STUDY OF EFFECTS OF FUEL INJECTION PRESSURE ON PERFORMANCE FOR DIESEL ENGINE

AHMAD MUIZZ BIN ISHAK

Thesis submitted in fulfilment of the requirements for the award of the Bachelor of Mechanical Engineering with Automotive Engineering

Faculty of Mechanical Engineering
UNIVERSITY MALAYSIA PAHANG

JUN 2012

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this project and in my opinion, this project is adequate in terms of scope and quality for the award of the Bachelor of Mechanical Engineering with Automotive Engineering.

Signature :

Name of Supervisor : PROF. DR. ROSLI BIN ABU BAKAR

Position : PROFESSOR OF UNIVERSITY MALAYSIA PAHANG

Date : 22 JUNE 2012

STUDENT'S DECLARATION

I hereby declare that the work in this project is my own except for quotations and summaries which have been duly acknowledged. The project has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature :

Name : AHMAD MUIZZ BIN ISHAK

ID Number : MH 09098

Date : 22 JUNE 2012

TABLE OF CONTENTS

CON	NTENTS	PAGE
	ERVISOR'S DECLARATION	
	ii	
STU	iii	
ACKNOWLEDGMENT ABSTRACT		
TABLE OF CONTENTS		
LIST	ix	
LIST OF SYMBOLS		
LIST OF GREEK SYMBOLS LIST OF SUBSCRIPTS		xi
		xii
LIST	Γ OF ABBREVIATIONS	xii
CHA	APTER 1 INTRODUCTION	
1.1	Project Background	1
	1.1.1 Fuel Injection System	2
1.2	Problem Statement	3
1.3	Project Objectives	3
1.4	Project Scopes	3
	1.4.1 Flowchart Description	5
1.5	Thesis Organization	6
CHA	APTER 2 LITERATURE REVIEW	
2.1	Introduction	7
2.1	Diesel Engine and Fuel Injection System	7
2.2		13
	Operation Cycle of Electronic Fuel Injection System	
2.4	Advantages of Fuel Injection System	14
2.5	Types of Fuel Injections System	15

CHAPTER 3 METHODOLOGY

3.1	Introduction		
3.2	Overview of Methodology		
3.3	Simulation Model	16	
	3.3.1 Simulation Model Flowchart	17	
3.4	Mathematical Formulation		
3.5	Hypotheses		
3.6	Fluid	20	
3.7	Container of Known Pressure	22	
	3.7.1 Pipe	22	
3.8	Container of Unknown Pressure	28	
	3.8.1 Flow Passage	30	
	3.8.2 Valve	31	
	3.8.3 Laminar Flow	32	
СНА	PTER 4 RESULT AND DISCUSSION		
4.1	Introduction	34	
4.2	Results and Discussion	35	
	4.2.1 Pump Side Pressure	35	
	4.2.2 Nozzle Side Pressure	36	
	4.2.3 Effect of Pump Speed on Pressure of the Pump Side	37	
	4.2.4 Effect of Pump Speed on Pressure of the Nozzle Side	38	
	4.2.5 Effect of Pump Speed on the Injection Rate	39	
	4.2.6 Effect of Nozzle Opening Pressure on the Injection Rate	40	
СНА	PTER 5 CONCLUSION AND RECOMMENDATION		
5.1	Conclusion	41	
5.2	Recommendations	42	
REF	ERENCES	43	

LIST OF FIGURES

FIG. NO.	TITLE	PAGE
1.1	Fuel injection system	2
1.2	Flowchart for final year project	4
2.1	Diesel fuel injection system	10
3.1	Simulation model flowchart	17
3.2	Elementary units of the mathematical model	18
3.3	Simplified model for the injection system	19
3.4	Characteristic grid	24
3.5	Concentrated vapour cavitation in a pipe node i	27
3.6	Laminar flow in the gap between the non-moving piston and the sleeve	32
4.1	Pump side pressure	35
4.2	Nozzle side pressure	36
4.3	Effect of pump speed on pressure of the pump side	37
4.4	Effect of pump speed on pressure of the nozzle side	38
4.5	Effect of pump speed on the injection rate	39
4.6	Effect of nozzle opening pressure on the injection rate	40

LIST OF SYMBOLS

SYMBOL DESCRIPTION

 \boldsymbol{A} pipe inside cross section area, cross-section area of a moving part, controlling area geometric cross-section area of a flow passage A_g polynomial coefficients of speed of pressure pulse $a_{c0}...a_{c2}$ polynomial coefficients of diesel oil density $a_{\rho 0} \dots a_{\rho 2}$ speed of pressure pulse in diesel oil, speed of pressure pulse in fluid, d pipe inside diameter, piston diameter friction factor, viscous damping coefficient spring initial force F_0 acceleration due to gravity g K bulk modulus of elasticity of fluid, modulus of elasticity k spring rate gap length l Μ molar mass of vapour moving mass of valve m n_{in} number of volumetric flows entering the container number of moving parts n_m number of volumetric flow exiting the container n_{out} number of controlling pressures n_v P, ppressure total derivative of pressure in relation to time ġ initial pressure p_0 pressure before the flow passage p_1 pressure after the flow passage p_2 ρ density, fluid density, density of homogenous fluid vapour density, density of fluid vapour ρ_v density of diesel oil at initial pressure ρ_0

volume flow rate

 q_v

 q_{vin} volume flow rate into a node, volumetric flow entering the container

 q_{vout} volume flow rate out of a node, volumetric flow exiting the container

R molar gas constant

Re Reynolds number

T temperature

t time

v fluid velocity, velocity of the moving part, valve velocity

V volume

 V_{cav} cavitation volume

 v_1 velocity at the inlet point of the flow passage

x distance along pipe axis, lift of a moving part, valve lift

LIST OF GREEK SYMBOLS

SYMBOL DESCRIPTION

 α pipe angle to horizontal plane

 δ clearance between piston and sleeve

 δ/d relative roughness of the inside surface of the pipe

 Δp pressure difference between the sleeve ends

 Δt time step

 μ flow coefficient

 μ' fictive flow coefficient

 η dynamic viscosity of the fluid

LIST OF SUBSCRIPTS

SUBSCRIPT DESCRIPTION

c0...c2 polynomial coefficients of speed of pressure pulse

cav cavitation volume

g geometric cross-section area of a flow passage

in volumetric flows entering the container

m moving parts

out volumetric flow exiting the container

 $\rho 0...\rho 2$ polynomial coefficients of diesel oil density

v controlling pressures, vapour, fluid vapour, volume

vin volume flow rate into a node, volumetric flow entering the

container

volume flow rate out of a node, volumetric flow exiting the

container

LIST OF ABBREVIATIONS

ABBREVIATION DESCRIPTION

NO	Nitrogen Monoxide
NO_x	Nitrogen Oxides
НС	Hydrocarbon
CO	Carbon Monoxide
SO	Sulphur Monoxide
HSDI	High Speed Direct Injection
ECU	Electronic Control Unit
EFI	Electronic Fuel Injection
TBI	Throttle Body Injection