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ABSTRACT

The nonabelian tensor products of groups originated from a generalized

Van Kampen Theorem and its construction has its origins in algebraic K-theory

and in homotopy theory. In this research, cyclic groups of p-power order where

p is a prime number are considered. The aim of this research is to prove that the

nonabelian tensor products of some finite cyclic groups of p-power order are cyclic.

This research starts with the characterization of automorphisms of cyclic groups

of p-power order using number theoretical results where the order of the actions

are considered. Then, the necessary and sufficient conditions for the actions to be

compatible are determined for a pair of finite cyclic groups. Finally, by using a

general expansion formula, the nonabelian tensor products of some cyclic groups

of p-power order are proven to be cyclic. The results of this research show that

the nonabelian tensor product of cyclic groups of p-power order where p is an

odd prime with two-sided actions are cyclic. Furthermore, the nonabelian tensor

product of cyclic groups of 2-power order with two-sided actions and both actions

have order greater than two have been proven to be also cyclic.
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ABSTRAK

Hasil darab tensor tak abelan bagi kumpulan bermula dari Teorem Van

Kampen teritlak dan pembinaan hasil darab tensor tak abelan berasal dari

teori-K aljabar dan teori homotopi. Dalam penyelidikan ini, kumpulan kitaran

berperingkat kuasa bagi p dengan p adalah nombor perdana dipertimbangkan.

Tujuan penyelidikan ini adalah untuk membuktikan bahawa hasil darab tensor

tak abelan bagi sebahagian kumpulan kitaran berperingkat kuasa bagi p adalah

kumpulan kitaran. Penyelidikan ini dimulakan dengan pengkelasan automorfisma

kumpulan kitaran terhingga berperingkat kuasa bagi p dengan menggunakan

teori nombor di mana peringkat bagi tindakan diambil kira. Setelah itu,

syarat-syarat cukup dan perlu supaya tindakan tersebut adalah serasi antara

satu sama lain bagi semua kumpulan kitaran terhingga ditentukan. Akhir

sekali, dengan menggunakan rumus umum pengembangan tensor, hasil darab

tensor tak abelan bagi sebahagian kumpulan kitaran berperingkat kuasa bagi p

dibuktikan sebagai kumpulan kitaran. Keputusan penyelidikan ini menunjukkan

hasil darab tensor tak abelan bagi kumpulan kitaran berperingkat kuasa bagi

p dengan p adalah perdana ganjil dengan tindakan dua sisi adalah merupakan

kumpulan kitaran. Tambahan pula, hasil darab tensor tak abelan bagi kumpulan

kitaran berperingkat kuasa dua dengan tindakan dua sisi dan kedua-dua tindakan

berperingkat lebih besar daripada dua telah juga dibuktikan sebagai kumpulan

kitaran.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter is the introduction chapter that includes research

background, problem statement, research objectives, scope of the study,

significant of findings and thesis organization.

1.2 Research Background

The nonabelian tensor product for groups G and H, denoted by G⊗H,

originated in connection with a generalized Van Kampen Theorem and its

construction has its origins in the algebraic K-theory and in homotopy theory.

It was introduced by Brown and Loday in [1]. The nonabelian tensor product is

defined for a pair of groups which act on each other provided the actions satisfy

the compatibility conditions:

(gh)g′ = g(h(g
−1

g′)) and (hg)h′ = h(g(h
−1

h′))

for all g, g′ ∈ G and h, h′ ∈ H. If G and H are groups that act compatibly on

each other, then the nonabelian tensor product, G ⊗H is a group generated by

the symbols g ⊗ h with relations

gg′ ⊗ h = (gg′ ⊗ gh )(g ⊗ h) and g ⊗ hh′ = (g ⊗ h) (hg ⊗ hh′)
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for all g, g′ ∈ G and h, h′ ∈ H.

Starting with the paper of Brown et al. [2], many researchers had studied

group theoretical aspects of nonabelian tensor products extensively. Brown et

al. [2] focused on the group theoretic properties and the explicit computation of

nonabelian tensor squares. They also provided a list of open problems concerning

nonabelian tensor square and nonabelian tensor product.

Brown and Loday already established in [1] that the nonabelian tensor

square, denoted by, G ⊗ G is finite for a finite group G. Then Ellis [3] extended

the results for the nonabelian tensor products. In addition he showed that the

nonabelian tensor product is of p-power order if G and H are of p-power order.

McDermott [4] computed the nonabelian tensor product, G ⊗ H when G is a

p-group and H is a q-group, where p and q are primes. However, he only

focused on the bound of the order of G⊗H and gave some results on that case.

Visscher [5] continued the study on the nonabelian tensor product of p-power

order and focused on cyclic groups.

1.3 Problem Statement

In 1987, Brown et al. [2] gave an open problem in determining whether

the tensor product of two cyclic groups is cyclic. Visscher [5] in 1998 had

calculated and proved that the nonabelian tensor product of two cyclic groups

is not necessarily cyclic and he found that the rank of the nonabelian tensor

product of cyclic groups does not exceed two. He only covered the cases for one

sided actions and completely determined the nonabelian tensor products of cyclic

groups of 2-power order where both actions have order two. In this research, the

cases that we looked into are the nonabelian tensor product of cyclic groups of

p-power order where p is an odd prime with two-sided actions and the nonabelian

tensor product of cyclic groups of 2-power order with two-sided actions and both

actions have order greater than two.
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1.4 Research Objectives

The objectives of this research are:

(i) to characterize all automorphisms of a cyclic group of p-power

order.

(ii) to determine some necessary and sufficient number theoretical

conditions for a pair of finite cyclic groups of p-power order with

nontrivial actions act compatibly on each other.

(iii) to develop some algorithms in Groups, Algorithms and

Programming (GAP) software for finding the nonabelian tensor

product of finite cyclic groups of p-power order.

(iv) to prove that the nonabelian tensor products of some finite cyclic

groups of p-power order are cyclic.

1.5 Scope of the Study

In this thesis, the groups considered are limited to the finite cyclic groups

of p-power order where p is prime with the actions are nontrivial.

1.6 Significance of Findings

The major contribution of this thesis consist of new theoretical results

on determining the conditions in which the nonabelian tensor products of

finite cyclic groups are cyclic. This thesis also provides some characterizations

of automorphisms of cyclic groups of p-power order that are proved using

number theoretical results. In addition, this characterization gives the general

presentation for automorphisms of p-power order.
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The next contribution is a new necessary and sufficient condition that

a pair of cyclic groups of p-power order acts compatible on each other. This

provides a new classification since the conditions depend on the order of the

action. According to this necessary and sufficient condition, the number of

compatible pair of two cyclic groups can be determined.

1.7 Thesis Organization

The first chapter serves as an introduction to the whole thesis. This

chapter contains research background, problem statement, objectives of the

research, scope of the study and significant of findings.

Chapter 2 presents the literature review of this research. Various works

by different researchers regarding the nonabelian tensor product are stated. It

has been discovered for 27 years since 1984 where Brown and Loday [1] were the

first to introduce the concept of tensor.

In Chapter 3, some definitions and preliminary results on automorphism

groups, compatibility conditions, the nonabelian tensor products and Groups,

Algorithms and Programming (GAP) algorithms are given. GAP algorithms to

determine the compatible actions and to find the nonabelian tensor products are

also given. All results in this chapter are used in the following chapters.

Chapter 4 shows the characterizations of all automorphisms of cyclic

groups of p-power order. The propositions which characterize the automorphisms

with certain order are given. This chapter is concluded with some results

on characterizing all automorphisms of cyclic group of p-power order. The

characterizations are divided into two parts, namely for p an odd prime and

for p = 2.

In Chapter 5, compatible actions for cyclic groups of p-power order are

presented. The main theorem in this chapter gives a necessary and sufficient
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condition for two finite cyclic groups acting on each other in a compatible way.

This result is applied to finite cyclic groups of p-power order and classifies all

compatible actions between them.

Chapter 6 contains some of the main results of this thesis concerning the

nonabelian tensor product of cyclic groups of p-power order. This chapter shows

that the nonabelian tensor product of these groups is cyclic with some exceptions.

Various results on the group theoretic properties and explicit computation of the

nonabelian tensor product of cyclic groups under certain families of actions, such

as trivial actions, one sided action and both actions nontrivial, but each of order

two are given. Next, to compute the nonabelian tensor product of cyclic groups

of p-power order for two sided action, two separate cases are considered namely

for the case p an odd prime and p = 2.

Chapter 7 presents the conclusion of this research and suggestions for

future research.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The nonabelian tensor product has been discussed since 1984. Brown and

Loday were the first who introduced the concept of tensor in their paper [1]. Since

the paper was written in Portuguese, thus the second paper by Brown et al. [2] in

1987 became the starting point for most investigations of the nonabelian tensor

products. They also provided a list of open problems concerning nonabelian

tensor product and tensor square. The detailed literature review is given in

Section 2.2.

2.2 The Nonabelian Tensor Product of Groups

The nonabelian tensor product for groups G and H, denoted by G ⊗ H,

was originated in connection with a generalized Van Kampen Theorem and its

construction has its origins in the algebraic K-theory and in homotopy theory.

It was introduced by Brown and Loday in [1] and [6], extended the concepts by

Whitehead in [8]. Starting with the paper of Brown et al. [2], many researchers

had studied group theoretical aspects of nonabelian tensor products extensively.

A paper by Kappe [9] gives an overview of known results and literature up to

1997.
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Brown et al. in [2] focused on the group theoretic properties and explicit

computation of nonabelian tensor squares. They also provided a list of open

problems concerning nonabelian tensor squares and tensor products. Initially,

this research topic was guided by eight open problems at the end of [2].

It is already established in [2] that the nonabelian tensor square, denoted

by G⊗G, is finite for a finite G. Brown et al. [2] also showed that the nonabelian

tensor square of a nilpotent or solvable group is nilpotent or solvable. In addition,

he showed that the nonabelian tensor product, G⊗H is of p-power order if G and

H are of p-power order and given the results of the computation of the nonabelian

tensor squares for groups of order up to 30 with the help of GAP.

In 1987, Ellis [3] extended the results for nonabelian tensor products but

he did not provide any analytical proof. He also showed that the nonabelian

tensor product, G ⊗H is of p-power order if G and H are of p-power order. In

1991, Rocco [11] gives a bound for the order of G⊗ G if G has order pn. Later,

Bacon et al. in [13] used GAP in computing the nonabelian tensor square of

the 2-Engel group of rank 3. Besides that, Ellis and Leonard in [12] developed

an algorithm that can handle the computation of the nonabelian tensor square

of much larger groups. They calculated Burnside Groups B (2, 4) and B (3, 3),

which have order 212 and 37, respectively. They also developed a method that can

be used to compute the nonabelian tensor product of a pair of groups, which are

embeded as normal subgroups, or what is called as parent group of order up to

14. In 1998, McDermott in [4,14] had developed an algorithm for computing the

nonabelian tensor product of more general finite case. He gave the nonabelian

tensor product for every pair of normal subgroups of the nonabelian quaternion

group of order 32. In addition, he also gave the nonabelian tensor product of

quarternion group and dihedral group both of order eight and split them into

two cases, namely when the action acts compatibly on each other and when the

actions do not act compatibly on each other. In addition, Ellis and McDermott

in [14] improved Rocco’s bound [11] and extended it to the case of nonabelian

tensor product of prime power groups G and H.
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McDermott [4] computed the nonabelian tensor product, G⊗H when G

is a p-group and H is a q-group, where p and q are primes. However, he only

focused on the bound of the order of G⊗H and gave some results on that case.

Visscher [5] continued the study on the nonabelian tensor product of p-power

order and focused on cyclic groups. Visscher gave an explicit description of the

action of a cyclic group of prime power order on another in the first part in his

thesis [5] before he used the results to compute the nonabelian tensor product.

The lemma that he used containing a pair of number theoretic results in [13] for

p ̸= 2 and in [15] for p = 2 . Visscher computed some of the nonabelian tensor

product of cyclic group of p-power order and gave a complete classification of

all the nonabelian tensor product of cyclic groups of 2-power order with mutual

nontrivial actions of order two. Visscher [5] also gave the bounds on the nilpotency

class and solvability length of G⊗H, provided such information is given in context

with G and H. The bounds are given in terms of DH (G), the derive subgroup of

G afforded by the action of H on G, and DG (H), the analogous subgroup of H.

In other point of view, Nakaoka [16] considered a group construction that

is related to the nonabelian tensor product as a second proof to claim Ellis’s result

in [3]. Nakaoko in [16] constructed a group defined as follows:

Let G and H be groups acting compatibly on each other and Hϕ an extra

copy of H, isomorphic through ϕ : H → Hϕ, h 7→ hϕ for all h ∈ H. Then the

group η (G,H) is defined as η (G,H) =⟨
G,H

∣∣[g, hϕ
]g1 = [

gg1 , (hg1)ϕ
]
,
[
g, hϕ

]hϕ
1 =

[
gh1 , (hh1)ϕ

]
, ∀g, g1 ∈ G,∀h, h1 ∈ H

⟩
.

It follows from Gilbert and Higgins [17] that there is an isomorphism from

the subgroup
[
G,Hϕ

]
of η (G,H) onto the nonabelian tensor product, G⊗H such

that
[
g, hϕ

]
7→ g ⊗ h, for g ∈ G and h ∈ H. This isomorphism is useful to study

the nonabelian tensor product inside of η (G,H). Rocco in [11] used this method

to settle a bound for the order of G⊗G when G is a finite p-group. Observe that[
G,Hϕ

]
is a normal subgroup of η (G,H) and η (G,H) =

[
G,Hϕ

]
GHϕ. Thus, if

G and H are finite and solvable, then η (G,H) is also finite and solvable.
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Primoz [18] in 2008 proved that the exponent of the nonabelian tensor

product of two locally finite groups can be bounded in terms of exponents of

given groups. Several estimates for the exponents of nonabelian tensor squares

are obtained. In particular, if the group G is nilpotent of class ≤ 3 and of finite

exponent, then the exponent of its nonabelian tensor square divides the exponent

of G. Then, in 2010, he introduced the notion of a powerful action of a p-group

upon another p-group [19]. He also proved that the non-abelian tensor product

of powerful p-groups acting powerfully and compatibly upon each other is again

a powerful p-group. Also in 2010, Thomas [10] gave a homology free proof for

the nonabelian tensor product of finite groups is finite which give an algebraic

proof for Ellis’ [3] result.

Recently in 2011, Russo [20] had constructed the nonabelian tensor

product in the classes of groups such as the class of all finite groups, nilpotent

groups, soluble groups, polycyclic groups, locally finite groups, Chernikov or

soluble minimax groups [21] to form the nonabelian tensor product in the same

class.

In this research, we are interested in finding the conditions for the actions

that act compatibly on each other. Previously, there are only three papers which

focus on these conditions, namely [4], [5] and [14]. The action for the nonabelian

tensor square is defined as conjugation. Using conjugation in Q32 as the basis

for all actions, McDermott in [4] and [14] gave different actions, which arise

between each pair of subgroups by exhibiting the images of the generators of

Q32 under the actions of the generators of the same group. For the nonabelian

tensor product, he gave all possible pairs of actions between D4 and Q8 by

finding all possible images of their generators in the respective automorphism

group. There are 28 possibles actions of Q8 on D4 and 76 possibles actions

of D4 on Q8, giving all together 2128 distinct pairs of actions between D4 on

Q8. He found that only 292 are compatible pairs. Besides that, Vissher [5]

had started in determining the nonabelian tensor product of cyclic groups. He

had determined the characterization on the compatibility condition and provided

some necessary and sufficient conditions for a pair of cyclic groups of p-power
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order where p an odd prime, as well as when p = 2 to act compatibly on each

other. However, the order of the actions as one of the conditions is not included

in the characterizations.

As a continuation of Visscher’s work, this research is focused on the

determination of the nonabelian tensor product of finite cyclic groups of p-

power order with two-sided actions of order greater then two and the actions

are compatible.

This research starts with the characterization of automorphisms of cyclic

groups of p-power order using number theoretical results where the order of the

actions are considered. Then, the necessary and sufficient conditions for the

actions to be compatible are determined for a pair of finite cyclic groups. Finally,

by using a general expansion formula, the nonabelian tensor products of some

cyclic groups of p-power order are proven to be cyclic.

2.3 Conclusion

In this chapter, literatures on the nonabelian tensor products of groups

are presented. From the literatures, non of the references have shown that the

nonabelian tensor product of finite cyclic groups are cyclic except Visscher [5]

but he only focused on nonabelian tensor product of one-sided action and when

both actions have order two. Therefore, the computation of the nonabelian tensor

products for other groups will enrich some new samples in this area.

The next chapter gives some related preliminaries results for this research.



CHAPTER 3

PRELIMINARY RESULTS

3.1 Introduction

In this chapter, some definitions and preliminary results on automorphism

groups, compatibility conditions, the nonabelian tensor products and Groups,

Algorithms and Programming (GAP) algorithms are given. GAP algorithms to

determine the compatible actions and to find the nonabelian tensor products are

also given. All results in this chapter are used in the following chapters.

3.2 Automorphism Groups

Let G be a finite cyclic group generated by g ∈ G. Any automorphism of

G is given by a mapping σ : g → gt, where t is an integer with gcd (t, |g|) = 1. In

further applications, some information on the arithmetic nature of t depending

on the order of σ in case G is a cyclic group of p-power order is needed in finding

the conditions for compatible actions stated in the next chapter.

Some familiar results related to φ-function which can be found in [22] are

stated as follows:

Definition 3.1 [22] Euler’s φ-function

For m ≥ 1, the Euler’s φ-function, denoted by φ (m), is the number of positive

integer not exceeding m that are relatively prime to m.
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Theorem 3.1 [22] If an integer m > 1 has the prime factorization m =

pk11 pk22 ...pkrr , then

φ (m) =
(
pk11 − pk1−1

1

) (
pk22 − pk2−1

2

)
· · ·

(
pkrr − pkr−1

r

)
= m

(
1− 1

p1

)(
1− 1

p2

)
. . .

(
1− 1

pr

)
.

Theorem 3.2 [22] Euler’s Theorem

If m > 1 and gcd (a,m) = 1, then aφ(m) ≡ 1 mod m, where φ (m) is the Euler’s

φ-function.

In view of Euler’s Theorem, note that aφ(m) ≡ 1 mod m whenever

gcd (a,m) = 1. However, there are often powers smaller than φ (m) such that

a to that power is congruent to 1 modulo m [22]. This prompts the following

definition.

Definition 3.2 [22] Order of an Integer Modulo m

Let m > 1 and gcd (a,m) = 1. The order of a modulo m is the smallest positive

integer k such that ak ≡ 1 mod m.

From now on, the order of a modulo m will be written as k = ordm (a).

Note that if gcd (a,m) = 1, then ordm (a) can be defined.

Theorem 3.3 [22] Let a be an integer with gcd (a,m) = 1 and ordm (a) = k.

Then ah ≡ 1 mod m if and only if k|h; in particular k|φ (m).

Another basic fact regarding the order of an integer is given as follows.

Theorem 3.4 [22] If ordm (a) = k, then ai ≡ aj mod m if and only if i ≡

j mod k.

This leads to the following corollary since there are k different numbers of

i.
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Corollary 3.1 [22] If ordm (a) = k, then the integers a, a2, ..., ak are pairwise

incongruent mod m.

It is possible to express the order of any power of a in terms of the order

of a as stated in the next theorem.

Theorem 3.5 [22] If ordm (a) = k and h > 0, then

ordm

(
ah
)
=

k

gcd (h, k)
.

Now, consider ordm (a) = m. Then there are m pairwise incongruent

mod m numbers of integers which are a, a2, ..., am. Let A be a set with A =

a, a2, ..., am. Then A can be proved to be group in particularly a finite cyclic

group of order m.

Next, let ⟨g⟩ be a finite cyclic group of order n, then Theorem 3.5 becomes∣∣gk∣∣ = |g|
gcd (k, |g|)

for any k ∈ N.

This fact can be formally written in the following corollary.

Corollary 3.2 [22] Let G be group and g ∈ G with |g| < ∞. Then
∣∣gk∣∣ =

|g|
gcd (k, |g|)

for any k ∈ N .

Hence, from this point on, some number theoretical results are applied.

Next, Dummit and Foote in [23] gave that the automorphism group of

cyclic group of order p-power is a direct product of two cyclic groups as stated

in the following.

Theorem 3.6 [23] Let p be an odd prime and α ∈ Z+. If G is a cyclic group

of order pα, then Aut(G) ∼= Cp−1 × Cpα−1
∼= C(p−1)pα−1 and |Aut (G)| = φ (pα) =

(p− 1) pα−1.
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In addition, they also gave the group isomorphic to the automorpshim

groups of 2-power order stated as follows.

Theorem 3.7 [23] Let G be a cyclic group of order 2n, n ≥ 3. Then Aut(G) ∼=

C2 × C2n−2 and |Aut (G)| = φ (2n) = 2n−1.

Next we state all known results on compatible actions that will be used in

Chapter 5.

3.3 Compatible Actions

Firstly, the definition of an action of a group G on a group H is given in

the following:

Definition 3.3 [5] Action

Let G and H be groups. An action of G on H is a mapping Φ : G → End(H)

such that

Φ(gg′)(h) = Φ(g)(Φ(g′)(h))

for all g, g′ ∈ G and h ∈ H.

For the case of cyclic groups, an action Φ of a group G on a group H will

also be required to have the property that Φ(1G) = idH , the identity mapping on

H. Such an action is typically called a monoid action. Thus, from this point on,

an action will be a homomorphism Φ from G to Aut (H). In addition, the action

will be written as

gh
def
= Φ(g) (h) .

In the context of this thesis, only actions of the following type are

considered:

Φ : G → Aut (H) ,
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where Φ is a homomorphism of G into Aut (H) and is denoted by

gh = Φ(g) (h) .

The conjugation action of a group on itself is written as gg′ = gg′g−1 for g, g′ ∈ G.

Observe that conjugation is trivial for abelian groups.

A compatible action between two groups is defined in the following:

Definition 3.4 [6] Compatible Action

Let G and H be groups which act on each other. These mutual actions are said to

be compatible with each other and with the actions of G and H onto themselves

by conjugation if

(gh)g′ = g(h(g
−1

g′)) (3.1)

and

(hg)h′ = h(g(h
−1

h′)) (3.2)

for all g, g′ ∈ G and h, h′ ∈ H.

In the next proposition, it can be shown that the dual of the compatibility

condition always holds.

Proposition 3.1 [5] Let G and H be groups which act on each other and which

act on themselves by conjugation. Then the following conditions always hold:

(hg)g′ = h(g(h
−1

g′)) and (gh)h′ = g(h(g
−1

h′))

for all g, g′ ∈ G and h, h′ ∈ H.

Proof Let g, g′ ∈ G and h, h′ ∈ H. Then

(hg)g′ = (hg)g′(hg)−1

= hg · g′ · hg−1

= h(g · h−1

g′ · g−1)

= h(g(h
−1

g′)).
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The second condition follows in a similar way. �

In case of abelian groups, the compatibility conditions can be simplified.

This result is given in the next proposition.

Proposition 3.2 [5] Let G and H be groups which act on each other and on

themselves by conjugation. If G and H are abelian, then the mutual actions are

compatible if and only if

(gh)g′ = hg′ and (hg)h′ = gh′

for all g, g′ ∈ G and h, h′ ∈ H.

Proof Let G and H be abelian groups. Observe that conjugation is trivial for

an abelian group. Thus the first compatibility condition becomes

(gh)g′ = g(h(g
−1

g′))

= g(h(g−1g′g))g−1

= hg′.

The second condition can also be proved in a similar way. �

The next result gives a characterization of compatible actions if one action

is trivial. The proof can be found in [5].

Proposition 3.3 [5] Let G and H be groups. Furthermore, let G act trivially

on H, that is gh = h for all g ∈ G and h ∈ H. Then an action Φ : H → Aut (G)

is compatible with the trivial action if and only if Φ (H) ⊆ CAut(G) (Inn (G)).

In the event where G is abelian, the following corollary shows that the

trivial action is always compatible with any other action.


