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ABSTRAK 

Motor menyumbang kepada 40% daripada penggunaan elektrik global dan 13% daripada 

pelepasan karbon, serta sering mengalami kerosakan haba yang tidak dapat dipulihkan. 

Untuk mengelakkan sisa buangan elektrik yang berlebihan dan meningkatkan jangka 

hayat, adalah penting untuk memantau suhu motor dengan tepat dan menghentikan 

operasi pada tahap selamat. Kajian ini bertujuan untuk membangunkan model masa-

sebenar untuk memantau suhu dalam motor arus terus MY1016, menggunakan transfer 

function. Antara objektif kajian ini adalah mengenal pasti transfer function yang paling 

tepat, membangunkan, dan mengesahkan model transfer function dengan 𝑝𝑜𝑙𝑒 

dipuratakan dan 𝑝𝑜𝑙𝑒 boleh ubah, dan menilai keupayaan model ini untuk mengesan 

kerosakan. Data eksperimen telah direkodkan pada beberapa komponen seperti berus 

karbon, galas bebola, magnet, dan bingkai.  Motor tersebut telah dioperasi pada kelajuan 

dari 20% ke 100% halaju nominalnya tanpa beban, sehingga mencapai kestabilan 

pemindahan haba. Toolbox identifikasi sistem oleh MATLAB telah digunakan untuk 

mengenal pasti transfer function dengan bilangan pole dari 1 hingga 4 dan tanpa zeroes. 

Kajian ini mendapati bahawa tindak balas suhu terhadap operasi motor telah 

menghasilkan suhu tertiggi sewaktu halajunya pada 60% daripada halaju nominal. Berus 

karbon dapat dimodel dengan baik oleh transfer function tahapan ketiga, manakala 

transfer function tahapan pertama sudah memadai untuk komponen-komponen lain. 

Pemerhatian kepada pole transfer function tindak balas suhu motor mendapati bahawa 

sistem ini bukan sebuah sistem LTI. Oleh itu, sebuah model menyeluruh menggunakan 

transfer function dengan pole boleh ubah untuk penggunaan pemantaun masa sebenar 

dibangunkan dan dinilai. Ia mampu menjangka suhu motor pada keadaan kelajuan 

berubah dan tetap, dengan ralat maksimum setinggi 10 ℃. Kesimpulannya, transfer 

function dengan pole boleh ubah sesuai digunakan untuk pemantauan keadaan motor 

dengan menggunakan beberapa scenario pemeriksaan dan boleh diapplikasi pada motor-

motor yang lain pada masa akan datang. 
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ABSTRACT 

Motors account for 40% of global electricity consumption and 13% of carbon emissions 

and often suffer irreversible thermal damage. To prevent excessive electrical waste and 

improve reliability, it’s crucial to monitor motor temperature accurately and halt 

operation at safe levels. This study aims to develop a real-time model for monitoring 

motor temperature in MY1016 direct current machines, using a transfer function. The 

objectives include identifying the most precise transfer function to model the temperature 

response of each component at different speed, developing, and validating a generalized 

model using averaged-pole and variable-pole transfer function models, and finally 

evaluating their feasibility for fault detection. Experimental data was recorded for 

different motor components including the brush, bearing, permanent magnet and casing. 

The motor was operated at speeds from 20% to 100% of nominal speed with no load, 

until thermal equilibrium was reached. The MATLAB system identification toolbox was 

used to identify the transfer function, with a number of poles varying from 1 to 4 and 

with no zeros. The study found that the temperature response of the MY1016 motor at 

60% of the nominal speed produces the highest temperature. The brush was best 

represented by a 3rd order transfer function, while a 1st order transfer function is 

sufficient to represent other components. The non-LTI characteristic of the temperature 

response observed from the pole analysis led to a choice of modeling using variable-pole 

transfer function to create the baseline temperature model. It can estimate temperature 

response during both steady and transient speed states, with a maximum temperature 

difference of 10 ℃. The study concludes that the variable-pole transfer function can be 

used to monitor electric motors' condition using several testing scenarios. The same 

method can be suggested to be applied on other types of motors. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Background of Study 

Motors consume approximately 40% of the world’s electricity and contribute to 

around 13% of global carbon emissions(Ferreira & de Almeida, 2008). The electric 

machines market is expected to grow to USD 169 billion by 2026, at an annual growth 

rate of 6.9% from an estimated USD 113 billion in 2020(New Market Reports, 2020). 

The increase in market size for electric machines presents challenges for end-of-life 

management of electric machines and a requirement for appropriate strategies for high-

value materials. A report by the European Commission published in 2020(Critical Raw 

Materials Resilience: Charting a Path towards Greater Security and Sustainability, 2020) 

predicted that by the end of 2050, the European Union would require 15 times more cobalt 

and 10 times more rare earth materials as compared to current consumption. 

To avoid the catastrophe of having too much electrical waste, the utilization of 

these motors needs to be optimized. Avoiding premature damage and prolonging the life 

cycle of the motors is essential. This can be done by having a full understanding of the 

root cause of the irreversible damage that brought the motor to the landfill. The leading 

cause of motor failure is overloading. As shown in Figure 1, overloading counts for 30% 

of motor failure (Gonzalez-Cordoba et al., 2017). 
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Figure 1.1 Motor failure. 

Source: Electric Motor Failure Causes (2017) 

Mechanical overload generated by high torque values (X. Liang et al., 2020) is an 

undesirable and typical operating condition in industrial processes. This condition causes 

negative consequences such as premature aging of motor bearings, locked rotor, poor 

lubrication, and windings overheating (Sheikh et al., 2022). Mechanical overload 

generates an excessive temperature on induction motors since a proportional increment 

in the demand of the stator current is also generated(X. Liang et al., 2020), which 

accelerates the degradation of motor components including the stator/rotor conductors, 

core, insulation, permanent magnet, and bearings (Tallam et al., 2007; P. Zhang et al., 

2011). Continuous elevated temperature induces demagnetization of permanent magnet 

and melting of the insulation which creates winding short circuits. Monitoring the 

temperature inside the motor and setting a maximum operating temperature are therefore 

essentials in making sure that the motor is always in a good condition. 
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1.2 Problem Statement 

Due to low cost and ease of production of DC machines (C. Liu, 2018), 

manufacturer and user tend to not optimize the design of the motor specifically for an 

application. They regularly discard and change the motor once they are damaged. The 

most common irreversible damage that can be done to a motor is thermal damage: melting 

or burning the winding insulation. This leads to short-circuit and demagnetization of 

permanent magnet (Hattori et al., 2023). The lifespan of a DC machine is known to be 

ranging from 30,000 to 40,000 hours (Rusu-Zagar et al., 2013). Despite its low cost, 

increasing its lifespan would mean budget and cost saving in an economy of scale. It is 

not just for the benefit of the industries for their cost reduction, but also for the reduction 

of electric machines waste in the landfill. For a large fleet of applications and a larger 

motor, potential reliability improvement can be obtained by properly monitoring the 

temperature and stop the operation of the motor at a proper temperature level as a 

preventive measure to avoid damage. In general, the monitoring system need to be 

precise, consume little computing power, can be implemented in real time, and if possible 

short development time to allow it to be replicated onto a fleet of different motor 

offerings. 

To build a proper temperature monitoring system for the components of the 

motor, the classic solution is to equip the motor with temperature measurement 

instrumentation. However, this leads to additional costs and cable management issues. It 

could be too much for a system equipped with many motors (Wu & Dobson, 2012). The 

less instrumented option is to have a real-time model that estimates the temperature of 

the components inside the motor using a single input like speed or current of the motor 

(Sundararajan et al., 2022). There is also another possibility of using a neural network 

predictive modeling that can warn against potential damage. However, like any other AI 

approach, a large amount of training and test data is necessary to create the model, which 

means instrumenting the motors with temperature measurement equipment and running 

plenty of tests beforehand. All these three methods have their merits of advantages as 

well as inconveniences that will be discussed in the literature review. In this study, the 

real-time model is going to be adopted. 
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To develop the real-time model, there are many options for temperature response 

modeling. The usual options include the LPTN model (Pescetto et al., 2020) and full 

analytical model (Pawlus et al., 2017). However, developing and validating them takes a 

certain development time. In the case where the direct relation between the physical 

parameters (dimensions and material) of the motor and the temperature is not essential to 

be known, a transfer function can be used to describe the temperature response. Transfer 

functions are light to be implemented in real-time and can be quickly developed through 

transfer function identification using several experimental data only. However, the Linear 

Time-Invariant (LTI) condition of a transfer function needs to be analyzed so that the 

model developed is valid for all speeds and load points.   

This study will explore the best form of transfer function (order) to describe the 

temperature response of components in a DC machine, develop a generalized model that 

is speed-dependent, and evaluate the model precision. Obtaining a high-precision transfer 

function model of the temperature response will allow a low-cost and efficient 

temperature monitoring of DC machines in application. 

1.3 Objectives 

The objectives of this project are as follows: 

1. To model the most precise transfer function of temperature response in the 

MY1016 DC machines at different speeds.  

2. To validate an averaged-pole transfer function model and a variable-pole transfer 

function model.  

3. To evaluate the feasibility of real-time fault anomaly detection using the transfer 

function model. 
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1.4 Scope  

The scope of this study are as follows: 

1. The motor used to obtain the temperature response data is a 250W brushed DC 

machine, MY1016. 

2. The temperature responses were obtained from a step speed input at different 

speeds, up to the steady state temperature. The experiment is conducted with no 

load. The definition of steady state temperature being no temperature variation 

observed after 10 minutes. 

3. The ambient temperature during the data acquisition is controlled at a room 

temperature of 30 ℃.  

4.  The transfer function describing the temperature response were obtained using 

the system identification toolbox in MATLAB.  

5. The measure of the precision of the system identification was done using the 

indicator of Fit to estimation data (in %), FPE (final prediction error), and MSE 

(mean-square error). 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction  

The literature review chapter is divided into three subsections. The first 

subsection discusses generalities on DC machines, including their utilization and 

operating principles. It also covers common losses that occur in DC machines. The 

second subsection focuses on temperature rises in electrical motors, explaining the causes 

of degradation and irreversible damage that can occur in electrical machines due to 

temperature, also heat transfer in electrical machines. Additionally, it covers the 

monitoring and modeling of temperature response, as well as diagnostic methods 

commonly used in electrical machines. The final subsection discusses transfer functions 

as a model in modeling the temperature response of DC machines, including generalities 

of transfer functions, the system identification MATLAB toolbox, and the evaluation of 

model precision for transfer functions. Finally, following the literature reviews, the 

research gap where a baseline temperature model of a motor using transfer function for 

condition monitoring will be highlighted. 

2.2 Generalities on DC Machines 

Nearly every mechanical movement is driven by an electric machine. These 

machines primarily serve as energy converters, transforming electrical energy into 

mechanical energy, with heat being a by-product of this process. Motors come in diverse 

sizes; large motors capable of managing thousands of horsepower are extensively used 

in industries for applications such as elevators, electric trains, hoists, and metal rolling 

mills. Conversely, small motors are utilized in automobiles, robots, handheld power tools, 

and household appliances. 
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Electric machines can be broadly classified into two categories: AC and DC 

machines. Each category encompasses machines with distinct characteristics and 

capabilities, making them suitable for specific applications. An electric machine consists 

of a stator the stationary part and a rotor the rotating part. The interaction between the 

stator and the rotor’s magnetic fields generates rotational speed and torque. DC machines 

are particularly noted for their operation on direct current. 

The force within an electric machine is generated by the interaction between 

winding currents and the machine’s magnetic field. Both AC and DC sources can power 

these machines. The output power of an electric machine can vary from a few watts to 

several hundred kilowatts. Figure 2.1 depicts an electric machine categorization. 

 

Figure 2.1 Classification of electric machines. 

Source: Mechanical Design of Electric Motors (2014)
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2.2.1 Utilization and Operating Principle 

This subsection discusses the importance of DC machines through the many 

applications that it fulfils. Additionally, it explains the basic operating principle of DC 

machines, detailing how the electrical input is being converted into mechanical output. 

The losses generated from operating these machines that produce the heat will also be 

explained. This is important to understand the origin of the heat that wanted to monitor 

through the study in this thesis. 

2.2.1.1 Utilization of DC Machines 

Brushed DC machines are commonly used in low-voltage applications ranging 

from 12 to 24 volts, offering cost-effective solutions for auxiliary motors in the 

automotive industry. These motors are so prevalent that today’s premium automobiles 

may contain up to 80 individual motors as shown in Figure 2.2. DC machines provide 

significant advantages in systems such as steering, braking, fuel injection, 

starter/generator, active suspension, and cruise control. Since 1999, DC machines have 

been utilized in electric power steering systems (J. Li, 2020).  

 

Figure 2.2 BLDC motor installed in a car. 

Source: Automotive Brushless DC (BLDC) Motor Application – Diodes Inc (2019) 
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While most automobiles currently use rotary valve hydraulic power steering 

systems, a growing number are transitioning to electric power steering systems, which 

have a noticeable impact on energy conservation. It offers numerous benefits, including 

energy savings, environmental protection, and enhanced assist features (Cioboată et al., 

2020). Next generation steering systems such as steer by wire, necessitate motors that are 

fault tolerant, have a high-power density, and are more controllable. The controllability 

of the motor is crucial in such active steering systems, where the vehicle can override 

driver inputs to ensure safe operation.  

Table 2.1 lists a partial summary of current electric machine applications in 

automotive. It includes starter motor (Midya et al., 2023), alternator (El-Hasan, 2018), 

air conditioning compressor drive (Patel & Patel, 2019), engine throttle control (Acho et 

al., 2020), transmission shifter, engine coolant pump motor (Kiesenhofer, 2021), EGR 

actuator(Gutfrind et al., 2015), windshield wipers (Sharveswaran & Nirmal, 2020), 

window lifts(Idalgo et al., 2019), seat adjuster, sunroof actuators(Ai et al., 2018), sliding 

door closers (J. Yu et al., 2019) and steering column adjuster (Cioboată et al., 2020).  

Table 2.1 Summary of current electric machines applications. 

Author Title Type of motor Applications 

Kiesenhofer 

2021 

Assessment of an Electrical Coolant 

Pump on Heavy-Duty Diesel Engine 
Dc machines 

Engine coolant pump 

motor 

Gutfrind et al. 

2015  

Energy Consumption Comparison 

between Two Optimized Limited 

Motion Actuator Topologies for an 

EGR System used in Automotive 

Applications 

Brushed DC 

machines 
EGR actuator 

Sharveswaran 

and Nirmal 

2020  

Research Development on Wiper 

Mechanism in Automotive 

Application: A Critical Review 

PMDC machines Windshield wipers 

Idalgo et al. 

2019  

Dc Motor Model for Windows Pinch 

Protection Applications 

Brushed DC 

machines 
Window lifts 

Ai et al. 2018  

Smart Pinch Detection for Car's 

Electric Sunroof Based on Estimation 

and Compensation of System 

Disturbance 

Dc machines Sunroof actuators 
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Table 2.1 Continued. 

 

2.2.1.2 Operating Principles of DC machines 

Brushed DC machines typically consist of four key components: the armature 

winding, commutator, brushes, and a permanent magnet, as illustrated in Figure 2.3. As 

the motor rotates, carbon brushes slide over the commutator, contacting its different 

segments. These segments are connected to the armature windings, creating a distributed 

magnetic field inside the rotor when voltage is applied across the brushes. 

 

Figure 2.3 Structure and components of brushed DC machines.  

 

 

Author Title Type of motor Applications 

J. Yu et al. 2019  

Development of a hardware-in-the-

loop simulation system for power seat 

and power trunk electronic control 

unit validation 

Dc machines Sliding door closers 

Patel and Patel 

2019 

Experimental Investigation and 

Performance Analysis of an 

Automobile Air Conditioning System 

BLDC machines 
Air conditioning 

system 

Vossos  et al. 

2017 

Dc Appliances and DC Power 

Distribution 
Dc machines 

Refrigerator, ceiling 

fan, air conditioner 
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The brushes and commutator play crucial roles in ensuring the continuous rotation 

of DC machines. Figure 2.4 depicts a one-turn coil in a rotor winding. When this coil is 

connected to a DC power supply, current flows through it. Initially, the flux distribution 

and the current flowing in the coil resemble. Under these conditions, the force exerted on 

the conductors on both sides causes the coil to rotate clockwise, as dictated by the Lorentz 

Force law in Equation 2.1. With 𝐹𝑣 the force density, 𝐵 the flux density, and 𝐽 the current 

density. 

𝐹𝑣 = 𝐽 × 𝐵 2.1 

 

 

Figure 2.4 Force on a one-turn coil. 

Source: Electric Motor Control (2017) 

As the coil rotates due to the Lorentz force to the position shown in the figure on 

the right, the force produced on the conductors on both sides would naturally return the 

coil to its initial position, as depicted on the left side of Figure 2.4. Since the force on the 

coil is not continuously produced in one direction, the coil cannot rotate in the same 

direction indefinitely. However, if the current’s direction is reversed when the coil 

reaches the position shown on the right thanks to the commutator sections and brush, the 

force on the conductors on both sides will also reverse, maintaining the clockwise force 

on the coil. Consequently, the coil will continue to rotate in the clockwise direction. 
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2.2.2 Losses in Electrical Machine 

The losses in DC machines manifest as heat, which consequently increases the 

machine’s temperature. These losses also diminish the electric machine’s efficiency 

(Pecinka et al., 2017). The types of losses in electrical machines include copper losses, 

magnetic losses, and mechanical losses, as depicted in Figure 2.5. 

 

Figure 2.5 Losses in DC machines. 

 

Copper Losses 

Copper loss in a motor refers to the energy loss that occurs due to the resistance 

of the copper windings in the stator and rotor of the motor. This loss is caused by the flow 

of electrical current through the copper windings, which generates heat and reduces the 

overall efficiency of the motor (Q. Zhang et al., 2019). In brushed DC machines, it can 

be quantified by experimentally measuring the current going through the armature 

winding and calculate using Equation 2.2. Where 𝑃𝑎𝑟𝑚𝑎𝑡𝑢𝑟𝑒 is the armature copper loss, 

𝐼𝑎 is the armature current (A), 𝑅𝑎 the armature resistance (Ω). 

P𝑎𝑟𝑚𝑎𝑡𝑢𝑟𝑒 = I𝑎
2. 𝑅𝑎 2.2 

Therefore, this loss of energy is converted into heat, which can lead to thermal 

stress and damage to the motor winding insulation if not effectively managed. (Q. Zhang 

et al., 2019) study on variation of load and speed cause excess copper loss also reduce 

performance of electrical machines. The reason is, with the load increasing the EMF in 
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the stator winding is decreasing due to the rising voltage, consumed by the winding 

resistance and leakage reactance. Other factor of copper losses was affected by winding 

wire diameter. The smaller the wire diameter, the more copper losses will be generated 

(W. Yu et al., 2022). In summary, copper losses in a motor is reduces the overall 

efficiency and increase in heat generated and need to be evacuated (Y. Liang et al., 2021).  

Magnetic Losses 

Magnetic losses constitute the second category of losses that lead to excessive 

temperatures in electric machines (Ma et al., 2022). The term ‘magnetic losses’ in a motor 

refers to the loss of magnetic energy due to eddy currents generated within the motor’s 

iron core. The iron loss separation theory suggests that core losses, caused by any 

magnetic flux density waveform in each stator core unit, consist of hysteresis loss, eddy 

current loss (C. W. Kim et al., 2017) and excess loss (Cuiping et al., 2014). In brushed 

DC machines, 𝑃ℎ  hysteresis loss and 𝑃𝑒  eddy current loss can be calculated using 

Equation 2.3 and Equation 2.4 respectively. Where 𝑘ℎ hysteresis coefficient, 𝑓 frequency 

of magnetization, 𝐵𝑚 maximum flux density and 𝑣 volume of magnetic material. 

𝑃ℎ=𝑘ℎ.𝑓.𝐵𝑚1.6.𝑣 2.3 

 

𝑃𝑒 = 𝑘𝑒 . 𝑓
2. 𝐵𝑚

2 . 𝑡2. 𝑣 2.4 

Where 𝑘𝑒 eddy current coefficient, 𝑓 frequency of magnetization, 𝐵𝑚 maximum 

flux density, 𝑡 thickness of each lamination and 𝑣 volume of magnetic material. Despite 

the continuous current supply, the rotation of the armature core inside the constant stator 

field produces small amount of harmonic of induced emf and generate iron losses in it.  

Magnetic loss in a DC motor significantly affects the motor’s performance and 

efficiency (Ma et al., 2022). Consequently, researchers like (P. Kumar et al., 2022) have 

investigated how the performance of DC motor is affected when the model incorporates 

the impact of iron loss. In the case of brushless DC permanent magnet motors, (X. Wang 

et al., 2019) have employed soft magnetic composite stators to reduce iron loss and 

temperature, offering an advantage over traditional laminated materials.  
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Mechanical Losses 

Mechanical losses contribute to the degradation of motor performance and 

efficiency (Gao et al., 2023), while simultaneously causing excessive temperature 

increases. Mechanical losses are defined as the energy produced by the motor that is not 

converted into mechanical work. The primary sources of mechanical losses include 

friction, windage, and bearing losses, which also significantly contribute to the rise in 

motor temperature. As the motor’s required torque and speed increase, the supplied 

current rises accordingly, leading to greater mechanical losses and, as a result, higher 

temperatures.  In Figure 2.6, mechanical losses affected electric machines where 

increasing loss caused decreased speed, as confirmed by (Gao et al., 2023). The relation 

between the speed and losses is non-linear and complex. Furthermore, studies by (Wrobel 

et al., 2015) have examined the components of mechanical loss in conjunction with rotor 

heat transfer effects. Additionally, research by(S. H. Park et al., 2021) has focused on 

predicting mechanical losses by considering the eddy current losses of permanent 

magnets and conductors under no-load conditions. 

 

Figure 2.6 Graph losses vs speed. 

Source: Gao et al. (2023) 
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The prediction of the mechanical losses is more complex with the involvement of 

windage losses. Windage losses are caused by the mutual friction between the rotor and 

the surrounding air. Air friction loss is related to the rotor surface structure, surface 

roughness, motor speed, air density, air velocity, air radial pressure, and other factors(Ji 

et al., 2021). Many researchers, including (Abdelli et al., 2020; Gao et al., 2023) 

developed experiments, models, and simulations to diagnose and analyse the 

characteristic of mechanical losses in electric machines. The rise of mechanical loss 

depending on the variation of speed electrical machines (Y. He et al., 2021).  

Table 2.2 provides a summary of research papers focusing on the losses in 

electrical machines. The studies reveal that as losses increase, the efficiency and 

performance of these machines decrease, and not necessarily linearly and predictably. 

These losses also cause a rise in the machine’s operating temperature, as not all electrical 

energy is successfully converted into mechanical energy. Excessive temperatures can 

lead to considerable damage to the electrical motors. Therefore, it is crucial to model the 

temperature response for effective condition monitoring of these machines. 

Table 2.2 Summary of losses. 

Author Title Type of Losses Summary 

W. Yu et al. 

2022 

Comparative Analysis of AC 

Copper Loss with Round Copper 

Wire and Flat Copper Wire of 

High-Speed Stator-PM Flux- 

Switching Machine 

Copper 

Losses 

AC copper losses in FSPM are 

influenced by wire diameter, phase 

current variation, and motor speed 

Q. Zhang et 

al. 2019 

Minimum Copper Loss Direct 

Torque Control of Brushless DC 

Motor Drive in Electric and Hybrid 

Electric Vehicles 

Copper 

Losses 

Copper losses in electric machines 

reduce motor efficiency and lifespan 

due to coil temperature rise. 

Ma et al. 

2022 

Studies on Loss of a Motor Stator 

Iron Core with High Silicon 

Electrical Steel Considering 

Temperature and Compressive 

Stress Factors 

Magnetic  

Losses 

Temperature and stress significantly 

impact the iron loss and performance 

of a PMSM. 
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Table 2.2 Continued. 

Author Title Type of Losses Summary 

P. Kumar et 

al. 2022 

Disturbance Observer Based 

Sensorless Predictive Control for 

High Performance PMBLDCM 

Drive Considering Iron Loss 

Magnetic  

Losses 

Saturation and peak flux density 

variations in the flux path are 

influenced by temperature changes. 

Gao et al. 

2023  

Loss Calculation, Analysis, and 

Separation Method of 550 000 

r/min Ultrahigh-Speed Permanent 

Magnet Motor 

Friction 

Losses 

Mechanical friction in the rotor 

causes significant loss, reducing 

motor efficiency and increasing rotor 

temperature. 

Park et al. 

2021 

Prediction of Mechanical Loss for 

High-Power-Density PMSM 

Considering Eddy Current Loss of 

PMs and Conductors 

Windage 

Losses 

Windage loss, caused by friction 

between air gap fluids and the rotor, 

makes mechanical loss dependent on 

rotor speed. 

 

2.3 Temperature Rises in Electrical Machine 

Following the operating principle and the origin of losses, this subsection will 

deal with the consequent of it and the potential way to closely monitor it. It is divided 

into two parts: the first addresses the causes of degradation and heat transfer in electric 

machines. It discusses the impact of excessive temperature on electric machines and the 

mechanisms of heat flow within them. The second part focuses on monitoring, modelling 

temperature responses, and diagnostics from a thermal perspective. It explains the tools 

used to monitor the condition of electrical machines, the methods employed for design, 

detection, and analysis, and the techniques used to detect and diagnose faults in electrical 

machines. 

2.3.1 Cause of Degradation and Heat Transfer 

This subsection details the degradation causes in electrical machines from 

excessive temperatures, leading to partial discharge, inter-turn short circuit, 

demagnetization of permanent magnets, and mechanical faults. It also examines heat 

transfer within electrical machines, focusing on heat flow through conduction, 

convection, and radiation. 



 

 17 

2.3.1.1 Cause of Degradation 

Elevated temperatures can damage electric machines, critically affecting and 

damaging the winding insulation and the permanent magnets.  

Partial Discharge 

In electric machines, winding insulation is susceptible to thermal damage, 

primarily in the form of partial discharge. This phenomenon is a complex interplay of 

electrical, thermal, and physical forces acting simultaneously within flawed insulation, 

as detailed by (Q. Khan et al., 2020). The IEC 60270:2000 standard characterizes partial 

discharges as localized, low-magnitude electrical discharges that occur within insulation 

gaps caused by uneven electrical stress and charge distribution, potentially away from 

conductors.  

Elevated winding temperatures, contingent upon the insulation’s thermal 

classification, trigger chemical reactions mostly oxidationthat progressively deteriorate 

the epoxy bonding material’s electrical and mechanical integrity. As temperatures rise, 

the epoxy may vaporize, weakening its bond with the mica paper tape layers (or other 

winding insulation paper), leading to increased vibration of copper strands and turns 

under 120 Hz magnetic forces (Stone et al., 2007). This vibration causes abrasion of the 

insulation and, as (Stone et al., 2007) observed, eventually results in electrical shorts. 

Recognizing the harmful impact of partial discharge, (Abadie et al., 2019) have 

developed a system to identify its presence within winding insulation. Complementing 

this (Q. Khan et al., 2020)  utilized finite element modelling to investigate the behaviours 

within the insulation. Various techniques, such as CNN model (Akram et al., 2023) to 

monitor the health of electric motor insulation and Paschen’s law by (Mathurin et al., 

2020) have been employed to predict partial discharge at the design phase.  

Additionally, thermal stress in electrical machines arises during prolonged 

operation under overload conditions, necessitating high currents to match speed with load 

demands. According to (Bonnett & Soukup, 1992) insulation life expectancy halves with 

every 10°C increase in temperature. Figure 2.7 show of four classes of insulation are A, 
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B, F and H. Class F is the most widely used, with each class’s specifications determined 

by testing procedures on rotating machines, following standards from IEEE 275 and 

AIEE 510. Operating a motor beyond the designated temperature for its class 

significantly shortens its lifespan, contrary to its expected operational capacity. 

 

Figure 2.7 Temperature vs. life curves for insulation systems for different class of 

machines of the same type. 

Source: Vaseghi et al. (2011) 

Inter-turn Short Circuit 

Additionally, thermal effects can induce a variety of faults in electrical machines, 

including short-circuit faults, which account for 21% of all faults (X. Liang, 2019). It is 

reported that most short-circuit faults originate as interturn faults, which are caused by 

the elevated level of circulating current heating the insulation of the coil adjacent to the 

shorted turns. This heating increases the severity of the fault (Vaseghi et al., 2011). and 

leads to an asymmetry in the stator winding temperature distribution due to localized 

heating in the faulty coil (P. S. Kumar et al., 2021). Furthermore, the short-circuit loop 

current opposes the normal stator current, resulting in a reduction in the magneto-motive 

force of the faulty coil. This, in turn, leads to an asymmetry in the air-gap magnetic field 

distribution along the stator periphery. Although there is no experimental data indicating 

the time delay between inter-turn and ground wall insulation failure, it is likely that the 

transition between these two states is not instantaneous (Lee et al., 2005).  



 

 19 

Faults in the winding are considered a critical type of fault in motors. Initially, 

they may not show any external signs of warning. However, over time, they can become 

the root cause of excessive heat, imbalanced line currents, reduction in torque, unusual 

vibration, and overheating (Cao et al., 2023). In some cases, a minor insulation break in 

the winding can lead to a complete breakdown of the motor’s operation. In industrial 

applications, this can result in catastrophic damage to property and pose serious risks to 

human safety (Shifat & Hur, 2020).  

An inter-turn short circuit fault, as shown in Figure 2.8, signifies insulation failure 

between two coils in the same phase, creating extremely low resistance between turn 𝑅𝑓 

and increase the current 𝑖𝑓  drastically. The heat generated in the short circuit is 

proportional to the square of the circulating current, which can cause insulation 

breakdown in the adjacent coil (J. K. Park et al., 2015).  

 

Figure 2.8 Interturn fault occurrence in a single phase. 

Source: Park et al. (2015) 
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Demagnetization of Permanent Magnet 

In addition to the damage that occurs in winding insulation, thermal effects can 

also be detrimental to the second most critical component in electric machines, the 

permanent magnet. This may happen due to excessive heat generated from copper losses, 

interturn faults and mechanical faults. Each permanent magnet has a different Curie 

temperature, as shown in Table 2.3. The Curie temperature is critical because it is the 

point at which a permanent magnet can be irreversibly demagnetized. Below the Curie 

temperature, the material has a high and constant permeability and remanent, an 

associated magnetic field that is difficult to change. However, when the temperature 

exceeds the Curie temperature, the material becomes a paramagnet, and its magnetic field 

can easily change with variations in the surrounding magnetic field. 

Table 2.3 Comparison of permanent magnet properties. 

 

Source: Seol et al. (2017) 

Demagnetization can be classified into two types: reversible and irreversible. 

Reversible demagnetization is induced by field-weakening control, while irreversible 

demagnetization results in permanently weakened magnets. A major cause of irreversible 

demagnetization is an improper operating point of the rotating electrical machine, which 

can occur due to the combined effect of temperature and a shift in the permeance curve 

(M. S. Khan et al., 2018). Demagnetization reduces the torque of the electrical machine 

because the electromagnetic torque is proportional to the cross-product of the current 

vector and the permanent magnet flux linkage vector (Seol et al., 2017). As 

demagnetization reduces the output torque of the machine, it severely worsens the 

motor’s characteristics and efficiency (D. H. Kim et al., 2020).  
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Mechanical Bearing Fault 

In addition to faults caused by temperature, other faults generate heat in rotating 

electrical machines. These faults fall into the category of mechanical faults, one of which 

is the bearing fault. Furthermore, improper operation, such as misalignment or 

overloading, can accelerate the degradation of the bearing (De Jesus Rangel-Magdaleno, 

2021). Another study by  (Brusamarello et al., 2023) demonstrated its importance by 

developing a classification of bearing fault severity levels using a support vector machine 

classifier. Using Dynamic Convolutional Neural Network, (Jung et al., 2023) has 

demonstrated that bearing motor dataset may be useful for fault diagnosis.  

Brush fault 

Brush friction also contributes to heat generation when worn, as evidenced by 

studies from (Huang et al., 2023) and (Rasid et al., 2022). Brushes in electrical machines 

mostly experience two types of wear: mechanical wear caused by friction and electrical 

wear due to current passing through the contact interface. The primary mechanism of 

mechanical wear in carbon brushes involves the formation of micro-cracks, their growth 

due to mechanical and thermal stresses, and the eventual detachment of wear particles as 

the cracks expand and multiply. This has been long eluded from studies such as 

(Braunovic et al., 2006) and (Hu et al., 2008).  Ensuring low mechanical wear requires a 

stable friction layer on the contact surface, which increases the contact area and reduces 

friction, temperature, and arcing (Groth et al., 2001). This implies that a degrading brush 

will increase the friction and temperature. Various recent methods have been employed 

to model and monitor the brush wear. These include current signal analysis using 

different techniques such as discrete wavelet transforms (Ray et al., 2020), empirical 

modeling using regression approaches (Benedik et al., 2015), and exploiting neural 

networks on exhaustive historical data (Silva et al., 2023). The three examples mentioned 

were applied for brush and armature for train traction machines, vacuum cleaners, and 

general-purpose universal motors respectively. The temperature generated from brush 

degrading condition however have not been exploited for condition monitoring and 

diagnostic.  
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2.3.1.2 Heat Transfer in Electrical Motor 

The three main mechanisms of heat transfer that can occur in a motor are 

conduction, convection, and radiation. Figure 2.9 shows heat transfer direction that takes 

place in an electric machine, where the heat flows to lower temperature points which is 

the ambient air (Demetriades et al., 2010).  

 

Figure 2.9 Heat transfer flow diagram of PMSM. 

Source: Demetriades et al. (2010) 

Conduction 

Conduction is the transfer of heat in a solid by means of molecular agitation 

within a material without any motion of the material. In general, conduction can be 

written in its integral form as in Equation 2.5 according to Fourier law. 

𝑄̇𝑐𝑜𝑛𝑑 =
𝜕𝑄𝑐𝑜𝑛𝑑

𝜕𝑡
=  −𝜆∮ 𝛻𝑇. 𝑑𝐴⃗⃗⃗⃗  ⃗

𝑠

 
2.5 

𝑄̇𝑐𝑜𝑛𝑑 is the quantity of heat (J) and 𝑄̇𝑐𝑜𝑛𝑑 =
𝜕𝑄𝑐𝑜𝑛𝑑

𝜕𝑡
 is the rate of heat transfer (in 

W),  𝜆  the material's conductivity (𝑊 ∙ 𝑚−1 ∙ 𝐶−1∘ ), ∇𝑇  is the temperature gradient 

( 𝐶∘ ∙ 𝑚−1) and  𝑑𝐴⃗⃗⃗⃗  ⃗ is an oriented surface area infinitesimal (𝑚2).  
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In one dimensional form (in  𝑥  direction) where homogeneity and isotropy are 

considered, the heat flow rate can be written as in Equation 2.6 and the conduction 

thermal resistance 𝑅𝑡ℎ (𝑊/𝑚². 𝐾) can be written as Equation 2.7 

𝑄̇𝑐𝑜𝑛𝑑 =
𝑑𝑄𝑐𝑜𝑛𝑑

𝑑𝑡
=  −𝜆𝐴

𝑑𝑇

𝑑𝑥
 

2.6 

 

𝑅𝑐𝑜𝑛𝑑 =
∆𝑥

𝜆
 

2.7 

𝑅𝑐𝑜𝑛𝑑 calculation is strongly dependent on the thermal conductivity of the 

material. Most of motor construction material have a very well-known thermal 

conductivity with minimal uncertainty which means a simple analytical calculation of 

𝑅𝑐𝑜𝑛𝑑for conduction is sufficient. 

Convection 

Convection is the heat transfer through fluids movements. The heat rate transfer 

can be written using Newton's cooling law as in Equation 2.8.  

𝑄̇𝑐𝑜𝑛𝑑 =
𝑑𝑄𝑐𝑜𝑛𝑣

𝑑𝑡
= ℎ. 𝐴. ∆𝑇(𝑡) 

2.8 

∆𝑇 is the difference of temperature between the object's surface and the fluid and 

h is the convection heat transfer coefficient (𝑊/𝑚². 𝐾). ℎ depends on various physical 

properties of the fluid and the physical situation in which convection occurs such as the 

temperature, the geometrical form, and external air flow influence. Different values were 

proposed for different conditions (Staton & Cavagnino, 2006). They are nonetheless 

empirical, thus may not completely suitable for a given system. It is therefore exceedingly 

difficult to calculate and must be derived or found by experimental identification. 
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Radiation 

Finally, radiation is the heat transfer process through electromagnetic waves from 

a surface (Blundell S.; Blundell K., 2014). The Stefan-Boltzmann's correlation in 

Equation 2.9 defines the rate of heat transferred by radiation 𝑄̇𝑟𝑎𝑑(𝐽), where is the Stefan-

Boltzmann constant (5.67 × 10−8 𝑊/𝑚²/°𝐶4), 𝐴 is the area emitting the radiation (𝑚²) 

and 𝑇 the surface temperature (°𝐶). 

𝑄̇𝑟𝑎𝑑 = 𝜎. 𝐴. 𝑇4 2.9 

Radiation is difficult to compute as there are not just radiation emitted from the 

surface, but also radiation received by the surface from other exterior surface in its 

surroundings. The net radiation heat loss rate can be computed using Equation 2.10. 

𝑄̇𝑟𝑎𝑑 = 𝜎. 𝐴. 𝜀. 𝐹1−2. (𝑇1
4 − 𝑇2

4) 2.10 

Where 𝜀 is the emissivity of the surface, a dimensionless quantity: 0 for absolute 

reflector such as a mirror, and 1 for absolute absorber such as a black body. 𝐹1−2 is the 

view factor of surface 2 with respect to surface 1 which means the proportion of the 

radiation which leaves surface 1 that strikes surface 2. In a setup where only two entities 

considered (the machine and its surrounding as a set), the view factor equal to one as 

result of energy conservation. 𝑇1 is the temperature (°𝐶) of the hot body and 𝑇2  is the 

cold surrounding temperature (°𝐶). Like convections coefficient ℎ, 𝜀 is also difficult to 

be found and must be derived or found by experimental identification. 

Conduction is the process of heat transfer that occurs across all solid parts of the 

motor. On the other hand, convection and radiation are the processes that occur in the air 

gap, the interior cavity, and on the exterior surface of the motor that is in contact with the 

ambient air. In the context of a small air gap and cavity, the convection process can be 

considered negligible compared to conduction. This is particularly true when the Nusselt 

number, which represents the ratio of convective to conductive heat transfer across a 

surface, is very small (Bouafia et al., 1998).  
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Table 2.4 provides a summary of references that focus on the causes of 

degradation and heat transfer. It is evident from numerous studies on partial discharge, 

inter-turn short circuit, demagnetization of permanent magnets, bearing faults, and brush 

friction that thermal monitoring condition is necessary to detect the occurrence of this 

faults. It will play a significant role in preventing such faults from occurring or identifying 

existing faults in rotating electrical machines. 

Table 2.4 Summary causes of degradation and heat transfer. 

Author Title Type of Fault Summary 

Khan et 

al. 2020 

Partial Discharge Modelling 

of Internal Discharge in 

Electrical Machine Stator 

Winding 

Partial 

Discharge 

Partial discharge is a complex 

process where electrical, thermal, 

and physical interactions occur in 

defective insulation. 

Kumar et 

al. 2021 

Stator End-Winding Thermal 

and Magnetic Sensor Arrays 

for Online Stator Inter-Turn 

Fault Detection 

Interturn Fault An inter-turn short circuit causes 

high current and uneven heat in the 

stator winding due to a faulty coil. 

Park et al. 

2014 

Early Detection Technique 

for Stator Winding Inter-turn 

in BLDC Motor using 

Impedance 

Interturn Fault Interturn faults occur when coil 

insulation breaks down under 

thermal, electrical, and mechanical 

stress, leading to continuous 

degradation 

Khan et 

al. 2018 

Finite Element Modeling of 

Demagnetization Fault in 

Permanent Magnet DC 

machines 

Demagnetization 

Permanent 

Magnet 

The magnet’s operating point on the 

B-H curve drops due to 

demagnetization, caused by the 

stator’s magneto-motive force. 

Wang et 

al. 2021 

Stray Flux-Based Rotation 

Angle Measurement for 

Bearing Fault Diagnosis in 

Variable-Speed BLDC 

machines 

Bearing Fault Repeated loads on motor bearings 

cause stress, leading to initial issues 

like cracks that can worsen into 

broken cages and worn raceways. 

K&K 

Associates 

1999 

Thermal Network Modeling 

Handbook 
Conduction 

Motor construction materials have 

known thermal conductivity, 

allowing for simple calculations of 

resistance conduction. 
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Table 2.4 Continued. 

Author Title Type of Fault Summary 

Staton et 

al. 2006 

Convection heat transfer and 

flow calculations suitable for 

analytical modelling of 

electric machines 

Convection 

The convection heat transfer 

coefficient depends on the fluid’s 

properties, temperature, geometry, 

and external airflow. 

Blundell 

2014 
Concepts in Modern Physics Radiation 

Calculating radiation is complex due 

to both emission from the surface 

and reception from surrounding 

surfaces. 

 

2.3.2 Monitoring, Modelling Temperature Response and Diagnostic 

Following the review of potential causes of temperature rise, it is necessary to 

monitor the machine temperature to not damage it. Consequently, this subsection 

overviews different instrumentations used in monitoring the temperature of an electrical 

machine, types of models used to predict temperature response in electrical machines, 

and fault diagnostic methods. It highlights the advantages and inconveniences of each 

solution, which later allow us to choose a suitable method in our research. 

2.3.2.1 Monitoring Temperature Response 

In the presence of potential excessive temperature, there is a need for 

instrumentations for temperature monitoring on electric machines. Among the methods 

used for this purpose are thermocouples, thermal imaging, and infrared thermometers.  

Thermocouple Instrumentation 

A thermocouple instrument measures temperature by utilizing the thermoelectric 

effect. It consists of two dissimilar metal wires, joined at one end to form a junction. 

Diverse types of thermocouples, such as the J or K type, use different mixtures of metals 

in the cable. The millivolt value provided by the thermocouple at the cold junction 

compensation end represents the difference in temperature of the sensing end compared 

to the cold junction compensation end. 



 

 27 

Thermocouples are the most used temperature-measuring instruments in the 

industry, enabling the measurement of a wide temperature range with a relative error of 

1-2% (Fedosov, 2020). In the context of monitoring motor conditions, a thermocouple 

can measure the temperature of motor components such as the winding, permanent 

magnet, rotor (C. Liu et al., 2021), casing, and bearing. This data can provide insight into 

the motor’s condition and performance issues such as overheating or mechanical faults. 

It can be used to optimize the motor’s performance and ensure that it is operating within 

its recommended temperature range. Thermocouples are valuable tools for monitoring 

motor condition(Upadhyay et al., 2019), providing accurate and precise data for proactive 

maintenance(N. Khan et al., 2019). They are widely used in harsh conditions due to their 

low cost, robustness, and reliability(Seung et al., 2022). 

However, thermocouples may deteriorate during operation (Dong et al., 

2020)  and their error dramatically increases. In 90% of cases, deterioration is related to 

chemical and metallurgical changes in the wires, progressing thermoelectric 

inhomogeneity, and reduction of insulation material resistance (Rogel’berg, n.d.). This 

deterioration is an irreversible but predictable process. Furthermore, its cost is very low 

and can be easily replaceable with the condition that the components to be measured are 

accessible.  

Thermal Image Instrumentation 

Another method used in monitoring motor conditions is thermal imaging. A 

thermal image instrument, also known as a thermal camera or infrared camera, captures 

and displays the infrared radiation emitted by objects, allowing the user to see heat 

patterns. In the context of monitoring motor condition(Badoni & Jarial, 2021), a thermal 

image instrument can be used to identify hot spots or areas of increased temperature on 

the motor and its components (Khamisan et al., 2018). The instrument captures an image 

of the motor and displays it in a color-coded format, where different temperatures are 

represented by assorted colours. This allows for easy identification of areas of the motor 

that are running at higher temperatures than normal. For example, an armature winding 

that is running hot may be displayed as red or orange, while a cooler area of the motor 

may be displayed as blue or green. 
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The advantage of a thermal image instrument in monitoring motor conditions is 

that it is a non-invasive (Z. Xu et al., 2022) and efficient way of assessing the temperature 

variations on the motor's components (Badoni & Jarial, 2021) and its surrounding 

environment (Khamisan et al., 2018). However, thermal imaging has some limitations in 

monitoring conditions. According to a study (Chou & Yao, 2009)  it is unable to detect 

the inside temperature if the inspected object is separated by a non-transparent medium 

for IRT radiation, such as glass or other covers. Like thermal imaging but measuring 

localized points is an infrared thermometer. This tool uses infrared laser technology to 

measure surface temperature but only at a single point (Zeng et al., 2014).  It shares the 

same inconvenience as the thermal image, where the imprecision temperature of the 

thermal image only measures a single point and is non-exhaustive like a thermal image. 

This method is not widely used, and if it is, it is typically only for preliminary results. 

2.3.2.2 Modelling Temperature Response 

Instead of monitoring the temperature response of electric machines using 

instrumentation, modelling is another method that can be used to estimate the temperature 

of an electrical machine. Several methods can be used for modelling temperature 

response, such as Finite Element Modelling (FEM) and Lumped Parameter Thermal 

Network (LPTN). 

Finite Element Model 

 FEM can accurately simulate the temperature distribution within the motor and 

predict the temperature rise during operation. It is a numerical method for solving a 

differential or integral equation, used to solve several physical problems with the help of 

governing differential equations (Anoop et al., 2020). FEM divides a large geometry into 

small elements that can be solved in relation to each other. It is useful for problems where 

analytical solutions cannot be obtained (Z. Liu et al., 2021) and is used in complicated 

geometries, loadings, and material properties (Yang et al., 2019). This allows for a 

detailed analysis of the temperature response of the motor. 
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FEM has several advantages for simulating the temperature response of electric 

machines. One advantage is its accuracy (Z. Liu et al., 2021). The method can provide 

detailed information about the temperature distribution within the motor. Another 

advantage is its flexibility. FEM can be used to simulate a wide range of scenarios, 

including different operating conditions and analysis designs. However, it can be 

computationally intensive, as solving the equations for many elements can require 

significant computing power and time resources (Craiu et al., 2010).  

Many researchers use finite element models to monitor and analyze temperature 

rise in electric machines. For example, (Zhao et al., 2022) used a 3-D finite element model 

to analyze temperature estimation for induction motors at stator winding and rotor under 

different conditions, including under load and overload conditions. Meanwhile, (Shen et 

al., 2021) combine the FEM and Fourier models to provide a balance between 

computational efficiency and accuracy, especially useful for analyzing PMSMs with 

different numbers of poles or slots and suitable for diverse types of machines. Figure 2.10 

shows the temperature distribution in the stator of an induction motor which is obtained 

from thermal analysis in ANSYS Mechanical platform done by (Anoop et al., 2020). 

From this figure, it is concluded that the stator slot has the highest temperature as 143 ℃ 

and end covers have the lowest temperature as 109 ℃ in stator geometry.  

 

Figure 2.10 Temperature distribution in stator induction motor. 

Source: Anoop et al. (2020) 
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Lumped Parameter Thermal Network 

Other than finite element modeling, researchers have also extensively utilized 

another method known as the Lumped-Parameter Thermal Network (LPTN) model. 

Among the researchers who used LPTN as a thermal model for their study, (D. Liang et 

al., 2022; Phuc et al., 2021) conducted research on detecting temperature at the rotor and 

stator windings in real-time using the LPTN model for permanent magnet synchronous 

motor. Meanwhile, low-order LPTN, which offers more robustness and low 

computational cost, was implemented by (Gedlu et al., 2021; E. Wang et al., 2022) for 

estimation and analysis of temperature on synchronous motor. 

The LPTN model is a mathematical representation of a physical system of the 

machine. It consists of interconnected thermal resistances, capacitances, and heat sources 

(Wockinger et al., 2023). This model posits that the system consists of discrete thermal 

nodes, each with specific temperature and thermal capacity, connected via thermal 

resistances representing heat transfer. The LPTN model abstracts the system's 

temperature and heat flow distribution into these discrete nodes. For instance, Figure 2.11 

shows the complete LPTN model of the synchronous reluctance motor (Azri et al., 2016), 

with only copper losses shown. The model was reduced to one single pole radially and to 

half of the axial dimension. 

 

Figure 2.11 Lumped Parameter model of the Syncrel motor. 

Source: Azri et al. (2016) 
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One of the primary advantages of the LPTN model is its simplicity. Its 

mathematical representation is simple, and it requires minimal computational resources 

(H. Xu et al., 2020), making it easy to implement in various applications(D. Liang et al., 

2022). The precision is high where the lumps are being discretized in high resolution, 

where more temperature distribution information is needed. The model’s simplicity also 

makes it easy to modify and adapt to different thermal systems and conditions. 

Additionally, the model provides a good approximation of the temperature distribution 

across the system and the response to various thermal inputs. 

However, there are also some limitations to using LPTNs to model the 

temperature response of electric machines. These models rely on several assumptions and 

simplifications, which can limit their accuracy in certain situations (Phuc et al., 2021). 

Additionally, LPTNs may not be able to capture all the complex heat transfer 

processes(E. Wang et al., 2022) that occur within an electric machine due to the selective 

and variable lumps resolution. Another disadvantage is that it requires expertise in both 

LPTN and electric machine design(Gedlu et al., 2021). A deep understanding of both 

fields is necessary to accurately simulate the temperature response of electric machines 

using it.  

2.3.2.3 Diagnostic Method 

Temperature monitoring and modeling will be useful if its data is employed for 

diagnostic purposes in identifying the machine potential fault. Various diagnostic 

methods have been proposed for diverse types of motor faults, such as bearing faults, 

stator winding faults, rotor faults, and air gap eccentricity. These methods include MCSA, 

VASA, and TSA which vary in terms of their complexity of implementation. 

Motor Current Signature Analysis (MCSA) 

MCSA is a widely used technique that analyses motor current waveforms using 

signal processing algorithms like FFT and wavelet. Different currents, such as sequence 

components, stator currents, shaft currents, and radio frequency components of neutral 

current, are used for MCSA(Niu et al., 2023). (Ray et al., 2021) and (Avina-Corral et al., 

2021) proposed feature extraction of stator current analysis for stator winding fault and 
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bearing fault in induction motors. Meanwhile, (Shifat & Hur, 2020) proposed the FDD 

method of brushless DC motor by feature extraction for failure classification from line 

current. MCSA can be useful in industries where electric machines are used, enabling 

non-intrusive online (even remote) analysis of motor supply current and identifying faults 

while the motor is still operational and without disturbing its operation. However, the 

MCSA approach is mathematically complex, expensive to realize, and requires a 

significant amount of historical data (Niu et al., 2023). 

Vibration Signature Analysis (VSA) 

VSA has been practiced for the fault detection and diagnosis (FDD) of electric 

machines for decades. Theoretically, all faults in electric machines generate vibrations 

with distinctive characteristics. Therefore, sampled vibration signals can be applied to be  

compared with reference patterns to perform FDD. In practice, vibration analysis has 

been used for the detection of various mechanical faults, and some unbalanced electrical 

faults(Bilgin et al., 2019). Study from (Langarica et al., 2020) and (Mitra & Koley, 2023), 

focused and developing methods for fault detection of bearing in induction machine using 

fusion vibration signal and CNN. However, vibration analysis with CNN has the 

disadvantages of requiring a large amount of data and excessive sensors, being costly, 

and susceptible to errors (X. Wang et al., 2020). This has affected recent research of FDD 

using vibration, making it less popular. 

Acoustic signature analysis is another technique used to monitor the condition of 

electric machines. It measures noise signals which is the vibration propagated through air 

near the motor’s surface. It may provide information about internal processes and the 

motor’s current condition. When a motor is working well, its noise frequency spectrum 

has unique base patterns. If faults develop, the frequency spectrum changes. Each part of 

the frequency spectrum is associated with a specific source within the motor. This 

technique can provide valuable information about the motor’s condition.  
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(C. He et al., 2023) and (Shubita et al., 2023) proposed non-contact approach 

using acoustic signal analysis to detect bearing fault with improved cyclostationary 

analysis algorithm and fusion machine learning respectively. However, acoustic signal 

analysis is not a popular method for recent researchers due to many errors and waste noise 

because of the sensitivity of the microphone sensor(Glowacz et al., 2018). 

Thermal Signature Analysis 

Thermal signature analysis is a technique that has been frequently used as a 

predictive tool for electrical installations maintenance since many of the failures or 

installation defects lead to temperature increments in specific points or areas. However, 

its application to fault detection in electric machines is far less usual but several methods 

was developed to diagnose electric machines with thermal analysis (Glowacz & Glowacz, 

2017). In this method, temperature profile data may provide extremely useful information 

for the detection of some faults which are not easy to be detected with currents or 

vibrations (Mohammed et al., 2019). In addition, this can be done in a non-invasive way, 

i.e., without interfering with the machine's operation(Alfredo Osornio-Rios et al., 2019). 

In thermal analysis, much research has been done with various techniques on diverse 

types of faults including rotor broken bar, bearing fault and misalignment on the effect 

of the induction motor parts presented by (Jeffali et al., 2019). (P. S. Kumar et al., 

2021)  proposed FDD of induction motor through online detection using sensor arrays in 

sensing schemes for detecting stator inter-turn faults. Combined with machine learning 

method, the few-shot lightweight SqueezeNet architecture using thermal image is 

designed for real-time fault detection on lightweight devices was proposed by (Siraj et 

al., 2024). 
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Table 2.5 shows a summary of methods for monitoring and modelling 

temperature response and diagnostic. Based on the literature review on monitoring 

temperature response, it can be concluded that the right tool can provide precise 

measurement data depending on the field of study conducted. However, there are 

limitations when using LPTN and FEM for more complex electric machine designs, as 

they require high computational usage and expertise in heat transfer and electric machine 

design. In the diagnostic section, common methods for detecting faults in electrical 

machines are discussed, but there are limitations to these methods.  

Table 2.5 Summary of monitoring and modelling temperature response and 

diagnostic. 

Author Title Method Summary 

Seung et 

al. 2022 

Cold Junction Compensation 

Technique of Thermocouple 

Thermometer Using Radiation-

Hardened-by-Design Voltage 

Reference for Harsh Radiation 

Environment 

Monitoring 

(Thermocouple) 

Thermocouples are widely used in 

the harsh conditions due to their 

low cost, robustness, and 

reliability. 

Xu et al. 

2022 

An Infrared Thermal Image Few-

Shot Learning Method Based on 

CAPNet and Its Application to 

Induction Motor Fault Diagnosis 

Monitoring 

(Thermal 

Image) 

The system provides non-contact, 

non-destructive inspection, 

offering fast and reliable 

monitoring of induction motors 

without interference. 

Zeng et 

al. 2014  

Key factors on the accuracy of 

measurement temperature by 

using infrared thermometer 

Monitoring (IR 

Thermometer) 

Infrared thermometer’s accuracy is 

affected by factors like surface 

emissivity, reflectivity. 

Anoop et 

al 2020 

Thermal analysis of squirrel cage 

Induction Motor 

Modelling 

(FEM) 

FEM is useful for problems 

lacking analytical solutions, 

especially in complex geometries, 

loadings, and materials. 

Liang et 

al. 2022 

Tracking of Winding and Magnet 

Hotspots in SPMSMs Based on 

Synergized Lumped-Parameter 

and Sub-Domain Thermal 

Models 

Modelling 

(LPTN) 

LPTN's offer a simplified approach 

to model the thermal behaviour of 

complex system. 
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Table 2.5 Continued. 

Author Title Method Summary 

Shifat 

and Hur 

2020 

An Effective Stator Fault 

Diagnosis Framework of BLDC 

Motor Based on Vibration and 

Current Signals 

Diagnostic 

(MCSA) 

MCSA carries significant 

information about the precision of 

stator winding operation, allowing 

for early detection of faults. 

Wang et 

al., 2020 

Rotating angle estimation for 

hybrid stepper motors with 

application to bearing fault 

diagnosis 

Diagnostic 

(VASA) 

VASA allows for condition 

monitoring by non-invasive 

diagnosis, early fault detection and 

speed variation adaptability. 

Shubita 

et al., 

2023 

Fault Detection in Rotating 

Machinery Based on Sound 

Signal Using Edge Machine 

Learning 

Diagnostic 

(ASA) 

The method allows for real-time 

fault detection and classification in 

rotating machines by utilizing 

machine learning techniques. 

Siraj et 

al., 2024 

Few-Shot Lightweight 

SqueezeNet Architecture for 

Induction Motor Fault Diagnosis 

Using Limited Thermal Image 

Dataset 

Diagnostic 

(TSA) 

Thermal analysis allows for the 

detection of subtle temperature 

variations indicative of faults, 

enabling early identification of 

issues. 

 

2.4 Transfer Function as Model 

This subsection explains the use of transfer functions as a modelling approach in 

recent research papers. Following subsection covers the generalities of frequency domain 

models, the system identification MATLAB toolbox, and the evaluation of model 

precision used in choosing transfer functions as a model. 

Several studies have used transfer functions as thermal models for electric 

machines for high accuracy, low calculation computational resource (Guo & Cai, 2023) 

and easy implementation(Miloudi et al., 2017). (Straka et al., 2021) have established 

thermal error compensation using transfer function to model the relationship between 

heat sources and the resulting thermal errors in machine tools, which can affect 

machining accuracy. Additionally, (H. Zhang, 2015) present online thermal monitoring 

of induction machine using transfer function, focusing on accurately calculating both 

average and hotspot temperature.  
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While (P. Zhang et al., 2010) simplified first-order transfer function to model the 

stator winding temperature using only three parameters as Equation 2.11. The parameters 

considered were 𝑇𝑠  temperature rise, 𝑘1  and 𝑘2  are 𝐿𝑜𝑠𝑠1  and 𝐿𝑜𝑠𝑠2  which were 

considered constant and independent of any load change after certain amount of operating 

time, 𝜏1 is time constant and 𝐼𝑠
2 is the current drawn by motor. 

𝑇𝑠(𝑡) = 𝑘1𝐼𝑠
2 (1 − 𝑒

−
𝑡
𝜏1) + 𝑘2 

2.11 

The stator temperature estimation results, together with the measured average 

stator temperature, under the 100% load conditions are shown in Figure 2.12, 

respectively. The proposed thermal model is more accurate than the first-order thermal 

model in estimating temperature. The maximum error using the proposed model is within 

3°𝐶, while the first-order model can have errors as large as 25°𝐶.  

 

Figure 2.12 Temperature estimation under 100% load condition. 

Source: Zhang et al. (2010) 
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2.4.1 Generalities of Frequency Domain Model 

This subsection is divided into two topics: the generalities of the frequency 

domain model and the step response of the first-order system. A frequency-domain 

transfer function (Ellis, 2012) is limited to describing elements that are linear and time-

invariant (LTI). However, these are severe restrictions, and no real-world system fully 

meets them. The criteria for linearity and time invariance are defined by the three 

following attributes. 

Homogeneity: Assume that an input to a system 𝑟(𝑡) generates an output 𝑐(𝑡). 

For an element to be homogeneous, an input 𝑘 × 𝑟(𝑡) would have to generate an output 

𝑘 × 𝑐(𝑡), for any value of 𝑘. An example of nonhomogeneous behavior is saturation, 

where twice as much input delivers less than twice as much output.  

Superposition: Assume that an element subjected to an input 𝑟1(𝑡) will generates 

the output 𝑐1(𝑡). Further, assume that the same element subjected to input 𝑟2(𝑡) will 

generate an output 𝑐2(𝑡). Superposition requires that if the element is subjected to the 

input 𝑟1(𝑡) + 𝑟2(𝑡), it will produce the output 𝑐1(𝑡) + 𝑐2(𝑡).  

Time invariance: Assume that an element has an input 𝑟(𝑡) that generates an 

output 𝑐(𝑡). Time invariance requires that 𝑟(𝑡 −  𝜏) will generate 𝑐(𝑡 −  𝜏) for all 𝜏 > 0.  

Transfer functions, which form the foundation of classical control theory, 

necessitate the use of LTI systems (Ellis, 2012). However, no real-world system is LTI. 

As an immediate solution, most control systems are designed with components that are 

close enough to being LTI, such that any non-LTI behaviour can be ignored or avoided. 

In practice, control systems are designed to minimize non-LTI behaviour, which is why 

components used in control systems are often more expensive than their non-control 

counterparts. 
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2.4.1.1 Nonlinear Time Invariant 

Nonlinear control theory (Nise, 2014) encompasses a broader range of systems 

that do not adhere to the superposition principle. It is more applicable to real-world 

systems since all real control systems are nonlinear. These systems are frequently 

governed by nonlinear differential equations. The mathematical methods developed to 

handle them are more rigorous but less general, often only applying to specific types of 

systems. These methods include limit cycle theory(García-Saldaña et al., 2020), Poincaré 

maps (Goodman & Colombo, 2020), Lyapunov stability theory (Nguyen, 2018), and 

describing functions. 

Figure 2.13 illustrates several examples of physical nonlinearities. Figure 2.13 (a) 

an electronic amplifier, for instance, is linear within a specific range but exhibits a 

nonlinearity known as saturation at high input voltages. A motor that does not respond to 

incredibly low input voltages due to frictional forces exhibits a nonlinearity known as a 

dead zone in Figure 2.13 (b). Gears that do not fit tightly exhibit a nonlinearity known as 

a backlash, where the input moves over a small range without the output responding as 

in Figure 2.13(c). It should be noted that the curves depicted in Figure 2.14 do not 

conform to the definitions of linearity over their entire range. A phase detector, used in a 

phase-locked loop in an FM radio receiver, is another example of a nonlinear subsystem, 

with an output response that is the sine of the input.  

 

Figure 2.13 (a) Amplifier saturation. (b) Motor dead zone. (c) Backlash in gears. 

Source: Control Systems Engineering (2014) 
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Figure 2.13 Continued. 

 

2.4.1.2 Step Response of First Order System  

Consider the first-order system shown in Figure 2.14(a). Physically, this system 

may represent an RC circuit, thermal system, or the like. A simplified block diagram is 

shown in Figure 2.14(b). The input-output relationship is given by Equation 2.12. 

𝐶(𝑠)

𝑅(𝑠)
=  

1

𝑇𝑠 + 1
 

2.12 

 

Figure 2.14 (a) Block diagram of a first-order system. (b) Simplified block diagram. 

Source: Modern Control Engineering (2010) 
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In the forthcoming analysis, system responses to unit-step, unit-ramp, and unit-

impulse inputs are examined, assuming zero initial conditions. Identical transfer 

functions yield identical outputs for identical inputs. The mathematical response can be 

physically interpreted for any given system. 

2.4.1.3 Unit-Step Response of First-Order Systems 

Since the Laplace transform of the unit-step function is 1/𝑠, substituting 𝑅(𝑠) =

1/𝑠 into Equation 2.13, obtain. 

𝐶(𝑠) =  
1

𝑇𝑠 + 1

1

𝑠
 

2.13 

Expanding C(s) into partial fractions gives Equation 2.14: 

𝐶(𝑠) =
1

𝑠
−

1

𝑇𝑠 + 1
=

1

𝑠

1

𝑠 + (
1
𝑇
)
 

2.14 

Taking the inverse Laplace transform of Equation 2.15, obtain. 

𝐶(𝑠) = 1 − 𝑒−
𝑡
𝑇,           𝑓𝑜𝑟 𝑡 ≥ 0 

2.15 

Equation 2.16 states that initially the output 𝑐(𝑡) is zero and finally it becomes 

unity. One important characteristic of such an exponential response curve 𝑐(𝑡) is that at 

𝑡 = 𝑇 the value of 𝑐(𝑡) is 0.632, or the response 𝑐(𝑡) has reached 63.2% of its total 

change. This may be easily seen by substituting 𝑡 = 𝑇 in 𝑐(𝑡). That is, 

𝑐(𝑇)  =  1 − 𝑒−1  =  0.632 2.16 

Note that the smaller the time constant 𝑇, the faster the system response as shown 

in Figure 2.15. Another important characteristic of the exponential response curve is that 

the slope of the tangent line at 𝑡 = 0 is 1/𝑇, since  
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𝑑𝑐

𝑑𝑡
|
𝑡=0

=
1

𝑇
𝑒−

𝑡
𝑇|

𝑡=0
=

1

𝑇
 

2.17 

The output would reach the final value at 𝑡 = 𝑇 if it maintained its initial speed 

of response. From Equation 2.17, the slope of the response curve 𝑐(𝑡 ) decreases 

monotonically from 1/𝑇 at 𝑡 = 0 to zero at 𝑡 = ∞.  

 

Figure 2.15 Exponential response curve. 

Source: Modern Control Engineering (2010) 

The exponential response curve 𝑐(𝑡) given by Equation 2.16 is shown in Figure 

2.15. In one time constant, the exponential response curve has gone from 0 to 63.2% of 

the final value. In two-time constants, the response reaches 86.5% of the final value. At 

𝑡 = 3𝑇, 4𝑇, and 5𝑇, 𝑡 ≥ 4𝑇, the response remains within 2% of the final value. As seen 

from Equation 2.17, the steady state is reached mathematically only after an infinite time. 

In practice, however, a reasonable estimate of the response time is the time the response 

curve needs to reach and stay within the 2% line of the final value, or four-time constants. 

Many physical system responses can be approximate to this first order or higher 

order response. This time response is best represented by a transfer function which is 

easier to solve than its differential equation equivalent. Table 2.6 shows a list of 

references explaining system responses modelled using the transfer function and its utility 

in more depth. Generalities of the frequency domain model(Ellis, 2012) , nonlinear time-

invariant (Nise, 2014), step response first order and the unit-step response of first-order 

system(Ogata, 2010). To develop a transfer function, the experimental response needs to 

be identified first which will be explained in the next subsections. 
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Table 2.6 Summary of generalities of the frequency domain model. 

Author Title Summary 

Ellis 2012 The Frequency Domain Discussing enhancing control systems using 

frequency domain analysis, illustrated by 

Bode plots and transfer functions. 

Nise 2014 Nonlinearities Nonlinear control theory is useful for real 

systems due to their inherent nonlinearity 

and specific equation requirements. 

Ogata 2010 First Order System The system's equation outlines the input-

output relation, studying responses to inputs 

like unit-step, ramp, and impulse. 

Kaloust et al. 

1997 

Robust control design for nonlinear 

uncertain systems with an unknown 

time-varying control direction 

The paper suggests a robust control method 

for first-order nonlinear systems with 

uncertain dynamics and varying control 

direction. 

 

2.4.2 System Identification          

This subsection provides a detailed explanation of system identification 

(Balakrishnan, 2002) using MATLAB's toolbox. The discussion is divided into two parts: 

the first part focuses on the identification of the transfer function model, while the second 

part provides an overview of the system identification toolbox in MATLAB. System 

Identification toolbox enables the estimation of mathematical models for linear and 

nonlinear time-invariant systems without requiring physical insights into the system. By 

producing equations that describe the temperature response, it allows for predicting the 

system's behavior in relation to new inputs. However, if the nature of the system changes, 

the mathematical model may no longer be valid. 

For LTI model, several types of models can be estimated using the toolbox such 

as the transfer function model (Donjaroennon et al., 2021) which represent the 

relationship between the inputs and the outputs of a system using a ratio polynomial. The 

state space model (S. Li et al., 2022) which represent a system by a set of input, output 

and state variables related by first-order differential equations is also another possible 

model. Finally, the polynomial model (Colombo et al., 2019) which used polynomial to 

represent the dynamics of the system is another model option. 
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Meanwhile, for non LTI model, several types of models can be estimated such as 

the nonlinear ARX model (Bermudez et al., 2021) which represent nonlinearities in 

systems using dynamic nonlinear mapping objects such as wavelet networks, tree-

partitioning, and sigmoid networks. Another one is the Hammerstein-Weiner model 

(Kwad et al., 2020) which represents an estimated static nonlinearity in an otherwise 

linear system. The nonlinear grey box model (Zanelli et al., 2022) which represent 

nonlinear system using ordinary differential or difference equations (ODEs) with 

unknown parameters is also an option. Lastly, the neural state space model (Kirchgässner 

et al., 2023) which use neural network to represent the functions that define the nonlinear 

state space realization of the system can also be opted. 

 Regarding to the listed estimation model above, and summarized in Table 2.7, 

the transfer function is seen as the most suitable for implementation in this study due to 

the relationship between input and output of speed and temperature response. Transfer 

functions are light to be implemented in real-time and can be quickly developed through 

system identification using several experimental data only. The best form of transfer 

function can be searched using the Identification toolbox Using system identification 

giving deep knowledge in explore the best form of transfer function (order) to describe 

the temperature response of component in a DC machine and evaluates the model 

precision. 

Table 2.7 Summary of the model type using system identification. 

Author Title Method Summary 

Donjaroennon 

et al., 2021 

Mathematical model 

construction of DC Motor by 

closed-loop system 

Identification technique Using 

Matlab/Simulink 

Transfer 

Function  

Transfer function used to design 

PID controller for DC motor at 

several speed response. 

Li et al., 2022 

An Online VSI Error 

Parameter Identification 

Method for Multiphase IM 

With Non-Sinusoidal Power 

Supply 

State Space  

State space model utilized for 

online compensation method of 

VSI nonlinearity in multiphase 

IM with non-sinusoidal power 

supply. 
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Table 2.7 Continued. 

 

2.4.2.1 Identification of Transfer Function  

Transfer function models describe the relationship between the inputs and outputs 

of a system using a ratio of polynomials. The model order is equal to the order of the 

polynomial’s denominator. The roots of the denominator are referred to as the model 

poles, while the roots of the numerator are referred to as the model’s zero. The parameters 

of a transfer function model are its pole, zero, and transport delays. 

For a continuous response, a transfer function model can be described as Equation 

2.18. Where, 𝑌(𝑠), 𝑈(𝑠) and 𝐸(𝑠) represent the Laplace transforms of the output, input, 

and noise, respectively. 𝑛𝑢𝑚(𝑠) and 𝑑𝑒𝑛(𝑠) represent the numerator and denominator of 

the polynomial that define the relationship between the input and the output. 

Author Title Method Summary 

Colombo et al., 

2019 

An Embedded Strategy for 

Online Identification of 

PMSM Parameters and 

Sensorless Control 

Polynomial 

Polynomial models are integral to 

sensorless control for PMSM by 

uses electrical signals to estimate 

the rotor position. 

Bermudez et 

al., 2021 

Model Predictive Control of 

Six-Phase Electric Drives 

including ARX Disturbance 

Estimator 

Nonlinear 

ARX 

An autoregressive with 

exogenous variable (ARX) model 

is introduced to estimate 

disturbances and improve the 

predictive control’s accuracy 

Kwad et al., 

2020 

A Real-Time Nonlinear 

Hammerstein Model for 

Bidirectional DC Motor 

Based on Multi-Layer Neural 

Networks 

Hammerstein-

Weiner 

Real-time method for modelling a 

DC motor using the Hammerstein 

model and neural networks. This 

approach is designed for systems 

with one input and one output. 

Zanelli et al., 

2022 

Continuous Control Set 

Nonlinear Model Predictive 

Control of Reluctance 

Synchronous Machines 

Nonlinear 

Grey Box 

Nonlinear model predictive 

control approach for controlling 

reluctance synchronous machine. 

Kirchgässner et 

al., 2023 

Thermal neural networks: 

Lumped-parameter thermal 

modeling with state-space 

machine learning 

Neural State 

Space 

Thermal neural networks for 

LPTM in electric power systems, 

combining heat transfer based 

LPTN and machine learning.  
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𝑌(𝑠) =
𝑛𝑢𝑚(𝑠)

𝑑𝑒𝑛(𝑠)
𝑈(𝑠) + 𝐸(𝑠) 

2.18 

In continuous-time, input and transport delays are presented with an exponent 

term as in Equation 2.19, where 𝜏 represents the delay.  

𝑌(𝑠) =
𝑛𝑢𝑚(𝑠)

𝑑𝑒𝑛(𝑠)
 𝑒−𝑆𝜏𝑈(𝑠) + 𝐸(𝑠) 

2.19 

A single-input single-output (SISO) continuous transfer function has the form 

𝐺(𝑠) =
𝑛𝑢𝑚(𝑠)

𝑑𝑒𝑛(𝑠)
. The corresponding transfer function model can be represented as 

Equation 2.20. 

𝑌(𝑠) = 𝐺(𝑠)𝑈(𝑠) + 𝐸(𝑠) 2.20 

A multi-input multi-output transfer function contains a single-input single-output 

transfer function corresponding to each input-output pair in the system. For example, a 

continuous-transfer function model with two inputs and two output has the form as 

Equation 2.21 and Equation 2.22. Where, 𝐺𝑖𝑗(𝑠) is the single-input single-output transfer 

function between the 𝑖𝑡ℎ output and the 𝑗𝑡ℎ  input. 𝐸1(𝑠)  and 𝐸2(𝑠)  are the Laplace 

transforms of the noise corresponding to the two outputs. 

𝑌1(𝑠) = 𝐺11(𝑠)𝑈1(𝑠) + 𝐺12(𝑠)𝑈2(𝑠) + 𝐸1(𝑠) 2.21 

𝑌2(𝑠) = 𝐺21(𝑠)𝑈1(𝑠) + 𝐺22(𝑠)𝑈2(𝑠) + 𝐸2(𝑠) 2.22 

 

2.4.2.2 MATLAB Identification Tools 

System identification(Balakrishnan, 2002) is a methodology for building 

mathematical models of dynamic systems using measurements of the input and output 

signals of the system. The process of system identification requires to measure the input 

and output signals from the system in time or frequency domain. The selection of model 

structure applies an estimation method to estimate values for adjustable parameters in the 

candidate model structure. The model structures available are presented earlier in Table 
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2.7. Lastly, the toolbox evaluates the estimated model by comparing the model results 

with the experimental data input and provides errors of the estimated model. The 

subsections that follow are the steps.  

Measured Data as Input in System Identification 

By measuring the input and output signals from a system, system identification 

can estimate the values of the movable parameters in each model structure using these 

measured data. Time-domain input-output signals, frequency response information, time-

series signals, and time-series spectra can all be used to develop the models. It is 

necessary to have measured data that accurately captures the dynamic behaviors of the 

system to create an adequate model of it. The quality of the measurement data, which in 

turn depends on the design of the experiment, affects how accurate the model is. 

Time-domain data consists of the input and output variables of the system that are 

recorded at a uniform sampling interval over a period. To build a continuous time model, 

one need to know the intrasample behaviour of the input signals during the experiment. 

The input can be piecewise constant or piecewise linear between samples. Frequency-

domain (Pintelon & Schoukens, 2012) data represents measurements of the system input 

and output variables that are recorded in the frequency domain. The frequency-domain 

signals are Fourier transforms of the corresponding time-domain signals. Frequency-

domain data can also represent the frequency response of the system, represented by the 

set of complex response values over a given frequency range. The frequency response 

describes the outputs to sinusoidal inputs. If the input is a sine wave with frequency 𝜔, 

then the output will also have the same frequency, whose amplitude is 𝐴(𝜔) times the 

input signal amplitude and a phase shift of 𝛷(𝜔) with respect to the input signal. The 

frequencies response can be written as 𝐴(𝜔)𝑒(𝑖𝛷(𝜔)). 

In term of data quality requirements, data must accurately reflect the crucial 

system dynamics to identify the system. A good experimental plan makes sure that the 

correct variables are measured accurately and for long enough to capture the dynamics 

that are being modelled. In general, inputs for experiments need to sufficiently excite the 

system dynamics. One step, for instance, rarely provides sufficient excitement. Set up a 

data acquisition system with a good signal-to-noise ratio, measure data at the proper 
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sampling intervals or frequency resolution, and measure data for a long enough period to 

capture the significant temporal constants. 

Build Models from Data 

A model structure is a mathematical relationship between input and output 

variables that contains unknown parameters. Examples of model structures are transfer 

functions with adjustable pole and zero, state-space equations with unknown system 

matrices, and nonlinear parameterized functions. The following difference Equation 2.23 

represents a simple model structure. Where a and b are adjustable parameters. 

𝑦(𝑘) + 𝑎𝑦(𝑘 − 1) = 𝑏𝑢(𝑘) 2.23 

The system identification process requires choosing a model structure and 

applying the estimation methods to determine the numerical values of the model 

parameters. The following approaches can be used to choose the model structure. For a 

model that can reproduce measured data and is as simple as possible, various 

mathematical structures available in the toolbox. This modelling approach is 

called black-box modelling. While, for a model with specific structure, which might have 

derived from first principles, but do not know numerical values of its parameters. The 

model structure can represent as a set of equations or as a state-space system in 

MATLAB and estimate the values of its parameters from data. This approach is known 

as grey-box modelling. 

𝑦𝑚𝑜𝑑𝑒𝑙(𝑡) = 𝐺𝑢(𝑡) 2.24 

The system identification toolbox software estimates model parameters by 

minimizing the error between the model output and the measured response. The 

output 𝑦𝑚𝑜𝑑𝑒𝑙  of the linear model as Equation 2.24. Where 𝐺 is the transfer function. To 

determine 𝐺, the toolbox minimizes the difference between the model output 𝑦𝑚𝑜𝑑𝑒𝑙(𝑡) 

and the measured output 𝑦𝑚𝑒𝑎𝑠(𝑡). The minimization criterion is a weighted norm of the 

error, 𝑣(𝑡), as Equation 2.25 
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𝑣(𝑡) = 𝑦𝑚𝑒𝑎𝑠(𝑡) − 𝑦𝑚𝑜𝑑𝑒𝑙(𝑡) 2.25 

𝑦𝑚𝑜𝑑𝑒𝑙 (𝑡)  is one of the simulated response (𝐺𝑢(𝑡)  of the model for a given 

input 𝑢(𝑡) and predicted response of the model for a given input 𝑢(𝑡)  and past 

measurements of the output (𝑦𝑚𝑒𝑎𝑠(𝑡 − 1),  𝑦𝑚𝑒𝑎𝑠(𝑡 − 2), . . . ).  Accordingly, the 

error 𝑣(𝑡) is called the simulation error or prediction error. The estimation algorithms 

adjust parameters in the model structure 𝐺 such that the norm of this error is as small as 

possible. 

The configuration of the estimation algorithm configures the minimization 

criterion to focus the estimation on a desired frequency range, for example, to put more 

emphasis at lower frequencies and deemphasize higher frequency noise contributions. 

Also, can configure the criterion to target the intended application needs for the model, 

such as simulation or prediction. Specifying optimization options for iterative estimation 

algorithms. Most estimation algorithms in this toolbox are iterative. Configure can be an 

iterative estimation algorithm by specifying options, such as the optimization method and 

the maximum number of iterations. 

Black-box Modelling 

Regardless of the mathematical complexity of the model, black-box modeling 

(Juditsky et al., 1995) is effective for fitting the data. The toolbox offers several black-

box model structures, both linear and nonlinear, that have historically helped describe 

dynamic systems. Depending on the flexibility, requirement to consider the dynamics, 

and noise in the system, these model structures range in complexity. One of these 

structures can be chosen, and its parameters can be computed to fit the measured response 

data. 

Black box modeling often involves predicting the parameters of different 

architectures and comparing the outcomes. Start with a simple linear model structure and 

work your way up to more sophisticated ones. The simplest input-output polynomial 

model is the linear ARX model, and the state-space model can be estimated by providing 

the number of model states. The simplest linear black-box structures require the fewest 



 

 49 

options to set the transfer function with a given number of poles and zero. Noniterative 

estimate algorithms are also used in the estimation of certain of these structures, further 

reducing complexity. The model order can be used to configure the model structure. 

Depending on the type of model chosen, different definitions of model order exist. For 

instance, if a transfer function representation is used, the number of poles and zero affects 

the model order. The model order for state-space representation matches the number of 

states. It may be possible to infer the model order from the data in some circumstances, 

such as for linear ARX and state-space model architectures. 

Grey-box Modelling 

In the grey box(Q. Zhang, 1997) approach, the data is used to estimate the values 

of the unknown parameters of the model structure. The model structure is specified by a 

set of differential or difference equations in MATLAB and provides some initial guess 

for the unknown parameters specified. In general, building grey-box models need to be 

creating a template model structure, configuring the model parameters with initial values 

and constraints (if any), and applying an estimation method to the model structure and 

computing the model parameter values. 

Evaluation of Model Quality 

After estimating a model (Dennis & Schnabel, 1996), its quality can be evaluated 

by comparing the model response to the measured response, analyzing residuals, and 

analyzing the model uncertainty. The quality of a model is determined by how well it 

satisfies the needs of the application. Comparing the model response to the measured 

response involves evaluating the quality of a model by comparing its response to the 

measured output for the same input signal. Residual analysis is performed using system 

identification toolbox software to assess model quality. Residuals represent the portion 

of the output data not explained by the estimated model, and a good model has residuals 

uncorrelated with past inputs. Analyzing model uncertainty involves estimating the 

accuracy of nominal values within a confidence region, determined by the values of 

parameter uncertainties computed during estimation. The magnitude of these 

uncertainties provides a measure of the reliability of the model. Large uncertainties in 

parameters can result from unnecessarily high model orders, inadequate excitation levels 



 

 50 

in input data, and poor signal-to-noise ratios in measured data. Which can compute and 

visualize the effect of parameter uncertainties on the model response in the time and 

frequency domains using pole-zero maps, Bode response plots, and step response plots. 

Table 2.8 shows a summary of the system identification, with Lennart Ljung’s 

book (Ljung, 1999) providing a deep theoretical and practical understanding using 

MATLAB. (Q. Zhang, 1997) proposed a wavelet network algorithm for nonparametric 

regression. The model’s quality is assessed by comparing its response to actual data, 

examining residuals, and evaluating uncertainty, as explained by (Dennis & Schnabel, 

1996). Meanwhile, (Pintelon & Schoukens, 2012) and (Juditsky et al., 1995) discussed 

modeling in system identification using frequency domain techniques and the 

mathematical foundation of nonlinear black-box models respectively. 

Table 2.8 Summary of system identification.  

 

 

 

 

 

 

 

Author Title Method Summary 

Lennart 

Ljung. 

1999 

System identification: theory for 

the user (second edition) 

System 

Identification 

Building mathematical models of 

dynamic systems by observing 

input/output data. 

Dennis et 

al. 1996 

Numerical Methods for 

Unconstrained Optimization and 

Nonlinear Equations 

Model 

Quality 

Optimization and nonlinear equation 

solving techniques to improve model 

accuracy and performance. 

Pintelon et 

al. 2012 

System Identification: A 

Frequency Domain Approach, 

Second Edition 

Frequency 

Domain 

Discuss system identification, 

dynamic model creation from data, 

focusing on frequency domain 

techniques versus time domain 

methods. 

Juditsky et 

al. 1995 

Nonlinear black-box models in 

system identification: 

Mathematical foundations 

Black-box 

Model 

Examines the math of non-

parametric methods for identifying 

nonlinear systems, focusing on the 

trade-off between model adaptability 

and estimation error. 
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2.4.3 Evaluation of Model Precision 

The transfer function obtained by estimating data using the MATLAB system 

identification toolbox can later be evaluated using the fit to estimation data, MSE, and 

FPE, all of which are explained in detail in this subsection. 

2.4.3.1 Fit to Estimation Data 

Fit to estimation data refers to how well a model fits the data used to estimate it. 

In MATLAB’s system identification toolbox, when a model is estimated, it is done so to 

minimize the 1-step ahead prediction error. The fit value between the 1-step ahead 

predicted response of this model to measured data is then calculated. The Model Output 

plot shows by default the fit between the simulated response of the model and the 

measured data. NRMSE measure of how well the response of the model fits the 

estimation data and expressed as the percentage, defined as Equation 2.26. Where  

𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 is the measured output data, 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the channel-wise mean, 𝑦𝑚𝑜𝑑𝑒𝑙  is 

simulated or predicted response of the model, governed by the focus and ∥. ∥ indicates 

the 2-norm of a vector. 

𝐹𝑖𝑡𝑃𝑒𝑟𝑐𝑒𝑛𝑡 = 100 (1 − 
∥ 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑦𝑚𝑜𝑑𝑒𝑙 ∥

∥ 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ∥
) 

2.26 

The fit percent varies between −𝐼𝑛𝑓 (bad fit) to 100 (perfect fit). If the value is 

equal to zero, then the model is no better at fitting the measured data than a straight line 

equal to the mean of the data. Some researchers used fit estimation data for model 

validation  such as (Anshory et al., 2020) and (Majdoubi et al., 2021) where they compare 

the accuracy of model with the actual data in identification parameter system of a BLDC 

motor. (Donjaroennon et al., 2021) on the other hand, analyze the accuracy of input-

output signal and derive a mathematical equation for DC motor in a closed loop system. 
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2.4.3.2 Mean Square Error  

The MSE tells how close a regression line is to a set of points. It does this by 

taking the distances from the points to the regression line and squaring them. The 

squaring is necessary to remove any negative signs. It also gives more weight to larger 

differences. It is called the MSE for finding the average of a set of errors. The lower the 

MSE, the better the forecast. MSE measure defined as Equation 2.27, where 𝑒(𝑡) was the 

signal, whose norm is minimized for estimation, 𝑁 is the number of data samples in the 

estimation dataset. 

𝑀𝑆𝐸 =
1

𝑁
∑𝑒𝑇  (𝑡) 𝑒(𝑡)

𝑁

𝑡=1

 

2.27 

MSE in regression analysis is used to assess the quality of a predictor or an 

estimator and serves as a criterion for selecting the best possible model or estimator 

considering the trade-off between bias and variance. Study by (Kirchgassner et al., 2021) 

and (Dawood et al., 2024) use MSE as a metric for evaluating the performance of the 

neural network models developed for temperature prediction. While (Jing et al., 2023) 

validation performance of Gradient Boosting Tree model for motor rotor temperature 

using MSE. 

2.4.3.3 Final Prediction Error 

Akaike's Final Prediction Error (Akaike, 1971) criterion provides a measure of 

model quality by simulating the situation where the model is tested on a different dataset. 

According to Akaike's theory (Akaike, 1974), the most accurate model has the smallest 

FPE. The fit always gets better when the model order and, consequently, the adaptability 

of the model structure, are increased when the same dataset is utilized for both model 

estimation and validation. 
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FPE is defined by the following Equation 2.28. Where 𝑁 is the number of values 

in the estimation dataset, 𝑒(𝑡) is a n-by-1 vector of prediction errors, 𝜃𝑁 represents the 

estimated parameters and 𝑑 is the number of estimated parameters. 

𝐹𝑃𝐸 = 𝑑𝑒𝑡 (
1

𝑁
∑𝑒(𝑡, 𝜃𝑁) (𝑒(𝑡, 𝜃𝑁))

𝑇
𝑁

1

) [ 
1 +

𝑑
𝑁

1 −
𝑑
𝑁

] 

2.28 

There are several studies in electric motors that employed FPE in evaluation of 

model for their study, such as (Mokhlis et al., 2019) and (Naung et al., 2018) who assess 

the quality of the identified model, ensuring it accurately represents the DC machine’s 

dynamics. 

Table 2.9 shows a summary of the evaluation of model precision. Various study 

used MSE and FPE to evaluate model of their research. This shows these error estimation 

methods were valid and reasonable to use to evaluate model precision for transfer 

function model. 

Table 2.9 Summary of evaluation of model precision. 

Author Title Method Summary 

Majdoubi et 

al., 2021 

Parameters estimation of 

BLDC motor based on 

physical approach and 

weighted recursive least 

square algorithm 

Fit to 

Estimation 

Data 

Validation using relative error 

calculation between physical approach 

values and estimated values for 

estimation of parameter for BLDC. 

Donjaroennon 

et al. 2021 

Mathematical model 

construction of DC Motor by 

closed-loop system 

Identification technique 

Using Matlab/Simulink 

Fit to 

Estimation 

Data 

Assess the best fit value for closed-

loop transfer function of mathematical 

model of DC motor that indicates 

closely matches the experimental data. 

Jing et al., 

2023 

Gradient Boosting Decision 

Tree for Rotor Temperature 

Estimation in Permanent 

Magnet Synchronous Motors 

MSE 

Assess the prediction performance and 

optimize key hyperparameters of the 

GBDT model using MSE. 
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Table 2.9 Continued. 

Author Title Method Summary 

Dawood et al. 

2024 

An Efficient Protection 

Scheme Against Single-

Phasing Fault for Three-

Phase Induction Motor 

MSE 

The MSE gauges ANN performance. It 

measures how well the model's 

predictions match the real values.  

Mokhlis et 

al., 2019 

System Identification of a 

DC Servo Motor Using ARX 

and ARMAX Models 

FPE 

FPE is used to assess the quality of the 

estimated models, specifically the 

ARX and ARMAX models. 

Naung et al., 

2018 

Implementation of data 

driven control system of DC 

motor by using system 

identification process 

FPE 

FPE is a measure of how well the 

model predicts new data that was not 

used during the model estimation 

process. 

 

2.5 Highlights on the Research Gap 

As a summary to the literature review chapter, this paragraph emphasizes the 

research gaps in real-time temperature response modeling of electrical machines. As 

shown in Table 2.5 and discussed in the subsection monitoring, modeling temperature 

response and diagnostics, numerous well-known methods are commonly employed in the 

electrical machines field, an observation on the latest trend can be made. Recent 

researchers use machine learning with a fusion of other analysis methods. These methods 

have their benefits and drawbacks, especially in terms of existing historical data 

availability. Their development and validation require a certain amount of time. 

In situations where it’s not crucial to know the direct relationship between the 

motor’s physical parameters (such as dimensions and materials) and the temperature, a 

transfer function can be utilized to depict the temperature response. Transfer functions 

are easy to implement in real-time and can be swiftly developed through the identification 

of transfer functions using only a few experimental data points. 
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Table 2.10 shows a summary of researchers who used these methods in real-time 

fault detection of electrical machines. Most of the study discuss about the fault detection 

of inter-turn fault and bearing fault. The MCSA method was utilized by (Ray et al., 2021) 

and (Avina-Corral et al., 2021), while the VSA method employed by (Langarica et al., 

2020) and (Mitra & Koley, 2023). The ASA method used by (Shubita et al., 2023) and 

(C. He et al., 2023), whereas TSA method applied by (P. S. Kumar et al., 2021) and (Siraj 

et al., 2024). Lastly, machine learning method adopted by (Shih et al., 2022) and (Yatsugi 

et al., 2023). 

Table 2.10 Summary of research gaps of real time fault detection. 

Author Title Method Summary 

Ray et al. 

2021 

Skewness Scanning for 

Diagnosis of a Small Inter-Turn 

Fault in Quadcopter's Motor 

Based on Motor Current 

Signature Analysis 

Motor 

Current 

Signature 

Analysis 

Use the skewness scanning algorithm 

to detect the number of shorted turns 

in the motor by analysing the 

skewness of wavelet coefficients at 

different decomposition levels. 

Avina-

Corral et 

al. 2021 

Bearing Fault Detection in 

Adjustable Speed Drive-

Powered Induction Machine by 

Using Motor Current Signature 

Analysis and Goodness-of-Fit 

Tests 

Motor 

Current 

Signature 

Analysis 

The Kuiper test using MCSA 

demonstrated the potential for real-

time operation due to their low 

computational complexity and quick 

execution time. 

Langarica 

et al. 2020 

An Industrial Internet 

Application for Real-Time Fault 

Diagnosis in Industrial Motors 

Vibration 

Signature 

Analysis 

Employing RBC for identifying 

faulty variables and using CNN for 

detailed vibration-related fault 

identification. 

Mitra et al. 

2023 

Early and Intelligent Bearing 

Fault Detection Using Adaptive 

Superlets 

Vibration 

Signature 

Analysis 

The method uses ASLT for high 

time-frequency resolution of 

vibration signals and inputs the data 

into a 2-D-CNN to classify bearing 

faults. 

Shubita et 

al. 2023 

Fault Detection in Rotating 

Machinery Based on Sound 

Signal Using Edge Machine 

Learning 

Acoustic 

Signature 

Analysis 

The trained model is deployed on an 

edge device for local processing and 

real-time fault detection, eliminating 

the need for cloud connectivity. 
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Table 2.10 Continued. 

There is a gap for a new method that uses a transfer function as a baseline 

temperature model in real-time fault detection of electrical machines. This method is cost-

effective, accurate, and doesn’t necessitate a motor thermal specialist to develop. The 

new method, which uses the transfer function to model the temperature response of 

electrical machines, can be developed and studied. The baseline temperature model by 

transfer function will represent several critical components of electrical machines, 

including the brush, bearing, permanent magnet, and casing. To be developed, the input 

data of speed step, and the output data of temperature responses of the components will 

be required, which will be measured through experimental works. Further evaluation and 

validation of this method will be discussed in the results and discussion chapter.  

Author Title Method Summary 

He et al. 

2023 

Real-Time Fault Diagnosis of 

Motor Bearing via Improved 

Cyclostationary Analysis 

Implemented onto Edge 

Computing System 

Acoustic 

Signature 

Analysis 

By analyzing sound signal's spectral 

correlation density and using an 

improved cyclostationary feature 

extraction algorithm, the system can 

diagnose faults in real-time. 

Kumar et 

al. 2021  

Stator End-Winding Thermal 

and Magnetic Sensor Arrays for 

Online Stator Inter-Turn Fault 

Detection 

Thermal 

Signature 

Analysis 

The online condition monitoring 

system based on HESA, which 

allows for real-time fault detection 

and localization. 

Siraj et al. 

2024 

Few-Shot Lightweight 

SqueezeNet Architecture for 

Induction Motor Fault 

Diagnosis Using Limited 

Thermal Image Dataset 

Thermal 

Signature 

Analysis 

The SqueezeNet architecture is 

designed to be ultra-lightweight, 

making it suitable for real-time fault 

diagnosis applications on lightweight 

devices. 

Yatsugi et 

al. 2023 

Common Diagnosis Approach 

to Three-Class Induction Motor 

Faults Using Stator Current 

Feature and Support Vector 

Machine 

Machine 

Learning 

The SVM algorithm was used to 

classify motor faults based on the 

load current spectra and motor speed. 

Shih et al. 

2022 

Machine Learning for Inter-

Turn Short-Circuit Fault 

Diagnosis in Permanent Magnet 

Synchronous Motors 

Machine 

Learning 

The CNN learned to diagnose faults 

directly from 2-D images of data, 

eliminating the need for initial 

feature extraction. 
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CHAPTER 3 

 

 

METHODOLOGY 

3.1 Introduction 

This chapter explains the processes for achieving the objectives outlined in the 

Introduction. It covers motor details, instrumentation, test setup, method development, 

transfer function modeling, and model validation. The entire process is summarized in 

Figure 3.1. 

 

Figure 3.1 Research flow chart. 
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There are three (3) main stages in this research. To develop a generalized speed-

dependent temperature response model, will be using the transfer function. Therefore, the 

research starts with temperature response data collection that will serve as input to 

develop our model. The temperature data at selected components were collected while 

the motor was running at several sample speeds. The next step is the transfer function 

model generation for each component at different speeds. Here the experimental data 

previously collected were used along with the System Identification toolbox to generate 

transfer functions that model the temperature response of the motor components. These 

speed-dependent transfer functions will be then analysed to develop a generalized transfer 

function model that can model the components’ temperature response at any speed. 

Finally, the generalized model will be validated and tested for robustness by evaluating 

its temperature estimation errors in comparison to experimental data. The validated 

model will be used to demonstrate its ability to identify anomalies in faulty DC motors 

at the end of the study. Each step mentioned here will be detailed in the following sections 

of the methodology. 

3.2 Objective 1 Part (A) : Experimental Setup 

The temperature response of MY1016 DC machines was collected with the motor 

operated using a programmed block diagram in Simulink for speed control and data 

acquisition. The DC motor was run in a continuous cycle at no load until they reached 

temperature equilibrium, as specified in the IEC-60034 standard for motor testing. This 

process was repeated at different motor speeds, starting at 20% and increasing in 

increments of 20% up to 100%. These speeds were calculated relative to the rated speed 

of the MY1016, which is 2650 rpm. The experimental data generation was conducted as 

shown in Figure 3.2.  
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Figure 3.2 Flow chart of the experimental data generation. 

Thermocouples were used to measure the temperature response at various parts 

of the DC machines, including the brush, bearing, permanent magnet, and casing as 

shown in Figure 3.3. This data was then used to identify the transfer function of the 

temperature response.  

 

Figure 3.3 Instrumentation of DC machines. 

The outputs from the thermocouples are monitored and converted to their 

corresponding temperatures using a Type-K thermocouple unit with an error of +/- 1.1 

℃. The thermocouple measurements are taken automatically every 0.25 seconds and the 

data is transmitted to a host PC for storage. The current is monitored using the TP-CC80 
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current clamp, which allows the oscilloscope to measure electrical currents up to 80A 

ac/dc, with a frequency response up to 20kHz. The speed is measured using a rotary 

encoder with 500 pulses per revolution, which is programmed to be monitored along with 

the temperature. Once the DC motor is completely instrumented the motor is mounted on 

the top of the test bench. The temperature response is collected while the motor running 

in continuous running duty, following the standard duty from IEC-60034 see Appendix 

A. 

For data acquisition in DC machine components, the readings of temperature rise, 

and speed constant are recorded simultaneously using the thermocouple DAQ and 

encoder. These values can also be monitored at the PC host. The temperature of the motor 

must achieve a steady state before ending the duty cycle. If the temperature continues to 

rise and changes, the process of data acquisition is continued until it reaches a steady 

state. Once all the data has been collected, it is plotted and analysed. The complete 

experiment setup can be seen in Figure 3.4 below. The following subsections will give 

more details on each component of the test setup (motor specification and characteristics, 

speed controller and temperature measurement program, and the faulty motor 

experiment) 

 

Figure 3.4 The complete experimental setup. 
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3.2.1 MY1016 DC Motors Specifications 

The object or system in which the temperature response is going to be observed 

and modeled in this study is a DC motor. A small, brushed DC motor, commonly named 

MY1016 was chosen as a sample motor. This choice was made due to the ease of 

disassembly and installing the machine, as well as the accessibility to implement 

thermocouples on components such as the brush, bearing, permanent magnet, and casing. 

In addition, the structure of the machine is quite complex with irregular surface and cavity 

in the airgap, leading to unpredictable temperature behaviour which is interesting to 

observe. This complexity arises from the intricate components, the closed and rough 

surface on the inside, and the turbulent effect of air circulation. The specifications of the 

DC motor can be found in Table 3.1 below.  

Table 3.1 Specification of small brushed DC machines. 

Parameters Values 

Model MY1016 

Operating Voltage 24VDC 

Rated Current 13.5A 

Rated Speed 2650 Rpm 

Operating Power/Output 250 W 

Rated Torque 100 N-cm 

No Load Current <2.2 A 

Shaft Diameter 12.2 mm 

Cable length 25 cm 

Weight 2.0 Kg 

Dimension (20*15*10) cm 

This motor can be commonly found in small actuator application for light 

mobility such as electric bicycle and scooter. Small scale semi-industrial applications 

such as conveyors, extruders, fan and ventilators for food processing, and agro-industrial 

machinery are also frequent users of this inexpensive motor. 
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3.2.2 Motor No-Load Current 

As previously explored in the literature review, the temperature response may 

come from different sources of losses and these losses can be load-dependent or speed-

dependent. This study concentrates only on the second part which is the temperature that 

is due to speed-dependant causes. Therefore, the experimental temperature response data 

that is going to be collected needs to be independent of any losses due to current increases 

caused by a load. The experiments are then going to be at different speeds with no load. 

To ensure the no-load condition, the no-load current of the motor when it is running at 

different speed need to be characterized and verified to be at a negligible level at all 

speeds. 

The no-load current verification is also important to ensure that the losses due to 

friction are minimal and negligible for the model construction. This is to demonstrate that 

the speed variation across the voltage range does not generate significant losses that 

would need to be considered. It is important to note that the model was building will serve 

as a baseline model, which is supposed to show the estimated temperature of a new and 

healthy machine without any fault or wear and tear. To verify the no-load current and 

losses, an experiment was conducted at different speeds by manipulating the armature 

voltage at various levels (which is an image of the speed of the motor). The results are 

plotted as shown in Figure 3.5. At the maximum voltage range, the current variation is 

negligible because the no-load current is less than 0.7 amp, as indicated by the orange 

line on the right vertical axis. This is minimal in comparison to the nominal current of 

13.7 amps, as specified by the motor specification previously.  

 

Figure 3.5 Rated current at no load speed. 
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When compared to the 250W nominal power, the losses at maximum speed 

account for only 0.1% of the nominal power of the motor. Therefore, it would not 

generate a significant temperature difference. Since the torque T can be computed from 

the equation 𝑇 = 𝑘𝑇 × 𝐼0, it can be concluded that the no-load torque of the DC motor 

can be considered constant across the speed range up to maximum voltage. In summary, 

the relationship between losses and current is proportional, and the losses of the DC 

machines are less than 1% of the nominal power at no-load condition. The motor is 

therefore without fault and suitable to be used for temperature response data generation 

for the development of the baseline transfer function model. 

3.2.3 Speed Controller  

According to the motor specifications, the MY1016 brushed DC motor is 

designed to be used with a power supply of 24V supply voltage and capable of delivering 

20A of current. The speed of the motor is regulated using a motor driver MDD10, which 

is stacked on the Arduino Mega 2560 microcontroller. The switched mode power supply 

allows for lower losses driver while capable of delivering the criteria outlined in Table 

3.1. In the meantime, a bellow coupling is used to connect a rotary encoder with 500 

pulses per revolution, to the motor’s shaft giving the speed feedback to the 

microcontroller. This setup enables the real speed of the motor to be measured and 

recorded. The encoder is calibrated using the motor’s rated speed, which corresponds to 

a value of 255 pwm, allowing a reading of a maximum speed of 2650 rpm. 

The microcontroller is connected in real time to MATLAB-Simulink where the 

speed control block diagram is implemented and monitored on a host PC. The block 

diagrams in Figure 3.6 shows the PWM speed control setup in Simulink. The PWM value 

corresponding to the supply voltage value is the input the user gives to the system. 

Operating in 8 bits, the maximum value of 256 would correspond to the maximum voltage 

supply, which corresponds also to the maximum rated speed of the motor. Any value 

between 0 and 256 corresponds therefore to a percentage of the nominal rated speed of 

the motor. The positive and negative PWM values define the rotation of the motor, 

clockwise and anticlockwise respectively. This process is carried out by PWM output, 

and pin 4 and pin 5 on the Arduino board is used for each rotation clockwise and 
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counterclockwise. The s-function block, Speed Acquisition is used to create the data 

acquisition program of the motor’s actual speed for speed monitoring. The code for the 

microcontroller running in real-time with Simulink in detail can be referred to in 

Appendix B. Simulink runs in MATLAB version R2022b, and additional support 

packages, namely the Simulink support package for Arduino hardware and the MATLAB 

support package for Arduino hardware are installed to run Arduino code from Simulink. 

 

Figure 3.6 Motor controller block diagram. 

 

3.2.4 Temperature Measurement  

The type K thermocouple is used, which is composed of Chromel and Alumel 

conductors, and operates within a temperature range of -210 ℃ to 1200 ℃. It features a 

thermocouple wire with a diameter of 0.128 mm and exhibits superior oxidation 

resistance compared to other types. The compact size of the thermocouple facilitates its 

implementation on motor components such as the brush, bearing, permanent magnet, and 

casing, as depicted in Figure 3.3. Despite the complex structure of the electrical machine, 

the installation of the thermocouple does not interrupt its normal operation. Given that 

the signal level of a type K thermocouple can range from 6.4 to 54.9 mV, it is essential 

to collect and amplify the signals using an amplifier model MAX6675. To enable 

detection by an Arduino Mega 2560 microcontroller, the extremely low voltage of the 

reference junction is increased. These attributes make the thermocouple an ideal choice 

for data acquisition of the temperature response of the MY1016 brushed DC machines. 



 

 65 

To execute thermocouple data reading code within Simulink, it is necessary to 

develop an s-function block diagram, called Temperature Acquisition (Figure 3.6) (see 

Appendix B). This requirement arose from the discovery that the MAX6675 module 

requires a calibration delay of 0.25s before to provide an accurate temperature reading of 

the motor component. The thermocouple’s temperature data, which is transmitted to 

Simulink every 0.25 seconds, is sufficiently frequent considering the inertia of 

temperature response. The block diagram for the temperature data acquisition is 

presented in Figure 3.7. 

 

Figure 3.7 Temperature measurement block diagram. 

The temperature responses were recorded until the DC machine reached a steady 

state. This was done at speeds speed intervals of 20%, 40%, 60%, 80%, and 100% of 

nominal speed. The variation in speed was achieved by adjusting the input voltage. The 

steady-state temperature was reached after 10,800 seconds for all components. The 

temperature responses for each component will be comprehensively presented and 

discussed in the results and discussion chapter 4. 

3.2.5 Objective 3 : Fault Experiment 

Once a generalized transfer function model is developed and validated, the 

generalized transfer function model will be tested in real conditions to evaluate its 

feasibility in detecting motor faults. To replicate this condition of fault, several fault 

conditions will be created. The faults that were chosen to be replicated are the faults that 

is the most frequently occurred based on our literature review previously presented in 

subchapter 2.3.1.  
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The faults replicated are degreased bearing and broken or used brush. Along with 

these two faults, a healthy machine will be tested along with them for comparison.  This 

was done to validate the reliability of the equivalent model in real-world scenarios. The 

experiment will be conducted at varying speeds, ranging from 10% to 100% of the 

nominal speed, with an increment of 10% at each speed level. The temperature response 

was recorded until the DC machines reached a state of thermal equilibrium, which 

occurred approximately after 10800 seconds. The placement of the thermocouple was 

consistent with the setup described in the experimental setup subsection. 

Figure 3.8 illustrates a DC machine bearing that has been degreased to replicate 

a mechanical fault due to bearing failure. The DC machines contain two bearings, located 

at the front and back. The bearing at the back, near the brush placement, was completely 

degreased. This bearing was soaked in salt water to induce corrosion due to rust and 

degreasing. This simulation of a degreased bearing represents a scenario where the 

bearing has not been adequately maintained. It is crucial to assess the extent of 

temperature increase in the DC machines due to the excessive friction caused by the 

degreased bearing.  

 

Figure 3.8 MY1016 DC machines with degrease bearing fault. 
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On the other hand, Figure 3.9 illustrates the motor replicating the scenario where 

one of the four brushes has experienced chipping in the middle surface. This simulation 

is representative of a situation where the armature experiences vibrations during rotation, 

which subsequently impacts the brush. The chipping effect on the brush is indicative of 

the potential damage that can occur due to these mechanical shocks. Furthermore, it is 

important to evaluate the extent of temperature increase in the DC machines due to a 

broken brush. A broken brush can create high resistance, impeding the flow of current 

into the armature. This resistance can generate significant heat within the motor, leading 

to an excessive rise in temperature.  

 

 

Figure 3.9 MY1016 DC machines with broken brush fault. 

The demonstration of the usage of the generalized transfer function will be done 

by comparing the experimental temperature responses of the faulty machines replicated 

above to the simulated baseline temperature response using the developed generalized 

model. The difference between the simulated baseline temperature and the experimental 

temperature and its trend will be highlighted in the results. This difference can be used as 

an anomaly detection tool that may signify the occurrence of a fault and should trigger a 

further detailed diagnostic process. 
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3.3 Objective 1 Part (B) : Transfer Function Identification  

Following data collection and generation from experimental setups explained in 

the previous section, the next step is to use that temperature response data to identify the 

transfer function that can model the thermal behavior of each component of the motor as 

shown in Figure 3.10. Recall that the temperature responses to a speed step input were 

collected at 5 different speeds, with each a ratio of the nominal speed (20% up to 100%). 

The temperature was recorded up to steady state temperature, for all the following 

components: brush, bearing, permanent magnet, and casing.  

 

Figure 3.10 Flow chart of the development of transfer function for temperature 

response of the MY1016 DC machine from the experimental data. 

 

3.3.1 System Identification Toolbox  

The system identification toolbox of MATLAB is here deployed. The temperature 

response data was set as the output response while the pwm step speed input value was 

set as input and imported to the system identification Import Data section as shown in 

Figure 3.11. The toolbox enabled us to find the corresponding transfer function. By 

selecting transfer function as the model of choice, two parameters need to be set which 

the toolbox will try to find and fit to the experimental data. The parameters of transfer 

function needed are the number of zeros and poles of the transfer function. Their chosen 

values need to be set in the toolbox (see Appendix C for the detail). 
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Figure 3.11 Import data step input and temperature response. 

The generic form of a transfer function, considering its poles, is shown in 

Equation 3.1 with 𝑛 the order of the system, 𝑎 a real number, and the values of 𝑠 solving 

the polynomials in the denominator are the pole. 

𝐺(𝑠) =
1

𝑎𝑛𝑠
𝑛 + 𝑎(𝑛−1)𝑠

(𝑛−1)+. . . +𝑎0
 

3.1 

No zeros were chosen for the transfer function as a physical system can usually 

be modelled with no zeroes. Only gain will take place on the numerator. For the poles, 

different values were tested, ranging from a single pole to four poles, representing 

systems of the first to fourth order. The reason of limiting the pole value up to 4 is that 

choosing a high pole value can lead to an unstable system. The requirement that all poles 

need to be in the left half of the complex plane as mentioned by (Choupanzadeh & 

Zadehgol, 2020) and (Golnaraghi & Benjamin C.Kuo, 2017) (chapter basic control 

system and effects adding poles and zeros to transfer functions) will become too 

constraining. This can also be known as overfitting where prediction and estimation will 

lead to higher error as the order increases.  
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In theory, a temperature response resembles a first-order response. It could not be 

physically considered a second-order system, as there is no possibility of temperature 

oscillations like in mechanical or electrical systems. However, the purpose of considering 

higher order (2-4) is to evaluate the possibility of having a higher precision model which 

is purely a mathematical model that is not necessarily attached to a physical reality. 

Physically, it could be considered as higher-order system with a high damping value (an 

overdamped system). This is particularly useful for a model that is going to be used solely 

to monitor the baseline temperature with high precision, without considering its potential 

use in optimization model purposes.  

Figure 3.12 illustrates the estimated transfer function result in system 

identification for all components and choices of poles number. The estimation transfer 

function was done without preprocessing and splitting experimental data. Some 

researchers (Al Khafaji et al., 2019; Donjaroennon et al., 2021; Naung et al., 2018; Sadeq 

& Wai, 2019) utilize this method in the estimation of transfer function using system 

identification. 

 

Figure 3.12 Result estimation transfer function in system identification. 
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The table on the right of Figure 3.12 shows the model estimation using the transfer 

function that the toolbox found for different motor components. By row: brush, bearing, 

permanent magnet, and casing, and by column:1st order, 2nd order, 3rd order, and 4th order. 

It also provides the equation of the transfer function in the form of polynomials as 

presented in Equation 3.1. These outputs are generated for one of the speed points that 

was tested. The identification process is repeated for all the speed points tested from 20% 

to 100% of the nominal speed of the motor.  

These model outputs will be later presented in the result chapter. To select the 

best model between the order choices, the error of the model evaluated will be assessed, 

which will be presented in the next section. 

3.3.2 Error Evaluations 

The transfer function estimated by the Identification Toolbox also accounts for 

estimated model errors, including MSE, FPE, and the fit percentage of the estimation 

data. MSE is commonly used in regression analysis and other predictive modelling 

methods to evaluate a model’s performance. The FPE criterion, developed by Akaike, 

measures the quality of the model by simulating the situation where the model is validated 

using a new dataset. A fit percentage value greater than 90%, with the smallest MSE and 

FPE values indicates a better model fit as it shows that the projected values are closer to 

the experimental value. 

Once the transfer function is identified, the MSE value for the model error is 

calculated in comparison to the experimental data (see Appendix C for the details of the 

error output). The transfer functions with the highest MSE are eliminated as it does not 

accurately represent the temperature response of the components at various speeds under 

no load conditions. The identified transfer function result will be shown in Table 4.2 in 

the result and discussion chapter later for the brush component, while the other 

component will be available in Appendix I. In total, for all four components tested at five 

different speeds, four different orders of transfer function will be tested. The most precise 

transfer function will later be selected to represent the component at the selected speed. 

The precision is evaluated by the MSE error of the identified transfer function, with error 

values the closest to zero. 
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3.4 Objective 2 : Development of Generalized Transfer Function Model 

This subsection is dedicated to the discussion of the generalized transfer function 

as depicted in Figure 3.13. From previous section, the transfer functions of each 

component were identified at different speed. To be useful in real-time (by providing the 

information of the baseline temperature that the machine should be having at any 

moment), a model needs to be valid at all operating speed (from 0 to 100 percent of the 

nominal speed). It is therefore necessary to develop a generalized transfer function valid 

for all speed points. To do so, the nature of the model as the speed increases need to be 

first analyzed, then only a generalized model can be proposed. This would enable the 

implementation of a single-node thermal model for each component, which is beneficial 

for real-time baseline temperature monitoring. 

 

Figure 3.13 Flow chart of the developemnet of generalized transfer function model. 

 

3.4.1 Analysis of System Linearity 

At each different speeds (20%, 40%, 60%, 80%, and 100% of the nominal rated 

speed), system identification produced different transfer functions. Knowing that the 

thermal system in which the heat is generated and transferred producing temperature is 

the same, which is the motor, it is understandable to assume that it should be not far from 

linear or LTI. However, the results showing distinct different transfer functions seem to 

suggest otherwise (refer to result Chapter 4.2).  
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An analysis of system linearity by looking at the position of the poles the transfer 

functions previously found was therefore done. The analysis consists of evaluating the 

variance of the poles' positions to evaluate their distances, leading to a conclusion of how 

far the system is from being able to be considered as LTI. If the system is indeed linear 

with minor disturbances, the pole variance value should be small. In the opposite case, if 

the system is non-LTI and other unidentified sources of influence change the 

characteristics of the system as the speed changes, then the variance value should be large. 

To do linearity analysis, the identified transfer function of components such as 

the brush, bearing, permanent magnet, and casing for all speeds was plotted in a pole-

zero graph in the s-plane. This allows us to observe the pole magnitude location and 

assess the variance between the poles. The pzplot function in MATLAB was used to plot 

the poles in the s-plane graph, where 𝐺𝑘 𝑁(𝑠) is the transfer function for the temperature 

response of component 𝑘 at speed 𝑁 as mentioned in Equation 3.2. Component 𝑘 can be 

either brush, bearing, permanent magnet and casing. 

𝐺𝑟𝑎𝑝ℎ = 𝑝𝑧𝑝𝑙𝑜𝑡(𝐺𝑘 𝑁(𝑠)) 3.2 

Figure 3.14 shows a pzplot example for the component brush, a component where 

the error of model estimation done indicates that the 3rd order is the best order to represent 

its temperature response. All different colored points represent the transfer functions 

found at different speeds.  All the brush poles on the complex s-plane are in the left-half 

plane, which means they are in the stable region. Also, a typical third-order transfer 

function may have one real pole and a complex conjugate pole pair, which is the 

necessary and sufficient condition to have real-valued coefficients in the differential 

equation representing the system. Notice that the brush has three poles represented as “X” 

for every nominal speed. The pole on the x-axis is a real pole while the y-axis represents 

a complex conjugate pair of poles. The poles of the brush are color-coded to represent 

their nominal speed. Red indicates 20%, blue indicates 40%, green indicates 60%, yellow 

indicates 80%, and purple indicates 100% of the nominal speed. There are no zeros 

represented as “O” in the s-plane graph because, as mentioned before, the identified 

transfer function was chosen to have no zeros for all components including the brush, 

bearing, permanent magnet, and casing.  
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Figure 3.14 S-plane graph of pole brush. 

For other components where a 1st order transfer function is sufficient, the pzmap 

will only have therefore one pole represented as ‘X’ on the s-plane. Figure 3.15 shows an 

example of a first-order pzmap plotted for the component bearing. Similarly, to the pzmap 

of a 3rd order system presented previously, all the bearing poles for the tested speeds on 

the complex s-plane are in the left-half plane, which means they are in the stable region 

and are real poles. The poles of the bearing are color-coded in the same way as well to 

represent their nominal speed.  

 

Figure 3.15 S-plane graph of pole bearing. 
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To perform the variance calculation of the poles values, the value of the poles 

needs to be retrieved from the equation of transfer function (of type Equation 3.1) that 

was obtained from system identification in Figure 3.12. Manually, these poles values can 

be retrieved from the pzmap as presented in Figure 3.14 and Figure 3.15. A more efficient 

and automated method was employed by extracting the pole values tf2zp function 

(Equation 3.3). This function extracts from the transfer function in polynomial form its 

values of gain, poles, and zeroes, as shown in Equation 3.4. Where 𝑍𝑘 𝑁 is zero of the 

transfer function for the component 𝑘 at speed 𝑁, 𝜎𝑘 𝑁 is the pole of the transfer function 

and 𝐾𝑘 𝑁 is the gain of the transfer function. On the other hand, 𝑍𝑘 𝑁(𝑆) is the numerator 

coefficients of the transfer function for the component 𝑘 at speed 𝑁  and 𝜎𝑘 𝑁(𝑠) is the 

denominator coefficient of the transfer function. The component 𝑘  can be either the 

brush, bearing, permanent magnet, or casing, and speed 𝑁 was 20% to 100% of nominal 

speed. 

[𝑍𝑘 𝑁, 𝜎𝑘 𝑁, 𝐾𝑘 𝑁] = 𝑡𝑓2𝑧𝑝(𝑍𝑘 𝑁(𝑠), 𝜎𝑘 𝑁(𝑠)) 3.3 

𝐺𝑘 𝑁(𝑠) =
𝑍k N(𝑠)

𝜎𝑘 𝑁(𝑠)
= 𝐾𝑘 𝑁

(𝑠 − 𝑍1𝑘 𝑁)(𝑠 − 𝑍2𝑘 𝑁)… (𝑠 − 𝑍1𝑘 𝑁)

(𝑠 − 𝜎1𝑘 𝑁)(𝑠 − 𝜎2𝑘 𝑁)… (𝑠 − 𝜎3𝑘 𝑁)
 3.4 

This conversion step was performed for all components at all speeds using the 

same method. The results from converting the transfer function to the zero-pole-gain form 

for all components at all speeds will be shown in Table 4.4 in the result and discussion 

chapter. The brush transfer function has three poles, with two of them forming a complex 

conjugate pair of poles. For other components, the permanent magnet, bearing, and casing 

have a single pole for every nominal speed. 

Once the values of the poles are found the variance values are deduced. It is 

calculated by finding the squared difference of each data point from the mean and then 

dividing it by the number of data points. It is used to compare the spread or dispersion of 

different data, in this case, the pole values. To calculate it, the mean value, 𝜎𝑘̅̅ ̅ is first 

calculated by Equation 3.5, then the variance, 𝑆2 using Equation 3.6. The coefficient of 

deviation, CV which compares the standard deviation to the mean value of the pole are 

also then calculated to assess how far are the spread from the mean value of the pole 
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using Equation 3.7  Where 𝜎𝑘 𝑁 is the transfer function of component k at speed N, 𝑁𝑚𝑖𝑛 

to 𝑁𝑚𝑎𝑥 are the minimum to the maximum speed at which the transfer functions were 

identified, and 𝑛𝑁 the number of speeds tested. 

 𝜎𝑘̅̅ ̅ =
∑ 𝜎𝑘 𝑁

𝑁𝑚𝑎𝑥
𝑁𝑚𝑖𝑛

𝑛𝑁
 3.5 

𝑆2 =
∑ (𝜎𝑘 𝑁 − 𝜎𝑘̅̅ ̅)

𝑁𝑚𝑎𝑥
𝑁𝑚𝑖𝑛

𝑛𝑁
 

3.6 

 

𝐶𝑉 = √𝑆2

𝜎𝑘̅̅ ̅⁄  3.7 

In the result chapter later, it will be explained that the analysis of the variance led 

to two suggestions for a generalized transfer function model: an averaged-pole model and 

a variable-pole model. The condition and the development of both generalized models 

will be explained in detail in the two following subsections.  

3.4.2 Averaged-Pole Transfer Function 

If the system linearity analysis revealed that the variance between the pole values 

of the transfer function at different speeds is small, it may suggest that the system is 

almost linear. The criteria for small variance is arbitrarily decided at a CV of less than 

10% (CV% < 10%). In that case, it can be assumed that the temperature response across 

the speed range can be represented by a single transfer function that averages all 

previously found transfer functions.  

The proposed averaged-pole transfer function method involves constructing a 

new transfer function. The pole of this new function equals the average of all the poles 

of the transfer functions at different speeds. The same process is applied to the gain value 

of the transfer function. The averaging of the transfer function is done in pole-zero-gain 

form.  
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Figure 3.16 illustrates the construction of the new averaged-pole transfer function 

for the bearing component. The pole 𝜎𝑁  of every speed were all summed and divided to 

the number of speed samples (in this case 5: 20%, 40%, 60%, 80%, and 100% of the 

nominal speed). The same process is also applied to the gain 𝐾𝑁. The process is repeated 

for all components of the motor.  

 

Figure 3.16 Construction of averaged-pole transfer function model. 

The averaged-pole transfer function will have the form of Equation 3.8 for 

components with first-order transfer function and Equation 3.9 for components with a 

third-order transfer function: 

𝐺𝑘(𝑠) =  
𝐾̅

𝑠 + 𝜎̅
 3.8 

𝐺𝑘(𝑠) =  
𝐾̅

(𝑠 + 𝜎1̅̅̅)(𝑠 + 𝜎2̅̅ ̅)(𝑠 + 𝜎3̅̅ ̅)
 3.9 

With 𝐾̅ =
∑𝐾𝑁

5
 the averaged gain and 𝜎̅ =

∑𝜎𝑁

5
 the averaged pole value. All the 

details of calculation for all components can be referred in Appendix E. Their results will 

be later presented in the chapter results and discussion in Table 4.5.  



 

 78 

After the pole and gain were averaged, the transfer function that were in the zero-

pole-gain form is converted back into polynomials form using zp2tf function in 

MATLAB as shown in Equation 3.10. The new averaged-pole transfer function is now 

in a polynomial form as shown in Equation 3.11. 

[𝑍𝑘 𝑁(𝑠), 𝜎𝑘 𝑁(𝑠)] = 𝑧𝑝2𝑡𝑓(𝑍𝑘 𝑁, 𝜎𝑘 𝑁, 𝐾𝑘 𝑁) 3.10 

 

𝐺𝑘 𝑁(𝑠) = 𝐾𝑘 𝑁

(𝑠 − 𝑍1𝑘 𝑁)(𝑠 − 𝑍2𝑘 𝑁)… (𝑠 − 𝑍1𝑘 𝑁)

(𝑠 − 𝜎1𝑘 𝑁)(𝑠 − 𝜎2𝑘 𝑁)… (𝑠 − 𝜎3𝑘 𝑁)
=

𝑍k N(𝑠)

𝜎𝑘 𝑁(𝑠)
 3.11 

Once all the averaged-pole transfer functions for each component are obtained, 

the temperature response of the generalized model for the whole motor can be simulated 

and its response will be compared to the experimental temperature response. To do so, 

the generalized transfer function is implemented in the Simulink control block as shown 

in Figure 3.17. The four blocks of transfer functions represent the averaged-pole transfer 

function of each component. They will be simulated with an input of step speed input 

determined by the PWM value, which replicates the condition of a motor operating under 

the continuous cycle S1 as explained in the experimental setup previously. 

 

Figure 3.17 Averaged-pole transfer function block diagram.  
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The ‘br avtf’, ‘be avtf’, ‘p.m avtf’ and ‘cs avtf’ denote the averaged-pole transfer 

functions for brush, bearing, permanent magnet, and casing respectively. In the 

temperature output section of Figure 3.17, the output temperature responses of the 

transfer function are added to the ambient temperature of the experiment which is 

controlled at 30 ℃. 

The validation will be done by comparing the experimental temperature response 

to the simulated temperature response of the averaged-pole model at several speed points. 

The comparison will be done at the five speed points at which the experiments were done. 

Nevertheless, the model can be simulated at much higher speed resolution to have a more 

continuous temperature variation observation. The model will be considered valid if the 

maximum error between the experimental temperature and simulated temperature is less 

than 10 ℃. This margin is arbitrarily chosen as any temperature measurement in practical 

application depends not only on the sensitivity and precision of the sensor element (such 

as the thermocouple junctions, which is usually high) but also on the attachment of the 

instrumentation to the component to be measured (direct surface contact, buried, thermal 

paste or thermal tape such as Kapton tape). This reduces the precision of measurement 

and increases the margin of error. Therefore, a maximum of 10 ℃ was chosen. The results 

of this comparison can be found in the results and discussion chapter 4.5.1, in Figure 4.6 

and Table 4.8. 

3.4.3 Variable-Pole Transfer Function 

In the case where the assumptions of the LTI model, where a generalized model 

using an averaged-pole transfer function model in the previous section fails to predict the 

baseline temperature within the required maximum error condition, a new generalized 

model needs to be developed considering that the system is non-LTI. Therefore, the poles 

of the systems for each component are not constant and change as the speed changes.  

The variation of the pole values will be considered to construct this new generalized 

transfer function, called the variable-pole transfer function. 
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In the context of real-time implementation, the speed, which is inputted via PWM 

voltage, will serve as the condition to alter, and adapt the value of the poles. However, 

the poles inferred from the prior experimental temperature data are confined to five 

discrete speeds. For a generalized transfer function to be valid and useful at any speed, 

the values of the poles are needed for all continuous values of speed input. Thus, the 

variation of the value of the pole regarding speed needs to be inferred by extrapolation. 

The solution chosen is to find an equation or function that describes the variation of poles 

vs speed using curve-fitting. For each component 𝑘, the pole equation will be able to 

output a new value of pole 𝜎𝑘 as the PWM speed input changes, using the function 𝜎𝑘 =

𝑓(𝑃𝑊𝑀) that it finds. 

The curve-fitting toolbox from MATLAB is used to find these functions 𝜎𝑘 =

𝑓(𝑃𝑊𝑀) . The curve-fitting toolbox constructs the mathematical functions by 

constructing a curve that has the best fit to a series of data points. The data points of input 

that are provided here are the pole values on the y-axis and PWM speed input on the x-

axis. These are the data resulting from our previous linearity analysis. The type of curve 

that the toolbox can fit the data to includes polynomials and exponential equations among 

others. The toolbox will display the fit curve visually on the data as shown in Figure 3.16. 

The graphical fit result is used to examine the graph of the fits. Depending on the variation 

tendency of the data, the chosen fit was either a polynomial curve fitter or an exponential 

curve fitter. The best-fit result was chosen based on the fits having an SSE (Sum of 

Squared Errors) which evaluates the discrepancy between the data points and a fitted 

model. The value of SSE lower than 10−5 was chosen as criteria, as a value closer to zero 

indicates a better fit, as mentioned in the literature review chapter.  
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Specifically in Figure 3.18, it shows an example of a curve-fit done to the data of 

pole values for the component bearing. The five pole values for the five different speeds 

can be seen plotted in black dots. The blue curve is the curve that has been fitted to the 

input data, where an exponential equation was chosen as the curve due to its lowest SSE 

error (of 3.89 𝑥 10−9) when compared to other types of curves. In addition, the curve 

fitter toolbox also generates an equation, as shown in Figure 3.18 in the equation section. 

This equation called the pole equation is used in a function block that adapts the value of 

the pole of our transfer function based on input speed. The results for the pole equations 

for all components can be referred to in Table 4.8 in the result and discussion chapter. 

 

Figure 3.18 Curve-fitting of the component bearing. 
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Upon completion of the pole function generation, an s-block will be created in 

Simulink where the pole function is integrated to take the speed input and return a new 

pole value for each component. The implementation of this pole function is depicted in 

Figure 3.19 (refer to Appendix G for the code in detail). Within the pole function block, 

the values of the coefficients of the equations (a, b, c, and d for the exponential equation, 

and p1, p2, and p3 for the polynomial equation), were inserted for each component based 

on the results from the curve fitter. Consequently, this pole function will generate a new 

pole, represented as the denominator, and gain, represented as the numerator, based on 

the speed input. Take an example for the brush pole function, at the brush section of the 

output of the pole function block (Figure 3.20), there are three output ports for the 

denominator (annotated as br_den0 to ber_den1), with each port representing one pole 

respectively. This is due to the selection of the third-order transfer function for the brush 

component. 

 

Figure 3.19 Pole function implemented in Simulink. 

The variable-pole transfer function that is valid for all speed 𝑁 will have the form 

of Equation 3.9 for components with first order transfer function and Equation 3.10 for 

components with a third-order transfer function: 

𝐺𝑘(𝑠) =  
𝐾𝑘(𝑁)

𝑠 + σk(𝑁)
 3.9 
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𝐺𝑘(𝑠) =  
𝐾𝑘(𝑁)

(𝑠 + σ1 k(𝑁))(𝑠 + σ2 k(𝑁))(𝑠 + σ3 k(𝑁))
 3.10 

With 𝐾𝑘(𝑁) is the function of gain of component 𝑘 in relation to speed 𝑁 and 

σk(𝑁) is the pole function (refer to Appendix F for the calculation details). 

Figure 3.20 presents a complete variable-pole transfer function block diagram 

implemented in Simulink. The pole function from Figure 3.19 can be seen integrated on 

the left side taking the speed input and calculating the corresponding pole values. The 

speed part is a PWM input that can now be set to any value between the 8-bit ranges, not 

limited to the five different speeds in earlier experiments. The varying transfer function 

block (third block from the left of Figure 3.20) used in the transfer function of the 

component section, implements a varying coefficient based on the pole function output.  

𝑏𝑛  is the transfer function numerator coefficient while 𝑎𝑛  is the transfer function 

denominator coefficient. In this model,  𝑏𝑛 represents the gain and zero coefficients while 

𝑎𝑛  represent the poles' coefficients. In the temperature output block (on the right of 

Figure 3.20), the result from the transfer function is summed with an ambient temperature 

of 30 ℃. This is done to replicate the experimental condition of a controlled ambient 

temperature at 30 ℃.  

 

Figure 3.20 Variable-pole transfer function block diagram. 
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Like the averaged-pole transfer function model, the validation of this variable-

pole model will be done by comparing the experimental temperature response to the 

simulated temperature response at several speed points. The comparison will be done at 

the five speed points at which the experiments were done. Nevertheless, the model can 

be simulated at a much higher speed resolution to have a more continuous temperature 

variation observation. The model will be considered valid if the maximum error between 

the experimental temperature and simulated temperature is less than 10 ℃, considering 

the same reasoning mentioned in the averaged-pole model section. The result and analysis 

of the variable-pole transfer function model can be found in subsection 4.5.2 in the result 

and discussion chapter.
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION  

4.1 Introduction 

This chapter presents all the results from the experiments and model simulation 

and validation explained in the methodology chapter. It provides a comprehensive 

discussion and explanation of the results from the general observation of the temperature 

response of the DC machine, the transfer function identified using the Identification 

toolbox, the system linearity analysis, and the evaluation of the averaged-pole transfer 

function and variable-pole transfer function developed. Finally, to demonstrate the utility 

of the developed transfer function model, a real-time implementation of the model to 

identify faults in the motor will also be presented, highlighting the ability of the model to 

detect anomalies in real-time.  

4.2 General Observation of The Temperature Response  

This section presents and discusses the temperature response data gathered from 

speed step input of all components at different speeds ranging from 20%, 40%, 60%, 

80%, and 100% of the nominal speed. Following the execution of continuous duty cycle 

S1 by inputting a step speed on the MY1016 DC motor, the results of temperature rise 

inside the motor are extracted. The temperature reaches the steady state at 10,800 seconds 

for all components.  
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Figure 4.1 below shows DC machines operating at 60% of the nominal speed of 

2650rpm for a sample observation. The same trend can be observed at other speeds, which 

can be referred to in Appendix H. The component that recorded the highest temperature 

is the brush due to the copper losses generated from the current that it conducts to the 

armature winding. Added to that, the friction of contact with the commutator also adds 

to the generated heat. In decreasing order, the highest temperature is reached next in the 

bearing, then the permanent magnet, and finally the casing. 

 

Figure 4.1 Temperature response data gathered at 60% of the nominal speed of 

2650rpm.  

The summary of the steady state temperature of each component at all the speed 

ranges tested is shown in Table 4.1. 

Table 4.1 The steady-state temperature °C of all components at different speeds.  

Component Speed (% of nominal speed of 2650rpm) 

 20% 40% 60% 80% 100% 

Brush 71.25°C 79°C 84.75°C 78.5°C 70°C 

Bearing 53.5°C 65°C 71°C 67.25°C 62°C 

Permanent Magnet 52.75°C 65.25°C 71.25°C 67°C 61.75°C 

Casing 52°C 64.5°C 70.5°C 66.25°C 60.5°C 
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Subsequently, the temperature variation as the speed increases can be seen in the 

graph in Figure 4.2. Rotating at higher speeds generates higher temperatures across all 

components up until 60% of the nominal speed. After that, a decreasing trend in the 

temperature is observed. As explained in the experimental setup previously, the machine 

was running with no load, and the current was verified to be negligible, at 0.7 A maximum 

across the speed range. These differences in losses could not originate from the copper 

losses due to load, where the currents were shown to be the same.  

 

Figure 4.2 Steady state temperature of the MY1016 component at different speeds.  

Therefore, the temperature rise variation can be uniquely attributed to speed-

related losses (mechanical friction, windage losses). This could be explained by losses by 

frictions, especially mechanical due to bearing that increased with speed which is viscous 

in nature and demonstrated to be non-negligible here. The temperature decrease at the 

end may potentially be due to air circulation in the machine cavity and air gap that 

increases the convection rate. These losses are demonstrated to be non-linear and difficult 

to model across the speed range. This observation justifies the modelling of the 

temperature response using a transfer function to capture both transient and steady state 

characteristics of the complex speed-dependent temperature response. The developed 

transfer function later will reflect the temperature variability due to this speed variability, 

but not load or current. It is reminded here that the objective is to develop a model that 

replicates the temperature response, without necessarily being able to physically explain 

the phenomenon, which will be a subject for a future study. 



 

 88 

4.3 Objective 1 : Transfer Function of Each Component at Different Speed 

Input  

From the temperature response gathered data in the previous subsection, the 

system identification toolbox deduces the transfer functions for each component and the 

error of each model. It was used to find the best order of transfer function model to 

represent the temperature response of every component at each speed. Table 4.2 shows 

the resulting transfer function and the MSE error for the estimated model from the 

Identification toolbox. The results shown are only for the component brush (refer to 

Appendix I for the identified transfer function of other components). The best model is 

chosen by selecting the model with the lowest MSE error across all speeds. 

Interestingly, the 1-pole model and 3-pole model consistently have the lowest 

MSE error for all speed ranges. To choose between these two pole numbers, an 

observation at the speed of 60% shows that the 3-pole model has a lower maximum MSE 

error than the 1-pole model, respectively at 0.41 and 0.65. This shows the pole 3-pole 

model is a better order for the identified transfer function model, and thus is selected to 

represent the temperature response of the component brush. The 2-pole and 4-pole model 

are too far from being precise with a huge MSE error observed.  
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Table 4.2 Identified transfer function for brush.  

No. 

of 

Pole 

Speed Transfer Function 
MSE 

error 

1 

20 
2.557e– 4

s +  3.102e– 4
 0.3202 

40 
2.454e– 4

s +  5.232e– 4
 0.2475 

60 
1.781e– 4

s +  5.156e– 4
 0.6504 

80 
1.396e– 4

s +  6.072e– 4
 0.3042 

100 
8.05𝑒– 5

s +  5.412e– 4
  0.1794 

2 

20 
– 6.06𝑒– 8

s2 +  1.757e– 3 s +  3.557e– 14
 113.9 

40 
4.607𝑒– 7

s2 +  1.908e– 2 s +  1.377e– 10
 24.23 

60 
3.215𝑒– 7

s2 +  1.806e– 2 s +  7.993e– 11
 30.16 

80 
3.487𝑒– 7

s2 +  2.883e– 2 s +  8.761e– 8
 26.96 

100 
2.001𝑒– 7

s2 +  2.521e– 2 s +  2.512e– 9
 17.91 

3 

20 
2.671𝑒– 9

s3 +  4.09e– 3 s2 +  1.184e– 5 s +  3.223e– 9
 0.2366 

40 
4.188𝑒– 9

s3 +  4.751e– 3 s2 +  1.919e– 5 s +  8.929e– 9
 0.1458 

60 
7.463𝑒– 9

s3 +  8.589e– 3 s2 +  4.725e– 5 s +  2.154e– 8
 0.4134 

80 
1.862𝑒– 9

 s3 +  8.062e– 3 s2 +  1.86e– 5 s +  8.066e– 9
 0.2525 

100 
6.679𝑒– 10

s3 +  6707e– 3 s2 +  1.198e– 5 s +  4.473e– 9
 0.1533 

4 

20 
– 1.997e– 13

s4 +  1.975e– 3 s3 +  7.221e– 6 s2 +  9.242e– 9 s +  2.108e– 22
 89.82 

40 
1.412𝑒– 12

s4 +  1.125e– 2 s3 +  3.639e– 5 s2 +  4.029e– 8 s +  2.204e– 12
 4.942 

60 
5.26𝑒– 13

s4 +  7.546e– 3 s3 +  1.794e– 5 s2 +  1.816e– 8 s +  1.169e– 12
  6.995 

80 
4.613𝑒– 13

 s4 +  6.91e– 3 s3 +  1.931e– 5 s2 +  1.752e– 8 s +  1.778e– 12
 1.67 

100 
9.125𝑒– 14

s4 +  3.578e– 3 s3 +  4.885e– 6 s2 +  1.353e– 8 s +  7.936e– 21
 18.17 
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Table 4.3 The identified transfer function at each component and each speed.  

Component Speed Transfer function MSE error 

 

Brush 

20 
2.671𝑒– 9

𝑠3 +  4.09𝑒– 3 𝑠2 +  1.184𝑒– 5 𝑠 +  3.223𝑒– 9
   0.2366 

40 
4.188𝑒– 9

  𝑠3 +  4.751𝑒– 3 𝑠2 +  1.919𝑒– 5 𝑠 +  8.929𝑒– 9
 0.1458 

60 
7.463𝑒– 9

  𝑠3 +  8.589𝑒– 3 𝑠2 +  4.725𝑒– 5 𝑠 +  2.154𝑒– 8
 0.4134 

80 
1.862𝑒– 9

  𝑠3 +  8.062– 3 𝑠2 +  1.86𝑒– 5 𝑠 +  8.066𝑒– 9
 0.2525 

100 
6.679𝑒– 10

  𝑠3 +  6.707– 3 𝑠2 +  1.198𝑒– 5 𝑠 +  4.473𝑒– 9
 0.1533 

 

Permanent 

magnet 

20 
1.471𝑒– 4

  𝑠 +  3.402𝑒– 4
 0.1186 

40 
1.695𝑒– 4

  𝑠 +  5.08𝑒– 4
 0.1145 

60 
1.274𝑒– 4

  𝑠 +  4.937𝑒– 4
 0.2324 

80 
1.024𝑒– 4

  𝑠 +  5.818𝑒– 4
 0.1658 

100 
6.118𝑒– 5

  𝑠 +  5.218𝑒– 4
 0.1214 

 

Bearing 

20 
1.494𝑒– 4

  𝑠 +  3.315𝑒– 4
 0.1271 

40 
1.693𝑒– 4

  𝑠 +  5.086𝑒– 4
 0.1185 

60 
1.279𝑒– 4

  𝑠 +  4.985𝑒– 4
 0.2252 

80 
1.028𝑒– 4

       𝑠 + 5.841𝑒– 4
 0.1599 

100 
6.227𝑒– 5

  𝑠 + 5.284𝑒– 4
 0.1198 

 

Casing 

20 
1.437𝑒– 4

  𝑠 + 3.416𝑒– 4
 0.126 

40 
1.667𝑒– 4

  𝑠 + 5.1𝑒– 4
 0.1212 

60 
1.256𝑒– 4

  𝑠 + 4.949𝑒– 4
 0.2455 

80 
1.012𝑒– 4

  𝑠 + 5.872𝑒– 4
 0.1644 

100 
5.921𝑒– 5

  𝑠 + 5.269𝑒– 4
 0.1395 
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Summarizing for all the components, Table 4.3 below shows the transfer 

functions chosen for each component and the respective values of the MSE error at all 

the five speeds points. These transfer functions are the best fit for the experimental 

temperature response data that were provided. The brush is best represented by a third-

order transfer function while the first-order transfer function is the best for all the other 

components. Despite being represented by an overdamped third-order transfer function, 

it is important to note that physically, the brush temperature does not have any possibility 

of having any oscillations or damped oscillations. The model is adopted mathematically 

to obtain the highest precision without having any physical connotation, as largely agreed 

for a surrogate model (mathematical representative model). 

Despite the low MSE error values, to better visualize the fidelity of the transfer 

function models to replicate the temperature response of the DC machine to a step input, 

a plot of response of the model compared to the experimental response was done as 

illustrated in Figure 4.3. The example plotted here is for the component brush for a speed 

of 60% (The result for the component brush is chosen to be the sample for discussion due 

to it being the point at which the maximum temperature was attained. Sampling the result 

presentation using the brush at 60% will be recurring throughout this thesis). The transfer 

function model (red line) follows the experimental temperature response (blue line) with 

sufficient precision where only 2℃ of steady-state error was observed. 

  

Figure 4.3 Temperature response of identified transfer function model for 60% of 

nominal speed for the component brush.  
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In transient response, a slight delay which is a characteristic of a system with an 

order higher than 1 can be observed. Most importantly, the steady state temperature 

estimated by the transfer function model is sufficiently precise. The same observation 

was also observed for other components, suggesting that the chosen transfer functions in 

Table 4.3 are valid. The graphs of the model-experiment comparisons for other 

components at all speeds can be found in Appendix J. 

4.4 Objective 2 Part (A) : Analysis of System Linearity  

As mentioned in subsection 3.4.1 in the methodology chapter, the identified 

transfer function was plotted in the s-plane graph to observe the poles' location in the s-

plane. The purpose is to evaluate their spread using the calculation of variance and 

coefficients of variation CV so that an assumption on the LTI nature of the system can 

be made.  

Figures 4.4 and 4.5 illustrate the plot of the pole location on the s-plane for both 

the brush (representing a 3rd-order model) and the bearing (representing a 1st-order 

model) respectively. Notice that the brush (Figure 4.4) has three poles represented as “X” 

for every nominal speed. The pole on the x-axis is a real pole while the y-axis represents 

a complex conjugate pair of poles. The poles of the brush are color-coded to represent 

their nominal speed. Red indicates 20%, blue indicates 40%, green indicates 60%, yellow 

indicates 80%, and purple indicates 100% of the nominal speed.  

 

Figure 4.4 Pole-zero map plot for the brush transfer function. 
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Figure 4.5, on the other hand, shows only one poles for the component bearing. 

Similarly, to the brush, the poles of the bearing are color-coded in the same way as well 

to represent their nominal speed. For other components, the pzmap plot can be found in 

Appendix D. 

 

Figure 4.5 Pole-zero map plot for the bearing transfer function. 

In both cases. The order of magnitude of the values of the poles are similar (in the 

order of 10−3  and 10−4  for brush and bearing respectively). This may allow an 

assumption that the poles are so close to each other that they are the same and the system 

is LTI. To quantitatively evaluate the spread of the poles’ values, the values of the 

variance and coefficients of variation CV  for all components at all speeds are reported 

in Table 4.4. 

 

 

 

 

 

 



 

 94 

Table 4.4 Pole position, average and variance of each component.  

Component Speed Poles 

Brush 

 𝝈𝑩𝒓𝒖𝒔𝒉 𝟏 𝝈𝑩𝒓𝒖𝒔𝒉 𝟏 𝝈𝑩𝒓𝒖𝒔𝒉 𝟏 

20 – 1.89𝑒– 3 + 2.67𝑒– 3𝑖 – 1.89𝑒– 3 − 2.67𝑒– 3𝑖 – 3.0𝑒– 4 

40 – 2.11𝑒– 3 + 3.54𝑒– 3𝑖 – 2.11𝑒– 3 − 3.54𝑒– 3𝑖 – 5.26𝑒– 4 

60 – 4.05𝑒– 3 + 5.18𝑒– 3𝑖 – 4.05𝑒– 3 − 5.18𝑒– 3𝑖 – 4.98𝑒– 4 

80 – 3.75𝑒– 3 + 5.73𝑒– 3𝑖 – 3.75𝑒– 3 − 5.73𝑒– 3𝑖 – 5.6𝑒– 4 

100 – 3.98𝑒– 3 – 2.22𝑒– 3 – 5.06𝑒– 4 

𝜎𝐵𝑟𝑢𝑠ℎ ̅̅ ̅̅ ̅̅ ̅̅ ̅ – 3.2𝑒– 3 + 2.4𝑒– 3𝑖 – 2.8𝑒– 3 − 2.4𝑒– 3𝑖 – 4.78𝑒– 4 

𝑆2 5.68𝑒– 6 5.57𝑒– 6 1.04𝑒– 8 

𝐶𝑉 0.74 0.84 0.22 

Bearing 

𝝈𝑩𝒆𝒂𝒓𝒊𝒏𝒈  

20 – 3.31𝑒– 4 

40 – 5.09𝑒– 4 

60 – 4.99𝑒– 4 

80 – 5.84𝑒– 4 

100 – 5.28𝑒– 4 

𝜎𝐵𝑒𝑎𝑟𝑖𝑛𝑔 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ – 4.90𝑒– 4 

𝑆2 8.97𝑒– 9 

𝐶𝑉 0.19 

Perm. 

Magnet 

𝝈𝑷𝒆𝒓𝒎.  𝑴𝒂𝒈𝒏𝒆𝒕  

20 –3.4𝑒–4 

40 –5.08𝑒–4 

60 –4.94𝑒–4 

80 –5.82𝑒–4 

100 –5.22𝑒–4 

𝜎𝑃𝑒𝑟𝑚.  𝑀𝑎𝑔𝑛𝑒𝑡 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ –4.89𝑒–4 

𝑆2 8.05𝑒–9 

𝐶𝑉 0.18 
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Table 4.4 Continued. 

Component Speed Poles 

Casing 

𝝈𝑪𝒂𝒔𝒊𝒏𝒈  

20 – 3.42𝑒– 4 

40 – 5.10𝑒– 4 

60 – 4.95𝑒– 4 

80 – 5.87𝑒– 4 

100 – 5.27𝑒– 4 

𝜎𝐶𝑎𝑠𝑖𝑛𝑔 ̅̅ ̅̅ ̅̅ ̅̅ ̅ – 4.92𝑒– 4 

𝑆2 8.31𝑒– 9 

𝐶𝑉 0.19 

From Table 4.4, the small values of variance should not be mistaken for a small 

spread. The CV value for the brush component is especially high where the maximum 

value of 0.84. In percentage, it is translated to 82% which means the standard deviation 

is at 82% equal to the mean. This level of variability is significant because it means that 

the data points are spread out over a wide range relative to the mean. Other CV for other 

components were also recorded at close to 0.2 or close to 20% which signifies a relatively 

high variability. From the pole variances observation for data from different speeds, it 

can be assumed that the thermal system of the DC machine is not linear, thus non-LTI. 

From this observation, can be decided that the best way to create a generalized 

transfer function for the motor components that is valid for all speeds is to use a variable 

pole method. As a result, the following sections will discuss the results of validation of 

the generalized transfer function model, comparing the averaged-pole and the variable-

pole transfer function. 
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4.5 Objective 2 Part (B) : Analysis of Generalized Transfer Function 

A general transfer function is a transfer function for a component that should be 

able to precisely model the temperature response across the speed range of the motor. 

This would allow the implementation of a single-node thermal model, which is beneficial 

for real-time baseline temperature monitoring. The transfer functions of each component 

at different speeds were combined into a single generalized transfer function using the 

two methods mentioned in the methodology chapter. In this subsection, an analysis and 

validation of two generalized transfer function models are presented: the averaged-pole 

transfer function and the variable-pole transfer function.  

From the previous section 4.4, the linearity analysis of the system has shown that 

the system could not be considered linear. However, the validation of the averaged-pole 

transfer function will still be done and presented in the next subsection 4.5.1 to 

demonstrate the consequence of assuming the system as linear. By doing so, the 

incapability of the averaged-pole transfer function model in precisely estimating the 

baseline temperature of the motor at different speeds will be analyzed and proven. In the 

following subsection of 4.5.2, the validation of the variable-pole transfer function will be 

presented. To complete the discussion, the variable-pole transfer function is also 

simulated and confronted with an experimental temperature response at a much higher 

speed input resolution to assess its precision across the motor speed range. 

Considering the many components at which the temperature was measured and 

modeled, the validation process presented in all the following subsections is done on the 

component brush. This selection is due to the brush’s critical role in the operation of the 

DC motors. The brush is primarily responsible for conducting current and creating 

friction with the armature winding, which can lead to excessive temperature within the 

DC machines. Therefore, its performance and behavior have a significant impact on the 

overall efficiency and state of health of the motor. The validation data for other 

components presented as a graph comparing the model output and experimental 

temperature response can be found in their respective appendix that will be mentioned in 

each subsection. 
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4.5.1 Averaged-Pole Transfer Function 

Table 4.5 shows each component's averaged-pole transfer function deduced from 

the methodology employed in chapter 3.4.2. The brush is represented by a third order 

transfer function while other components are represented by a first order transfer function 

The values of the averaged-pole transfer function were implemented in the Simulink 

block diagram to simulate the baseline temperature response of the electrical motor using 

the averaged-pole transfer function model. 

Table 4.5 Averaged-pole transfer function of each component.  

Component Averaged-Pole Transfer Function 

Brush 
3.37𝑒 − 9

𝑠3 + 6.4𝑒 − 3𝑠2 + 1.74𝑒 − 5𝑠 + 6.97𝑒 − 9
 

Bearing 
1.22𝑒 − 4

𝑠 + 4.90𝑒 − 4
 

Permanent Magnet 
1.21𝑒 − 4

𝑠 + 4.89𝑒 − 4
 

Casing 
1.19𝑒 − 4

𝑠 + 4.92𝑒 − 4
 

The validation of the averaged-pole transfer function model will assess both the 

steady state and the transient temperature response. Figure 4.4 shows the comparison at 

steady-state temperature between the experimental data and the averaged-pole transfer 

function model response for the brush (refer to Appendix K for other components). The 

comparisons were done for the speed points recorded during experiments which are at 

20%, 40%, 60%, 80%, and 100% of the nominal speed. The blue line represents the 

experimental data while the black line represents the response of the averaged-pole 

transfer function. Also plotted are the temperature differences between the experimental 

data and the averaged-pole transfer function model in red. 
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Figure 4.4 Comparison between averaged-pole transfer function vs. experimental 

temperature response at steady state temperature (brush).  

In a steady state, it is noticeable that the temperature difference initially starts 

from a negative value. As the speed increases, the temperature difference also increases. 

At 40% speed, the temperature difference in temperature estimation is zero, indicating 

that the transfer function’s estimation is accurate at this speed. It’s because the averaged-

pole transfer function for the brush part as stated in Table 4.5 and the identified transfer 

function for the brush at 40% as stated in Table 4.3 are almost the same. With a slight 

difference of 0.8𝑒– 9  for the numerator and 1.6𝑒– 3 𝑠2, 0.1𝑒– 5𝑠, 1.9𝑒– 9 for the 

denominators’ poles. However, as the speed increases beyond 40%, up to 100%, the 

temperature difference shows an increasing trend, with the transfer function 

overestimating the temperature by almost 20 ℃. This is in line with the characteristic of 

a transfer function which is LTI, thus an increasing input speed generates an increasing 

estimated temperature output. Having the experimental data that decreases at the speed 

beyond 60%, the averaged-transfer function estimation diverged away from the 

experimental temperature. To sum up, when the speed is less than 40%, the averaged-

pole transfer function tends to underestimate the temperature. Conversely, when the 

speed exceeds 40%, the averaged-pole transfer function overestimates the temperature.  
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The reason this happen due to averaging different transfer function model into 

single-node model led to loss of information. Whereas each individual speed-specific 

model can capture specific dynamics at the specific operating speed. This confirms the 

linearity analysis conclusion that was made in 4.4 previously.  

For all the components, the difference of temperature between experimental data 

and averaged-pole transfer function model at steady state at different speed are 

summarized in Table 4.6 and plotted as a bar chart in Figure 4.5 for a visual comparison. 

Among all components, the brush exhibits the most significant discrepancy, with a 

temperature difference of approximately 84 ℃  between the averaged-pole transfer 

function model and the experimental data. The temperature difference from the 

equivalent model for the brush component increases as the speed increases, like an LTI 

system is expected to behave. 

Table 4.6 The temperature difference °C of averaged-pole transfer function at 

steady state of all component at different speed. 

Component Speed (% of nominal speed of 2650rpm) 

 20% 40% 60% 80% 100% 

Brush -15°C 1°C 20°C 50°C 84°C 

Bearing -9°C -8°C -1°C 14°C 33°C 

Permanent Magnet -8°C -8°C -1°C 14°C 33°C 

Casing -8°C -8°C -1°C 14°C 32°C 
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Figure 4.5 Temperature difference between experimental and averaged-pole transfer 

function model at steady state for all components._______________________________  

In contrast, for the components such as the bearing, permanent magnet, and 

casing, the averaged-pole transfer function model underestimates the temperature at a 

lower difference of around 8 ℃ from 20% up to 40% of the nominal speed. At 60% of 

the nominal speed, the averaged-pole transfer function model accurately estimates the 

steady-state temperature with an error of only 1 ℃ for all components, unlike the brush 

which is precise at 40%. In the same way as the brush for a speed beyond 60%, the 

equivalent model overestimates the temperature as the speed increases.  

The errors of temperature estimation in terms of percentage are also reported in 

Table 4.7 below. With these errors in steady-state, this indicates that the averaged-pole 

transfer function model which is LTI cannot replicate the thermal response of the motor 

which the system is non-linear. 

Table 4.7 Steady-state temperature estimation error from Figure 4.5 in percentage. 

Component Speed (% of nominal speed of 2650rpm) 

 20% 40% 60% 80% 100% 

Brush  -22.7% 1.7% 25% 66.3% 124.7% 

Bearing -18.5% -13.3% -1.6% 22.5% 55.7% 

Permanent Magnet -17.3% -13.6% -2.1% 22.2% 55.6% 

Casing -16.9% -13.6% -2.5% 21.7% 56.2% 
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Moving on to the validation in the transient phase, Figure 4.6 shows the transient 

state temperature comparison done at the time constant (𝜏 = 2160  seconds) for the 

component brush (The comparison graph for other components can be found in Appendix 

L). The blue line represents the experimental data while the black line represents the 

response of the averaged-pole transfer function. Also plotted are the temperature 

differences between the experimental data and the averaged-pole transfer function model 

in red. 

 

Figure 4.6 Comparison between averaged-pole transfer function vs. experimental 

temperature response at transient temperature (brush).  

Upon closer inspection, the comparison conducted during the transient phase 

reveals that the averaged-pole transfer function model underestimates the temperature at 

the initial condition at approximately 3 ℃ lower until it reaches 40% of the nominal 

speed. As the speed increases, the model overestimates the temperature, reaching a 

discrepancy of nearly 20 ℃ when operating at 100% of the nominal speed. This 

observation in transient state response is like what has been observed in the steady state 

previously. 
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The summary of the temperature difference between experimental data and 

averaged-pole transfer function model simulation at the transient state of each component 

at different speeds is shown in Table 4.8 and plotted as a bar chart in Figure 4.7 for a 

visual comparison. 

Table 4.8 The temperature difference °C of the averaged-pole transfer function at 

the transient state of all components at different speeds. 

Component Speed (% of nominal speed of 2650rpm) 

 20% 40% 60% 80% 100% 

Brush -3°C -2°C 8°C 27°C 50°C 

Bearing -3°C -6°C -1°C 7°C 21°C 

Permanent Magnet -14°C -6°C -1°C 7°C 21°C 

Casing -3°C -6°C -1°C 7°C 21°C 

 

 

Figure 4.7 Temperature difference between experimental data and averaged-pole 

transfer function model at transient state for all components.  

As depicted in Figure 4.7, the temperature difference between experimental data 

and averaged-pole transfer function model at the transient phase for all components was 

plotted. The averaged-pole transfer function model underestimates the temperature at the 

lower speed until the system reaches 40% of the nominal speed. The maximum 

temperature difference for all components occurs at 100% of the nominal speed, with the 

brush component leading the others with a discrepancy of 30 ℃. The temperature 

difference at 60% of the speed is almost negligible for all components except for the 

brush.  
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The errors of transient-state temperature estimation in terms of percentage are 

also reported in Table 4.9 below. With these errors, the averaged-pole transfer function 

model which is LTI cannot replicate the thermal response of the motor in a transient state 

like in a steady state. 

Table 4.9 Percentage error between experimental data and averaged-pole transfer 

function model at transient state for all components from Figure 4.7.  

Component Speed (% of nominal speed of 2650rpm) 

 20% 40% 60% 80% 100% 

Brush -8.2% -4.2% 13.7% 48.4% 102.3% 

Bearing -8.2% -11.4% -1.7% 13.5% 41.8% 

Permanent Magnet -27.4% -11.7% -2.1% 13.2% 42.1% 

Casing -7.5% -11.6% -2.2% 12.8% 42.4% 

In conclusion, the estimated baseline temperature of the motor components using 

the averaged transfer function has too large errors and inconsistency in both steady state 

and transient state temperature. The non-linear nature of the motor thermal system in 

response to speed input cannot be approximated by averaging the poles of the transfer 

functions of the components at different speeds.  
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4.5.2 Variable-pole Transfer Function 

Variable-pole transfer function is the method where a generalized transfer 

function model with adaptive pole values that depend on the speed was constructed based 

on the variable pole function generated from curve fitting. To recall the method, 

subsection 3.4.3 can be referred to. Table 4.10 below presents the functions obtained by 

curve fitting to describe the variation of the pole and gain values regarding speed for each 

component. The symbol 𝜎̅   and 𝐾̅  signifies the pole function and the gain function 

respectively. The term ‘fit type’ indicates the type of function. Within the pole and gain 

functions, the letters a, b, c, and d are used for the coefficients of the exponential function, 

while p1, p2, and p3 are used for the coefficients of the polynomial function.  

Table 4.10 Function for variable-pole position for each component.  

 

As observed in the table, the complex conjugate pole pair for the brush 𝜎̅1𝑖 and 

𝜎̅2𝑖 functions have the highest SSE of 5.90e-6. Conversely, the bearing pole function has 

the lowest SSE, estimated at 3.89e-9. The brush gain function exhibits the lowest SSE at 

1.14e-17, while the other components have higher SSE errors at a magnitude of order of 

1e-9. The pole function is represented by mostly exponential functions except for the 

third pole and the two complex poles of the brush which are represented by polynomial 

functions. All the gain functions are exclusively represented by the polynomial function. 

Overall, all the poles and gain are well-fitted with all the errors are extremely small (lower 

than 10−5). 
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Moving on to the validation process of the variable-pole transfer function model, 

the implementation of these variable-pole functions is validated in comparison to the 

experimental data both at steady state and transient state. Figure 4.8 shows this 

comparison between at steady state for the component brush. For other components, the 

comparison can be found in Appendix M. The comparison is done at the five speed points 

from 20% to 100% of the nominal speed. The blue line represents the experimental data, 

while the black line represents the response of the variable-pole transfer function model. 

Additionally, the absolute temperature difference between the experimental data and the 

variable-pole transfer function model is also plotted in red. 

 

Figure 4.8 Comparison between variable-pole transfer function vs. experimental 

temperature response at steady state temperature (brush).  

It can be observed that the variable-pole transfer function model barely 

underestimates the temperature response of the component brush at 20% and 40% of the 

nominal speed with an estimation error of less than 2℃. The generalized model accurately 

predicts the temperature response at 60% before largely overestimating the temperature 

at 80% of the nominal speed with an observed error of 10 ℃. 80% speed is the speed at 

which the maximum estimation error is observed, after which the estimation becomes 

precise again at 100% of the nominal speed with zero error observed. The variable-pole 

transfer function model can be seen following the trend of increasing temperature as the 

speed first increases, then decreasing temperature towards the end. The variation of the 

pole, adapted to the speed input has managed to allow the temperature estimation to 

follow the change in direction and be more precise.  
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However, the turning point at which the temperature variation changes its slope 

after 60% of the nominal speed is a complex behavior that cannot be captured even by 

the adaptive pole. It may be suggested that if the sampling of temperature were done at 

more speed points, the change of temperature slope may be better captured. The influence 

of the sampling resolution for model construction is however out of our research scope 

and will be done in a future study. Nevertheless, to properly test this variable-pole transfer 

function model, it will also be confronted to a comparison with an experimental 

temperature taken at different speeds, other than the original five speed points of 20%, 

40%, 60%, 80%, and 100%. This will be presented later in subsection in 4.5.3. 

The summary of the temperature difference between experimental data and the 

variable-pole transfer function model at steady state for all the components of the motor 

at different speeds is reported in Table 4.11 and plotted as a bar chart in Figure 4.9 for a 

visual comparison. The individual comparison graph can be found in Appendix M. 

Table 4.11 The temperature difference °C of the variable-pole transfer function at 

steady state for all components at different speeds. 

Component Speed (% of nominal speed of 2650rpm) 

 20% 40% 60% 80% 100% 

Brush -2.3°C -1°C -0.4°C 10.5°C 0.3°C 

Bearing 2.4°C -2.5°C -4.1°C 0.4°C 4.4°C 

Permanent Magnet 2.3°C -2.6°C -4.2°C 0.4°C 4.6°C 

Casing 2.3°C -2.5°C -4.3°C 0.2°C 4.8°C 
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Figure 4.9 Temperature different between experimental and variable-pole transfer 

function model for all components at steady state.  

Figure 4.9 illustrates the temperature difference between the experimental data 

and the variable-pole transfer function model for all components in a steady-state 

scenario. It is observed that the variable-pole transfer function model overestimates the 

temperature for the components bearing, permanent magnet, and casing at 20% and 100% 

of the nominal speed, and it underestimates the temperature of the same components at 

40% and 60% of the nominal speed. For these components, across the range of speed 

variations, the temperature difference was less than 5 ℃ , and the model precisely 

predicted the temperature at 80% of the nominal speed.  

Exceptionally for the brush, its temperature response exhibits the maximum 

temperature difference observed at 80% of speed with a temperature difference of 10 ℃. 

It is the less precise when other components exhibit the most precise estimation. This 

shows that, unlike other components, the brush pole function may need to be improved 

by reducing the curve-fitting SSE error. It is in accordance with the observation made 

from Table 4.10 where the highest SSE errors were identified in brush pole functions. So, 

despite the high SSE error condition of less than 10-5, the pole function of the brush 

generated a temperature response that has a 10 ℃  of temperature difference in 

comparison to the experimental data.    
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The errors of steady-state temperature estimation in terms of percentage are also 

reported in Table 4.12 below. With these errors, the variable-pole transfer function model 

which is shown to be able to replicate the thermal response of the motor in a steady state. 

The brush estimation difference at 80% of speed may seem high at 13.7%, but in absolute 

temperature, it reflects only a difference of 10 ℃. At a higher ambient temperature, the 

percentage would have been much lower.  

Table 4.12 Similarity percentage between experimental and variable-pole transfer 

function model for all components at steady state.  

Component Speed (% of nominal speed of 2650rpm) 

 20% 40% 60% 80% 100% 

Brush -3.3% -1.4% -0.5% 13.7% 0.5% 

Bearing 4.6% -4.1% -6% 0.6% 7.5% 

Permanent Magnet 4.6% -4.2% -6.1% 0.7% 7.7% 

Casing 4.6% -4% -6.3% 0.4% 8.2% 
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Moving on to the validation in transient phase, Figure 4.10 provides a comparison 

of transient temperatures at a time constant (𝜏 = 2160 seconds) for the component brush. 

(Refer to Appendix N for other components). The experimental data temperature is 

represented by the blue line, while the variable-pole transfer function model estimated 

temperature is depicted by the black line. Additionally, the figure also includes a plot of 

the temperature differences between the experimental data and the variable-pole transfer 

function model, which is represented in red line.  

 

Figure 4.10 Comparison between variable-pole transfer function vs. experimental 

temperature response at transient temperature (brush).  

The variable-pole transfer function model demonstrates a commendable ability to 

track the variation of the temperature response of the DC machines, even during the 

transient state. This observation is particularly noteworthy, as the equivalent model 

accurately predicts the temperature response at three distinct speeds: 20%, 60%, and 

100% of the nominal speed with no errors observed.  

However, it is important to note that the model does not perform uniformly across 

all speeds. Similar to the steady state response, the model underestimates the temperature 

at 40% of the nominal speed by approximately 3 ℃ and overestimates the temperature 

by 8 ℃ at 80% of the nominal speed which is the highest estimation error observed. 

Despite these discrepancies, the model’s temperature differences do not exceed the 

maximum temperature differences at the steady state, which shows its overall reliability. 
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 The summary of the temperature difference between experimental data and the 

variable-pole transfer function model at the transient state of all components at different 

speeds is shown in Table 4.13 and plotted in a bar chart for visual comparison in Figure 

4.11. 

Table 4.13 The temperature difference °C of variable-pole transfer function at 

transient state of all component at different speed. 

Component Speed (% of nominal speed of 2650rpm) 

 20% 40% 60% 80% 100% 

Brush -0.2°C -2.8°C 0.2°C 8°C 0.1°C 

Bearing 1.5°C -2.4°C -1.8°C -0.4°C 3.5°C 

Permanent Magnet -9.6°C -2.5°C -2°C -0.4°C 3.6°C 

Casing 1.5°C -2.5°C -2°C -0.6°C 3.8°C 

 

 

Figure 4.11 Temperature difference between experimental data and variable-pole 

transfer function model at transient state for all components.  

In general, the brush’s variable pole transfer function performs better where 

negligible temperature differences were noted with the exception at 80% of speed. Other 

components’ models generate errors that are nonetheless acceptable of lower than 4 ℃ 

except for the permanent magnet. At 20% of speed, the variable-pole transfer function of 

the permanent magnet underestimates its temperature by 9 ℃. It is however not disturbing 

as it is still lower than a difference of 10 ℃. Added to that, it is observed at the lowest 

speed and in transient which is a lower temperature than at steady state and at other higher 

speed.    
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The errors of transient-state temperature estimation in terms of percentage are 

also reported in Table 4.14 below. With these errors, the variable-pole transfer function 

model is shown to be able to replicate the thermal response of the motor in the transient 

state as well as seen for the steady state previously. The brush and permanent magnet 

estimation difference of -18.4% and 14% may seem large, but in absolute temperature, it 

reflects only a difference of respectively 9 ℃ and 8 ℃. At a higher ambient temperature, 

the percentage would have been much lower. It is worth noting that for temperature 

estimation purposes, an overestimation is safer than an underestimation as confirmed that 

the maximum degrading temperature is not yet attained. However, it prevents the system 

from operating at its maximum allowable temperature. 

Table 4.14 Similarity percentage between experimental data and variable-pole 

transfer function model at transient state for all components.  

Component Speed (% of nominal speed of 2650rpm) 

 20% 40% 60% 80% 100% 

Brush -0.6% -4.8% 0.5% 14% 0.1% 

Bearing 3.6% -4.7% -3.4% -0.8% 7% 

Permanent Magnet -18.4% -4.9% -3.6% -0.8% 7.3% 

Casing 3.8% -4.9% -3.7% -1.1% 7.7% 

In conclusion, the variable-pole transfer function model has demonstrated its 

ability to accurately model the temperature response of the DC machines in both steady 

state and transient state scenarios with the acceptable temperature differences of less than 

10 ℃. Therefore, it can be confidently used as a reliable model for estimating electrical 

machine baseline temperature across different speed ranges and can be implemented in 

real-time applications.  

4.5.3 Test Validation for Model Robustness at Different Speed Points 

From the previous chapter, the variable-pole transfer function was validated. The 

validation was done at 5 different speeds. To further check its robustness, the model is 

confronted with a test at different speeds which were not used in the variable-pole 

function development. Running the model in real-time and comparing it to the 

temperature measured is here done for a speed increment of 10%. 
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 Figure 4.12 shows the comparison between the baseline temperature estimated 

by the variable-pole transfer function model (in red line) and the temperature measured 

on the machine (in black line) at steady state on the component brush. The increment of 

10% of speed makes up to a total of 10 speeds at which the temperature can be compared.  

 

Figure 4.12 Comparison between equivalent model vs. experimental data at different 

speed point (brush).  

Noted that the estimated baseline temperature follows the general trend of the 

measured temperature. With the variable pole function defined at an interval of 20% 

speed, the estimated temperature exhibits an LTI characteristic in each 20% interval. For 

example, from the speed of 60% to 80%, the increasing temperature trend sustains, failing 

to capture the already changing trend (from a positive slope to a negative slope) in the 

measured temperature. So, instead of having a maximum temperature at 60% of speed as 

in the measured temperature, the model gives an estimation of a maximum temperature 

achieved at 80% of speed. It is however noteworthy to remark that despite the difference 

in speed at which the maximum temperature is achieved, the value of the maximum 

temperature is the same at 87 ℃.  

The equivalent model accurately predicts the temperature response of the DC 

machines at 30% and 70% of the nominal speed. This precision provides a significant 

advantage when conducting condition monitoring of electrical machines at lower and 

medium speeds. Underestimation occurs between 40% and 60% of speed, but the 
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difference is smaller than 10 ℃. It is important to observe that the maximum temperature 

difference was recorded at 90% of the nominal speed, with a deviation of approximately 

20 ℃ overestimation. The speed of 90% is a speed that was not sampled for the 

construction of the variable pole function. It is therefore clear that to develop a model 

that estimates the baseline temperature precisely across the speed, more sampling is 

needed to develop the variable-pole transfer function. At 5 samples, the model is 

unreliable with a 20 ℃ overestimation observed. 

It can also be remarked that the difference between the model and the measured 

temperature is slightly different from what has been presented during validation at 

previously sampled speed (of 20% increments) in Figure 4.8.  The experimental 

temperature is different from the one presented in Figure 4.8 due to a potential variation 

of thermocouple placements and attachment. To have a robust estimation, the positioning, 

and the attachment of the thermocouple during data acquisition for model development 

need to be consistent with the one that will be used during the monitoring application. 

The variability of the differences (between measured and estimated temperature) due to 

uncertainties of thermocouple positioning and attachment will be another subject for a 

future study.   

4.6 Objective 3 : Usage of Generalized Transfer Function in Fault Detection 

Having validated the model in previous sections (except at 90% of speed due to 

the robustness of the model at higher speed resolution), an implementation case is going 

to be demonstrated in this last section. The objective is to demonstrate the usability of the 

baseline temperature estimation model (variable-pole transfer function model) in 

detecting anomalies in faulty DC machines. The faults in detail were explained in the 

methodology chapter (3.2.5). The idea is that anomalies can be detected if the measured 

temperature differs from the estimated baseline temperature. To do so, experimental 

temperature data of healthy machine, and machine with faulty bearings and faulty brushes 

were taken at different speeds.  
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Figure 4.13 shows the steady-state temperature response of the DC machine at 

three different states of health, monitored on the brush. The magenta line represents the 

DC machine with degreased bearing, the blue line represents the machine with broken 

brush and lastly the black line represents the healthy motor. 

 

Figure 4.13 Comparison between healthy and faulty DC machines (brush).  

It can be observed that the DC machines with degreased bearings (magenta line) 

exhibited the highest temperature throughout the speed range. The temperature difference 

between the motor with degreased bearing and the healthy motor is approximately 5 ℃ 

from 10% to 70% of the nominal speed. It can be said that despite a consistently higher 

temperature, the difference is minimal. However, from 80% to 100% of the nominal 

speed, the temperature difference increased as the speed increased, indicating that the 

friction in the bearing generates much higher losses, and is transferred to the brush. This 

is consistent with a friction-generated force which is viscous, thus increasing with the 

square of the speed. So, despite the decrease in temperature exhibited by the healthy 

motor (better convection at higher speed), the temperature decrease is much slower in the 

faulty machine. 

The temperature response of the motor with a broken brush (blue line) presents a 

similar temperature to a healthy motor until 40% of speed, after which the temperature 

becomes lower with a difference of close to 4 ℃, located at 60% of speed. It is also the 

speed at which the maximum temperature is achieved. Similar to the bearing fault, the 

temperature difference with the healthy machine increases towards higher speed 



 

 115 

indicating an increase in losses with speed. This can be explained by the less smooth 

contact between the brush and commutator caused by the chipped brush surface. As in 

frictional generated losses, friction forces are viscous and increase with the square of the 

speed. Therefore, the same remark as in the bearing fault is also true here. The only 

difference is that the degreased bearing temperature is higher than the broken brush 

temperature.    

In practical implementation, the temperature of the machine in Figure 4.13 will 

be plotted and compared with the baseline temperature estimated by the variable-pole 

transfer function. Figure 4.14 shows this comparison for the component brush. The 

comparison for other components can be found in Appendix O. Added to the previous 

graph is now the baseline estimated temperature in the red line.  

 

Figure 4.14 Comparison between variable-pole transfer function model vs. healthy 

and faulty DC machines (brush).  

In Figure 4.14, it is observed that in general, the variable-pole transfer function 

model (called here the equivalent model for short) overestimates the temperature at the 

lower (< 20%) and upper speed (> 80%) ranges, while it underestimates at the middle 

speeds. Just like in Figure 4.12, the equivalent model accurately predicts the temperature 

response of the DC machines at 30% and 70% of the nominal speed. The temperature at 

0% and 100% speed are interesting speed points that can be considered for anomaly 

detection. A proposition for its usage can take the following form:  
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During steady-state operation, electrical machines typically operate at full-rated 

speed (100%). A measurement of temperature that shows a brush temperature higher than 

the estimated baseline temperature would indicate an occurrence of a fault. However, 

confirmation on which fault between the brush and bearing fault cannot be definitively 

identified because the temperature difference between the two faults of less than 5 ℃  

from our experiments (Figure 4.14) may be too small, considering other uncertainties. 

All those knowns are that a fault occurs. 

To distinguish the bearing fault from the brush fault, the temperature at 70% of 

speed may be used. Running at 70% speed, it can be seen from Figure 4.14 that the brush 

fault has a lower temperature than the healthy machine, while a bearing fault has a higher 

temperature. This comparison would allow a distinction between the 2 faults.  

Figure 4.15 below shows the summary of the temperature difference between the 

equivalent model versus healthy and faulty DC machines extracted from Figure 4.14 in a 

bar chart. The useful speed point of 100% and 70% speed can be seen exhibiting the 

useful characteristics previously mentioned.  

 

Figure 4.15 Temperature differessnce between variable-pole transfer function vs. 

faulty and healthy DC machines (brush).  
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Another component where anomaly detection can be done is in the component 

casing. This observation can be seen in Figure 4.16, which clearly shows that the 

temperature response of both faulty motors exceeded that of the healthy motor starting at 

as low as 30% of speed and continuing to increase as the speed increased.  

 

Figure 4.16 Comparison between variable-pole transfer function model vs. healthy 

and faulty DC machines (casing).  

The equivalent model for the casing provides an accurate estimation of the 

temperature response at the intermediate stage, specifically within the speed range of 30% 

to 70% of the nominal speed. However, it overestimates the temperature response at the 

lower and higher speed ranges. While the differences between the brush and bearing fault 

are small across the speed range below 90%, the temperature difference between both the 

faulty motors and the healthy motors exceeds 5 ℃ at all speeds starting from 30%. The 

highest temperature recorded was approximately 75 ℃ at 70% of the nominal speed for 

the motor with a decreased bearing. A proposition for the usage of the estimated 

temperature on the casing can take the following form: 

The equivalent model can be effectively utilized for anomaly detection when the 

motor operates within a speed range of 30% to 70%. If the temperature reading at the 

casing exceeds the equivalent model by 5 ℃, it is indicative of a fault. This method is 

employed for early fault detection in electrical machines. However, it can pose a 

challenge to pinpoint the specific type of fault, whether it is a brush or a bearing fault. To 

classify the fault, a method using temperature readings at the brush component that was 

previously discussed can be implemented.  
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Figure 4.17 below shows the summary of the temperature difference between the 

equivalent model versus healthy and faulty DC machines extracted from Figure 4.16 in a 

bar chart. The useful speed point between 30% and 70% speed can be seen exhibiting a 

higher temperature of more than 5 ℃ as previously mentioned.  

 

Figure 4.17 Temperature difference between variable-pole transfer function vs. faulty 

and healthy DC machines (casing). 

Based on all the obtained results, it can be inferred that the application of the 

generalized transfer function as an anomaly detection tool is feasible. It will alarm the 

user to trigger a more in-depth diagnostic process or maintenance. Therefore, a scheduled 

preventive maintenance process could be reduced, decreasing the total down time and 

maintenance cost. 
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CHAPTER 5 

 

 

CONCLUSION 

5.1 Introduction 

The use of DC machines will continue to grow as industries strive to meet their 

green and sustainability goals through electrification. To ensure a long lifespan and 

reliable performance, it is crucial to prevent overheating of the machines. It is even more 

advantageous to detect anomalies before the maximum temperature is reached, 

particularly when the machine is operating at lower speeds and under low or no-load 

conditions. Therefore, the motivation of this study is to explore a potential solution for 

estimating the baseline temperature of the machine when it operates at any speed, starting 

with no-load conditions. The estimated baseline temperature can then be compared to the 

measured temperature and the discrepancy between the two can serve as an anomaly 

detection. 

The development of this baseline temperature estimation was done using transfer 

functions due to its ability to represent the temperature response to a speed input using a 

single block which can be implemented easily in real time. Addressing the first objective, 

the identification of the transfer function of different motor components (brush, bearing, 

permanent magnet, and casing) running with no load at 5 speed samples was done using 

the Identification Toolbox by MATLAB. The brush was best represented by a 3rd order 

transfer function, while a 1st order transfer function is sufficient to represent other 

components. The transfer functions of each component at different speeds were found to 

not obey the LTI system assumption after a linearity analysis due to the complex nature 

of heat transfer in the DC machine.     
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Following the observation, the second objective was addressed by developing a 

generalized transfer function that can represent the temperature response of the machine 

at any speed. Using an averaged-pole transfer function, the validation test shows a non-

acceptable estimated temperature which is expected because the system was found 

previously to be non-LTI. The baseline temperature estimation error increases as the 

speed increases. The poles of the generalized transfer function need to be adaptable 

depending on the speed. Therefore, in the second method, the pole values of the transfer 

function are generated by a pole function that was defined using mathematical equations 

deduced from a curve fitting. The validation shows that the trends of the temperature 

response exhibited by the model follow the one observed in the experimental data. The 

precision was validated after observing a maximum steady state estimation error of 10 ℃ 

at 80% of the motor's nominal speed. At the transient state, the estimation error is much 

lower at 8 ℃ when the motor speed is also 80%. The variable-pole transfer function was 

chosen and can be refer at Table 4.10. Meanwhile, for the specific chases that conducted 

same as the experiment in data generation, the identified transfer function  in Table 4.3 

can be used as model. A robustness test confronting the model to a higher speed sampling 

resolution at a 10% speed increment was also done. It was shown that a higher number 

of speeds at which the temperature response was sampled for transfer function 

identification can increase the model temperature estimation. 

In the last objective, the validated variable-pole transfer function model was 

confronted with an anomaly detection feasibility test where its temperature response was 

compared to the temperature response of machines with broken brushes and degreased 

bearings. The comparison shows that the casing temperature response can be used, where 

a higher measured temperature in comparison to the estimated temperature by the model 

of more than 5 ℃ in the speed range of 30% - 70% indicates an occurrence of a fault. A 

further distinction between brush and bearing fault can be made by looking at the 

temperature on the brush at a speed of 70%. A bearing fault would be indicated by a 

higher estimated temperature while a brush fault would be indicated by a lower 

temperature. This observation proves that the concept of anomaly detection and fault 

identification using the baseline temperature model is feasible.  
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Finally, to conclude, several remarks can be made concerning the positioning of 

the results obtained in this study in comparison to previous findings and development in 

literature reviews. For comparison, (Ray et al., 2020), an algorithm for loose brush 

contact was developed with a 1.5-second delay in fault detection whereas our model can 

instantly signal anomalies via discrepancies of baseline estimated temperature in 

comparison to measured temperature. The development and monitoring using the 

algorithm itself need current measurement instrumentation which is much more 

expensive than thermocouples. In comparison to studies employing artificial intelligence 

such as neural networks (Benedik et al., 2015 and Silva et al., 2023), this study does not 

need a huge amount of historical data. A baseline temperature model was constructed 

from a new healthy model.  

5.2 Perspectives 

This thesis has made significant contributions to the development of a baseline 

temperature response model of an electric machine, using a generalized transfer function. 

Despite these advancements, there are still areas of research that could be explored in 

future studies to expand the work presented herein. These potential avenues for further 

investigation can be categorized as follows:   

1. Increase sampling experimental data: The development of the transfer function in 

this thesis was based on 5 points speed sampling of the nominal speed. To enhance 

the model’s predictive accuracy for motor temperature, it is recommended to 

increase the sampling of experimental data used in the model’s development. This 

could include expanding the sample data to 10, 15, 20, 25, and 30 data points. 

2. Implement transfer function model to motor under load condition: The model 

presented in this thesis was developed and studied based on a DC machine 

operating under no-load conditions. For future research, it would be useful to 

develop and study the model on a DC machine under varying load conditions, 

with a magnetic brake attached as load. This would allow for an examination of 

the model’s capability to predict the temperature response of the DC machines, 

as well as an investigation into the characteristics of the temperature response 



 

 122 

when a load is applied. The input in this case would be multiple, the speed and 

the load which will be more complex to treat. 

3. Implement transfer function model on various motors: This thesis has observed a 

complex speed-dependant phenomenon in the temperature response of the 

MY1016 motor, which exhibits an increasing trend from the initial to the middle 

state of nominal speed, followed by a decreasing trend until the final state of 

nominal speed. This is likely due to the complex internal structure of the DC 

machines. Therefore, it would be of interest to study the temperature response in 

motors with more complex structures, such as fan-cooled motors or totally 

enclosed motors. Concurrently, the transfer function model could be evaluated for 

its ability to accurately predict and follow the trend of the temperature response 

in these electric machines.
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Appendix A: IEC Electric machines Duty Cycle 

 

Continuous Duty Cycle. 

Where 𝑃  is load, 𝑃𝑣  is electrical losses, 𝜃  is temperature, 𝜃𝑚𝑎𝑥  is maximum 

temperature attained and 𝑡 is time. 
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Appendix B: Simulink Block Diagram.  

 

Encoder setup in s-function builder. 

Encoder Code 

/* Includes_END */ 

#include<math.h> 

#ifndef MATLAB_MEX_FILE 

#define ARDUINO 100 

#define “Arduino.h” //Library header to run on Arduino 

int ENCODER_PIN_A=2; //Encoder pin A connect to pin 2 

void isr();//Declare function pulse counting positive only 

void PWM();//Declare function encoder read 

volatile long pulseCount=0; //Initial value pulse 

float rpm=0;//Initial value RPM 

unsigned long lasttime=0;//Time of last sample 

int RPM;//Declare RPM  

void isr(){//Function pulse counting positive only 

pulseCount++; 

} 

void PWM(){//Function encoder read 

if (millis()-lastime >=250){ 

noInterrupts(); 

rpm=((float)pulseCount/500)*(60000.0/millis()-lasttime)); 

pulseCount=0; 

lasttime=millis(); 

interrupts(); 
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rpm; 

} 

} 

#endif 

/* Includes_END */ 

/* Externs_END */ 

void encoder_Start_wrapper(real_T *xD) 

{ 

/* Start_BEGIN */ 

/* Start_END */ 

} 

void encoder_Outputs_wrapper(real_T *RPM, 

                           const real_T *xD) 

{ 

/* Output_BEGIN */ 

if(xD[0] == 1)  // void loop()  

{ 

    #ifndef MATLAB_MEX_FILE// basic readout test, just print the current temp 

    PWM(); 

    RPM[0]= rpm; 

    #endif      

} 

/* Output_END */ 

} 

void encoder_Update_wrapper(real_T *RPM, 

                            real_T *xD) 

{ 

/* Update_BEGIN */ 

if(xD[0] != 1) // void setup() 

{ 

    #ifndef MATLAB_MEX_FILE// use Arduino pins    

        pinMode(ENCODER_PIN_A, INPUT); 

        attachInterrupt(digitalPinToInterrupt(ENCODER_PIN_A), isr, RISING); 

    #endif//done with initialization 

    xD[0] = 1;  

} 

/* Update_END */ 

} 

void encoder_Terminate_wrapper(real_T *xD) 

{ 

/* Terminate_BEGIN */ 

/* Terminate_END */ 

} 
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MAX6675 setup in s-function builder. 

MAX6675 Code   

/* Includes_BEGIN */ 

  #include <math.h> 

  #ifndef MATLAB_MEX_FILE 

  #define ARDUINO 100 

  #include “Arduino.h”//Library header file to run code on Arduino 

  #include “max6675.h”// Library header file to run MAX6675 

  #include “max6675.cpp”//Equations for MAX6675 type K thermocouple 

    int thermoDO1 = 35;// Pin 35 

    int thermoCLK1 = 31;// Pin 31 

    int thermoDO2 = 45;// Pin 45 

    int thermoCLK2 = 41;// Pin 41 

    int thermoDO3 = 47;// Pin 47 

    int thermoCLK3 = 51;// Pin 51 

    int thermoCS3 = 29;// Pin 29 Thermocouple 1 

    MAX6675 thermocouple3(thermoCLK2, thermoCS3, thermoDO2);  

    int thermoCS3 = 33;// Pin 33 Thermocouple 2 

    MAX6675 thermocouple3(thermoCLK2, thermoCS3, thermoDO2);  

    int thermoCS4 = 39;// Pin 39 Thermocouple 3 

    MAX6675 thermocouple4(thermoCLK2, thermoCS4, thermoDO2);   

    int thermoCS4 = 43;// Pin 43 Thermocouple 4 

    MAX6675 thermocouple4(thermoCLK2, thermoCS4, thermoDO2);   

    int thermoCS5 = 49;// Pin 49 Thermocouple 5 

    MAX6675 thermocouple5(thermoCLK3, thermoCS5, thermoDO3);   

#endif 

/* Includes_END */ 

/* Externs_END */ 
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void max6675_probe_Start_wrapper(real_T *xD) 

{ 

/* Start_BEGIN */ 

/* Start_END */ 

} 

void max6675_probe_Outputs_wrapper(real_T *Brush, 

                                   real_T *Bearing, 

                                   real_T *Magnet, 

                                   real_T *Body, 

                                   real_T *Ambient, 

                                   const real_T *xD) 

{ 

/* Output_BEGIN */ 

if(xD[0] == 1)  // void loop()  

{ 

    #ifndef MATLAB_MEX_FILE// basic readout test, just print the current temp 

        Brush[0]=thermocouple1.readcelsius();//Thermocouple1 

        Bearing[0]=thermocouple2.readcelsius();//Thermocouple2 

        Magnet[0]=thermocouple3.readcelsius();//Thermocouple3 

        Body[0]=thermocouple4.readcelsius();//Thermocouple4 

        Ambient[0]=thermocouple5.readcelsius();//Thermocouple5 

    #endif      

} 

/* Output_END */ 

} 

void max6675_probe_Update_wrapper(real_T *Brush, real_T *Bearing, real_T 

*Magnet, 

                                  real_T *Ambient, 

                                  real_T *xD) 

{ 

/* Update_BEGIN */ 

if(xD[0] != 1) // void setup() 

{ 

    #ifndef MATLAB_MEX_FILE// use Arduino pins  

        pinMode(thermoCS1,OUTPUT);digitalWrite(thermoCS1,HIGH); 

        pinMode(thermoCS2,OUTPUT);digitalWrite(thermoCS2,HIGH); 

        pinMode(thermoCS3,OUTPUT);digitalWrite(thermoCS3,HIGH); 

        pinMode(thermoCS4,OUTPUT);digitalWrite(thermoCS4,HIGH); 

        pinMode(thermoCS5,OUTPUT);digitalWrite(thermoCS5,HIGH); 

    #endif//done with initialization 

    xD[0] = 1;  

} 

/* Update_END */ 

} 

void max6675_probe_Terminate_wrapper(real_T *xD) 

{ 

/* Terminate_BEGIN */ 

/* Terminate_END */ 

} 
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Appendix C: System Identification Toolbox.  

 

Estimation transfer function. 

 

 

Result estimation of transfer function. 
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Appendix D: System Linearity.  

 

S-plane graph of permanent magnet. 

 

 

S-plane graph of casing. 

 

 



 

 147 

Appendix E: Calculation for Averaged-pole Transfer Function.  

Transfer function for brush at varying speed. 

𝐺𝑏𝑟𝑢𝑠ℎ 20%(𝑠) =
𝐾

(𝑠 + 𝜎1)(𝑠 + 𝜎2)(𝑠 + 𝜎3)
   

𝐺𝑏𝑟𝑢𝑠ℎ 20%(𝑠) =
2.671𝑒– 9

(𝑠3 + 4.09𝑒– 3)(𝑠2 + 1.18𝑒– 5)(𝑠 + 3.223𝑒– 9)
  

 

[𝑍brush 20, 𝜎brush 20, 𝐾brush 20] = 𝑡𝑓2𝑧𝑝(𝑍brush 20(𝑠), 𝜎brush 20(𝑠))  

[𝑍br 20, 𝜎 br 20, 𝐾br 20]
= 𝑡𝑓2𝑧𝑝(2.671𝑒– 9, [1,4.09𝑒– 3,1.18𝑒– 5,3.223𝑒– 9]) 

 

 

𝜎br1 20 =–1.9𝑒– 3 + 2.7𝑒– 3, 𝜎br1 40 =–2.1𝑒– 3 + 3.5𝑒– 3, 

𝜎br1 60 =–4.0𝑒– 3 + 5.2𝑒– 3, 𝜎br1 80 =–3.8𝑒– 3 + 6.0𝑒– 4 

𝜎br1 100 =–4.0𝑒– 3 

 

 

𝐾br20 = 2.8𝑒– 9, 𝐾br40 = 4.2𝑒– 9, 𝐾br60 = 7.5𝑒– 9, 𝐾 br80 = 1.9𝑒– 9 

𝐾br100 = 6.7𝑒– 10 
 

 

 

𝜎1 𝑏𝑟𝑢𝑠ℎ = [(𝜎1 20 + 𝜎1 40 + ⋯+ 𝜎1 100)/5] =– 3.2e– 3 + 2.4e– 3i  

𝜎2 𝑏𝑟𝑢𝑠ℎ = [(𝜎2 20 + 𝜎2 40 + ⋯+ 𝜎2 100)/5] =– 2.8e– 3 + 2.4e– 3i  

𝜎3 𝑏𝑟𝑢𝑠ℎ = [(𝜎3 20 + 𝜎3 40 + ⋯+ 𝜎3 100)/5] =– 4.8e– 4  

 

𝐾 𝑏𝑟𝑢𝑠ℎ = [(K20 + 𝐾40 + ⋯+ 𝐾100)/5] = 3.4e– 9  

𝑍 𝑏𝑟𝑢𝑠ℎ = 0  

 

[𝑍̅𝑏𝑟𝑢𝑠ℎ (𝑠), 𝜎̅𝑏𝑟𝑢𝑠ℎ (𝑠)] = 𝑧𝑝2𝑡𝑓(𝑍𝑏𝑟𝑢𝑠ℎ , 𝜎(1,2,3)𝑏𝑟𝑢𝑠ℎ, 𝐾𝑏𝑟𝑢𝑠ℎ )  

 

𝐺𝑏𝑟𝑢𝑠ℎ(𝑠) =  
𝐾̅

(𝑠 + 𝜎1̅̅̅)(𝑠 + 𝜎2̅̅ ̅)(𝑠 + 𝜎3̅̅ ̅)
  

𝐺𝑏𝑟𝑢𝑠ℎ(𝑠) =  
3.37𝑒– 9

(𝑠3 + 6.4e– 3)(𝑠2 + 1.7e– 5)(𝑠 + 7.0𝑒– 9)
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Transfer function for bearing at varying speed. 

𝐺𝑏𝑒𝑎𝑟𝑖𝑛𝑔(𝑠) =
𝐾

(𝑠 + σ)
   

𝐺𝑏𝑒𝑎𝑟𝑖𝑛𝑔 20%(𝑠) =
1.4𝑒– 4

𝑠 + 3.3𝑒– 4
  

 

[𝑍bearing 20, 𝜎bearing 20, 𝐾bearing 20] = 𝑡𝑓2𝑧𝑝(𝑍bearing 20(𝑠), 𝜎bearing 20(𝑠))  

[𝑍be 20, 𝜎 be 20, 𝐾be 20] = 𝑡𝑓2𝑧𝑝(1.4𝑒– 4, [1,3.3𝑒– 4])  

 

𝜎be 20 =–0.33𝑒– 3, 𝜎be 40 =–0.5𝑒– 3, 𝜎be 60 =–0.49𝑒– 3,  

𝜎be 80 =–0.58𝑒– 3, 𝜎be 100 =–0.52𝑒– 3 
 

 

𝐾be20 = 0.14𝑒– 3, 𝐾be40 = 0.16𝑒– 3, 𝐾be60 = 0.12𝑒– 3, 

𝐾 be80 = 0.10, 𝑒– 3, 𝐾be100 = 0.06𝑒– 3 
 

 

𝜎 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 = [(𝜎 20 + 𝜎 40 + ⋯+ 𝜎 100)/5] =– 4.9e– 4  

 

𝐾 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 = [(K20 + 𝐾40 + ⋯+ 𝐾100)/5] = 1.2e– 4  

𝑍 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 = 0  

 

[𝑍̅𝑏𝑒𝑎𝑟𝑖𝑛𝑔 (𝑠), 𝜎̅𝑏𝑒𝑎𝑟𝑖𝑛𝑔 (𝑠)] = 𝑧𝑝2𝑡𝑓(𝑍𝑏𝑒𝑎𝑟𝑖𝑛𝑔 , 𝜎𝑏𝑒𝑎𝑟𝑖𝑛𝑔, 𝐾𝑏𝑒𝑎𝑟𝑖𝑛𝑔 )  

 

𝐺𝑏𝑒𝑎𝑟𝑖𝑛𝑔(𝑠) =  
𝐾̅

𝑠 + 𝜎̅
  

𝐺𝑏𝑒𝑎𝑟𝑖𝑛𝑔(𝑠) =  
1.2𝑒– 4

𝑠 + 4.9𝑒– 4
  

Transfer function for permanent magnet at varying speed. 

𝐺𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡 𝑚𝑎𝑔𝑛𝑒𝑡(𝑠) =
𝐾

(𝑠 + σ)
   

𝐺𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡 𝑚𝑎𝑔𝑛𝑒𝑡 20%(𝑠) =
1.4𝑒– 4

𝑠 + 3.4𝑒– 4
  

 

[𝑍p.m 20, 𝜎p.m 20, 𝐾p.m 20] = 𝑡𝑓2𝑧𝑝(𝑍p.m 20(𝑠), 𝜎p.m 20(𝑠))  
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[𝑍p.m 20, 𝜎 p.m 20, 𝐾p.m 20] = 𝑡𝑓2𝑧𝑝(1.4𝑒– 4, [1,3.4𝑒– 4])  

 

𝜎p.m 20 =–0.34𝑒– 3, 𝜎p.m 40 =–0.5𝑒– 3, 𝜎p.m 60 =–0.49𝑒– 3, 

𝜎p.m 80 =–0.58𝑒– 3, 𝜎p.m 100 =–0.52𝑒– 3 
 

 

𝐾p.m20 = 0.14𝑒– 3, 𝐾p.m40 = 0.16𝑒– 3, 𝐾p.m60 = 0.12𝑒– 3, 

𝐾 p.m80 = 0.10𝑒– 3, 𝐾p.m100 = 0.06𝑒– 3 
 

 

𝜎 p.magnet = [(𝜎 20 + 𝜎 40 + ⋯+ 𝜎 100)/5] =– 4.8e– 4  

 

𝐾 𝑝.𝑚𝑎𝑔𝑛𝑒𝑡 = [(K20 + 𝐾40 + ⋯+ 𝐾100)/5] = 1.2e– 4  

𝑍 𝑝.𝑚𝑎𝑔𝑛𝑒𝑡 = 0  

 

[𝑍̅𝑝.𝑚𝑎𝑔𝑛𝑒𝑡 (𝑠), 𝜎̅𝑝.𝑚𝑎𝑔𝑛𝑒𝑡 (𝑠)] = 𝑧𝑝2𝑡𝑓(𝑍𝑝.𝑚𝑎𝑔𝑛𝑒𝑡 , 𝜎𝑝.𝑚𝑎𝑔𝑛𝑒𝑡, 𝐾𝑝.𝑚𝑎𝑔𝑛𝑒𝑡 )  

 

𝐺𝑝.𝑚𝑎𝑔𝑛𝑒𝑡(𝑠) =  
𝐾̅

𝑠 + 𝜎̅
  

𝐺𝑝.𝑚𝑎𝑔𝑛𝑒𝑡(𝑠) =  
1.2𝑒– 4

𝑠 + 4.8𝑒– 4
  

 

Transfer function for casing at varying speed. 

𝐺𝑐𝑎𝑠𝑖𝑛𝑔(𝑠) =
𝐾

(𝑠 + σ)
   

𝐺𝑐𝑎𝑠𝑖𝑛𝑔 20%(𝑠) =
1.4𝑒– 4

𝑠 + 3.4𝑒– 4
  

 

[𝑍cs 20, 𝜎cs 20, 𝐾cs 20] = 𝑡𝑓2𝑧𝑝(𝑍cs 20(𝑠), 𝜎cs 20(𝑠))  

[𝑍cs 20, 𝜎 cs 20, 𝐾𝑐𝑠 20] = 𝑡𝑓2𝑧𝑝(1.5𝑒– 4, [1,3.4𝑒– 4])  

 

𝜎cs 20 =–0.34𝑒– 3, 𝜎cs 40 =–0.51𝑒– 3, 𝜎cs 60 =–0.49𝑒– 3, 

𝜎cs 80 =–0.58𝑒– 3, 𝜎cs100 =–0.52𝑒– 3 
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𝐾cs20 = 0.14𝑒– 3, 𝐾cs40 = 0.16𝑒– 3, 𝐾cs60 = 0.12𝑒– 3, 

𝐾cs80 = 0.10𝑒– 3, 𝐾cs100 = 0.05𝑒– 3 
 

 

𝜎 𝑐𝑎𝑠𝑖𝑛𝑔 = [(𝜎 20 + 𝜎 40 + ⋯+ 𝜎 100)/5] =– 4.9e– 4  

 

𝐾 𝑐𝑎𝑠𝑖𝑛𝑔 = [(K20 + 𝐾40 + ⋯+ 𝐾100)/5] = 1.1e– 4  

𝑍 𝑐𝑎𝑠𝑖𝑛𝑔 = 0  

 

[𝑍̅𝑐𝑎𝑠𝑖𝑛𝑔 (𝑠), 𝜎̅𝑐𝑎𝑠𝑖𝑛𝑔(𝑠)] = 𝑧𝑝2𝑡𝑓(𝑍𝑐𝑎𝑠𝑖𝑛𝑔, 𝜎𝑐𝑎𝑠𝑖𝑛𝑔, 𝐾𝑐𝑎𝑠𝑖𝑛𝑔)  

 

𝐺𝑐𝑎𝑠𝑖𝑛𝑔(𝑠) =  
𝐾̅

𝑠 + 𝜎̅
  

𝐺𝑐𝑎𝑠𝑖𝑛𝑔(𝑠) =  
1.1𝑒– 4

𝑠 + 4.9𝑒– 4
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Appendix F: Calculation for Variable-pole Transfer Function.  

Transfer function for brush at varying speed. 

 

Brush real number 𝜎 𝑏𝑟𝑢𝑠ℎ(𝑁)@ Numerator. 

Coefficient exponential: 

𝑎1 = 5.6𝑒– 4, 𝑏1 = 1.3𝑒– 2, 𝑐1 =–1.8𝑒– 3, 𝑑1 = 9.0𝑒– 3  

𝑎2 = 6.9𝑒– 4, 𝑏2 = 1.4𝑒– 2, 𝑐1 =–2.0𝑒– 3, 𝑑1 = 9.9𝑒– 3  

Coefficient polynomial 2: 

𝑎3 = 1.3𝑒– 8, 𝑏3 =–4.8𝑒– 6, 𝑐3 =–1.1𝑒– 4  

 

Brush complex number 𝜎 𝑏𝑟𝑢𝑠ℎ𝑖(𝑁). 

Coefficient polynomial 2: 

𝑎1𝑖 =– 2.0𝑒– 7, 𝑏1𝑖 = 4.7𝑒– 5, 𝑐1 = 7.7𝑒– 4  

𝑎2𝑖 = 2.0𝑒– 7, 𝑏2 =–4.7𝑒– 5, 𝑐1 =–7.7𝑒– 4  

 

Gain 𝐾𝑏𝑟𝑢𝑠ℎ(𝑁)@ Denominator. 

Coefficient polynomial 2: 

𝑝1 =–2.6𝑒– 13, 𝑝2 = 6.9𝑒– 11, 𝑝3 =–1.9𝑒– 10  

 

𝑁 = 𝑠𝑝𝑒𝑒𝑑 

𝜎 1𝑏𝑟𝑢𝑠ℎ(𝑁) = 𝑎1 ∗ exp (𝑏1 ∗ 𝑁) + 𝑐1 ∗ exp (𝑑1 ∗ 𝑁)  

𝜎 2𝑏𝑟𝑢𝑠ℎ(𝑁) = 𝑎2 ∗ exp (𝑏2 ∗ 𝑁) + 𝑐2 ∗ exp (𝑑2 ∗ 𝑁)  

𝜎 3𝑏𝑟𝑢𝑠ℎ(𝑁) = 𝑎3 ∗ N2 + 𝑏3 ∗ 𝑁 + 𝑐3  

𝜎 1𝑏𝑟𝑢𝑠ℎ𝑖(𝑁) = 𝑎1𝑖 ∗ 𝑁2 + 𝑏1𝑖 ∗ 𝑁 + 𝑐1𝑖  

𝜎 2𝑏𝑟𝑢𝑠ℎ𝑖(𝑁) = 𝑎1𝑖 ∗ 𝑁2 + 𝑏1𝑖 ∗ 𝑁 + 𝑐1𝑖  

𝜎 3𝑏𝑟𝑢𝑠ℎ𝑖(𝑁) = 0  

 

𝑍𝑏𝑟𝑢𝑠ℎ(𝑁) = 0  

𝜎 𝑏𝑟𝑢𝑠ℎ(𝑁) = [𝜎 1𝑏𝑟(𝑁) + 𝜎 1𝑏𝑟𝑖(𝑁) ∗ 𝑖, 𝜎 2𝑏𝑟(𝑁) + 𝜎 2𝑏𝑟𝑖(𝑁) ∗ 𝑖, 

𝜎 3𝑏𝑟(𝑁) + 𝜎 3𝑏𝑟𝑖(𝑁) ∗ 𝑖] 
 

𝐾𝑏𝑟𝑢𝑠ℎ(𝑁) = 𝑝1 ∗ 𝑁2 + 𝑝2 ∗ 𝑁 + 𝑝3  
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[Z𝑏𝑟𝑢𝑠ℎ (𝑠), 𝜎𝑏𝑟𝑢𝑠ℎ (𝑠)] = 𝑧𝑝2𝑡𝑓(𝑍𝑏𝑟𝑢𝑠ℎ(𝑁), 𝜎𝑏𝑟𝑢𝑠ℎ(𝑁), 𝐾𝑏𝑟𝑢𝑠ℎ(𝑁))  

𝐺𝑘(𝑠) =  
𝐾𝑏𝑟𝑢𝑠ℎ(𝑁)

(𝑠 + σ𝑏𝑟𝑢𝑠ℎ1(𝑁))(𝑠 + σ𝑏𝑟𝑢𝑠ℎ2(𝑁))(𝑠 + σ𝑏𝑟𝑢𝑠ℎ3(𝑁))
  

 

𝜎 brush 1(𝑁) = 𝑠 + σbrush1 (𝑁)   

𝜎 brush 2(𝑁) = 𝑠 + σbrush2(𝑁)   

𝜎 brush 3(𝑁) = 𝑠 + σbrush3(𝑁)   

 

𝐾 brush(𝑁) = 𝐾𝑏𝑟𝑢𝑠ℎ(𝑁)   

 

Transfer function for bearing at varying speed. 

Pole 𝜎 𝑏𝑒𝑎𝑟𝑖𝑛𝑔(𝑁)@ Numerator. 

Coefficient exponential: 

𝑎 =– 7.7𝑒– 4, 𝑏 =– 1.1𝑒– 3, 𝑐 = 7.0𝑒– 4, 𝑑 =–1.2𝑒– 2  

Gain 𝐾𝑏𝑒𝑎𝑟𝑖𝑛𝑔(𝑁)@ Denominator. 

Coefficient polynomial: 

𝑝1 =–4.7𝑒– 7, 𝑝2 = 1.9𝑒– 4  

 

𝑁 = 𝑠𝑝𝑒𝑒𝑑  

𝜎 𝑏𝑒𝑎𝑟𝑖𝑛𝑔(𝑁) = 𝑎 ∗ exp(𝑏 ∗ 𝑁) + 𝑐 ∗ exp (𝑑 ∗ 𝑁)  

𝐾𝑏𝑒𝑎𝑟𝑖𝑛𝑔(𝑁) = 𝑝1 ∗ 𝑁 + 𝑝2  

 

Transfer function for permanent magnet at varying speed. 

Pole 𝜎 𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡 𝑚𝑎𝑔𝑛𝑒𝑡(𝑁)@ Numerator. 

Coefficient exponential: 

𝑎 =– 8.8𝑒– 4, 𝑏 =– 1.4𝑒– 3, 𝑐 = 7.4𝑒– 4, 𝑑 =–9.2𝑒– 3  

Gain 𝐾𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡 𝑚𝑎𝑔𝑛𝑒𝑡(𝑁) @ Denominator. 

Coefficient polynomial: 

𝑝1 =–4.7𝑒– 7, 𝑝2 = 1.9𝑒– 4  

 

𝑁 = 𝑠𝑝𝑒𝑒𝑑  

𝜎 permanent magnet(𝑁) = 𝑎 ∗ exp(𝑏 ∗ 𝑁) + 𝑐 ∗ exp (𝑑 ∗ 𝑁)  
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𝐾𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡 𝑚𝑎𝑔𝑛𝑒𝑡(𝑁) = 𝑝1 ∗ 𝑁 + 𝑝2  

 

Transfer function for casing at varying speed. 

Pole 𝜎 𝑐𝑎𝑠𝑖𝑛𝑔(𝑁)@ Numerator. 

Coefficient exponential: 

𝑎 =– 9.3𝑒– 4, 𝑏 =– 1.6𝑒– 3, 𝑐 = 7.8𝑒– 4, 𝑑 =–8.3𝑒– 3  

Gain 𝐾𝑐𝑎𝑠𝑖𝑛𝑔(𝑁) @ Denominator. 

Coefficient polynomial: 

𝑝1 =–4.6𝑒– 7, 𝑝2 = 1.9𝑒– 4  

 

𝑁 = 𝑠𝑝𝑒𝑒𝑑  

𝜎 casing(𝑁) = 𝑎 ∗ exp(𝑏 ∗ 𝑁) + 𝑐 ∗ exp (𝑑 ∗ 𝑁)  

𝐾𝑐𝑎𝑠𝑖𝑛𝑔(𝑁) = 𝑝1 ∗ 𝑁 + 𝑝2  
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Appendix G: Pole Function Code.  

function[br_num,br_den0,br_den1,br_den2,be_num,be_den,pm_num,pm_den,cs_num,cs
_den]= speed(vals) 
%% Brush 
%Brush real number 
%Pole 1 data from exponential 2 
br_a1 = 0.0005619; 
br_b1 = 0.01276; 
br_c1 = -0.001848; 
br_d1 = 0.00903; 
%Pole 2 data from exponential 2 
br_a2 = 0.0006881; 
br_b2 = 0.01372; 
br_c2 =-0.002001; 
br_d2 = 0.009904; 
%Pole 3 data from polynomial 2 
br_a3 = 1.289e-08; 
br_b3 =-4.812e-06; 
br_c3 =-0.0001109; 
%Brush i complex number 
%Pole 1 data from polynomial 2 LAR 
br_a1i =-1.969e-07; 
br_b1i = 4.718e-05; 
br_c1i = 0.0007725; 
%Pole 2 data from polynomial 2 LAR 
br_a2i = 1.969e-07; 
br_b2i =-4.718e-05; 
br_c2i =-0.0007725; 
%Gain data from polynomial 2 LAR 
br_p1 =-2.586e-13; 
br_p2 = 6.931e-11; 
br_p3 =-1.912e-10; 
%Gain function from Polynomial 
k = br_p1*vals^2 + br_p2*vals + br_p3; %gain brush poly 2 
%Pole function from Exponential and Polynomial for real number 
den1 = br_a1*exp(br_b1*vals)+br_c1*exp(br_d1*vals); %curve fitter  
den2 = br_a2*exp(br_b2*vals)+br_c2*exp(br_d2*vals); %real number 
den3 = br_a3*vals^2+br_b3*vals+br_c3;%real number poly 2 
%Pole function from Polynomial 2 for complex number 
den1i = br_a1i*vals^2+br_b1i*vals+br_c1i;%complex number poly 2 
den2i = br_a2i*vals^2+br_b2i*vals+br_c2i;%complex number poly 2 
den3i = 0; 
z = 0; %zeros 
%Sum of pole between real and complex number 
p = [den1+den1i*i,den2+den2i*i,den3+den3i*i]; % combination poles 
%Convert gain and poles to transfer function 
[num,den] = zp2tf(z,p,k); 
%New Gain Output 
br_num = num(1,3); %numerator 
%New Pole Output 
br_den0 = den(1,4); %denominator s^0 
br_den1 = den(1,3); %denominator s^1 
br_den2 = den(1,2); %denominator s^2 
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%% Bearing 
%Pole data from exponential function 
be_a =-0.0007722; 
be_b =-0.001092; 
be_c = 0.0006995; 
be_d =-0.01156; 
%Gain data from polynomial function 
be_p1 =-4.721e-07; 
be_p2 = 0.0001946; 
%New Gain Output 
be_num = be_p1*vals+be_p2; 
%New Pole Output 
be_den = be_a*exp(be_b*vals)+be_c*exp(be_d*vals); 
%% Permanent Magnet 
%Pole data from exponential function 
pm_a =-0.0008783; 
pm_b =-0.001394; 
pm_c = 0.0007423; 
pm_d =-0.009215; 
%Gain data from polynomial function 
pm_p1 =-4.685e-07; 
pm_p2 = 0.0001932; 
%New Gain Output 
pm_num = pm_p1*vals+pm_p2; 
%New Pole Output 
pm_den = pm_a*exp(pm_b*vals)+pm_c*exp(pm_d*vals); 
%% Casing 
%Pole data from exponential function 
cs_a =-0.0009327; 
cs_b =-0.001456; 
cs_c = 0.0007804; 
cs_d =-0.008379; 
%Gain data from polynomial function 
cs_p1 =-4.598e-07; 
cs_p2 = 0.0001896; 
%New Gain Output 
cs_num = cs_p1*vals+cs_p2; 
%New Pole Output 
cs_den = cs_a*exp(cs_b*vals)+cs_c*exp(cs_d*vals); 
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Appendix H: Temperature Response Data.  

 

Temperature response data gathered at left:20% and right:40% of the nominal speed of 

2650rpm. 

 

 

Temperature response data gathered at left:80% and right:100% of the nominal speed of 

2650rpm. 
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Appendix I: Identified Transfer Function.  

Identified transfer function for bearing. 

No. of 

Poles 

Speed 

(%) 
Transfer Function 

MSE 

error 

 20 
1.494𝑒– 4

s +  3.315e– 4
 0.1271 

 40 
1.693𝑒– 4

s +  5.086𝑒– 4
 0.1185 

1 60 
1.279𝑒– 4

 s +  4.985𝑒– 4
 0.2252 

 80 
1.028𝑒– 4

s +  5.841𝑒– 4
 0.1599 

 100 
6.227𝑒– 5

s +  5.284𝑒– 4
 0.1198 

 20 
8.146𝑒– 7

s2 +  2.468e– 2 s +  1.324e– 7
  4.861 

 40 
2.077𝑒– 5

  s2 +  0.1253 s +  6.245e– 5
 0.1275 

2 60 
6.931𝑒– 6

s2 +  5.462e– 2 s +  2.701e– 5
 0.2248 

 80 
2.502𝑒– 6

 s2 +  2.476e– 2 s +  1.423e– 5
 0.1537 

 100 
3.006𝑒– 6

s2 +  4.873e– 2 s +  2.551e– 5
 0.1195 

 20 
– 4.584𝑒– 11

s3 +  2.856e– 3 s2 +  2.585e– 6 s +  4.787e– 18
 19.06 

 40 
3.575𝑒– 10

  s3 +  2.435e– 2 s2 +  1.417e– 5 s +  1.086e– 9
 0.1148 

3 60 
4.878𝑒– 9

s3 +  9.851e– 2 s2 +  7.856e– 5 s +  1.945e– 8
 0.2024 

 80 
2.458𝑒– 10

  s3 + 2.295e– 2 s2 +  1.439e– 5 s +  1.378e– 9
 0.3212 

 100 
3.267𝑒– 5

s3 +  14.75 s2 +  0.5317 s +  2.773e– 4
 0.1194 

 20 
1.039𝑒– 12

s4 +  1.212e– 2 s3 +  4.786e– 5 s2 +  1.076e– 7 s +  1.259e– 20
 9.851 

 40 
1.144𝑒– 9

s4 +  6.602e– 2 s3 +  6.406e– 4 s2 +  7.035e– 6 s +  3.438e– 9
 0.1165 

4 60 
2.975𝑒– 11

    s4 +  4.506e– 2 s3 + 6.952e– 4 s2 +  5.139e– 7 s +  1.191e– 10
 0.2062 

 80 
3.338𝑒– 11

  s4 +  1.291e– 2 s3 +  1.01e– 4 s2 +  3.738e– 7 s +  1.9e– 10
 0.1488 

 100 
5.133𝑒– 13

  s4 +  1.203e– 2 s3 +  4.973e– 5 s2 +  3.445e– 8 s +  4.182e– 12
 0.1548 
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Identified transfer function for permanent magnet. 

No. of 

Poles 

Speed 

(%) 
Transfer Function 

MSE 

error 

1 

20 
1.471𝑒– 4

s +  3.402𝑒– 4  
 0.1186 

40 
1.695𝑒– 4

  s +  5.08𝑒– 4
 0.1145 

60 
1.274𝑒– 4

s +  4.937𝑒– 4
 0.2324 

80 
1.024𝑒– 4

 s +  5.818𝑒– 4
 0.1658 

100 
6.118𝑒– 5

s +  5.218𝑒– 4
 0.1214 

2 

20 
4.46𝑒– 7

s2 +  1.513e– 2 s +  1.631e– 11
 4.228 

40 
3.468𝑒– 6

s2 +  4.041e– 2 s +  9.051e– 6
 5.139 

60 
1.922𝑒– 5

s2  +  0.1555 s +  7.425e– 5
 0.2493 

80 
3.97𝑒– 6

s2 +  3.908e– 2 s +  2.257e– 5
 0.1564 

100 
1.763𝑒– 6

s2 +  2.914e– 2 s +  1.504e– 5
 0.1158 

3 

20 
1.003𝑒– 8

  s3 +  1.237e– 2 s2 +  7.16e– 5 s +  2.322e– 8
 0.118 

40 
2.84𝑒– 10

s3 +  1.61e– 2 s2 +  9.65e– 6 s +  8.572e– 10
 0.1077 

60 
1.952𝑒– 10

s3 +  1.586e– 2 s2 +  8.392e– 6 s +  8.171e– 10
 0.1724 

80 
1.392𝑒– 10

s3 +  1.828e– 2 s2 +  1.144e– 5 s +  7.565e– 10
 0.2309 

100 
1.953𝑒– 10

  s3 +  3.506e– 2 s2 +  1.943e– 5 s +  1.651e– 9
 0.2523 

4 

20 
2.484𝑒– 11

s4 +  2.381e– 2 s3 +  5.946𝑒– 4 s2 +  3.772e– 7 s +  5.678e– 11
 0.1178 

40 
5.411𝑒– 10

  s4 +  2.497e– 2 s3 +  4.939𝑒– 4 s2 +  3.376e– 6 s +  1.625e– 9
 0.105 

60 
9.055𝑒– 10

s4 +  7.098e– 2 s3 +  8.196𝑒– 4 s2 +  7.43e– 6 s +  3.513e– 9
 0.2283 

80 
1.997𝑒– 11

  s4 +  1.237e– 2 s3 +  8.102e– 5 s2 +  2.333e– 7 s +  1.137e– 10
 0.1387 

100 
4.028𝑒– 13

 s4 +  1.175e– 2 s3 +  4.638e– 5 s2 +  3.066e– 8 s +  3.28e– 12
 0.1506 
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Identified transfer function for casing. 

No. of 

Poles 

Speed 

(%) 
Transfer Function 

MSE 

error 

1 

20 
1.437𝑒– 4

s +  3.416𝑒– 4
 0.126 

40 
1.667𝑒– 4

 s +  5.1𝑒– 4
 0.1212 

60 
1.256𝑒– 4

  s +  4.949𝑒– 4
 0.2455 

80 
1.012𝑒– 4

s +  5.872𝑒– 4
 0.1644 

100 
5.921𝑒– 5

s +  5.269𝑒– 4
 0.1395 

2 

20 
6.84𝑒– 7

 s2 +  2.38e– 2 s +  6.748e– 9
 4.483 

40 
1.525𝑒– 5

  s2 +  0.119 s +  4.477e– 5
 1.093 

60 
3.067𝑒– 6

s2 +  2.479e– 2 s +  1.209e– 5
 0.2414 

80 
1.212𝑒– 6

  s2 +  1.236e– 2 s +  7.043e– 6
 0.1459 

100 
6.07𝑒– 7

s2 +  1.067e– 2 s +  5.407e– 6
 0.1332 

3 

20 
2.263𝑒– 9

 s3 +  2.896e– 3 s2 +  1.663e– 5 s +  5.38e– 9
 0.1243 

40 
2.235𝑒– 10

s3 +  1.828e– 2 s2 +  1.045e– 5 s +  6.906e– 10
 0.1153 

60 
4.839𝑒– 11

s3 +  9.107e– 3 s2 +  4.464e– 6 s +  2.181e– 10
 0.1915 

80 
2.014𝑒– 10

s3 +  2.369e– 2 s2 +  1.436e– 5 s +  1.102e– 9
 0.5461 

100 
7.815𝑒– 9

s3 +  1.556e– 2 s2 +  1.389𝑒– 4 s +  6.959e– 8
 0.1325 

4 

20 
– 9.121𝑒– 15

s4 +  3.74e– 3 s3 +  1.135e– 5 s2 +  1.498e– 8 s +  3.103e– 23
 11.99 

40 
1.267𝑒– 9

 s4 +  6.488e– 2 s3 +  7.414e– 4 s2 +  7.857e– 6 s +  3.882e– 9
 0.115 

60 
1.697𝑒– 11

  s4 +  8.828e– 3 s3 +  5.6e– 5 s2 +  1.565e– 7 s +  6.709e– 11
 0.2254 

80 
3.936𝑒– 11

s4 +  1.361e– 2 s3 +  1.237𝑒– 4 s2 +  4.472e– 7 s +  2.29e– 10
 0.1408 

100 
6.841𝑒– 13

  s4 +  1.781e– 2 s3 +  8.296e– 5 s2 +  5.195e– 8 s +  5.993e– 12
 0.1313 
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Appendix J: Validation Identified Transfer Function As Model. 

Brush 

  

Comparison between identified transfer function vs. experimental temperature response 

at steady state temperature (left:20%, right:40%). 

 

 

Comparison between identified transfer function vs. experimental temperature response 

at steady state temperature (left:80%, right:100%). 
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Bearing 

  

Comparison between identified transfer function vs. experimental temperature response 

at steady state temperature (left:20%, right:40%). 

 

Comparison between identified transfer function vs. experimental temperature response 

at steady state temperature (left:60%, right:80%). 

 

Comparison between identified transfer function vs. experimental temperature response 

at steady state temperature (100%). 
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Permanent Magnet 

  

Comparison between identified transfer function vs. experimental temperature response 

at steady state temperature (left:20%, right:40%). 

 

Comparison between identified transfer function vs. experimental temperature response 

at steady state temperature (left:60%, right:80%). 

 

Comparison between identified transfer function vs. experimental temperature response 

at steady state temperature (100%). 
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Casing 

  

Comparison between identified transfer function vs. experimental temperature response 

at steady state temperature (left:20%, right:40%). 

 

Comparison between identified transfer function vs. experimental temperature response 

at steady state temperature (left:60%, right:80%). 

 

Comparison between identified transfer function vs. experimental temperature response 

at steady state temperature (100%). 
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Appendix K: Result of Steady State Temperature Response for Averaged-pole 

Transfer Function Model.  

 

Comparison between averaged-pole transfer function vs. experimental temperature 

response at steady state temperature (left:bearing, right:permanent magnet). 

 

 

 

Comparison between averaged-pole transfer function vs. experimental temperature 

response at steady state temperature (casing). 
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Appendix L: Result of Transient State Temperature Response for Averaged-pole 

Transfer Function Model.  

 

Comparison between averaged-pole transfer function vs. experimental temperature 

response at transient state temperature (left:bearing, right:permanent magnet). 

 

 

 

Comparison between averaged-pole transfer function vs. experimental temperature 

response at transient state temperature (casing). 
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Appendix M: Result of Steady State Temperature Response for Variable-pole Transfer 

Function.  

 

Comparison between variable-pole transfer function vs. experimental temperature 

response at steady state temperature (left:bearing, right:permanent magnet). 

 

 

Comparison between variable-pole transfer function vs. experimental temperature 

response at steady state temperature (casing). 

 

 

 



 

 167 

Appendix N: Result of Transient State Temperature Response for Variable-pole 

Transfer Function.  

 

Comparison between variable-pole transfer function vs. experimental temperature 

response at transient state temperature (left:bearing, right:permanent magnet). 

 

 
 

Comparison between variable-pole transfer function vs. experimental temperature 

response at transient state temperature (casing). 
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Appendix O: Result of Generalized Transfer Function in Fault Detections  

 

Comparison between variable-pole transfer function model vs. healthy and faulty DC 

machines(left:bearing, right:permanent magnet). 

 

 

Comparison between variable-pole transfer function model vs. healthy and faulty DC 

machines(casing). 

 


