased bearings (magenta line)
exhibited the highest temperature throughout the speed range. The temperature difference
between the motor with degreased bearing and the healthy motor is approximately 5 °C
from 10% to 70% of the nominal speed. It can be said that despite a consistently higher
temperature, the difference is minimal. However, from 80% to 100% of the nominal
speed, the temperature difference increased as the speed increased, indicating that the
friction in the bearing generates much higher losses, and is transferred to the brush. This
is consistent with a friction-generated force which is viscous, thus increasing with the
square of the speed. So, despite the decrease in temperature exhibited by the healthy
motor (better convection at higher speed), the temperature decrease is much slower in the

faulty machine.

The temperature response of the motor with a broken brush (blue line) presents a
similar temperature to a healthy motor until 40% of speed, after which the temperature
becomes lower with a difference of close to 4 °C, located at 60% of speed. It is also the
speed at which the maximum temperature is achieved. Similar to the bearing fault, the

temperature difference with the healthy machine increases towards higher speed
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indicating an increase in losses with speed. This can be explained by the less smooth
contact between the brush and commutator caused by the chipped brush surface. As in
frictional generated losses, friction forces are viscous and increase with the square of the
speed. Therefore, the same remark as in the bearing fault is also true here. The only
difference is that the degreased bearing temperature is higher than the broken brush

temperature.

In practical implementation, the temperature of the machine in Figure 4.13 will
be plotted and compared with the baseline temperature estimated by the variable-pole
transfer function. Figure 4.14 shows this comparison for the component brush. The
comparison for other components can be found in Appendix O. Added to the previous
graph is now the baseline estimated temperature in the red line.
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Figure 414  Comparison between variable-pole transfer function model vs. healthy
and faulty DC machines (brush).

In Figure 4.14, it is observed that in general, the variable-pole transfer function
model (called here the equivalent model for short) overestimates the temperature at the
lower (< 20%) and upper speed (> 80%) ranges, while it underestimates at the middle
speeds. Just like in Figure 4.12, the equivalent model accurately predicts the temperature
response of the DC machines at 30% and 70% of the nominal speed. The temperature at
0% and 100% speed are interesting speed points that can be considered for anomaly

detection. A proposition for its usage can take the following form:
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During steady-state operation, electrical machines typically operate at full-rated
speed (100%). A measurement of temperature that shows a brush temperature higher than
the estimated baseline temperature would indicate an occurrence of a fault. However,
confirmation on which fault between the brush and bearing fault cannot be definitively
identified because the temperature difference between the two faults of less than 5°C
from our experiments (Figure 4.14) may be too small, considering other uncertainties.

All those knowns are that a fault occurs.

To distinguish the bearing fault from the brush fault, the temperature at 70% of
speed may be used. Running at 70% speed, it can be seen from Figure 4.14 that the brush
fault has a lower temperature than the healthy machine, while a bearing fault has a higher

temperature. This comparison would allow a distinction between the 2 faults.

Figure 4.15 below shows the summary of the temperature difference between the
equivalent model versus healthy and faulty DC machines extracted from Figure 4.14 in a
bar chart. The useful speed point of 100% and 70% speed can be seen exhibiting the

useful characteristics previously mentioned.
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Figure 4.15 Temperature differessnce between variable-pole transfer function vs.
faulty and healthy DC machines (brush).
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Another component where anomaly detection can be done is in the component
casing. This observation can be seen in Figure 4.16, which clearly shows that the
temperature response of both faulty motors exceeded that of the healthy motor starting at

as low as 30% of speed and continuing to increase as the speed increased.
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Figure 416  Comparison between variable-pole transfer function model vs. healthy
and faulty DC machines (casing).

The equivalent model for the casing provides an accurate estimation of the
temperature response at the intermediate stage, specifically within the speed range of 30%
to 70% of the nominal speed. However, it overestimates the temperature response at the
lower and higher speed ranges. While the differences between the brush and bearing fault
are small across the speed range below 90%, the temperature difference between both the
faulty motors and the healthy motors exceeds 5 °C at all speeds starting from 30%. The
highest temperature recorded was approximately 75 °C at 70% of the nominal speed for
the motor with a decreased bearing. A proposition for the usage of the estimated

temperature on the casing can take the following form:

The equivalent model can be effectively utilized for anomaly detection when the
motor operates within a speed range of 30% to 70%. If the temperature reading at the
casing exceeds the equivalent model by 5 °C, it is indicative of a fault. This method is
employed for early fault detection in electrical machines. However, it can pose a
challenge to pinpoint the specific type of fault, whether it is a brush or a bearing fault. To
classify the fault, a method using temperature readings at the brush component that was

previously discussed can be implemented.
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Figure 4.17 below shows the summary of the temperature difference between the
equivalent model versus healthy and faulty DC machines extracted from Figure 4.16 in a
bar chart. The useful speed point between 30% and 70% speed can be seen exhibiting a

higher temperature of more than 5 °C as previously mentioned.
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Figure 4.17  Temperature difference between variable-pole transfer function vs. faulty
and healthy DC machines (casing).

Based on all the obtained results, it can be inferred that the application of the
generalized transfer function as an anomaly detection tool is feasible. It will alarm the
user to trigger a more in-depth diagnostic process or maintenance. Therefore, a scheduled

preventive maintenance process could be reduced, decreasing the total down time and
maintenance cost.
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CHAPTER 5

CONCLUSION

51 Introduction

The use of DC machines will continue to grow as industries strive to meet their
green and sustainability goals through electrification. To ensure a long lifespan and
reliable performance, it is crucial to prevent overheating of the machines. It is even more
advantageous to detect anomalies before the maximum temperature is reached,
particularly when the machine is operating at lower speeds and under low or no-load
conditions. Therefore, the motivation of this study is to explore a potential solution for
estimating the baseline temperature of the machine when it operates at any speed, starting
with no-load conditions. The estimated baseline temperature can then be compared to the
measured temperature and the discrepancy between the two can serve as an anomaly

detection.

The development of this baseline temperature estimation was done using transfer
functions due to its ability to represent the temperature response to a speed input using a
single block which can be implemented easily.in real time. Addressing the first objective,
the identification of the transfer function of different motor components (brush, bearing,
permanent magnet, and casing) running with no load at 5 speed samples was done using
the Identification Toolbox by MATLAB. The brush was best represented by a 3rd order
transfer function, while a 1st order transfer function is sufficient to represent other
components. The transfer functions of each component at different speeds were found to
not obey the LTI system assumption after a linearity analysis due to the complex nature

of heat transfer in the DC machine.
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Following the observation, the second objective was addressed by developing a
generalized transfer function that can represent the temperature response of the machine
at any speed. Using an averaged-pole transfer function, the validation test shows a non-
acceptable estimated temperature which is expected because the system was found
previously to be non-LTI. The baseline temperature estimation error increases as the
speed increases. The poles of the generalized transfer function need to be adaptable
depending on the speed. Therefore, in the second method, the pole values of the transfer
function are generated by a pole function that was defined using mathematical equations
deduced from a curve fitting. The validation shows that the trends of the temperature
response exhibited by the model follow the one observed in the experimental data. The
precision was validated after observing a maximum steady state estimation error of 10 °C
at 80% of the motor's nominal speed. At the transient state, the estimation error is much
lower at 8 °C when the motor speed is also 80%. The variable-pole transfer function was
chosen and can be refer at Table 4.10. Meanwhile, for the specific chases that conducted
same as the experiment in data generation, the identified transfer function in Table 4.3
can be used as model. A robustness test confronting the model to a higher speed sampling
resolution at a 10% speed increment was also done. It was shown that a higher number
of speeds at which the temperature response was sampled for transfer function

identification can increase the model temperature estimation.

In the last objective, the validated variable-pole transfer function model was
confronted with an anomaly detection feasibility test where its temperature response was
compared to the temperature response of machines with broken brushes and degreased
bearings. The comparison shows that the casing temperature response can be used, where
a higher measured temperature in comparison to the estimated temperature by the model
of more than 5 °C in the speed range of 30% - 70% indicates an occurrence of a fault. A
further distinction between brush and bearing fault can be made by looking at the
temperature on the brush at a speed of 70%. A bearing fault would be indicated by a
higher estimated temperature while a brush fault would be indicated by a lower
temperature. This observation proves that the concept of anomaly detection and fault

identification using the baseline temperature model is feasible.
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Finally, to conclude, several remarks can be made concerning the positioning of
the results obtained in this study in comparison to previous findings and development in
literature reviews. For comparison, (Ray et al., 2020), an algorithm for loose brush
contact was developed with a 1.5-second delay in fault detection whereas our model can
instantly signal anomalies via discrepancies of baseline estimated temperature in
comparison to measured temperature. The development and monitoring using the
algorithm itself need current measurement instrumentation which is much more
expensive than thermocouples. In comparison to studies employing artificial intelligence
such as neural networks (Benedik et al., 2015 and Silva et al., 2023), this study does not
need a huge amount of historical data. A baseline temperature model was constructed

from a new healthy model.
5.2  Perspectives

This thesis has made significant contributions to the development of a baseline
temperature response model of an electric machine, using a generalized transfer function.
Despite these advancements, there are still areas of research that could be explored in
future studies to expand the work presented herein. These potential avenues for further

investigation can be categorized as follows:

1. Increase sampling experimental data: The development of the transfer function in
this thesis was based on 5 points speed sampling of the nominal speed. To enhance
the model’s predictive accuracy for motor temperature, it is recommended to
increase the sampling of experimental data used in the model’s development. This
could include expanding the sample data to 10, 15, 20, 25, and 30 data points.

2. Implement transfer function model to motor under load condition: The model
presented in this thesis was developed and studied based on a DC machine
operating under no-load conditions. For future research, it would be useful to
develop and study the model on a DC machine under varying load conditions,
with a magnetic brake attached as load. This would allow for an examination of
the model’s capability to predict the temperature response of the DC machines,

as well as an investigation into the characteristics of the temperature response
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when a load is applied. The input in this case would be multiple, the speed and
the load which will be more complex to treat.

Implement transfer function model on various motors: This thesis has observed a
complex speed-dependant phenomenon in the temperature response of the
MY1016 motor, which exhibits an increasing trend from the initial to the middle
state of nominal speed, followed by a decreasing trend until the final state of
nominal speed. This is likely due to the complex internal structure of the DC
machines. Therefore, it would be of interest to study the temperature response in
motors with more complex structures, such as fan-cooled motors or totally
enclosed motors. Concurrently, the transfer function model could be evaluated for
its ability to accurately predict and follow the trend of the temperature response

in these electric machines.
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Appendix A: IEC Electric machines Duty Cycle
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Continuous Duty Cycle.

Where P is load, P, is electrical losses, 8. is temperature, 8,,,, IS maximum
temperature attained and t is time.
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Appendix B:  Simulink Block Diagram.

¥4 S-Function Builder: cprgrph/encoder

is

S-FUNCTION BUILDER

4

Encoder setup in s-function builder.

Encoder Code

/* Includes_END */
#include<math.h>
#ifndef MATLAB_MEX FILE
#tdefine ARDUINO /100

#define “Arduino.h” //Library header to run-on Arduino
int ENCODER_PIN_A=2; //Encoder pin A connect to pin 2
void isr();//Declare function pulse counting positive only

void PWM();//Declare function encoder read
volatile long pulseCount=0; //Initial value pulse
float rpm=0;//Initial value RPM
unsigned long lasttime=0;//Time of last sample
int RPM;//Declare RPM
void isr(){//Function pulse counting positive only
pulseCount++;
}
void PWM(){//Function encoder read
if (millis()-lastime >=250){

noInterrupts();

rpm=((float)pulseCount/500)*(60000.0/millis()-lasttime));

pulseCount=0;
lasttime=millis();
interrupts();
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SuncionName{encoder || W' Comment
Language : ‘iC++ < | Insert Ports  |ndent Build
S-FUNCTION EDIT BUILD
Editor © | Settings

x * R
: |/ ZnelUdesIBEGENEY Number of discrete states
2 #include <math.h>
3| #ifndef MATLAB_MEX_FILE Discrete states IC :’
4 #define ARDUINO 186 Number of continuous states 0
5 #include "Arduino.h" // Library Header File to run code on Arduino Cont Ntes1C :I
6 int ENCODER_PIN_A = 2; // Encoder pin A connected to digital pin 2 onirtds sites
7 void isr(); Array layout | Column-major v |
B void ?NM(); Sample mode [Discrete - |
9 volatile long pulseCount = @; // Count of pulses from the encoder
10 float rpm = ©; // Calculated RPM
1 unsigned long lasttime = @; // Time of last sample Number of PWorks :’
i; AITERRH; Enable access to SimStruct O
12 void isr() { Direct feedthrough
15 pulseCount++; Multi-instance support O
25 } Mulithreaded execution support [
17
18 void PWM() { Code reuse support O
19 if (millis() - lasttime >= 258) {
20 noInterrupts();
21 rpm = ((float)pulseCount / 50@) * (60000.0 / (millis() - lasttime));
22 pulseCount = @;
2 lacttime = millicf)- 2
Ports And Parameters © | Libraries o
Name Scope Data Type Di C
RPM output double 1.1 real



rpm;

¥
#tendif

/* Includes_END */

/* Externs_END */

void encoder_Start_wrapper(real T *xD)

{

/* Start_BEGIN */

/* Start_END */

}

void encoder_ Outputs_wrapper(real T *RPM,
const real T *xD)

{

/* Output_BEGIN */

if(xD[@] == 1) // void loop()

{
#ifndef MATLAB_MEX FILE// basic readout test, just print the current temp
PWM() ;
RPM[@]= rpm;
#endif
}
/* Output_END */
}
void encoder_Update_wrapper(real T *RPM,
real_T *xD)
{

/* Update_BEGIN */
if(xD[@] '= 1) // void setup()

{

#ifndef MATLAB MEX_FILE// use Arduino‘pins
pinMode (ENCODER 'PIN A, INPUT);
attachInterrupt(digitalPinToInterrupt(ENCODER_PIN_A), isr, RISING);

#endif//done with initialization

xD[@] = 1;

}

/* Update END */

}

void encoder_Terminate_wrapper(real T *xD)
{

/* Terminate_BEGIN */
/* Terminate END */

}
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5-Function Builder: cprgrph/S-Function Builder

S-FUNCTION BUILDER

ses
S-Function Name :| max6675_probe ] comment # 4% G
Language : Ces ) indent & [[@ Build
S-FUNCTION EDIT BUILD
Editor Settings
N " -
1 /* Includes_BEGIN */ Number of discrete states 1
2 #include <math.h>
3 #ifndef MATLAB_MEX_FILE Discrete states IC ¢
4 #define ARDUINO 100 Number of continuous states [
5 #include “"Arduino.h” // Library Header File to run code on Arduino Cont tokes IC
2 ous
6 #include "max6675.h" // Library Header File to run code for MAX6675 Type K Thermocouple I e L o
7 #include "max6675.cpp” // Equations for MAX6675 Type K Thermocouple Array layout Column-major -
L . . Sample mode Discrete -
9 // DO & CLK PINS for Arduino UNO are 12 & 13 (see pin-out-map for other PLC models) e B
18 int thermoDO1 = 35; // Pin 35 J
11 int thermoCLK1 = 313 /f Pin 31 Number of PWarks 0
12
Enabl 1o SimStruct
13 int thermoD02 = 45; // Pin as franie sneess e mmEe o
14 int thermoCLK2 = 41; // Pin a1 Direct feedthrough [~
15 Multi-instance support 3
16 int thermoDO3 = 47; // Pin 47 Multithreaded execution support [ ]
17 int thermoCLK3 = 51; // Pin 51
- Code reuse support =
19 //Thermocouple 1 // Setup Thermocouple
20 int thermoCS1 = 29; /f Pin 29
21 MAX6675 thermocouplel(thermoCLK1, thermoCS1, thermoDO1); // Equation called from max6675.h
22
2 //Thermacouple 2 // Setup Thermocouple
24 int thermoC52 = 33; // Pin 33
25 MAX6675 thermocouple2(thermoCLK1, thermoCs2, thermoDO1); // Equation called from max6675.h
26 x
Ports And Parameters. © | Libraries o
Name Scope Data Type Dimensions Complexity
Brush output double 1.1 real
Bearing output double 1.1 real
Magnet output double [1.1] real
Body output double 1.1 real
Ambient output double 1.1 real

MAX6675 setup in s-function builder.

MAX6675 Code
/* Includes_BEGIN */
#include <math.h>
#ifndef MATLAB_MEX FILE
#define ARDUINO 100
#include “Arduino.h”//Library header file to run code on Arduino
#include “max6675.h”// Library header file to run MAX6675
#include “max6675.cpp”//Equations for MAX6675 type K thermocouple
int thermoDO1 = 35;// Pin 35
int thermoCLK1 = 31;// Pin 31
int thermoDO2 = 45;// Pin 45
int thermoCLK2 = 41;// Pin 41
int thermoDO3 = 47;// Pin 47
int thermoCLK3 = 51;// Pin 51
int thermoCS3 = 29;// Pin 29 Thermocouple 1
MAX6675 thermocouple3(thermoCLK2, thermoCS3, thermoD02);
int thermoCS3 = 33;// Pin 33 Thermocouple 2
MAX6675 thermocouple3(thermoCLK2, thermoCS3, thermoD02);
int thermoCS4 = 39;// Pin 39 Thermocouple 3
MAX6675 thermocouple4(thermoCLK2, thermoCS4, thermoD02);
int thermoCS4 = 43;// Pin 43 Thermocouple 4
MAX6675 thermocoupled(thermoCLK2, thermoCS4, thermoD02);
int thermoCS5 = 49;// Pin 49 Thermocouple 5
MAX6675 thermocouple5(thermoCLK3, thermoCS5, thermoD03);
#endif
/* Includes_END */
/* Externs_END */

143



void max6675_probe_Start_wrapper(real T *xD)

{

/* Start_BEGIN */

/* Start_END */

}

void max6675_probe_Outputs_wrapper(real_T *Brush,
real T *Bearing,
real T *Magnet,
real T *Body,
real T *Ambient,
const real_T *xD)

{

/* Output_BEGIN */

if(xD[@] == 1) // void loop()

{

#ifndef MATLAB_MEX_FILE// basic readout test, just print the current temp
Brush[@]=thermocouplel.readcelsius();//Thermocouplel
Bearing[@]=thermocouple2.readcelsius();//Thermocouple2
Magnet[@]=thermocouple3.readcelsius();//Thermocouple3
Body[@]=thermocouple4.readcelsius();//Thermocouple4d
Ambient[@]=thermocouple5.readcelsius();//Thermocouple5

#endif

}
/* Output_END */
}

void max6675_probe_Update_wrapper(real T *Brush, real T *Bearing, real T
*Magnet,
real T *Ambient,
real T *xD)
{
/* Update_BEGIN */
if(xD[@] '= 1) // void setup()

{
#ifndef MATLAB_MEX FILE// use Arduino pins
pinMode (thermoCS1,0UTPUT) ;digitalWrite(thermoCS1,HIGH);
pinMode(thermoCS2,0UTPUT) ;digitalWrite(thermoCS2,HIGH);
pinMode (thermoCS3,0UTPUT) ;digitalWrite(thermoCS3,HIGH);
pinMode (thermoCS4,0UTPUT) ;digitalWrite(thermoCS4,HIGH);
pinMode(thermoCS5,0UTPUT) ;digitalWrite(thermoCS5,HIGH);
#endif//done with initialization
xD[@] = 1;
}
/* Update_END */
}
void max6675_probe_Terminate_wrapper(real_T *xD)
{

/* Terminate_BEGIN */
/* Terminate_END */
}
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Appendix C: System Identification Toolbox.

ate Transfer Functions

Model Structure Estimation Options

Orders and Domain

Number of poles | 1 ‘

Number of zeros | 0 ‘

(®) Continuous-time

O Discrete-time (0.25 seconds) Feedthrough

+ Delay

Estimation transfer function.

Command Window

>> tfbrl

tfbrl =
From input "Speed" to output "Temperature":
0.0002557

s + 0.0003102

Name: tfbril
Continuous-time identified transfer function.

Parameterization:
Number of poles: 1 Number of zeros: 0
Number of free coefficients: 2

Status:

Estimated using TFEST on time domain data "Brush".
Fit to estimation data: 94.04% (stability enforced)
FPE: 0.3202, MSE: 0.3202

Model Properties
]

Result estimation of transfer function.
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Appendix D: System Linearity.
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Appendix E:  Calculation for Averaged-pole Transfer Function.

Transfer function for brush at varying speed.
K
(s+0)(+0y)(s+03)

Ghrusn 20% (S) =

c B 2.671e-9
brush 20% () = (s3 + 4.09e-3)(s2 + 1.18e-5)(s + 3.223e-9)

[Zbrush 20> Obrush 20/ Kbrush 20] = tfzzp (Zbrush 20(5)' Obrush 20(5))

[Zbr 20, Tbr 205 Kbr 201
= tf2zp(2.671e-9,[1,4.09e-3,1.18e-5,3.223e-9])

Obr120 —— 1.9e-3 4+ 2.7¢e- 3, Obr1 40 —— 2.1e-3 + 3.5e- 3,
Obr160 —— 4.0e-3 + 5.2e- 3, Opbr180 —— 3.8e-3 4+ 6.0e-4

O-brl 100 —— 4’.06— 3

KerO = 2.8e- 9, Kbl‘4—0 = 4.2e- 9, Kbl"60 = 7.5e- 9, Kbrgo = 1.9e-9
KbrlOO = 6.7¢e-10

01 prush = [(O120 + 0140 + -+ + 01100)/5] == 3.2e-3 + 2.4e-3i
02 brush = [(0220 + 0240 + "+ 02100) /5] ==2.8e~3 + 2.4e-3i

03 prush = [(0320 + 0340 + -+ 03100)/5] =—4.8e-4

K prusn = [(Kzo + K49 + -+ + K100)/5] = 3.4e-9

Z prusn = 0

[Z_brush (5), Oprush ()] = zp2tf (Zprusn » 0(1,2,3)brush» Kbrush )

K
G —
) = GIEG+RG o)
3.37e-9
Gprusn(s) =

(s3 +6.4e-3)(s?+ 1.7e-5)(s + 7.0e-9)
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Transfer function for bearing at varying speed.
K
(s+o0)

Gbearing (S) =

1.4e-4
Gpearing 20%(S) = T 330-4

[Zbearing 20/ Gbearing 20/ Kbearing 20] = thZp (Zbearing 20(5)' O'bearing 20 (S))

[Zbe 20, O be 20, Kbe 20] = tf2zp(1.4e-4,[1,3.3e-4])

Ophe 20 =~ 0.33e- 3, Ophe 40 —— 0.56— 3, Ohe o —— 0.49¢- 3,

Ohego —— 0.586— 3, Obe 100 —— 0.526— 3

Kbezo = 014‘6— 3, Kbe4_0 = 0166— 3, Kbe60 = 0126_ 3,
Kbego = 010, e- 3, KbelOO = 0.06e-3

Opearing = [(020 + 049 + -+ 0190) /5] =-4.9e-4

Kbearing = [(KZO + K40 JMPSA Kloo)/s] = 1.2e-4

Zbearing =0

[Z_bearing (S), 5bearing (S)] — Zpth(Zbearing ’ O_bearing' Kbearing )

Gbearing(s) = s+o

1.2e-4
s+ 4.9e-4
Transfer function for permanent magnet at varying speed.

K
Gpermanent magnet(s) = (s + 0)

Gbearing (5) =

1.4e-4
Gpermanent magnet 20% (S) = s + 3.4e-4

[Zp.m 20 Op.m 200 Kp.m 20] = tf2z2p(Zpm 20(5), Opm 20(5))
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[Zom 200 T pm 20 Kpm 20] = tf22p(1.4e-4,[1,3.4e-4])

0,

om20 =—0.34e-3,0, 1,40 == 0.5e- 3,0, 1, 60 = 0.49e-3,

Opmso =~ 0.58e- 3: Up,m 100 —— 0.52e-3

P

K

pmzo = 0.14e-3, K 40 = 0.16€- 3, K, 160 = 0.12e-3,

Kp.mSO = 0.108— 3, Kp.mlOO = 0.063— 3
O pmagnet = [(020 + 049 + -+ 0100)/5] =—4.8e-4

K pmagnet = [(Kzo + Ko + -+ + Ki00) /5] = 1.2e-4

Zp.magnet =0

[Z_p.magnet (S)' 5p.magnet (S)] = Zp2tf(Zp.magnet » Op.magnet, Kp.magnet )

Gp.magnet(s) > sto
1.2e-4
Gp.magnet(s) = m

Transfer function for casing at varying speed.
K
(s+0)

Gcasing (s) =

1.4e-4
Geasing 20%(S) = S+ 3.4e-4

[Zcs 200 Ocs 200 Kes 20] = tf22P(Zes 20(S), 0cs 20(5))

[ZCS 207 O-CS 207 KCS 20] = tf22p(15e— 4‘, [1,3.46— 4‘])

Ocs 20 =— 0.34e- 3,05 40 = 0.51e- 3,050 =— 0.49e-3,
O-CS 80 == 0'586_ 3; 0-(:510() =- 0-526— 3
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KCSZO = 0.14e- 3, KCS4O = 0.16e- 3, KCS6O = 0.12e- 3,
KC580 = 0.10e- 3, KCSlOO = 0.05e-3

O casing = [(020 + 040+ "+ 0100)/5] =—4.9e-4

Kcasing = [(Kyo + K40 + -+ + K100)/5] = 1.1e-4

Z ¢casing = 0

[Z_casing (S)r 5casing (S)] = Zp2tf(ansing' acasing' Kcasing)

Gcasing(s) = sto
l.1e-4
Ceasing ) = 4564
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Appendix F:  Calculation for Variable-pole Transfer Function.

Transfer function for brush at varying speed.

Brush real number o 1,,,s, (N)@ Numerator.
Coefficient exponential:

al = 5.6e-4,b1 = 1.3e-2,c1 =-1.8e-3,d1 =9.0e-3

a2 = 69e-4,b2 =1.4e-2,c1 =-2.0e-3,d1 =9.9¢-3
Coefficient polynomial 2:
a3 = 1.3e-8,b3 =-4.8e-6,c3 =-1.1e-4

Brush complex number o s, i (N).
Coefficient polynomial 2:

ali =-2.0e-7,bli = 4.7e-5,c1 = 7.7e-4

a2i = 2.0e-7,b2 =-4.7e-5,cl =-7.7e-4

Gain Kj,sn (N)@ Denominator.
Coefficient polynomial 2:

pl =-2.6e-13,p2 = 6.9¢e-11,p3 =-1.9e-10
N = speed
0 1prusn(N) = al xexp (b1 x N) + c1 xexp (d1* N)
0 2prush (N) ='a2 xexp (b2 *x N) + ¢c2 x exp (d2 * N)
O sprusn(N) = a3 *N? + b3« N + ¢3
0 1prushl(N) = ali * N2 + b1li x N + cli
O 2prushl(N) = ali * N2 + b1li x N + cli

G3brushi(N) =0

Zprush (N) =0

Ubrush(N) = [albr(N) + Ulbri(N) * i:azbr(N) + azbri(N) * i:
U3br(N) + 03bri(N) * i]

Kbrush(N) :pl*N2+p2*N+p3
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[Zbrush (S): Obrush (S)] = Zpth(Zbrush (N)' Obrush (N)' Kbrush (N))

Kbrush (N )

Gie(s) = (s + Oprusn1i (N)) (S + Oprusn2(N)) (S + Oprusnz (V)

O brush 1(N) = S + Oprush1 (N)
Ubrushz(N) =s+ GbrushZ(N)

O brush 3 (N) = S + Oprush3 (N)

Kprush (N) = Kprush (N)

Transfer function for bearing at varying speed.
Pole o peqring(N)@ Numerator.
Coefficient exponential:

a=-7.7e-4,b=-11e-3,c = 7.0e-4,d =-1.2e-2

Gain Kpeqring (N)@ Denominator.
Coefficient polynomial:

pl =-47e-7,p2 = 19e-4

N = speed
O-bearing(N) =ax eXp(b *N) +c* exp (d * N)
Kbearing(N) =pl*N+p2
Transfer function for permanent magnet at varying speed.

Pole 6 permanent magnet (N)@ Numerator.
Coefficient exponential:

a =-8.8e-4,b=-14e-3,c =7.4e-4,d =-9.2e-3

Gain Kpermanent magnet (N) @ Denominator.
Coefficient polynomial:

pl =-4.7e-7,p2 = 1.9e-4

N = speed

0 permanent magnet(N) =ax* eXp(b *N) + ¢ * exp (d = N)
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errmanent magnet(N) =pl*N+p2

Transfer function for casing at varying speed.
Pole ¢ cq5ing (N)@ Numerator.
Coefficient exponential:

a=-9.3e-4,b =-1.6e-3,c = 7.8e-4,d =-8.3e-3

Gain K;g5ing(N) @ Denominator.
Coefficient polynomial:

pl =-4.6e-7,p2 = 1.9e-4

N = speed
0 casing(N) = a x exp(b * N) + ¢ xexp (d = N)

Kcasing(N) =pl=*N+p2
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Appendix G: Pole Function Code.

function[br_num,br_den®,br_denl,br_den2,be_num,be_den,pm_num,pm_den,cs_num,cs
_den]= speed(vals)

%% Brush

%Brush real number

%Pole 1 data from exponential 2

br_al = 0.0005619;

br_bl = 0.01276;

br_cl = -0.001848;

br_dl = 0.00903;

%Pole 2 data from exponential 2
br_a2 = 0.0006881;

br_b2 = 0.01372;

br_c2 =-0.002001;

br_d2 = 0.009904;

%Pole 3 data from polynomial 2
br_a3 = 1.289e-08;

br_b3 =-4.812e-06;

br_c3 =-0.0001109;

%Brush i complex number

%Pole 1 data from polynomial 2 LAR
br_ali =-1.969e-07;

br_bli = 4.718e-05;
br_cli = 0.0007725;
%Pole 2 data from polynomial 2 LAR
br_a2i = 1.969e-07;

br_b2i =-4.718e-05;

br_c2i =-0.0007725;

%Gain data from polynomial 2 LAR

br_pl =-2.586e-13;

br_p2 = 6.931e-11;

br_p3 =-1.912e-10;

%Gain function from Polynomial

k = br_pl*vals”2 + br_p2*vals + br_p3; %gain brush poly 2
%Pole function from .Exponential and Polynomial for real number

denl = br_al*exp(br_bl*vals)+br_cl*exp(br_dl*vals); %curve fitter
den2 = br_a2*exp(br_b2*vals)+br_c2*exp(br_d2*vals); %real number
den3 = br_a3*vals”2+br_b3*vals+br_c3;%real number poly 2

%Pole function from Polynomial 2 for complex number

denli = br_ali*vals”2+br_bli*vals+br_cli;%complex number poly 2
den2i = br_a2i*vals”2+br_b2i*vals+br_c2i;%complex number poly 2
den3i = 0;

Z = @; %zeros

%Sum of pole between real and complex number

p = [denl+denli*i,den2+den2i*i,den3+den3i*i]; % combination poles
%Convert gain and poles to transfer function

[num,den] = zp2tf(z,p,k);

%New Gain Output

br_num = num(1,3); %numerator

%New Pole Output

br_deno = den(1,4); %denominator s”@

br_denl = den(1,3); %denominator s*1

br_den2 = den(1,2); %denominator s*2
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%% Bearing

%Pole data from exponential function
be_a =-0.0007722;

be_b =-0.001092;

be_c = 0.0006995;

be_d =-0.01156;

%Gain data from polynomial function
be pl =-4.721e-07;

be p2 = 0.0001946;

%New Gain Output

be_num = be_pl*vals+be_p2;

%New Pole Output

be_den = be_a*exp(be_b*vals)+be c*exp(be_d*vals);
%% Permanent Magnet

%Pole data from exponential function
pm_a =-0.0008783;

pm_b =-0.001394;

pm_c = 0.0007423;

pm_d =-0.009215;

%Gain data from polynomial function
pm_pl =-4.685e-07;

pm_p2 = 0.0001932;

%New Gain Output

pm_num = pm_pl*vals+pm_p2;

%New Pole Output

pm_den = pm_a*exp(pm_b*vals)+pm_c*exp(pm_d*vals);
%% Casing

%Pole data from exponential function
Cs_a =-0.0009327;

cs_b =-0.001456;

CS_C = 0.0007804;

cs_d =-0.008379;

%Gain data from polynomial function
cs_pl =-4.598e-07;

CS_p2 = 0.0001896;

%New Gain Output

cs_num = cs_pl*vals+cs _p2;

%New Pole Output

cs_den = cs_a*exp(cs_b*vals)+cs_c*exp(cs_d*vals);
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Appendix H: Temperature Response Data.
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Appendix I:  Identified Transfer Function.

Identified transfer function for bearing.

No. of Speed . MSE
Transfer Function
Poles (%) error
20 _ 1491 0.1271
s + 3.315e-4
1.693e-4
40 _ ouser® 0.1185
s + 5.086e-4
1.279e-4
1 60 _ L2794 0.2252
s + 4.985e-4
80 _ 1028e-4 0.1599
s + 5.841e-4
100 _ 6227e-5 0.1198
s + 5.284e-4
20 8.146e-7 4.861
s2 4+ 2.468e-2s + 1.324e-7
40 2.077e-5 0.1275
s2 4+ 0.1253s + 6.245e-5
2 60 pdle 6 0.2248
s?2 + 5.462e-2s + 2.701e-5
80 e 0.1537
s2+ 2.476e-2s + 1.423e-5
100 - 5 0.1195
s2 4+ 4.873e-2s + 2.551e-5
20 -4.584e-11 19.06
s3 + 2.856e-3s2+ 2.585e-65s + 4.787e-18
40 3.575e-10 0.1148
s3 4+ 2.435e-2s2+ 1.417e-5s + 1.086e-9
4.878e-9
3 60 0.2024
s34+ 9.851e-2s2+ 7.856e-5s + 1.945e-8
80 2.458e-10 0.3212
s3 +2.295e-2s2+ 1.439e-5s + 1.378e-9
100 3:267¢-5 0.1194
s34+ 14.75s2 4 0.5317 s + 2.773e-4
1.039¢-12
20 ¢ 9.851
s*+ 1.212e-2s3 + 4.786e-5s2 + 1.076e-7s + 1.259e-20
1.144¢-9
40 € 0.1165
s* 4+ 6.602e-25s3+ 6.406e-4s2+ 7.035e-6s + 3.438e-9
4 60 2.975e-11 0.2062
s* 4+ 4.506e-2s3+6.952e-45s%2+ 5.139e-7s + 1.191e-10
. -11
80 3.338¢ 0.1488
s*+ 1.291e-2s3+ 1.0le-4s%2+ 3.738e-7s + 1.9e-10
133e-1
100 >.133e-13 0.1548

s*+ 1.203e-25s3 + 4.973e-5s2 + 3.445e-8s + 4.182e-12
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Identified transfer function for permanent magnet.

No. of Speed . MSE
P Transfer Function
Poles (%) error
1.471e-4
20 _ 1d47le-4 0.1186
s+ 3.402¢e-4
40 _ 1.695e-4 0.1145
s + 5.08e-4
1.274e-4
1 60 _errer 0.2324
s + 4937e-4
1.024e-4
80 e 0.1658
s + 5.818e-4
100 _ 6.118e-5 0.1214
s + 5.218e-4
20 4.46e-7 4.228
s2+ 1.513e-2s + 1.631e-11
3.468¢-6
40 ¢ 5.139
s2 4+ 4.041e-2s + 9.051le-6
1.922¢-
2 60 922e-5 0.2493
s2 + 0.1555s + 7.425e-5
80 3Q7e-6 0.1564
s24 3.908e-2s + 2.257e-5
1.763e-6
100 ¢ 0.1158
s2+ 2.914e-2s + 1.504e-5
20 1.003e-8 0.118
s34+ 1.237e-2s%2+ 7.16e-5s + 2.322e-8
2.84e-10
40 ° 0.1077
s34+ 1.6le-2s2+ 9.65e-6s + 8.572e-10
3 60 F-952¢- 10 0.1724
s3 + 1.586e-25s2 + 8.392e-6s + 8.171e-10
1.392e-10
80 § 0.2309
s3 + 1.828e-2s2 + 1.144e-5s + 7.565e-10
100 AP BEAD 0.2523
s3 4+ 3.506e-2s?2+ 1943e-5s + 1.651e-9
2.484e-11
20 8de 0.1178
s* + 2.381le-2s3 + 5.946e-4s2+ 3.772e-7s + 5.678e-11
40 5.411e-10 0.105
s* + 2.497e-2s3 + 4.939e-4s2+ 3.376e-6s + 1.625e-9
4 60 9-055e- 10 0.2283
s* 4+ 7.098e-2s3 + 8.196e-4s2+ 7.43e-6s + 3.513e-9
1.997e- 11
80 ¢ 0.1387
s*+ 1.237e-2s3+ 8.102e-5s2+ 2.333e-7s + 1.137e-10
100 4.028¢-13 0.1506

s*+ 1.175e-2s3 + 4.638e-55s2 + 3.066e-8s + 3.28e-12
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Identified transfer function for casing.

No. of Speed . MSE
P Transfer Function
Poles (%) error
1.437e-4
20 L 0.126
s + 3.416e-4
1.667e-4
40 _ooren® 0.1212
s + 5.1e-4
1.256e- 4
1 60 B 0.2455
s + 4.949¢-4
1.012e-4
80 _ LR 0.1644
s + 5.872e-4
5.921e-5
100 _>retems 0.1395
s + 5.269e-4
20 684e-7 4.483
s2+4+ 2.38e-2s + 6.748e-9
1.525e-5
40 ¢ 1.093
s2+ 0.119s + 4.477e-5
2 60 3.067e-6 0.2414
s2 4+ 2.479e-2s + 1.209e-5
80 _ o 0.1459
s+ 1.236e-2s + 7.043e-6
6.07e-7
100 ¢ 0.1332
s2+ 1.067e-2s + 5.407e-6
20 L 0.1243
s34+ 2.896e-3s%+ 1.663e-5s + 5.38e-9
235e-1
40 10 0.1153
s34+ 1.828e-2s2 + 1.045e-5s + 6.906e-10
3 60 4.839e-11 0.1915
s34 9.107e-3s2 + 4.464e-6s + 2.181e-10
2.014e-10
80 ¢ 0.5461
s3 + 2.369e-2s2+ 1.436e-5s + 1.102e-9
100 XPSE 0.1325
s34+ 1.556e-2s2+ 1.389¢-4s + 6.959e-8
20 -9.121e-15 11.99
s* + 3.74e-3s3+ 1.135e-5s2+ 1.498e-8s + 3.103e-23
1.267e-9
40 ¢ 0.115
s*+ 6.488e-2s3+ 7.414e-45s%2+ 7.857e-6s + 3.882e-9
1.697e-11
4 60 0.2254
s* + 8.828e-3s3 + 5.6e-5s2 + 1.565e-7s + 6.709e-11
3.936e-11
80 ¢ 0.1408
s* 4+ 1.361le-2s3+ 1.237e-4s%2+ 4.472e-7s + 2.29e-10
841e-1
100 6841e-13 0.1313

s* + 1.781e-2s3 + 8.296e-5s2 + 5.195e-8s + 5.993e-12
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Appendix J:  Validation Identified Transfer Function As Model.
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Comparison between identified transfer function vs. experimental temperature response
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Bearing
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Permanent Magnet
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Casing
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Appendix K: Result of Steady State Temperature Response for Averaged-pole
Transfer Function Model.
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Comparison between averaged-pole transfer function vs. experimental temperature
response at steady state temperature (left:bearing, right:permanent magnet).
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Appendix L: Result of Transient State Temperature Response for Averaged-pole

Transfer Function Model.
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Comparison between averaged-pole transfer function vs. experimental temperature
response at transient state temperature (left:bearing, right:permanent magnet).
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Comparison between averaged-pole transfer function vs. experimental temperature
response at transient state temperature (casing).
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Appendix M: Result of Steady State Temperature Response for Variable-pole Transfer

Function.
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Comparison between variable-pole transfer function vs. experimental temperature
response at steady state temperature (left:bearing, right:permanent magnet).
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Comparison between variable-pole transfer function vs. experimental temperature
response at steady state temperature (casing).
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Appendix N: Result of Transient State Temperature Response for Variable-pole

Transfer Function.
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Comparison between variable-pole transfer function vs. experimental temperature
response at transient state temperature (left:bearing, right:permanent magnet).
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Appendix O: Result of

5

Generalized Transfer Function in Fault Detections
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Comparison between var

iable-pole transfer function model vs. healthy and faulty DC

machines(left:bearing, right:permanent magnet).
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