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An accurate assessment of shale gas resources is highly important for the sustainable development 
of these energy resources. Total organic carbon (TOC) analysis thus becomes fundamental for 
understanding the distribution and quality of hydrocarbon source rocks within a shale gas reservoir. 
The elevation of the TOC is often associated with the presence of source rocks, indicating the potential 
for oil and gas production. TOC assessment is performed using laboratory methods, which can be time-
consuming and costly. Data-driven models have been successfully applied to model the relationship 
between TOC and other constituents and to predict the TOC content. However, these methods depend 
on extensive parameter adjustments that must be carefully conducted in different sedimentary 
environments. In this context, Automated Machine Learning (AutoML) is an alternative for accurately 
predicting TOCs, saving time-consuming fine-tuning steps in model development. This study aims 
to develop an AutoML strategy for estimating TOC using well log data. This procedure automatically 
preprocesses the search for the best method parameters, reducing the execution time. Among the 
methods evaluated, Extremely Randomized Trees (XT) performed best (R = 0.8632, MSE = 0.1806) in 
the test set. The proposed strategy provides a powerful data-driven method, which allows real-world 
use of the well to assist in data analysis and subsequent decision-making.

Shale gas has emerged as a significant unconventional resource in the oil and gas industry, driven by advancements 
in exploration technologies such as horizontal drilling and hydraulic fracturing1,2. Accurate assessment of shale 
gas resources is crucial for sustainable energy development, and in this context, Total Organic Carbon (TOC) 
content is a critical geochemical parameter3. TOC represents the amount of organic matter within rocks and 
is a decisive indicator of the hydrocarbon generation potential of shale formations. Therefore, TOC analysis is 
fundamental to understanding the distribution and quality of hydrocarbon source rocks in shale gas reservoirs. 

TOC is strongly associated with the presence of source rocks, which are essential for hydrocarbon 
production4. Furthermore, TOC affects critical properties of shale rocks, including porosity, permeability, 
brittleness, wettability, and diffusivity, all of which are integral to determining the viability and efficiency of 
shale gas production5. Traditionally, the measurement of TOC involves laboratory-based methods, such as wet 
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oxidation and dry combustion, which can be both time-consuming and costly6,7. Rocks with a TOC weight 
percentage above 4% are generally considered high-quality hydrocarbon source rocks8,9. Studies have also 
explored the use of conventional petrophysical log data to estimate TOC, offering an alternative to traditional 
laboratory methods10–15.

Core sampling has long been used in oil and gas exploration to gather valuable data on TOC. However, the 
operational complexities and risks associated with core sampling in production settings, including the potential 
for wellbore instability, formation damage, and high costs, highlight the need for more efficient methods. The 
risks inherent in traditional core sampling operations, such as wellbore collapse, lost circulation, and the potential 
for sample degradation, make the exploration of alternative methods, such as data-driven approaches, highly 
appealing16–25. These challenges are further compounded by the logistics involved in accessing exploration and 
production fields, which often require specialized equipment and expertise17.

Data-driven approaches, particularly Machine Learning (ML) models, offer a promising alternative. When 
validated and strategically implemented, ML models can establish indirect correlations, enhancing efficiency, 
reducing costs, and improving the understanding of TOC distribution within reservoirs14,15. Exploration wells 
often encounter harsh environments and significant depths, requiring specialized equipment and posing logistical 
challenges16,17. Maintaining sample integrity during extraction under high pressure and temperature is also 
crucial for accurate TOC analysis18. Furthermore, core sampling operations can destabilize the wellbore, leading 
to potential safety hazards and operational difficulties19–21, and, in severe cases, formation damage22–24. Core 
samples provide data from limited points, potentially missing crucial information due to spatial heterogeneity25.

The inherent risks and complexities of traditional TOC assessments26 make exploring indirect correlations 
using readily available well log data an attractive option27. A calibrated data-driven model can mitigate 
operational risks, offering a safer and more efficient approach compared to core sampling28,29. These models 
can provide a more comprehensive understanding of TOC distribution across the reservoir, reducing reliance 
on limited core sample data30,31. Researchers have investigated correlations between TOC and various well 
log parameters, including density, resistivity, gamma rays, neutrons, and acoustics, to develop more agile and 
cost-effective TOC estimation methods32,33. Data-driven models have been successfully employed to model the 
relationship between TOC and other constituents, and to predict TOC content34–38. These models enhance the 
accuracy, efficiency, and depth of TOC analysis, contributing to a better understanding of gas and oil resources 
and enabling more informed decision-making in exploration and production.

ML models can process large volumes of data rapidly39, predict hydrocarbon-generating potential based 
on various variables40, and identify key factors influencing TOC variation41. They can also optimize resource 
allocation and sampling42. Ensemble methods and feature selection, used in other geoscientific applications such 
as lithology classification43–45, production rate forecasting46, and drilling data classification47, further demonstrate 
the potential of ML in this field.  However, the effectiveness of ML models can vary depending on the diagenetic 
processes of source rocks. Optimal model selection and precise configuration of internal parameters are essential 
considerations for achieving optimal results. It is also crucial to recognize that ML models are not a one-size-
fits-all solution for all sedimentary environments. These methods require careful adjustment of the internal 
parameters, which play a significant role in the final performance of the model. These parameters, often called 
hyperparameters, profoundly influence the model’s ability to learn relevant data patterns and generalize this 
knowledge to new situations48. In this context, Automated Machine Learning (AutoML) models have emerged 
as promising and flexible alternatives to address these challenges.

A bibliometric search in the Scopus database using terms like (“geosci*”, “automl”) and (“automat* AND 
machine AND learning”) yielded only three relevant articles49–51, indicating a significant research gap in 
AutoML applications in geosciences, particularly for TOC prediction.  While AutoML has been successfully 
implemented across various domains for automating complex tasks such as model selection and hyperparameter 
optimization52, its application to TOC prediction could significantly streamline the predictive modeling process, 
which traditionally requires domain-specific expertise for machine learning model tuning. The integration of 
AutoML in geosciences presents an opportunity to automate and optimize these traditionally manual processes.

Recently, AutoML approaches have attracted the attention of oil and gas researchers, which have been 
combined to build a super learning approach to predict TOC53. The data used for this work were from the set of 
oil shales in the Qingshankou Formation in the Songliao Basin, China. The superlearning model resulted in R2 = 
0.80 and RMSE = 1.16. Ensemble approaches are consistently used as alternative approaches to improve accuracy 
and produce robust model54,55. ML models were also hybridized with metaheuristics to exploit their parametric 
settings. A successful example is the kerogen estimation through the types of petrophysical well logs through the 
hydrogen and oxygen indices56–59.

AutoML models offer a more automated, efficient, and affordable approach to building ML models, allowing 
the implementation and exploitation of ML solutions to be simpler and more effective60. The AutoML approach, 
although computationally more expensive than standalone models, eliminates the need to manually test multiple 
models and adjust hyperparameters for each of them, saving valuable time and resources. Additionally, they can 
be configured to fetch the best combinations of models and parameters efficiently, resulting in improved and 
more consistent performance across different scenarios. The model presented in this paper aims to contribute to 
geophysical research and the exploration of unconventional resources by incorporating innovative ML methods 
to address critical problems in exploration and is highly relevant in production.

This paper contributes to geophysical research and unconventional resource exploration by incorporating 
innovative ML methods to address critical challenges in exploration and production. The proposed model aims 
to improve the accuracy and efficiency of TOC forecasting, identify patterns in TOC data, and ultimately support 
more informed decision-making in the oil and gas industry. This study aims to advance the field of geophysics by 
bringing an automated machine learning methodology to find the models and the internal parameters of these 
models to efficiently perform TOC predictions. The specific objectives are:
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• To assess the Greedy Weighted Ensemble performance generated by the other AutoML models.
• Incorporate Boruta Feature Selection (BFS), Mutual Information (MI) and Recursive Feature Elimination 

(RFE) feature selection methods in automated machine learning for TOC prediction.
• Perform a comparative analysis of the predictive performance of different automated machine learning mod-

els.

This paper is organized as follows. The following sections describe the dataset and present a detailed automated 
ML framework proposal. In Section 3, computational experiments are presented, and the comparative 
performance achieved by ML models used by AutoML is discussed. Finally, Section 4 presents the conclusion.

Materials and methods
Dataset
The present investigation is based on a database available in the literature5 at https://doi.org/10.3390/en16104159. 
This database comprises 816 data points related to total organic carbon (TOC) levels and well logs. These data 
were collected from five shale formations in different geological basins. Among the formations considered are 
the Yanchang shale in the Ordos Basin and the Shahejie shale in the Bohai Bay Basin. The Longmaxi shale in 
the Sichuan Basin and the Shanxi and Taiyuan shales are located south of the North China Basin (Fig. 1). These 
sedimentary formations play crucial roles as hydrocarbon reservoirs, representing paradigmatic cases of oil/gas 
source rocks in China, with substantial energy resource reserves contained in shale deposits.

A well log is data of the formations and any occurrences found in the well drilling procedure. Such information 
is useful for evaluating conditions throughout the depth of the well, assisting in analysis and decision-making. 
The measurements contained in the well logs are collected at discrete depth intervals5. This information does 
not contain the depth of each measurement to prevent an illustration of the characteristics in relation to depth.

Seven commonly used profile parameters were used to consider the borehole profile data. These include 
measurements of natural gamma radiation (GR), acoustic time difference (AC), deep resistivity (RD), and 
shallow resistivity (RS), as well as the concentrations of uranium (U), thorium (Th), and potassium (K). These 
variables were used to identify the most relevant borehole logs for accurately predicting TOC levels.

Tables 1 and 2 provide a detailed analysis of the most relevant statistics associated with total organic carbon 
(TOC) levels, as well as the borehole logs that were adequately employed in the training and validation process 
of the model under consideration. In parallel, Fig. 2 provides the correlation matrix corresponding to the 
carefully selected parameters. The U characteristic has the highest correlation with TOC, followed by GR, but 
other characteristics, such as AC, have a high correlation with U and GR, influencing TOC prediction. This 
comprehensive information is essential in promoting a deep insight into the intricate interconnection between 

AC GR K RD RS TH U TOC (%)

Mean 115.328 94.234 0.931 162.957 167.490 6.245 4.994 1.252

Std 76.083 52.712 1.445 138.504 144.280 7.810 4.489 0.797

Min 56.606 32.896 0.000 5.014 5.488 − 0.290 0.140 0.000

Median 66.887 71.174 0.009 133.703 139.226 1.707 3.917 1.102

Max 296.668 450.827 4.622 1002.391 1186.991 39.226 43.056 7.730

Table 1. Statistics related to TOC levels—training set (571 samples).

 

Fig. 1. Distributions of the Ordos Basin, Bohai Bay Basin, Sichuan Basin, and southern North China Basin5.
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fundamental borehole characteristics and associated TOC levels. This deeper understanding not only drives the 
progress of the investigation but also guides the data split, with a 70% allocation for training and 30% for testing. 
This process results in a total of 571 samples for training and 245 samples for testing.

Automated machine learning model
AutoML (Automated Machine Learning) is an automated approach for building ML models to simplify and 
speed up the data modeling process. AutoML aims to reduce the model training time and improve prediction 
accuracy, allowing users with different levels of ML experience to train high-quality models. AutoML can include 
multiple steps, such as model selection, data preprocessing, feature selection, hyperparameter tuning, and model 
evaluation39.

In the last few years, the impact of AutoML approaches has spanned many industries. In finance, it has been 
employed to automate the process of selecting the best ML models for different tasks, such as fraud detection, 
credit scoring, and risk assessment61. In the health field, its applications include predicting disease probability 
based on medical history and genetics62. The manufacturing industry benefits from AutoML in predicting 
equipment failures and optimizing production63, while in the retail sector, it is used to forecast product demand 
and improve logistics64,65.

In optimizing the process of training ML models, adopting AutoML has emerged as an approach of great 
promise. In this study, an investigation centered on using the automated framework is used to construct and 
train a predictive model to estimate total organic carbon. The primary objective is to improve predictions while 
substantially reducing the associated training time.

AutoGluon features a multilayered stacking approach that aims to identify the model with the highest 
performance and the hyperparameters that make it most effective. At the heart of this process is a meticulous 
exploration of various ML algorithms, such as neural networks (NNFastAi, NeuralNetTorch), LightGBM-
powered trees (LGB)66, CatBoost-powered trees (CatBoost)67, Extremely Randomized Trees (XT)68, Extreme 
Gradient Boosting (XGBoost)69, K-Nearest Neighbors (KNN)70 and Random Forests (RF)71.

Table 3 shows the hyperparameters used for the automated models. A notable highlight lies in the 
incorporation of data preprocessing techniques, such as normalization and feature selection, which aim to 
optimize the accuracy of the resulting model, improve the generalization capacity, and mitigate the risk of 
overfitting72. Figure 3 shows the AutoML steps, from data preparation to hyperparameter optimization and 
model validation.

The presence of noise in the data is something that can impact the performance of machine learning methods. 
In this work, we chose to use data normalization in order to smooth out the noise through scale adjustment. 
There are works that employ methods such as covariance determinant (MCD), stochastic outlier selection (SOS), 

Fig. 2. Correlation coefficients for the training set (left) and test set (right).

 

AC GR K RD RS TH U TOC (%)

Mean 117.401 97.184 0.928 169.087 173.046 5.725 5.577 1.329

Std 78.630 60.992 1.447 123.712 127.084 7.629 5.350 0.839

Min 56.876 35.083 0.000 4.656 5.084 0.104 0.157 0.040

Median 66.478 70.094 0.008 134.980 143.673 0.495 3.997 1.093

Max 289.349 470.753 4.567 757.350 927.663 25.216 45.424 4.740

Table 2. Statistics related to TOC levels—test set (254 samples).
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Fig. 3. AutoML model75.

 

Model Encoding Description Range

CatBoost

x1 Learning rate [10−4, 10−1]

x2 Model depth [1, 16]

x3 L2  regularization [1, 10]

x4 Bagging temp. [0, 10]

x5 Grow policy [’Symmetric’, ’Depthwise’, ’Lossguide’]

Fast Neural Network
(NNFastAi)

x1 No. layers [1, 5]

x2 Dropout prob. [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]

x3 Batch size [16, 512]

x4 Learning rate [10−4, 10−2]

NeuralNetTorch
(NN_TORCH)

x1 No. epochs [5, 50]

x2 Learning rate [10−4, 10−2]

x3 Activation [’relu’, ’softrelu’, ’tanh’]

x4 Dropout prob. [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]

x5 Batch size [16, 512]

x6 No. layers [1, 5]

x7 Hidden units [32, 512]

LightGBM
(LGB)

x1 Learning_rate [-9, -2]

x2 Fature_fraction [0.1, 1.0]

x3 Min_child_samples [5, 100]

x4 Num_leaves [26, 100]

XGBoost
(XGB)

x1 n_estimators [10, 100]

x2 Learning_rate [10−4, 10−2]

x3 Max_depth [3, 20]

x4 Min_child_weight [1, 20]

x5 Colsample_bytree [0.1, 1.0]

x6 Subsample [0.1, 1.0]

K-Near. Neighb.
(KNN)

x1 n_neighbors [1, 100]

x2 Weights [’uniform’, ’distance’]

x3 Metric [’Euclidean’, ’Manhattan’, ’Chebyshev’]

x4 Leaf_size [10, 100]

x5 Exponent p [1,2]

Random Forest
(RF)

x1 n_estimators [5, 100]

x2 Max_leaf_nodes [1, 15000]

x3 Bootstrap [True, False]

x4 Criterion [squared_error, absolute_error]

Extreme Trees
(XT)

x1 n_estimators [5, 100]

x2 Max_leaf_nodes [1, 15000]

x3 Bootstrap [True, False]

x4 Criterion [squared_error, absolute_error]

Table 3. Hyperparameters for automated models.
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connectivity-based outlier factor (COF), clustering-based outlier factor (CBOF), Subspace Outlier Detection 
(SOD), Histogram-based Outlier Score (HBOS), among others73,74. Here, we do not apply them because the 
database contains few samples, and these samples are of different formations, which can drastically reduce the 
number of samples, which would also impact the performance of the methods.

Feature selection approaches
Feature selection (FS) plays a pivotal role in ML by identifying the most critical features that contribute to 
model performance and interpretability. FS allows the development of more efficient, accurate, and interpretable 
ML models and the selection of appropriate feature selection techniques. In this paper, three FS methods were 
implemented and compared to select the most relevant features.

Boruta feature selection
The Boruta feature selection technique, proposed by76, is an algorithm with a wrapper approach, using a tree-
based ensemble algorithm as the basis estimator. This algorithm was based on some concepts from77 to define 
significant input variables by comparing the significance of real resources with that of random probes. The Boruta 
method has been successfully incorporated as a feature selector in problems in different research areas78–81.

The Boruta algorithm creates shadow features, which are randomized copies of the original features. These 
shadow features are then added to the dataset, and a Random Forest classifier is trained on the augmented 
dataset. For each feature (both original and shadow), the algorithm calculates a Z-score based on the feature’s 
importance, as measured by the Mean Decrease Accuracy (MDA). The MDA is defined as:

 
MDA = 1

mtree

m=1∑
mtree

∑
t∈OOB

I(yt = f(xt)) −
∑

t∈OOB
I(yt = f(xn

t ))
|OOB|  (1)

where mtree represents the number of trees in the tree-based ensemble model, OOB denotes the out-of-bag 
samples, I(·) is the indicator function, yt is the true target value for sample t, f(xt) is the predicted value before 
permutation, and f(xn

t ) is the predicted value after permuting feature n.
The Z-score for each feature is calculated as:

 
Z-score = MDA

SD
 (2)

where SD represents the standard deviation of the accuracy losses across the trees. The Z-scores of the original 
features are then compared to the maximum Z-score among the shadow features. Features that consistently 
achieve significantly higher Z-scores than the shadow features are deemed important and retained, while those 
with lower or comparable Z-scores are considered irrelevant and discarded. This iterative process continues until 
all features are either confirmed as important or removed as irrelevant.

Partial mutual information (PMI)
The Mutual Information (MI) feature selection method is a non-linear, multivariate technique rooted 
in information theory that quantifies the interdependence between variables82,83. This method identifies 
relationships within datasets84,85. The PMI score is calculated based on the joint and marginal probability 
distributions of the variables. Let U represent a candidate input variable, V the output variable (TOC in this 
case), and W the set of already selected input variables. The PMI between U and V, conditioned on W, is defined 
as:

 
P MI(U, V | W ) =

�
fU′,V ′ (u′, v′) ln

[
fU′,V ′ (u′, v′)

fU′ (u′)fV ′ (v′)

]
dv′ du′ (3)

where

 u′ = u − E(u | W ), v′ = v − E(v | W ) (4)

represent the residuals of u and v with respect to W, respectively. The functions fU′ (u′) and fV ′ (v′) denote the 
marginal probability density functions, and fU′,V ′ (u′, v′) represents the joint probability density function of u′ 
and v′. For datasets with available samples, the MI score can be estimated using the following equation:

 
P MI(U, V | W ) = 1

n

n∑
i=1

ln[
fU′,V ′ (u′

i, v′
i)

fU′ (u′
i)fV ′ (v′

i)
] (5)

The MI score is symmetric and non-negative. A PMI value of 0 indicates independence between U and V, 
given W. Higher PMI values signify stronger dependence or association between the variables, suggesting that 
U provides additional information about V that is not captured by the variables in W. In the context of feature 
selection, MI allows the identification and selection of features that exhibit high dependence on the target 
variable while minimizing redundancy with the already selected features. The filtering process selects the top k 
features with the highest MI values as the model’s input variables. This process leads to the construction of more 
efficient and interpretable models with improved predictive performance.
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Recursive feature elimination (RFE)
Recursive Feature Elimination (RFE) is a well-established and widely used technique for selecting informative 
features for model development86. This method iteratively selects features from progressively smaller subsets 
based on an external estimator that assigns weights or importance scores to each feature (e.g., linear model 
coefficients)87. The RFE process starts by training the estimator model on the complete set of features. The 
importance of each feature is then assessed using a specific attribute measure. Following this assessment, the least 
important features are progressively eliminated from the original set. This iterative training process, importance 
evaluation, and feature removal continues until the desired number of features is obtained. As illustrated in 
Fig. 4, RFE progressively eliminates features with diminishing importance, resulting in a reduced feature set 
that retains the most informative features for model construction. This has the potential to improve model 
performance by mitigating the influence of irrelevant features.

Computational experiments
Figure 5 shows the computational framework for the proposed approach. The first process consists of cleaning 
the data (Data Cleanup), which aims to ensure the quality of the data set for carrying out the subsequent steps. 
With the completion of cleaning, this data is sent to the Feature Selection stage, which uses the BFS (Boruta 
Feature Selection), MI (Mutual Information), and RFE (Recursive Feature Elimination) techniques to choose 
the most relevant attributes. This data, now filtered, is destined for the Resource Processing phase, an important 
step for preparing the input information for the model. The processed resources are directed to the (Resource 
Building) stage, the Training Set. This training set will be used in model selection (Model Selection), where 
different algorithms are tested and adjusted in order to find the most appropriate one to solve the problem under 
study. This choice is made through hyperparameter optimization (Hyperparameter Optimization), so the model 
parameters are assigned to their ideal values. The models are evaluated by 5-fold cross-validation, which makes it 
possible to compare different solutions using a performance measure. The chosen and improved model is applied 

Fig. 4. Workflow for recursive feature elimination88.
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to the test set (Test Set) to make TOC (Total Organic Carbon) predictions. Finally, the predictions generated 
by the model are subjected to a Performance Analysis, in which quantitative measurements are employed to 
evaluate the model’s performance on the test set.

A detailed analysis was conducted to identify and correct both missing values and duplicates. By applying 
automated imputation techniques, missing and duplicate values could be eliminated, simultaneously 
guaranteeing the coherence and integrity of the underlying data. Data normalization was performed using the 
z-score standardization technique to make the attributes comparable to scales. This technique ensures that the 
mean is zero and the variance is one, improving training stability.

AutoGluon uses a grid search approach enhanced by meta-learning techniques, which adapts model selection 
based on the performance of previous models. This approach speeds up the process and increases the selection 
accuracy60. The k-fold cross-validation technique was applied to evaluate the model’s performance and avoid 
overfitting. Stratified sampling techniques were used to maintain class distribution. This ensures unbiased results 
and accurate performance estimates. It is known that there is a potential bias generated by the shuffled training 
and testing divisions, leading each method to predict different test data and be trained on different training data. 
So this issue was taken into account. 200 independent runs were performed with different seeds, so the grid 
search employed, which uses Kfold, performed different divisions in the data, allowing a coherent analysis of 
the results. The models were evaluated using metrics appropriate to the TOC prediction, which is a regression 
problem. Table 4 shows the metrics used to assess the model’s performance.

Table 5 displays the models’ evaluation through the metrics RMSE, MSE, MAE, R2 and R. XT was the method 
that obtained the best result in the test set, that is, on data not yet seen in the training process by the methods. 
The results show that some AutoML methods, such as XT and CatBoost, achieve good performance on the test 
set (data not seen by the methods) for the TOC prediction task. These findings suggest that these methods can 
be generalized well to new data.

In order to compare the effects of automated search parameters, a baseline model was implemented using 
default parameters, and its results were presented in Table 5. The parameter of the baseline XGB model according 

Fig. 5. Framework for the proposed approach.
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to Table 3 is 100 estimators (x1), learning rate (x2) equals 0.1, maximum tree depth equals 10 (x3), child weight 
(x4) set to 1, and subsamples (x5 and x6) set to 1.0. As can be observed in Table 5, the models with parameter 
search and optimization achieved superior results in all metrics. This indicates that the parameter tuning process 
(whether manual or automatic) improves model performance by allowing it to be adapted to the characteristics 
of the data. This reinforces the importance of research in automated learning models to develop more robust and 
efficient strategies for determining model parameters.

Figure 6 shows a diagram of the families of models generated by AutoML, the model name, the score value, 
and the training time. The family that performed best was Greedy Weighted Ensemble_L2, which was generated 
through a greedy search in combination with methods to create a robust ensemble method. The parameters 
obtained in this family had a score equal to 0.2346 and a training time of 44.1 seconds. The two methods 
that obtained good results after the Greedy Weighted Ensemble were LGB and XT. Table 6 presents the best 
hyperparameters found during the training and the respective validation scores. Although GWE presents the 
best result in the set, this is not maintained in the test set, as shown in Table 5, likely because it is generated using 
a greedy search of the training and validation data, which can lead to overfitting.

Table 7 and Fig. 7 show the results incorporating feature selection approaches Boruta, Mutual Information 
(MI), and Recursive Feature Selection (RFE) into the developed models, considering 5 variables to Boruta, 3 to 
MI, and 3 to RFE. The assessment is based on root mean squared error (RMSE), mean squared error (MSE), mean 
absolute error (MAE), coefficient of determination (R2), and Pearson correlation coefficient (R). Additionally, 
the training time required for each model is also considered.

Across all the evaluated models, the incorporation of the Boruta feature selection method consistently yielded 
superior or comparable performance compared to MI and RFE. This is attributed to Boruta’s ability to effectively 
identify the most relevant features for TOC prediction while considering both their individual importance and 
interdependencies. The inclusion of a larger number of features, as selected by Boruta, provided the models with 
a more comprehensive representation of the underlying geological and petrophysical relationships influencing 
the TOC content.

In contrast, MI and RFE, with their tendency to select a smaller subset of features, resulted in models with 
reduced predictive accuracy. MI, based on information-theoretic principles, can not consider features with 
complex or non-linear relationships to TOC, while the iterative elimination process that is the basis of RFE 
can discard features that may contribute to the overall predictive power of the model. Consequently, models 

Model RMSE MSE MAE R2 R Training time (s)

XT 0.425 0.181 0.250 0.743 0.863 0.357

CatBoost 0.445 0.198 0.276 0.718 0.855 20.653

RF 0.459 0.211 0.249 0.700 0.837 0.423

GWE 0.459 0.211 0.270 0.699 0.836 45.321

LGB 0.463 0.214 0.289 0.695 0.835 2.582

XGB 0.463 0.214 0.270 0.695 0.839 5.495

NNTorch 0.484 0.234 0.271 0.666 0.819 8.086

NNFastAi 0.507 0.257 0.312 0.634 0.801 3.869

KNN 0.539 0.290 0.292 0.586 0.767 0.007

Baseline XGB 0.510 0.261 0.289 0.627 0.793 2.277

Table 5. Model evaluation on the test set. GWE: Greedy Weighted Ensemble

 

Performance metric Acronym Mathematical expression

Pearson correlation 
coefficient R

      

∑n

i=1
(xi − x̄)(yi − ȳ)√∑n

i=1
(xi − x̄)2

∑n

i=1
(yi − ȳ)2

Coefficient of 
determination R2 1 −

∑n

i=1
(yi − ŷi)2

∑n

i=1
(yi − ȳi)2

Mean square error MSE
1
n

n∑
i=1

(yi − ŷi)2

Root mean square error RMSE

√
1
n

n∑
i=1

(yi − ŷi)2

Mean absolute error MAE 1
n

∑n

i=1
|yi − ŷi|

Table 4. Performance metrics and their mathematical expression.
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incorporating MI and RFE exhibited higher error values and lower correlation coefficients compared to those 
utilizing Boruta.

Furthermore, the XT (Extremely Randomized Trees) model emerged as a top performer across all feature 
selection methods, demonstrating low error values and high correlation coefficients. The robustness and 
effectiveness of the XT model in handling complex datasets with potentially non-linear relationships make it 
well-suited for TOC prediction tasks. CatBoost also exhibited strong performance, particularly with the Boruta 
feature set, highlighting the effectiveness of gradient boosting techniques in this domain.

Examining the final column of the table reveals that model XT achieved the fastest training times, with 
execution durations of 0.355 and 0.344 seconds, respectively. When considering recursive feature elimination 
(RFE) for feature selection, both models GWE and XT demonstrated promising results, with training times 

Model Validation score (MSE) Best hyperparameters

CatBoost 0.285485 x1 : 0.06027204644225115, x2 : 5, x3 : 3.9883178805569366, x4 : Lossguide

KNN 0.348611 ’weights’: ’distance’

LGB 0.257551 x1 : 0.042769004147665074, x2 : 0.9988248919194719, x3 : 16, x4 : 31

NNFastAi 0.269638 x1 : (1000, 500, 200), x2 : 0.15108500596256647, x3 : 2048, x4 : 0.00021969615035282952

NeuralNet Torch 0.273252 x1 : 500, x2 : 0.0006353732345430946, x3 : ’tanh’, x4 : 0.1, x5 : 512, x6 : 4, x7 : 256

RF 0.276757 x1 : 300, x2 : 15000, x3 : True, x4 : ’squared error’

XGBoost 0.290761 x1 : 10000, x2 : 0.12034886497897113, x3 : 10, x4 : 4, x5 : 0.9871293319286164

XT 0.269325 x1 : 300, x2 : 15000, x3 : True, x4 : ’squared error’

Greedy Weighted Ensemble 0.234488 ’ensemble size’: 100

Table 6. Best models.

 

Fig. 6. Greedy Weighted Ensemble model generated by AutoML.
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of 30.372 and 0.356 seconds, respectively. However, model XT emerged as demonstrably superior in terms of 
training efficiency.

Feature selection analysis
A computational experiment was conducted to evaluate the effectiveness of different feature selection methods 
for TOC prediction using a dataset containing well-log measurements and corresponding TOC values. Feature 
selection can improve model performance and reduce training time in some cases. However, this task is 
challenging and there are many approaches in the literature. There are methods based on statistical tests, which 
use decision trees, among others. Three feature selection methods were compared: Boruta, Mutual Information 
(MI), and Recursive Feature Elimination (RFE). A total of 200 independent runs were performed for each feature 
selection method. In each realization, the data was shuffled, and each method was applied to select the most 
relevant variables. The dataset was then randomly divided into training and testing sets. The model was trained 
on the training set, and the testing set was used to calculate a performance metric. The MSE metric, described in 
Table 4, was used to compare the performance of the feature selection models.

Due to the randomization employed, each independent run yielded distinct results. A count indicator was 
used to track the variables selected in each run to identify the most relevant variables. If a variable was selected, 
the count returned 1; otherwise, it returned 0. If a variable was selected in all 200 runs, the count returned 200. 
Conversely, if a variable was selected in n runs, the count returned n. To simplify the decision-making process, 
the count was transformed into a percentage value, as presented in Table 8.

The variables obtained by the models differed due to their feature selection strategies. Table 2 shows that, of 
the seven variables, the most relevant for the Boruta method were acoustic time difference (AC), deep resistivity 
(RD), and uranium (U), thorium (Th), and potassium (K), appearing in 100% of the procedure’s runs. The input 
variables gamma radiation (GR) and shallow resistivity (RS) were listed 18.5% and 18% of the time, respectively. 
In this context, for the Boruta method, the GR and RS variables were disregarded, resulting in a set with five 
variables (AC, K, RD, TH, and U).

The results for Mutual Information (MI) yielded three relevant variables (AC, GR, RS), while the RD variable 
was discarded as it appeared in only 29% of the runs. The remaining variables were not selected by the strategy. 
Interestingly, MI excludes features like RD, TH, and U, which Boruta considered important. This difference 
highlights the varying approaches of these methods. The Recursive Feature Elimination (RFE) process yielded 
the variables AC, K, and U. The RD variable was disregarded as it appeared in only 9.5% of the independent runs.

FS Model RMSE MSE MAE R2 R Training time (s)

Boruta
(5 var.)

CatBoost 0.450 0.202 0.278 0.712 0.848 8.885

GWE 0.466 0.217 0.290 0.691 0.832 57.980

KNN 0.587 0.345 0.343 0.508 0.718 0.076

LGB 0.484 0.234 0.308 0.667 0.818 3.726

NNFastAi 0.518 0.268 0.321 0.617 0.787 4.202

NNTorch 0.477 0.228 0.302 0.675 0.824 30.469

RF 0.471 0.222 0.259 0.684 0.827 0.401

XGB 0.485 0.236 0.287 0.664 0.823 4.868

XT 0.430 0.185 0.264 0.737 0.860 0.355

MI
(3 var.)

CatBoost 0.601 0.361 0.336 0.486 0.698 7.472

GWE 0.576 0.332 0.319 0.527 0.731 47.131

KNN 0.595 0.354 0.326 0.495 0.709 0.117

LGB 0.605 0.366 0.329 0.478 0.692 2.621

NNFastAi 0.635 0.403 0.361 0.426 0.656 7.546

NNTorch 0.597 0.357 0.346 0.492 0.705 21.821

RF 0.596 0.356 0.308 0.493 0.709 0.535

XGB 0.600 0.360 0.335 0.487 0.705 2.159

XT 0.556 0.309 0.293 0.560 0.748 0.344

RFE
(3 var.)

CatBoost 0.518 0.268 0.329 0.618 0.788 2.722

GWE 0.507 0.257 0.316 0.633 0.797 30.372

KNN 0.606 0.367 0.353 0.477 0.697 0.007

LGB 0.541 0.292 0.335 0.584 0.765 1.953

NNFastAi 0.527 0.277 0.332 0.605 0.782 4.748

NNTorch 0.517 0.267 0.316 0.619 0.788 5.239

RF 0.523 0.274 0.317 0.610 0.783 0.521

XGB 0.542 0.294 0.332 0.581 0.766 2.103

XT 0.510 0.260 0.325 0.630 0.795 0.356

Table 7. Simulation results incorporating feature selection approaches into the developed model.
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Figure 8 shows a boxplot of the comparative performance measures using the reduced datasets with an XGB 
baseline model. The results indicate that the dataset produced by the Boruta method yielded the best performance, 
which is expected since the set has more variables, allowing the model to work with more formations and thus 
generate a model with greater accuracy and predictability. The proposed computational experiment shows 
that the Boruta method consistently outperformed the other methods, reducing the model complexity and the 
performance of ML models in this domain. However, it is important to note that the number of features selected 

Fig. 7. Comparison of performance metrics for reduced datasets. The original dataset has seven input features 
as described in Table 1, the Boruta feature selection yielded 5 features, and MI and RFE have 3 features each.
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by MI and RFE might be predefined or determined by the algorithm’s stopping criteria, which is limited to 3. In 
addition, for MI and RFE, the user-defined parameters can impact the number of features selected. Following 
are some facts that may justify Boruta having a better result: Boruta selects strong and weak relevant features by 
comparing feature importance with random features, ensuring robustness to irrelevant and redundant features. 
It works well with high/low-dimensional datasets and correlated features, which can hinder MI and RFE. It 
makes use of statistical tests to provide more reliable feature selection and can handle non-linear relationships 
more effectively. RFE and MI often miss weak but relevant features or fail to capture all information, while 
Boruta’s comprehensive approach tends to retain the most informative subset.

Each feature selection method used resulted in a different selection, some selected more, others less. It is 
important to evaluate the impact on the prediction as performed in the Subsection 3.2, in addition to using 
domain knowledge whenever possible89,90, in this case the relationship between TOC and petrophysical features.

Feature importance analysis
Calculating the importance of features through permutation is a method verification tool that can be applied 
to supervised fitted models71,91. Using this approach makes nonlinear models convenient. Feature importance 
is established by assessing the decrease in a model’s score when a single feature value is randomly shuffled. This 
procedure breaks the relationship between the feature and the target value, so the decrease in the model score 
is an indication of how much the model depends on the feature. For example, a feature importance of 0.02 
indicates that the predictive performance decreased by 0.02 when the feature was randomly shuffled. The higher 
the score for a feature is, the more critical it is to model performance.

Table 9 shows the coefficients calculated by analyzing the importance of the variables. The same coefficients 
are displayed on a bar graph in Fig. 9. Observing Table 9 and Fig. 9, it is possible to extract crucial information 
about the importance of each feature in the model. A detailed analysis of feature importance seeks to interpret 
the crucial role of each input variable in the context of AutoML modeling, aiming to improve the precision of 
forecasting the total organic carbon (TOC) content in oil wells.

The characteristic uranium (U) takes center stage, which is important at 0.7393. This eminence is justified 
by the strong correlation between TOC content and uranium content resulting from the incorporation of 
this element during the deposition of organic matter. The role of U is so remarkable that one can anticipate a 
considerable influence on TOC predictions, revealing the distinctiveness of diagenesis. Its impact manifests not 
only as a direct indicator of TOC but also as a marker of specific geological environments that may harbor higher 
concentrations of hydrocarbons.

The deep resistivity (RD) importance is 0.2986. This robust relationship between actual density and TOC 
content provides a solid basis for the contribution of RD to the predictions. This characteristic reflects variations 

Fig. 8. Comparative performance of features selection methods using the reduced datasets.

 

Feature selection AC K RD TH U GR RS

Boruta 100.0 100.0 100.0 100.0 100.0 18.5 18.0

MI 100.0 – 29.0 – – 100.0 71.0

RFE 100.0 90.5 9.5 – 100.0 – –

Table 8. Percentage of the number of iterations the features are selected.
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in wellbore properties, which, in turn, reflect the presence and distribution of organic matter. The extent to 
which the actual density varies may indicate the presence of zones with higher or lower organic matter content, 
directly impacting the TOC estimates.

The gamma ray (GR) plays a notable role, with an importance of 0.1468. This characteristic is important 
because of its ability to reflect not only natural gamma ray but also radioactive elements such as potassium, 
thorium, and uranium. These elements are often associated with organic matter and sediment minerals and thus 
have complex relationships with TOC levels.

The acoustic (AC) characteristic is highlighted with an importance of 0.1319. A direct connection between 
electrical conductivity and TOC content indicates its influence. The unique feature of electrical conductivity is 
its ability to provide information about the electrical properties of sediment at different depths. This makes it 
possible to identify zones where organic matter or conductive minerals are more significant. The link between 
shear wave velocity and TOC content provides insight into the relationships between wellbore mechanical 
properties and TOC.

The shallow resistivity (RS) has significant numerical importance, taking the value of 0.1115. The shear wave 
velocity (Rs) plays a key role in predicting TOC levels in oil wells, contributing to the understanding of the 
mechanical and structural properties of sediment. Its importance stems from the intricate relationship between 
shear wave velocity and the physical and geological properties of the well. The relationship between shear wave 
velocity and TOC content is associated with the porosity distribution and the presence of organic matter. In 
some cases, organic matter can fill the spaces between sediment grains, altering the propagation of shear waves. 
Therefore, variations in shear wave velocity may be indicative of changes in organic matter distribution and 
porosity. The shear wave velocity contributes to the direct estimation of TOC and provides information on 
wellbore architecture and variations in physical properties across depths.

The input variables thorium (Th) and potassium (K) exhibit similar importance, reinforcing their role in 
the analysis. TH reveals nuances with importance equal to 0.0507, indicating the presence of thorium in shale 
rich in organic matter. Similarly, potassium, with an importance of 0.04741, reveals the influence of potassium 
on well composition. Thorium and potassium traits are complementary in predicting TOC. The characteristic 
K (potassium) provides important information about the mineral composition of the sediment. Potassium 
is present in several minerals, and its concentration can vary depending on the type of rock and geological 
conditions. Although its contribution is relatively moderate, the presence of potassium in association with other 

Fig. 9. Bar chart of feature importance. The black line in the blue bars represents the standard deviation of the 
calculated importance, and the height of the bars represents the mean.

 

Importance std p-value

U 0.751 0.087 ≤ 10−6

RD 0.233 0.032 ≤ 10−6

K 0.215 0.043 ≤ 10−6

RS 0.184 0.041 ≤ 10−6

AC 0.095 0.018 ≤ 10−6

GR 0.093 0.015 ≤ 10−6

TH 0.033 0.008 ≤ 10−6

Table 9. Importance of characteristics in the TOC prediction process.
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radioactive elements, such as uranium and thorium, can influence the electrical properties and composition of 
the sediment. As a result, potassium (K) adds information about the complexity of the sedimentary environment. 
On the other hand, even though thorium has less prominent importance than other characteristics, it contributes 
to the understanding of the geological history of wells. Thorium is often associated with minerals that occur 
in sediments, and its presence may indicate certain sedimentary environments that favor the accumulation of 
organic matter. Therefore, including TH in the TOC prediction model allows us to capture nuances associated 
with specific geological contexts.

Discussion
This paper proposes an approach based on automated machine learning combined with feature selection 
approaches to investigate the prediction of total organic carbon (TOC) content. Considering the growing 
complexity of energy sources, the challenges in geochemistry and geophysics, and the exploration of energy 
resources in the energy transition era, this paper explored the potential of automated approaches to select the 
most suitable models and adjust their parameters to improve the accuracy of TOC predictions.

The proposed computational framework aimed to mitigate the limitations and bias associated with manual 
model selection and parameter setting approaches. The model consistently shows the potential to achieve reliable 
and consistent results, considering the complex interactions between models and underlying parameters. The 
automation of the TOC prediction process allowed the exploration of the search space, identifying the most 
promising combinations and, consequently, maximizing the predictive performance.

This approach is relevant because of the dynamic nature of the fields of geochemistry, geophysics and resource 
exploration92–94. With technological advances and the increasing availability of data, implementing automated 
methods has become essential for optimizing informed decision-making. Furthermore, the approach contributes 
to biases and subjectivities by reducing human intervention in the selection and configuration phases.

Recent studies that have developed ML models for various versatile applications have reported that 
hyperparameter tuning is crucial for ensuring proper model performance95. An effective fit can exploit the 
capabilities of simple models, resulting in competitive results. On the other hand, an inadequate fit can lead to a 
decline in the accuracy and robustness of models. An alternative to model tuning is the use of approaches that 
involve combining metaheuristics with ML models, resulting in hybrid models in which ML models benefit 
from automated search capabilities.

As the dataset size is limited, the application of complex models such as ensemble approaches increases 
the risk of overfitting, as the flexibility of these models makes them susceptible to capturing noise or irrelevant 
patterns in the data. Cross-validation helps estimate model performance (and reduces bias), but it may or may not 
prevent overfitting, especially if the data is limited or strongly unbalanced. In addition, early stopping, pruning, 
or limiting the number of ensemble trees can also further help reduce this risk by avoiding too many fittings. Also 
has the potential to enhance the dataset via data augmentation or synthetic data generation. The problem related 
to parameter search is formalized as an optimization problem in which grid search seeks to minimize metrics 
of interest, such as MSE (Mean Squared Error), while seeking the best combinations of hyperparameters96,97. 
In some scenarios, variable selection can be easily built into models. In these cases, in addition to coding the 
hyperparameters, the solutions are designed to include binary arrays that turn on or off the variables that feed 
the ML model48,98. More complex cases may involve sets of models, where the solution may indicate more than 
one learning model in a pipeline or linear combination strategy99. Other studies, such as100,101, show the need for 
the development of integrated artificial intelligence systems in the area of petroleum engineering and propose 
the use of techniques such as Principal Component Analysis to reduce the dimensionality of the data improving 
the performance and reduce the processing time of the artificial neural network used to predict porosity and 
permeability. This final approach can generate accurate but overly complex models. In these contexts, the goal 
is to maximize the performance of the model by increasing its precision while trying to simplify the models.

These objectives may conflict, leading to the formulation of a multicriteria problem, that is, a problem that 
encompasses multiple102 objectives. The solutions of interest, in this case, form a set of nondominated solutions 
known as the Pareto front. This front allows the decision maker to choose between more precise or simpler 
solutions, all equivalent to each other.

AutoML brings efficiency by automating model selection, tuning of hyperparameters, and feature 
engineering, but it also tends to be computationally intensive. Algorithms may vary in complexity and resource 
consumption based on their underlying functionality. As data sizes increase, consuming far more resources to 
train them, when training multiple models with a suite of algorithms, the process can be resource-intensive, 
often requiring CPU/GPU power and memory. In real-world situations, especially in the field, computational 
budgets are often limited, which can hinder detection. Running AutoML frameworks in those situations might 
require utilizing high-performance computers, cloud-based solutions, or optimized architectures, which can 
be avoided. Furthermore, some field applications require real-time predictions, making AutoML workflows 
inapplicable due to their generally slow work speed compared to the required decision time. The right use of this 
can be given for available future scenarios, which help in the later decisions. Therefore, a balanced approach is 
necessary, where the trade-offs between the power of AutoML and the practical constraints of the deployment 
environment are carefully considered.

The generalization of AutoML models to different geospatial and environmental conditions is a significant 
challenge. Although promising, AutoML frameworks usually need large, diverse datasets to train models and 
deliver decent performance on specific problems. In geoscientific use cases, we note that such data may be scarce, 
noisy, and specific to a region, resulting in models produced through AutoML not effectively generalizing to 
new, unknown environments without retraining or modification. In geoscience, professional expert knowledge 
is often lost in AutoML methods. Although AutoML may facilitate the efficiency of the model building process, 
it can simplify problems of a scientific nature by applying data-driven techniques without encompassing 
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relevant domain knowledge. Hence, although AutoML is a very promising opportunity, it is crucial to bear 
these limitations in mind when applying it to geoscientific problems to ensure the results remain scientific and 
applicable to the real world problems.

As the problems faced in areas such as geochemistry and energy resource exploration become more complex, 
the interpretability of ML models has gained prominence. Interpretability is critical for understanding and 
trusting model results, especially in domains where decision-making is critical, such as the oil and gas industry. 
Models that predict total organic carbon (TOC) content in reservoirs can be black boxes, and their decisions 
can be difficult to understand and explain, making it difficult for domain experts to trust and practically adopt 
predictions. In these scenarios, interpretable models gain relevance, which can explain how a certain prediction 
was reached. One of the techniques to improve the interpretability of AutoML models is the analysis of the 
importance of variables, as developed in this study, which provides insights into which variables have the 
greatest influence on model decisions. Understanding and explaining model decisions is critical for ensuring 
expert confidence and the practical utility of predictions, and understanding and explaining model decisions 
is a key aspect of research and model development in these domains. However, in some cases, interpretable 
models can be oversimplified to favor interpretability, leading to a loss of performance in terms of predictive 
ability. Therefore, a balanced approach that considers both performance and interpretability is needed to address 
complex problems.

AutoML models can help experts predict total organic carbon (TOC) content, as they allow adaptation to 
different geological contexts. They can be trained on a variety of data from different geological contexts, allowing 
experts to use the learned knowledge in a wide range of scenarios. Determining TOC in core rocks can be 
a time-consuming process involving several steps. Interpreting these results is critical for understanding the 
hydrocarbon-generating potential of rock formations. Using ML models to support geologists results in greater 
agility in the analysis process because, as new data are collected, the ML models can be updated and refined 
easily. This allows experts to track changes in geological conditions and continually improve forecasts.

Conclusion
This study evaluated the use of three selection features techniques combined with nine AutoML models for a 
TOC modeling problem with data collected in five shale formations in different geological basins: Yanchang 
shale in the Ordos Basin, the Shahejie shale in the Bohai Bay Basin, Longmaxi shale in the Sichuan Basin, the 
Shanxi and Taiyuan shales in the North China Basin. The AutoML approach allows preprocessing, grid searches 
for method hyperparameters, and evaluation in an integrated framework. The performance metrics RMSE, 
MSE, MAE, R2 and R were used to assess the errors in the model’s predictions.

The main conclusions of the research are as follows:

• The best result was obtained by AutoML-generated XT model with a correlation coefficient of 0.863 and a 
mean squared error (MSE) of 0.1806 for TOC prediction.

• The Greedy Weighted Ensemble model generated by the others AutoML models was evaluated and demon-
strated a good performance but it took longer to train compared to the other models.

• The integration of feature selection within the AutoML framework, particularly the Boruta method, repre-
sents a significant step towards developing more robust and interpretable data-driven models for complex 
geoscience problems.

• The proposed strategy provides a powerful data-driven method for real-world wellbore applications, assisting 
in data analysis and subsequent decision-making.

Although limited, the study presented in this paper represents a contribution to petrophysical and energy 
resource exploration. It provides an advanced methodological approach that can enrich research practices and 
informed decision-making in these dynamic fields. The findings presented here can facilitate a general discussion 
about the application of automated techniques in the oil and gas industry.

Data availability
The present investigation is based on a dataset available at https://doi.org/10.3390/en16104159. The source code 
is available to interested parties upon request from the corresponding author.
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