INVESTIGATION OF FILLER MATERIAL TO THE CORROSION BEHAVIOUR OF ALUMINUM ALLOYS WELDMENT

ABDUL RAHIM BIN MOHAMED

Report submitted in partial fulfillment of the requirements for the award of Bachelor of Mechanical Engineering

Faculty of Mechanical Engineering UNIVERSITI MALAYSIA PAHANG

JUNE 2012

UNIVERSITI MALAYSIA PAHANG

FACULTY OF MECHANICAL ENGINEERING

I certify that the project entitled "Investigation of Filler Material to The Corrosion Behavior of Aluminum Alloys Weldment" is written by Abdul Rahim bin Mohamed. I have examined the final copy of this project and in my opinion, it is fully adequate in terms of scope and quality for the award of degree of Bachelor Engineering. I herewith recommend that it be accepted in partial fulfillment of the requirements for the degree of Bachelor Mechanical Engineering.

Examiner: Mr. Rosmazi bin Rosli

Signature

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this project report and in our opinion this project is satisfactory in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering with.

Signature	:	
Name of Supervisor	:	Mdm Nur Azhani bt Abd Razak
Position	:	Lecturer
Date	:	1 June 2012

STUDENT'S DECLARATION

I hereby declare that the work in this report is my own except for quotations and summaries which have been duly acknowledged. The report has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature :

Name : ABDUL RAHIM BIN MOHAMED

ID Number : MA 08117

Date : 24 JUNE 2012

TABLE OF CONTENTS

SUPERVISOR'S DECLARATION	iii
STUDENT'S DECLARATION	iv
DEDICATION	v
ACKNOWLEDGEMENTS	vi
ABSTRACT	vii
ABSTRAK	viii
TABLE OF CONTENTS	ix
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS	xvi

CHAPTER 1 INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	2
1.3	Objectives	3
1.4	Scope of Study	3
1.5	Significance of Study	4
1.6	Chapter Summary	4

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	5
2.2	Corrosion	5
2.3	Type of corrosion	6
	2.3.1 Uniform Corrosion / General Corrosion	7
	2.3.2 Pitting Corrosion	7
	2.3.3 Intergranular Corrosion	7
	2.3.4 Fretting Corrosion	8
	2.3.5 Fatigue Corrosion	9
2.4	Welding	10

	2.4.1 MIG (Metal Inert Gas) Welding2.4.2 GTAW (Gas Tungsten Arc Welding)	10 12
2.5	Joint Design	13
	2.5.1 Butt Joint2.5.2 Lap Joint	14 15
2.6	Filler Material	16
2.7	Microstructure	17
2.8	Chapter Summary	18

CHAPTER 3 METHODOLOGY

3.1	Introduction	19
3.2	Flow Charts	19
3.3	Flow Chats Description	23
	3.3.1 Final Year Flow Charts3.3.2 Experiment Flow Charts Description	23 23
3.4	Chemical Composition	24
	3.4.1 Welding Parameter	25
3.5	Experiment Setup	25
3.6	Chapter Summary	33

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Introduction	34
4.2	Microstructure Observation	34
4.3	Polarization Curve	41
4.4	Corrosion Rate	44
4.5	SEM Microstructure Of Specimen	47
4.6	Chapter Summary	49

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusions	50
5.2	Recommendations	50
REFERENCES		51
APPENDICES		52

LIST OF TABLES

Table No.	Title	Page
3.1	Chemical composition of filler material ER4043	24
3.2	Chemical composition of filler material ER4047	24
3.3	Chemical composition of filler material AA6061	24
3.4	Specimens names base on parameters used	25
3.5	Important setting keyed in Waniotech Software	32

LIST OF FIGURES

Figure No.	Title	Page
2.1	Intergranular corrosion	8
2.2	Fretting corrosion	9
2.3	Power flow for SMAW	11
2.4	MIG Welding	11
2.5	TIG welding	13
2.6	Type of butt joint	15
2.7	Lap joint (a) single lap joint (b) Double Lap joint Joints	16
2.8	Image of sample AA6061 aluminum alloy	
	polished to mirror quality	17
3.1	FYP1 Flow Chart	20
3.2	FYP 2 Flow Chart	21
3.3	Experiment's Flow Chart	22
3.4	Sheet metal cutting Machine	26
3.5	Drawing Welding dimension	26
3.6	TIG welding machine	27
3.7	Dimension for mounting in mm	27
3.8	Disc cutting machine	28
3.9	Cold mounting machine and cold mounting solution	28
3.10	Mounted specimen with copper wire attached	29

3.11	Grinding machine	29
3.12	Polishing machine	30
3.13	Etchant for Aluminum Alloys	31
3.14	Optical microscope	31
3.15	Connection for corrosion test	32
3.16	Position for reference electrode (SCE) to specimen	33
4.1	Area which microstructures were studied.	37
4.2	AA6061 aluminum alloy as in received condition (20X magnification)	37
4.3	AA6061 aluminum alloy in as received condition (50X magnification)	38
4.4	Base metal AA6061 aluminum alloy (10X magnification)	38
4.5	Base metal AA6061 aluminum alloy (20X magnification)	39
4.6	Base metal AA6061 aluminum alloy (50X magnification)	39
4.7	HAZ for specimen 1 (10X magnification)	40
4.8	HAZ for specimen 1 (20X magnification)	40
4.9	HAZ for specimen 1 (50X magnification)	41
4.10	Welded area for specimen 1 (10X magnification)	41
4.11	Welded area for specimen 1 (20X magnification)	42
4.12	Welded area for specimen 1 (50X magnification)	42
4.13	Polarization curve obtain for specimen using filler	
	material ER4043	43

4.14	Polarization curve obtain for specimen using filler	
	material ER4047	44
4.15	Polarization curve obtain for specimen using both filler	
	material ER4043 and ER4047	44
4.16	Region for activation and passivity	45
4.17	Graph for corrosion rate for the entire specimens	47
4.18	Mg depletion mechanism.	49
4.19	SEM image of the specimen (a) 250X magnification	
	(b) 1000X magnification	50

LIST OF ABBREVIATIONS

AC	Alternative current
DC	Direct current
UMP	Universiti Malaysia Pahang
GMAW	Gas Metal Arc Welding
GTAW	Gas Tungsten Arc Welding
TIG	Tungsten Inert Gas
SEM	Scanning Electron Microscope
NaCl	Sodium Chloride
H_2O	Water
O ₂	Oxygen
Cl	Chloride
MIG	Metal Inert Gas
SMAW	Shielded Metal Arc Welding
SEM	Scanning Electron Microscope
MAG	Metal Arc Gas
СР	Corrosion product
Mg ₂ Si	Magnesium Silica
FYP	Final Year Project
Cu	Copper
Si	Silicon
Fe	Ferum
Mn	Mangan
Mg	Magnesium

Cr	Chromium
Zn	Zinc
Ti	Titanium
HAZ	Heat affected zone
ОН	Hydroxide
HF	Hydrofluoric acid