LABVIEW PID SPEED CONTROLLER FOR DC MOTOR

EFFIZUL SYAFRIN BIN ABU BAKAR

This project is submitted as partial fulfillment of the requirements for the award of the Degree of Bachelor of Electrical Engineering (Electronics)

Faculty of Electrical & Electronics Engineering Universiti Malaysia Pahang

17 NOVEMBER 2008

TABLE OF CONTENTS

CHAPTER

1

TITLE

TITLE PAGE	i
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	Х
LIST OF FIGURES	xi
LIST OF GRAPH	xii
LIST OF SYMBOLS	xiii
LIST OF ABBREVIATION	xiv
LIST OF APPENDICES	XV
INTRODUCTION	1
1.1Background	1
1.2 Problem Statement	3
1.3 Objective	4
1.4 Scope of project	4
1.5 Thesis Organization	5

2	LITERATURE REVIEW	7
	2.1 Proportional-Integration-Derivation Controller (PID Controller)	7
	2.2 Ziegler-Nichols Method	11

	2.3 DC Motor	15
	2.4 Data Acquisition (DAQ) Card	15
	2.5 Laboratory Virtual Instrumentation Engineering Workbench	
	(LabVIEW)	17
3	METHODOLOGY	21
	3.1 Introduction	21
	3.2 System Flowchart	22
	3.3 Software Development	24
	3.3.1 DC Motor Modeling	24
	3.3.2 Ziegler-Nichols Closed Loop Method	27
	3.3.3 Simulation	30
	3.3.4 LabVIEW Programming	32
	3.4 Hardware Development	34
	3.4.1 DC Motor	35
	3.4.2 DAQ Card	36
	3.4.3 Motor Driver G340	37
4	RESULTS AND ANALYSIS	40
	4.1 Introduction	40
	4.2 Simulation	40
	4.2.1 Result and Analysis of Uncontrolled System	41
	4.2.2 Result and Analysis of Proportional Mode System	43
	4.2.3 Result and Analysis of Proportional-Integration Mode	
	System	45
	4.2.4 Result and Analysis of	
	Proportional-Integration-Derivation Mode System	47
	4.3 Summary	49
5	CONCLUSION AND RECOMMENDATION	50
	5.1 Introduction	50
	5.2 Recommendations	51

REFERENCES

Appendices A – C

53

52

55-84

LIST OF TABLES

PAGE TABLE NO. TITLE Closed-Loop Calculation of K_c , T_i and T_d Open-Loop Calculation of K_c , T_i and T_d Physical Parameter of DC Motor General Ziegler-Nichols Closed-Loop Table Tuned PID Controller Value 2.1 13 2.2 14 24 3.1 3.2 28 3.3 29 Analysis of the Response 49 4.1

Х

LIST OF FIGURE

FIGURE NO.

TITLE

2.1	A Block Diagram of a PID Controller	7
2.2	Block Diagram and Front Panel of LabVIEW	18
3.1	Basic Block Diagram of the Project	21
3.2	Flowchart of System Development	23
3.3	DC Motor Model System	24
3.4	LabVIEW Simulation Block Diagram Window	30
3.5	LabVIEW PID Controller Block Diagram Window	32
3.6	Servo Motor	35
3.7	USB DAQ Card	37
3.8	Motor Driver G340	37

LIST OF GRAPH

GRAPH NO.

TITLE

2.1	System Tuned Using the Ziegler-Nichols Closed-Loop		
	Tuning Method	13	
3.1	Sustain Oscillation Response	27	
4.1	Graph Response without Controller	41	
4.2	Graph Response with P Mode	43	
4.3	Graph Response with PI Mode	45	
4.4	Graph Response with PID Mode	47	

LIST OF SYMBOLS

Ku	-	Gain Value
Pu	-	Period of Oscillation
T _i ,K _i	-	Integral Time
T _d ,K _d	-	Derivative Controller
K _p	-	Proportional Gain
K _{cr}	-	Critical Gain
P _{cr}	-	Critical Period

LIST OF ABBREVIATION

- PID proportional-integration-derivation
- DAQ data acquisition card
- USB universal serial bus
- DC direct current
- EMF electromagnetic force

LIST OF APPENDICES

APPENDIX

TITLE

A	DAQ Card Manual	55
В	Servo Motor Manual Installation	76
С	PID.vi Block Diagram	84