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ABSTRACT 

 

In machining process, pretreatment of cutting tool surface helped to increase wear 

resistance of cutting tool. The tool insert used was carbon coated with Hydrofluoric 

acid (HF) and sand blasting pretreatment, while the machining workpiece was 

Titanium alloy. Sandblasting was conducted using Silicon Carbide (SiC) particles 
with 300 grit size. Carbon coating was deposited on the tool insert substrates by 

using Physical Vapor Deposition (PVD) technique. Morphological observation was 

conducted using optical microscope to observe the micrographs of tool insert surface 

in as-received condition and after pretreatment and to measure length of flank wear 
on the substrate after machining titanium. Parameters used for machining were 

cutting speed of 100 m/min, depth cut of 0.25 mm and feed rate of 0.1 mm/rev. The 

substrate surface after coating by different surface pretreatment was measured using 

Vickers Hardness machine. From the morphological observation, the as-received 
micrograph has a continuous 45° direction from the horizontal line. Sandblasted 

substrate showed white spots on the tool insert surface. Surface pretreatment 

combination with Hydrofluoric acid showed a non-uniform surface with a peak and 

valley image. Alumina coated with sand blast and hydrofluoric acid pretreatment was 
found to increase wear resistance by having the shortest wear length of 0.336 mm 

after machining a titanium alloy rod. 
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ABSTRAK 

 

Dalam proses pemesinan, prarawatan permukaan alat pemotong membantu 

meningkatkan daya tahan haus memotong alat.Alat memasukkan digunakan adalah 

karbon bersalut dengan asid hidrofluorik (HF) dan prarawatan pasir yang letupan, 

sementara bahan kerja pemesinan aloi Titanium. Pembagasan pasir telah dijalankan 
menggunakan Silikon karbida (SiC) zarah dengan kersik saiz 300. Salutan karbon 

telah didepositkan pada substrat masukkan alat dengan menggunakan Pemendapan 

Wap Fizikal (PVD) teknik. Pemerhatian morfologi telah dijalankan menggunakan 

mikroskop optik untuk mematuhi mikrograf permukaan masukkan alat dalam 
keadaan seperti yang diterima dan selepas prarawatan dan untuk mengukur panjang 

haus rusuk atas substrat selepas titanium pemesinan. Parameter yang digunakan 

untuk pemesinan kelajuan pemotongan sebanyak 100 m/min, kedalaman pemotongan 

0.25 mm dan kadar suapan 0.1 mm/putaran. Permukaan substrat selepas salutan 
dengan prarawatan permukaan yang berbeza telah diukur dengan menggunakan 

mesin Kekerasan Vickers. Dari pemerhatian morfologi, Mikrograf yang diterima 

sebagai mempunyai hala tuju berterusan 45° dari garis mendatar. Substrat 

sandblasted menunjukkan bintik putih pada permukaan masukkan alat. Permukaan 
gabungan prarawatan dengan asid hidrofluorik menunjukkan permukaan yang tidak 

seragam dengan imej puncak dan lembah. Bersalut alumina dengan letupan pasir dan 

prarawatan asid hidrofluorik telah didapati untuk meningkatkan rintangan haus 

dengan mempunyai haus panjang yang terpendek 0.336 mm selepas pemesinan rod 
aloi titanium. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Background of study 

 

 In the last few decades, there have been great advancements in the 

developments of cutting tools, including coated carbides, ceramics and cubic boron 

nitride and polycrystalline diamond. Improvement in materials by hard Chemical 

Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) coatings are widely 

used today in the metal-working industrial and provide the best alternative for most 

machining operations. 

 The revolution of coating technology into cutting tool still continuous by 

researchers can give a lot of improvement in their mechanical properties and wear 

resistance. Also, to increase the life and cutting speed ability of the cutting tools 

considerably. To achieve the machining performance of tool coating, the tool’s 

material must have high strength at elevated temperature, good oxidation resistant, 

low coefficient of thermal, resistant to wear, chemical reactance resistance and high 

conductivity and can withstand for a long time (Kalpakjian and Schmid S.R, 2001). 

 Normally, the flank wear in tools initially occurs due to abrasion and as the 

wear process progresses, the temperature increases causing diffusion to take place. 

Abrasive wear may occur in metal cutting tool even there are many hard abrasive 

particles present in metals, especially in steel.  

 In this study, an improvement of Aluminum Oxide (       cutting tool was 

conducted. The Aluminum Oxide      ) tool insert was pretreated by Silica Carbide 

(SiC) sand blasting and Hydrofluoric acid etching. Tool inserts was carbon coated 

using Physical Vapor Deposition (PVD) technique. The coated tool insets were used 
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to machine titanium alloy workpiece. Wear performance of the tool inserts was 

analyzed and compared with the uncoated Aluminum Oxide. 

  

1.2 Problem statement 

 

 Machining of titanium alloys requires cutting forces only slightly higher than 

those needed to machine steel, but these alloys have metallurgical characteristics that 

make them somewhat more difficult to machine than steels of equivalent hardness. 

 Nowadays, hard coatings are commonly used to increase the wear resistance 

of cutting tools in metal machining (M. Van Stappen, M. Kerkhofs, L.M. Stals, C. 

Quaeyhaegens, 1995). 

 Uncoated cutting tool caused higher wear rate in machining process. Hence, 

in order to increase the wear resistance or tool life of that cutting tool, coating is 

necessary.  

 Cutting tools performance depends on surface pretreatment and coating 

technique. In addition, to further increase the properties of coated material, the 

substrate (cutting tool) can be sand blasted by silicon carbide. Hydrofluoric acid used 

for give strong coating adhesion with carbon coating. Besides that, hydrofluoric acid 

increase the substrate surface roughness cutting tool providing large surface area. 

  

1.3 Objective of the Study 

 

The objectives of this research were: 

1. To investigate the effectiveness of PVD coating, sand blasting and acid 

etching on alumina cutting tool insert. 

2. To quantify the effect of alumina insert wear resistance in machining of 

titanium alloy rod bar. 
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1.4 Scopes of the Study 

 

The scopes of this study were limited as follows: 

1. Alumina was used as cutting tool insert. 

2. Surface pretreatment of alumina cutting tool insert using:  

 Sand blasting using silicon carbide  

 Acid etching using hydrofluoric acid (HF) 

3. Conduct turning operation for 3 mm diameter titanium alloy rod bar work 

piece 

4. Conduct characterization on cutting tool insert for morphology analysis, 

Vickers hardness and tool flank wear 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 Introduction 

 

Background information was emphasizes about cutting tools material, 

ceramic, aluminum oxide, carbon coating, tool wear, pretreatment, sand blasting, 

Hydrofluoric acid, coating, PVD technique, machine turning and work piece titanium 

to highlight some of what has occurred in tool wear studies.  

 

2.2 Cutting Tool Material 

 

The cutting tool must meet several requirements, depending upon the cutting 

conditions and the work piece material (Inspektor, 1994). The tool has to have high 

hardness and high wear resistance at the metal cutting temperature. It also has to be 

tough, chemically stable over a wide range of temperatures and insert to the work 

piece material. It is difficult to satisfy all the demands in one material, and thus 

successful tools are often made of hard coatings on suitable substrate (Safari, 2010) 

 

2.2.1 Tool Material for Precision Machining 

 

 The cutting tool materials must possess a number of important properties to 

avoid excessive wear, fracture failure and high temperatures in cutting (Valery 

Marinov). The following characteristics are essential for cutting materials to 

withstand the heavy conditions of the cutting process and to produce high quality and 

economical parts: 
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 Hardness: at elevated temperatures (so-called hot hardness) so that hardness 

and strength of the tool edge are maintained in high cutting temperatures. 

 Toughness: ability of the material to absorb energy without failing. Cutting if 

often 

Accompanied by impact forces especially if cutting is interrupted, and cutting 

tool may fail very soon if it is not strong enough. 

 Wear resistance: although there is a strong correlation between hot hardness 

and wear resistance, later depends on more than just hot hardness. Other 

important characteristics include surface finish on the tool, chemical inertness 

of the tool material with respect to the work material, and thermal 

conductivity of the tool material, which affects the maximum value of the 

cutting temperature at tool-chip interface. 

 

 A comparison between hot hardness, wear resistance and toughness is shown 

in Table 2.1 (Izman Venkatesh, V C Venkatesh, 2007). It indicates that single-crystal 

diamond which is widely used for ultra-precision applications has the highest hot 

hardness and wear resistance, but it lacks toughness in terms of which it is quite 

surprising that this earliest tool material still holds an edge over other materials 

(Anon, 2009). A clearer picture can be obtained from Table 2.2 that indicates the 

relative values of several properties for each of the cutting tool materials of the major 

classes of tool materials, carbon steels, high speed steels and cast alloys are seldom 

used in precision applications. Carbon steel is the earliest tool material that was 

widely used for making drills, taps, reamers, and broaches. The use of carbon steel is 

restricted to low cutting speeds and temperatures. 
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Table 2.1: Comparison between hot hardness, wear resistance and toughness for 

cutting tool  

 

Source: Anon, 2009 

 

 

 

Table 2.2: Properties of cutting tool materials  

 

Source: Anon, 2009 
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2.2.2 Ceramic 

 

Ceramic tools cannot compete favorably with the best grades of carbides, and 

it was not until the 1950s, when new techniques for their manufacture were 

developed, that the significant application of oxide ceramic tools to machining was 

made (Anon. 2009). Ceramics are artificial man-made products obtained by sintering 

pure alumina       at a high temperature (1,500–1,900 °C) but below its melting 

point at a pressure of 150–200 atm. 

The optimum cutting performance is obtained using pure oxide ceramic tools 

with as small a grain size as possible. However, the strength value is affected, as the 

maintenance of smaller grains would mean lowering the firing time or temperature, 

which can thus give rise to a decrease in the density of the tool. The crystal growth of 

pure oxide ceramics can be affected by the addition of grain growth inhibitors such 

as magnesium oxide which keep the grain size of sintered pure oxide at low values of 

5–10 μm. Recently, ceramic tools with an average grain size as low as 3–4 μm have 

been manufactured.  

Density is closely related to the method of manufacture. From theoretical 

calculations based on X-ray data of the crystal structure of alpha-alumina, the 

theoretical density was calculated to be 3.90, and some data yielded a value as high 

as 4.00. The porosity of pure oxide ceramic tools, whether hot sintered or cold 

sintered, depends on the firing temperature. The higher the firing temperature, the 

denser is the product obtained, but a higher firing temperature necessitates a longer 

firing time, which in turn results in an accelerated grain growth. Hence, it becomes 

essential to use grain growth inhibitors such as magnesium oxide. Porosity and 

therefore density have a considerable influence on tool life. The lower the porosity, 

the higher is the tool life.  

Oxide ceramics retain their hardness at higher temperatures as compared with 

other materials. Ceramics have a very low tensile strength of 370–600 N/mm2. 

Hence, they need to be supported on steel shanks as in the case of carbides, and the 

shank design detailed earlier is also valid for these tools. Because of its high 

compressive strength and low bending strength, negative rakes for ceramic tools are 

essential, except in finishing operations of plastic and graphite where a positive rake 

is used. Ceramics have a low coefficient of thermal expansion so that heat is 
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conducted to a great depth in the tool as in the case of High Speed Steel. tools. This 

property has the further advantage that thermal shock is reduced. But the low 

coefficient of expansion gives rise to difficulties when brazing tool bits on to steel 

shanks and these difficulties have largely contributed to the development of clamped 

tools not only for ceramic tools but for carbide tools as well. Oxide ceramics have 

two other important chemical properties, namely, (a) a high resistance to oxidation 

and (b) a low affinity for most metals, which reduce the tendency to adhesion and 

also bring about reduction in friction. Resistance to cratering is therefore high.  

Oxide ceramics however function well only at high cutting speeds preferably 

above 500 m/min. The rate of chip removal is high, necessitating machine tools of a 

larger power capacity and a high spindle rotation, which in turn calls for a very high 

rigidity. Further modifications are necessary, such as a variable speed for the gradual 

increase in speed, and a variable feed to minimize the shock while the tool enters and 

leaves the work piece 

 

2.2.3 Aluminum Oxide 

 

Aluminum oxide is a chemical compound of aluminum and oxygen with the 

chemical formula       .Alumina is the most cost effective and widely used material 

in the family of engineering ceramics. The raw materials from which this high 

performance technical grade ceramic is made are readily available and reasonably 

priced, resulting in good value for the cost in fabricated alumina shapes. With an 

excellent combination of properties and an attractive price, it is no surprise that fine 

grain technical grade alumina has a very wide range of applications. Aluminum 

oxide, commonly referred to as alumina, possesses strong ionic interatomic bonding 

giving rise to its desirable material characteristics. It can exist in several crystalline 

phases which all revert to the most stable hexagonal alpha phase at elevated 

temperatures. This is the phase of particular interest for structural applications and 

the material available from Accuratus (I.S. Ahmed Farag, 2004). 

Key Properties 

 

 Hard, wear-resistant 

 Excellent dielectric properties from DC to GHz frequencies 
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 Resists strong acid and alkali attack at elevated temperatures 

 Good thermal conductivity 

 Excellent size and shape capability 

 High strength and stiffness 

 Available in purity ranges from 94%, an easily metallizable composition, to 

99.5% for the most demanding high temperature applications. 

 

 Alpha phase alumina is the strongest and stiffest of the oxide ceramics. Its 

high hardness, excellent dielectric properties, refractoriness and good thermal 

properties make it the material of choice for a wide range of applications. 

 High purity alumina is usable in both oxidizing and reducing atmospheres to 

1925°C.Weight loss in vacuum ranges from 10–7 to 10–6 g/cm2.sec over a 

temperature range of 1700° to 2000°C. It resists attack by all gases except wet 

fluorine and is resistant to all common reagents except hydrofluoric acid and 

phosphoric acid. Elevated temperature attack occurs in the presence of alkali metal 

vapors particularly at lower purity levels. 

 The composition of the ceramic body can be changed to enhance particular 

desirable material characteristics. An example would be additions of chrome oxide or 

manganese oxide to improve hardness and change color. Other additions can be 

made to improve the ease and consistency of metal films fired to the ceramic for 

subsequent brazed and soldered assembly. 

 

2.3 Tool Wear 

 

Wear resistance is the ability of the coating to protect against abrasion. 

Although a material may not be hard, elements and processes added during 

production may aid in the breakdown of cutting edges or forming lobes. The rate of 

tool wear depends on tool and work piece materials, tool shape, process parameters 

and the machine tool itself (Kalpakjian and Schmid, 2001). Wear is related to 

interactions between surfaces and more specifically the removal and deformation of 

material on a surface as a result of mechanical action of the opposite surface 

(Rabinowicz, E., 1995).  
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Types of wear include: 

 Flank wear: in which the portion of the tool in contact with the finished part 

erodes. Can be described using the Tool Life Expectancy equation. 

 Crater wear: in which contact with chips erodes the rake face. This is 

somewhat normal for tool wear, and does not seriously degrade the use of a 

tool until it becomes serious enough to cause a cutting edge failure. 

 

 Flank wear occurs on the relief face of the cutting tool and is generally 

attributed to the rubbing of the tool along the machined surface and high 

temperatures causing abrasive and/or adhesive wear, thus affecting tool materials 

properties as well as work piece surface (A. Senthil Kumara, A. Raja Duraia, T. 

Sornakumarb 2005). Abrasion, diffusion and adhesion are the main wear 

mechanisms in flank wear. Flank wear in the ceramic cutting tools is a mechanically 

activated wear usually by the abrasive action of the hard work piece material with the 

ceramic cutting tools. The severity of abrasion increases in cases, where the work 

piece materials contain hard inclusions, or when there is hard wear debris from the 

workpiece or the tool, at the interface. The flank wear is usually characterized by the 

abrasive grooves and ridges on the flank face. 

 

 

 

Figure 2.1: Flank wear.  

 

Source: www.sandvik.coromant.com 

 

 

http://www.sandvik.coromant.com/


11 

 

 Crater wear which occurs on the rake face is caused by welding and galling 

action between the work material and the cutting tool that tends to wash out small 

particles of the tool material (Donaldson and LeCain, 1957). It can be reduced by 

increasing the chemical stability of the tool material, decreasing solubility in the 

work piece or barrier protection by substrate alloying or coating. The position of the 

crater relative to the cutting edge is also important as a deep and wide crater far away 

from the cutting edge may be less dangerous to the tool than a less deep, narrow 

crater close to the cutting edge. Excessive crater wear changes the geometry and 

weakens the edge (Black et al., 2004). 

 (A. Senthil Kumara, A. Raja Duraia, T. Sornakumarb 2005) said crater wear 

occurs on the rake face of the tool, changing the tool–chip interface geometry, thus 

affecting the cutting process.. The most significant factors influencing crater wear are 

the temperature at the tool–chip interface and the chemical affinity between the tool 

and the work piece materials. Additionally the factors influencing flank wear also 

influence crater wear. The main wear mechanisms in crater wear of ceramic tools are 

diffusion, adhesion and abrasion. Crater wear involves a chemical reaction between 

the work piece chip material and the ceramic tool material, and the process is 

activated by high speeds and temperatures. It is thus a tribochemical wear as a result 

of the chemical affinity between the work piece materials and the cutting tool 

materials.  

 

 

 

Figure 2.2: Crater wear.  

 

Source: www.sandvik.coromant.com 
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2.3.1 Tool Wear Measurement 

 

According to the (American National Standard “Tool Life Testing With 

Single-Point Turning Tools” ANSI/ASME B94.55M-1985”, 1985), there are certain 

criteria that need to be considered when measuring tool wear and there are different 

type of instruments that can be used to measure tool wear. Tool wear geometry is the 

most important criteria in measuring the wear and all those criteria are shown in 

Figure 2.4. As suggested, the major cutting edge is divided into three zones, as 

shown in Figure 2.4, for the purpose of the wear measurements: (1) Zone C is the 

curved part of the cutting edge at the tool corner, (2) Zone N is the quarter of the 

worn cutting edge length bw farthest from the tool corner, (3) Zone B is the 

remaining straight part of the cutting edge between Zone C and Zone N. As such, the 

following criteria for carbide tools are normally recommended: (a) the average width 

of the flank wear land VBB=0.3 mm, if the flank wear land is considered to be 

regularly worn in Zone B; (b) the maximum width of the flank wear land 

VBBmax=0.6 mm, if the flank wear land is not considered to be regularly worn in 

Zone B. Besides, surface roughness for finish turning and the length of the wear 

notch VBN=1 mm can be used. However, these assessments are subjective and 

insufficient. They do not account for the tool geometry (the flank angle, the rake 

angle, the cutting edge angle, etc.) so they are not suitable to compare cutting tools 

having different geometries. They do not account for the cutting regime and thus do 

not reflect the real amount of work material removed by the tool during the time over 

which the measured flank wear is achieved. 
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Figure 2.3: Flank wear characteristics according to ANSI/ASME B.94.55M-1985 

standard 

 

Source: American National Standard “Tool Life Testing With Single-Point Turning 

Tools” ANSI/ASME B94.55M-1985”, ASME, New York, 1985. 

 

2.4 Vickers hardness test  

 

 It is the standard method for measuring the hardness of metals, particularly 

those with extremely hard surfaces: the surface is subjected to a standard pressure for 

a standard length of time by means of a pyramid-shaped diamond. The diagonal of 

the resulting indention is measured under a microscope and the Vickers Hardness 

value read from a conversion table (Smith, 2004) 

 Vickers hardness a measure of the hardness of a material, calculated from the 

size of an impression produced under load by a pyramid-shaped diamond indenter. 

Devised in the 1920s by engineers at Vickers, Ltd., in the United Kingdom, the 

diamond pyramid hardness test, as it also became known, permitted the 

establishment of a continuous scale of comparable numbers that accurately reflected 

the wide range of hardnesses found in steels. 
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 The indenter employed in the Vickers test is a square-based pyramid whose 

opposite sides meet at the apex at an angle of 136°. The diamond is pressed into the 

surface of the material at loads ranging up to approximately 120 kilograms-force, and 

the size of the impression (usually no more than 0.5 mm) is measured with the aid of 

a calibrated microscope. The Vickers number (HV) is calculated using the following 

formula: 

 

HV = 1.854(F/D2), 

 

With F being the applied load (measured in kilograms-force) and D2 the area of the 

indentation (measured in square millimeters). The applied load is usually specified 

when HV is cited. 

 The Vickers test is reliable for measuring the hardness of metals, and it is also 

used on ceramic materials. (Encyclopædia Britannica Online) 

  

 

 

Figure 2.4: Vickers hardness.  

 

Source: www.calce.umd.edu 
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