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ABSTRACT 

 

 

 

 

Transformer is one of the important device that always been used in industry. 

Some of the weakness of using transformer is cost by some losses in core. By solving 

this problem, it can save more energy usage. To calculate the losses in traditional 

techniques, it can use nonlinear programming, numerical method and others. Other than 

that, Finite Element Method (FEM) can be used. It can predict the period for 

transformer; calculate core losses, flux distribution and others. In this project, FEM 

technique is applied to calculate the flux and loss distributions in single phase 

transformer using MATLAB software. This also presented the localized flux density and 

loss over a core. As the result, the software must be agreed with the experimental data. 
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ABSTRAK 

 

 

 

 

Pemboleh ubah voltan adalah salah satu alat yang penting yang selalu digunakan 

di dalam kilang. Salah satu kelemahan ketika menggunakan pembolehubah voltan ini 

adalah masalah kewangan disebabkan ada sedikit pembaziran di dalam teras pemboleh 

ubah. Dengan menyelasaikan masalah ini, ia dapat menjimatkan lebih banyak tenaga 

yang digunakan. Untuk mengira pembaziran menggunakan cara lama boleh digunakan 

teknik “nonlinear programming”, “numerical method” dan lain-lain teknik lagi. Selain 

dari itu, “Finite Element Method (FEM)” juga boleh digunakan. FEM boleh menjangka 

tempoh hayat sesuatu pembolehubah, mengira pembaziran di teras, penyebaran medan 

magnet dan lain-lain. Di dalam projek ini, teknik FEM digunakan untuk mengira medan 

magnet dan pembaziran di dalam pemboleh ubah satu fasa dengan menggunakan sistem 

MATLAB. Ia juga boleh mengesan kepadatan medan magnet dan pembaziran keatas 

teras. Sebagai kesimpulan, sistem MATLAB yang digunakan mestilah mengikuti dengan 

data semasa membuat eksperimen. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

 Transformer is one of the important device that always been used in industry 

and distribution system. It is a device that transfer electrical potential from one 

circuit to others circuit using inductor it have in transformer core. Current at primary 

circuit will flow through its primary coil and create a magnetic flux that will become 

magnetic field that flow to secondary coil. The magnetic field that has been induced 

at secondary circuit is electromotive field or voltage.  

 

 The effect that has happen at secondary and primary circuit is called 

inductive coupling. If it has a load that is connected to the secondary circuit, a 

current will flow through the secondary winding and electrical energy will be 

transferred from the primary circuit through the transformer before flow to the load.
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In an ideal transformer, the induced voltage in the secondary winding is in 

proportion to the primary voltage and is given by the ratio of the number of turns in 

the secondary to the number of turns in the primary.  

 

By appropriate selection the ratio of turns, a transformer will make an 

alternating current (AC) voltage to be stepped up by making secondary turn (NS) 

greater than primary turn (NP) or it also can be stepped down by making secondary 

turn (NS) less than primary turn (NP). The windings are coils that will be wound 

around a ferromagnetic core, air-core transformers being a famous exception. 

 

Some of the weakness of using transformer is cost by some losses in core. By 

solving this problem, it can save more energy usage. To calculate the losses in 

traditional techniques, it can use nonlinear programming, numerical method and 

others. Other than that, finite element method (FEM) can be used. It can predict the 

period for transformer; calculate core losses, flux distribution and others. In this 

project, FEM technique is applied to calculate the flux and loss distributions in single 

phase transformer using Matlab software. This also presented the localized flux 

density and loss over a core. As the result, the software must be agreed with the 

experimental data. 

 

 Transformer come from word transform is using to change voltage, current or 

potential by using magnetic field without change it frequency. It can be either step-

up or step-down. The use of transformer is quietly often. It can be found from small 

part to the biggest part of electrical and electronics equipment. As we can see the 

transformer is use at computer, transmission line, television and others. It is not 

reliable in energy saving because it has produce heat. In transformer, it has two types 

of losses that are iron losses and copper losses. An iron loss is happening in core 

parameters and a copper loss is occurring in winding resistance. 
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 Finite element analysis (FEA) is one of several numerical methods that can 

be used to solve complex problems and is the dominant method used today. FEA 

consist five methods that are: 

 

1. Finite Element Method (FEM) 

2. Boundary Element Method (BEM) 

3. Finite Difference Method (FDM) 

4. Moments Method (MM) 

5. Monte Carlo Method (MCM) 

 

From these five methods, finite element method (FEM) has been chosen 

because it can calculate object with any types of shape. FEM is a mathematical 

method for solving ordinary and elliptic partial differential equation. It can use to 

calculate object with linear or nonlinear. FEM is useful to obtain an accurate 

characterization of electromagnetic behavior or magnetic components such as 

transformers. 
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1.2 Project Objectives  

 

 

 The aim of this project is to make an analysis from the chosen transformer. 

From it, the energy that draws from the transformer can be estimate. Some 

maintenance could be made before it reaches the due time of expired. By doing that, 

it can save money to buy a new one if the transformer is damage. Other than that, the 

flux distribution and loss in transformer core can be understood. It also can give 

some prediction about the period of a transformer by calculate it losses.  

 

 

 

 

1.3 Project Scope 

 

 

 In order to achieve the objectives of the project, the scope of the project are 

summarized as follow: 

 

• Find a suitable transformer to use in this project 

• Make an open circuit test to the transformer. 

• Calculate all the parameters that have in the transformer. 

• Design the transformer using MATLAB by use PDE Toolbox to see in 

3D view 
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1.4 Thesis Outline  

 

 

 The thesis consists of five chapters. Each one will be elaborated in great 

details. Chapter 1 describes the overview of the project. This chapter also discusses 

on objectives, scope, and thesis organization. 

 Literature review is discussed in Chapter 2. All the past research and 

reference will be discussed briefly in this chapter. Chapter 3 discusses the details of 

calculation, transformer parameters and graph.  

 Chapter 4 discusses on the finite element method (FEM) and transformer. 

The discussion is based on the calculation and equation that have in FEM also 

information about transformer. Chapter 5 describes the result and discussion. The 

MATLAB result will discuss in this chapter. 
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CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 Introduction 

 

 

In this chapter, the previous research that has been made by others researcher 

about transformer core losses will be discussed. This literature review will give some 

ideas and information about how to start and how to construct the work flow in order to 

complete this final project. 
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2.2 Estimation of Transformer Core Losses using Finite Element Method 

 

 

The use of finite element method (FEM) for transformer design and analysis has 

been proven as a very powerful tool over recent years. It describes a numerical solution 

to use 2D finite element method to accurately calculate the flux distribution and total 

core losses in single phase transformer using software. It also presents the localized flux 

density and loss over a core. This computational result of core loss agrees with 

experimental result obtained by us in machine laboratory. [13] 

 

For the purpose, modeling of just the transformer is adequate. Therefore an 

appropriate model of the transformer is defined considering the construction and 

position of the coils and the current density of them and permeability of transformer coil. 

Then this model is divided into triangular elements.  

 

By using megnetostatic analysis of the finite element method, the magnetic 

vector potential of three nodes of each triangular element is calculated and therefore the 

flux distribution over the model is obtained. Then, the flux density of each element is 

evaluated because the magnetic vector potential of each element is considered as a linear 

function of x and y. Then the flux density of each element becomes a constant value. 
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2.2.1 Principle 

 

 

Finite element method (FEM) is a numerical technique for obtaining 

approximation solution to boundary the value problems of mathematical physics. 

Especially it has become a very important tool solve electromagnetic problems because 

of its ability to model geometrically and compositionally complex problems. 

 

Using finite element method (FEM) to solve problems involves three steps. First, 

the consist of meshing the problem space into contiguous elements of the suitable 

geometry and assigning appropriate value of the material parameter that are 

conductivity, permeability and permittivity to each elements. Secondary, the model has 

to be excited, so that the initial conditions are set up. Finally, the values of the potentials 

are suitable constrained at the limits of the problem space. The finite element method 

has the advantage of the geometrical flexibility. It is possible to include a greater density 

of elements in regions where fields and geometry are rapidly.  

 

 

The ampere law states that: 

 

                                                                                                                             (2.1) 

 

Where,  

H: Magnetic field intensity 

J: Total current density 
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2.2.2 B-H curve 

 

 

In transformer analysis, because of ferromagnetic materials properties usually the 

problems appear in nonlinear form. Magnetic permeability u=B/H is not constant and is 

a function of magnetic field in each mesh. Therefore the S matrix in equation       is 

not constant. It is a function of magnetic permeability or magnetic field in each mesh. 

 

Figure 2.1: Hysteresis Loop 

 

The B-H cure of a ferromagnetic core is a hysteresis loop like Figure 1. The 

upper approximation of hysteresis loop can be used for calculation of short circuit 

reactance or radial and axial electromagnetic force on the transformer coils but for 

calculation of flux distribution and loss in transformer cores, the B-H loop is used. For 

single phase transformer in nominal circumstance, the no load current and voltage can 

be measured by using digital scope. Nominal voltage of primary winding, the value of B 

and H can be calculated from the following equation: 
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     ( )   ( )       
  

  
       (2.2) 

       
 

 
∫  ( )          (2.3) 

       
  

 
               (2.4) 

 

Where, 

 

iO: no load current 

V(t): Terminal voltage in no load circumstance 

E(t): EMF 

Ø: Flux 

R: Resistance of winding 

N: Number of turn 

L: Mean length 

 

The actual B-H loop of transformer core which is accessed from experiment is 

used. Simulation algorithm of hysteresis loop is like flow chart. By using third order 

equation, permeability of each part can be calculated as a function of B (u=f (B)). Core 

treatment can be well predicted by using the suggested third order equation model. 

Calculation results accessed in FEM shows that by the model of core presented in this 

paper we can estimate core loss with high accuracy and flux distribution in the core can 

determine locally. We also can find hot spots inside the core. Calculations show that as 

the number of used meshes is increased the more exact result is accessed. The modeling 

that is shown in this paper allows us to know the transformer behavior before 

manufacturing them and thus reducing the design time and cost 
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2.3 Calculation of transformer losses under Non-sinusoidal current using two 

analytical methods and finite element analysis 

 

 

The effectual parameters on the loss of a single phase transformer under 

harmonic condition have been evaluated. Then, power reduction rate, maximum 

permissible current and also transformer losses have been considered and calculated by 

analytic that are using IEEE C57.110 standard and corrected harmonic loss factor and 

finite element method (FEM). FEM has been used as a very precise method for 

calculating the loss of the transformer under non-sinusoidal current. 

 

 

 

 

2.3.1 Transformer losses under Non-sinusoidal currents 

 

 

Transformer manufacturer usually try to design transformers in a way that their 

minimum losses occur in rated voltage, rated frequency and sinusoidal current. However 

by increasing the number of non linear load in recent years, the load current is no longer 

sinusoidal. This non sinusoidal current causes extra loss and increasing temperature in 

transformer. 

 

Transformer loss is divided into two major groups that are no load and load loss. 

As a following: 
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                          (2.5) 

 

PT: Total loss in transformer 

PNL: No load loss 

PLL: Load loss 

 

 

 

 

A brief description of transformer losses and harmonic effects on them is 

presented in following: 

1. No load loss 

2. Load Loss 

3. Ohmic Loss 

4. Eddy current loss in windings 

 

 

 

 

2.3.2 No load loss 

 

 

No load loss or core loss appears because of time variable nature of 

electromagnetic flux passing through the core and its arrangement is affected the amount 

of this loss. Since distribution transformers are always under service, considering the 

number of this type of transformer in network, the amount of no load loss is high but 

constant. This type of loss is caused by hysteresis phenomenon and eddy currents into 

the core. These losses are proportional to frequency and maximum flux density of the 

core and separated from load current.  
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Many experiments have shown that core temperature increase is not a limiting 

parameter in determination of transformers permissible current in the non sinusoidal 

current. Furthermore, considering that the value of voltage harmonic component is less 

than 5% only the main component of the voltage is considered to calculate no load loss, 

the error of ignoring the harmonic componenent is negligible. So IEEE C57.110 

standard has not considered the core loss increase due to non linear loads and has 

supposed this loss constant, under non sinusoidal currents. 

 

 

2.3.3 Load Loss 

 

 

Load loss includes DC or ohmic loss, eddy loss in winding and other stray loss 

and it can be obtained from short circuit test: 

                           (2.6) 

 

In above equation 

 

PDC: Loss due to resistance of windings 

PEC: Windings eddy current loss 

POSL: The other stray loss in structural parts of transformer such as tank, clamps and 

others. 

 

The sum of PEC and POSL is called total stray loss. We can calculate the value 

from the difference of load loss and ohmic loss: 

 

 

                                         (2.7) 
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It should be mentioned that there is no practical or experimental process to 

separate windings eddy loss and other stray loss yet. 

 

 

 

 

2.3.4 Ohmic Loss 

 

 

The loss can be calculated by measuring winding DC resistance and load current. 

If RMS value of load current increases due to harmonic component, this loss will 

increase by square of RMS of load current. The windings ohmic loss under harmonic 

condition is shown: 

 

                  ∑       
       

           (2.8) 

 

 

 

 

2.3.5 Eddy current loss in windings 

 

 

This loss is caused by time variable electromagnetic flux that covers windings. 

Skin effect and proximity effect are the most important phenomenon in creating these 

losses. 

 

Also, the most amount of loss is in the last layer of conductors in winding, which 

is due to high radial flux density in this region 
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                     (2.9) 

 

In this equation  

 : A conductor width perpendicular to field line 

 : Conductor’s resistance 
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CHAPTER 3 

 

 

 

 

TRANSFORMER AND FINITE ELEMENT METHOD 

 

 

 

 

3.1 Introduction 

 

 

In this chapter, it will discuss about two important things in this project that are 

transformer and finite element method (FEM). For the first, it will show the information 

about transformer and it also discuss about the meaning, history to the transformer that is 

use in this project. For the second part, it will give some information about finite 

element method. The important of finite element method will be discussed in this 

chapter and some equations that are used in this project. 
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3.2 Transformer 

 

 

Transformers range of size can be found from a thumbnail-sized coupling 

transformer that is hidden inside a stage microphone to huge units that have weighing 

hundreds of tons that is been used to interconnect portions of power grids. All of these 

transformers are operate on the same basic principles even though the range of their 

designs is many. While, for new technologies that have eliminated the need of 

transformers in some electronic circuits, transformers are still found in nearly all 

electronic devices designed for household alternating current (AC). Transformers are 

essential for high-voltage electric power transmission, which makes long-distance 

transmission economically practical. 

 

 

 

 

3.2.1 History 

 

 

The principle behind the operation of a transformer, electromagnetic induction, 

was discovered independently by Michael Faraday and Joseph Henry in 1831. However, 

Faraday was the first to publish the results of his experiments and thus receive credit for 

the discovery. The relationship between electromotive force (EMF) or voltage and 

magnetic flux was formalized in an equation now referred to as Faraday's law of 

induction. 

 

    | |  |
   

  
|                     (3.1)  

 

Where | | the magnitude of the EMF in volts and    is the magnetic flux 

through the circuit in Weber. Faraday performed the first experiments on induction 
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between coils of wire, including winding a pair of coils around an iron ring, therefore 

creating the first toroidal closed-core transformer. However he only applied individual 

pulses of current to his transformer, and never discovered the relation between the turns 

ratio and EMF in the windings. [14] 

 

 

 

Figure 3.1: Faraday's experiment with induction between coils of wire [14] 

 

 

 

 

3.2.2 Induction coils 

 

 

The first type of transformer to see wide use was the induction coil, invented by 

Rev. Nicholas Callan of Maynooth College, Ireland in 1836. He was one of the first 

researchers to realize that the more turns the secondary winding has in relation to the 

primary winding, the larger is the increase in EMF. Induction coils evolved from 

scientists’ and inventors’ efforts to get higher voltages from batteries. Since batteries 

produce direct current (DC) rather than alternating current (AC), induction coils relied 

upon vibrating electrical contacts that regularly interrupted the current in the primary to 

create the flux changes necessary for induction. Between the 1830s and the 1870s, 

efforts to build better induction coils, mostly by trial and error, slowly revealed the basic 

principles of transformers. [14] 

http://en.wikipedia.org/wiki/File:Induction_experiment.png
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Figure 3.2: Faraday's ring transformer [14] 

 

 

 

 

3.2.3 Electric Power Distribution 

 

 

Before the development of the transformer, electric power distribution primarily 

used direct current. It was difficult for a DC utility-power generation station to be more 

than a few kilometers from the user, because up until about 1897, light bulbs could only 

be effectively designed to operate at up to 110 volts maximum and up to 220 volts by 

1917. It is expensive to send energy to long distances at utility voltage that are 100-250 

volts due to the very high amperage of many customers and the need for very thick 

transmission wires capable of handling the current. 

 

It was understood that high voltages allowed long distance transmission with low 

amperage it is 250 volts at 5000 amps that is equal to 25000 volts at 50 amps so the 

transmission wires can be smaller and less expensive, but it still needed to be stepped 

back down to utility voltage at the customer's location.  

 

 

 

http://en.wikipedia.org/wiki/File:Faradays_transformer.png
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At the time the only way to efficiently convert DC from one voltage to another 

was with a spinning motor-generator device, and this would be needed at each customer 

site. Each motor-generator has brushes constantly rubbing on a commutator, and axle 

bearings that need lubrication. The brushes wear out and need to be periodically 

replaced and the commutator wears down and needs to be resurfaced, then the whole 

machine is rebuilt when the commutator wears too thin. 

 

By the 1870s, efficient generators that produced alternating current were 

available, and it was found that alternating current could power an induction coil directly 

without an interrupter. In 1876, Russian engineer Pavel Yablochkov invented a lighting 

system based on a set of induction coils where the primary windings were connected to a 

source of alternating current and the secondary windings could be connected to several 

electric candles that are arc lamps that is his own design. The coils Yablochkov 

employed functioned essentially as transformers. 

 

In 1878, the Ganz Company in Hungary began manufacturing equipment for 

electric lighting and, by 1883, had installed over fifty systems in Austria-Hungary. Their 

systems used alternating current exclusively and included those comprising both arc and 

incandescent lamps, along with generators and other equipment. 

 

Lucien Gaulard and John Dixon Gibbs first exhibited a device with an open iron 

core called a secondary generator in London in 1882, then sold the idea to the 

Westinghouse company in the United States. They also exhibited the invention in Turin, 

Italy in 1884, where it was adopted for an electric lighting system. However, the 

efficiency of their open-core bipolar apparatus remained very low. 

 

Induction coils with open magnetic circuits are inefficient for transfer of power 

to loads. Until about 1880, the paradigm for AC power transmission from a high voltage 

supply to a low voltage load was a series circuit. Open-core transformers with a ratio 

near 1:1 were connected with their primaries in series to allow use of a high voltage for 
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transmission while presenting a low voltage to the lamps. The inherent flaw in this 

method was that turning off a single lamp affected the voltage supplied to all others on 

the same circuit.  

 

Many adjustable transformer designs were introduced to compensate for this 

problematic characteristic of the series circuit, including those employing methods of 

adjusting the core or bypassing the magnetic flux around part of a coil. Efficient, 

practical transformer designs did not appear until the 1880s, but within a decade, the 

transformer would be instrumental in the War of Currents and in seeing AC distribution 

systems triumph over their DC counterparts, a position in which they have remained 

dominant ever since. [14] 

 

 

 

 

3.2.4 Basic principles 

 

 

The transformer is based on two principles: first, that an electric current can 

produce a magnetic field (electromagnetism) and second that a changing magnetic field 

within a coil of wire induces a voltage across the ends of the coil (electromagnetic 

induction). Changing the current in the primary coil changes the magnetic flux that is 

developed. The changing magnetic flux induces a voltage in the secondary coil. 

 

An ideal transformer is shown in the adjacent figure. Current passing through the 

primary coil creates a magnetic field. The primary and secondary coils are wrapped 

around a core of very high magnetic permeability, such as iron, so that most of the 

magnetic flux passes through both the primary and secondary coils. If a load is 
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connected to the secondary winding, the load current and voltage will be in the 

directions indicated, given the primary current and voltage in the directions indicated 

and it will be alternating current in practice. [15] 

 

 

Figure 3.3: An ideal transformer [14] 

 

 

 

 

3.2.5 Induction law 

 

 

The voltage induced across the secondary coil may be calculated from Faraday's 

law of induction, which states that: 

 

http://en.wikipedia.org/wiki/File:Transformer3d_col3.svg
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                       (3.2) 

 

Where Vs is the instantaneous voltage, Ns are the number of turns in the 

secondary coil and Φ is the magnetic flux through one turn of the coil. If the turns of the 

coil are oriented perpendicularly to the magnetic field lines, the flux is the product of the 

magnetic flux density B and the area A through which it cuts. The area is constant, being 

equal to the cross-sectional area of the transformer core, whereas the magnetic field 

varies with time according to the excitation of the primary. Since the same magnetic flux 

passes through both the primary and secondary coils in an ideal transformer, the 

instantaneous voltage across the primary winding equals 

 

                                 
  

  
         (3.3) 

 

Taking the ratio of the two equations for Vs and Vp gives the basic equation for 

stepping up or stepping down the voltage 

 

      
  

  
 

  

  
         (3.4) 

 

Np/Ns are known as the turn’s ratio, and are the primary functional characteristic 

of any transformer. In the case of step-up transformers, this may sometimes be stated as 

the reciprocal, Ns/Np. Turns ratio is commonly expressed as an irreducible fraction or 

ratio. For example, a transformer with primary and secondary windings of, respectively, 

100 and 150 turns is said to have a turn’s ratio of 2:3 rather than 0.667 or 100:150. 
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3.2.6 Ideal power equation 

 

 

 

Figure 3.4: The ideal transformer as a circuit element [14] 

 

If the secondary coil is attached to a load that allows current to flow, electrical 

power is transmitted from the primary circuit to the secondary circuit. Ideally, the 

transformer is perfectly efficient. All the incoming energy is transformed from the 

primary circuit to the magnetic field and into the secondary circuit. If this condition is 

met, the input electric power must equal the output power: 

 

Pincoming = IPVP=Poutgoing=ISVS         (3.5) 

 

 

 

 

http://en.wikipedia.org/wiki/File:Transformer_under_load.svg
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Giving the ideal transformer equation 

 

       
  

  
 

  

  
 

  

  
        (3.6) 

 

This formula is a reasonable approximation for most commercial built 

transformers today. If the voltage is increased, then the current is decreased by the same 

factor. The impedance in one circuit is transformed by the square of the turn’s ratio. For 

example, if an impedance Zs is attached across the terminals of the secondary coil, it 

appears to the primary circuit to have an impedance of (Np/Ns)
2 

Zs. This relationship is 

reciprocal, so that the impedance Zp of the primary circuit appears to the secondary to be 

(Ns/Np)
2 

Zp. 

 

 

 

 

3.2.7 Detailed operation 

 

 

The simplified description above neglects several practical factors, in particular, 

the primary current required to establish a magnetic field in the core, and the 

contribution to the field due to current in the secondary circuit. 
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Models of an ideal transformer typically assume a core of negligible reluctance 

with two windings of zero resistance. When a voltage is applied to the primary winding 

a small current will flows and driving a flux around the magnetic circuit of the core. The 

current required to create the flux is termed the magnetizing current. Since the ideal core 

has been assumed to have near-zero reluctance, the magnetizing current is negligible, 

although still required, to create the magnetic field. 

 

The changing magnetic field induces an electromotive force (EMF) across each 

winding. Since the ideal windings have no impedance, they have no associated voltage 

drop, and so the voltages VP and VS measured at the terminals of the transformer, are 

equal to the corresponding EMFs. The primary EMF, acting as it does in opposition to 

the primary voltage, is sometimes termed the back EMF. This is in accordance with 

Lenz's law, which states that induction of EMF always opposes development of any such 

change in magnetic field. 

 

 

 

 

3.2.8 Energy losses 

 

 

An ideal transformer would have no energy losses, and would be 100% efficient. 

In practical transformers, energy is dissipated in the windings, core, and surrounding 

structures. Larger transformers are generally more efficient, and those rated for 

electricity distribution usually perform better than 98%. 
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Experimental transformers using superconducting windings achieve efficiencies 

of 99.85%. The increase in efficiency can save considerable energy, and hence money, 

in a large heavily loaded transformer; the trade-off is in the additional initial and running 

cost of the superconducting design. 

 

Losses in transformers that are excluding associated circuitry vary with load 

current, and may be expressed as no-load or full-load loss. Winding resistance 

dominates load losses, whereas hysteresis and eddy currents losses contribute to over 

99% of the no-load loss. The no-load loss can be significant, so that even an idle 

transformer constitutes a drain on the electrical supply and a running cost. Designing 

transformers for lower loss requires a larger core, good-quality silicon steel, or even 

amorphous steel for the core and thicker wire, increasing initial cost so that there is a 

trade-off between initial costs and running cost.  

 

Transformer losses are divided into losses in the windings, termed copper loss, 

and those in the magnetic circuit, termed iron loss. Losses in the transformer arise from: 

 

1. Winding Resistance 

2. Hysteresis Loss 

3. Eddy Current 

4. Magnetostriction 

5. Mechanical losses 

6. Stray losses 
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3.2.8.1 Winding resistance 

 

 

Current flowing through the windings causes resistive heating of the conductors. 

At higher frequencies, skin effect and proximity effect create additional winding 

resistance and losses. 

 

 

 

 

3.2.8.2 Hysteresis losses 

 

 

Each time the magnetic field is reversed, a small amount of energy is lost due to 

hysteresis within the core. For a given core material, the loss is proportional to the 

frequency, and is a function of the peak flux density to which it is subjected.  
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3.2.8.3 Eddy currents 

 

 

Ferromagnetic materials are also good conductors and a core made from such a 

material also constitutes a single short-circuited turn throughout its entire length. Eddy 

currents therefore circulate within the core in a plane normal to the flux, and are 

responsible for resistive heating of the core material. The eddy current loss is a complex 

function of the square of supply frequency and Inverse Square of the material thickness. 

Eddy current losses can be reduced by making the core of a stack of plates electrically 

insulated from each other, rather than a solid block; all transformers operating at low 

frequencies use laminated or similar cores. 

 

 

 

 

3.2.8.4 Magnetostriction 

 

 

Magnetic flux in a ferromagnetic material, such as the core, causes it to 

physically expand and contract slightly with each cycle of the magnetic field, an effect 

known as magnetostriction. This produces the buzzing sound commonly associated with 

transformers that can cause losses due to frictional heating. This buzzing is particularly 

familiar from low-frequency (50 Hz or 60 Hz) mains hum, and high-frequency (15,734 

Hz (NTSC) or 15,625 Hz (PAL)) CRT noise. 
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3.2.8.5 Mechanical losses 

 

 

In addition to magnetostriction, the alternating magnetic field causes fluctuating 

forces between the primary and secondary windings. These incite vibrations within 

nearby metalwork, adding to the buzzing noise and consuming a small amount of power.  

 

 

 

 

3.2.8.6 Stray losses 

 

 

Leakage inductance is by itself largely lossless, since energy supplied to its 

magnetic fields is returned to the supply with the next half-cycle. However, any leakage 

flux that intercepts nearby conductive materials such as the transformer's support 

structure will give rise to eddy currents and be converted to heat. There are also 

radioactive losses due to the oscillating magnetic field but these are usually small. 
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3.2.9 Permeability 

 

 

In electromagnetism, permeability is the measure of the ability of a material to 

support the formation of a magnetic field within itself. In other words, it is the degree of 

magnetization that a material obtains in response to an applied magnetic field. It can 

simplify by saying, the more conductive a material is to a magnetic field, the higher its 

permeability. A closely related property of materials is magnetic susceptibility, which is 

a measure of the magnetization of a material in addition to the magnetization of the 

space occupied by the material. 

 

In electromagnetism, the auxiliary magnetic field H represents how a magnetic 

field B influences the organization of magnetic dipoles in a given medium, including 

dipole migration and magnetic dipole reorientation. Its relation to permeability is 

 

                             (3.7) 

 

Where the permeability is a scalar when the medium is isotropic or a second rank 

tensor for an anisotropic medium. 

 

In general, permeability is not a constant, as it can vary with the position in the 

medium, the frequency of the field applied, humidity, temperature, and other parameters. 

In a nonlinear medium, the permeability can depend on the strength of the magnetic 

field. Permeability as a function of frequency can take on real or complex values. In 



32 
 

ferromagnetic materials, the relationship between B and H exhibits both non-linearity 

and hysteresis: B is not a single-valued function of H, but depends also on the history of 

the material. For these materials it is sometimes useful to consider the incremental 

permeability defined as: 

 

                     (3.8) 

 

This definition is useful in local linearization’s of non-linear material behavior, 

for example in a Newton-Raphson iterative solution scheme that computes the changing 

saturation of a magnetic circuit. 

 

Permeability is the inductance per unit length. In SI units, permeability is 

measured in henries per meter (H·m
−1

 = J/(A
2
·m) = N A

−2
). The auxiliary magnetic field 

H has dimensions current per unit length and is measured in units of amperes per meter 

(A m
−1

). The product μH thus has dimensions inductance times current per unit area 

(H·A/m
2
). But inductance is magnetic flux per unit current, so the product has 

dimensions magnetic flux per unit area. This is just the magnetic field B, which is 

measured in Webbers (volt-seconds) per square-meter (V·s/m
2
), or tesla (T). 

 

B is related to the Lorentz force on a moving charge q: 

 

F = q (E + v x B)         (3.9) 

 

The charge q is given in coulombs (C), the velocity v in m/s, so that the force F 

is in Newton’s (N): 
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       (3.10) 

 

H is related to the magnetic dipole density. A magnetic dipole is a closed 

circulation of electric current. The dipole moment has dimensions current times area, 

units ampere square-meter (A·m
2
), and magnitude equal to the current around the loop 

times the area of the loop. The H field at a distance from a dipole has magnitude 

proportional to the dipole moment divided by distance cubed which has dimensions 

current per unit length. 

 

Table 3.1: Core Permeability [14] 
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3.3 FINITE ELEMENT METHOD 

 

 

 

 

3.3.1 Introduction 

 

 

The finite element method has its origin it the field of structural analysis. The 

method was not applied to element method problems until 1968. Like the finite 

difference method (FDM), the fem is useful in solving differential equations. FDM is 

representing the solution region by an array of grid points. Its application becomes 

difficult with problems having irregularly shaped boundaries. Such problems can handle 

more easily by using the FEM.  

 

FEM analysis of any problem involves basically 4 steps: 

 

a) Discretizing the solution region into a finite number of sub regions or elements 

b) Deriving governing equations for a typical element 

c) Assembling all the elements in the solution region 

d) Solving the system of equation obtained 
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3.3.2 Finite Element Discretization 

 

 

 

Figure 3.5: Finite element subdivision [11] 

 

We divided the solution region into a number of finite elements as illustrated in 

figure 3.5, where the region is subdivided into four non overlapping elements that are 

two triangular and two quadrilaterals with seven nodes. We seek an approximation for 

the potential Ve within an element e and then interrelate the potential distributions in 

various elements such that the potential is continuous across interelement boundaries. 

The approximate solution for the whole region is  

 

       V(x,y) = ∑         
          (3.11) 

 

Where N is the number of triangular elements into which the solution region is 

divided. The most common form of approximation for Ve within an element is 

polynomial approximation, namely: 
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Ve (x,y) = a + bx + cy       (3.12) 

 

For a triangular element 

 

Ve (x,y)= a + bx + cy + dxy    (3.13) 

 

For a quadrilateral element, the potential Ve in general is nonzero within element 

e but zero outside e. It is difficult to approximate the boundary of the solution region 

with quadrilateral elements such elements are useful for problems whose boundaries are 

sufficiently regular. In view of this, we prefer to use triangular elements throughout my 

analysis in this section. Notice that our assumption of linear variation of potential within 

the triangular element as in equation 3.12 is the same as assuming that the electric field 

is uniform within the element that is: 

 

Ee = -∇Ve = -(b ax+cay)      (3.14) 
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3.3.3 Element-Governing Equations 

 

 

Figure 3.6: Typical Triangular Element [11] 

 

Consider a typical triangular element, as shown in figure 3.6. The potential Ve1, 

Ve2 and Ve3 at nodes 1, 2 and 3 respectively are obtained by using equation 3.12 that is 

 

     [
   

   

   

]  [
     
     
     

] [
 
 
 
]       (3.15) 

 

The coefficients a, b and c are determined from equation 3.15 as 

 

     [
 
 
 
]  [

     
     
     

]

  

[
   

   

   

]     (3.16) 
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Substituting this into equation 3.12 gives 

 

            [   ]
 

  
[
                           

               
               

] [
   

   

   

]    (3.17) 

 

Or 

 

        ∑            
        (3.18) 

 

Where 

 

      
 

  
[                             ]    (3.19) 

      
 

  
[                             ]    (3.20) 

      
 

  
[                             ]   (3.21) 

 

And A is the area of the element e that is: 

 

        |
     
     
     

|       

                                          (3.22) 
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Or  

 

A=1/2 [(x2-x1) (y3-y1) - (x3-x1) (y2-y1)]      (3.23) 

 

The value of A is positive if the nodes are numbered counterclockwise and it is 

starting from any node as shown by the arrow in figure 3.6. Note that equation 3.18 

gives the potential at any point (x, y) within the element that provided at the vertices are 

known.  This is unlike the situation in finite difference analysis where the potential is 

known at the grid points only. Also note that αi is linear interpolation functions. They are 

called the element shape function and they have the following properties: 

 

               {
       
       

      (3.24) 

     ∑           
          (3.25) 

 

 

Figure 3.7: Shape function α1 and α2 for triangular element [11] 
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The shape function α1 and α2 are illustrated in figure 3.7. The energy per unit 

length associated with the element e is given by: 

 

      
 

 
∫  | |    
 

 

 
∫  |∇  |   
 

      (3.26) 

 

Where the two dimensional solution region free of charge        is assumed 

but from equation 3.18 

 

     ∇   ∑    ∇   
            (3.27) 

 

Substituting equation 3.27 and equation 3.26 

 

      
 

 
∑ ∑     [∫ ∇   ∇     

 
]     

   
 
         (3.28) 

 

If we define the term in bracket as; 

 

        
   

 ∫ ∇   ∇     
 

      (3.29) 
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We may write equation 3.28 in matrix form as 

 

        
 

 
 [  ] [    ][  ]     (3.30) 

 

Where the superscript T denotes the transpose of the matrix 

 

     [  ]  [
   
   
   

]       (3.31) 

 

And 

 

     [    ]  [

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

]     (3.32) 

 

The matrix [    ]is usually called the element coefficient matrix. The matrix 

element    
   

 of the coefficient matrix may be regarded as the coupling between nodes i 

and j and its value is obtained from equation 3.33, 3.34, 3.35 and 3.36. 

 

      
 

  
[                             ]    (3.33) 

      
 

  
[                             ]   (3.34) 
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[                             ]    (3.35) 

 

And 

 

      
   

 ∫ ∇   ∇     
 

       (3.36) 

 

For example, 

 

      
    ∫∇   ∇          

    
 

   
[                             ]∫   

 
  

    
 

  
[                             ]   (3.37) 

 

Similarity, 

 

      
    

 

  
[                 ]      (3.38) 

      
    

 

  
[                             ]   (3.39) 

      
    

 

  
[                 ]   

    
 

  
[           

                                                                        ]      (3.40) 

      
    

 

  
[                 ]      (3.41) 
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Also, 

 

        
       

   
       (3.42) 

        
       

   
       (3.43) 

        
   

    
   

       (3.44) 

 

However, the calculation will be easier if we define 

 

P1 = (y2 - y3)      (3.45) 

P2 = (y3 - y1)        (3.46) 

P3 = (y1-y2)        (3.47) 

Q1 = (x3-x2)       (3.48) 

Q2 = (x1 - x3)       (3.49) 

Q3 = (x2 - x1)       (3.50) 

 

With Pi and Qi with i=1, 2, 3 are a local node numbers. Each term in the element 

coefficient matrix is found as, 

 

        
   

 
 

  
[         ]     (3.51) 
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Where 

 

       
 

 
                (3.52) 

 

Note that P1 + P2 + P3 = Q1 + Q2 + Q3 = 0 and hence ∑    
   

  
   ∑    

   
   

   . 

This may be used in checking our calculations. 

 

 

 

 

3.3.4 Assembling All the Elements 

 

 

Having considered a typical element, the next step is to assemble all such 

elements in the solution region. The energy associated with the assemblage of all 

elements in the mesh is 

 

       ∑    
 

 
 [ ] [ ][ ] 

      (3.53) 
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Where 

 

     [ ]  [
  
 

  
]       (3.54) 

 

n is the number of nodes, N is the number of elements and [C] is called the 

overall or global coefficient matrix which is the assemblage of individual element 

coefficient matrices. The major problem now is obtaining [C] from [    ]. 

 

 

Figure 3.8: Assembly of three elements [11] 

 

The process by which individual element coefficient matrices are assembled to 

obtain the global coefficient matrix is best illustrated with an example. Consider the 

finite element mesh consisting of three finite elements as shown in figure 3.8. Observe 

the numberings of the nodes. The numbering of nodes as 1, 2, 3, 4 and 5 is called global 

numbering. The numbering i-j-k is called local numbering and it corresponds with 1-2-3 

of the element in figure 3.6. For example, for element 3 in figure 3.8 the global 

numbering 3-5-4 corresponds to local numbering 1-2-3 of the element in figure 3.6.  
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Note that the local numbering must be in counterclockwise sequence starting 

from any node of the element. For element 3, for example we could choose 4-3-5 or 5-4-

3 instead of 3-5-4 to correspond with 1-2-3 of the element in figure 3.6. Thus the 

numbering in figure 3.8 is not unique. However, we obtain the same [C] whichever 

numbering is used. Assuming the particular numbering in figure 3.8 the global 

coefficient matrix is expected to have the form 

 

     [ ]  [
       
     

       

]     (3.55) 

 

Which is matrix 5 x 5 since the five nodes (n=5) are involved. Again Cij is the 

coupling between nodes I and j. We obtain Cij by utilizing the fact that the potential 

distribution must be continuous across inter element boundaries. The contribution to the 

i, j position in [C] comes from all elements containing nodes i and j. To find C11, for 

example we observe from figure 3.8 that global node 1 belongs to elements 1 and 2 and 

it is local node 1 in both hence, 

 

            
   

    
   

      (3.56) 

 

For C22, global node 2 belongs to element 1 only and is the same as local node 3, hence 

 

            
   

        (3.57) 
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For C44 global node 4 is the same as local nodes 2, 3 and 3 in the elements 1, 2 

and 3 respectively hence 

 

            
   

    
   

    
   

     (3.58) 

 

For C14, global link 14 is the same as the local link 12 and 13 in elements 1 and 2 

respectively hence 

 

            
       

   
      (3.59) 

 

Since there is no coupling or direct link between nodes 2 and 3 

 

                    (3.60) 

 

Continuing in this manner, we obtain all the terms in the global coefficient 

matrix by inspection of figure 3.8 as, 

 

 [ ]  

|

|

|

   
   

    
   

   
   

   
   

   
   

   
   

 

   
   

    
   

    
   

                
   

    
   

                    

          
   

                    

                 
   

    
   

                  
   

   
       

      
      

       
   

     
   

                 
   

    
   

    
   

     
   

   
   

   
   |

|

|

 (3.61) 
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Note that the element coefficient matrices overlap at nodes shared by elements 

and that there are 27 terms where nine for each of the three elements in the global 

coefficient matrix [C]. Also note the following properties of the matrix [C]: 

 

1. It is symmetric (Cij=Cji) just like the element coefficient matrix 

2. Since Cij = 0 if no coupling exist between nodes I and j, it is evident that for a 

large number of elements [C] becomes sparse and banded. 

3. It is singular. Although this is less obvious, it can be shown by using the element 

coefficient matrix of equation 3.62. 

 

    [    ]  [

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

]    (3.62) 

 

 

 

 

3.3.5 Solving the Resulting Equation 

 

 

From variation calculus, it is known that Laplace’s or Poisson’s equation is 

satisfied when the total energy in the solution region is minimum. Thus we required that 

the partial derivatives of W with respect to each nodal value of the potential be zero that 

is, 
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       (3.63) 

 

Or 

 

     
  

   
                 (3.64) 

 

For example to get      ⁄    for the finite element mesh of figure 3.8, we 

substitute equation 3.55 into equation 3.53 and take the partial derivative of W with 

respect to V1. We obtain 

 

  
  

   
                                                  

                 (3.65) 

 

Or 

 

0=V1C11+V2C12+V3C13+V4C14+V5C15     (3.66) 

 

In general,      ⁄    leads to 

 

       ∑       
          (3.67) 



50 
 

 

Where n is the number of nodes in the mesh. By writing equation 3.67 for all the 

nodes k=1, 2 …, n we obtain a set of simultaneous equations from which the solution of 

[ ]  [          ] can be found. This can be done in two ways similar to those 

used in solving finite difference equation obtained from Laplace’s or Poisson’s equation. 
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CHAPTER 4 

 

 

 

 

RESULT AND ANALYSIS 

 

 

 

 

4.1 Introduction 

 

 

 In this chapter, it will discuss about the result that produce from this project. Two 

types of software have been used to get the parameter of the transformer and to make an 

analysis of the types of transformer that are powerEsims and MATLAB. In powerEsims, 

it uses to get the parameters for a transformer. MATLAB is use to make an analysis 

about the condition of losses in a transformer. 
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4.2 Transformer Used 

 

 

 

Figure 4.1: Transformer construction 

 

 For this experiment, it use toroidal transformer with three windings in it. In 

figure 4.1 the complete toroidal single phase transformer is modeled. The transformer 

parameter has been created by using powerEsim software as shown in Table 4.1 below: 

 

 

Table 4.1: Parameters to be used in simulation 

Types Step Up transformer Voltage open 

circuit, Voc 

220V 

Winding 3 Current open 

circuit, Ioc 

0.1A 

Frequency, f 50 Hz Power open 

circuit, Poc 

9.93W 

Winding wire 0.5mmx2 Cos θ -0.468 

0.067m 
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Winding wire 

thickness 

0.63mm Ic 0.045A 

Primary Turns, Np 100 Im 0.089 

Secondary Turns, 

Ns 

200 Rc 4.89kΩ 

Idc 50mA Xm 2.47kΩ 

Vp 0.5V Z 4.89+j2.47kΩ 

Pon 0.5W 

 

Ip 35.84-j18.11A 

Area 1.25cm² Phase Single 

Type of Core Ferrite Permability,          

 

 

 

 

4.3 Transformer Test 

  

 

 To get the transformer parameter, first need to make a test to it. For make an 

analysis at core, it needs to use open circuit test. In the open circuit test, a transformer’s 

secondary winding is open circuited, and its primary winding is connected to a full- 

rated line voltage The open circuit are shown in Figure 4.2. Full line voltage is applied 

to the primary of the transformer are measured. From this information, it is possible to 

determine the power factor of the input current and therefore both magnitude and the 

angle of the excitation impedance.  
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Figure 4.2: Open circuit test 

 

Calculation of Open Circuit Test: 

 

POC = VOC IOC COS θOC      (4.1) 

            
  (

   

      
)      (4.2) 

 

Hence, 

 

                   (4.3) 

                   (4.4) 

Then RC and Xm, 

 

        
   

  
         (4.5) 

        
   

  
        (4.6) 

 

 

V 

Low 
Voltage 
Side 

A 

Rated Voltage 
(Low Voltage 
Side) 

High Voltage 
Side (Open 
Circuit) 

W 

T1 1 3 

2 4 
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From open circuit test, voltage, current, power and power factor can be 

determined. From that all parameters can be calculated. That are power factor for open 

circuit (   ), core current (Ic), magnetism current (Im), core reactance (Rc) and 

magnetism reactance (Xm). 

 

4.4 Simulation Result 

 

 

Figure 4.3: Transformer losses test 

 

As shown in figure 4.3, is showing the additional parameter for the transformer. 

As it shows, the DC current, Idc is equal to 50mA. For the duty cycle when on, Don is 0.5 

and frequency that used is 50Hz. Voltage at primary is 0.5V with current at secondary 

5A.The transformer total loss is about 28.56W. For the core losses, it is small 804.2uW.  
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Figure 4.4: Current flow 

It shows us the flow of the current at this toroid transformer. The current that is 

anticlockwise. X and Y axis show the size of transformer. 

 

Figure 4.5: Mesh analysis 

This is a standard mesh analysis that is about 100 nodes. From the nodes, it can calculate 

the flux and get the value of core loss. The X and Y axis is the size of the transformer. 
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Figure 4.6: Heat of the transformer 

In this figure, it shows us the separation of the heat at the transformer. At the 

center, it shows that the heat is high because the main operation of this transformer is 

there. It shows that at the outer of the transformer is cool. The flux at the outer of 

transformer is small than at the core. X and Y axis is show the size of transformer. The 

color is value of magnetic flux density, B. 

 

 

Figure 4.7: 3D view heat transformer  

This figure, it show the separation of heat in 3D view. The X and Y axis is a size of 

transformer and Z axis is the value of magnetic flux density, B. 
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Figure 4.8: Increasing Mesh 

 

By increasing the nodes at mesh equation, it can get about 4165 nodes with 8152 

triangles. 
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CHAPTER 5 

 

 

 

CONCLUSION AND SUGGESTION 

 

 

 

 

5.1 INTRODUCTION 

 

 

In this chapter, it will make a conclusion for this final year project. This is a 

conclusion from the start until the end of this project. It also has some of suggestion for 

make it more precise if want to make more research about this topic.  
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5.2 CONCLUSION 

 

For the conclusion, this project is follow the progress by achieve the entire 

objective needed. It also has shown that the losses can make a transformer give 

disadvantage or losses to the company. The losses that appear can make us estimated 

when it need to repair or change. It does not need us to buy a new when it just needs a 

repair. That will save some cost when did this calculation. The result appear with using 

finite element method by using Matlab software and it just need to plug in the 

parameters need and the analysis will describe about the losses at the transformer. 

 

 

 

 

5.3 SUGGESTION 

 

 For improvement, it can be done by varied the cored use. It can see the difference 

and the best core that is suitable to use. From the difference core, it has various value of 

permeability. The value of permeability show that the difference between the core. 

Others than that, we can use difference voltage types of transformer and see the 

difference between that. When the input voltage usage when doing the open circuit test, 

it show difference parameters and the difference result can be get from that.  
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Partial Differential Equation Toolbox 1.0.18
Solve partial differential equations using finite element methods

The Partial Differential Equation (PDE) Toolbox™ contains tools for the study and solution of PDEs in two space
dimensions (2-D) and time, using the finite element method (FEM). Its command line functions and graphical
user interface can be used for mathematical modeling of PDEs in a broad range of engineering and science
applications, including structural mechanics, electromagnetics, heat transfer, and diffusion.

Key Features
▪ Complete GUI for pre- and post-processing 2-D PDEs

▪ Automatic and adaptive meshing

▪ Geometry creation using constructive solid geometry (CSG) paradigm

▪ Boundary condition specification: Dirichlet, generalized Neumann, and mixed

▪ Flexible coefficient and PDE problem specification using MATLAB syntax

▪ Fully automated mesh generation and refinement

▪ Nonlinear and adaptive solvers handle systems with multiple dependent variables

▪ Simultaneous visualization of multiple solution properties, FEM-mesh overlays, and animation

Working with the Partial Differential Equation Toolbox

The Partial Differential Equation Toolbox lets you work in six modes from the graphical user interface or the
command line. Each mode corresponds to a step in the process of solving PDEs using the Finite Element Method.

▪ DrawDraw mode lets you create , the geometry, using the constructive solid geometry (CSG) model paradigm.
The graphical interface provides a set of solid building blocks (square, rectangle, circle, ellipse, and polygon)
that can be combined to define complex geometries.

▪ BoundaryBoundary mode lets you specify conditions on different boundaries or remove subdomain borders.

▪ PDEPDE mode lets you select the type of PDE problem and the coefficients c, a, f, and d. By specifying the
coefficients for each subdomain independently, you can represent different material properties.

▪ MeshMesh mode lets you control the fully automated mesh generation and refinement process.

▪ SolveSolve mode lets you invoke and control the nonlinear and adaptive solver for elliptic problems. For parabolic
and hyperbolic PDE problems, you can specify the initial values and obtain solutions at specific times. For the
eigenvalue solver, you can define the interval over which to search for eigenvalues.

▪ PlotPlot mode lets you select from different plot types, including surface, mesh, and contour. You can
simultaneously visualize multiple solution properties using color, height, and vector fields. The FEM mesh
can be overlaid on all plots and shown in the displaced position. For parabolic and hyperbolic equations, you
can animate the solution as it changes with time.
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Using the graphical user interface to define the complex geometry of a wrench, generate a mesh, and analyze it for a
given load configuration.
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Defining and Solving PDEs

With the Partial Differential Equation Toolbox, you can define and numerically solve different types of PDEs,
including elliptic, parabolic, hyperbolic, eigenvalue, nonlinear elliptic, and systems of PDEs with multiple
variables.

Elliptic PDE

The basic scalar equation of the toolbox is the elliptic PDE

where is the vector , and c is a 2-by-2 matrix function on , the bounded planar domain of
interest. c, a, and f can be complex valued functions of x and y.

Parabolic, Hyperbolic, and Eigenvalue PDEs

The toolbox can also handle the parabolic PDE

the hyperbolic PDE

and the eigenvalue PDE

where d is a complex valued function on and is the eigenvalue. For parabolic and hyperbolic PDEs, c, a, f,
and d can be complex valued functions of x, y, and t.

Nonlinear Elliptic PDE

A nonlinear Newton solver is available for the nonlinear elliptic PDE

where the coefficients defining c, a, and f can be functions of x, y, and the unknown solution u. All solvers can
handle the PDE system with multiple dependent variables

You can handle systems of dimension two from the graphical user interface. An arbitrary number of dimensions
can be handled from the command line. The toolbox also provides an adaptive mesh refinement algorithm for
elliptic and nonlinear elliptic PDE problems.
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Handling Boundary Conditions

The following boundary conditions can be handled for scalar u:

▪ Dirichlet:

on the boundary
▪ Generalized Neumann:

on

where is the outward unit normal and g, q, h, and r can be complex valued functions of x and y defined on
. For the nonlinear PDE, the coefficients may depend on u. For time-dependent problems, the coefficients

may also depend on t. For PDE systems, Dirichlet, generalized Neumann, and mixed boundary conditions are
supported.

Visualization tools provide multiple ways to plot results. A contour plot with gradient arrows shows the temperature
and heat flux. The temperature gradient is displayed using 3-D plotting tools.

Toolbox Application Modes

The Partial Differential Equation Toolbox graphical interface includes a set of application modes for common
engineering and science problems. When you select a mode, PDE coefficients are replaced with
application-specific parameters, such as Young’s modulus for problems in structural mechanics. Available modes
include:

▪ Structural Mechanics - Plane Stress
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Product Details, Demos, and System Requirements
www.mathworks.com/products/pde

Trial Software
www.mathworks.com/trialrequest

Sales
www.mathworks.com/contactsales

Technical Support
www.mathworks.com/support

▪ Structural Mechanics - Plane Strain

▪ Electrostatics

▪ Magnetostatics

▪ AC Power Electromagnetics

▪ Conductive Media DC

▪ Heat Transfer

▪ Diffusion

The boundary conditions are altered to reflect the physical meaning of the different boundary condition
coefficients. The plotting tools let you visualize the relevant physical variables for the selected application.

Resources

Online User Community
www.mathworks.com/matlabcentral

Training Services
www.mathworks.com/training

Third-Party Products and Services
www.mathworks.com/connections

Worldwide Contacts
www.mathworks.com/contact

© 2011 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks
for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders. 5
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