
 
1 

 

DEVELOPMENT OF A PID CONTROLLER FOR DC MOTOR USING 

MICROSOFT VISUAL BASIC 

 

 

 

MOHD AIZUDDIN BIN ABU BAKAR 

 

 

 

A report submitted in partial fulfillment of the 

requirements for the award of the degree of 

Bachelor of Electrical (Electronics) Engineering 

 

 

Faculty of Electrical and Electronics Engineering 

Universiti Malaysia Pahang 

 

 

NOVEMBER 2008 

 

 



 
2 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 
3 

 

 

 

 

    UNIVERSITI MALAYSIA PAHANG 

 

      BORANG PENGESAHAN STATUS TESIS
 

 

     JUDUL:        

 

SESI PENGAJIAN:________________ 

 

Saya      ________________________________________________________________ 

(HURUF BESAR) 
 

 mengaku membenarkan tesis (Sarjana Muda/Sarjana /Doktor Falsafah)* ini disimpan di  

              Perpustakaan dengan syarat-syarat kegunaan seperti berikut: 

 

1. Tesis adalah hakmilik Universiti Malaysia Pahang (UMP).  

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja. 

3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi      

                      pengajian tinggi. 

4. **Sila tandakan (   ) 
 

     (Mengandungi maklumat yang berdarjah keselamatan 

   SULIT  atau kepentingan Malaysia seperti yang termaktub  

     di dalam AKTA RAHSIA RASMI 1972) 
     

    TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan 

     oleh organisasi/badan di mana penyelidikan dijalankan) 

  

    

   TIDAK TERHAD                            
                                        

 

              Disahkan oleh: 

 

 

 
 

 ___________________________    ___________________________ 

                      (TANDATANGAN PENULIS)             (TANDATANGAN PENYELIA)                                                

 

Alamat Tetap: 

 

 NO.71 LORONG BUKIT SETONGKOL 12 HASZURAIDAH BINTI ISHAK 

 PERKAMPUNGAN CENDERAWASIH  

 25200 KUANTAN  

 PAHANG        
 

Tarikh:  17 NOV 2008    Tarikh: : 17 NOV 2008   

CATATAN: * Potong yang tidak berkenaan. 

  ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak 

   berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu 

   dikelaskan sebagai atau TERHAD.                                                                                           

        Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana secara 

Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan 

penyelidikan, atau Laporan Projek Sarjana Muda (PSM). 

2008/2009 

MOHD AIZUDDIN BIN ABU BAKAR (840531-06-5615) 

DEVELOPMENT OF A PID CONTROLLER FOR DC MOTOR USING 

MICROSOFT VISUAL BASIC 

 



 
4 

 

“I hereby acknowledge that the scope and quality of this thesis is qualified for the award of 

the Bachelor Degree of Electrical Engineering (Electronics)” 

 

 

Signature : ______________________ 

Name        : HASZURAIDAH BINTI ISHAK 

              Date          : 17 NOVEMBER 2008 

 

 

 

 

 

 

 

 

 

 

 

 

DEVELOPMENT OF A PID CONTROLLER FOR DC MOTOR USING 

MICROSOFT VISUAL BASIC 

 

 



 
5 

 
 

MOHD AIZUDDIN BIN ABU BAKAR 

 

 

 

A report submitted in partial fulfillment of the 

requirements for the award of the degree of 

Bachelor of Electrical (Electronics) Engineering 

 

 

Faculty of Electrical and Electronics Engineering 

Universiti Malaysia Pahang 

 

 

NOVEMBER 2008 

 

 

 

I declare this thesis entitled Develop a PID controller for DC motor using Microsoft 

Visual Basic is the result of my own research except as cited in the references. This 

thesis has not been accepted for any degree and is not concurrently submitted in 

candidature of any other degree 



 
6 

 
 

 

 

Signature:  _________________________________ 

Name:  MOHD AIZUDDIN BIN ABU BAKAR 

Date: 17 NOVEMBER 2008 

 

  



 
7 

 

ACKNOLEDGEMENT 

 

 

 

I am greatly indebted to my supervisor, Puan Haszuraidah binti Ishak for her 

advice and guidance throughout my project. Thank you. 

 

 I would like to thank my family member for giving me their loves and supports 

throughout my study in Universiti Malaysia Pahang. 

 

 Special thanks to FKEE staffs for helping me to complete my project. 

Suggestions and criticisms from my friends have always been helpful in finding 

solutions to my problems. Thank you all. 

 

 Finally, I would like to express my thanks to those who involves directly or 

indirectly in completion of my project.  

 

 

 

 

ABSTRACT 

 



 
8 

 

 

This main of this project is to develop a PID (Proportional, Integral, Derivatives) 

controller and interface with a device. The controller is PID and the software is 

Microsoft Visual Basic 6.0. The MATLAB software is used for simulation of this 

system. The methodology is divided into two parts which is software and hardware. The 

first part is simulation for this system by using Matlab software to determine the value 

of Kp, Ki and Kd. The range value for PID is determined by using Ziegler Nichols 

method. For second part is to interface the controller with hardware. The controller is 

using Microsoft visual basic 6.0 software. Then, the controller need to interface with 

DAQ card first. After interfacing success, the system can be implementing to servo 

motor. The feedback value can be received from servo motor encoder. After finished the 

first and second part, this system can be tuned up by using the PID value from 

simulation.  

 

 

 

 

 

 

 

 

 

ABSTRAK 

 

 Tujuan utama projek ini adalah untuk membangunkan sebuah pengawal PID 

(Proportional, Integral, Derivatives) yang boleh berantaramuka dengan peralatan. 

Pengawal yang digunakan adalah PID dan perisian yang digunakan adalah Microsoft 



 
9 

 

Visual Basic 6.0. Perisian Matlab digunakan untuk membuat simulasi pada sistem ini. 

Metodologi dibahagikan kepada dua bahagian iaitu perkakasan dan perisian. Bahagian 

pertama adalah simulasi kepada sistem ini dengan menggunakan perisian Matlab untuk 

menentukan nilai Kp, Kid an Kd. Julat nilai PID ditentukan dengan menggunakan 

kaedah Ziegler Nicholes. Bahagian kedua adalah untuk antaramuka dantara pengawal 

dan perkakasan.Pengawal menggunakan perisian Microsoft Visual Basic 6.0. 

Kemudian, pengawal perlu berantaramuka dengan kad DAQ (Data Acquisition). 

Selepas berjaya berantaramuka, sistem ini akan diimplementasikan pada motor servo. 

Nilai suapbalik akan diterima dari pengekod motor servo. Setelah selesai bahagian 

pertama dan kedua, sistem ini akan dilaraskan dengan menggunakan nilai PID dari 

proses simulasi.   

 

 

 

 

 

 

 

 

TABLE OF CONTENTS 

 

 

 

 

CHAPTER TITLE PAGE 



 
10 

 

 

1 

 

 

 

 

 

 

2 

 

 

 

 

 

 

 

 

 

 

 

3 

 

 

 

 

 

 

 

 

 

 

INTRODUCTION 

1.1 Overview 

1.2 Project Objectives 

1.3 Scope of Project 

1.4 Problem Statement 

1.5 Thesis Organization 

 

LITERATURE REVIEW 

2.1 PID controller 

2.2 Direct Current motor 

2.3 Microsoft Visual Basic 6.0 

2.4 Data acquisition card 

 

 

 

 

 

 

 

METHODOLGY 

3.1 Introduction 

3.2 Hardware development 

3.2.1. Servo motor 

3.2.2. Modelling DC servo motor 

3.2.3. DAQ card 

3.3 Software Development 

3.3.1. Matlab 

3.3.2. Microsoft Visual Basic 6.0 

3.3.3. PID Method 

 

1 

1 

2 

2 

3 

3 

 

4 

4 

7 

8 

9 

 

 

 

 

 

 

 

11 

11 

14 

16 

17 

20 

21 

21 

21 

23 

 



 
11 

 

4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 

RESULT & DISCUSSION 

4.1 No controller 

4.2 Proportional controller 

4.3 Proportional Integral controller 

4.4 Proportional Derivative controller 

4.5 Proportional Integral Derivative controller 

4.6 Developing PID controller using Microsoft Visual Basic 

6.0 

 

 

 

 

 

 

 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

5.2 Future Recommendation 

5.3 Commercialization 

5.4 List and Cost of the Component        

 

REFERENCES 

APPENDICES A-C 

30 

31 

34 

38 

41 

45 

52 

 

 

 

 

 

 

 

 

53 

53 

54 

54 

55 

 

56-88 

 

  



 
12 

 

LIST OF FIGURES 

 

 

 

FIGURE NO. 

 

TITLE PAGE 

2.1 

2.2 

2.3 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

3.7 

3.8 

3.9 

3.10 

3.11 

3.12 

3.13 

4.1 

4.2 

4.3 

4.4  

4.5 

4.6 

4.7 

PID controller equations 

VB project selection panel 

VB development environments 

Flow chart of the project 

Block diagram of PID controller 

Ziegler Nicholes table 

Ziegler Nicholes range value 

Servo motor 

USB DAQ card 

System before using PID controller 

System with PID controller 

Designed using m-file 

Typing program 

Changing the value 

Closed loop system 

Save and run 

No controller Step input for the system 

Proportional controller Kp=70 Output graph for the system 

Proportional controller Kp=235 

Proportional controller Kp=390 

Proportional controller Kp=586 

Proportional controller Kp=700 

Proportional-integral controller Kp=70 Ki= 0.518 

6 

8 

9 

12 

13 

14 

15 

16 

20 

23 

24 

26 

26 

27 

28 

28 

31 

34 

35 

35 

36 

36 

38 



 
13 

 

4.8 

4.9 

4.10 

4.11 

4.12 

4.13 

41.4 

4.15 

4.16 

4.17 

4.18 

4.19 

4.20 

4.21 

4.22 

4.23 

 

 

Proportional-integral controller Kp=700 Ki= 0.518 

Proportional-integral controller Kp=70 Ki= 51.8 

Proportional-integral controller Kp=700 Ki= 51.8 

Proportional-derivative controller Kp=140 Kd= 2.59 

Proportional-derivative controller Kp=700 Kd= 2.59 

Proportional-derivative controller Kp=140 Kd= 51.8 

Proportional-derivative controller Kp=700 Kd= 51.8 

PID controller Kp=70 Ki=5.18 Kd=2.59 

PID controller Kp=700 Ki=5.18 Kd=2.59 

PID controller Kp=70 Ki=518 Kd=51.8 

PID controller Kp=700 Ki=518 Kd=51.8 

PID controller Kp=70 Ki=5.18 Kd=51.8 

PID controller Kp=700 Ki=5.18 Kd=51.8 

PID controller Kp=70 Ki=518 Kd=2.59 

PID controller Kp=700 Ki=518 Kd=2.59 

PID controller using Microsoft Visual Basic 6.0 

 

39 

39 

40 

42 

42 

43 

43 

45 

46 

46 

47 

48 

48 

49 

50 

52 

 

  



 
14 

 

LIST OF EQUATIONS 

 

 

 

FIGURE NO. 

 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

3.7 

4.1 

4.2 

4.3 

 

 PAGE 

 

17 

17 

17 

18 

18 

18 

19 

31 

32 

32 

   

 

 

 

 

 

 

 

 



 
15 

 

 

 

 

 

 

 

 

 

 

 

 

LIST OF TABLE 

 

 

 

TABLE 

 

TITLE  PAGE 

4.1 

4.2 

4.3 

4.4 

4.5 

 

No controller  

Comparison of Proportional controller  

Comparison of Proportional-integral controller 

Comparison of Proportional-derivative controller 

Comparison of PID controller 

 32 

37 

40 

44 

50 

 



 
16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LIST OF APPENDICES 

 

 

 

APPENDIX 

 

TITLE  PAGE 

A 

B 

C 

 

 

 

 

DAQ card manual 

Servo motor manual installation 

Microsoft Visual Basic programmed 

 

 30 

52 

61 

 

 

 

 



 
17 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
18 

 

 

 

CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Overview 

 

In 18
th
 century, James Watt invented the flyball speed governer to control the 

speed of steam engines. In this device, two spinning fliballs rise as rotational speed 

increases. A steam valve connected to the flyball mechanism closes with the ascending 

flyballs and opens with the descending flyballs, thus regulating the speed.  

 

PID Control (proportional-integral-derivative) is by far the widest type of 

automatic control used in industry nowadays. Even though it has a relatively simple 

algorithm/structure, there are many subtle variations in how it is applied in industry. PID 

control action allows the process control to accurately maintain set point by adjusting 

the control outputs. 

 

 In order to eliminate this problem, PID controller is introduce to the system. 

There‟s few type of controller but in this project, PID controller is chosen to interfaces 



 
19 

 

with the DC motor. This is because PID controller helps get the output, where we want 

it in a short time, with minimal overshoot and little error. 

 

 

1.2 Project Objectives 

 

At the end of this project:- 

i. To develop a PID controller design for DC motor speed using Microsoft 

visual basic. 

ii. To control the speed of DC motor with PID controller  using Microsoft 

Visual Basic (Design the PID controller and tune it). 

 

1.3 Scope of Project 

 

The scope of this project is:- 

i. To derive mathematical model of dc motor and develop PID controller 

for the motor. 

ii. To develop GUI in Vb as an environment to applied the PID controller 

for the motor. 

iii. Perform computer simulation of the PID controller by using Matlab 

simulink to investigate the effectiveness of PID controller. 

 

 

 

 

 

 

 

 

 



 
20 

 

 

 

 

 

 

 

1.4 Problem Statements 

 

The speed controller works by varying the average voltage sent to the motor. It 

could do this by simply adjusting the voltage sent to the motor, but this is quite 

inefficient to do.  

 

A better way is to switch the motor's supply on and off very quickly. However, if the 

switching is fast enough, the motor doesn't notice it, it only notices the average effect.  

 

By using PID controller, it can overcome this problems because it is sensitive to 

disturbances and able to correct this error quickly.  

 

1.5 Thesis Organization 

This thesis will consist of five chapters including this chapter. The contents of 

each chapter are outlined as follows; 

Chapter 2 will present the detailed description of the PID system, Microsoft 

Visual Basic software, DC motor and DAQ card. Chapter 3 will describe the 

methodology used in the project, including how the project is organized and flow of the 

project. Chapter 4 will discuss about the results and all of this will be concluded in 

Chapter 5. 



 
21 

 

CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 

2.1 PID controller  

 

The PID controller (Proportional, Integral and Derivative) has been known for 

several decades in many fields of automatic control. It has had powerful applications 

and several modifications anywhere where automatic control has been applicable. In 

spite of its many modified structures and forms the basic idea has remained the same. 

The underlying working principle relies on feedback control and the PID controller is 

the most common embodiment of feedback control. It involves three different terms, 

each of which have a specific purpose. Proportional and integral terms were known in 

the 1930s but derivative control was not invented until the 1940s. In basic terms, the 

PID controller is a numerical recipe, an algorithm. The algorithm may be implemented, 

that is, programmed using any programming language supporting numerical 

computation. It can be written in Visual Basic, Fortran, Pascal, C or Java. Also, there are 

numerous platforms for the algorithm such as personal computers, distributed control 

systems (DCS), programmable logic controllers (PLC), and field devices or microchips 



 
22 

 

enabling embedded solutions. In spite of the PID controller syntax language and its 

platform or even application, there are some essential features that should be involved in 

the PID controller algorithm: The basic calculation covering arithmetic around three 

different terms is not enough. Other issues of automatic feedback control must also be 

taken care of. In addition to this, there are potential characteristics that may be added to 

increase functionality and to improve applicability of the PID controller. There are 

different types of PID controllers such as ratio, cascade or split range controllers -and 

there are different algorithm types such as position or incremental (velocity) algorithms. 

The position algorithms can be categorized into ISA, series and parallel algorithms. The 

most typical operation modes for PID controllers are automatic, manual, cascade and 

remote. Some manufacturers hide their algorithms, but they should be available so that 

users can properly tune the instrument. The PID controller is not a secret and it should 

not he treated as one, although it is very rare for the numerical robustness of the 

algorithm to be available at all.[1] 

 

 

A proportional–integral–derivative controller (PID controller) is a generic control 

loop feedback mechanism widely used in industrial control systems. A PID controller 

attempts to correct the error between a measured process variable and a desired set point 

by calculating and then outputting a corrective action that can adjust the process 

accordingly.[2] 

Figure 2.1 shows the PID controller calculation (algorithm) involves three separate 

parameters; the Proportional, the Integral and Derivative values. The Proportional value 

determines the reaction to the current error, the Integral determines the reaction based 

on the sum of recent errors and the Derivative determines the reaction to the rate at 

which the error has been changing. The weighted sum of these three actions is used to 

http://en.wikipedia.org/wiki/Control_loop
http://en.wikipedia.org/wiki/Control_loop
http://en.wikipedia.org/wiki/Control_loop
http://en.wikipedia.org/wiki/Feedback_mechanism
http://en.wikipedia.org/wiki/Control_system
http://en.wikipedia.org/wiki/Process_variable
http://en.wikipedia.org/wiki/Setpoint
http://en.wikipedia.org/wiki/Algorithm


 
23 

 

adjust the process via a control element such as the position of a control valve or the 

power supply of a heating element. 

By tuning the three constants in the PID controller algorithm the PID can provide 

control action designed for specific process requirements. The response of the controller 

can be described in terms of the responsiveness of the controller to an error, the degree 

to which the controller overshoots the set point and the degree of system oscillation. 

Note that the use of the PID algorithm for control does not guarantee optimal control of 

the system. 

Some applications may require using only one or two modes to provide the appropriate 

system control. This is achieved by setting the gain of undesired control outputs to zero. 

A PID controller will be called a PI, PD, P or I controller in the absence of the 

respective control actions. PI controllers are particularly common, since derivative 

action is very sensitive to measurement noise, and the absence of an integral value 

prevents the system from reaching its target value due to the control action. 

 

Figure 2.1 PID controller equations 

 

http://en.wikipedia.org/wiki/Optimal_control
http://en.wikipedia.org/wiki/Image:Pid-feedback-nct-int-correct.png


 
24 

 

2.2    Direct current motor 

 

 

Almost every mechanical movement is caused by a DC (direct current) electric 

motor. An electric motor is a device that transforms electrical energy into mechanical 

energy by using the motor effect. 

 

Every DC motor has six basic parts which is axle, rotor (armature), stator, 

commutator, field magnet, and brushes. In most common DC motors, the external 

magnetic field is produced by high-strength permanent magnets. The stator is the 

stationary part of the motor which includes the motor casing, as well as two or more 

permanent magnet pole pieces. The rotor rotates with respect to the stator. The rotor 

consists of windings and the windings being electrically connected 

to the commutator .Industrial applications use dc motors because the speed-torque 

relationship can be varied to almost any useful form which is for both dc motor and 

regeneration applications in either direction of rotation. Dc motors are often applied 

where they momentarily deliver three or more times their rated torque. In emergency 

situations, dc motors can supply over five times rated torque without stalling. Dc motors 

feature a speed, which can be controlled smoothly down to zero, immediately followed 

by acceleration in the opposite direction. Dc motors respond quickly to changes in 

control signals due to the dc motor's high ratio of torque to inertia.[3] 

 

 

 

 

 

 

 



 
25 

 

2.3       Microsoft Visual Basic (VB) 

 

 

VB is a very easy yet very powerful application development tool under the 

Microsoft Windows family. It is possible to get your first program running in less than 

an hour. There are three editions of VB, they are the learning edition, the professional 

edition, and the enterprise edition. To develop software for control, a professional 

edition is necessary.[4]  

By using this software as a tuner, it is easier to interface using RS232 port and USB 

port. It also can show the input and output data graphically. 

 

 

 

Figure 2.2 VB project selection panel 



 
26 

 

 

Figure 2.3 VB development environments  

 

 

 

 

2.4      Data acquisition card  

 

 

 

 

DAQ is an abbreviation for data acquisition. Therefore a DAQ card is a basic A/D 

converter coupled with an interface that allows a personal computer to control the 

actions of the A/D, as well as to capture the digital output information from the 

converter. A DAQ card is designed to plug directly into a personal computer's bus. All 

the power required for the A/D converter and associated interface components is 

obtained directly from the PC bus.  



 
27 

 

A DAQ card today is more than a simple A/D function on a board. A data acquisition 

card can offer measurements of up to 64 channels at a resolution of 16 bits, (one part in 

65,536) with data throughput rates up to 20 million samples per second. A data 

acquisition card can often include discrete digital bi-directional I/O lines, counter timers, 

and D/A converters for outputting analog signals for control applications.  

A high-performance DAQ card will work in a very wide range of test and measurement, 

and control applications. Combined with powerful software, DAQ cards will turn a 

personal computer into powerful measurement system that may be used to automate 

experiments, construct product test stands, monitor and control production equipment or 

be embedded in products ranging from medical monitoring systems to automobile test 

simulators.  

A DAQ card converts analog signals into a digital output form, which can be 

manipulated with software. Using software in conjunction with a personal computer, 

analog data can be displayed, logged, charted, graphed, or stored in memory as needed.  

Stored data can later be used and compared with a set of established limits. Control 

decisions are made if the stored data is at the limit, above or below the limit. A DAQ 

card can make repetitive measurements, for continuous monitoring and controlling.[5]  

 

 

  



 
28 

 

CHAPTER 3 

 

 

 

METHODOLOGY 

 

 

 

3.1 Introduction 

 

This chapter will explain the methodology used in this project. The methodology 

is divided into two parts which is hardware and software. The first part is simulation for 

this system by using Matlab software to determine the value of Kp, Ki and Kd. The 

range value for PID is determined by using Ziegler Nicholes method. 

The second part is to interface the controller with hardware. The controller is using 

Microsoft visual basic 6.0 software. Then, the controller need to interface with DAQ 

card first. After interfacing success, the system can be implementing to servo motor. 

The feedback value can be received from servo motor encoder. 

Figure 3.1 shows the flow chart of the project. After finished the first and second part, 

this system can be tuned up by using the PID value from simulation.  



 
29 

 

 

 

Figure 3.1 Flow chart of the project 

 

 

Find motor transfer function 

Simulation in Matlab

Find PID value using Ziegler Nicholes

Develop Visual Basic

Interface with DAQ card

Implement PID onto VB

Interface with servo motor

Finish



 
30 

 

The DAQ card is used as an interface within Visual Basic software and servo 

motor. It has analog input, digital input, analog output and digital output port. For this 

system, only analog input and output port is used. Servo motor is used to show the 

output from controller. It also has a decoder which is used to give a feedback voltage to 

the controller. This servo motor input voltage is 5V to 80V. 

 

 

 

 

 

 

   feedback 

 

Figure 3.2 Block diagram of PID controller 

 

Figure 3.2 shows the block diagram of PID controller. The controller software is 

Microsoft Visual Basic 6.0. The PID system is implement in this software where user 

can tune the value of Kp, Ki and Kd manually. The value of feedback voltage and error 

value shows in this software. 

  

      DAQ card 

 

Visual 

Basic 

Servo 

motor  



 
31 

 

3.2 Hardware Development 

 

Before starting develop the hardware, the value of P,PI,PD and PID need to 

determine first. It is determine using Ziegler Nicholes method. This value is very 

important because it will be used as a reference value to tune dc motor using visual 

basic software. Figure 3.3 shows  Ziegler Nicholes table; 

 

Controller Kp Ki Kd 

PID Kpt [0.1  0.5]         

Kp max 

Kit [0.1  10]          

Kp max Tosc 

Kdt [0.05  1]        

Kp max Tosc 

PD Kpt [0.1  0.5]       

Kp max 

0 Kdt [0.05  1]        

Kp max Tosc 

PI Kpt [0.1  0.5]       

Kp max 

Kit [0.01  1]         

Kp max Tosc 

0 

P Kpt [0.05  0.5]     

Kp max 

0 0 

  

 

Tosc value: 0.037s 

Kp max value: 1400  

 

Figure 3.3 Ziegler Nicholes table 

 

 



 
32 

 

The Tosc and Kp max value is fixed for this dc motor model [6]. Figure 3.4 shows the 

result of Ziegler Nicholes range value; 

 

Controller Kp Ki Kd 

PID 140 - 700 5.18 - 518 2.59 – 51.8 

PD 140 - 700 0 2.59 – 51.8 

PI 140 - 700 0.518 – 51.8 0 

P 70 - 700 0 0 

 

 Figure 3.4 Ziegler Nicholes range value  

 

The hardware is used after the PID value determined. The hardware used is dc 

motor and daq card. 

 

 

 

 

 

 

 

 

 

 



 
33 

 

3.2.1 Servo motor 

 

This dc motor is very suitable for my project. It has encoder to give feedback for 

actual speed of the motor. The specification of this dc motor is very suitable for this 

project. 

 

Model: CLIFTON PRECISION SERVO MOTOR MODEL JDH-2250-HF-2C-E 

 

Supplier: Servo Systems Company 

 

Specification: 

  

 Torque Constant: 15.76 oz-in. / A 

 Back EMF: 11.65 VDC / KRPM 

 Peak Torque: 125 oz-in. 

 Cont. Torque: 16.5 oz-in. 

 Encoder: 250 counts / rev. 

 Channels A, B in quadrature, 5 VDC input (no index) 

 Body Dimensions: 2.25" dia. x 4.35" L (includes encoder) 

 Shaft Dimensions: 8 mm x 1.0" L w/flat 

 

 

 
 

Figure 3.5 Servo motor 

 

 

 

 

 

 

 



 
34 

 

3.2.2 Modeling DC Servo Motor 

 

 

The first step of this project is modeling the DC servo motor. Motor modeling is 

required in order to obtain the transfer function of the motor which is providing the open 

loop system of this project. Then PID controller is adding to changing the system to 

closed loop system. Below is the step of the motor modeling.  

 

 

R= 2.7 Ω 

L= 0.004 H 

K=0.105 Vs rad-1   

K= 0.105 Nm A-1 

J= 0.0001 Kg m2 

B= 0.0000093 Nms rad-1 

 

ara
a V

LL

K
i

L

R

dt

di 1
                                                                                                 (3.1) 

ra
r

J

B
i

J

K

dt

d



                                                                                                        (3.2) 

a

r

a

r

a

VL
i

J

B

J

K

L

K

L

R

dt

d

dt

di


































































0

1


                                                                         (3.3) 



 
35 

 

    a

r

a
V

i
y 010 











                                                                                                (3.4) 

a

r

a

r

a

V
i

dt

d

dt

di


































































0

004.0

1

0001.0

0000093.0

0001.0

105.0

004.0

105.0

004.0

7.2



                

 















093.01050

25.26675
A                    










0

250
B     

 10C                                       0D  

  






















093.01050

25.26675

0

0

s

s
AsI                                                                      















093.01050

25.26675

s

s
 

 

From  
)(

)(1

AsIdef

AsIadj
AsI







                                                                                        (3.5) 

If 
























ac

bd

bcad
A

dc

ba
A

1
1;                                                            (3.6) 

 

ad-bc = (s-675)(s+0.093)-(26.25)(1050) 

                     = s2 + 0.093s – 675s + 62.775 + 27562.5 

                      = s2 + 675.093s + 27625.275 

 



 
36 

 

           

















6751050

25.26093.0

27625.275  675.093s  s

1
2

1

s

s
AsI  

27625.275  675.093s  s

6751050

25.26093.0

2 















s

s

 

  (3.7) 

 

 

 

 

  

          
27625.275  675.093s  s

262500

)(

)(
)(

2 


sU

sY
sT  

 

 

 

 

 

 

 

 

 

 

 

   

27625.275  675.093s  s

262500

0
0

250

27625.275  675.093s  s

6751050

25.26093.0

10

)(

)(
)(

2

2

1

































s

s

DBAsIC
sU

sY
sT



 
37 

 

3.2.3 DAQ card 

 

This is the best DAQ card that can support Microsoft Visual Basic software. This 

DAQ card use USB port to interface within pc and dc motor. The specification is; 

 

Model: USB 4716 

Supplier: Advantech Co. Ltd. 

Main Features:  

 Supports USB 2.0 

 Portable 

 Bus-powered 

 16 analog input channels 

 16-bit resolution AI 

 Sampling rate up to 200 kS/s 

 8DI/8DO, 2 AO and 1 32-bit counter 

 Wiring terminal on modules 

 Suitable for DIN-rail mounting 

 Lockable USB cable for rigid connection 

 

 

 

Figure 3.6 USB DAQ card 

 



 
38 

 

3.3 Software Development 

 

3.3.1 Matlab 

 

Before run the VB programming, a simulation of controller using Ziegler Nicholes 

value and Matlab software. With this simulation, we can determine the best value for 

Kp, Ki and Kd. 

 

 

3.3.2 Microsoft Visual Basic 6.0 

 

There are many methods to implement into PID controller such as speed, angular 

and acceleration. This controller only measure speed (RPM) by using Microsoft Visual 

Basic 6.0 edition as a tuner. 

 

Microsoft Visual Basic 6.0  is an object-oriented computer language that can be viewed 

as an evolution of Microsoft's Visual Basic (VB) implemented on the Microsoft .NET 

framework. Its introduction has been controversial, as significant changes were made 

that broke backward compatibility with older versions and caused a rift within the 

developer community. 

 

VB Advantage is a powerful VB development productivity utility that enhances VB's 

design time environment. VB Advantage has many powerful, helpful, and easy-to-use 

features and tools that were conceived to support software engineering development 

activities that developers do as they create and test application code. 

Like the BASIC programming language, Visual Basic was designed to be easy to learn 

and use. The language not only allows programmers to create simple GUI applications, 

but can also develop complex applications. Programming in VB is a combination of 

visually arranging components or controls on a form, specifying attributes and actions of 

those components, and writing additional lines of code for more functionality. Since 

default attributes and actions are defined for the components, a simple program can be 

http://en.wikipedia.org/wiki/GUI_widget
http://en.wikipedia.org/wiki/GUI_widget
http://en.wikipedia.org/wiki/Form_%28programming%29
http://en.wikipedia.org/wiki/Source_code


 
39 

 

created without the programmer having to write many lines of code. Performance 

problems were experienced by earlier versions, but with faster computers and native 

code compilation this has become less of an issue. 

Although programs can be compiled into native code executables from version 5 

onwards, they still require the presence of runtime libraries of approximately 2 MB in 

size. This runtime is included by default in Windows 2000 and later, but for earlier 

versions of Windows or Windows Vista, it must be distributed together with the 

executable. 

Forms are created using drag-and-drop techniques. A tool is used to place controls on 

the form. Controls have attributes and event handlers associated with them. Default 

values are provided when the control is created, but may be changed by the 

programmer. Many attribute values can be modified during run time based on user 

actions or changes in the environment, providing a dynamic application. For example, 

code can be inserted into the form resize event handler to reposition a control so that it 

remains centered on the form, expands to fill up the form. By inserting code into the 

event handler for a keypress in a text box, the program can automatically translate the 

case of the text being entered, or even prevent certain characters from being inserted. 

Visual Basic can create executables (EXE files), ActiveX controls, DLL files, but is 

primarily used to develop Windows applications and to interface web database systems. 

Dialog boxes with less functionality can be used to provide pop-up capabilities. 

Controls provide the basic functionality of the application, while programmers can 

insert additional logic within the appropriate event handlers. For example, a drop-down 

combination box will automatically display its list and allow the user to select any 

element. An event handler is called when an item is selected, which can then execute 

additional code created by the programmer to perform some action based on which 

element was selected, such as populating a related list. 

Alternatively, a Visual Basic component can have no user interface, and instead provide 

ActiveX objects to other programs using Component Object Model (COM). This allows 

for server-side processing or an add-in module. 

The language is garbage collected using reference counting, has a large library of utility 

objects, and has basic object oriented support. Since the more common components are 

included in the default project template, the programmer seldom needs to specify 

additional libraries. Unlike many other programming languages, Visual Basic is 

generally not case sensitive, although it will transform keywords into a standard case 

configuration and force the case of variable names to conform to the case of the entry 

within the symbol table entry. String comparisons are case sensitive by default, but can 

be made case insensitive if so desired. 

The Visual Basic compiler is shared with other Visual Studio languages (C, C++), but 

restrictions in the IDE do not allow the creation of some targets (Windows model 

DLL's) and threading models. 

http://en.wikipedia.org/wiki/Visual_Basic#Timeline
http://en.wikipedia.org/wiki/Visual_Basic#Timeline
http://en.wikipedia.org/wiki/Visual_Basic#Timeline
http://en.wikipedia.org/wiki/Windows_2000
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Drag-and-drop
http://en.wikipedia.org/wiki/Attribute_%28computing%29
http://en.wikipedia.org/wiki/Event_handler
http://en.wikipedia.org/wiki/ActiveX
http://en.wikipedia.org/wiki/Component_Object_Model
http://en.wikipedia.org/wiki/Server-side
http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29
http://en.wikipedia.org/wiki/Reference_counting
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Keywords


 
40 

 

3.3.3 PID Method 

 

From the modeling DC servo motor, the transfer function is  

 

 

27625.275  675.093s  s

262500

)(

)(
)(

2 


sU

sY
sT                                   (3.8)                                 

 

 

The system before using PID controller is looks like in Figure 3.7: 

 

 

                        

Figure 3.7 System before using PID controller 

 

 

Then, PID controller is added to the system. Now, the system looks like in Figure 3.8: 

 

27625.275  675.093s  s

262500
2 

 
R Y 



 
41 

 

         

Figure 3.8 System with PID controller 

 

In Figure 3.8, the variable (e) represents the tracking error which is the 

difference between the desired input value (R) and the actual output (Y). This error 

signal (e) will be sent to the PID controller, and the controller computes both the 

derivative and the integral of this error signal. The signal (u) just past the controller is 

now equal to the proportional gain (Kp) times the magnitude of the error plus the 

integral gain (Ki) times the integral of the error plus the derivative gain (Kd) times the 

derivative of the error (equation 3). 

 

 

The transfer function of the PID controller is: 

 

s

KsKsK
sK

s

K
K

ipd

d
i

p




2

                                                                           (3.9) 

 

 

 

PID controller 
27625.275  675.093s  s

262500
2 

 
 

 

 

R Y 

e 
u 



 
42 

 
So, the signal (u) that is past the controller is: 

 

 
dt

de
KdedtKeKU ip                                                                                        (3.10) 

 

 

This signal (u) will be sent to the plant, and the new output (Y) will be obtained. 

This new output (Y) will be sent back to the sensor again to find the new error signal 

(e). The controller takes this new error signal and computes its derivative and its integral 

again. This process goes on and on. 

 

In this project, the PID controller that was added into the system is designed 

using m-file in matlab software. (Refer Figure 3.9) 

 

 

Figure 3.9 Designed using m-file 

 

 

 



 
43 

 
Then the following commands are typing into m-file. (Refer Figure 3.10) 

 

 

Figure 3.10 Typing program 

 

 

 In Figure 3.10, „[num,den] = ss2tf(A,B,C,D‟) command creates the numerator 

and denominator of the transfer function of DC servo motor. This numerical 

inconsistency can be eliminated by adding the following „num=num(3)‟ command after 

the ss2tf command to get rid of the numbers that are not supposed to be there. 

  

 

 The transfer function of PID controller is recalled using following commands. 

The value of the proportional gain, Kp, integral gain Ki and derivative gain, Kd can be 

adjust by changing the value. (Refer Figure 3.11): 

 

 



 
44 

 

 

Figure 3.11 Changing the value 

 

 

The closed loop of the system is determined by „cloop‟ command and the 

command „step (numac,denac)‟is to see how the step response looks as in Figure 3.12.  

 

 

 

Figure 3.12 Closed loop system 

 

 

 

 

 



 
45 

 
Then, save and run it such in Figure 3.13.  

 

 

 

Figure 3.13 Save and run 

 

 

The result of this system is obtained by changing the value of the proportional 

gain, Kp, integral gain Ki and derivative gain, Kd. The best five result for the 

proportional (P) controller, proportional-Integral (PI) controller, proportional-derivative 

(PD) controller and proportional-integral-derivative (PID) controller that is apply in this 

system is obtained.  



 
46 

 

CHAPTER 4 

 

 

 

RESULTS DISCUSSIONS 

 

 

 

 

This chapter consists of two parts which is discussions on the results from 

Matlab simulation for the system and developing a PID controller using Microsoft 

Visual Basic 6.0 software. It discusses the result of simulation using no controller, 

Proportional, Proportional-Integral, Proportional-Derivative, and Proportional-Integral-

Derivative Controller by MATLAB software. 

 

 

 

 

 

 



 
47 

 

4.1 No Controller                                                                     

 

 

The result simulates using no controller is shown below:  

 

 

 

Figure 4.1 No controller 

 

 

 

 



 
48 

 

COMPARISON TIME RISE 

(s) 

SETTLING 

TIME (s) 

OVERSHOOT 

(%) 

STEADY 

STATE 

NO PID 0.0504 0.091 0 9.5 

 

Table 4.1 No controller 

 

 

Table 4.1 show the system using no controller has a large of value time rise, 

settling time and steady state but it has no overshoot. The steady state of the system is 

calculated using the input substitution. Refer equation 4.1 to 4.3. 

 

 

 















093.01050

25.26675
A           










0

250
B              10C  

 

 

 

BCAE 11)(                                                                                                (4.1)           



 
49 

 

         

 

 

5.6563

05.65621

0

250
093.025.261















 

 

 

 

     BACBCAE
211 11lim)(                                                               (4.2)                      

 

   

 

5.4430297

0

250
49.2756219.17721

0

250

49.2756219.17721

65.7088475.428062
101

21

































  BAC

 

 

    







  BACtBCAtE

211 11lim)(                                              (4.3)       

    


 5.44302975.6563lim t

 

  

 

 



 
50 

 

4.2 Proportional Controller                                                      

 

 

The performance of Proportional Controller result simulate by tuning the value 

of proportional gain, Kp are shown in Figure 4.2 to Figure 4.6 using the value of 70, 

235, 390, 586 and 700. 

 

 

 

Figure 4.2 Proportional controller Kp=70 

 

 



 
51 

 

 

Figure 4.3 Proportional controller Kp=235 

 

Figure 4.4 Proportional controller Kp=390 

 

 



 
52 

 

 

Figure 4.5 Proportional controller Kp=586 

 

 

 

Figure 4.6 Proportional controller Kp=700 



 
53 

 

COMPARIS

ON 

PEAK 

AMPLITUDE 

TIME(s) OVERSHOO

T 

(%) 

STEADY 

STATE 

Kp 

70 1.63 0.000593 NaN Inf 

235 1.64 0.00119 NaN Inf 

390 1.89 0.000296 NaN Inf 

586 1.78 0.000296 NaN Inf 

700 1.63 0.00119 NaN Inf 

 

Table 4.2 Comparison of Proportional controller 

 

 

 Table 4.2 show increasing the value of Proportional gain, Kp reducing the time 

to achieve the peak amplitude but in high value of peak amplitude.  The overshoot is 

NaN (not a number) and the steady state is infinity. 

 

 

 

 

 

 

 



 
54 

 

4.3 Proportional-Integral Controller                                        

 

 

The performance of Proportional-Integral Controller result simulate by tuning 

the value of proportional gain,Kp and Integral gain, Ki are shown in Figure 4.7 to Figure 

4.10 using the value of Proportional gain,Kp 70 and 700 and the value of Integral 

gain,Ki  0.518 and 51.8. 

 

 

 

Figure 4.7 Proportional-integral controller Kp=70 Ki= 0.518 

 

 



 
55 

 

 

Figure 4.8 Proportional-integral controller Kp=700 Ki= 0.518 

 

 

 

Figure 4.9 Proportional-integral controller Kp=70 Ki= 51.8 



 
56 

 

 

Figure 4.10 Proportional-integral controller Kp=700 Ki= 51.8 

 

COMPARISO

N 

PEAK 

AMPLITU

DE 

TIME 

(s) 

OVER 

SHOOT  

(%) 

TIME 

RISE(s) 

SETTLIN

G TIME 

(s) 

STEAD

Y 

STATE Kp Ki 

70 0.518 1.78 0.00074

8 

77.6 0.00025

5 

0.0118 1 

700 0.518 1.92 0.00023

6 

92.3 0.052 0.0116 1 

70 51.8 1.78 0.00074

8 

77.7 0.00025

5 

0.0118 1 

700 51.8 1.92 0.00023

6 

92.3 0.052 0.0116 1 

 

Table 4.3 Comparison of Proportional-integral controller 



 
57 

 

 Table 4.3 shows reducing the value of Proportional gain, Kp and Integral gain, 

Ki will reduce the value of time rise, settling time, steady state and also reduce the time 

to achieve the peak amplitude. 

 

4.4 Proportional-Derivative Controller                                   

 

 

The performance of Proportional-Derivative Controller result simulate by tuning 

the value of proportional gain,Kp and Derivative gain, Kd are shown in Figure 4.11 to 

Figure 4.14 by using the value of Proportional gain,Kp 140 and 700, the value of 

Derivative gain,Kd 2.59 and 51.8. 

  

 

Figure 4.11 Proportional-derivative controller Kp=140 Kd= 2.59 



 
58 

 

 

 

Figure 4.12 Proportional-derivative controller Kp=700 Kd= 2.59 

 

 

 

Figure 4.13 Proportional-derivative controller Kp=140 Kd= 51.8 



 
59 

 

 

 

Figure 4.14 Proportional-derivative controller Kp=700 Kd= 51.8 

COMPARISO

N 

PEAK 

AMPLITU

DE 

TIME(s) OVER 

SHOOT  

(%) 

STEAD

Y 

STATE Kp Kd 

140 2.59 0.992 0.00184 NaN Inf 

700 2.59 0.995 0.000369 NaN Inf 

140 51.8 1 0.037 NaN Inf 

700 51.8 1 0.0074 NaN Inf 

 

Table 4.4 Comparison of Proportional-derivative controller 

 

 



 
60 

 

 Table 4.4 show increasing the value of Proportional gain, Kp and reducing the 

value of Derivative gain, Kd will reduce time to achieve the peak amplitude. The 

percentage overshoot is NaN (not a number) and the steady state is infinity.  

 

4.5 Proportional-Integral-Derivative Controller                      

 

The performance of Proportional-Integral-Derivative (PID) Controller result 

simulate by tuning the value of proportional gain,Kp, Integral gain, Ki and Derivative 

gain, Kd are shown in Figure 4.15 to Figure 4.22 using the value of Proportional 

gain,Kp 70 and 700 and the value of Integral gain,Ki  5.18 and 518, and the value of 

Derivative gain,Kd 2.59 and 51.8. 

 

 

 

Figure 4.15 PID controller Kp=70 Ki=5.18 Kd=2.59 



 
61 

 

 

 

Figure 4.16 PID controller Kp=700 Ki=5.18 Kd=2.59 

 

 

Figure 4.17 PID controller Kp=70 Ki=518 Kd=51.8 



 
62 

 

 

Figure 4.18 PID controller Kp=700 Ki=518 Kd=51.8 

 

 

 

Figure 4.19 PID controller Kp=70 Ki=5.18 Kd=51.8 



 
63 

 

 

 

Figure 4.20 PID controller Kp=700 Ki=5.18 Kd=51.8 

 

 

 



 
64 

 

Figure 4.21 PID controller Kp=70 Ki=518 Kd=2.59 

 

Figure 4.22 PID controller Kp=700 Ki=518 Kd=2.59 

 

COMPARISON TIME RISE(s) SETTLING 

TIME (s) 

STEADY 

STATE Kp Ki Kd 

70 5.18 2.59 0.00803 0.0144 1 

700 5.18 2.59 0.00803 0.0144 1 

70 518 51.8 0.00148 0.00262 1 

700 518 51.8 0.00148 0.00262 1 

70 5.18 51.8 0.00148 0.00262 1 

700 5.18 51.8 0.00148 0.00262 1 

70 518 2.59 0.00803 0.0144 1 

700 518 2.59 0.00803 0.0144 1 

 

Table 4.5 Comparison of PID controller 



 
65 

 

Table 4.5 show increasing the value of Integral gain, Ki and Derivative gain, Kd 

will reduce the value of time rise, settling time, and steady state.  

 

 

 According to the graphs and tables in this chapter, it can prove that using 

Proportional-Integral-Derivative (PID) Controller is best controller compared to using 

no controller, Proportional Controller, Proportional-Integral (PI) Controller and 

Proportional-Derivative (PD) Controller  

 

 

 

 

 

 

 

 

 

 

 

 

 



 
66 

 

4.6 Developing PID controller using Microsoft Visual Basic 6.0 

 

This controller is developing after the Matlab simulations succeed. There are 2 stage 

of developing this controller which is to programmed an interface with DAQ card and 

programmed a pid controller for this system. Figure 4.5 shows the picture of Microsoft 

Visual Basic 6.0 PID controller. 

 

 

 

 

 

 

Figure 4.23 PID controller using Microsoft Visual Basic 6.0 

 



 
67 

 

CHAPTER 5 

 

 

 

CONCLUSION AND RECOMMENDATION 

 

 

 

5.1 Conclusion 

 

A development of a PID controller for DC motor using Microsoft Visual 

Basic  has been presented in this project. The controller using Matlab show that 

using PID the system can stabilize effectively. Microsoft Visual Basic is very 

useful and easy to communicate with DAQ card. The language is simple and 

object oriented. It is easy to implement PID system onto this software. 

The objectives to develop a PID controller using Microsoft Visual Basic 

achieved but have a problem with servo motor. The driver for servo motor 

cannot communicate with DAQ card.  

 

 

 



 
68 

 

5.2 Future Recommendation 

 

Although most of the goals are achieved, there are still some enhancement 

should be introduced to improve its quality.  Some suggestions for improvement 

are: 

 

 Apply this controller with more output and application such as AC 

motor. 

 Use another method such as LQR to determine Kp, Ki, Kd value.  

 Apply the controller with digital input and output. 

 

Other than that, different controller such as fuzzy logic and pole placement 

can be used to control the motor. Fuzzy logic is one of the controllers that keep 

developing nowadays. Using this controller, motor can be control accurately to 

what is desired and it is more efficient compared to other controller. 

 

 5.3 Commercialization 

   

Designing a new project is one of implementing study skills. A few 

upgrades need to be done before this project want to commercialize. To run this 

project properly, it is wise to use a suitable motor driver that can endure high 

voltage since the DC motor that had been used works on high voltage. The motor 

driver also should be able to drives the motor using the PWM signal. 



 
69 

 

Otherwise, this project can be used as reference for the engineering 

student or any engineer that using PID controller. 

 

 5.4 List and Cost of the Component        

 

  The cost of this project is not necessary because there is much freeware 

software is develop outside. This project also does not involve the cost of DC servo 

motor and DAQ card.                               

 

 

 

 

 

 

 

 

 

 

 

 



 
70 

 

REFERENCES 

 

 

 

[1] 21
st
 Januari 2008, The PID controller : Algorithm and implementation by Pasi         

Airikka, URL http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01267781 

[2] 23
rd

 January 2008, PID controller  

 URL http://en.wikipedia.org/wiki/PID_controller 

[3] 18
th
 April 2008, DC motor, Principles and Operation by Eric Seale 

URL http://www.solarbotics.net/starting/200111_dcmotor/200111_dcmotor2.html 

[4] 9
th
 February 2008, Automation and control using visual basic tutorial by Dr. Wan  

URL http://www.easyautomation.ca/tutorial.htm  

[5]6
th
 June 2008, DAQ card solutions from measurement computing by Measurement 

Computing 

URL http://www.measurementcomputing.com/daq_card.htm 

 

[6] Page 116,Sergey E.Lysherski, Electromechanical Systems, electric machines and 

applied mechatronics. 

 

 

 

 

 



 
71 

 

APPENDIX A 

DAQ CARD MANUAL 

 

USB-4716 
200 kS/s, 16-bit, USB 
Multifunction Module 

User Manual 

Copyright 

The documentation and the software included with this product are copyrighted 

2006 by Advantech Co., Ltd. All rights are reserved. Advantech 

Co., Ltd. reserves the right to make improvements in the products 

described in this manual at any time without notice. No part of this manual 

may be reproduced, copied, translated or transmitted in any form or 

by any means without the prior written permission of Advantech Co., Ltd. 

Information provided in this manual is intended to be accurate and reliable. 

However, Advantech Co., Ltd. assumes no responsibility for its use, 

nor for any infringements of the rights of third parties, which may result 

from its use. 

Acknowledgements 

Intel and Pentium are trademarks of Intel Corporation. 

Microsoft Windows and MS-DOS are registered trademarks of 

Microsoft Corp. 

All other product names or trademarks are properties of their respective 

owners. 

Product Warranty (2 years) 

Advantech warrants to you, the original purchaser, that each of its products 

will be free from defects in materials and workmanship for two years 

from the date of purchase. 

This warranty does not apply to any products which have been repaired or 

altered by persons other than repair personnel authorized by Advantech, 

or which have been subject to misuse, abuse, accident or improper installation. 

Advantech assumes no liability under the terms of this warranty as 

a consequence of such events. 
Because of Advantech‟s high quality-control standards and rigorous testing, 

most of our customers never need to use our repair service. If an 

Advantech product is defective, it will be repaired or replaced at no 

charge during the warranty period. For out-of-warranty repairs, you will 

be billed according to the cost of replacement materials, service time and 

freight. Please consult your dealer for more details. 



 
72 

 

If you think you have a defective product, follow these steps: 

 

1. Collect all the information about the problem encountered. (For 

example, CPU speed, Advantech products used, other hardware 

and software used, etc.) Note anything abnormal and list any 

onscreen messages you get when the problem occurs. 
2. Call your dealer and describe the problem. Please have your manual, 

product, and any helpful information readily available. 

3. If your product is diagnosed as defective, obtain an RMA (return 

merchandize authorization) number from your dealer. This allows 

us to process your return more quickly. 

4. Carefully pack the defective product, a fully-completed Repair and 

Replacement Order Card and a photocopy proof of purchase date 

(such as your sales receipt) in a shippable container. A product 

returned without proof of the purchase date is not eligible for warranty 

service. 

5. Write the RMA number visibly on the outside of the package and 

ship it prepaid to your dealer. 

CE 

This product has passed the CE test for environmental specifications 

when shielded cables are used for external wiring. We recommend the use 

of shielded cables. This kind of cable is available from Advantech. Please 

contact your local supplier for ordering information. 

Technical Support and Assistance 

 

Step 1. Visit the Advantech web site at www.advantech.com/support 

where you can find the latest information about the product. 

Step 2. Contact your distributor, sales representative, or Advantech's customer 

service center for technical support if you need additional 

assistance. Please have the following information ready before 

you call: 

- Product name and serial number 
- Description of your peripheral attachments 

- Description of your software (operating system, version, application 

software, etc.) 

- A complete description of the problem 

- The exact wording of any error message 

Document Feedback 

To assist us in making improvements to this manual, we would welcome 
comments and constructive criticism. Please send all such - in writing to: 

support@advantech.com.  

 

 

 

mailto:support@advantech.com


 
73 

 

Safety Precaution - Static Electricity 

 

Follow these simple precautions to protect yourself from harm and the 

products from damage. 

1. To avoid electrical shock, always disconnect the power from your 

PC chassis before you work on it. Don't touch any components on 
the CPU card or other cards while the PC is on. 

2. Disconnect power before making any configuration changes. The 

sudden rush of power as you connect a jumper or install a card may 

damage sensitive electronic components 

 

Introduction 
This chapter will provide information 

on the features of the DAS module, a 

quick start guide for installation, and 

some brief information on software and 

accessories for the USB-4716 Module. 

Sections include: 
• Features 

• Software Overview 

 

 

 

The Advantech USB-4716 is a powerful data acquisition (DAS) module 

for the USB port. It features a unique circuit design and complete functions 

for data acquisition and control 

 

 

1.1 Features 

2 USB-4716 has the most requested measurement & control functions: 

3 • 16 single-ended/ 8 differential or combination analog input channels 

4 • 16-bit resolution A/D converter, with up to 200 kS/s sampling rate 

5 • 8 digital input & 8 digital output channels (TTL Level) 

6 • 2 analog output channels 
7 • 16-bit programmable counter/timer x 1 

8 • Programmable gain for each analog input channel 

9 • Automatic channel/gain scanning 

10 • Onboard 1K samples FIFO buffer for AI channels 

11 • Bus-powered 



 
74 

 

12 • Device status LED indicator 

13 • Removable on-module wiring terminal 

14 • Supports high-speed USB 2.0 

15 • Auto calibration function 

16 • Hot swappable 

 

Note: The USB chip on your system may have a limitation 
on the number of USB devices it will support. 
Normally, only five USB-4716 devices can be 
supported. 
 
Note: The power output of an USB port is 500 mA, 
while the USB-4716 requires 360 mA (typical). 
This means that if an USB hub is used, it will 
need an external power supply to support more 
than one USB-4716 device. 

 

 

1.2 Software Overview 

Advantech offers a rich set of DLL drivers, third-party driver support and 

application software on the companion CD-ROM to help fully exploit the 

functions of your device. Advantech‟s Device Drivers feature a complete 

I/O function library to help boost your application performance and work 

seamlessly with development tools such as Visual C++, Visual Basic, 

Inprise C++ Builder, and Inprise Delphi. 

 

 

1.2.1 More on the CD 

For instructions on how to begin programming in each development tool, 

Advantech offers some tutorial chapters in the Device Drivers Manual for 

your reference. Please refer to the corresponding sections in these chapters 

on the Device Drivers Manual to begin your programming efforts. 

You can also look at the example source code provided for each programming 

tool, since they can get you very well oriented. 
The Device Drivers Manual can be found on the companion CD-ROM. 

Alternatively, if you have already installed the Device Drivers on your 

system, The Device Drivers Manual can be readily accessed through the 



 
75 

 

Start button: 

Start/Programs/Advantech Automation/Advantech Device Manager / 

Device Driver’s Manual 

The example source code can be found under the corresponding installation 

folder such as the default installation path: 

\Program Files\Advantech\ADSAPI\Examples 

 

Installation 

Sections include: 

 

• Unpacking 

• Driver Installation 

• Hardware Installation 

• Hardware Uninstallation 

2.1 Unpacking 

After receiving your USB-4716 package, please inspect its contents first. 

The package should contain the following items: 

• USB-4716 Module 

• Shielded USB 2.0 Cable (1.8 m) 

• Companion CD-ROM (DLL driver included) 

• User Manual 

The USB-4716 Module harbors certain electronic components vulnerable 

to electrostatic discharge (ESD). ESD could easily damage the integrated 

circuits and certain components if preventive measures are not carefully 

paid attention to. Before removing the module from the antistatic plastic 

bag, you should take following precautions to ward off possible ESD 

damage: 

 

 

• Touch the metal part of your computer chassis with your hand to discharge 

static electricity accumulated on your body. One can also use a 

grounding strap. 
• Make contact between the antistatic bag and ground before opening. 

 

After taking out the module, you should first: 

 

Inspect the module for any possible signs of external damage (loose or 



 
76 

 

damaged components, etc.). If the module is visibly damaged, please 

notify our service department or our local sales representative immediately. 

Avoid using a damaged module with your system. 

 

• Avoid physical contact with materials that could hold static electricity 

such as plastic, vinyl and Styrofoam. 

2.2 Driver Installation 

We recommend you install the software driver before you install the 

USB-4716 module into your system, since this will guarantee a smooth 

installation process. 

 

The 32-bit DLL driver Setup program for the USB-4716 module is 

included on the companion CD-ROM that is shipped with your module 
package. Please follow the steps on the following page to install the 

driver software: 

For further information on driver-related issues, an online version of the 

Device Drivers Manual is available by accessing the following path: 

Start\Programs\Advantech Automation 

\Device Manager\Device Driver’s Manual 

 



 
77 

 

 



 
78 

 

2.3 Hardware Installation 

Note: Make sure you have installed the software driver 
before you install the module (please refer to 
Section 2.2 Driver Installation) 

After the DLL driver installation is completed, you can now go on to 

install the USB-4716 module in any USB port that supports the 

USB 1.1/2.0 standard, on your computer. Please follow the steps below to 

install the module on your system. 

Step 1: Touch the metal part on the surface of your computer to neutralize 
the static electricity that might be in your body. 

 

Step 2: Plug your USB module into the selected USB port. Use of excessive 

force must be avoided; otherwise the module might get damaged. 

Note: In case you installed the module without installing 
the DLL driver, Win2000/XP will recognize your 
module as an “unknown device”. After reboot,it will 
prompt you to provide necessary driver. You should 
ignore the prompting messages and set up the 
driver according to the steps described in Sec.2.2. 

After your module is installed, you can configure it using the Advantech 

Device Manager. The Device Driver's Manual can be found at: 

Start\Programs\Advantech Automation\Advantech Device Manager\ 

Device Driver’s Manual 

2.4 Hardware Uninstallation 

Though the Advantech USB modules are hot swappable, we still recommend 

you to follow the hardware un-installation procedure to avoid any 

unpredictable damages to your device or your system. 

 

Step1: Close the applications of the USB module. 

Step2: Right click the “Unplug or Eject Hardware” icon on your task bar. 

 

 

 

 



 
79 

 

 

Figure 2.1: Unplug or Eject Hardware Dialog 

 

Step3: Select “Advantech USB-4716 Device” and press “Stop” Button. 

 

 

 

 

 



 
80 

 

 

Figure 2.2: Stop a Hardware device dialog box 

 

Step4: Unplug your USB device from the USB port. 

 
 

Note: Please make sure that you have closed the application 
before unplugging the USB device, otherwise unexpected 
system error or damage may occur. 

 

 

 

 



 
81 

 

Signal Connections 

This chapter provides useful information 

on how to connect input and output 
signals to the USB-4716 via the I/O 

connectors. 

Sections include: 

 

• Overview 

• I/O Connectors 

• Analog Input Connections 

• Analog Output Connections 

• Trigger Source Connections 

• Field Wiring Considerations 

Chapter 3 Signal Connections 

3.1 Overview 

Maintaining good signal connections is one of the most important factors 

in ensuring that your application system is sending and receiving data 

correctly. A good signal connection can avoid unnecessary and costly 

damage to your PC and other hardware devices. 

3.2 I/O Connectors 

USB-4716 is equipped with plug-in screw-terminal connectors that facilitate 

connection to the module without terminal boards or cables. 

 

3.2.1 Pin Assignment 

Figure 3.1 on next page shows the pin assignments for the five 10-pin I/O 

connectors on USB-4716. 

 

Warning: The two ground references AGND and DGND 
should be used separately for their designated 
purpose. Do not connect them together. 

 

 



 
82 

 

 

Figure 3.1: I/O Connector Pin Assignment 

 

 

 

3.2.2 I/O Connector Signal Description 

Table 3.1: I/O Connector Signal Description 



 
83 

 

 

 

 

 

 

 

 

 

 



 
84 

 

3.2.3 LED Indicator Status Description 
The USB Module is equipped with a LED indicator to show the current 

status of the device. When you plug the USB device into the USB port, 

the LED indicator will blink five times and then stay lit to indicate that it 
is on. Please refer to the following table for detailed LED indicator status 

information. 

 

3.3 Analog Input Connections 

USB-4716 supports 16 single-ended/ 8 differential (or combination) 

analog inputs. Each individual input channel is software-selected. 

3.3.1 Single-ended Channel Connections 

channel, and the measured voltage (Vm) is the voltage of the wire as referenced 

against the common ground. 

A signal source without a local ground is also called a “floating source”. 

It is fairly simple to connect a single-ended channel to a floating signal 

source. In this mode, USB-4716 provides a reference ground for external 

floating signal sources. 

Figure 3.2 shows a single-ended channel connection between a floating 

signal source and an input channel on USB-4716. 



 
85 

 

 

 

Figure 3.2: Single-Ended Input Channel Connection 

 

 

 

 

3.3.4 Differential Input Connections 

The differential input channels operate with two signal wires for each 

channel, and the voltage difference between both signal wires is measured. 

On USB-4716, when all channels are configured to differential 

input, up to 8 analog channels are available. 

If one side of the signal source is connected to a local ground, the signal 

source is ground-referenced. Therefore, the ground of the signal source 
and the ground of the card will not be exactly of the same voltage. The 

difference between the ground voltages forms a commonmode voltage 

(Vcm ). 

To avoid the ground loop noise effect caused by common-mode voltages, 

you can connect the signal ground to the Low input. Figure 3-3 shows a 



 
86 

 

differential channel connection between a grounded-reference signal 

source and an input channel on USB-4716. With this connection, the 

PGIA rejects a common-mode voltage Vcm between the signal source and 

USB-4716 ground, shown as Vcm in Figure 3-3. 

Note: In differential input mode, the input channel n should be used with 

channel n+1. 

(n=0,2,4…14) 

 

 

Figure 3.3: Differential Input Channel Connection 

 

 

 

 

 

 

 



 
87 

 

3.4 Analog Output Connections (Voltage) 

USB-4716 provides two analog output channels, AO0 and AO1. Figure 

3-3 shows how to make analog output connections on USB-4716. 

 

Figure 3.4: Analog Output Channel Connections 

 

3.5 Trigger Source Connections 

3.5.1 Internal Pacer Trigger Connection 
 

USB-4716 provides two 16-bit counters connected to a 10 MHz clock. 

Counter 0 is a counter that counts events from an input channel. Counter 

1 is a 16-bit timer for pacer triggering. A low-to-high edge from the 

Counter 1 output will trigger an A/D conversion on USB-4716. 

3.5.2 External Trigger Source Connection 
 

In addition to pacer triggering, USB-4716 also allows external triggering 

for A/D conversions. When GATE is connected to a +5V DC source, the 

external trigger function is thereby disabled. And the external trigger 

function will be enabled once the +5V DC source is removed. 



 
88 

 

 

 

3.6 Field Wiring Considerations 

When you use USB-4716 to acquire data from outside, noises in the 
environment might significantly affect the accuracy of your measurements 

if due cautions are not taken. The following measures will be 

helpful to reduce possible interference running signal wires between 

signal sources and the USB-4716. 

 

• The signal cables must be kept away from strong electromagnetic 

sources such as power lines, large electric motors, circuit breakers or 

welding machines, since they may cause strong electromagnetic interference. 

Keep the analog signal cables away from any video monitor, 

since it can significantly affect a data acquisition system. 

 
• If the cable travels through an area with significant electromagnetic 

interference, you should adopt individually shielded, twisted-pair wires 

as the analog input cable. This type of cable has its signal wires twisted 

together and shielded with a metal mesh. The metal mesh should only 

be connected to one point at the signal source ground. 

 

• Avoid running the signal cables through any conduit that might have 

power lines in it. 

 

• If you have to place your signal cable parallel to a power line that has a 

high voltage or high current running through it, try to keep a safe distance 

between them. Or place the signal cable in a right angle to the 
power line to minimize the undesirable effect. 

 

 

 



 
89 

 

Specifications 

A.1 Analog Input 

 

 

 

 

 

 



 
90 

 

A.2 Analog Output 

 

 

 

A.3 Non-Isolated Digital Input/Output 

 

 

 

 



 
91 

 

APPENDIX B 

SERVO MOTOR MANUAL INSTALLATION 

 



 
92 

 

 



 
93 

 

 



 
94 

 

 



 
95 

 

 



 
96 

 

 



 
97 

 

 



 
98 

 

 



 
99 

 

 



 
100 

 

APPENDIX C 

MICROSOFT VISUAL BASIC PROGRAMMED  

 

 

 

Private Sub cmdExit_Click() 

Unload Me 

End 

End Sub 

 

Private Sub Command1_Click() 

DEMOAO.SelectDevice 

Text1.Text = DEMOAO.DeviceNumber 

Text2.Text = DEMOAO.DeviceName 

End Sub 

 

 

 

 



 
101 

 

Private Sub Command2_Click() 

tmrpid.Enabled = True 

End Sub 

 

Private Sub Command3_Click() 

DAQAI1.SelectDevice 

Text4.Text = DAQAI1.DeviceNumber 

Text5.Text = DAQAI1.DeviceName 

End Sub 

 

 

Private Sub start_Click() 

tmrpid.Interval = tmrin.Interval 

End Sub 

 

 

 

 

 



 
102 

 

Private Sub tmrin_Timer() 

DAQAI1.OpenDevice 

pv.Text = DAQAI1.RealInput(0) 

End Sub 

 

Private Sub tmrpid_Timer() 

process = DAQAI1.RealInput(0) 

setp = sp.Text 

t = tmrpid.Interval 

 

er = setp - process 

er_old = er 

Kp = er * p.Text 

Ki = i.Text * ((er_old - er) / t) 

Kd = d.Text * ((er_old - er) * t) 

 

output.Text = Kp + Ki + Kd 

output.Text = DAQAO.output 

End Sub 


